xref: /linux/security/keys/key.c (revision 488ef3560196ee10fc1c5547e1574a87068c3494)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/err.h>
17 #include "internal.h"
18 
19 struct kmem_cache *key_jar;
20 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
21 DEFINE_SPINLOCK(key_serial_lock);
22 
23 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
24 DEFINE_SPINLOCK(key_user_lock);
25 
26 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
27 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
28 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
29 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
30 
31 static LIST_HEAD(key_types_list);
32 static DECLARE_RWSEM(key_types_sem);
33 
34 /* We serialise key instantiation and link */
35 DEFINE_MUTEX(key_construction_mutex);
36 
37 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)38 void __key_check(const struct key *key)
39 {
40 	printk("__key_check: key %p {%08x} should be {%08x}\n",
41 	       key, key->magic, KEY_DEBUG_MAGIC);
42 	BUG();
43 }
44 #endif
45 
46 /*
47  * Get the key quota record for a user, allocating a new record if one doesn't
48  * already exist.
49  */
key_user_lookup(kuid_t uid)50 struct key_user *key_user_lookup(kuid_t uid)
51 {
52 	struct key_user *candidate = NULL, *user;
53 	struct rb_node *parent, **p;
54 
55 try_again:
56 	parent = NULL;
57 	p = &key_user_tree.rb_node;
58 	spin_lock(&key_user_lock);
59 
60 	/* search the tree for a user record with a matching UID */
61 	while (*p) {
62 		parent = *p;
63 		user = rb_entry(parent, struct key_user, node);
64 
65 		if (uid_lt(uid, user->uid))
66 			p = &(*p)->rb_left;
67 		else if (uid_gt(uid, user->uid))
68 			p = &(*p)->rb_right;
69 		else
70 			goto found;
71 	}
72 
73 	/* if we get here, we failed to find a match in the tree */
74 	if (!candidate) {
75 		/* allocate a candidate user record if we don't already have
76 		 * one */
77 		spin_unlock(&key_user_lock);
78 
79 		user = NULL;
80 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
81 		if (unlikely(!candidate))
82 			goto out;
83 
84 		/* the allocation may have scheduled, so we need to repeat the
85 		 * search lest someone else added the record whilst we were
86 		 * asleep */
87 		goto try_again;
88 	}
89 
90 	/* if we get here, then the user record still hadn't appeared on the
91 	 * second pass - so we use the candidate record */
92 	refcount_set(&candidate->usage, 1);
93 	atomic_set(&candidate->nkeys, 0);
94 	atomic_set(&candidate->nikeys, 0);
95 	candidate->uid = uid;
96 	candidate->qnkeys = 0;
97 	candidate->qnbytes = 0;
98 	spin_lock_init(&candidate->lock);
99 	mutex_init(&candidate->cons_lock);
100 
101 	rb_link_node(&candidate->node, parent, p);
102 	rb_insert_color(&candidate->node, &key_user_tree);
103 	spin_unlock(&key_user_lock);
104 	user = candidate;
105 	goto out;
106 
107 	/* okay - we found a user record for this UID */
108 found:
109 	refcount_inc(&user->usage);
110 	spin_unlock(&key_user_lock);
111 	kfree(candidate);
112 out:
113 	return user;
114 }
115 
116 /*
117  * Dispose of a user structure
118  */
key_user_put(struct key_user * user)119 void key_user_put(struct key_user *user)
120 {
121 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
122 		rb_erase(&user->node, &key_user_tree);
123 		spin_unlock(&key_user_lock);
124 
125 		kfree(user);
126 	}
127 }
128 
129 /*
130  * Allocate a serial number for a key.  These are assigned randomly to avoid
131  * security issues through covert channel problems.
132  */
key_alloc_serial(struct key * key)133 static inline void key_alloc_serial(struct key *key)
134 {
135 	struct rb_node *parent, **p;
136 	struct key *xkey;
137 
138 	/* propose a random serial number and look for a hole for it in the
139 	 * serial number tree */
140 	do {
141 		get_random_bytes(&key->serial, sizeof(key->serial));
142 
143 		key->serial >>= 1; /* negative numbers are not permitted */
144 	} while (key->serial < 3);
145 
146 	spin_lock(&key_serial_lock);
147 
148 attempt_insertion:
149 	parent = NULL;
150 	p = &key_serial_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		xkey = rb_entry(parent, struct key, serial_node);
155 
156 		if (key->serial < xkey->serial)
157 			p = &(*p)->rb_left;
158 		else if (key->serial > xkey->serial)
159 			p = &(*p)->rb_right;
160 		else
161 			goto serial_exists;
162 	}
163 
164 	/* we've found a suitable hole - arrange for this key to occupy it */
165 	rb_link_node(&key->serial_node, parent, p);
166 	rb_insert_color(&key->serial_node, &key_serial_tree);
167 
168 	spin_unlock(&key_serial_lock);
169 	return;
170 
171 	/* we found a key with the proposed serial number - walk the tree from
172 	 * that point looking for the next unused serial number */
173 serial_exists:
174 	for (;;) {
175 		key->serial++;
176 		if (key->serial < 3) {
177 			key->serial = 3;
178 			goto attempt_insertion;
179 		}
180 
181 		parent = rb_next(parent);
182 		if (!parent)
183 			goto attempt_insertion;
184 
185 		xkey = rb_entry(parent, struct key, serial_node);
186 		if (key->serial < xkey->serial)
187 			goto attempt_insertion;
188 	}
189 }
190 
191 /**
192  * key_alloc - Allocate a key of the specified type.
193  * @type: The type of key to allocate.
194  * @desc: The key description to allow the key to be searched out.
195  * @uid: The owner of the new key.
196  * @gid: The group ID for the new key's group permissions.
197  * @cred: The credentials specifying UID namespace.
198  * @perm: The permissions mask of the new key.
199  * @flags: Flags specifying quota properties.
200  * @restrict_link: Optional link restriction for new keyrings.
201  *
202  * Allocate a key of the specified type with the attributes given.  The key is
203  * returned in an uninstantiated state and the caller needs to instantiate the
204  * key before returning.
205  *
206  * The restrict_link structure (if not NULL) will be freed when the
207  * keyring is destroyed, so it must be dynamically allocated.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags,
227 		      struct key_restriction *restrict_link)
228 {
229 	struct key_user *user = NULL;
230 	struct key *key;
231 	size_t desclen, quotalen;
232 	int ret;
233 	unsigned long irqflags;
234 
235 	key = ERR_PTR(-EINVAL);
236 	if (!desc || !*desc)
237 		goto error;
238 
239 	if (type->vet_description) {
240 		ret = type->vet_description(desc);
241 		if (ret < 0) {
242 			key = ERR_PTR(ret);
243 			goto error;
244 		}
245 	}
246 
247 	desclen = strlen(desc);
248 	quotalen = desclen + 1 + type->def_datalen;
249 
250 	/* get hold of the key tracking for this user */
251 	user = key_user_lookup(uid);
252 	if (!user)
253 		goto no_memory_1;
254 
255 	/* check that the user's quota permits allocation of another key and
256 	 * its description */
257 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxkeys : key_quota_maxkeys;
260 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxbytes : key_quota_maxbytes;
262 
263 		spin_lock_irqsave(&user->lock, irqflags);
264 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 			if (user->qnkeys + 1 > maxkeys ||
266 			    user->qnbytes + quotalen > maxbytes ||
267 			    user->qnbytes + quotalen < user->qnbytes)
268 				goto no_quota;
269 		}
270 
271 		user->qnkeys++;
272 		user->qnbytes += quotalen;
273 		spin_unlock_irqrestore(&user->lock, irqflags);
274 	}
275 
276 	/* allocate and initialise the key and its description */
277 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 	if (!key)
279 		goto no_memory_2;
280 
281 	key->index_key.desc_len = desclen;
282 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 	if (!key->index_key.description)
284 		goto no_memory_3;
285 	key->index_key.type = type;
286 	key_set_index_key(&key->index_key);
287 
288 	refcount_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->user = user;
292 	key->quotalen = quotalen;
293 	key->datalen = type->def_datalen;
294 	key->uid = uid;
295 	key->gid = gid;
296 	key->perm = perm;
297 	key->expiry = TIME64_MAX;
298 	key->restrict_link = restrict_link;
299 	key->last_used_at = ktime_get_real_seconds();
300 
301 	key->flags |= 1 << KEY_FLAG_USER_ALIVE;
302 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
303 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
304 	if (flags & KEY_ALLOC_BUILT_IN)
305 		key->flags |= 1 << KEY_FLAG_BUILTIN;
306 	if (flags & KEY_ALLOC_UID_KEYRING)
307 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
308 	if (flags & KEY_ALLOC_SET_KEEP)
309 		key->flags |= 1 << KEY_FLAG_KEEP;
310 
311 #ifdef KEY_DEBUGGING
312 	key->magic = KEY_DEBUG_MAGIC;
313 #endif
314 
315 	/* let the security module know about the key */
316 	ret = security_key_alloc(key, cred, flags);
317 	if (ret < 0)
318 		goto security_error;
319 
320 	/* publish the key by giving it a serial number */
321 	refcount_inc(&key->domain_tag->usage);
322 	atomic_inc(&user->nkeys);
323 	key_alloc_serial(key);
324 
325 error:
326 	return key;
327 
328 security_error:
329 	kfree(key->description);
330 	kmem_cache_free(key_jar, key);
331 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 		spin_lock_irqsave(&user->lock, irqflags);
333 		user->qnkeys--;
334 		user->qnbytes -= quotalen;
335 		spin_unlock_irqrestore(&user->lock, irqflags);
336 	}
337 	key_user_put(user);
338 	key = ERR_PTR(ret);
339 	goto error;
340 
341 no_memory_3:
342 	kmem_cache_free(key_jar, key);
343 no_memory_2:
344 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
345 		spin_lock_irqsave(&user->lock, irqflags);
346 		user->qnkeys--;
347 		user->qnbytes -= quotalen;
348 		spin_unlock_irqrestore(&user->lock, irqflags);
349 	}
350 	key_user_put(user);
351 no_memory_1:
352 	key = ERR_PTR(-ENOMEM);
353 	goto error;
354 
355 no_quota:
356 	spin_unlock_irqrestore(&user->lock, irqflags);
357 	key_user_put(user);
358 	key = ERR_PTR(-EDQUOT);
359 	goto error;
360 }
361 EXPORT_SYMBOL(key_alloc);
362 
363 /**
364  * key_payload_reserve - Adjust data quota reservation for the key's payload
365  * @key: The key to make the reservation for.
366  * @datalen: The amount of data payload the caller now wants.
367  *
368  * Adjust the amount of the owning user's key data quota that a key reserves.
369  * If the amount is increased, then -EDQUOT may be returned if there isn't
370  * enough free quota available.
371  *
372  * If successful, 0 is returned.
373  */
key_payload_reserve(struct key * key,size_t datalen)374 int key_payload_reserve(struct key *key, size_t datalen)
375 {
376 	int delta = (int)datalen - key->datalen;
377 	int ret = 0;
378 
379 	key_check(key);
380 
381 	/* contemplate the quota adjustment */
382 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
383 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
384 			key_quota_root_maxbytes : key_quota_maxbytes;
385 		unsigned long flags;
386 
387 		spin_lock_irqsave(&key->user->lock, flags);
388 
389 		if (delta > 0 &&
390 		    (key->user->qnbytes + delta > maxbytes ||
391 		     key->user->qnbytes + delta < key->user->qnbytes)) {
392 			ret = -EDQUOT;
393 		}
394 		else {
395 			key->user->qnbytes += delta;
396 			key->quotalen += delta;
397 		}
398 		spin_unlock_irqrestore(&key->user->lock, flags);
399 	}
400 
401 	/* change the recorded data length if that didn't generate an error */
402 	if (ret == 0)
403 		key->datalen = datalen;
404 
405 	return ret;
406 }
407 EXPORT_SYMBOL(key_payload_reserve);
408 
409 /*
410  * Change the key state to being instantiated.
411  */
mark_key_instantiated(struct key * key,int reject_error)412 static void mark_key_instantiated(struct key *key, int reject_error)
413 {
414 	/* Commit the payload before setting the state; barrier versus
415 	 * key_read_state().
416 	 */
417 	smp_store_release(&key->state,
418 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
419 }
420 
421 /*
422  * Instantiate a key and link it into the target keyring atomically.  Must be
423  * called with the target keyring's semaphore writelocked.  The target key's
424  * semaphore need not be locked as instantiation is serialised by
425  * key_construction_mutex.
426  */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)427 static int __key_instantiate_and_link(struct key *key,
428 				      struct key_preparsed_payload *prep,
429 				      struct key *keyring,
430 				      struct key *authkey,
431 				      struct assoc_array_edit **_edit)
432 {
433 	int ret, awaken;
434 
435 	key_check(key);
436 	key_check(keyring);
437 
438 	awaken = 0;
439 	ret = -EBUSY;
440 
441 	mutex_lock(&key_construction_mutex);
442 
443 	/* can't instantiate twice */
444 	if (key->state == KEY_IS_UNINSTANTIATED) {
445 		/* instantiate the key */
446 		ret = key->type->instantiate(key, prep);
447 
448 		if (ret == 0) {
449 			/* mark the key as being instantiated */
450 			atomic_inc(&key->user->nikeys);
451 			mark_key_instantiated(key, 0);
452 			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
453 
454 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
455 				awaken = 1;
456 
457 			/* and link it into the destination keyring */
458 			if (keyring) {
459 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
460 					set_bit(KEY_FLAG_KEEP, &key->flags);
461 
462 				__key_link(keyring, key, _edit);
463 			}
464 
465 			/* disable the authorisation key */
466 			if (authkey)
467 				key_invalidate(authkey);
468 
469 			if (prep->expiry != TIME64_MAX)
470 				key_set_expiry(key, prep->expiry);
471 		}
472 	}
473 
474 	mutex_unlock(&key_construction_mutex);
475 
476 	/* wake up anyone waiting for a key to be constructed */
477 	if (awaken)
478 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
479 
480 	return ret;
481 }
482 
483 /**
484  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
485  * @key: The key to instantiate.
486  * @data: The data to use to instantiate the keyring.
487  * @datalen: The length of @data.
488  * @keyring: Keyring to create a link in on success (or NULL).
489  * @authkey: The authorisation token permitting instantiation.
490  *
491  * Instantiate a key that's in the uninstantiated state using the provided data
492  * and, if successful, link it in to the destination keyring if one is
493  * supplied.
494  *
495  * If successful, 0 is returned, the authorisation token is revoked and anyone
496  * waiting for the key is woken up.  If the key was already instantiated,
497  * -EBUSY will be returned.
498  */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)499 int key_instantiate_and_link(struct key *key,
500 			     const void *data,
501 			     size_t datalen,
502 			     struct key *keyring,
503 			     struct key *authkey)
504 {
505 	struct key_preparsed_payload prep;
506 	struct assoc_array_edit *edit = NULL;
507 	int ret;
508 
509 	memset(&prep, 0, sizeof(prep));
510 	prep.orig_description = key->description;
511 	prep.data = data;
512 	prep.datalen = datalen;
513 	prep.quotalen = key->type->def_datalen;
514 	prep.expiry = TIME64_MAX;
515 	if (key->type->preparse) {
516 		ret = key->type->preparse(&prep);
517 		if (ret < 0)
518 			goto error;
519 	}
520 
521 	if (keyring) {
522 		ret = __key_link_lock(keyring, &key->index_key);
523 		if (ret < 0)
524 			goto error;
525 
526 		ret = __key_link_begin(keyring, &key->index_key, &edit);
527 		if (ret < 0)
528 			goto error_link_end;
529 
530 		if (keyring->restrict_link && keyring->restrict_link->check) {
531 			struct key_restriction *keyres = keyring->restrict_link;
532 
533 			ret = keyres->check(keyring, key->type, &prep.payload,
534 					    keyres->key);
535 			if (ret < 0)
536 				goto error_link_end;
537 		}
538 	}
539 
540 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
541 
542 error_link_end:
543 	if (keyring)
544 		__key_link_end(keyring, &key->index_key, edit);
545 
546 error:
547 	if (key->type->preparse)
548 		key->type->free_preparse(&prep);
549 	return ret;
550 }
551 
552 EXPORT_SYMBOL(key_instantiate_and_link);
553 
554 /**
555  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
556  * @key: The key to instantiate.
557  * @timeout: The timeout on the negative key.
558  * @error: The error to return when the key is hit.
559  * @keyring: Keyring to create a link in on success (or NULL).
560  * @authkey: The authorisation token permitting instantiation.
561  *
562  * Negatively instantiate a key that's in the uninstantiated state and, if
563  * successful, set its timeout and stored error and link it in to the
564  * destination keyring if one is supplied.  The key and any links to the key
565  * will be automatically garbage collected after the timeout expires.
566  *
567  * Negative keys are used to rate limit repeated request_key() calls by causing
568  * them to return the stored error code (typically ENOKEY) until the negative
569  * key expires.
570  *
571  * If successful, 0 is returned, the authorisation token is revoked and anyone
572  * waiting for the key is woken up.  If the key was already instantiated,
573  * -EBUSY will be returned.
574  */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)575 int key_reject_and_link(struct key *key,
576 			unsigned timeout,
577 			unsigned error,
578 			struct key *keyring,
579 			struct key *authkey)
580 {
581 	struct assoc_array_edit *edit = NULL;
582 	int ret, awaken, link_ret = 0;
583 
584 	key_check(key);
585 	key_check(keyring);
586 
587 	awaken = 0;
588 	ret = -EBUSY;
589 
590 	if (keyring) {
591 		if (keyring->restrict_link)
592 			return -EPERM;
593 
594 		link_ret = __key_link_lock(keyring, &key->index_key);
595 		if (link_ret == 0) {
596 			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
597 			if (link_ret < 0)
598 				__key_link_end(keyring, &key->index_key, edit);
599 		}
600 	}
601 
602 	mutex_lock(&key_construction_mutex);
603 
604 	/* can't instantiate twice */
605 	if (key->state == KEY_IS_UNINSTANTIATED) {
606 		/* mark the key as being negatively instantiated */
607 		atomic_inc(&key->user->nikeys);
608 		mark_key_instantiated(key, -error);
609 		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
610 		key_set_expiry(key, ktime_get_real_seconds() + timeout);
611 
612 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
613 			awaken = 1;
614 
615 		ret = 0;
616 
617 		/* and link it into the destination keyring */
618 		if (keyring && link_ret == 0)
619 			__key_link(keyring, key, &edit);
620 
621 		/* disable the authorisation key */
622 		if (authkey)
623 			key_invalidate(authkey);
624 	}
625 
626 	mutex_unlock(&key_construction_mutex);
627 
628 	if (keyring && link_ret == 0)
629 		__key_link_end(keyring, &key->index_key, edit);
630 
631 	/* wake up anyone waiting for a key to be constructed */
632 	if (awaken)
633 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
634 
635 	return ret == 0 ? link_ret : ret;
636 }
637 EXPORT_SYMBOL(key_reject_and_link);
638 
639 /**
640  * key_put - Discard a reference to a key.
641  * @key: The key to discard a reference from.
642  *
643  * Discard a reference to a key, and when all the references are gone, we
644  * schedule the cleanup task to come and pull it out of the tree in process
645  * context at some later time.
646  */
key_put(struct key * key)647 void key_put(struct key *key)
648 {
649 	if (key) {
650 		key_check(key);
651 
652 		if (refcount_dec_and_test(&key->usage)) {
653 			unsigned long flags;
654 
655 			/* deal with the user's key tracking and quota */
656 			if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
657 				spin_lock_irqsave(&key->user->lock, flags);
658 				key->user->qnkeys--;
659 				key->user->qnbytes -= key->quotalen;
660 				spin_unlock_irqrestore(&key->user->lock, flags);
661 			}
662 			/* Mark key as safe for GC after key->user done. */
663 			clear_bit_unlock(KEY_FLAG_USER_ALIVE, &key->flags);
664 			schedule_work(&key_gc_work);
665 		}
666 	}
667 }
668 EXPORT_SYMBOL(key_put);
669 
670 /*
671  * Find a key by its serial number.
672  */
key_lookup(key_serial_t id)673 struct key *key_lookup(key_serial_t id)
674 {
675 	struct rb_node *n;
676 	struct key *key;
677 
678 	spin_lock(&key_serial_lock);
679 
680 	/* search the tree for the specified key */
681 	n = key_serial_tree.rb_node;
682 	while (n) {
683 		key = rb_entry(n, struct key, serial_node);
684 
685 		if (id < key->serial)
686 			n = n->rb_left;
687 		else if (id > key->serial)
688 			n = n->rb_right;
689 		else
690 			goto found;
691 	}
692 
693 not_found:
694 	key = ERR_PTR(-ENOKEY);
695 	goto error;
696 
697 found:
698 	/* A key is allowed to be looked up only if someone still owns a
699 	 * reference to it - otherwise it's awaiting the gc.
700 	 */
701 	if (!refcount_inc_not_zero(&key->usage))
702 		goto not_found;
703 
704 error:
705 	spin_unlock(&key_serial_lock);
706 	return key;
707 }
708 EXPORT_SYMBOL(key_lookup);
709 
710 /*
711  * Find and lock the specified key type against removal.
712  *
713  * We return with the sem read-locked if successful.  If the type wasn't
714  * available -ENOKEY is returned instead.
715  */
key_type_lookup(const char * type)716 struct key_type *key_type_lookup(const char *type)
717 {
718 	struct key_type *ktype;
719 
720 	down_read(&key_types_sem);
721 
722 	/* look up the key type to see if it's one of the registered kernel
723 	 * types */
724 	list_for_each_entry(ktype, &key_types_list, link) {
725 		if (strcmp(ktype->name, type) == 0)
726 			goto found_kernel_type;
727 	}
728 
729 	up_read(&key_types_sem);
730 	ktype = ERR_PTR(-ENOKEY);
731 
732 found_kernel_type:
733 	return ktype;
734 }
735 
key_set_timeout(struct key * key,unsigned timeout)736 void key_set_timeout(struct key *key, unsigned timeout)
737 {
738 	time64_t expiry = TIME64_MAX;
739 
740 	/* make the changes with the locks held to prevent races */
741 	down_write(&key->sem);
742 
743 	if (timeout > 0)
744 		expiry = ktime_get_real_seconds() + timeout;
745 	key_set_expiry(key, expiry);
746 
747 	up_write(&key->sem);
748 }
749 EXPORT_SYMBOL_GPL(key_set_timeout);
750 
751 /*
752  * Unlock a key type locked by key_type_lookup().
753  */
key_type_put(struct key_type * ktype)754 void key_type_put(struct key_type *ktype)
755 {
756 	up_read(&key_types_sem);
757 }
758 
759 /*
760  * Attempt to update an existing key.
761  *
762  * The key is given to us with an incremented refcount that we need to discard
763  * if we get an error.
764  */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)765 static inline key_ref_t __key_update(key_ref_t key_ref,
766 				     struct key_preparsed_payload *prep)
767 {
768 	struct key *key = key_ref_to_ptr(key_ref);
769 	int ret;
770 
771 	/* need write permission on the key to update it */
772 	ret = key_permission(key_ref, KEY_NEED_WRITE);
773 	if (ret < 0)
774 		goto error;
775 
776 	ret = -EEXIST;
777 	if (!key->type->update)
778 		goto error;
779 
780 	down_write(&key->sem);
781 
782 	ret = key->type->update(key, prep);
783 	if (ret == 0) {
784 		/* Updating a negative key positively instantiates it */
785 		mark_key_instantiated(key, 0);
786 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
787 	}
788 
789 	up_write(&key->sem);
790 
791 	if (ret < 0)
792 		goto error;
793 out:
794 	return key_ref;
795 
796 error:
797 	key_put(key);
798 	key_ref = ERR_PTR(ret);
799 	goto out;
800 }
801 
802 /*
803  * Create or potentially update a key. The combined logic behind
804  * key_create_or_update() and key_create()
805  */
__key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags,bool allow_update)806 static key_ref_t __key_create_or_update(key_ref_t keyring_ref,
807 					const char *type,
808 					const char *description,
809 					const void *payload,
810 					size_t plen,
811 					key_perm_t perm,
812 					unsigned long flags,
813 					bool allow_update)
814 {
815 	struct keyring_index_key index_key = {
816 		.description	= description,
817 	};
818 	struct key_preparsed_payload prep;
819 	struct assoc_array_edit *edit = NULL;
820 	const struct cred *cred = current_cred();
821 	struct key *keyring, *key = NULL;
822 	key_ref_t key_ref;
823 	int ret;
824 	struct key_restriction *restrict_link = NULL;
825 
826 	/* look up the key type to see if it's one of the registered kernel
827 	 * types */
828 	index_key.type = key_type_lookup(type);
829 	if (IS_ERR(index_key.type)) {
830 		key_ref = ERR_PTR(-ENODEV);
831 		goto error;
832 	}
833 
834 	key_ref = ERR_PTR(-EINVAL);
835 	if (!index_key.type->instantiate ||
836 	    (!index_key.description && !index_key.type->preparse))
837 		goto error_put_type;
838 
839 	keyring = key_ref_to_ptr(keyring_ref);
840 
841 	key_check(keyring);
842 
843 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
844 		restrict_link = keyring->restrict_link;
845 
846 	key_ref = ERR_PTR(-ENOTDIR);
847 	if (keyring->type != &key_type_keyring)
848 		goto error_put_type;
849 
850 	memset(&prep, 0, sizeof(prep));
851 	prep.orig_description = description;
852 	prep.data = payload;
853 	prep.datalen = plen;
854 	prep.quotalen = index_key.type->def_datalen;
855 	prep.expiry = TIME64_MAX;
856 	if (index_key.type->preparse) {
857 		ret = index_key.type->preparse(&prep);
858 		if (ret < 0) {
859 			key_ref = ERR_PTR(ret);
860 			goto error_free_prep;
861 		}
862 		if (!index_key.description)
863 			index_key.description = prep.description;
864 		key_ref = ERR_PTR(-EINVAL);
865 		if (!index_key.description)
866 			goto error_free_prep;
867 	}
868 	index_key.desc_len = strlen(index_key.description);
869 	key_set_index_key(&index_key);
870 
871 	ret = __key_link_lock(keyring, &index_key);
872 	if (ret < 0) {
873 		key_ref = ERR_PTR(ret);
874 		goto error_free_prep;
875 	}
876 
877 	ret = __key_link_begin(keyring, &index_key, &edit);
878 	if (ret < 0) {
879 		key_ref = ERR_PTR(ret);
880 		goto error_link_end;
881 	}
882 
883 	if (restrict_link && restrict_link->check) {
884 		ret = restrict_link->check(keyring, index_key.type,
885 					   &prep.payload, restrict_link->key);
886 		if (ret < 0) {
887 			key_ref = ERR_PTR(ret);
888 			goto error_link_end;
889 		}
890 	}
891 
892 	/* if we're going to allocate a new key, we're going to have
893 	 * to modify the keyring */
894 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
895 	if (ret < 0) {
896 		key_ref = ERR_PTR(ret);
897 		goto error_link_end;
898 	}
899 
900 	/* if it's requested and possible to update this type of key, search
901 	 * for an existing key of the same type and description in the
902 	 * destination keyring and update that instead if possible
903 	 */
904 	if (allow_update) {
905 		if (index_key.type->update) {
906 			key_ref = find_key_to_update(keyring_ref, &index_key);
907 			if (key_ref)
908 				goto found_matching_key;
909 		}
910 	} else {
911 		key_ref = find_key_to_update(keyring_ref, &index_key);
912 		if (key_ref) {
913 			key_ref_put(key_ref);
914 			key_ref = ERR_PTR(-EEXIST);
915 			goto error_link_end;
916 		}
917 	}
918 
919 	/* if the client doesn't provide, decide on the permissions we want */
920 	if (perm == KEY_PERM_UNDEF) {
921 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
922 		perm |= KEY_USR_VIEW;
923 
924 		if (index_key.type->read)
925 			perm |= KEY_POS_READ;
926 
927 		if (index_key.type == &key_type_keyring ||
928 		    index_key.type->update)
929 			perm |= KEY_POS_WRITE;
930 	}
931 
932 	/* allocate a new key */
933 	key = key_alloc(index_key.type, index_key.description,
934 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
935 	if (IS_ERR(key)) {
936 		key_ref = ERR_CAST(key);
937 		goto error_link_end;
938 	}
939 
940 	/* instantiate it and link it into the target keyring */
941 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
942 	if (ret < 0) {
943 		key_put(key);
944 		key_ref = ERR_PTR(ret);
945 		goto error_link_end;
946 	}
947 
948 	security_key_post_create_or_update(keyring, key, payload, plen, flags,
949 					   true);
950 
951 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
952 
953 error_link_end:
954 	__key_link_end(keyring, &index_key, edit);
955 error_free_prep:
956 	if (index_key.type->preparse)
957 		index_key.type->free_preparse(&prep);
958 error_put_type:
959 	key_type_put(index_key.type);
960 error:
961 	return key_ref;
962 
963  found_matching_key:
964 	/* we found a matching key, so we're going to try to update it
965 	 * - we can drop the locks first as we have the key pinned
966 	 */
967 	__key_link_end(keyring, &index_key, edit);
968 
969 	key = key_ref_to_ptr(key_ref);
970 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
971 		ret = wait_for_key_construction(key, true);
972 		if (ret < 0) {
973 			key_ref_put(key_ref);
974 			key_ref = ERR_PTR(ret);
975 			goto error_free_prep;
976 		}
977 	}
978 
979 	key_ref = __key_update(key_ref, &prep);
980 
981 	if (!IS_ERR(key_ref))
982 		security_key_post_create_or_update(keyring, key, payload, plen,
983 						   flags, false);
984 
985 	goto error_free_prep;
986 }
987 
988 /**
989  * key_create_or_update - Update or create and instantiate a key.
990  * @keyring_ref: A pointer to the destination keyring with possession flag.
991  * @type: The type of key.
992  * @description: The searchable description for the key.
993  * @payload: The data to use to instantiate or update the key.
994  * @plen: The length of @payload.
995  * @perm: The permissions mask for a new key.
996  * @flags: The quota flags for a new key.
997  *
998  * Search the destination keyring for a key of the same description and if one
999  * is found, update it, otherwise create and instantiate a new one and create a
1000  * link to it from that keyring.
1001  *
1002  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1003  * concocted.
1004  *
1005  * Returns a pointer to the new key if successful, -ENODEV if the key type
1006  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
1007  * caller isn't permitted to modify the keyring or the LSM did not permit
1008  * creation of the key.
1009  *
1010  * On success, the possession flag from the keyring ref will be tacked on to
1011  * the key ref before it is returned.
1012  */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)1013 key_ref_t key_create_or_update(key_ref_t keyring_ref,
1014 			       const char *type,
1015 			       const char *description,
1016 			       const void *payload,
1017 			       size_t plen,
1018 			       key_perm_t perm,
1019 			       unsigned long flags)
1020 {
1021 	return __key_create_or_update(keyring_ref, type, description, payload,
1022 				      plen, perm, flags, true);
1023 }
1024 EXPORT_SYMBOL(key_create_or_update);
1025 
1026 /**
1027  * key_create - Create and instantiate a key.
1028  * @keyring_ref: A pointer to the destination keyring with possession flag.
1029  * @type: The type of key.
1030  * @description: The searchable description for the key.
1031  * @payload: The data to use to instantiate or update the key.
1032  * @plen: The length of @payload.
1033  * @perm: The permissions mask for a new key.
1034  * @flags: The quota flags for a new key.
1035  *
1036  * Create and instantiate a new key and link to it from the destination keyring.
1037  *
1038  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1039  * concocted.
1040  *
1041  * Returns a pointer to the new key if successful, -EEXIST if a key with the
1042  * same description already exists, -ENODEV if the key type wasn't available,
1043  * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't
1044  * permitted to modify the keyring or the LSM did not permit creation of the
1045  * key.
1046  *
1047  * On success, the possession flag from the keyring ref will be tacked on to
1048  * the key ref before it is returned.
1049  */
key_create(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)1050 key_ref_t key_create(key_ref_t keyring_ref,
1051 		     const char *type,
1052 		     const char *description,
1053 		     const void *payload,
1054 		     size_t plen,
1055 		     key_perm_t perm,
1056 		     unsigned long flags)
1057 {
1058 	return __key_create_or_update(keyring_ref, type, description, payload,
1059 				      plen, perm, flags, false);
1060 }
1061 EXPORT_SYMBOL(key_create);
1062 
1063 /**
1064  * key_update - Update a key's contents.
1065  * @key_ref: The pointer (plus possession flag) to the key.
1066  * @payload: The data to be used to update the key.
1067  * @plen: The length of @payload.
1068  *
1069  * Attempt to update the contents of a key with the given payload data.  The
1070  * caller must be granted Write permission on the key.  Negative keys can be
1071  * instantiated by this method.
1072  *
1073  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1074  * type does not support updating.  The key type may return other errors.
1075  */
key_update(key_ref_t key_ref,const void * payload,size_t plen)1076 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1077 {
1078 	struct key_preparsed_payload prep;
1079 	struct key *key = key_ref_to_ptr(key_ref);
1080 	int ret;
1081 
1082 	key_check(key);
1083 
1084 	/* the key must be writable */
1085 	ret = key_permission(key_ref, KEY_NEED_WRITE);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	/* attempt to update it if supported */
1090 	if (!key->type->update)
1091 		return -EOPNOTSUPP;
1092 
1093 	memset(&prep, 0, sizeof(prep));
1094 	prep.data = payload;
1095 	prep.datalen = plen;
1096 	prep.quotalen = key->type->def_datalen;
1097 	prep.expiry = TIME64_MAX;
1098 	if (key->type->preparse) {
1099 		ret = key->type->preparse(&prep);
1100 		if (ret < 0)
1101 			goto error;
1102 	}
1103 
1104 	down_write(&key->sem);
1105 
1106 	ret = key->type->update(key, &prep);
1107 	if (ret == 0) {
1108 		/* Updating a negative key positively instantiates it */
1109 		mark_key_instantiated(key, 0);
1110 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1111 	}
1112 
1113 	up_write(&key->sem);
1114 
1115 error:
1116 	if (key->type->preparse)
1117 		key->type->free_preparse(&prep);
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL(key_update);
1121 
1122 /**
1123  * key_revoke - Revoke a key.
1124  * @key: The key to be revoked.
1125  *
1126  * Mark a key as being revoked and ask the type to free up its resources.  The
1127  * revocation timeout is set and the key and all its links will be
1128  * automatically garbage collected after key_gc_delay amount of time if they
1129  * are not manually dealt with first.
1130  */
key_revoke(struct key * key)1131 void key_revoke(struct key *key)
1132 {
1133 	time64_t time;
1134 
1135 	key_check(key);
1136 
1137 	/* make sure no one's trying to change or use the key when we mark it
1138 	 * - we tell lockdep that we might nest because we might be revoking an
1139 	 *   authorisation key whilst holding the sem on a key we've just
1140 	 *   instantiated
1141 	 */
1142 	down_write_nested(&key->sem, 1);
1143 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1144 		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1145 		if (key->type->revoke)
1146 			key->type->revoke(key);
1147 
1148 		/* set the death time to no more than the expiry time */
1149 		time = ktime_get_real_seconds();
1150 		if (key->revoked_at == 0 || key->revoked_at > time) {
1151 			key->revoked_at = time;
1152 			key_schedule_gc(key->revoked_at + key_gc_delay);
1153 		}
1154 	}
1155 
1156 	up_write(&key->sem);
1157 }
1158 EXPORT_SYMBOL(key_revoke);
1159 
1160 /**
1161  * key_invalidate - Invalidate a key.
1162  * @key: The key to be invalidated.
1163  *
1164  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1165  * is ignored by all searches and other operations from this point.
1166  */
key_invalidate(struct key * key)1167 void key_invalidate(struct key *key)
1168 {
1169 	kenter("%d", key_serial(key));
1170 
1171 	key_check(key);
1172 
1173 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1174 		down_write_nested(&key->sem, 1);
1175 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1176 			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1177 			key_schedule_gc_links();
1178 		}
1179 		up_write(&key->sem);
1180 	}
1181 }
1182 EXPORT_SYMBOL(key_invalidate);
1183 
1184 /**
1185  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1186  * @key: The key to be instantiated
1187  * @prep: The preparsed data to load.
1188  *
1189  * Instantiate a key from preparsed data.  We assume we can just copy the data
1190  * in directly and clear the old pointers.
1191  *
1192  * This can be pointed to directly by the key type instantiate op pointer.
1193  */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1194 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1195 {
1196 	int ret;
1197 
1198 	pr_devel("==>%s()\n", __func__);
1199 
1200 	ret = key_payload_reserve(key, prep->quotalen);
1201 	if (ret == 0) {
1202 		rcu_assign_keypointer(key, prep->payload.data[0]);
1203 		key->payload.data[1] = prep->payload.data[1];
1204 		key->payload.data[2] = prep->payload.data[2];
1205 		key->payload.data[3] = prep->payload.data[3];
1206 		prep->payload.data[0] = NULL;
1207 		prep->payload.data[1] = NULL;
1208 		prep->payload.data[2] = NULL;
1209 		prep->payload.data[3] = NULL;
1210 	}
1211 	pr_devel("<==%s() = %d\n", __func__, ret);
1212 	return ret;
1213 }
1214 EXPORT_SYMBOL(generic_key_instantiate);
1215 
1216 /**
1217  * register_key_type - Register a type of key.
1218  * @ktype: The new key type.
1219  *
1220  * Register a new key type.
1221  *
1222  * Returns 0 on success or -EEXIST if a type of this name already exists.
1223  */
register_key_type(struct key_type * ktype)1224 int register_key_type(struct key_type *ktype)
1225 {
1226 	struct key_type *p;
1227 	int ret;
1228 
1229 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1230 
1231 	ret = -EEXIST;
1232 	down_write(&key_types_sem);
1233 
1234 	/* disallow key types with the same name */
1235 	list_for_each_entry(p, &key_types_list, link) {
1236 		if (strcmp(p->name, ktype->name) == 0)
1237 			goto out;
1238 	}
1239 
1240 	/* store the type */
1241 	list_add(&ktype->link, &key_types_list);
1242 
1243 	pr_notice("Key type %s registered\n", ktype->name);
1244 	ret = 0;
1245 
1246 out:
1247 	up_write(&key_types_sem);
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(register_key_type);
1251 
1252 /**
1253  * unregister_key_type - Unregister a type of key.
1254  * @ktype: The key type.
1255  *
1256  * Unregister a key type and mark all the extant keys of this type as dead.
1257  * Those keys of this type are then destroyed to get rid of their payloads and
1258  * they and their links will be garbage collected as soon as possible.
1259  */
unregister_key_type(struct key_type * ktype)1260 void unregister_key_type(struct key_type *ktype)
1261 {
1262 	down_write(&key_types_sem);
1263 	list_del_init(&ktype->link);
1264 	downgrade_write(&key_types_sem);
1265 	key_gc_keytype(ktype);
1266 	pr_notice("Key type %s unregistered\n", ktype->name);
1267 	up_read(&key_types_sem);
1268 }
1269 EXPORT_SYMBOL(unregister_key_type);
1270 
1271 /*
1272  * Initialise the key management state.
1273  */
key_init(void)1274 void __init key_init(void)
1275 {
1276 	/* allocate a slab in which we can store keys */
1277 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1278 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1279 
1280 	/* add the special key types */
1281 	list_add_tail(&key_type_keyring.link, &key_types_list);
1282 	list_add_tail(&key_type_dead.link, &key_types_list);
1283 	list_add_tail(&key_type_user.link, &key_types_list);
1284 	list_add_tail(&key_type_logon.link, &key_types_list);
1285 
1286 	/* record the root user tracking */
1287 	rb_link_node(&root_key_user.node,
1288 		     NULL,
1289 		     &key_user_tree.rb_node);
1290 
1291 	rb_insert_color(&root_key_user.node,
1292 			&key_user_tree);
1293 }
1294