1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/sha2.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/kernel.h>
26 #include <linux/kernel_read_file.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include <linux/dma-map-ops.h>
30 #include "kexec_internal.h"
31
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
set_kexec_sig_enforced(void)35 void set_kexec_sig_enforced(void)
36 {
37 sig_enforce = true;
38 }
39 #endif
40
41 #ifdef CONFIG_IMA_KEXEC
check_ima_segment_index(struct kimage * image,int i)42 static bool check_ima_segment_index(struct kimage *image, int i)
43 {
44 if (image->is_ima_segment_index_set && i == image->ima_segment_index)
45 return true;
46 else
47 return false;
48 }
49 #else
check_ima_segment_index(struct kimage * image,int i)50 static bool check_ima_segment_index(struct kimage *image, int i)
51 {
52 return false;
53 }
54 #endif
55
56 static int kexec_calculate_store_digests(struct kimage *image);
57
58 /* Maximum size in bytes for kernel/initrd files. */
59 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX)
60
61 /*
62 * Currently this is the only default function that is exported as some
63 * architectures need it to do additional handlings.
64 * In the future, other default functions may be exported too if required.
65 */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)66 int kexec_image_probe_default(struct kimage *image, void *buf,
67 unsigned long buf_len)
68 {
69 const struct kexec_file_ops * const *fops;
70 int ret = -ENOEXEC;
71
72 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
73 ret = (*fops)->probe(buf, buf_len);
74 if (!ret) {
75 image->fops = *fops;
76 return ret;
77 }
78 }
79
80 return ret;
81 }
82
kexec_image_load_default(struct kimage * image)83 static void *kexec_image_load_default(struct kimage *image)
84 {
85 if (!image->fops || !image->fops->load)
86 return ERR_PTR(-ENOEXEC);
87
88 return image->fops->load(image, image->kernel_buf,
89 image->kernel_buf_len, image->initrd_buf,
90 image->initrd_buf_len, image->cmdline_buf,
91 image->cmdline_buf_len);
92 }
93
kexec_image_post_load_cleanup_default(struct kimage * image)94 int kexec_image_post_load_cleanup_default(struct kimage *image)
95 {
96 if (!image->fops || !image->fops->cleanup)
97 return 0;
98
99 return image->fops->cleanup(image->image_loader_data);
100 }
101
102 /*
103 * Free up memory used by kernel, initrd, and command line. This is temporary
104 * memory allocation which is not needed any more after these buffers have
105 * been loaded into separate segments and have been copied elsewhere.
106 */
kimage_file_post_load_cleanup(struct kimage * image)107 void kimage_file_post_load_cleanup(struct kimage *image)
108 {
109 struct purgatory_info *pi = &image->purgatory_info;
110
111 vfree(image->kernel_buf);
112 image->kernel_buf = NULL;
113
114 vfree(image->initrd_buf);
115 image->initrd_buf = NULL;
116
117 kfree(image->cmdline_buf);
118 image->cmdline_buf = NULL;
119
120 vfree(pi->purgatory_buf);
121 pi->purgatory_buf = NULL;
122
123 vfree(pi->sechdrs);
124 pi->sechdrs = NULL;
125
126 #ifdef CONFIG_IMA_KEXEC
127 vfree(image->ima_buffer);
128 image->ima_buffer = NULL;
129 #endif /* CONFIG_IMA_KEXEC */
130
131 /* See if architecture has anything to cleanup post load */
132 arch_kimage_file_post_load_cleanup(image);
133
134 /*
135 * Above call should have called into bootloader to free up
136 * any data stored in kimage->image_loader_data. It should
137 * be ok now to free it up.
138 */
139 kfree(image->image_loader_data);
140 image->image_loader_data = NULL;
141
142 kexec_file_dbg_print = false;
143 }
144
145 #ifdef CONFIG_KEXEC_SIG
146 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
kexec_kernel_verify_pe_sig(const char * kernel,unsigned long kernel_len)147 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
148 {
149 int ret;
150
151 ret = verify_pefile_signature(kernel, kernel_len,
152 VERIFY_USE_SECONDARY_KEYRING,
153 VERIFYING_KEXEC_PE_SIGNATURE);
154 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
155 ret = verify_pefile_signature(kernel, kernel_len,
156 VERIFY_USE_PLATFORM_KEYRING,
157 VERIFYING_KEXEC_PE_SIGNATURE);
158 }
159 return ret;
160 }
161 #endif
162
kexec_image_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)163 static int kexec_image_verify_sig(struct kimage *image, void *buf,
164 unsigned long buf_len)
165 {
166 if (!image->fops || !image->fops->verify_sig) {
167 pr_debug("kernel loader does not support signature verification.\n");
168 return -EKEYREJECTED;
169 }
170
171 return image->fops->verify_sig(buf, buf_len);
172 }
173
174 static int
kimage_validate_signature(struct kimage * image)175 kimage_validate_signature(struct kimage *image)
176 {
177 int ret;
178
179 ret = kexec_image_verify_sig(image, image->kernel_buf,
180 image->kernel_buf_len);
181 if (ret) {
182
183 if (sig_enforce) {
184 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
185 return ret;
186 }
187
188 /*
189 * If IMA is guaranteed to appraise a signature on the kexec
190 * image, permit it even if the kernel is otherwise locked
191 * down.
192 */
193 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
194 security_locked_down(LOCKDOWN_KEXEC))
195 return -EPERM;
196
197 pr_debug("kernel signature verification failed (%d).\n", ret);
198 }
199
200 return 0;
201 }
202 #endif
203
kexec_post_load(struct kimage * image,unsigned long flags)204 static int kexec_post_load(struct kimage *image, unsigned long flags)
205 {
206 #ifdef CONFIG_IMA_KEXEC
207 if (!(flags & KEXEC_FILE_ON_CRASH))
208 ima_kexec_post_load(image);
209 #endif
210 return machine_kexec_post_load(image);
211 }
212
213 /*
214 * In file mode list of segments is prepared by kernel. Copy relevant
215 * data from user space, do error checking, prepare segment list
216 */
217 static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)218 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
219 const char __user *cmdline_ptr,
220 unsigned long cmdline_len, unsigned flags)
221 {
222 ssize_t ret;
223 void *ldata;
224
225 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
226 KEXEC_FILE_SIZE_MAX, NULL,
227 READING_KEXEC_IMAGE);
228 if (ret < 0)
229 return ret;
230 image->kernel_buf_len = ret;
231 kexec_dprintk("kernel: %p kernel_size: %#lx\n",
232 image->kernel_buf, image->kernel_buf_len);
233
234 /* Call arch image probe handlers */
235 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
236 image->kernel_buf_len);
237 if (ret)
238 goto out;
239
240 #ifdef CONFIG_KEXEC_SIG
241 ret = kimage_validate_signature(image);
242
243 if (ret)
244 goto out;
245 #endif
246 /* It is possible that there no initramfs is being loaded */
247 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
248 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
249 KEXEC_FILE_SIZE_MAX, NULL,
250 READING_KEXEC_INITRAMFS);
251 if (ret < 0)
252 goto out;
253 image->initrd_buf_len = ret;
254 ret = 0;
255 }
256
257 image->no_cma = !!(flags & KEXEC_FILE_NO_CMA);
258
259 if (cmdline_len) {
260 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
261 if (IS_ERR(image->cmdline_buf)) {
262 ret = PTR_ERR(image->cmdline_buf);
263 image->cmdline_buf = NULL;
264 goto out;
265 }
266
267 image->cmdline_buf_len = cmdline_len;
268
269 /* command line should be a string with last byte null */
270 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
271 ret = -EINVAL;
272 goto out;
273 }
274
275 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
276 image->cmdline_buf_len - 1);
277 }
278
279 /* IMA needs to pass the measurement list to the next kernel. */
280 ima_add_kexec_buffer(image);
281
282 /* If KHO is active, add its images to the list */
283 ret = kho_fill_kimage(image);
284 if (ret)
285 goto out;
286
287 /* Call image load handler */
288 ldata = kexec_image_load_default(image);
289
290 if (IS_ERR(ldata)) {
291 ret = PTR_ERR(ldata);
292 goto out;
293 }
294
295 image->image_loader_data = ldata;
296 out:
297 /* In case of error, free up all allocated memory in this function */
298 if (ret)
299 kimage_file_post_load_cleanup(image);
300 return ret;
301 }
302
303 static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)304 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
305 int initrd_fd, const char __user *cmdline_ptr,
306 unsigned long cmdline_len, unsigned long flags)
307 {
308 int ret;
309 struct kimage *image;
310 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
311
312 image = do_kimage_alloc_init();
313 if (!image)
314 return -ENOMEM;
315
316 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
317 image->file_mode = 1;
318
319 #ifdef CONFIG_CRASH_DUMP
320 if (kexec_on_panic) {
321 /* Enable special crash kernel control page alloc policy. */
322 image->control_page = crashk_res.start;
323 image->type = KEXEC_TYPE_CRASH;
324 }
325 #endif
326
327 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
328 cmdline_ptr, cmdline_len, flags);
329 if (ret)
330 goto out_free_image;
331
332 ret = sanity_check_segment_list(image);
333 if (ret)
334 goto out_free_post_load_bufs;
335
336 ret = -ENOMEM;
337 image->control_code_page = kimage_alloc_control_pages(image,
338 get_order(KEXEC_CONTROL_PAGE_SIZE));
339 if (!image->control_code_page) {
340 pr_err("Could not allocate control_code_buffer\n");
341 goto out_free_post_load_bufs;
342 }
343
344 if (!kexec_on_panic) {
345 image->swap_page = kimage_alloc_control_pages(image, 0);
346 if (!image->swap_page) {
347 pr_err("Could not allocate swap buffer\n");
348 goto out_free_control_pages;
349 }
350 }
351
352 *rimage = image;
353 return 0;
354 out_free_control_pages:
355 kimage_free_page_list(&image->control_pages);
356 out_free_post_load_bufs:
357 kimage_file_post_load_cleanup(image);
358 out_free_image:
359 kfree(image);
360 return ret;
361 }
362
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)363 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
364 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
365 unsigned long, flags)
366 {
367 int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
368 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
369 struct kimage **dest_image, *image;
370 int ret = 0, i;
371
372 /* We only trust the superuser with rebooting the system. */
373 if (!kexec_load_permitted(image_type))
374 return -EPERM;
375
376 /* Make sure we have a legal set of flags */
377 if (flags != (flags & KEXEC_FILE_FLAGS))
378 return -EINVAL;
379
380 image = NULL;
381
382 if (!kexec_trylock())
383 return -EBUSY;
384
385 #ifdef CONFIG_CRASH_DUMP
386 if (image_type == KEXEC_TYPE_CRASH) {
387 dest_image = &kexec_crash_image;
388 if (kexec_crash_image)
389 arch_kexec_unprotect_crashkres();
390 } else
391 #endif
392 dest_image = &kexec_image;
393
394 if (flags & KEXEC_FILE_UNLOAD)
395 goto exchange;
396
397 /*
398 * In case of crash, new kernel gets loaded in reserved region. It is
399 * same memory where old crash kernel might be loaded. Free any
400 * current crash dump kernel before we corrupt it.
401 */
402 if (flags & KEXEC_FILE_ON_CRASH)
403 kimage_free(xchg(&kexec_crash_image, NULL));
404
405 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
406 cmdline_len, flags);
407 if (ret)
408 goto out;
409
410 #ifdef CONFIG_CRASH_HOTPLUG
411 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags))
412 image->hotplug_support = 1;
413 #endif
414
415 ret = machine_kexec_prepare(image);
416 if (ret)
417 goto out;
418
419 /*
420 * Some architecture(like S390) may touch the crash memory before
421 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
422 */
423 ret = kimage_crash_copy_vmcoreinfo(image);
424 if (ret)
425 goto out;
426
427 ret = kexec_calculate_store_digests(image);
428 if (ret)
429 goto out;
430
431 kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
432 for (i = 0; i < image->nr_segments; i++) {
433 struct kexec_segment *ksegment;
434
435 ksegment = &image->segment[i];
436 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
437 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
438 ksegment->memsz);
439
440 ret = kimage_load_segment(image, i);
441 if (ret)
442 goto out;
443 }
444
445 kimage_terminate(image);
446
447 ret = kexec_post_load(image, flags);
448 if (ret)
449 goto out;
450
451 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
452 image->type, image->start, image->head, flags);
453 /*
454 * Free up any temporary buffers allocated which are not needed
455 * after image has been loaded
456 */
457 kimage_file_post_load_cleanup(image);
458 exchange:
459 image = xchg(dest_image, image);
460 out:
461 #ifdef CONFIG_CRASH_DUMP
462 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
463 arch_kexec_protect_crashkres();
464 #endif
465
466 kexec_unlock();
467 kimage_free(image);
468 return ret;
469 }
470
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)471 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
472 struct kexec_buf *kbuf)
473 {
474 struct kimage *image = kbuf->image;
475 unsigned long temp_start, temp_end;
476
477 temp_end = min(end, kbuf->buf_max);
478 temp_start = temp_end - kbuf->memsz + 1;
479 kexec_random_range_start(temp_start, temp_end, kbuf, &temp_start);
480
481 do {
482 /* align down start */
483 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
484
485 if (temp_start < start || temp_start < kbuf->buf_min)
486 return 0;
487
488 temp_end = temp_start + kbuf->memsz - 1;
489
490 /*
491 * Make sure this does not conflict with any of existing
492 * segments
493 */
494 if (kimage_is_destination_range(image, temp_start, temp_end)) {
495 temp_start = temp_start - PAGE_SIZE;
496 continue;
497 }
498
499 /* Make sure this does not conflict with exclude range */
500 if (arch_check_excluded_range(image, temp_start, temp_end)) {
501 temp_start = temp_start - PAGE_SIZE;
502 continue;
503 }
504
505 /* We found a suitable memory range */
506 break;
507 } while (1);
508
509 /* If we are here, we found a suitable memory range */
510 kbuf->mem = temp_start;
511
512 /* Success, stop navigating through remaining System RAM ranges */
513 return 1;
514 }
515
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)516 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
517 struct kexec_buf *kbuf)
518 {
519 struct kimage *image = kbuf->image;
520 unsigned long temp_start, temp_end;
521
522 temp_start = max(start, kbuf->buf_min);
523
524 kexec_random_range_start(temp_start, end, kbuf, &temp_start);
525
526 do {
527 temp_start = ALIGN(temp_start, kbuf->buf_align);
528 temp_end = temp_start + kbuf->memsz - 1;
529
530 if (temp_end > end || temp_end > kbuf->buf_max)
531 return 0;
532 /*
533 * Make sure this does not conflict with any of existing
534 * segments
535 */
536 if (kimage_is_destination_range(image, temp_start, temp_end)) {
537 temp_start = temp_start + PAGE_SIZE;
538 continue;
539 }
540
541 /* Make sure this does not conflict with exclude range */
542 if (arch_check_excluded_range(image, temp_start, temp_end)) {
543 temp_start = temp_start + PAGE_SIZE;
544 continue;
545 }
546
547 /* We found a suitable memory range */
548 break;
549 } while (1);
550
551 /* If we are here, we found a suitable memory range */
552 kbuf->mem = temp_start;
553
554 /* Success, stop navigating through remaining System RAM ranges */
555 return 1;
556 }
557
locate_mem_hole_callback(struct resource * res,void * arg)558 static int locate_mem_hole_callback(struct resource *res, void *arg)
559 {
560 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
561 u64 start = res->start, end = res->end;
562 unsigned long sz = end - start + 1;
563
564 /* Returning 0 will take to next memory range */
565
566 /* Don't use memory that will be detected and handled by a driver. */
567 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
568 return 0;
569
570 if (sz < kbuf->memsz)
571 return 0;
572
573 if (end < kbuf->buf_min || start > kbuf->buf_max)
574 return 0;
575
576 /*
577 * Allocate memory top down with-in ram range. Otherwise bottom up
578 * allocation.
579 */
580 if (kbuf->top_down)
581 return locate_mem_hole_top_down(start, end, kbuf);
582 return locate_mem_hole_bottom_up(start, end, kbuf);
583 }
584
585 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))586 static int kexec_walk_memblock(struct kexec_buf *kbuf,
587 int (*func)(struct resource *, void *))
588 {
589 int ret = 0;
590 u64 i;
591 phys_addr_t mstart, mend;
592 struct resource res = { };
593
594 #ifdef CONFIG_CRASH_DUMP
595 if (kbuf->image->type == KEXEC_TYPE_CRASH)
596 return func(&crashk_res, kbuf);
597 #endif
598
599 /*
600 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
601 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
602 * locate_mem_hole_callback().
603 */
604 if (kbuf->top_down) {
605 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
606 &mstart, &mend, NULL) {
607 /*
608 * In memblock, end points to the first byte after the
609 * range while in kexec, end points to the last byte
610 * in the range.
611 */
612 res.start = mstart;
613 res.end = mend - 1;
614 ret = func(&res, kbuf);
615 if (ret)
616 break;
617 }
618 } else {
619 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
620 &mstart, &mend, NULL) {
621 /*
622 * In memblock, end points to the first byte after the
623 * range while in kexec, end points to the last byte
624 * in the range.
625 */
626 res.start = mstart;
627 res.end = mend - 1;
628 ret = func(&res, kbuf);
629 if (ret)
630 break;
631 }
632 }
633
634 return ret;
635 }
636 #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))637 static int kexec_walk_memblock(struct kexec_buf *kbuf,
638 int (*func)(struct resource *, void *))
639 {
640 return 0;
641 }
642 #endif
643
644 /**
645 * kexec_walk_resources - call func(data) on free memory regions
646 * @kbuf: Context info for the search. Also passed to @func.
647 * @func: Function to call for each memory region.
648 *
649 * Return: The memory walk will stop when func returns a non-zero value
650 * and that value will be returned. If all free regions are visited without
651 * func returning non-zero, then zero will be returned.
652 */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))653 static int kexec_walk_resources(struct kexec_buf *kbuf,
654 int (*func)(struct resource *, void *))
655 {
656 #ifdef CONFIG_CRASH_DUMP
657 if (kbuf->image->type == KEXEC_TYPE_CRASH)
658 return walk_iomem_res_desc(crashk_res.desc,
659 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
660 crashk_res.start, crashk_res.end,
661 kbuf, func);
662 #endif
663 if (kbuf->top_down)
664 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
665 else
666 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
667 }
668
kexec_alloc_contig(struct kexec_buf * kbuf)669 static int kexec_alloc_contig(struct kexec_buf *kbuf)
670 {
671 size_t nr_pages = kbuf->memsz >> PAGE_SHIFT;
672 unsigned long mem;
673 struct page *p;
674
675 /* User space disabled CMA allocations, bail out. */
676 if (kbuf->image->no_cma)
677 return -EPERM;
678
679 /* Skip CMA logic for crash kernel */
680 if (kbuf->image->type == KEXEC_TYPE_CRASH)
681 return -EPERM;
682
683 p = dma_alloc_from_contiguous(NULL, nr_pages, get_order(kbuf->buf_align), true);
684 if (!p)
685 return -ENOMEM;
686
687 pr_debug("allocated %zu DMA pages at 0x%lx", nr_pages, page_to_boot_pfn(p));
688
689 mem = page_to_boot_pfn(p) << PAGE_SHIFT;
690
691 if (kimage_is_destination_range(kbuf->image, mem, mem + kbuf->memsz)) {
692 /* Our region is already in use by a statically defined one. Bail out. */
693 pr_debug("CMA overlaps existing mem: 0x%lx+0x%lx\n", mem, kbuf->memsz);
694 dma_release_from_contiguous(NULL, p, nr_pages);
695 return -EBUSY;
696 }
697
698 kbuf->mem = page_to_boot_pfn(p) << PAGE_SHIFT;
699 kbuf->cma = p;
700
701 arch_kexec_post_alloc_pages(page_address(p), (int)nr_pages, 0);
702
703 return 0;
704 }
705
706 /**
707 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
708 * @kbuf: Parameters for the memory search.
709 *
710 * On success, kbuf->mem will have the start address of the memory region found.
711 *
712 * Return: 0 on success, negative errno on error.
713 */
kexec_locate_mem_hole(struct kexec_buf * kbuf)714 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
715 {
716 int ret;
717
718 /* Arch knows where to place */
719 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
720 return 0;
721
722 /*
723 * If KHO is active, only use KHO scratch memory. All other memory
724 * could potentially be handed over.
725 */
726 ret = kho_locate_mem_hole(kbuf, locate_mem_hole_callback);
727 if (ret <= 0)
728 return ret;
729
730 /*
731 * Try to find a free physically contiguous block of memory first. With that, we
732 * can avoid any copying at kexec time.
733 */
734 if (!kexec_alloc_contig(kbuf))
735 return 0;
736
737 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
738 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
739 else
740 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
741
742 return ret == 1 ? 0 : -EADDRNOTAVAIL;
743 }
744
745 /**
746 * kexec_add_buffer - place a buffer in a kexec segment
747 * @kbuf: Buffer contents and memory parameters.
748 *
749 * This function assumes that kexec_lock is held.
750 * On successful return, @kbuf->mem will have the physical address of
751 * the buffer in memory.
752 *
753 * Return: 0 on success, negative errno on error.
754 */
kexec_add_buffer(struct kexec_buf * kbuf)755 int kexec_add_buffer(struct kexec_buf *kbuf)
756 {
757 struct kexec_segment *ksegment;
758 int ret;
759
760 /* Currently adding segment this way is allowed only in file mode */
761 if (!kbuf->image->file_mode)
762 return -EINVAL;
763
764 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
765 return -EINVAL;
766
767 /*
768 * Make sure we are not trying to add buffer after allocating
769 * control pages. All segments need to be placed first before
770 * any control pages are allocated. As control page allocation
771 * logic goes through list of segments to make sure there are
772 * no destination overlaps.
773 */
774 if (!list_empty(&kbuf->image->control_pages)) {
775 WARN_ON(1);
776 return -EINVAL;
777 }
778
779 /* Ensure minimum alignment needed for segments. */
780 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
781 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
782 kbuf->cma = NULL;
783
784 /* Walk the RAM ranges and allocate a suitable range for the buffer */
785 ret = arch_kexec_locate_mem_hole(kbuf);
786 if (ret)
787 return ret;
788
789 /* Found a suitable memory range */
790 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
791 ksegment->kbuf = kbuf->buffer;
792 ksegment->bufsz = kbuf->bufsz;
793 ksegment->mem = kbuf->mem;
794 ksegment->memsz = kbuf->memsz;
795 kbuf->image->segment_cma[kbuf->image->nr_segments] = kbuf->cma;
796 kbuf->image->nr_segments++;
797 return 0;
798 }
799
800 /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)801 static int kexec_calculate_store_digests(struct kimage *image)
802 {
803 struct sha256_ctx sctx;
804 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
805 size_t nullsz;
806 u8 digest[SHA256_DIGEST_SIZE];
807 void *zero_buf;
808 struct kexec_sha_region *sha_regions;
809 struct purgatory_info *pi = &image->purgatory_info;
810
811 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
812 return 0;
813
814 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
815 zero_buf_sz = PAGE_SIZE;
816
817 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
818 sha_regions = vzalloc(sha_region_sz);
819 if (!sha_regions)
820 return -ENOMEM;
821
822 sha256_init(&sctx);
823
824 for (j = i = 0; i < image->nr_segments; i++) {
825 struct kexec_segment *ksegment;
826
827 #ifdef CONFIG_CRASH_HOTPLUG
828 /* Exclude elfcorehdr segment to allow future changes via hotplug */
829 if (i == image->elfcorehdr_index)
830 continue;
831 #endif
832
833 ksegment = &image->segment[i];
834 /*
835 * Skip purgatory as it will be modified once we put digest
836 * info in purgatory.
837 */
838 if (ksegment->kbuf == pi->purgatory_buf)
839 continue;
840
841 /*
842 * Skip the segment if ima_segment_index is set and matches
843 * the current index
844 */
845 if (check_ima_segment_index(image, i))
846 continue;
847
848 sha256_update(&sctx, ksegment->kbuf, ksegment->bufsz);
849
850 /*
851 * Assume rest of the buffer is filled with zero and
852 * update digest accordingly.
853 */
854 nullsz = ksegment->memsz - ksegment->bufsz;
855 while (nullsz) {
856 unsigned long bytes = nullsz;
857
858 if (bytes > zero_buf_sz)
859 bytes = zero_buf_sz;
860 sha256_update(&sctx, zero_buf, bytes);
861 nullsz -= bytes;
862 }
863
864 sha_regions[j].start = ksegment->mem;
865 sha_regions[j].len = ksegment->memsz;
866 j++;
867 }
868
869 sha256_final(&sctx, digest);
870
871 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
872 sha_regions, sha_region_sz, 0);
873 if (ret)
874 goto out_free_sha_regions;
875
876 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
877 digest, SHA256_DIGEST_SIZE, 0);
878 out_free_sha_regions:
879 vfree(sha_regions);
880 return ret;
881 }
882
883 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
884 /*
885 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
886 * @pi: Purgatory to be loaded.
887 * @kbuf: Buffer to setup.
888 *
889 * Allocates the memory needed for the buffer. Caller is responsible to free
890 * the memory after use.
891 *
892 * Return: 0 on success, negative errno on error.
893 */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)894 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
895 struct kexec_buf *kbuf)
896 {
897 const Elf_Shdr *sechdrs;
898 unsigned long bss_align;
899 unsigned long bss_sz;
900 unsigned long align;
901 int i, ret;
902
903 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
904 kbuf->buf_align = bss_align = 1;
905 kbuf->bufsz = bss_sz = 0;
906
907 for (i = 0; i < pi->ehdr->e_shnum; i++) {
908 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
909 continue;
910
911 align = sechdrs[i].sh_addralign;
912 if (sechdrs[i].sh_type != SHT_NOBITS) {
913 if (kbuf->buf_align < align)
914 kbuf->buf_align = align;
915 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
916 kbuf->bufsz += sechdrs[i].sh_size;
917 } else {
918 if (bss_align < align)
919 bss_align = align;
920 bss_sz = ALIGN(bss_sz, align);
921 bss_sz += sechdrs[i].sh_size;
922 }
923 }
924 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
925 kbuf->memsz = kbuf->bufsz + bss_sz;
926 if (kbuf->buf_align < bss_align)
927 kbuf->buf_align = bss_align;
928
929 kbuf->buffer = vzalloc(kbuf->bufsz);
930 if (!kbuf->buffer)
931 return -ENOMEM;
932 pi->purgatory_buf = kbuf->buffer;
933
934 ret = kexec_add_buffer(kbuf);
935 if (ret)
936 goto out;
937
938 return 0;
939 out:
940 vfree(pi->purgatory_buf);
941 pi->purgatory_buf = NULL;
942 return ret;
943 }
944
945 /*
946 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
947 * @pi: Purgatory to be loaded.
948 * @kbuf: Buffer prepared to store purgatory.
949 *
950 * Allocates the memory needed for the buffer. Caller is responsible to free
951 * the memory after use.
952 *
953 * Return: 0 on success, negative errno on error.
954 */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)955 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
956 struct kexec_buf *kbuf)
957 {
958 unsigned long bss_addr;
959 unsigned long offset;
960 size_t sechdrs_size;
961 Elf_Shdr *sechdrs;
962 int i;
963
964 /*
965 * The section headers in kexec_purgatory are read-only. In order to
966 * have them modifiable make a temporary copy.
967 */
968 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
969 sechdrs = vzalloc(sechdrs_size);
970 if (!sechdrs)
971 return -ENOMEM;
972 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
973 pi->sechdrs = sechdrs;
974
975 offset = 0;
976 bss_addr = kbuf->mem + kbuf->bufsz;
977 kbuf->image->start = pi->ehdr->e_entry;
978
979 for (i = 0; i < pi->ehdr->e_shnum; i++) {
980 unsigned long align;
981 void *src, *dst;
982
983 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
984 continue;
985
986 align = sechdrs[i].sh_addralign;
987 if (sechdrs[i].sh_type == SHT_NOBITS) {
988 bss_addr = ALIGN(bss_addr, align);
989 sechdrs[i].sh_addr = bss_addr;
990 bss_addr += sechdrs[i].sh_size;
991 continue;
992 }
993
994 offset = ALIGN(offset, align);
995
996 /*
997 * Check if the segment contains the entry point, if so,
998 * calculate the value of image->start based on it.
999 * If the compiler has produced more than one .text section
1000 * (Eg: .text.hot), they are generally after the main .text
1001 * section, and they shall not be used to calculate
1002 * image->start. So do not re-calculate image->start if it
1003 * is not set to the initial value, and warn the user so they
1004 * have a chance to fix their purgatory's linker script.
1005 */
1006 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
1007 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
1008 pi->ehdr->e_entry < (sechdrs[i].sh_addr
1009 + sechdrs[i].sh_size) &&
1010 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
1011 kbuf->image->start -= sechdrs[i].sh_addr;
1012 kbuf->image->start += kbuf->mem + offset;
1013 }
1014
1015 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
1016 dst = pi->purgatory_buf + offset;
1017 memcpy(dst, src, sechdrs[i].sh_size);
1018
1019 sechdrs[i].sh_addr = kbuf->mem + offset;
1020 sechdrs[i].sh_offset = offset;
1021 offset += sechdrs[i].sh_size;
1022 }
1023
1024 return 0;
1025 }
1026
kexec_apply_relocations(struct kimage * image)1027 static int kexec_apply_relocations(struct kimage *image)
1028 {
1029 int i, ret;
1030 struct purgatory_info *pi = &image->purgatory_info;
1031 const Elf_Shdr *sechdrs;
1032
1033 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
1034
1035 for (i = 0; i < pi->ehdr->e_shnum; i++) {
1036 const Elf_Shdr *relsec;
1037 const Elf_Shdr *symtab;
1038 Elf_Shdr *section;
1039
1040 relsec = sechdrs + i;
1041
1042 if (relsec->sh_type != SHT_RELA &&
1043 relsec->sh_type != SHT_REL)
1044 continue;
1045
1046 /*
1047 * For section of type SHT_RELA/SHT_REL,
1048 * ->sh_link contains section header index of associated
1049 * symbol table. And ->sh_info contains section header
1050 * index of section to which relocations apply.
1051 */
1052 if (relsec->sh_info >= pi->ehdr->e_shnum ||
1053 relsec->sh_link >= pi->ehdr->e_shnum)
1054 return -ENOEXEC;
1055
1056 section = pi->sechdrs + relsec->sh_info;
1057 symtab = sechdrs + relsec->sh_link;
1058
1059 if (!(section->sh_flags & SHF_ALLOC))
1060 continue;
1061
1062 /*
1063 * symtab->sh_link contain section header index of associated
1064 * string table.
1065 */
1066 if (symtab->sh_link >= pi->ehdr->e_shnum)
1067 /* Invalid section number? */
1068 continue;
1069
1070 /*
1071 * Respective architecture needs to provide support for applying
1072 * relocations of type SHT_RELA/SHT_REL.
1073 */
1074 if (relsec->sh_type == SHT_RELA)
1075 ret = arch_kexec_apply_relocations_add(pi, section,
1076 relsec, symtab);
1077 else if (relsec->sh_type == SHT_REL)
1078 ret = arch_kexec_apply_relocations(pi, section,
1079 relsec, symtab);
1080 if (ret)
1081 return ret;
1082 }
1083
1084 return 0;
1085 }
1086
1087 /*
1088 * kexec_load_purgatory - Load and relocate the purgatory object.
1089 * @image: Image to add the purgatory to.
1090 * @kbuf: Memory parameters to use.
1091 *
1092 * Allocates the memory needed for image->purgatory_info.sechdrs and
1093 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1094 * to free the memory after use.
1095 *
1096 * Return: 0 on success, negative errno on error.
1097 */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)1098 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1099 {
1100 struct purgatory_info *pi = &image->purgatory_info;
1101 int ret;
1102
1103 if (kexec_purgatory_size <= 0)
1104 return -EINVAL;
1105
1106 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1107
1108 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1109 if (ret)
1110 return ret;
1111
1112 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1113 if (ret)
1114 goto out_free_kbuf;
1115
1116 ret = kexec_apply_relocations(image);
1117 if (ret)
1118 goto out;
1119
1120 return 0;
1121 out:
1122 vfree(pi->sechdrs);
1123 pi->sechdrs = NULL;
1124 out_free_kbuf:
1125 vfree(pi->purgatory_buf);
1126 pi->purgatory_buf = NULL;
1127 return ret;
1128 }
1129
1130 /*
1131 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1132 * @pi: Purgatory to search in.
1133 * @name: Name of the symbol.
1134 *
1135 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1136 */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1137 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1138 const char *name)
1139 {
1140 const Elf_Shdr *sechdrs;
1141 const Elf_Ehdr *ehdr;
1142 const Elf_Sym *syms;
1143 const char *strtab;
1144 int i, k;
1145
1146 if (!pi->ehdr)
1147 return NULL;
1148
1149 ehdr = pi->ehdr;
1150 sechdrs = (void *)ehdr + ehdr->e_shoff;
1151
1152 for (i = 0; i < ehdr->e_shnum; i++) {
1153 if (sechdrs[i].sh_type != SHT_SYMTAB)
1154 continue;
1155
1156 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1157 /* Invalid strtab section number */
1158 continue;
1159 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1160 syms = (void *)ehdr + sechdrs[i].sh_offset;
1161
1162 /* Go through symbols for a match */
1163 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1164 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1165 continue;
1166
1167 if (strcmp(strtab + syms[k].st_name, name) != 0)
1168 continue;
1169
1170 if (syms[k].st_shndx == SHN_UNDEF ||
1171 syms[k].st_shndx >= ehdr->e_shnum) {
1172 pr_debug("Symbol: %s has bad section index %d.\n",
1173 name, syms[k].st_shndx);
1174 return NULL;
1175 }
1176
1177 /* Found the symbol we are looking for */
1178 return &syms[k];
1179 }
1180 }
1181
1182 return NULL;
1183 }
1184
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1185 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1186 {
1187 struct purgatory_info *pi = &image->purgatory_info;
1188 const Elf_Sym *sym;
1189 Elf_Shdr *sechdr;
1190
1191 sym = kexec_purgatory_find_symbol(pi, name);
1192 if (!sym)
1193 return ERR_PTR(-EINVAL);
1194
1195 sechdr = &pi->sechdrs[sym->st_shndx];
1196
1197 /*
1198 * Returns the address where symbol will finally be loaded after
1199 * kexec_load_segment()
1200 */
1201 return (void *)(sechdr->sh_addr + sym->st_value);
1202 }
1203
1204 /*
1205 * Get or set value of a symbol. If "get_value" is true, symbol value is
1206 * returned in buf otherwise symbol value is set based on value in buf.
1207 */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1208 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1209 void *buf, unsigned int size, bool get_value)
1210 {
1211 struct purgatory_info *pi = &image->purgatory_info;
1212 const Elf_Sym *sym;
1213 Elf_Shdr *sec;
1214 char *sym_buf;
1215
1216 sym = kexec_purgatory_find_symbol(pi, name);
1217 if (!sym)
1218 return -EINVAL;
1219
1220 if (sym->st_size != size) {
1221 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1222 name, (unsigned long)sym->st_size, size);
1223 return -EINVAL;
1224 }
1225
1226 sec = pi->sechdrs + sym->st_shndx;
1227
1228 if (sec->sh_type == SHT_NOBITS) {
1229 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1230 get_value ? "get" : "set");
1231 return -EINVAL;
1232 }
1233
1234 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1235
1236 if (get_value)
1237 memcpy((void *)buf, sym_buf, size);
1238 else
1239 memcpy((void *)sym_buf, buf, size);
1240
1241 return 0;
1242 }
1243 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1244