xref: /linux/kernel/kexec_core.c (revision e406d57be7bd2a4e73ea512c1ae36a40a44e499e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
43 #include <linux/dma-map-ops.h>
44 
45 #include <asm/page.h>
46 #include <asm/sections.h>
47 
48 #include <crypto/hash.h>
49 #include "kexec_internal.h"
50 
51 atomic_t __kexec_lock = ATOMIC_INIT(0);
52 
53 /* Flag to indicate we are going to kexec a new kernel */
54 bool kexec_in_progress = false;
55 
56 bool kexec_file_dbg_print;
57 
58 /*
59  * When kexec transitions to the new kernel there is a one-to-one
60  * mapping between physical and virtual addresses.  On processors
61  * where you can disable the MMU this is trivial, and easy.  For
62  * others it is still a simple predictable page table to setup.
63  *
64  * In that environment kexec copies the new kernel to its final
65  * resting place.  This means I can only support memory whose
66  * physical address can fit in an unsigned long.  In particular
67  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
68  * If the assembly stub has more restrictive requirements
69  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
70  * defined more restrictively in <asm/kexec.h>.
71  *
72  * The code for the transition from the current kernel to the
73  * new kernel is placed in the control_code_buffer, whose size
74  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
75  * page of memory is necessary, but some architectures require more.
76  * Because this memory must be identity mapped in the transition from
77  * virtual to physical addresses it must live in the range
78  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
79  * modifiable.
80  *
81  * The assembly stub in the control code buffer is passed a linked list
82  * of descriptor pages detailing the source pages of the new kernel,
83  * and the destination addresses of those source pages.  As this data
84  * structure is not used in the context of the current OS, it must
85  * be self-contained.
86  *
87  * The code has been made to work with highmem pages and will use a
88  * destination page in its final resting place (if it happens
89  * to allocate it).  The end product of this is that most of the
90  * physical address space, and most of RAM can be used.
91  *
92  * Future directions include:
93  *  - allocating a page table with the control code buffer identity
94  *    mapped, to simplify machine_kexec and make kexec_on_panic more
95  *    reliable.
96  */
97 
98 /*
99  * KIMAGE_NO_DEST is an impossible destination address..., for
100  * allocating pages whose destination address we do not care about.
101  */
102 #define KIMAGE_NO_DEST (-1UL)
103 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
104 
105 static struct page *kimage_alloc_page(struct kimage *image,
106 				       gfp_t gfp_mask,
107 				       unsigned long dest);
108 
sanity_check_segment_list(struct kimage * image)109 int sanity_check_segment_list(struct kimage *image)
110 {
111 	int i;
112 	unsigned long nr_segments = image->nr_segments;
113 	unsigned long total_pages = 0;
114 	unsigned long nr_pages = totalram_pages();
115 
116 	/*
117 	 * Verify we have good destination addresses.  The caller is
118 	 * responsible for making certain we don't attempt to load
119 	 * the new image into invalid or reserved areas of RAM.  This
120 	 * just verifies it is an address we can use.
121 	 *
122 	 * Since the kernel does everything in page size chunks ensure
123 	 * the destination addresses are page aligned.  Too many
124 	 * special cases crop of when we don't do this.  The most
125 	 * insidious is getting overlapping destination addresses
126 	 * simply because addresses are changed to page size
127 	 * granularity.
128 	 */
129 	for (i = 0; i < nr_segments; i++) {
130 		unsigned long mstart, mend;
131 
132 		mstart = image->segment[i].mem;
133 		mend   = mstart + image->segment[i].memsz;
134 		if (mstart > mend)
135 			return -EADDRNOTAVAIL;
136 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
137 			return -EADDRNOTAVAIL;
138 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
139 			return -EADDRNOTAVAIL;
140 	}
141 
142 	/* Verify our destination addresses do not overlap.
143 	 * If we alloed overlapping destination addresses
144 	 * through very weird things can happen with no
145 	 * easy explanation as one segment stops on another.
146 	 */
147 	for (i = 0; i < nr_segments; i++) {
148 		unsigned long mstart, mend;
149 		unsigned long j;
150 
151 		mstart = image->segment[i].mem;
152 		mend   = mstart + image->segment[i].memsz;
153 		for (j = 0; j < i; j++) {
154 			unsigned long pstart, pend;
155 
156 			pstart = image->segment[j].mem;
157 			pend   = pstart + image->segment[j].memsz;
158 			/* Do the segments overlap ? */
159 			if ((mend > pstart) && (mstart < pend))
160 				return -EINVAL;
161 		}
162 	}
163 
164 	/* Ensure our buffer sizes are strictly less than
165 	 * our memory sizes.  This should always be the case,
166 	 * and it is easier to check up front than to be surprised
167 	 * later on.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		if (image->segment[i].bufsz > image->segment[i].memsz)
171 			return -EINVAL;
172 	}
173 
174 	/*
175 	 * Verify that no more than half of memory will be consumed. If the
176 	 * request from userspace is too large, a large amount of time will be
177 	 * wasted allocating pages, which can cause a soft lockup.
178 	 */
179 	for (i = 0; i < nr_segments; i++) {
180 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
181 			return -EINVAL;
182 
183 		total_pages += PAGE_COUNT(image->segment[i].memsz);
184 	}
185 
186 	if (total_pages > nr_pages / 2)
187 		return -EINVAL;
188 
189 #ifdef CONFIG_CRASH_DUMP
190 	/*
191 	 * Verify we have good destination addresses.  Normally
192 	 * the caller is responsible for making certain we don't
193 	 * attempt to load the new image into invalid or reserved
194 	 * areas of RAM.  But crash kernels are preloaded into a
195 	 * reserved area of ram.  We must ensure the addresses
196 	 * are in the reserved area otherwise preloading the
197 	 * kernel could corrupt things.
198 	 */
199 
200 	if (image->type == KEXEC_TYPE_CRASH) {
201 		for (i = 0; i < nr_segments; i++) {
202 			unsigned long mstart, mend;
203 
204 			mstart = image->segment[i].mem;
205 			mend = mstart + image->segment[i].memsz - 1;
206 			/* Ensure we are within the crash kernel limits */
207 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
208 			    (mend > phys_to_boot_phys(crashk_res.end)))
209 				return -EADDRNOTAVAIL;
210 		}
211 	}
212 #endif
213 
214 	/*
215 	 * The destination addresses are searched from system RAM rather than
216 	 * being allocated from the buddy allocator, so they are not guaranteed
217 	 * to be accepted by the current kernel.  Accept the destination
218 	 * addresses before kexec swaps their content with the segments' source
219 	 * pages to avoid accessing memory before it is accepted.
220 	 */
221 	for (i = 0; i < nr_segments; i++)
222 		accept_memory(image->segment[i].mem, image->segment[i].memsz);
223 
224 	return 0;
225 }
226 
do_kimage_alloc_init(void)227 struct kimage *do_kimage_alloc_init(void)
228 {
229 	struct kimage *image;
230 
231 	/* Allocate a controlling structure */
232 	image = kzalloc(sizeof(*image), GFP_KERNEL);
233 	if (!image)
234 		return NULL;
235 
236 	image->entry = &image->head;
237 	image->last_entry = &image->head;
238 	image->control_page = ~0; /* By default this does not apply */
239 	image->type = KEXEC_TYPE_DEFAULT;
240 
241 	/* Initialize the list of control pages */
242 	INIT_LIST_HEAD(&image->control_pages);
243 
244 	/* Initialize the list of destination pages */
245 	INIT_LIST_HEAD(&image->dest_pages);
246 
247 	/* Initialize the list of unusable pages */
248 	INIT_LIST_HEAD(&image->unusable_pages);
249 
250 #ifdef CONFIG_CRASH_HOTPLUG
251 	image->hp_action = KEXEC_CRASH_HP_NONE;
252 	image->elfcorehdr_index = -1;
253 	image->elfcorehdr_updated = false;
254 #endif
255 
256 	return image;
257 }
258 
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)259 int kimage_is_destination_range(struct kimage *image,
260 					unsigned long start,
261 					unsigned long end)
262 {
263 	unsigned long i;
264 
265 	for (i = 0; i < image->nr_segments; i++) {
266 		unsigned long mstart, mend;
267 
268 		mstart = image->segment[i].mem;
269 		mend = mstart + image->segment[i].memsz - 1;
270 		if ((end >= mstart) && (start <= mend))
271 			return 1;
272 	}
273 
274 	return 0;
275 }
276 
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)277 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
278 {
279 	struct page *pages;
280 
281 	if (fatal_signal_pending(current))
282 		return NULL;
283 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
284 	if (pages) {
285 		unsigned int count, i;
286 
287 		pages->mapping = NULL;
288 		set_page_private(pages, order);
289 		count = 1 << order;
290 		for (i = 0; i < count; i++)
291 			SetPageReserved(pages + i);
292 
293 		arch_kexec_post_alloc_pages(page_address(pages), count,
294 					    gfp_mask);
295 
296 		if (gfp_mask & __GFP_ZERO)
297 			for (i = 0; i < count; i++)
298 				clear_highpage(pages + i);
299 	}
300 
301 	return pages;
302 }
303 
kimage_free_pages(struct page * page)304 static void kimage_free_pages(struct page *page)
305 {
306 	unsigned int order, count, i;
307 
308 	order = page_private(page);
309 	count = 1 << order;
310 
311 	arch_kexec_pre_free_pages(page_address(page), count);
312 
313 	for (i = 0; i < count; i++)
314 		ClearPageReserved(page + i);
315 	__free_pages(page, order);
316 }
317 
kimage_free_page_list(struct list_head * list)318 void kimage_free_page_list(struct list_head *list)
319 {
320 	struct page *page, *next;
321 
322 	list_for_each_entry_safe(page, next, list, lru) {
323 		list_del(&page->lru);
324 		kimage_free_pages(page);
325 	}
326 }
327 
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)328 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
329 							unsigned int order)
330 {
331 	/* Control pages are special, they are the intermediaries
332 	 * that are needed while we copy the rest of the pages
333 	 * to their final resting place.  As such they must
334 	 * not conflict with either the destination addresses
335 	 * or memory the kernel is already using.
336 	 *
337 	 * The only case where we really need more than one of
338 	 * these are for architectures where we cannot disable
339 	 * the MMU and must instead generate an identity mapped
340 	 * page table for all of the memory.
341 	 *
342 	 * At worst this runs in O(N) of the image size.
343 	 */
344 	struct list_head extra_pages;
345 	struct page *pages;
346 	unsigned int count;
347 
348 	count = 1 << order;
349 	INIT_LIST_HEAD(&extra_pages);
350 
351 	/* Loop while I can allocate a page and the page allocated
352 	 * is a destination page.
353 	 */
354 	do {
355 		unsigned long pfn, epfn, addr, eaddr;
356 
357 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
358 		if (!pages)
359 			break;
360 		pfn   = page_to_boot_pfn(pages);
361 		epfn  = pfn + count;
362 		addr  = pfn << PAGE_SHIFT;
363 		eaddr = (epfn << PAGE_SHIFT) - 1;
364 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
365 			      kimage_is_destination_range(image, addr, eaddr)) {
366 			list_add(&pages->lru, &extra_pages);
367 			pages = NULL;
368 		}
369 	} while (!pages);
370 
371 	if (pages) {
372 		/* Remember the allocated page... */
373 		list_add(&pages->lru, &image->control_pages);
374 
375 		/* Because the page is already in it's destination
376 		 * location we will never allocate another page at
377 		 * that address.  Therefore kimage_alloc_pages
378 		 * will not return it (again) and we don't need
379 		 * to give it an entry in image->segment[].
380 		 */
381 	}
382 	/* Deal with the destination pages I have inadvertently allocated.
383 	 *
384 	 * Ideally I would convert multi-page allocations into single
385 	 * page allocations, and add everything to image->dest_pages.
386 	 *
387 	 * For now it is simpler to just free the pages.
388 	 */
389 	kimage_free_page_list(&extra_pages);
390 
391 	return pages;
392 }
393 
394 #ifdef CONFIG_CRASH_DUMP
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)395 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
396 						      unsigned int order)
397 {
398 	/* Control pages are special, they are the intermediaries
399 	 * that are needed while we copy the rest of the pages
400 	 * to their final resting place.  As such they must
401 	 * not conflict with either the destination addresses
402 	 * or memory the kernel is already using.
403 	 *
404 	 * Control pages are also the only pags we must allocate
405 	 * when loading a crash kernel.  All of the other pages
406 	 * are specified by the segments and we just memcpy
407 	 * into them directly.
408 	 *
409 	 * The only case where we really need more than one of
410 	 * these are for architectures where we cannot disable
411 	 * the MMU and must instead generate an identity mapped
412 	 * page table for all of the memory.
413 	 *
414 	 * Given the low demand this implements a very simple
415 	 * allocator that finds the first hole of the appropriate
416 	 * size in the reserved memory region, and allocates all
417 	 * of the memory up to and including the hole.
418 	 */
419 	unsigned long hole_start, hole_end, size;
420 	struct page *pages;
421 
422 	pages = NULL;
423 	size = (1 << order) << PAGE_SHIFT;
424 	hole_start = ALIGN(image->control_page, size);
425 	hole_end   = hole_start + size - 1;
426 	while (hole_end <= crashk_res.end) {
427 		unsigned long i;
428 
429 		cond_resched();
430 
431 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
432 			break;
433 		/* See if I overlap any of the segments */
434 		for (i = 0; i < image->nr_segments; i++) {
435 			unsigned long mstart, mend;
436 
437 			mstart = image->segment[i].mem;
438 			mend   = mstart + image->segment[i].memsz - 1;
439 			if ((hole_end >= mstart) && (hole_start <= mend)) {
440 				/* Advance the hole to the end of the segment */
441 				hole_start = ALIGN(mend, size);
442 				hole_end   = hole_start + size - 1;
443 				break;
444 			}
445 		}
446 		/* If I don't overlap any segments I have found my hole! */
447 		if (i == image->nr_segments) {
448 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
449 			image->control_page = hole_end + 1;
450 			break;
451 		}
452 	}
453 
454 	/* Ensure that these pages are decrypted if SME is enabled. */
455 	if (pages)
456 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
457 
458 	return pages;
459 }
460 #endif
461 
462 
kimage_alloc_control_pages(struct kimage * image,unsigned int order)463 struct page *kimage_alloc_control_pages(struct kimage *image,
464 					 unsigned int order)
465 {
466 	struct page *pages = NULL;
467 
468 	switch (image->type) {
469 	case KEXEC_TYPE_DEFAULT:
470 		pages = kimage_alloc_normal_control_pages(image, order);
471 		break;
472 #ifdef CONFIG_CRASH_DUMP
473 	case KEXEC_TYPE_CRASH:
474 		pages = kimage_alloc_crash_control_pages(image, order);
475 		break;
476 #endif
477 	}
478 
479 	return pages;
480 }
481 
kimage_add_entry(struct kimage * image,kimage_entry_t entry)482 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
483 {
484 	if (*image->entry != 0)
485 		image->entry++;
486 
487 	if (image->entry == image->last_entry) {
488 		kimage_entry_t *ind_page;
489 		struct page *page;
490 
491 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
492 		if (!page)
493 			return -ENOMEM;
494 
495 		ind_page = page_address(page);
496 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
497 		image->entry = ind_page;
498 		image->last_entry = ind_page +
499 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
500 	}
501 	*image->entry = entry;
502 	image->entry++;
503 	*image->entry = 0;
504 
505 	return 0;
506 }
507 
kimage_set_destination(struct kimage * image,unsigned long destination)508 static int kimage_set_destination(struct kimage *image,
509 				   unsigned long destination)
510 {
511 	destination &= PAGE_MASK;
512 
513 	return kimage_add_entry(image, destination | IND_DESTINATION);
514 }
515 
516 
kimage_add_page(struct kimage * image,unsigned long page)517 static int kimage_add_page(struct kimage *image, unsigned long page)
518 {
519 	page &= PAGE_MASK;
520 
521 	return kimage_add_entry(image, page | IND_SOURCE);
522 }
523 
524 
kimage_free_extra_pages(struct kimage * image)525 static void kimage_free_extra_pages(struct kimage *image)
526 {
527 	/* Walk through and free any extra destination pages I may have */
528 	kimage_free_page_list(&image->dest_pages);
529 
530 	/* Walk through and free any unusable pages I have cached */
531 	kimage_free_page_list(&image->unusable_pages);
532 
533 }
534 
kimage_terminate(struct kimage * image)535 void kimage_terminate(struct kimage *image)
536 {
537 	if (*image->entry != 0)
538 		image->entry++;
539 
540 	*image->entry = IND_DONE;
541 }
542 
543 #define for_each_kimage_entry(image, ptr, entry) \
544 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
545 		ptr = (entry & IND_INDIRECTION) ? \
546 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
547 
kimage_free_entry(kimage_entry_t entry)548 static void kimage_free_entry(kimage_entry_t entry)
549 {
550 	struct page *page;
551 
552 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
553 	kimage_free_pages(page);
554 }
555 
kimage_free_cma(struct kimage * image)556 static void kimage_free_cma(struct kimage *image)
557 {
558 	unsigned long i;
559 
560 	for (i = 0; i < image->nr_segments; i++) {
561 		struct page *cma = image->segment_cma[i];
562 		u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT;
563 
564 		if (!cma)
565 			continue;
566 
567 		arch_kexec_pre_free_pages(page_address(cma), nr_pages);
568 		dma_release_from_contiguous(NULL, cma, nr_pages);
569 		image->segment_cma[i] = NULL;
570 	}
571 
572 }
573 
kimage_free(struct kimage * image)574 void kimage_free(struct kimage *image)
575 {
576 	kimage_entry_t *ptr, entry;
577 	kimage_entry_t ind = 0;
578 
579 	if (!image)
580 		return;
581 
582 #ifdef CONFIG_CRASH_DUMP
583 	if (image->vmcoreinfo_data_copy) {
584 		crash_update_vmcoreinfo_safecopy(NULL);
585 		vunmap(image->vmcoreinfo_data_copy);
586 	}
587 #endif
588 
589 	kimage_free_extra_pages(image);
590 	for_each_kimage_entry(image, ptr, entry) {
591 		if (entry & IND_INDIRECTION) {
592 			/* Free the previous indirection page */
593 			if (ind & IND_INDIRECTION)
594 				kimage_free_entry(ind);
595 			/* Save this indirection page until we are
596 			 * done with it.
597 			 */
598 			ind = entry;
599 		} else if (entry & IND_SOURCE)
600 			kimage_free_entry(entry);
601 	}
602 	/* Free the final indirection page */
603 	if (ind & IND_INDIRECTION)
604 		kimage_free_entry(ind);
605 
606 	/* Handle any machine specific cleanup */
607 	machine_kexec_cleanup(image);
608 
609 	/* Free the kexec control pages... */
610 	kimage_free_page_list(&image->control_pages);
611 
612 	/* Free CMA allocations */
613 	kimage_free_cma(image);
614 
615 	/*
616 	 * Free up any temporary buffers allocated. This might hit if
617 	 * error occurred much later after buffer allocation.
618 	 */
619 	if (image->file_mode)
620 		kimage_file_post_load_cleanup(image);
621 
622 	kfree(image);
623 }
624 
kimage_dst_used(struct kimage * image,unsigned long page)625 static kimage_entry_t *kimage_dst_used(struct kimage *image,
626 					unsigned long page)
627 {
628 	kimage_entry_t *ptr, entry;
629 	unsigned long destination = 0;
630 
631 	for_each_kimage_entry(image, ptr, entry) {
632 		if (entry & IND_DESTINATION)
633 			destination = entry & PAGE_MASK;
634 		else if (entry & IND_SOURCE) {
635 			if (page == destination)
636 				return ptr;
637 			destination += PAGE_SIZE;
638 		}
639 	}
640 
641 	return NULL;
642 }
643 
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)644 static struct page *kimage_alloc_page(struct kimage *image,
645 					gfp_t gfp_mask,
646 					unsigned long destination)
647 {
648 	/*
649 	 * Here we implement safeguards to ensure that a source page
650 	 * is not copied to its destination page before the data on
651 	 * the destination page is no longer useful.
652 	 *
653 	 * To do this we maintain the invariant that a source page is
654 	 * either its own destination page, or it is not a
655 	 * destination page at all.
656 	 *
657 	 * That is slightly stronger than required, but the proof
658 	 * that no problems will not occur is trivial, and the
659 	 * implementation is simply to verify.
660 	 *
661 	 * When allocating all pages normally this algorithm will run
662 	 * in O(N) time, but in the worst case it will run in O(N^2)
663 	 * time.   If the runtime is a problem the data structures can
664 	 * be fixed.
665 	 */
666 	struct page *page;
667 	unsigned long addr;
668 
669 	/*
670 	 * Walk through the list of destination pages, and see if I
671 	 * have a match.
672 	 */
673 	list_for_each_entry(page, &image->dest_pages, lru) {
674 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
675 		if (addr == destination) {
676 			list_del(&page->lru);
677 			return page;
678 		}
679 	}
680 	page = NULL;
681 	while (1) {
682 		kimage_entry_t *old;
683 
684 		/* Allocate a page, if we run out of memory give up */
685 		page = kimage_alloc_pages(gfp_mask, 0);
686 		if (!page)
687 			return NULL;
688 		/* If the page cannot be used file it away */
689 		if (page_to_boot_pfn(page) >
690 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
691 			list_add(&page->lru, &image->unusable_pages);
692 			continue;
693 		}
694 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
695 
696 		/* If it is the destination page we want use it */
697 		if (addr == destination)
698 			break;
699 
700 		/* If the page is not a destination page use it */
701 		if (!kimage_is_destination_range(image, addr,
702 						  addr + PAGE_SIZE - 1))
703 			break;
704 
705 		/*
706 		 * I know that the page is someones destination page.
707 		 * See if there is already a source page for this
708 		 * destination page.  And if so swap the source pages.
709 		 */
710 		old = kimage_dst_used(image, addr);
711 		if (old) {
712 			/* If so move it */
713 			unsigned long old_addr;
714 			struct page *old_page;
715 
716 			old_addr = *old & PAGE_MASK;
717 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
718 			copy_highpage(page, old_page);
719 			*old = addr | (*old & ~PAGE_MASK);
720 
721 			/* The old page I have found cannot be a
722 			 * destination page, so return it if it's
723 			 * gfp_flags honor the ones passed in.
724 			 */
725 			if (!(gfp_mask & __GFP_HIGHMEM) &&
726 			    PageHighMem(old_page)) {
727 				kimage_free_pages(old_page);
728 				continue;
729 			}
730 			page = old_page;
731 			break;
732 		}
733 		/* Place the page on the destination list, to be used later */
734 		list_add(&page->lru, &image->dest_pages);
735 	}
736 
737 	return page;
738 }
739 
kimage_load_cma_segment(struct kimage * image,int idx)740 static int kimage_load_cma_segment(struct kimage *image, int idx)
741 {
742 	struct kexec_segment *segment = &image->segment[idx];
743 	struct page *cma = image->segment_cma[idx];
744 	char *ptr = page_address(cma);
745 	unsigned long maddr;
746 	size_t ubytes, mbytes;
747 	int result = 0;
748 	unsigned char __user *buf = NULL;
749 	unsigned char *kbuf = NULL;
750 
751 	if (image->file_mode)
752 		kbuf = segment->kbuf;
753 	else
754 		buf = segment->buf;
755 	ubytes = segment->bufsz;
756 	mbytes = segment->memsz;
757 	maddr = segment->mem;
758 
759 	/* Then copy from source buffer to the CMA one */
760 	while (mbytes) {
761 		size_t uchunk, mchunk;
762 
763 		ptr += maddr & ~PAGE_MASK;
764 		mchunk = min_t(size_t, mbytes,
765 				PAGE_SIZE - (maddr & ~PAGE_MASK));
766 		uchunk = min(ubytes, mchunk);
767 
768 		if (uchunk) {
769 			/* For file based kexec, source pages are in kernel memory */
770 			if (image->file_mode)
771 				memcpy(ptr, kbuf, uchunk);
772 			else
773 				result = copy_from_user(ptr, buf, uchunk);
774 			ubytes -= uchunk;
775 			if (image->file_mode)
776 				kbuf += uchunk;
777 			else
778 				buf += uchunk;
779 		}
780 
781 		if (result) {
782 			result = -EFAULT;
783 			goto out;
784 		}
785 
786 		ptr    += mchunk;
787 		maddr  += mchunk;
788 		mbytes -= mchunk;
789 
790 		cond_resched();
791 	}
792 
793 	/* Clear any remainder */
794 	memset(ptr, 0, mbytes);
795 
796 out:
797 	return result;
798 }
799 
kimage_load_normal_segment(struct kimage * image,int idx)800 static int kimage_load_normal_segment(struct kimage *image, int idx)
801 {
802 	struct kexec_segment *segment = &image->segment[idx];
803 	unsigned long maddr;
804 	size_t ubytes, mbytes;
805 	int result;
806 	unsigned char __user *buf = NULL;
807 	unsigned char *kbuf = NULL;
808 
809 	if (image->file_mode)
810 		kbuf = segment->kbuf;
811 	else
812 		buf = segment->buf;
813 	ubytes = segment->bufsz;
814 	mbytes = segment->memsz;
815 	maddr = segment->mem;
816 
817 	if (image->segment_cma[idx])
818 		return kimage_load_cma_segment(image, idx);
819 
820 	result = kimage_set_destination(image, maddr);
821 	if (result < 0)
822 		goto out;
823 
824 	while (mbytes) {
825 		struct page *page;
826 		char *ptr;
827 		size_t uchunk, mchunk;
828 
829 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
830 		if (!page) {
831 			result  = -ENOMEM;
832 			goto out;
833 		}
834 		result = kimage_add_page(image, page_to_boot_pfn(page)
835 								<< PAGE_SHIFT);
836 		if (result < 0)
837 			goto out;
838 
839 		ptr = kmap_local_page(page);
840 		/* Start with a clear page */
841 		clear_page(ptr);
842 		ptr += maddr & ~PAGE_MASK;
843 		mchunk = min_t(size_t, mbytes,
844 				PAGE_SIZE - (maddr & ~PAGE_MASK));
845 		uchunk = min(ubytes, mchunk);
846 
847 		if (uchunk) {
848 			/* For file based kexec, source pages are in kernel memory */
849 			if (image->file_mode)
850 				memcpy(ptr, kbuf, uchunk);
851 			else
852 				result = copy_from_user(ptr, buf, uchunk);
853 			ubytes -= uchunk;
854 			if (image->file_mode)
855 				kbuf += uchunk;
856 			else
857 				buf += uchunk;
858 		}
859 		kunmap_local(ptr);
860 		if (result) {
861 			result = -EFAULT;
862 			goto out;
863 		}
864 		maddr  += mchunk;
865 		mbytes -= mchunk;
866 
867 		cond_resched();
868 	}
869 out:
870 	return result;
871 }
872 
873 #ifdef CONFIG_CRASH_DUMP
kimage_load_crash_segment(struct kimage * image,int idx)874 static int kimage_load_crash_segment(struct kimage *image, int idx)
875 {
876 	/* For crash dumps kernels we simply copy the data from
877 	 * user space to it's destination.
878 	 * We do things a page at a time for the sake of kmap.
879 	 */
880 	struct kexec_segment *segment = &image->segment[idx];
881 	unsigned long maddr;
882 	size_t ubytes, mbytes;
883 	int result;
884 	unsigned char __user *buf = NULL;
885 	unsigned char *kbuf = NULL;
886 
887 	result = 0;
888 	if (image->file_mode)
889 		kbuf = segment->kbuf;
890 	else
891 		buf = segment->buf;
892 	ubytes = segment->bufsz;
893 	mbytes = segment->memsz;
894 	maddr = segment->mem;
895 	while (mbytes) {
896 		struct page *page;
897 		char *ptr;
898 		size_t uchunk, mchunk;
899 
900 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
901 		if (!page) {
902 			result  = -ENOMEM;
903 			goto out;
904 		}
905 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
906 		ptr = kmap_local_page(page);
907 		ptr += maddr & ~PAGE_MASK;
908 		mchunk = min_t(size_t, mbytes,
909 				PAGE_SIZE - (maddr & ~PAGE_MASK));
910 		uchunk = min(ubytes, mchunk);
911 		if (mchunk > uchunk) {
912 			/* Zero the trailing part of the page */
913 			memset(ptr + uchunk, 0, mchunk - uchunk);
914 		}
915 
916 		if (uchunk) {
917 			/* For file based kexec, source pages are in kernel memory */
918 			if (image->file_mode)
919 				memcpy(ptr, kbuf, uchunk);
920 			else
921 				result = copy_from_user(ptr, buf, uchunk);
922 			ubytes -= uchunk;
923 			if (image->file_mode)
924 				kbuf += uchunk;
925 			else
926 				buf += uchunk;
927 		}
928 		kexec_flush_icache_page(page);
929 		kunmap_local(ptr);
930 		arch_kexec_pre_free_pages(page_address(page), 1);
931 		if (result) {
932 			result = -EFAULT;
933 			goto out;
934 		}
935 		maddr  += mchunk;
936 		mbytes -= mchunk;
937 
938 		cond_resched();
939 	}
940 out:
941 	return result;
942 }
943 #endif
944 
kimage_load_segment(struct kimage * image,int idx)945 int kimage_load_segment(struct kimage *image, int idx)
946 {
947 	int result = -ENOMEM;
948 
949 	switch (image->type) {
950 	case KEXEC_TYPE_DEFAULT:
951 		result = kimage_load_normal_segment(image, idx);
952 		break;
953 #ifdef CONFIG_CRASH_DUMP
954 	case KEXEC_TYPE_CRASH:
955 		result = kimage_load_crash_segment(image, idx);
956 		break;
957 #endif
958 	}
959 
960 	return result;
961 }
962 
kimage_map_segment(struct kimage * image,unsigned long addr,unsigned long size)963 void *kimage_map_segment(struct kimage *image,
964 			 unsigned long addr, unsigned long size)
965 {
966 	unsigned long src_page_addr, dest_page_addr = 0;
967 	unsigned long eaddr = addr + size;
968 	kimage_entry_t *ptr, entry;
969 	struct page **src_pages;
970 	unsigned int npages;
971 	void *vaddr = NULL;
972 	int i;
973 
974 	/*
975 	 * Collect the source pages and map them in a contiguous VA range.
976 	 */
977 	npages = PFN_UP(eaddr) - PFN_DOWN(addr);
978 	src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL);
979 	if (!src_pages) {
980 		pr_err("Could not allocate ima pages array.\n");
981 		return NULL;
982 	}
983 
984 	i = 0;
985 	for_each_kimage_entry(image, ptr, entry) {
986 		if (entry & IND_DESTINATION) {
987 			dest_page_addr = entry & PAGE_MASK;
988 		} else if (entry & IND_SOURCE) {
989 			if (dest_page_addr >= addr && dest_page_addr < eaddr) {
990 				src_page_addr = entry & PAGE_MASK;
991 				src_pages[i++] =
992 					virt_to_page(__va(src_page_addr));
993 				if (i == npages)
994 					break;
995 				dest_page_addr += PAGE_SIZE;
996 			}
997 		}
998 	}
999 
1000 	/* Sanity check. */
1001 	WARN_ON(i < npages);
1002 
1003 	vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL);
1004 	kfree(src_pages);
1005 
1006 	if (!vaddr)
1007 		pr_err("Could not map ima buffer.\n");
1008 
1009 	return vaddr;
1010 }
1011 
kimage_unmap_segment(void * segment_buffer)1012 void kimage_unmap_segment(void *segment_buffer)
1013 {
1014 	vunmap(segment_buffer);
1015 }
1016 
1017 struct kexec_load_limit {
1018 	/* Mutex protects the limit count. */
1019 	struct mutex mutex;
1020 	int limit;
1021 };
1022 
1023 static struct kexec_load_limit load_limit_reboot = {
1024 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
1025 	.limit = -1,
1026 };
1027 
1028 static struct kexec_load_limit load_limit_panic = {
1029 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
1030 	.limit = -1,
1031 };
1032 
1033 struct kimage *kexec_image;
1034 struct kimage *kexec_crash_image;
1035 static int kexec_load_disabled;
1036 
1037 #ifdef CONFIG_SYSCTL
kexec_limit_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1038 static int kexec_limit_handler(const struct ctl_table *table, int write,
1039 			       void *buffer, size_t *lenp, loff_t *ppos)
1040 {
1041 	struct kexec_load_limit *limit = table->data;
1042 	int val;
1043 	struct ctl_table tmp = {
1044 		.data = &val,
1045 		.maxlen = sizeof(val),
1046 		.mode = table->mode,
1047 	};
1048 	int ret;
1049 
1050 	if (write) {
1051 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
1052 		if (ret)
1053 			return ret;
1054 
1055 		if (val < 0)
1056 			return -EINVAL;
1057 
1058 		mutex_lock(&limit->mutex);
1059 		if (limit->limit != -1 && val >= limit->limit)
1060 			ret = -EINVAL;
1061 		else
1062 			limit->limit = val;
1063 		mutex_unlock(&limit->mutex);
1064 
1065 		return ret;
1066 	}
1067 
1068 	mutex_lock(&limit->mutex);
1069 	val = limit->limit;
1070 	mutex_unlock(&limit->mutex);
1071 
1072 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
1073 }
1074 
1075 static const struct ctl_table kexec_core_sysctls[] = {
1076 	{
1077 		.procname	= "kexec_load_disabled",
1078 		.data		= &kexec_load_disabled,
1079 		.maxlen		= sizeof(int),
1080 		.mode		= 0644,
1081 		/* only handle a transition from default "0" to "1" */
1082 		.proc_handler	= proc_dointvec_minmax,
1083 		.extra1		= SYSCTL_ONE,
1084 		.extra2		= SYSCTL_ONE,
1085 	},
1086 	{
1087 		.procname	= "kexec_load_limit_panic",
1088 		.data		= &load_limit_panic,
1089 		.mode		= 0644,
1090 		.proc_handler	= kexec_limit_handler,
1091 	},
1092 	{
1093 		.procname	= "kexec_load_limit_reboot",
1094 		.data		= &load_limit_reboot,
1095 		.mode		= 0644,
1096 		.proc_handler	= kexec_limit_handler,
1097 	},
1098 };
1099 
kexec_core_sysctl_init(void)1100 static int __init kexec_core_sysctl_init(void)
1101 {
1102 	register_sysctl_init("kernel", kexec_core_sysctls);
1103 	return 0;
1104 }
1105 late_initcall(kexec_core_sysctl_init);
1106 #endif
1107 
kexec_load_permitted(int kexec_image_type)1108 bool kexec_load_permitted(int kexec_image_type)
1109 {
1110 	struct kexec_load_limit *limit;
1111 
1112 	/*
1113 	 * Only the superuser can use the kexec syscall and if it has not
1114 	 * been disabled.
1115 	 */
1116 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1117 		return false;
1118 
1119 	/* Check limit counter and decrease it.*/
1120 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1121 		&load_limit_panic : &load_limit_reboot;
1122 	mutex_lock(&limit->mutex);
1123 	if (!limit->limit) {
1124 		mutex_unlock(&limit->mutex);
1125 		return false;
1126 	}
1127 	if (limit->limit != -1)
1128 		limit->limit--;
1129 	mutex_unlock(&limit->mutex);
1130 
1131 	return true;
1132 }
1133 
1134 /*
1135  * Move into place and start executing a preloaded standalone
1136  * executable.  If nothing was preloaded return an error.
1137  */
kernel_kexec(void)1138 int kernel_kexec(void)
1139 {
1140 	int error = 0;
1141 
1142 	if (!kexec_trylock())
1143 		return -EBUSY;
1144 	if (!kexec_image) {
1145 		error = -EINVAL;
1146 		goto Unlock;
1147 	}
1148 
1149 #ifdef CONFIG_KEXEC_JUMP
1150 	if (kexec_image->preserve_context) {
1151 		/*
1152 		 * This flow is analogous to hibernation flows that occur
1153 		 * before creating an image and before jumping from the
1154 		 * restore kernel to the image one, so it uses the same
1155 		 * device callbacks as those two flows.
1156 		 */
1157 		pm_prepare_console();
1158 		error = freeze_processes();
1159 		if (error) {
1160 			error = -EBUSY;
1161 			goto Restore_console;
1162 		}
1163 		console_suspend_all();
1164 		error = dpm_suspend_start(PMSG_FREEZE);
1165 		if (error)
1166 			goto Resume_devices;
1167 		/*
1168 		 * dpm_suspend_end() must be called after dpm_suspend_start()
1169 		 * to complete the transition, like in the hibernation flows
1170 		 * mentioned above.
1171 		 */
1172 		error = dpm_suspend_end(PMSG_FREEZE);
1173 		if (error)
1174 			goto Resume_devices;
1175 		error = suspend_disable_secondary_cpus();
1176 		if (error)
1177 			goto Enable_cpus;
1178 		local_irq_disable();
1179 		error = syscore_suspend();
1180 		if (error)
1181 			goto Enable_irqs;
1182 	} else
1183 #endif
1184 	{
1185 		kexec_in_progress = true;
1186 		kernel_restart_prepare("kexec reboot");
1187 		migrate_to_reboot_cpu();
1188 		syscore_shutdown();
1189 
1190 		/*
1191 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1192 		 * no further code needs to use CPU hotplug (which is true in
1193 		 * the reboot case). However, the kexec path depends on using
1194 		 * CPU hotplug again; so re-enable it here.
1195 		 */
1196 		cpu_hotplug_enable();
1197 		pr_notice("Starting new kernel\n");
1198 		machine_shutdown();
1199 	}
1200 
1201 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1202 	machine_kexec(kexec_image);
1203 
1204 #ifdef CONFIG_KEXEC_JUMP
1205 	if (kexec_image->preserve_context) {
1206 		/*
1207 		 * This flow is analogous to hibernation flows that occur after
1208 		 * creating an image and after the image kernel has got control
1209 		 * back, and in case the devices have been reset or otherwise
1210 		 * manipulated in the meantime, it uses the device callbacks
1211 		 * used by the latter.
1212 		 */
1213 		syscore_resume();
1214  Enable_irqs:
1215 		local_irq_enable();
1216  Enable_cpus:
1217 		suspend_enable_secondary_cpus();
1218 		dpm_resume_start(PMSG_RESTORE);
1219  Resume_devices:
1220 		dpm_resume_end(PMSG_RESTORE);
1221 		console_resume_all();
1222 		thaw_processes();
1223  Restore_console:
1224 		pm_restore_console();
1225 	}
1226 #endif
1227 
1228  Unlock:
1229 	kexec_unlock();
1230 	return error;
1231 }
1232