xref: /linux/kernel/kexec_core.c (revision e991acf1bce7a428794514cbbe216973c9c0a3c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
43 #include <linux/dma-map-ops.h>
44 
45 #include <asm/page.h>
46 #include <asm/sections.h>
47 
48 #include <crypto/hash.h>
49 #include "kexec_internal.h"
50 
51 atomic_t __kexec_lock = ATOMIC_INIT(0);
52 
53 /* Flag to indicate we are going to kexec a new kernel */
54 bool kexec_in_progress = false;
55 
56 bool kexec_file_dbg_print;
57 
58 /*
59  * When kexec transitions to the new kernel there is a one-to-one
60  * mapping between physical and virtual addresses.  On processors
61  * where you can disable the MMU this is trivial, and easy.  For
62  * others it is still a simple predictable page table to setup.
63  *
64  * In that environment kexec copies the new kernel to its final
65  * resting place.  This means I can only support memory whose
66  * physical address can fit in an unsigned long.  In particular
67  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
68  * If the assembly stub has more restrictive requirements
69  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
70  * defined more restrictively in <asm/kexec.h>.
71  *
72  * The code for the transition from the current kernel to the
73  * new kernel is placed in the control_code_buffer, whose size
74  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
75  * page of memory is necessary, but some architectures require more.
76  * Because this memory must be identity mapped in the transition from
77  * virtual to physical addresses it must live in the range
78  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
79  * modifiable.
80  *
81  * The assembly stub in the control code buffer is passed a linked list
82  * of descriptor pages detailing the source pages of the new kernel,
83  * and the destination addresses of those source pages.  As this data
84  * structure is not used in the context of the current OS, it must
85  * be self-contained.
86  *
87  * The code has been made to work with highmem pages and will use a
88  * destination page in its final resting place (if it happens
89  * to allocate it).  The end product of this is that most of the
90  * physical address space, and most of RAM can be used.
91  *
92  * Future directions include:
93  *  - allocating a page table with the control code buffer identity
94  *    mapped, to simplify machine_kexec and make kexec_on_panic more
95  *    reliable.
96  */
97 
98 /*
99  * KIMAGE_NO_DEST is an impossible destination address..., for
100  * allocating pages whose destination address we do not care about.
101  */
102 #define KIMAGE_NO_DEST (-1UL)
103 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
104 
105 static struct page *kimage_alloc_page(struct kimage *image,
106 				       gfp_t gfp_mask,
107 				       unsigned long dest);
108 
sanity_check_segment_list(struct kimage * image)109 int sanity_check_segment_list(struct kimage *image)
110 {
111 	int i;
112 	unsigned long nr_segments = image->nr_segments;
113 	unsigned long total_pages = 0;
114 	unsigned long nr_pages = totalram_pages();
115 
116 	/*
117 	 * Verify we have good destination addresses.  The caller is
118 	 * responsible for making certain we don't attempt to load
119 	 * the new image into invalid or reserved areas of RAM.  This
120 	 * just verifies it is an address we can use.
121 	 *
122 	 * Since the kernel does everything in page size chunks ensure
123 	 * the destination addresses are page aligned.  Too many
124 	 * special cases crop of when we don't do this.  The most
125 	 * insidious is getting overlapping destination addresses
126 	 * simply because addresses are changed to page size
127 	 * granularity.
128 	 */
129 	for (i = 0; i < nr_segments; i++) {
130 		unsigned long mstart, mend;
131 
132 		mstart = image->segment[i].mem;
133 		mend   = mstart + image->segment[i].memsz;
134 		if (mstart > mend)
135 			return -EADDRNOTAVAIL;
136 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
137 			return -EADDRNOTAVAIL;
138 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
139 			return -EADDRNOTAVAIL;
140 	}
141 
142 	/* Verify our destination addresses do not overlap.
143 	 * If we alloed overlapping destination addresses
144 	 * through very weird things can happen with no
145 	 * easy explanation as one segment stops on another.
146 	 */
147 	for (i = 0; i < nr_segments; i++) {
148 		unsigned long mstart, mend;
149 		unsigned long j;
150 
151 		mstart = image->segment[i].mem;
152 		mend   = mstart + image->segment[i].memsz;
153 		for (j = 0; j < i; j++) {
154 			unsigned long pstart, pend;
155 
156 			pstart = image->segment[j].mem;
157 			pend   = pstart + image->segment[j].memsz;
158 			/* Do the segments overlap ? */
159 			if ((mend > pstart) && (mstart < pend))
160 				return -EINVAL;
161 		}
162 	}
163 
164 	/* Ensure our buffer sizes are strictly less than
165 	 * our memory sizes.  This should always be the case,
166 	 * and it is easier to check up front than to be surprised
167 	 * later on.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		if (image->segment[i].bufsz > image->segment[i].memsz)
171 			return -EINVAL;
172 	}
173 
174 	/*
175 	 * Verify that no more than half of memory will be consumed. If the
176 	 * request from userspace is too large, a large amount of time will be
177 	 * wasted allocating pages, which can cause a soft lockup.
178 	 */
179 	for (i = 0; i < nr_segments; i++) {
180 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
181 			return -EINVAL;
182 
183 		total_pages += PAGE_COUNT(image->segment[i].memsz);
184 	}
185 
186 	if (total_pages > nr_pages / 2)
187 		return -EINVAL;
188 
189 #ifdef CONFIG_CRASH_DUMP
190 	/*
191 	 * Verify we have good destination addresses.  Normally
192 	 * the caller is responsible for making certain we don't
193 	 * attempt to load the new image into invalid or reserved
194 	 * areas of RAM.  But crash kernels are preloaded into a
195 	 * reserved area of ram.  We must ensure the addresses
196 	 * are in the reserved area otherwise preloading the
197 	 * kernel could corrupt things.
198 	 */
199 
200 	if (image->type == KEXEC_TYPE_CRASH) {
201 		for (i = 0; i < nr_segments; i++) {
202 			unsigned long mstart, mend;
203 
204 			mstart = image->segment[i].mem;
205 			mend = mstart + image->segment[i].memsz - 1;
206 			/* Ensure we are within the crash kernel limits */
207 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
208 			    (mend > phys_to_boot_phys(crashk_res.end)))
209 				return -EADDRNOTAVAIL;
210 		}
211 	}
212 #endif
213 
214 	/*
215 	 * The destination addresses are searched from system RAM rather than
216 	 * being allocated from the buddy allocator, so they are not guaranteed
217 	 * to be accepted by the current kernel.  Accept the destination
218 	 * addresses before kexec swaps their content with the segments' source
219 	 * pages to avoid accessing memory before it is accepted.
220 	 */
221 	for (i = 0; i < nr_segments; i++)
222 		accept_memory(image->segment[i].mem, image->segment[i].memsz);
223 
224 	return 0;
225 }
226 
do_kimage_alloc_init(void)227 struct kimage *do_kimage_alloc_init(void)
228 {
229 	struct kimage *image;
230 
231 	/* Allocate a controlling structure */
232 	image = kzalloc(sizeof(*image), GFP_KERNEL);
233 	if (!image)
234 		return NULL;
235 
236 	image->head = 0;
237 	image->entry = &image->head;
238 	image->last_entry = &image->head;
239 	image->control_page = ~0; /* By default this does not apply */
240 	image->type = KEXEC_TYPE_DEFAULT;
241 
242 	/* Initialize the list of control pages */
243 	INIT_LIST_HEAD(&image->control_pages);
244 
245 	/* Initialize the list of destination pages */
246 	INIT_LIST_HEAD(&image->dest_pages);
247 
248 	/* Initialize the list of unusable pages */
249 	INIT_LIST_HEAD(&image->unusable_pages);
250 
251 #ifdef CONFIG_CRASH_HOTPLUG
252 	image->hp_action = KEXEC_CRASH_HP_NONE;
253 	image->elfcorehdr_index = -1;
254 	image->elfcorehdr_updated = false;
255 #endif
256 
257 	return image;
258 }
259 
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)260 int kimage_is_destination_range(struct kimage *image,
261 					unsigned long start,
262 					unsigned long end)
263 {
264 	unsigned long i;
265 
266 	for (i = 0; i < image->nr_segments; i++) {
267 		unsigned long mstart, mend;
268 
269 		mstart = image->segment[i].mem;
270 		mend = mstart + image->segment[i].memsz - 1;
271 		if ((end >= mstart) && (start <= mend))
272 			return 1;
273 	}
274 
275 	return 0;
276 }
277 
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)278 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
279 {
280 	struct page *pages;
281 
282 	if (fatal_signal_pending(current))
283 		return NULL;
284 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
285 	if (pages) {
286 		unsigned int count, i;
287 
288 		pages->mapping = NULL;
289 		set_page_private(pages, order);
290 		count = 1 << order;
291 		for (i = 0; i < count; i++)
292 			SetPageReserved(pages + i);
293 
294 		arch_kexec_post_alloc_pages(page_address(pages), count,
295 					    gfp_mask);
296 
297 		if (gfp_mask & __GFP_ZERO)
298 			for (i = 0; i < count; i++)
299 				clear_highpage(pages + i);
300 	}
301 
302 	return pages;
303 }
304 
kimage_free_pages(struct page * page)305 static void kimage_free_pages(struct page *page)
306 {
307 	unsigned int order, count, i;
308 
309 	order = page_private(page);
310 	count = 1 << order;
311 
312 	arch_kexec_pre_free_pages(page_address(page), count);
313 
314 	for (i = 0; i < count; i++)
315 		ClearPageReserved(page + i);
316 	__free_pages(page, order);
317 }
318 
kimage_free_page_list(struct list_head * list)319 void kimage_free_page_list(struct list_head *list)
320 {
321 	struct page *page, *next;
322 
323 	list_for_each_entry_safe(page, next, list, lru) {
324 		list_del(&page->lru);
325 		kimage_free_pages(page);
326 	}
327 }
328 
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)329 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
330 							unsigned int order)
331 {
332 	/* Control pages are special, they are the intermediaries
333 	 * that are needed while we copy the rest of the pages
334 	 * to their final resting place.  As such they must
335 	 * not conflict with either the destination addresses
336 	 * or memory the kernel is already using.
337 	 *
338 	 * The only case where we really need more than one of
339 	 * these are for architectures where we cannot disable
340 	 * the MMU and must instead generate an identity mapped
341 	 * page table for all of the memory.
342 	 *
343 	 * At worst this runs in O(N) of the image size.
344 	 */
345 	struct list_head extra_pages;
346 	struct page *pages;
347 	unsigned int count;
348 
349 	count = 1 << order;
350 	INIT_LIST_HEAD(&extra_pages);
351 
352 	/* Loop while I can allocate a page and the page allocated
353 	 * is a destination page.
354 	 */
355 	do {
356 		unsigned long pfn, epfn, addr, eaddr;
357 
358 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
359 		if (!pages)
360 			break;
361 		pfn   = page_to_boot_pfn(pages);
362 		epfn  = pfn + count;
363 		addr  = pfn << PAGE_SHIFT;
364 		eaddr = (epfn << PAGE_SHIFT) - 1;
365 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
366 			      kimage_is_destination_range(image, addr, eaddr)) {
367 			list_add(&pages->lru, &extra_pages);
368 			pages = NULL;
369 		}
370 	} while (!pages);
371 
372 	if (pages) {
373 		/* Remember the allocated page... */
374 		list_add(&pages->lru, &image->control_pages);
375 
376 		/* Because the page is already in it's destination
377 		 * location we will never allocate another page at
378 		 * that address.  Therefore kimage_alloc_pages
379 		 * will not return it (again) and we don't need
380 		 * to give it an entry in image->segment[].
381 		 */
382 	}
383 	/* Deal with the destination pages I have inadvertently allocated.
384 	 *
385 	 * Ideally I would convert multi-page allocations into single
386 	 * page allocations, and add everything to image->dest_pages.
387 	 *
388 	 * For now it is simpler to just free the pages.
389 	 */
390 	kimage_free_page_list(&extra_pages);
391 
392 	return pages;
393 }
394 
395 #ifdef CONFIG_CRASH_DUMP
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)396 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
397 						      unsigned int order)
398 {
399 	/* Control pages are special, they are the intermediaries
400 	 * that are needed while we copy the rest of the pages
401 	 * to their final resting place.  As such they must
402 	 * not conflict with either the destination addresses
403 	 * or memory the kernel is already using.
404 	 *
405 	 * Control pages are also the only pags we must allocate
406 	 * when loading a crash kernel.  All of the other pages
407 	 * are specified by the segments and we just memcpy
408 	 * into them directly.
409 	 *
410 	 * The only case where we really need more than one of
411 	 * these are for architectures where we cannot disable
412 	 * the MMU and must instead generate an identity mapped
413 	 * page table for all of the memory.
414 	 *
415 	 * Given the low demand this implements a very simple
416 	 * allocator that finds the first hole of the appropriate
417 	 * size in the reserved memory region, and allocates all
418 	 * of the memory up to and including the hole.
419 	 */
420 	unsigned long hole_start, hole_end, size;
421 	struct page *pages;
422 
423 	pages = NULL;
424 	size = (1 << order) << PAGE_SHIFT;
425 	hole_start = ALIGN(image->control_page, size);
426 	hole_end   = hole_start + size - 1;
427 	while (hole_end <= crashk_res.end) {
428 		unsigned long i;
429 
430 		cond_resched();
431 
432 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
433 			break;
434 		/* See if I overlap any of the segments */
435 		for (i = 0; i < image->nr_segments; i++) {
436 			unsigned long mstart, mend;
437 
438 			mstart = image->segment[i].mem;
439 			mend   = mstart + image->segment[i].memsz - 1;
440 			if ((hole_end >= mstart) && (hole_start <= mend)) {
441 				/* Advance the hole to the end of the segment */
442 				hole_start = ALIGN(mend, size);
443 				hole_end   = hole_start + size - 1;
444 				break;
445 			}
446 		}
447 		/* If I don't overlap any segments I have found my hole! */
448 		if (i == image->nr_segments) {
449 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
450 			image->control_page = hole_end + 1;
451 			break;
452 		}
453 	}
454 
455 	/* Ensure that these pages are decrypted if SME is enabled. */
456 	if (pages)
457 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
458 
459 	return pages;
460 }
461 #endif
462 
463 
kimage_alloc_control_pages(struct kimage * image,unsigned int order)464 struct page *kimage_alloc_control_pages(struct kimage *image,
465 					 unsigned int order)
466 {
467 	struct page *pages = NULL;
468 
469 	switch (image->type) {
470 	case KEXEC_TYPE_DEFAULT:
471 		pages = kimage_alloc_normal_control_pages(image, order);
472 		break;
473 #ifdef CONFIG_CRASH_DUMP
474 	case KEXEC_TYPE_CRASH:
475 		pages = kimage_alloc_crash_control_pages(image, order);
476 		break;
477 #endif
478 	}
479 
480 	return pages;
481 }
482 
kimage_add_entry(struct kimage * image,kimage_entry_t entry)483 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
484 {
485 	if (*image->entry != 0)
486 		image->entry++;
487 
488 	if (image->entry == image->last_entry) {
489 		kimage_entry_t *ind_page;
490 		struct page *page;
491 
492 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
493 		if (!page)
494 			return -ENOMEM;
495 
496 		ind_page = page_address(page);
497 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
498 		image->entry = ind_page;
499 		image->last_entry = ind_page +
500 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
501 	}
502 	*image->entry = entry;
503 	image->entry++;
504 	*image->entry = 0;
505 
506 	return 0;
507 }
508 
kimage_set_destination(struct kimage * image,unsigned long destination)509 static int kimage_set_destination(struct kimage *image,
510 				   unsigned long destination)
511 {
512 	destination &= PAGE_MASK;
513 
514 	return kimage_add_entry(image, destination | IND_DESTINATION);
515 }
516 
517 
kimage_add_page(struct kimage * image,unsigned long page)518 static int kimage_add_page(struct kimage *image, unsigned long page)
519 {
520 	page &= PAGE_MASK;
521 
522 	return kimage_add_entry(image, page | IND_SOURCE);
523 }
524 
525 
kimage_free_extra_pages(struct kimage * image)526 static void kimage_free_extra_pages(struct kimage *image)
527 {
528 	/* Walk through and free any extra destination pages I may have */
529 	kimage_free_page_list(&image->dest_pages);
530 
531 	/* Walk through and free any unusable pages I have cached */
532 	kimage_free_page_list(&image->unusable_pages);
533 
534 }
535 
kimage_terminate(struct kimage * image)536 void kimage_terminate(struct kimage *image)
537 {
538 	if (*image->entry != 0)
539 		image->entry++;
540 
541 	*image->entry = IND_DONE;
542 }
543 
544 #define for_each_kimage_entry(image, ptr, entry) \
545 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
546 		ptr = (entry & IND_INDIRECTION) ? \
547 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
548 
kimage_free_entry(kimage_entry_t entry)549 static void kimage_free_entry(kimage_entry_t entry)
550 {
551 	struct page *page;
552 
553 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
554 	kimage_free_pages(page);
555 }
556 
kimage_free_cma(struct kimage * image)557 static void kimage_free_cma(struct kimage *image)
558 {
559 	unsigned long i;
560 
561 	for (i = 0; i < image->nr_segments; i++) {
562 		struct page *cma = image->segment_cma[i];
563 		u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT;
564 
565 		if (!cma)
566 			continue;
567 
568 		arch_kexec_pre_free_pages(page_address(cma), nr_pages);
569 		dma_release_from_contiguous(NULL, cma, nr_pages);
570 		image->segment_cma[i] = NULL;
571 	}
572 
573 }
574 
kimage_free(struct kimage * image)575 void kimage_free(struct kimage *image)
576 {
577 	kimage_entry_t *ptr, entry;
578 	kimage_entry_t ind = 0;
579 
580 	if (!image)
581 		return;
582 
583 #ifdef CONFIG_CRASH_DUMP
584 	if (image->vmcoreinfo_data_copy) {
585 		crash_update_vmcoreinfo_safecopy(NULL);
586 		vunmap(image->vmcoreinfo_data_copy);
587 	}
588 #endif
589 
590 	kimage_free_extra_pages(image);
591 	for_each_kimage_entry(image, ptr, entry) {
592 		if (entry & IND_INDIRECTION) {
593 			/* Free the previous indirection page */
594 			if (ind & IND_INDIRECTION)
595 				kimage_free_entry(ind);
596 			/* Save this indirection page until we are
597 			 * done with it.
598 			 */
599 			ind = entry;
600 		} else if (entry & IND_SOURCE)
601 			kimage_free_entry(entry);
602 	}
603 	/* Free the final indirection page */
604 	if (ind & IND_INDIRECTION)
605 		kimage_free_entry(ind);
606 
607 	/* Handle any machine specific cleanup */
608 	machine_kexec_cleanup(image);
609 
610 	/* Free the kexec control pages... */
611 	kimage_free_page_list(&image->control_pages);
612 
613 	/* Free CMA allocations */
614 	kimage_free_cma(image);
615 
616 	/*
617 	 * Free up any temporary buffers allocated. This might hit if
618 	 * error occurred much later after buffer allocation.
619 	 */
620 	if (image->file_mode)
621 		kimage_file_post_load_cleanup(image);
622 
623 	kfree(image);
624 }
625 
kimage_dst_used(struct kimage * image,unsigned long page)626 static kimage_entry_t *kimage_dst_used(struct kimage *image,
627 					unsigned long page)
628 {
629 	kimage_entry_t *ptr, entry;
630 	unsigned long destination = 0;
631 
632 	for_each_kimage_entry(image, ptr, entry) {
633 		if (entry & IND_DESTINATION)
634 			destination = entry & PAGE_MASK;
635 		else if (entry & IND_SOURCE) {
636 			if (page == destination)
637 				return ptr;
638 			destination += PAGE_SIZE;
639 		}
640 	}
641 
642 	return NULL;
643 }
644 
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)645 static struct page *kimage_alloc_page(struct kimage *image,
646 					gfp_t gfp_mask,
647 					unsigned long destination)
648 {
649 	/*
650 	 * Here we implement safeguards to ensure that a source page
651 	 * is not copied to its destination page before the data on
652 	 * the destination page is no longer useful.
653 	 *
654 	 * To do this we maintain the invariant that a source page is
655 	 * either its own destination page, or it is not a
656 	 * destination page at all.
657 	 *
658 	 * That is slightly stronger than required, but the proof
659 	 * that no problems will not occur is trivial, and the
660 	 * implementation is simply to verify.
661 	 *
662 	 * When allocating all pages normally this algorithm will run
663 	 * in O(N) time, but in the worst case it will run in O(N^2)
664 	 * time.   If the runtime is a problem the data structures can
665 	 * be fixed.
666 	 */
667 	struct page *page;
668 	unsigned long addr;
669 
670 	/*
671 	 * Walk through the list of destination pages, and see if I
672 	 * have a match.
673 	 */
674 	list_for_each_entry(page, &image->dest_pages, lru) {
675 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
676 		if (addr == destination) {
677 			list_del(&page->lru);
678 			return page;
679 		}
680 	}
681 	page = NULL;
682 	while (1) {
683 		kimage_entry_t *old;
684 
685 		/* Allocate a page, if we run out of memory give up */
686 		page = kimage_alloc_pages(gfp_mask, 0);
687 		if (!page)
688 			return NULL;
689 		/* If the page cannot be used file it away */
690 		if (page_to_boot_pfn(page) >
691 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
692 			list_add(&page->lru, &image->unusable_pages);
693 			continue;
694 		}
695 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
696 
697 		/* If it is the destination page we want use it */
698 		if (addr == destination)
699 			break;
700 
701 		/* If the page is not a destination page use it */
702 		if (!kimage_is_destination_range(image, addr,
703 						  addr + PAGE_SIZE - 1))
704 			break;
705 
706 		/*
707 		 * I know that the page is someones destination page.
708 		 * See if there is already a source page for this
709 		 * destination page.  And if so swap the source pages.
710 		 */
711 		old = kimage_dst_used(image, addr);
712 		if (old) {
713 			/* If so move it */
714 			unsigned long old_addr;
715 			struct page *old_page;
716 
717 			old_addr = *old & PAGE_MASK;
718 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
719 			copy_highpage(page, old_page);
720 			*old = addr | (*old & ~PAGE_MASK);
721 
722 			/* The old page I have found cannot be a
723 			 * destination page, so return it if it's
724 			 * gfp_flags honor the ones passed in.
725 			 */
726 			if (!(gfp_mask & __GFP_HIGHMEM) &&
727 			    PageHighMem(old_page)) {
728 				kimage_free_pages(old_page);
729 				continue;
730 			}
731 			page = old_page;
732 			break;
733 		}
734 		/* Place the page on the destination list, to be used later */
735 		list_add(&page->lru, &image->dest_pages);
736 	}
737 
738 	return page;
739 }
740 
kimage_load_cma_segment(struct kimage * image,int idx)741 static int kimage_load_cma_segment(struct kimage *image, int idx)
742 {
743 	struct kexec_segment *segment = &image->segment[idx];
744 	struct page *cma = image->segment_cma[idx];
745 	char *ptr = page_address(cma);
746 	unsigned long maddr;
747 	size_t ubytes, mbytes;
748 	int result = 0;
749 	unsigned char __user *buf = NULL;
750 	unsigned char *kbuf = NULL;
751 
752 	if (image->file_mode)
753 		kbuf = segment->kbuf;
754 	else
755 		buf = segment->buf;
756 	ubytes = segment->bufsz;
757 	mbytes = segment->memsz;
758 	maddr = segment->mem;
759 
760 	/* Then copy from source buffer to the CMA one */
761 	while (mbytes) {
762 		size_t uchunk, mchunk;
763 
764 		ptr += maddr & ~PAGE_MASK;
765 		mchunk = min_t(size_t, mbytes,
766 				PAGE_SIZE - (maddr & ~PAGE_MASK));
767 		uchunk = min(ubytes, mchunk);
768 
769 		if (uchunk) {
770 			/* For file based kexec, source pages are in kernel memory */
771 			if (image->file_mode)
772 				memcpy(ptr, kbuf, uchunk);
773 			else
774 				result = copy_from_user(ptr, buf, uchunk);
775 			ubytes -= uchunk;
776 			if (image->file_mode)
777 				kbuf += uchunk;
778 			else
779 				buf += uchunk;
780 		}
781 
782 		if (result) {
783 			result = -EFAULT;
784 			goto out;
785 		}
786 
787 		ptr    += mchunk;
788 		maddr  += mchunk;
789 		mbytes -= mchunk;
790 
791 		cond_resched();
792 	}
793 
794 	/* Clear any remainder */
795 	memset(ptr, 0, mbytes);
796 
797 out:
798 	return result;
799 }
800 
kimage_load_normal_segment(struct kimage * image,int idx)801 static int kimage_load_normal_segment(struct kimage *image, int idx)
802 {
803 	struct kexec_segment *segment = &image->segment[idx];
804 	unsigned long maddr;
805 	size_t ubytes, mbytes;
806 	int result;
807 	unsigned char __user *buf = NULL;
808 	unsigned char *kbuf = NULL;
809 
810 	if (image->file_mode)
811 		kbuf = segment->kbuf;
812 	else
813 		buf = segment->buf;
814 	ubytes = segment->bufsz;
815 	mbytes = segment->memsz;
816 	maddr = segment->mem;
817 
818 	if (image->segment_cma[idx])
819 		return kimage_load_cma_segment(image, idx);
820 
821 	result = kimage_set_destination(image, maddr);
822 	if (result < 0)
823 		goto out;
824 
825 	while (mbytes) {
826 		struct page *page;
827 		char *ptr;
828 		size_t uchunk, mchunk;
829 
830 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
831 		if (!page) {
832 			result  = -ENOMEM;
833 			goto out;
834 		}
835 		result = kimage_add_page(image, page_to_boot_pfn(page)
836 								<< PAGE_SHIFT);
837 		if (result < 0)
838 			goto out;
839 
840 		ptr = kmap_local_page(page);
841 		/* Start with a clear page */
842 		clear_page(ptr);
843 		ptr += maddr & ~PAGE_MASK;
844 		mchunk = min_t(size_t, mbytes,
845 				PAGE_SIZE - (maddr & ~PAGE_MASK));
846 		uchunk = min(ubytes, mchunk);
847 
848 		if (uchunk) {
849 			/* For file based kexec, source pages are in kernel memory */
850 			if (image->file_mode)
851 				memcpy(ptr, kbuf, uchunk);
852 			else
853 				result = copy_from_user(ptr, buf, uchunk);
854 			ubytes -= uchunk;
855 			if (image->file_mode)
856 				kbuf += uchunk;
857 			else
858 				buf += uchunk;
859 		}
860 		kunmap_local(ptr);
861 		if (result) {
862 			result = -EFAULT;
863 			goto out;
864 		}
865 		maddr  += mchunk;
866 		mbytes -= mchunk;
867 
868 		cond_resched();
869 	}
870 out:
871 	return result;
872 }
873 
874 #ifdef CONFIG_CRASH_DUMP
kimage_load_crash_segment(struct kimage * image,int idx)875 static int kimage_load_crash_segment(struct kimage *image, int idx)
876 {
877 	/* For crash dumps kernels we simply copy the data from
878 	 * user space to it's destination.
879 	 * We do things a page at a time for the sake of kmap.
880 	 */
881 	struct kexec_segment *segment = &image->segment[idx];
882 	unsigned long maddr;
883 	size_t ubytes, mbytes;
884 	int result;
885 	unsigned char __user *buf = NULL;
886 	unsigned char *kbuf = NULL;
887 
888 	result = 0;
889 	if (image->file_mode)
890 		kbuf = segment->kbuf;
891 	else
892 		buf = segment->buf;
893 	ubytes = segment->bufsz;
894 	mbytes = segment->memsz;
895 	maddr = segment->mem;
896 	while (mbytes) {
897 		struct page *page;
898 		char *ptr;
899 		size_t uchunk, mchunk;
900 
901 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
902 		if (!page) {
903 			result  = -ENOMEM;
904 			goto out;
905 		}
906 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
907 		ptr = kmap_local_page(page);
908 		ptr += maddr & ~PAGE_MASK;
909 		mchunk = min_t(size_t, mbytes,
910 				PAGE_SIZE - (maddr & ~PAGE_MASK));
911 		uchunk = min(ubytes, mchunk);
912 		if (mchunk > uchunk) {
913 			/* Zero the trailing part of the page */
914 			memset(ptr + uchunk, 0, mchunk - uchunk);
915 		}
916 
917 		if (uchunk) {
918 			/* For file based kexec, source pages are in kernel memory */
919 			if (image->file_mode)
920 				memcpy(ptr, kbuf, uchunk);
921 			else
922 				result = copy_from_user(ptr, buf, uchunk);
923 			ubytes -= uchunk;
924 			if (image->file_mode)
925 				kbuf += uchunk;
926 			else
927 				buf += uchunk;
928 		}
929 		kexec_flush_icache_page(page);
930 		kunmap_local(ptr);
931 		arch_kexec_pre_free_pages(page_address(page), 1);
932 		if (result) {
933 			result = -EFAULT;
934 			goto out;
935 		}
936 		maddr  += mchunk;
937 		mbytes -= mchunk;
938 
939 		cond_resched();
940 	}
941 out:
942 	return result;
943 }
944 #endif
945 
kimage_load_segment(struct kimage * image,int idx)946 int kimage_load_segment(struct kimage *image, int idx)
947 {
948 	int result = -ENOMEM;
949 
950 	switch (image->type) {
951 	case KEXEC_TYPE_DEFAULT:
952 		result = kimage_load_normal_segment(image, idx);
953 		break;
954 #ifdef CONFIG_CRASH_DUMP
955 	case KEXEC_TYPE_CRASH:
956 		result = kimage_load_crash_segment(image, idx);
957 		break;
958 #endif
959 	}
960 
961 	return result;
962 }
963 
kimage_map_segment(struct kimage * image,unsigned long addr,unsigned long size)964 void *kimage_map_segment(struct kimage *image,
965 			 unsigned long addr, unsigned long size)
966 {
967 	unsigned long src_page_addr, dest_page_addr = 0;
968 	unsigned long eaddr = addr + size;
969 	kimage_entry_t *ptr, entry;
970 	struct page **src_pages;
971 	unsigned int npages;
972 	void *vaddr = NULL;
973 	int i;
974 
975 	/*
976 	 * Collect the source pages and map them in a contiguous VA range.
977 	 */
978 	npages = PFN_UP(eaddr) - PFN_DOWN(addr);
979 	src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL);
980 	if (!src_pages) {
981 		pr_err("Could not allocate ima pages array.\n");
982 		return NULL;
983 	}
984 
985 	i = 0;
986 	for_each_kimage_entry(image, ptr, entry) {
987 		if (entry & IND_DESTINATION) {
988 			dest_page_addr = entry & PAGE_MASK;
989 		} else if (entry & IND_SOURCE) {
990 			if (dest_page_addr >= addr && dest_page_addr < eaddr) {
991 				src_page_addr = entry & PAGE_MASK;
992 				src_pages[i++] =
993 					virt_to_page(__va(src_page_addr));
994 				if (i == npages)
995 					break;
996 				dest_page_addr += PAGE_SIZE;
997 			}
998 		}
999 	}
1000 
1001 	/* Sanity check. */
1002 	WARN_ON(i < npages);
1003 
1004 	vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL);
1005 	kfree(src_pages);
1006 
1007 	if (!vaddr)
1008 		pr_err("Could not map ima buffer.\n");
1009 
1010 	return vaddr;
1011 }
1012 
kimage_unmap_segment(void * segment_buffer)1013 void kimage_unmap_segment(void *segment_buffer)
1014 {
1015 	vunmap(segment_buffer);
1016 }
1017 
1018 struct kexec_load_limit {
1019 	/* Mutex protects the limit count. */
1020 	struct mutex mutex;
1021 	int limit;
1022 };
1023 
1024 static struct kexec_load_limit load_limit_reboot = {
1025 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
1026 	.limit = -1,
1027 };
1028 
1029 static struct kexec_load_limit load_limit_panic = {
1030 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
1031 	.limit = -1,
1032 };
1033 
1034 struct kimage *kexec_image;
1035 struct kimage *kexec_crash_image;
1036 static int kexec_load_disabled;
1037 
1038 #ifdef CONFIG_SYSCTL
kexec_limit_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1039 static int kexec_limit_handler(const struct ctl_table *table, int write,
1040 			       void *buffer, size_t *lenp, loff_t *ppos)
1041 {
1042 	struct kexec_load_limit *limit = table->data;
1043 	int val;
1044 	struct ctl_table tmp = {
1045 		.data = &val,
1046 		.maxlen = sizeof(val),
1047 		.mode = table->mode,
1048 	};
1049 	int ret;
1050 
1051 	if (write) {
1052 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
1053 		if (ret)
1054 			return ret;
1055 
1056 		if (val < 0)
1057 			return -EINVAL;
1058 
1059 		mutex_lock(&limit->mutex);
1060 		if (limit->limit != -1 && val >= limit->limit)
1061 			ret = -EINVAL;
1062 		else
1063 			limit->limit = val;
1064 		mutex_unlock(&limit->mutex);
1065 
1066 		return ret;
1067 	}
1068 
1069 	mutex_lock(&limit->mutex);
1070 	val = limit->limit;
1071 	mutex_unlock(&limit->mutex);
1072 
1073 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
1074 }
1075 
1076 static const struct ctl_table kexec_core_sysctls[] = {
1077 	{
1078 		.procname	= "kexec_load_disabled",
1079 		.data		= &kexec_load_disabled,
1080 		.maxlen		= sizeof(int),
1081 		.mode		= 0644,
1082 		/* only handle a transition from default "0" to "1" */
1083 		.proc_handler	= proc_dointvec_minmax,
1084 		.extra1		= SYSCTL_ONE,
1085 		.extra2		= SYSCTL_ONE,
1086 	},
1087 	{
1088 		.procname	= "kexec_load_limit_panic",
1089 		.data		= &load_limit_panic,
1090 		.mode		= 0644,
1091 		.proc_handler	= kexec_limit_handler,
1092 	},
1093 	{
1094 		.procname	= "kexec_load_limit_reboot",
1095 		.data		= &load_limit_reboot,
1096 		.mode		= 0644,
1097 		.proc_handler	= kexec_limit_handler,
1098 	},
1099 };
1100 
kexec_core_sysctl_init(void)1101 static int __init kexec_core_sysctl_init(void)
1102 {
1103 	register_sysctl_init("kernel", kexec_core_sysctls);
1104 	return 0;
1105 }
1106 late_initcall(kexec_core_sysctl_init);
1107 #endif
1108 
kexec_load_permitted(int kexec_image_type)1109 bool kexec_load_permitted(int kexec_image_type)
1110 {
1111 	struct kexec_load_limit *limit;
1112 
1113 	/*
1114 	 * Only the superuser can use the kexec syscall and if it has not
1115 	 * been disabled.
1116 	 */
1117 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1118 		return false;
1119 
1120 	/* Check limit counter and decrease it.*/
1121 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1122 		&load_limit_panic : &load_limit_reboot;
1123 	mutex_lock(&limit->mutex);
1124 	if (!limit->limit) {
1125 		mutex_unlock(&limit->mutex);
1126 		return false;
1127 	}
1128 	if (limit->limit != -1)
1129 		limit->limit--;
1130 	mutex_unlock(&limit->mutex);
1131 
1132 	return true;
1133 }
1134 
1135 /*
1136  * Move into place and start executing a preloaded standalone
1137  * executable.  If nothing was preloaded return an error.
1138  */
kernel_kexec(void)1139 int kernel_kexec(void)
1140 {
1141 	int error = 0;
1142 
1143 	if (!kexec_trylock())
1144 		return -EBUSY;
1145 	if (!kexec_image) {
1146 		error = -EINVAL;
1147 		goto Unlock;
1148 	}
1149 
1150 #ifdef CONFIG_KEXEC_JUMP
1151 	if (kexec_image->preserve_context) {
1152 		/*
1153 		 * This flow is analogous to hibernation flows that occur
1154 		 * before creating an image and before jumping from the
1155 		 * restore kernel to the image one, so it uses the same
1156 		 * device callbacks as those two flows.
1157 		 */
1158 		pm_prepare_console();
1159 		error = freeze_processes();
1160 		if (error) {
1161 			error = -EBUSY;
1162 			goto Restore_console;
1163 		}
1164 		console_suspend_all();
1165 		error = dpm_suspend_start(PMSG_FREEZE);
1166 		if (error)
1167 			goto Resume_devices;
1168 		/*
1169 		 * dpm_suspend_end() must be called after dpm_suspend_start()
1170 		 * to complete the transition, like in the hibernation flows
1171 		 * mentioned above.
1172 		 */
1173 		error = dpm_suspend_end(PMSG_FREEZE);
1174 		if (error)
1175 			goto Resume_devices;
1176 		error = suspend_disable_secondary_cpus();
1177 		if (error)
1178 			goto Enable_cpus;
1179 		local_irq_disable();
1180 		error = syscore_suspend();
1181 		if (error)
1182 			goto Enable_irqs;
1183 	} else
1184 #endif
1185 	{
1186 		kexec_in_progress = true;
1187 		kernel_restart_prepare("kexec reboot");
1188 		migrate_to_reboot_cpu();
1189 		syscore_shutdown();
1190 
1191 		/*
1192 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1193 		 * no further code needs to use CPU hotplug (which is true in
1194 		 * the reboot case). However, the kexec path depends on using
1195 		 * CPU hotplug again; so re-enable it here.
1196 		 */
1197 		cpu_hotplug_enable();
1198 		pr_notice("Starting new kernel\n");
1199 		machine_shutdown();
1200 	}
1201 
1202 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1203 	machine_kexec(kexec_image);
1204 
1205 #ifdef CONFIG_KEXEC_JUMP
1206 	if (kexec_image->preserve_context) {
1207 		/*
1208 		 * This flow is analogous to hibernation flows that occur after
1209 		 * creating an image and after the image kernel has got control
1210 		 * back, and in case the devices have been reset or otherwise
1211 		 * manipulated in the meantime, it uses the device callbacks
1212 		 * used by the latter.
1213 		 */
1214 		syscore_resume();
1215  Enable_irqs:
1216 		local_irq_enable();
1217  Enable_cpus:
1218 		suspend_enable_secondary_cpus();
1219 		dpm_resume_start(PMSG_RESTORE);
1220  Resume_devices:
1221 		dpm_resume_end(PMSG_RESTORE);
1222 		console_resume_all();
1223 		thaw_processes();
1224  Restore_console:
1225 		pm_restore_console();
1226 	}
1227 #endif
1228 
1229  Unlock:
1230 	kexec_unlock();
1231 	return error;
1232 }
1233