1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/sha2.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/kernel.h>
26 #include <linux/kernel_read_file.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30
31 #ifdef CONFIG_KEXEC_SIG
32 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
33
set_kexec_sig_enforced(void)34 void set_kexec_sig_enforced(void)
35 {
36 sig_enforce = true;
37 }
38 #endif
39
40 #ifdef CONFIG_IMA_KEXEC
check_ima_segment_index(struct kimage * image,int i)41 static bool check_ima_segment_index(struct kimage *image, int i)
42 {
43 if (image->is_ima_segment_index_set && i == image->ima_segment_index)
44 return true;
45 else
46 return false;
47 }
48 #else
check_ima_segment_index(struct kimage * image,int i)49 static bool check_ima_segment_index(struct kimage *image, int i)
50 {
51 return false;
52 }
53 #endif
54
55 static int kexec_calculate_store_digests(struct kimage *image);
56
57 /* Maximum size in bytes for kernel/initrd files. */
58 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX)
59
60 /*
61 * Currently this is the only default function that is exported as some
62 * architectures need it to do additional handlings.
63 * In the future, other default functions may be exported too if required.
64 */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)65 int kexec_image_probe_default(struct kimage *image, void *buf,
66 unsigned long buf_len)
67 {
68 const struct kexec_file_ops * const *fops;
69 int ret = -ENOEXEC;
70
71 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
72 ret = (*fops)->probe(buf, buf_len);
73 if (!ret) {
74 image->fops = *fops;
75 return ret;
76 }
77 }
78
79 return ret;
80 }
81
kexec_image_load_default(struct kimage * image)82 static void *kexec_image_load_default(struct kimage *image)
83 {
84 if (!image->fops || !image->fops->load)
85 return ERR_PTR(-ENOEXEC);
86
87 return image->fops->load(image, image->kernel_buf,
88 image->kernel_buf_len, image->initrd_buf,
89 image->initrd_buf_len, image->cmdline_buf,
90 image->cmdline_buf_len);
91 }
92
kexec_image_post_load_cleanup_default(struct kimage * image)93 int kexec_image_post_load_cleanup_default(struct kimage *image)
94 {
95 if (!image->fops || !image->fops->cleanup)
96 return 0;
97
98 return image->fops->cleanup(image->image_loader_data);
99 }
100
101 /*
102 * Free up memory used by kernel, initrd, and command line. This is temporary
103 * memory allocation which is not needed any more after these buffers have
104 * been loaded into separate segments and have been copied elsewhere.
105 */
kimage_file_post_load_cleanup(struct kimage * image)106 void kimage_file_post_load_cleanup(struct kimage *image)
107 {
108 struct purgatory_info *pi = &image->purgatory_info;
109
110 vfree(image->kernel_buf);
111 image->kernel_buf = NULL;
112
113 vfree(image->initrd_buf);
114 image->initrd_buf = NULL;
115
116 kfree(image->cmdline_buf);
117 image->cmdline_buf = NULL;
118
119 vfree(pi->purgatory_buf);
120 pi->purgatory_buf = NULL;
121
122 vfree(pi->sechdrs);
123 pi->sechdrs = NULL;
124
125 #ifdef CONFIG_IMA_KEXEC
126 vfree(image->ima_buffer);
127 image->ima_buffer = NULL;
128 #endif /* CONFIG_IMA_KEXEC */
129
130 /* See if architecture has anything to cleanup post load */
131 arch_kimage_file_post_load_cleanup(image);
132
133 /*
134 * Above call should have called into bootloader to free up
135 * any data stored in kimage->image_loader_data. It should
136 * be ok now to free it up.
137 */
138 kfree(image->image_loader_data);
139 image->image_loader_data = NULL;
140
141 kexec_file_dbg_print = false;
142 }
143
144 #ifdef CONFIG_KEXEC_SIG
145 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
kexec_kernel_verify_pe_sig(const char * kernel,unsigned long kernel_len)146 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
147 {
148 int ret;
149
150 ret = verify_pefile_signature(kernel, kernel_len,
151 VERIFY_USE_SECONDARY_KEYRING,
152 VERIFYING_KEXEC_PE_SIGNATURE);
153 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
154 ret = verify_pefile_signature(kernel, kernel_len,
155 VERIFY_USE_PLATFORM_KEYRING,
156 VERIFYING_KEXEC_PE_SIGNATURE);
157 }
158 return ret;
159 }
160 #endif
161
kexec_image_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)162 static int kexec_image_verify_sig(struct kimage *image, void *buf,
163 unsigned long buf_len)
164 {
165 if (!image->fops || !image->fops->verify_sig) {
166 pr_debug("kernel loader does not support signature verification.\n");
167 return -EKEYREJECTED;
168 }
169
170 return image->fops->verify_sig(buf, buf_len);
171 }
172
173 static int
kimage_validate_signature(struct kimage * image)174 kimage_validate_signature(struct kimage *image)
175 {
176 int ret;
177
178 ret = kexec_image_verify_sig(image, image->kernel_buf,
179 image->kernel_buf_len);
180 if (ret) {
181
182 if (sig_enforce) {
183 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
184 return ret;
185 }
186
187 /*
188 * If IMA is guaranteed to appraise a signature on the kexec
189 * image, permit it even if the kernel is otherwise locked
190 * down.
191 */
192 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
193 security_locked_down(LOCKDOWN_KEXEC))
194 return -EPERM;
195
196 pr_debug("kernel signature verification failed (%d).\n", ret);
197 }
198
199 return 0;
200 }
201 #endif
202
kexec_post_load(struct kimage * image,unsigned long flags)203 static int kexec_post_load(struct kimage *image, unsigned long flags)
204 {
205 #ifdef CONFIG_IMA_KEXEC
206 if (!(flags & KEXEC_FILE_ON_CRASH))
207 ima_kexec_post_load(image);
208 #endif
209 return machine_kexec_post_load(image);
210 }
211
212 /*
213 * In file mode list of segments is prepared by kernel. Copy relevant
214 * data from user space, do error checking, prepare segment list
215 */
216 static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)217 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
218 const char __user *cmdline_ptr,
219 unsigned long cmdline_len, unsigned flags)
220 {
221 ssize_t ret;
222 void *ldata;
223
224 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
225 KEXEC_FILE_SIZE_MAX, NULL,
226 READING_KEXEC_IMAGE);
227 if (ret < 0)
228 return ret;
229 image->kernel_buf_len = ret;
230 kexec_dprintk("kernel: %p kernel_size: %#lx\n",
231 image->kernel_buf, image->kernel_buf_len);
232
233 /* Call arch image probe handlers */
234 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
235 image->kernel_buf_len);
236 if (ret)
237 goto out;
238
239 #ifdef CONFIG_KEXEC_SIG
240 ret = kimage_validate_signature(image);
241
242 if (ret)
243 goto out;
244 #endif
245 /* It is possible that there no initramfs is being loaded */
246 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
247 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
248 KEXEC_FILE_SIZE_MAX, NULL,
249 READING_KEXEC_INITRAMFS);
250 if (ret < 0)
251 goto out;
252 image->initrd_buf_len = ret;
253 ret = 0;
254 }
255
256 if (cmdline_len) {
257 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
258 if (IS_ERR(image->cmdline_buf)) {
259 ret = PTR_ERR(image->cmdline_buf);
260 image->cmdline_buf = NULL;
261 goto out;
262 }
263
264 image->cmdline_buf_len = cmdline_len;
265
266 /* command line should be a string with last byte null */
267 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
268 ret = -EINVAL;
269 goto out;
270 }
271
272 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
273 image->cmdline_buf_len - 1);
274 }
275
276 /* IMA needs to pass the measurement list to the next kernel. */
277 ima_add_kexec_buffer(image);
278
279 /* If KHO is active, add its images to the list */
280 ret = kho_fill_kimage(image);
281 if (ret)
282 goto out;
283
284 /* Call image load handler */
285 ldata = kexec_image_load_default(image);
286
287 if (IS_ERR(ldata)) {
288 ret = PTR_ERR(ldata);
289 goto out;
290 }
291
292 image->image_loader_data = ldata;
293 out:
294 /* In case of error, free up all allocated memory in this function */
295 if (ret)
296 kimage_file_post_load_cleanup(image);
297 return ret;
298 }
299
300 static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)301 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
302 int initrd_fd, const char __user *cmdline_ptr,
303 unsigned long cmdline_len, unsigned long flags)
304 {
305 int ret;
306 struct kimage *image;
307 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
308
309 image = do_kimage_alloc_init();
310 if (!image)
311 return -ENOMEM;
312
313 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
314 image->file_mode = 1;
315
316 #ifdef CONFIG_CRASH_DUMP
317 if (kexec_on_panic) {
318 /* Enable special crash kernel control page alloc policy. */
319 image->control_page = crashk_res.start;
320 image->type = KEXEC_TYPE_CRASH;
321 }
322 #endif
323
324 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
325 cmdline_ptr, cmdline_len, flags);
326 if (ret)
327 goto out_free_image;
328
329 ret = sanity_check_segment_list(image);
330 if (ret)
331 goto out_free_post_load_bufs;
332
333 ret = -ENOMEM;
334 image->control_code_page = kimage_alloc_control_pages(image,
335 get_order(KEXEC_CONTROL_PAGE_SIZE));
336 if (!image->control_code_page) {
337 pr_err("Could not allocate control_code_buffer\n");
338 goto out_free_post_load_bufs;
339 }
340
341 if (!kexec_on_panic) {
342 image->swap_page = kimage_alloc_control_pages(image, 0);
343 if (!image->swap_page) {
344 pr_err("Could not allocate swap buffer\n");
345 goto out_free_control_pages;
346 }
347 }
348
349 *rimage = image;
350 return 0;
351 out_free_control_pages:
352 kimage_free_page_list(&image->control_pages);
353 out_free_post_load_bufs:
354 kimage_file_post_load_cleanup(image);
355 out_free_image:
356 kfree(image);
357 return ret;
358 }
359
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)360 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
361 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
362 unsigned long, flags)
363 {
364 int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
365 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
366 struct kimage **dest_image, *image;
367 int ret = 0, i;
368
369 /* We only trust the superuser with rebooting the system. */
370 if (!kexec_load_permitted(image_type))
371 return -EPERM;
372
373 /* Make sure we have a legal set of flags */
374 if (flags != (flags & KEXEC_FILE_FLAGS))
375 return -EINVAL;
376
377 image = NULL;
378
379 if (!kexec_trylock())
380 return -EBUSY;
381
382 #ifdef CONFIG_CRASH_DUMP
383 if (image_type == KEXEC_TYPE_CRASH) {
384 dest_image = &kexec_crash_image;
385 if (kexec_crash_image)
386 arch_kexec_unprotect_crashkres();
387 } else
388 #endif
389 dest_image = &kexec_image;
390
391 if (flags & KEXEC_FILE_UNLOAD)
392 goto exchange;
393
394 /*
395 * In case of crash, new kernel gets loaded in reserved region. It is
396 * same memory where old crash kernel might be loaded. Free any
397 * current crash dump kernel before we corrupt it.
398 */
399 if (flags & KEXEC_FILE_ON_CRASH)
400 kimage_free(xchg(&kexec_crash_image, NULL));
401
402 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
403 cmdline_len, flags);
404 if (ret)
405 goto out;
406
407 #ifdef CONFIG_CRASH_HOTPLUG
408 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags))
409 image->hotplug_support = 1;
410 #endif
411
412 ret = machine_kexec_prepare(image);
413 if (ret)
414 goto out;
415
416 /*
417 * Some architecture(like S390) may touch the crash memory before
418 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
419 */
420 ret = kimage_crash_copy_vmcoreinfo(image);
421 if (ret)
422 goto out;
423
424 ret = kexec_calculate_store_digests(image);
425 if (ret)
426 goto out;
427
428 kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
429 for (i = 0; i < image->nr_segments; i++) {
430 struct kexec_segment *ksegment;
431
432 ksegment = &image->segment[i];
433 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
435 ksegment->memsz);
436
437 ret = kimage_load_segment(image, &image->segment[i]);
438 if (ret)
439 goto out;
440 }
441
442 kimage_terminate(image);
443
444 ret = kexec_post_load(image, flags);
445 if (ret)
446 goto out;
447
448 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
449 image->type, image->start, image->head, flags);
450 /*
451 * Free up any temporary buffers allocated which are not needed
452 * after image has been loaded
453 */
454 kimage_file_post_load_cleanup(image);
455 exchange:
456 image = xchg(dest_image, image);
457 out:
458 #ifdef CONFIG_CRASH_DUMP
459 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
460 arch_kexec_protect_crashkres();
461 #endif
462
463 kexec_unlock();
464 kimage_free(image);
465 return ret;
466 }
467
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)468 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
469 struct kexec_buf *kbuf)
470 {
471 struct kimage *image = kbuf->image;
472 unsigned long temp_start, temp_end;
473
474 temp_end = min(end, kbuf->buf_max);
475 temp_start = temp_end - kbuf->memsz + 1;
476 kexec_random_range_start(temp_start, temp_end, kbuf, &temp_start);
477
478 do {
479 /* align down start */
480 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
481
482 if (temp_start < start || temp_start < kbuf->buf_min)
483 return 0;
484
485 temp_end = temp_start + kbuf->memsz - 1;
486
487 /*
488 * Make sure this does not conflict with any of existing
489 * segments
490 */
491 if (kimage_is_destination_range(image, temp_start, temp_end)) {
492 temp_start = temp_start - PAGE_SIZE;
493 continue;
494 }
495
496 /* Make sure this does not conflict with exclude range */
497 if (arch_check_excluded_range(image, temp_start, temp_end)) {
498 temp_start = temp_start - PAGE_SIZE;
499 continue;
500 }
501
502 /* We found a suitable memory range */
503 break;
504 } while (1);
505
506 /* If we are here, we found a suitable memory range */
507 kbuf->mem = temp_start;
508
509 /* Success, stop navigating through remaining System RAM ranges */
510 return 1;
511 }
512
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)513 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
514 struct kexec_buf *kbuf)
515 {
516 struct kimage *image = kbuf->image;
517 unsigned long temp_start, temp_end;
518
519 temp_start = max(start, kbuf->buf_min);
520
521 kexec_random_range_start(temp_start, end, kbuf, &temp_start);
522
523 do {
524 temp_start = ALIGN(temp_start, kbuf->buf_align);
525 temp_end = temp_start + kbuf->memsz - 1;
526
527 if (temp_end > end || temp_end > kbuf->buf_max)
528 return 0;
529 /*
530 * Make sure this does not conflict with any of existing
531 * segments
532 */
533 if (kimage_is_destination_range(image, temp_start, temp_end)) {
534 temp_start = temp_start + PAGE_SIZE;
535 continue;
536 }
537
538 /* Make sure this does not conflict with exclude range */
539 if (arch_check_excluded_range(image, temp_start, temp_end)) {
540 temp_start = temp_start + PAGE_SIZE;
541 continue;
542 }
543
544 /* We found a suitable memory range */
545 break;
546 } while (1);
547
548 /* If we are here, we found a suitable memory range */
549 kbuf->mem = temp_start;
550
551 /* Success, stop navigating through remaining System RAM ranges */
552 return 1;
553 }
554
locate_mem_hole_callback(struct resource * res,void * arg)555 static int locate_mem_hole_callback(struct resource *res, void *arg)
556 {
557 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
558 u64 start = res->start, end = res->end;
559 unsigned long sz = end - start + 1;
560
561 /* Returning 0 will take to next memory range */
562
563 /* Don't use memory that will be detected and handled by a driver. */
564 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
565 return 0;
566
567 if (sz < kbuf->memsz)
568 return 0;
569
570 if (end < kbuf->buf_min || start > kbuf->buf_max)
571 return 0;
572
573 /*
574 * Allocate memory top down with-in ram range. Otherwise bottom up
575 * allocation.
576 */
577 if (kbuf->top_down)
578 return locate_mem_hole_top_down(start, end, kbuf);
579 return locate_mem_hole_bottom_up(start, end, kbuf);
580 }
581
582 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))583 static int kexec_walk_memblock(struct kexec_buf *kbuf,
584 int (*func)(struct resource *, void *))
585 {
586 int ret = 0;
587 u64 i;
588 phys_addr_t mstart, mend;
589 struct resource res = { };
590
591 #ifdef CONFIG_CRASH_DUMP
592 if (kbuf->image->type == KEXEC_TYPE_CRASH)
593 return func(&crashk_res, kbuf);
594 #endif
595
596 /*
597 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
598 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
599 * locate_mem_hole_callback().
600 */
601 if (kbuf->top_down) {
602 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
603 &mstart, &mend, NULL) {
604 /*
605 * In memblock, end points to the first byte after the
606 * range while in kexec, end points to the last byte
607 * in the range.
608 */
609 res.start = mstart;
610 res.end = mend - 1;
611 ret = func(&res, kbuf);
612 if (ret)
613 break;
614 }
615 } else {
616 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
617 &mstart, &mend, NULL) {
618 /*
619 * In memblock, end points to the first byte after the
620 * range while in kexec, end points to the last byte
621 * in the range.
622 */
623 res.start = mstart;
624 res.end = mend - 1;
625 ret = func(&res, kbuf);
626 if (ret)
627 break;
628 }
629 }
630
631 return ret;
632 }
633 #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))634 static int kexec_walk_memblock(struct kexec_buf *kbuf,
635 int (*func)(struct resource *, void *))
636 {
637 return 0;
638 }
639 #endif
640
641 /**
642 * kexec_walk_resources - call func(data) on free memory regions
643 * @kbuf: Context info for the search. Also passed to @func.
644 * @func: Function to call for each memory region.
645 *
646 * Return: The memory walk will stop when func returns a non-zero value
647 * and that value will be returned. If all free regions are visited without
648 * func returning non-zero, then zero will be returned.
649 */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))650 static int kexec_walk_resources(struct kexec_buf *kbuf,
651 int (*func)(struct resource *, void *))
652 {
653 #ifdef CONFIG_CRASH_DUMP
654 if (kbuf->image->type == KEXEC_TYPE_CRASH)
655 return walk_iomem_res_desc(crashk_res.desc,
656 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
657 crashk_res.start, crashk_res.end,
658 kbuf, func);
659 #endif
660 if (kbuf->top_down)
661 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
662 else
663 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
664 }
665
666 /**
667 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
668 * @kbuf: Parameters for the memory search.
669 *
670 * On success, kbuf->mem will have the start address of the memory region found.
671 *
672 * Return: 0 on success, negative errno on error.
673 */
kexec_locate_mem_hole(struct kexec_buf * kbuf)674 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
675 {
676 int ret;
677
678 /* Arch knows where to place */
679 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
680 return 0;
681
682 /*
683 * If KHO is active, only use KHO scratch memory. All other memory
684 * could potentially be handed over.
685 */
686 ret = kho_locate_mem_hole(kbuf, locate_mem_hole_callback);
687 if (ret <= 0)
688 return ret;
689
690 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
691 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
692 else
693 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
694
695 return ret == 1 ? 0 : -EADDRNOTAVAIL;
696 }
697
698 /**
699 * kexec_add_buffer - place a buffer in a kexec segment
700 * @kbuf: Buffer contents and memory parameters.
701 *
702 * This function assumes that kexec_lock is held.
703 * On successful return, @kbuf->mem will have the physical address of
704 * the buffer in memory.
705 *
706 * Return: 0 on success, negative errno on error.
707 */
kexec_add_buffer(struct kexec_buf * kbuf)708 int kexec_add_buffer(struct kexec_buf *kbuf)
709 {
710 struct kexec_segment *ksegment;
711 int ret;
712
713 /* Currently adding segment this way is allowed only in file mode */
714 if (!kbuf->image->file_mode)
715 return -EINVAL;
716
717 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
718 return -EINVAL;
719
720 /*
721 * Make sure we are not trying to add buffer after allocating
722 * control pages. All segments need to be placed first before
723 * any control pages are allocated. As control page allocation
724 * logic goes through list of segments to make sure there are
725 * no destination overlaps.
726 */
727 if (!list_empty(&kbuf->image->control_pages)) {
728 WARN_ON(1);
729 return -EINVAL;
730 }
731
732 /* Ensure minimum alignment needed for segments. */
733 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
734 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
735
736 /* Walk the RAM ranges and allocate a suitable range for the buffer */
737 ret = arch_kexec_locate_mem_hole(kbuf);
738 if (ret)
739 return ret;
740
741 /* Found a suitable memory range */
742 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
743 ksegment->kbuf = kbuf->buffer;
744 ksegment->bufsz = kbuf->bufsz;
745 ksegment->mem = kbuf->mem;
746 ksegment->memsz = kbuf->memsz;
747 kbuf->image->nr_segments++;
748 return 0;
749 }
750
751 /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)752 static int kexec_calculate_store_digests(struct kimage *image)
753 {
754 struct sha256_state state;
755 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
756 size_t nullsz;
757 u8 digest[SHA256_DIGEST_SIZE];
758 void *zero_buf;
759 struct kexec_sha_region *sha_regions;
760 struct purgatory_info *pi = &image->purgatory_info;
761
762 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
763 return 0;
764
765 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
766 zero_buf_sz = PAGE_SIZE;
767
768 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
769 sha_regions = vzalloc(sha_region_sz);
770 if (!sha_regions)
771 return -ENOMEM;
772
773 sha256_init(&state);
774
775 for (j = i = 0; i < image->nr_segments; i++) {
776 struct kexec_segment *ksegment;
777
778 #ifdef CONFIG_CRASH_HOTPLUG
779 /* Exclude elfcorehdr segment to allow future changes via hotplug */
780 if (i == image->elfcorehdr_index)
781 continue;
782 #endif
783
784 ksegment = &image->segment[i];
785 /*
786 * Skip purgatory as it will be modified once we put digest
787 * info in purgatory.
788 */
789 if (ksegment->kbuf == pi->purgatory_buf)
790 continue;
791
792 /*
793 * Skip the segment if ima_segment_index is set and matches
794 * the current index
795 */
796 if (check_ima_segment_index(image, i))
797 continue;
798
799 sha256_update(&state, ksegment->kbuf, ksegment->bufsz);
800
801 /*
802 * Assume rest of the buffer is filled with zero and
803 * update digest accordingly.
804 */
805 nullsz = ksegment->memsz - ksegment->bufsz;
806 while (nullsz) {
807 unsigned long bytes = nullsz;
808
809 if (bytes > zero_buf_sz)
810 bytes = zero_buf_sz;
811 sha256_update(&state, zero_buf, bytes);
812 nullsz -= bytes;
813 }
814
815 sha_regions[j].start = ksegment->mem;
816 sha_regions[j].len = ksegment->memsz;
817 j++;
818 }
819
820 sha256_final(&state, digest);
821
822 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
823 sha_regions, sha_region_sz, 0);
824 if (ret)
825 goto out_free_sha_regions;
826
827 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
828 digest, SHA256_DIGEST_SIZE, 0);
829 out_free_sha_regions:
830 vfree(sha_regions);
831 return ret;
832 }
833
834 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
835 /*
836 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
837 * @pi: Purgatory to be loaded.
838 * @kbuf: Buffer to setup.
839 *
840 * Allocates the memory needed for the buffer. Caller is responsible to free
841 * the memory after use.
842 *
843 * Return: 0 on success, negative errno on error.
844 */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)845 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
846 struct kexec_buf *kbuf)
847 {
848 const Elf_Shdr *sechdrs;
849 unsigned long bss_align;
850 unsigned long bss_sz;
851 unsigned long align;
852 int i, ret;
853
854 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
855 kbuf->buf_align = bss_align = 1;
856 kbuf->bufsz = bss_sz = 0;
857
858 for (i = 0; i < pi->ehdr->e_shnum; i++) {
859 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
860 continue;
861
862 align = sechdrs[i].sh_addralign;
863 if (sechdrs[i].sh_type != SHT_NOBITS) {
864 if (kbuf->buf_align < align)
865 kbuf->buf_align = align;
866 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
867 kbuf->bufsz += sechdrs[i].sh_size;
868 } else {
869 if (bss_align < align)
870 bss_align = align;
871 bss_sz = ALIGN(bss_sz, align);
872 bss_sz += sechdrs[i].sh_size;
873 }
874 }
875 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
876 kbuf->memsz = kbuf->bufsz + bss_sz;
877 if (kbuf->buf_align < bss_align)
878 kbuf->buf_align = bss_align;
879
880 kbuf->buffer = vzalloc(kbuf->bufsz);
881 if (!kbuf->buffer)
882 return -ENOMEM;
883 pi->purgatory_buf = kbuf->buffer;
884
885 ret = kexec_add_buffer(kbuf);
886 if (ret)
887 goto out;
888
889 return 0;
890 out:
891 vfree(pi->purgatory_buf);
892 pi->purgatory_buf = NULL;
893 return ret;
894 }
895
896 /*
897 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
898 * @pi: Purgatory to be loaded.
899 * @kbuf: Buffer prepared to store purgatory.
900 *
901 * Allocates the memory needed for the buffer. Caller is responsible to free
902 * the memory after use.
903 *
904 * Return: 0 on success, negative errno on error.
905 */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)906 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
907 struct kexec_buf *kbuf)
908 {
909 unsigned long bss_addr;
910 unsigned long offset;
911 size_t sechdrs_size;
912 Elf_Shdr *sechdrs;
913 int i;
914
915 /*
916 * The section headers in kexec_purgatory are read-only. In order to
917 * have them modifiable make a temporary copy.
918 */
919 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
920 sechdrs = vzalloc(sechdrs_size);
921 if (!sechdrs)
922 return -ENOMEM;
923 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
924 pi->sechdrs = sechdrs;
925
926 offset = 0;
927 bss_addr = kbuf->mem + kbuf->bufsz;
928 kbuf->image->start = pi->ehdr->e_entry;
929
930 for (i = 0; i < pi->ehdr->e_shnum; i++) {
931 unsigned long align;
932 void *src, *dst;
933
934 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
935 continue;
936
937 align = sechdrs[i].sh_addralign;
938 if (sechdrs[i].sh_type == SHT_NOBITS) {
939 bss_addr = ALIGN(bss_addr, align);
940 sechdrs[i].sh_addr = bss_addr;
941 bss_addr += sechdrs[i].sh_size;
942 continue;
943 }
944
945 offset = ALIGN(offset, align);
946
947 /*
948 * Check if the segment contains the entry point, if so,
949 * calculate the value of image->start based on it.
950 * If the compiler has produced more than one .text section
951 * (Eg: .text.hot), they are generally after the main .text
952 * section, and they shall not be used to calculate
953 * image->start. So do not re-calculate image->start if it
954 * is not set to the initial value, and warn the user so they
955 * have a chance to fix their purgatory's linker script.
956 */
957 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
958 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
959 pi->ehdr->e_entry < (sechdrs[i].sh_addr
960 + sechdrs[i].sh_size) &&
961 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
962 kbuf->image->start -= sechdrs[i].sh_addr;
963 kbuf->image->start += kbuf->mem + offset;
964 }
965
966 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
967 dst = pi->purgatory_buf + offset;
968 memcpy(dst, src, sechdrs[i].sh_size);
969
970 sechdrs[i].sh_addr = kbuf->mem + offset;
971 sechdrs[i].sh_offset = offset;
972 offset += sechdrs[i].sh_size;
973 }
974
975 return 0;
976 }
977
kexec_apply_relocations(struct kimage * image)978 static int kexec_apply_relocations(struct kimage *image)
979 {
980 int i, ret;
981 struct purgatory_info *pi = &image->purgatory_info;
982 const Elf_Shdr *sechdrs;
983
984 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
985
986 for (i = 0; i < pi->ehdr->e_shnum; i++) {
987 const Elf_Shdr *relsec;
988 const Elf_Shdr *symtab;
989 Elf_Shdr *section;
990
991 relsec = sechdrs + i;
992
993 if (relsec->sh_type != SHT_RELA &&
994 relsec->sh_type != SHT_REL)
995 continue;
996
997 /*
998 * For section of type SHT_RELA/SHT_REL,
999 * ->sh_link contains section header index of associated
1000 * symbol table. And ->sh_info contains section header
1001 * index of section to which relocations apply.
1002 */
1003 if (relsec->sh_info >= pi->ehdr->e_shnum ||
1004 relsec->sh_link >= pi->ehdr->e_shnum)
1005 return -ENOEXEC;
1006
1007 section = pi->sechdrs + relsec->sh_info;
1008 symtab = sechdrs + relsec->sh_link;
1009
1010 if (!(section->sh_flags & SHF_ALLOC))
1011 continue;
1012
1013 /*
1014 * symtab->sh_link contain section header index of associated
1015 * string table.
1016 */
1017 if (symtab->sh_link >= pi->ehdr->e_shnum)
1018 /* Invalid section number? */
1019 continue;
1020
1021 /*
1022 * Respective architecture needs to provide support for applying
1023 * relocations of type SHT_RELA/SHT_REL.
1024 */
1025 if (relsec->sh_type == SHT_RELA)
1026 ret = arch_kexec_apply_relocations_add(pi, section,
1027 relsec, symtab);
1028 else if (relsec->sh_type == SHT_REL)
1029 ret = arch_kexec_apply_relocations(pi, section,
1030 relsec, symtab);
1031 if (ret)
1032 return ret;
1033 }
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * kexec_load_purgatory - Load and relocate the purgatory object.
1040 * @image: Image to add the purgatory to.
1041 * @kbuf: Memory parameters to use.
1042 *
1043 * Allocates the memory needed for image->purgatory_info.sechdrs and
1044 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1045 * to free the memory after use.
1046 *
1047 * Return: 0 on success, negative errno on error.
1048 */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)1049 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1050 {
1051 struct purgatory_info *pi = &image->purgatory_info;
1052 int ret;
1053
1054 if (kexec_purgatory_size <= 0)
1055 return -EINVAL;
1056
1057 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1058
1059 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1060 if (ret)
1061 return ret;
1062
1063 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1064 if (ret)
1065 goto out_free_kbuf;
1066
1067 ret = kexec_apply_relocations(image);
1068 if (ret)
1069 goto out;
1070
1071 return 0;
1072 out:
1073 vfree(pi->sechdrs);
1074 pi->sechdrs = NULL;
1075 out_free_kbuf:
1076 vfree(pi->purgatory_buf);
1077 pi->purgatory_buf = NULL;
1078 return ret;
1079 }
1080
1081 /*
1082 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1083 * @pi: Purgatory to search in.
1084 * @name: Name of the symbol.
1085 *
1086 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1087 */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1088 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1089 const char *name)
1090 {
1091 const Elf_Shdr *sechdrs;
1092 const Elf_Ehdr *ehdr;
1093 const Elf_Sym *syms;
1094 const char *strtab;
1095 int i, k;
1096
1097 if (!pi->ehdr)
1098 return NULL;
1099
1100 ehdr = pi->ehdr;
1101 sechdrs = (void *)ehdr + ehdr->e_shoff;
1102
1103 for (i = 0; i < ehdr->e_shnum; i++) {
1104 if (sechdrs[i].sh_type != SHT_SYMTAB)
1105 continue;
1106
1107 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1108 /* Invalid strtab section number */
1109 continue;
1110 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1111 syms = (void *)ehdr + sechdrs[i].sh_offset;
1112
1113 /* Go through symbols for a match */
1114 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1115 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1116 continue;
1117
1118 if (strcmp(strtab + syms[k].st_name, name) != 0)
1119 continue;
1120
1121 if (syms[k].st_shndx == SHN_UNDEF ||
1122 syms[k].st_shndx >= ehdr->e_shnum) {
1123 pr_debug("Symbol: %s has bad section index %d.\n",
1124 name, syms[k].st_shndx);
1125 return NULL;
1126 }
1127
1128 /* Found the symbol we are looking for */
1129 return &syms[k];
1130 }
1131 }
1132
1133 return NULL;
1134 }
1135
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1136 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1137 {
1138 struct purgatory_info *pi = &image->purgatory_info;
1139 const Elf_Sym *sym;
1140 Elf_Shdr *sechdr;
1141
1142 sym = kexec_purgatory_find_symbol(pi, name);
1143 if (!sym)
1144 return ERR_PTR(-EINVAL);
1145
1146 sechdr = &pi->sechdrs[sym->st_shndx];
1147
1148 /*
1149 * Returns the address where symbol will finally be loaded after
1150 * kexec_load_segment()
1151 */
1152 return (void *)(sechdr->sh_addr + sym->st_value);
1153 }
1154
1155 /*
1156 * Get or set value of a symbol. If "get_value" is true, symbol value is
1157 * returned in buf otherwise symbol value is set based on value in buf.
1158 */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1159 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1160 void *buf, unsigned int size, bool get_value)
1161 {
1162 struct purgatory_info *pi = &image->purgatory_info;
1163 const Elf_Sym *sym;
1164 Elf_Shdr *sec;
1165 char *sym_buf;
1166
1167 sym = kexec_purgatory_find_symbol(pi, name);
1168 if (!sym)
1169 return -EINVAL;
1170
1171 if (sym->st_size != size) {
1172 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1173 name, (unsigned long)sym->st_size, size);
1174 return -EINVAL;
1175 }
1176
1177 sec = pi->sechdrs + sym->st_shndx;
1178
1179 if (sec->sh_type == SHT_NOBITS) {
1180 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1181 get_value ? "get" : "set");
1182 return -EINVAL;
1183 }
1184
1185 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1186
1187 if (get_value)
1188 memcpy((void *)buf, sym_buf, size);
1189 else
1190 memcpy((void *)sym_buf, buf, size);
1191
1192 return 0;
1193 }
1194 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1195