1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/mount.c - kernfs mount implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21
22 #include "kernfs-internal.h"
23
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31 struct kernfs_syscall_ops *scops = root->syscall_ops;
32
33 if (scops && scops->show_options)
34 return scops->show_options(sf, root);
35 return 0;
36 }
37
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40 struct kernfs_node *node = kernfs_dentry_node(dentry);
41 struct kernfs_root *root = kernfs_root(node);
42 struct kernfs_syscall_ops *scops = root->syscall_ops;
43
44 if (scops && scops->show_path)
45 return scops->show_path(sf, node, root);
46
47 seq_dentry(sf, dentry, " \t\n\\");
48 return 0;
49 }
50
kernfs_statfs(struct dentry * dentry,struct kstatfs * buf)51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53 simple_statfs(dentry, buf);
54 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55 return 0;
56 }
57
58 const struct super_operations kernfs_sops = {
59 .statfs = kernfs_statfs,
60 .drop_inode = inode_just_drop,
61 .evict_inode = kernfs_evict_inode,
62
63 .show_options = kernfs_sop_show_options,
64 .show_path = kernfs_sop_show_path,
65
66 /*
67 * sysfs is built on top of kernfs and sysfs provides the power
68 * management infrastructure to support suspend/hibernate by
69 * writing to various files in /sys/power/. As filesystems may
70 * be automatically frozen during suspend/hibernate implementing
71 * freeze/thaw support for kernfs generically will cause
72 * deadlocks as the suspending/hibernation initiating task will
73 * hold a VFS lock that it will then wait upon to be released.
74 * If freeze/thaw for kernfs is needed talk to the VFS.
75 */
76 .freeze_fs = NULL,
77 .unfreeze_fs = NULL,
78 .freeze_super = NULL,
79 .thaw_super = NULL,
80 };
81
kernfs_encode_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)82 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
83 struct inode *parent)
84 {
85 struct kernfs_node *kn = inode->i_private;
86
87 if (*max_len < 2) {
88 *max_len = 2;
89 return FILEID_INVALID;
90 }
91
92 *max_len = 2;
93 *(u64 *)fh = kn->id;
94 return FILEID_KERNFS;
95 }
96
__kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,bool get_parent)97 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
98 struct fid *fid, int fh_len,
99 int fh_type, bool get_parent)
100 {
101 struct kernfs_super_info *info = kernfs_info(sb);
102 struct kernfs_node *kn;
103 struct inode *inode;
104 u64 id;
105
106 if (fh_len < 2)
107 return NULL;
108
109 switch (fh_type) {
110 case FILEID_KERNFS:
111 id = *(u64 *)fid;
112 break;
113 case FILEID_INO32_GEN:
114 case FILEID_INO32_GEN_PARENT:
115 /*
116 * blk_log_action() exposes "LOW32,HIGH32" pair without
117 * type and userland can call us with generic fid
118 * constructed from them. Combine it back to ID. See
119 * blk_log_action().
120 */
121 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
122 break;
123 default:
124 return NULL;
125 }
126
127 kn = kernfs_find_and_get_node_by_id(info->root, id);
128 if (!kn)
129 return ERR_PTR(-ESTALE);
130
131 if (get_parent) {
132 struct kernfs_node *parent;
133
134 parent = kernfs_get_parent(kn);
135 kernfs_put(kn);
136 kn = parent;
137 if (!kn)
138 return ERR_PTR(-ESTALE);
139 }
140
141 inode = kernfs_get_inode(sb, kn);
142 kernfs_put(kn);
143 return d_obtain_alias(inode);
144 }
145
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)146 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
147 struct fid *fid, int fh_len,
148 int fh_type)
149 {
150 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
151 }
152
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)153 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
154 struct fid *fid, int fh_len,
155 int fh_type)
156 {
157 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
158 }
159
kernfs_get_parent_dentry(struct dentry * child)160 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
161 {
162 struct kernfs_node *kn = kernfs_dentry_node(child);
163 struct kernfs_root *root = kernfs_root(kn);
164
165 guard(rwsem_read)(&root->kernfs_rwsem);
166 return d_obtain_alias(kernfs_get_inode(child->d_sb, kernfs_parent(kn)));
167 }
168
169 static const struct export_operations kernfs_export_ops = {
170 .encode_fh = kernfs_encode_fh,
171 .fh_to_dentry = kernfs_fh_to_dentry,
172 .fh_to_parent = kernfs_fh_to_parent,
173 .get_parent = kernfs_get_parent_dentry,
174 };
175
176 /**
177 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
178 * @sb: the super_block in question
179 *
180 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one,
181 * %NULL is returned.
182 */
kernfs_root_from_sb(struct super_block * sb)183 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
184 {
185 if (sb->s_op == &kernfs_sops)
186 return kernfs_info(sb)->root;
187 return NULL;
188 }
189
190 /*
191 * find the next ancestor in the path down to @child, where @parent was the
192 * ancestor whose descendant we want to find.
193 *
194 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root
195 * node. If @parent is b, then we return the node for c.
196 * Passing in d as @parent is not ok.
197 */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)198 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
199 struct kernfs_node *parent)
200 {
201 if (child == parent) {
202 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
203 return NULL;
204 }
205
206 while (kernfs_parent(child) != parent) {
207 child = kernfs_parent(child);
208 if (!child)
209 return NULL;
210 }
211
212 return child;
213 }
214
215 /**
216 * kernfs_node_dentry - get a dentry for the given kernfs_node
217 * @kn: kernfs_node for which a dentry is needed
218 * @sb: the kernfs super_block
219 *
220 * Return: the dentry pointer
221 */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)222 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
223 struct super_block *sb)
224 {
225 struct dentry *dentry;
226 struct kernfs_node *knparent;
227 struct kernfs_root *root;
228
229 BUG_ON(sb->s_op != &kernfs_sops);
230
231 dentry = dget(sb->s_root);
232
233 /* Check if this is the root kernfs_node */
234 if (!rcu_access_pointer(kn->__parent))
235 return dentry;
236
237 root = kernfs_root(kn);
238 /*
239 * As long as kn is valid, its parent can not vanish. This is cgroup's
240 * kn so it can't have its parent replaced. Therefore it is safe to use
241 * the ancestor node outside of the RCU or locked section.
242 */
243 if (WARN_ON_ONCE(!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)))
244 return ERR_PTR(-EINVAL);
245 scoped_guard(rcu) {
246 knparent = find_next_ancestor(kn, NULL);
247 }
248 if (WARN_ON(!knparent)) {
249 dput(dentry);
250 return ERR_PTR(-EINVAL);
251 }
252
253 do {
254 struct dentry *dtmp;
255 struct kernfs_node *kntmp;
256 const char *name;
257
258 if (kn == knparent)
259 return dentry;
260
261 scoped_guard(rwsem_read, &root->kernfs_rwsem) {
262 kntmp = find_next_ancestor(kn, knparent);
263 if (WARN_ON(!kntmp)) {
264 dput(dentry);
265 return ERR_PTR(-EINVAL);
266 }
267 name = kstrdup(kernfs_rcu_name(kntmp), GFP_KERNEL);
268 }
269 if (!name) {
270 dput(dentry);
271 return ERR_PTR(-ENOMEM);
272 }
273 dtmp = lookup_noperm_positive_unlocked(&QSTR(name), dentry);
274 dput(dentry);
275 kfree(name);
276 if (IS_ERR(dtmp))
277 return dtmp;
278 knparent = kntmp;
279 dentry = dtmp;
280 } while (true);
281 }
282
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)283 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
284 {
285 struct kernfs_super_info *info = kernfs_info(sb);
286 struct kernfs_root *kf_root = kfc->root;
287 struct inode *inode;
288 struct dentry *root;
289
290 info->sb = sb;
291 /* Userspace would break if executables or devices appear on sysfs */
292 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
293 sb->s_blocksize = PAGE_SIZE;
294 sb->s_blocksize_bits = PAGE_SHIFT;
295 sb->s_magic = kfc->magic;
296 sb->s_op = &kernfs_sops;
297 sb->s_xattr = kernfs_xattr_handlers;
298 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
299 sb->s_export_op = &kernfs_export_ops;
300 sb->s_time_gran = 1;
301 sb->s_maxbytes = MAX_LFS_FILESIZE;
302
303 /* sysfs dentries and inodes don't require IO to create */
304 sb->s_shrink->seeks = 0;
305
306 /* get root inode, initialize and unlock it */
307 down_read(&kf_root->kernfs_rwsem);
308 inode = kernfs_get_inode(sb, info->root->kn);
309 up_read(&kf_root->kernfs_rwsem);
310 if (!inode) {
311 pr_debug("kernfs: could not get root inode\n");
312 return -ENOMEM;
313 }
314
315 /* instantiate and link root dentry */
316 root = d_make_root(inode);
317 if (!root) {
318 pr_debug("%s: could not get root dentry!\n", __func__);
319 return -ENOMEM;
320 }
321 sb->s_root = root;
322 set_default_d_op(sb, &kernfs_dops);
323 return 0;
324 }
325
kernfs_test_super(struct super_block * sb,struct fs_context * fc)326 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
327 {
328 struct kernfs_super_info *sb_info = kernfs_info(sb);
329 struct kernfs_super_info *info = fc->s_fs_info;
330
331 return sb_info->root == info->root && sb_info->ns == info->ns;
332 }
333
kernfs_set_super(struct super_block * sb,struct fs_context * fc)334 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
335 {
336 struct kernfs_fs_context *kfc = fc->fs_private;
337
338 kfc->ns_tag = NULL;
339 return set_anon_super_fc(sb, fc);
340 }
341
342 /**
343 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
344 * @sb: super_block of interest
345 *
346 * Return: the namespace tag associated with kernfs super_block @sb.
347 */
kernfs_super_ns(struct super_block * sb)348 const void *kernfs_super_ns(struct super_block *sb)
349 {
350 struct kernfs_super_info *info = kernfs_info(sb);
351
352 return info->ns;
353 }
354
355 /**
356 * kernfs_get_tree - kernfs filesystem access/retrieval helper
357 * @fc: The filesystem context.
358 *
359 * This is to be called from each kernfs user's fs_context->ops->get_tree()
360 * implementation, which should set the specified ->@fs_type and ->@flags, and
361 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
362 * respectively.
363 *
364 * Return: %0 on success, -errno on failure.
365 */
kernfs_get_tree(struct fs_context * fc)366 int kernfs_get_tree(struct fs_context *fc)
367 {
368 struct kernfs_fs_context *kfc = fc->fs_private;
369 struct super_block *sb;
370 struct kernfs_super_info *info;
371 int error;
372
373 info = kzalloc(sizeof(*info), GFP_KERNEL);
374 if (!info)
375 return -ENOMEM;
376
377 info->root = kfc->root;
378 info->ns = kfc->ns_tag;
379 INIT_LIST_HEAD(&info->node);
380
381 fc->s_fs_info = info;
382 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
383 if (IS_ERR(sb))
384 return PTR_ERR(sb);
385
386 if (!sb->s_root) {
387 struct kernfs_super_info *info = kernfs_info(sb);
388 struct kernfs_root *root = kfc->root;
389
390 kfc->new_sb_created = true;
391
392 error = kernfs_fill_super(sb, kfc);
393 if (error) {
394 deactivate_locked_super(sb);
395 return error;
396 }
397 sb->s_flags |= SB_ACTIVE;
398
399 uuid_t uuid;
400 uuid_gen(&uuid);
401 super_set_uuid(sb, uuid.b, sizeof(uuid));
402
403 down_write(&root->kernfs_supers_rwsem);
404 list_add(&info->node, &info->root->supers);
405 up_write(&root->kernfs_supers_rwsem);
406 }
407
408 fc->root = dget(sb->s_root);
409 return 0;
410 }
411
kernfs_free_fs_context(struct fs_context * fc)412 void kernfs_free_fs_context(struct fs_context *fc)
413 {
414 /* Note that we don't deal with kfc->ns_tag here. */
415 kfree(fc->s_fs_info);
416 fc->s_fs_info = NULL;
417 }
418
419 /**
420 * kernfs_kill_sb - kill_sb for kernfs
421 * @sb: super_block being killed
422 *
423 * This can be used directly for file_system_type->kill_sb(). If a kernfs
424 * user needs extra cleanup, it can implement its own kill_sb() and call
425 * this function at the end.
426 */
kernfs_kill_sb(struct super_block * sb)427 void kernfs_kill_sb(struct super_block *sb)
428 {
429 struct kernfs_super_info *info = kernfs_info(sb);
430 struct kernfs_root *root = info->root;
431
432 down_write(&root->kernfs_supers_rwsem);
433 list_del(&info->node);
434 up_write(&root->kernfs_supers_rwsem);
435
436 /*
437 * Remove the superblock from fs_supers/s_instances
438 * so we can't find it, before freeing kernfs_super_info.
439 */
440 kill_anon_super(sb);
441 kfree(info);
442 }
443
kernfs_mutex_init(void)444 static void __init kernfs_mutex_init(void)
445 {
446 int count;
447
448 for (count = 0; count < NR_KERNFS_LOCKS; count++)
449 mutex_init(&kernfs_locks->open_file_mutex[count]);
450 }
451
kernfs_lock_init(void)452 static void __init kernfs_lock_init(void)
453 {
454 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
455 WARN_ON(!kernfs_locks);
456
457 kernfs_mutex_init();
458 }
459
kernfs_init(void)460 void __init kernfs_init(void)
461 {
462 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
463 sizeof(struct kernfs_node),
464 0, SLAB_PANIC, NULL);
465
466 /* Creates slab cache for kernfs inode attributes */
467 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache",
468 sizeof(struct kernfs_iattrs),
469 0, SLAB_PANIC, NULL);
470
471 kernfs_lock_init();
472 }
473