xref: /linux/mm/mempolicy.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * weighted interleave
23  *                Allocate memory interleaved over a set of nodes based on
24  *                a set of weights (per-node), with normal fallback if it
25  *                fails.  Otherwise operates the same as interleave.
26  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27  *                on node 0 for every 1 page allocated on node 1.
28  *
29  * bind           Only allocate memory on a specific set of nodes,
30  *                no fallback.
31  *                FIXME: memory is allocated starting with the first node
32  *                to the last. It would be better if bind would truly restrict
33  *                the allocation to memory nodes instead
34  *
35  * preferred      Try a specific node first before normal fallback.
36  *                As a special case NUMA_NO_NODE here means do the allocation
37  *                on the local CPU. This is normally identical to default,
38  *                but useful to set in a VMA when you have a non default
39  *                process policy.
40  *
41  * preferred many Try a set of nodes first before normal fallback. This is
42  *                similar to preferred without the special case.
43  *
44  * default        Allocate on the local node first, or when on a VMA
45  *                use the process policy. This is what Linux always did
46  *		  in a NUMA aware kernel and still does by, ahem, default.
47  *
48  * The process policy is applied for most non interrupt memory allocations
49  * in that process' context. Interrupts ignore the policies and always
50  * try to allocate on the local CPU. The VMA policy is only applied for memory
51  * allocations for a VMA in the VM.
52  *
53  * Currently there are a few corner cases in swapping where the policy
54  * is not applied, but the majority should be handled. When process policy
55  * is used it is not remembered over swap outs/swap ins.
56  *
57  * Only the highest zone in the zone hierarchy gets policied. Allocations
58  * requesting a lower zone just use default policy. This implies that
59  * on systems with highmem kernel lowmem allocation don't get policied.
60  * Same with GFP_DMA allocations.
61  *
62  * For shmem/tmpfs shared memory the policy is shared between
63  * all users and remembered even when nobody has memory mapped.
64  */
65 
66 /* Notebook:
67    fix mmap readahead to honour policy and enable policy for any page cache
68    object
69    statistics for bigpages
70    global policy for page cache? currently it uses process policy. Requires
71    first item above.
72    handle mremap for shared memory (currently ignored for the policy)
73    grows down?
74    make bind policy root only? It can trigger oom much faster and the
75    kernel is not always grateful with that.
76 */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116 
117 #include "internal.h"
118 
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123 
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126 
127 /* Highest zone. An specific allocation for a zone below that is not
128    policied. */
129 enum zone_type policy_zone = 0;
130 
131 /*
132  * run-time system-wide default policy => local allocation
133  */
134 static struct mempolicy default_policy = {
135 	.refcnt = ATOMIC_INIT(1), /* never free it */
136 	.mode = MPOL_LOCAL,
137 };
138 
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140 
141 /*
142  * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143  * system-default value should be used. A NULL iw_table also denotes that
144  * system-default values should be used. Until the system-default table
145  * is implemented, the system-default is always 1.
146  *
147  * iw_table is RCU protected
148  */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151 
get_il_weight(int node)152 static u8 get_il_weight(int node)
153 {
154 	u8 *table;
155 	u8 weight;
156 
157 	rcu_read_lock();
158 	table = rcu_dereference(iw_table);
159 	/* if no iw_table, use system default */
160 	weight = table ? table[node] : 1;
161 	/* if value in iw_table is 0, use system default */
162 	weight = weight ? weight : 1;
163 	rcu_read_unlock();
164 	return weight;
165 }
166 
167 /**
168  * numa_nearest_node - Find nearest node by state
169  * @node: Node id to start the search
170  * @state: State to filter the search
171  *
172  * Lookup the closest node by distance if @nid is not in state.
173  *
174  * Return: this @node if it is in state, otherwise the closest node by distance
175  */
numa_nearest_node(int node,unsigned int state)176 int numa_nearest_node(int node, unsigned int state)
177 {
178 	int min_dist = INT_MAX, dist, n, min_node;
179 
180 	if (state >= NR_NODE_STATES)
181 		return -EINVAL;
182 
183 	if (node == NUMA_NO_NODE || node_state(node, state))
184 		return node;
185 
186 	min_node = node;
187 	for_each_node_state(n, state) {
188 		dist = node_distance(node, n);
189 		if (dist < min_dist) {
190 			min_dist = dist;
191 			min_node = n;
192 		}
193 	}
194 
195 	return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198 
get_task_policy(struct task_struct * p)199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 	struct mempolicy *pol = p->mempolicy;
202 	int node;
203 
204 	if (pol)
205 		return pol;
206 
207 	node = numa_node_id();
208 	if (node != NUMA_NO_NODE) {
209 		pol = &preferred_node_policy[node];
210 		/* preferred_node_policy is not initialised early in boot */
211 		if (pol->mode)
212 			return pol;
213 	}
214 
215 	return &default_policy;
216 }
217 
218 static const struct mempolicy_operations {
219 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222 
mpol_store_user_nodemask(const struct mempolicy * pol)223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 	return pol->flags & MPOL_MODE_FLAGS;
226 }
227 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 				   const nodemask_t *rel)
230 {
231 	nodemask_t tmp;
232 	nodes_fold(tmp, *orig, nodes_weight(*rel));
233 	nodes_onto(*ret, tmp, *rel);
234 }
235 
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 	if (nodes_empty(*nodes))
239 		return -EINVAL;
240 	pol->nodes = *nodes;
241 	return 0;
242 }
243 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 	if (nodes_empty(*nodes))
247 		return -EINVAL;
248 
249 	nodes_clear(pol->nodes);
250 	node_set(first_node(*nodes), pol->nodes);
251 	return 0;
252 }
253 
254 /*
255  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256  * any, for the new policy.  mpol_new() has already validated the nodes
257  * parameter with respect to the policy mode and flags.
258  *
259  * Must be called holding task's alloc_lock to protect task's mems_allowed
260  * and mempolicy.  May also be called holding the mmap_lock for write.
261  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)262 static int mpol_set_nodemask(struct mempolicy *pol,
263 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 	int ret;
266 
267 	/*
268 	 * Default (pol==NULL) resp. local memory policies are not a
269 	 * subject of any remapping. They also do not need any special
270 	 * constructor.
271 	 */
272 	if (!pol || pol->mode == MPOL_LOCAL)
273 		return 0;
274 
275 	/* Check N_MEMORY */
276 	nodes_and(nsc->mask1,
277 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278 
279 	VM_BUG_ON(!nodes);
280 
281 	if (pol->flags & MPOL_F_RELATIVE_NODES)
282 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 	else
284 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285 
286 	if (mpol_store_user_nodemask(pol))
287 		pol->w.user_nodemask = *nodes;
288 	else
289 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290 
291 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 	return ret;
293 }
294 
295 /*
296  * This function just creates a new policy, does some check and simple
297  * initialization. You must invoke mpol_set_nodemask() to set nodes.
298  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 				  nodemask_t *nodes)
301 {
302 	struct mempolicy *policy;
303 
304 	if (mode == MPOL_DEFAULT) {
305 		if (nodes && !nodes_empty(*nodes))
306 			return ERR_PTR(-EINVAL);
307 		return NULL;
308 	}
309 	VM_BUG_ON(!nodes);
310 
311 	/*
312 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 	 * All other modes require a valid pointer to a non-empty nodemask.
315 	 */
316 	if (mode == MPOL_PREFERRED) {
317 		if (nodes_empty(*nodes)) {
318 			if (((flags & MPOL_F_STATIC_NODES) ||
319 			     (flags & MPOL_F_RELATIVE_NODES)))
320 				return ERR_PTR(-EINVAL);
321 
322 			mode = MPOL_LOCAL;
323 		}
324 	} else if (mode == MPOL_LOCAL) {
325 		if (!nodes_empty(*nodes) ||
326 		    (flags & MPOL_F_STATIC_NODES) ||
327 		    (flags & MPOL_F_RELATIVE_NODES))
328 			return ERR_PTR(-EINVAL);
329 	} else if (nodes_empty(*nodes))
330 		return ERR_PTR(-EINVAL);
331 
332 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 	if (!policy)
334 		return ERR_PTR(-ENOMEM);
335 	atomic_set(&policy->refcnt, 1);
336 	policy->mode = mode;
337 	policy->flags = flags;
338 	policy->home_node = NUMA_NO_NODE;
339 
340 	return policy;
341 }
342 
343 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * pol)344 void __mpol_put(struct mempolicy *pol)
345 {
346 	if (!atomic_dec_and_test(&pol->refcnt))
347 		return;
348 	kmem_cache_free(policy_cache, pol);
349 }
350 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 	nodemask_t tmp;
358 
359 	if (pol->flags & MPOL_F_STATIC_NODES)
360 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 	else {
364 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 								*nodes);
366 		pol->w.cpuset_mems_allowed = *nodes;
367 	}
368 
369 	if (nodes_empty(tmp))
370 		tmp = *nodes;
371 
372 	pol->nodes = tmp;
373 }
374 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 						const nodemask_t *nodes)
377 {
378 	pol->w.cpuset_mems_allowed = *nodes;
379 }
380 
381 /*
382  * mpol_rebind_policy - Migrate a policy to a different set of nodes
383  *
384  * Per-vma policies are protected by mmap_lock. Allocations using per-task
385  * policies are protected by task->mems_allowed_seq to prevent a premature
386  * OOM/allocation failure due to parallel nodemask modification.
387  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 	if (!pol || pol->mode == MPOL_LOCAL)
391 		return;
392 	if (!mpol_store_user_nodemask(pol) &&
393 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 		return;
395 
396 	mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398 
399 /*
400  * Wrapper for mpol_rebind_policy() that just requires task
401  * pointer, and updates task mempolicy.
402  *
403  * Called with task's alloc_lock held.
404  */
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 	mpol_rebind_policy(tsk->mempolicy, new);
408 }
409 
410 /*
411  * Rebind each vma in mm to new nodemask.
412  *
413  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414  */
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 	struct vm_area_struct *vma;
418 	VMA_ITERATOR(vmi, mm, 0);
419 
420 	mmap_write_lock(mm);
421 	for_each_vma(vmi, vma) {
422 		vma_start_write(vma);
423 		mpol_rebind_policy(vma->vm_policy, new);
424 	}
425 	mmap_write_unlock(mm);
426 }
427 
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 	[MPOL_DEFAULT] = {
430 		.rebind = mpol_rebind_default,
431 	},
432 	[MPOL_INTERLEAVE] = {
433 		.create = mpol_new_nodemask,
434 		.rebind = mpol_rebind_nodemask,
435 	},
436 	[MPOL_PREFERRED] = {
437 		.create = mpol_new_preferred,
438 		.rebind = mpol_rebind_preferred,
439 	},
440 	[MPOL_BIND] = {
441 		.create = mpol_new_nodemask,
442 		.rebind = mpol_rebind_nodemask,
443 	},
444 	[MPOL_LOCAL] = {
445 		.rebind = mpol_rebind_default,
446 	},
447 	[MPOL_PREFERRED_MANY] = {
448 		.create = mpol_new_nodemask,
449 		.rebind = mpol_rebind_preferred,
450 	},
451 	[MPOL_WEIGHTED_INTERLEAVE] = {
452 		.create = mpol_new_nodemask,
453 		.rebind = mpol_rebind_nodemask,
454 	},
455 };
456 
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 				unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 				pgoff_t ilx, int *nid);
461 
strictly_unmovable(unsigned long flags)462 static bool strictly_unmovable(unsigned long flags)
463 {
464 	/*
465 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 	 * if any misplaced page is found.
467 	 */
468 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 			 MPOL_MF_STRICT;
470 }
471 
472 struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473 	struct mempolicy *pol;
474 	pgoff_t ilx;
475 };
476 
477 struct queue_pages {
478 	struct list_head *pagelist;
479 	unsigned long flags;
480 	nodemask_t *nmask;
481 	unsigned long start;
482 	unsigned long end;
483 	struct vm_area_struct *first;
484 	struct folio *large;		/* note last large folio encountered */
485 	long nr_failed;			/* could not be isolated at this time */
486 };
487 
488 /*
489  * Check if the folio's nid is in qp->nmask.
490  *
491  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492  * in the invert of qp->nmask.
493  */
queue_folio_required(struct folio * folio,struct queue_pages * qp)494 static inline bool queue_folio_required(struct folio *folio,
495 					struct queue_pages *qp)
496 {
497 	int nid = folio_nid(folio);
498 	unsigned long flags = qp->flags;
499 
500 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502 
queue_folios_pmd(pmd_t * pmd,struct mm_walk * walk)503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 	struct folio *folio;
506 	struct queue_pages *qp = walk->private;
507 
508 	if (unlikely(is_pmd_migration_entry(*pmd))) {
509 		qp->nr_failed++;
510 		return;
511 	}
512 	folio = pmd_folio(*pmd);
513 	if (is_huge_zero_folio(folio)) {
514 		walk->action = ACTION_CONTINUE;
515 		return;
516 	}
517 	if (!queue_folio_required(folio, qp))
518 		return;
519 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 	    !vma_migratable(walk->vma) ||
521 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 		qp->nr_failed++;
523 }
524 
525 /*
526  * Scan through folios, checking if they satisfy the required conditions,
527  * moving them from LRU to local pagelist for migration if they do (or not).
528  *
529  * queue_folios_pte_range() has two possible return values:
530  * 0 - continue walking to scan for more, even if an existing folio on the
531  *     wrong node could not be isolated and queued for migration.
532  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533  *        and an existing folio was on a node that does not follow the policy.
534  */
queue_folios_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 			unsigned long end, struct mm_walk *walk)
537 {
538 	struct vm_area_struct *vma = walk->vma;
539 	struct folio *folio;
540 	struct queue_pages *qp = walk->private;
541 	unsigned long flags = qp->flags;
542 	pte_t *pte, *mapped_pte;
543 	pte_t ptent;
544 	spinlock_t *ptl;
545 
546 	ptl = pmd_trans_huge_lock(pmd, vma);
547 	if (ptl) {
548 		queue_folios_pmd(pmd, walk);
549 		spin_unlock(ptl);
550 		goto out;
551 	}
552 
553 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 	if (!pte) {
555 		walk->action = ACTION_AGAIN;
556 		return 0;
557 	}
558 	for (; addr != end; pte++, addr += PAGE_SIZE) {
559 		ptent = ptep_get(pte);
560 		if (pte_none(ptent))
561 			continue;
562 		if (!pte_present(ptent)) {
563 			if (is_migration_entry(pte_to_swp_entry(ptent)))
564 				qp->nr_failed++;
565 			continue;
566 		}
567 		folio = vm_normal_folio(vma, addr, ptent);
568 		if (!folio || folio_is_zone_device(folio))
569 			continue;
570 		/*
571 		 * vm_normal_folio() filters out zero pages, but there might
572 		 * still be reserved folios to skip, perhaps in a VDSO.
573 		 */
574 		if (folio_test_reserved(folio))
575 			continue;
576 		if (!queue_folio_required(folio, qp))
577 			continue;
578 		if (folio_test_large(folio)) {
579 			/*
580 			 * A large folio can only be isolated from LRU once,
581 			 * but may be mapped by many PTEs (and Copy-On-Write may
582 			 * intersperse PTEs of other, order 0, folios).  This is
583 			 * a common case, so don't mistake it for failure (but
584 			 * there can be other cases of multi-mapped pages which
585 			 * this quick check does not help to filter out - and a
586 			 * search of the pagelist might grow to be prohibitive).
587 			 *
588 			 * migrate_pages(&pagelist) returns nr_failed folios, so
589 			 * check "large" now so that queue_pages_range() returns
590 			 * a comparable nr_failed folios.  This does imply that
591 			 * if folio could not be isolated for some racy reason
592 			 * at its first PTE, later PTEs will not give it another
593 			 * chance of isolation; but keeps the accounting simple.
594 			 */
595 			if (folio == qp->large)
596 				continue;
597 			qp->large = folio;
598 		}
599 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 		    !vma_migratable(vma) ||
601 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602 			qp->nr_failed++;
603 			if (strictly_unmovable(flags))
604 				break;
605 		}
606 	}
607 	pte_unmap_unlock(mapped_pte, ptl);
608 	cond_resched();
609 out:
610 	if (qp->nr_failed && strictly_unmovable(flags))
611 		return -EIO;
612 	return 0;
613 }
614 
queue_folios_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 			       unsigned long addr, unsigned long end,
617 			       struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 	struct queue_pages *qp = walk->private;
621 	unsigned long flags = qp->flags;
622 	struct folio *folio;
623 	spinlock_t *ptl;
624 	pte_t entry;
625 
626 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 	entry = huge_ptep_get(walk->mm, addr, pte);
628 	if (!pte_present(entry)) {
629 		if (unlikely(is_hugetlb_entry_migration(entry)))
630 			qp->nr_failed++;
631 		goto unlock;
632 	}
633 	folio = pfn_folio(pte_pfn(entry));
634 	if (!queue_folio_required(folio, qp))
635 		goto unlock;
636 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 	    !vma_migratable(walk->vma)) {
638 		qp->nr_failed++;
639 		goto unlock;
640 	}
641 	/*
642 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 	 * Choosing not to migrate a shared folio is not counted as a failure.
644 	 *
645 	 * See folio_likely_mapped_shared() on possible imprecision when we
646 	 * cannot easily detect if a folio is shared.
647 	 */
648 	if ((flags & MPOL_MF_MOVE_ALL) ||
649 	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 		if (!isolate_hugetlb(folio, qp->pagelist))
651 			qp->nr_failed++;
652 unlock:
653 	spin_unlock(ptl);
654 	if (qp->nr_failed && strictly_unmovable(flags))
655 		return -EIO;
656 #endif
657 	return 0;
658 }
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662  * This is used to mark a range of virtual addresses to be inaccessible.
663  * These are later cleared by a NUMA hinting fault. Depending on these
664  * faults, pages may be migrated for better NUMA placement.
665  *
666  * This is assuming that NUMA faults are handled using PROT_NONE. If
667  * an architecture makes a different choice, it will need further
668  * changes to the core.
669  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 			unsigned long addr, unsigned long end)
672 {
673 	struct mmu_gather tlb;
674 	long nr_updated;
675 
676 	tlb_gather_mmu(&tlb, vma->vm_mm);
677 
678 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 	if (nr_updated > 0)
680 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 
682 	tlb_finish_mmu(&tlb);
683 
684 	return nr_updated;
685 }
686 #endif /* CONFIG_NUMA_BALANCING */
687 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)688 static int queue_pages_test_walk(unsigned long start, unsigned long end,
689 				struct mm_walk *walk)
690 {
691 	struct vm_area_struct *next, *vma = walk->vma;
692 	struct queue_pages *qp = walk->private;
693 	unsigned long flags = qp->flags;
694 
695 	/* range check first */
696 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
697 
698 	if (!qp->first) {
699 		qp->first = vma;
700 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
701 			(qp->start < vma->vm_start))
702 			/* hole at head side of range */
703 			return -EFAULT;
704 	}
705 	next = find_vma(vma->vm_mm, vma->vm_end);
706 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
707 		((vma->vm_end < qp->end) &&
708 		(!next || vma->vm_end < next->vm_start)))
709 		/* hole at middle or tail of range */
710 		return -EFAULT;
711 
712 	/*
713 	 * Need check MPOL_MF_STRICT to return -EIO if possible
714 	 * regardless of vma_migratable
715 	 */
716 	if (!vma_migratable(vma) &&
717 	    !(flags & MPOL_MF_STRICT))
718 		return 1;
719 
720 	/*
721 	 * Check page nodes, and queue pages to move, in the current vma.
722 	 * But if no moving, and no strict checking, the scan can be skipped.
723 	 */
724 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
725 		return 0;
726 	return 1;
727 }
728 
729 static const struct mm_walk_ops queue_pages_walk_ops = {
730 	.hugetlb_entry		= queue_folios_hugetlb,
731 	.pmd_entry		= queue_folios_pte_range,
732 	.test_walk		= queue_pages_test_walk,
733 	.walk_lock		= PGWALK_RDLOCK,
734 };
735 
736 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
737 	.hugetlb_entry		= queue_folios_hugetlb,
738 	.pmd_entry		= queue_folios_pte_range,
739 	.test_walk		= queue_pages_test_walk,
740 	.walk_lock		= PGWALK_WRLOCK,
741 };
742 
743 /*
744  * Walk through page tables and collect pages to be migrated.
745  *
746  * If pages found in a given range are not on the required set of @nodes,
747  * and migration is allowed, they are isolated and queued to @pagelist.
748  *
749  * queue_pages_range() may return:
750  * 0 - all pages already on the right node, or successfully queued for moving
751  *     (or neither strict checking nor moving requested: only range checking).
752  * >0 - this number of misplaced folios could not be queued for moving
753  *      (a hugetlbfs page or a transparent huge page being counted as 1).
754  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
755  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
756  */
757 static long
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)758 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
759 		nodemask_t *nodes, unsigned long flags,
760 		struct list_head *pagelist)
761 {
762 	int err;
763 	struct queue_pages qp = {
764 		.pagelist = pagelist,
765 		.flags = flags,
766 		.nmask = nodes,
767 		.start = start,
768 		.end = end,
769 		.first = NULL,
770 	};
771 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
772 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
773 
774 	err = walk_page_range(mm, start, end, ops, &qp);
775 
776 	if (!qp.first)
777 		/* whole range in hole */
778 		err = -EFAULT;
779 
780 	return err ? : qp.nr_failed;
781 }
782 
783 /*
784  * Apply policy to a single VMA
785  * This must be called with the mmap_lock held for writing.
786  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)787 static int vma_replace_policy(struct vm_area_struct *vma,
788 				struct mempolicy *pol)
789 {
790 	int err;
791 	struct mempolicy *old;
792 	struct mempolicy *new;
793 
794 	vma_assert_write_locked(vma);
795 
796 	new = mpol_dup(pol);
797 	if (IS_ERR(new))
798 		return PTR_ERR(new);
799 
800 	if (vma->vm_ops && vma->vm_ops->set_policy) {
801 		err = vma->vm_ops->set_policy(vma, new);
802 		if (err)
803 			goto err_out;
804 	}
805 
806 	old = vma->vm_policy;
807 	vma->vm_policy = new; /* protected by mmap_lock */
808 	mpol_put(old);
809 
810 	return 0;
811  err_out:
812 	mpol_put(new);
813 	return err;
814 }
815 
816 /* Split or merge the VMA (if required) and apply the new policy */
mbind_range(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,struct mempolicy * new_pol)817 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
818 		struct vm_area_struct **prev, unsigned long start,
819 		unsigned long end, struct mempolicy *new_pol)
820 {
821 	unsigned long vmstart, vmend;
822 
823 	vmend = min(end, vma->vm_end);
824 	if (start > vma->vm_start) {
825 		*prev = vma;
826 		vmstart = start;
827 	} else {
828 		vmstart = vma->vm_start;
829 	}
830 
831 	if (mpol_equal(vma->vm_policy, new_pol)) {
832 		*prev = vma;
833 		return 0;
834 	}
835 
836 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
837 	if (IS_ERR(vma))
838 		return PTR_ERR(vma);
839 
840 	*prev = vma;
841 	return vma_replace_policy(vma, new_pol);
842 }
843 
844 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)845 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
846 			     nodemask_t *nodes)
847 {
848 	struct mempolicy *new, *old;
849 	NODEMASK_SCRATCH(scratch);
850 	int ret;
851 
852 	if (!scratch)
853 		return -ENOMEM;
854 
855 	new = mpol_new(mode, flags, nodes);
856 	if (IS_ERR(new)) {
857 		ret = PTR_ERR(new);
858 		goto out;
859 	}
860 
861 	task_lock(current);
862 	ret = mpol_set_nodemask(new, nodes, scratch);
863 	if (ret) {
864 		task_unlock(current);
865 		mpol_put(new);
866 		goto out;
867 	}
868 
869 	old = current->mempolicy;
870 	current->mempolicy = new;
871 	if (new && (new->mode == MPOL_INTERLEAVE ||
872 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
873 		current->il_prev = MAX_NUMNODES-1;
874 		current->il_weight = 0;
875 	}
876 	task_unlock(current);
877 	mpol_put(old);
878 	ret = 0;
879 out:
880 	NODEMASK_SCRATCH_FREE(scratch);
881 	return ret;
882 }
883 
884 /*
885  * Return nodemask for policy for get_mempolicy() query
886  *
887  * Called with task's alloc_lock held
888  */
get_policy_nodemask(struct mempolicy * pol,nodemask_t * nodes)889 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
890 {
891 	nodes_clear(*nodes);
892 	if (pol == &default_policy)
893 		return;
894 
895 	switch (pol->mode) {
896 	case MPOL_BIND:
897 	case MPOL_INTERLEAVE:
898 	case MPOL_PREFERRED:
899 	case MPOL_PREFERRED_MANY:
900 	case MPOL_WEIGHTED_INTERLEAVE:
901 		*nodes = pol->nodes;
902 		break;
903 	case MPOL_LOCAL:
904 		/* return empty node mask for local allocation */
905 		break;
906 	default:
907 		BUG();
908 	}
909 }
910 
lookup_node(struct mm_struct * mm,unsigned long addr)911 static int lookup_node(struct mm_struct *mm, unsigned long addr)
912 {
913 	struct page *p = NULL;
914 	int ret;
915 
916 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
917 	if (ret > 0) {
918 		ret = page_to_nid(p);
919 		put_page(p);
920 	}
921 	return ret;
922 }
923 
924 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)925 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
926 			     unsigned long addr, unsigned long flags)
927 {
928 	int err;
929 	struct mm_struct *mm = current->mm;
930 	struct vm_area_struct *vma = NULL;
931 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
932 
933 	if (flags &
934 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
935 		return -EINVAL;
936 
937 	if (flags & MPOL_F_MEMS_ALLOWED) {
938 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
939 			return -EINVAL;
940 		*policy = 0;	/* just so it's initialized */
941 		task_lock(current);
942 		*nmask  = cpuset_current_mems_allowed;
943 		task_unlock(current);
944 		return 0;
945 	}
946 
947 	if (flags & MPOL_F_ADDR) {
948 		pgoff_t ilx;		/* ignored here */
949 		/*
950 		 * Do NOT fall back to task policy if the
951 		 * vma/shared policy at addr is NULL.  We
952 		 * want to return MPOL_DEFAULT in this case.
953 		 */
954 		mmap_read_lock(mm);
955 		vma = vma_lookup(mm, addr);
956 		if (!vma) {
957 			mmap_read_unlock(mm);
958 			return -EFAULT;
959 		}
960 		pol = __get_vma_policy(vma, addr, &ilx);
961 	} else if (addr)
962 		return -EINVAL;
963 
964 	if (!pol)
965 		pol = &default_policy;	/* indicates default behavior */
966 
967 	if (flags & MPOL_F_NODE) {
968 		if (flags & MPOL_F_ADDR) {
969 			/*
970 			 * Take a refcount on the mpol, because we are about to
971 			 * drop the mmap_lock, after which only "pol" remains
972 			 * valid, "vma" is stale.
973 			 */
974 			pol_refcount = pol;
975 			vma = NULL;
976 			mpol_get(pol);
977 			mmap_read_unlock(mm);
978 			err = lookup_node(mm, addr);
979 			if (err < 0)
980 				goto out;
981 			*policy = err;
982 		} else if (pol == current->mempolicy &&
983 				pol->mode == MPOL_INTERLEAVE) {
984 			*policy = next_node_in(current->il_prev, pol->nodes);
985 		} else if (pol == current->mempolicy &&
986 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
987 			if (current->il_weight)
988 				*policy = current->il_prev;
989 			else
990 				*policy = next_node_in(current->il_prev,
991 						       pol->nodes);
992 		} else {
993 			err = -EINVAL;
994 			goto out;
995 		}
996 	} else {
997 		*policy = pol == &default_policy ? MPOL_DEFAULT :
998 						pol->mode;
999 		/*
1000 		 * Internal mempolicy flags must be masked off before exposing
1001 		 * the policy to userspace.
1002 		 */
1003 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004 	}
1005 
1006 	err = 0;
1007 	if (nmask) {
1008 		if (mpol_store_user_nodemask(pol)) {
1009 			*nmask = pol->w.user_nodemask;
1010 		} else {
1011 			task_lock(current);
1012 			get_policy_nodemask(pol, nmask);
1013 			task_unlock(current);
1014 		}
1015 	}
1016 
1017  out:
1018 	mpol_cond_put(pol);
1019 	if (vma)
1020 		mmap_read_unlock(mm);
1021 	if (pol_refcount)
1022 		mpol_put(pol_refcount);
1023 	return err;
1024 }
1025 
1026 #ifdef CONFIG_MIGRATION
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1027 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1028 				unsigned long flags)
1029 {
1030 	/*
1031 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1032 	 * Choosing not to migrate a shared folio is not counted as a failure.
1033 	 *
1034 	 * See folio_likely_mapped_shared() on possible imprecision when we
1035 	 * cannot easily detect if a folio is shared.
1036 	 */
1037 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1038 		if (folio_isolate_lru(folio)) {
1039 			list_add_tail(&folio->lru, foliolist);
1040 			node_stat_mod_folio(folio,
1041 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1042 				folio_nr_pages(folio));
1043 		} else {
1044 			/*
1045 			 * Non-movable folio may reach here.  And, there may be
1046 			 * temporary off LRU folios or non-LRU movable folios.
1047 			 * Treat them as unmovable folios since they can't be
1048 			 * isolated, so they can't be moved at the moment.
1049 			 */
1050 			return false;
1051 		}
1052 	}
1053 	return true;
1054 }
1055 
1056 /*
1057  * Migrate pages from one node to a target node.
1058  * Returns error or the number of pages not migrated.
1059  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1060 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1061 			    int flags)
1062 {
1063 	nodemask_t nmask;
1064 	struct vm_area_struct *vma;
1065 	LIST_HEAD(pagelist);
1066 	long nr_failed;
1067 	long err = 0;
1068 	struct migration_target_control mtc = {
1069 		.nid = dest,
1070 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 		.reason = MR_SYSCALL,
1072 	};
1073 
1074 	nodes_clear(nmask);
1075 	node_set(source, nmask);
1076 
1077 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1078 
1079 	mmap_read_lock(mm);
1080 	vma = find_vma(mm, 0);
1081 
1082 	/*
1083 	 * This does not migrate the range, but isolates all pages that
1084 	 * need migration.  Between passing in the full user address
1085 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1086 	 * but passes back the count of pages which could not be isolated.
1087 	 */
1088 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1089 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1090 	mmap_read_unlock(mm);
1091 
1092 	if (!list_empty(&pagelist)) {
1093 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1094 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1095 		if (err)
1096 			putback_movable_pages(&pagelist);
1097 	}
1098 
1099 	if (err >= 0)
1100 		err += nr_failed;
1101 	return err;
1102 }
1103 
1104 /*
1105  * Move pages between the two nodesets so as to preserve the physical
1106  * layout as much as possible.
1107  *
1108  * Returns the number of page that could not be moved.
1109  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1110 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 		     const nodemask_t *to, int flags)
1112 {
1113 	long nr_failed = 0;
1114 	long err = 0;
1115 	nodemask_t tmp;
1116 
1117 	lru_cache_disable();
1118 
1119 	/*
1120 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1122 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 	 * The pair of nodemasks 'to' and 'from' define the map.
1124 	 *
1125 	 * If no pair of bits is found that way, fallback to picking some
1126 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1127 	 * 'source' and 'dest' bits are the same, this represents a node
1128 	 * that will be migrating to itself, so no pages need move.
1129 	 *
1130 	 * If no bits are left in 'tmp', or if all remaining bits left
1131 	 * in 'tmp' correspond to the same bit in 'to', return false
1132 	 * (nothing left to migrate).
1133 	 *
1134 	 * This lets us pick a pair of nodes to migrate between, such that
1135 	 * if possible the dest node is not already occupied by some other
1136 	 * source node, minimizing the risk of overloading the memory on a
1137 	 * node that would happen if we migrated incoming memory to a node
1138 	 * before migrating outgoing memory source that same node.
1139 	 *
1140 	 * A single scan of tmp is sufficient.  As we go, we remember the
1141 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1142 	 * that not only moved, but what's better, moved to an empty slot
1143 	 * (d is not set in tmp), then we break out then, with that pair.
1144 	 * Otherwise when we finish scanning from_tmp, we at least have the
1145 	 * most recent <s, d> pair that moved.  If we get all the way through
1146 	 * the scan of tmp without finding any node that moved, much less
1147 	 * moved to an empty node, then there is nothing left worth migrating.
1148 	 */
1149 
1150 	tmp = *from;
1151 	while (!nodes_empty(tmp)) {
1152 		int s, d;
1153 		int source = NUMA_NO_NODE;
1154 		int dest = 0;
1155 
1156 		for_each_node_mask(s, tmp) {
1157 
1158 			/*
1159 			 * do_migrate_pages() tries to maintain the relative
1160 			 * node relationship of the pages established between
1161 			 * threads and memory areas.
1162                          *
1163 			 * However if the number of source nodes is not equal to
1164 			 * the number of destination nodes we can not preserve
1165 			 * this node relative relationship.  In that case, skip
1166 			 * copying memory from a node that is in the destination
1167 			 * mask.
1168 			 *
1169 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1171 			 */
1172 
1173 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 						(node_isset(s, *to)))
1175 				continue;
1176 
1177 			d = node_remap(s, *from, *to);
1178 			if (s == d)
1179 				continue;
1180 
1181 			source = s;	/* Node moved. Memorize */
1182 			dest = d;
1183 
1184 			/* dest not in remaining from nodes? */
1185 			if (!node_isset(dest, tmp))
1186 				break;
1187 		}
1188 		if (source == NUMA_NO_NODE)
1189 			break;
1190 
1191 		node_clear(source, tmp);
1192 		err = migrate_to_node(mm, source, dest, flags);
1193 		if (err > 0)
1194 			nr_failed += err;
1195 		if (err < 0)
1196 			break;
1197 	}
1198 
1199 	lru_cache_enable();
1200 	if (err < 0)
1201 		return err;
1202 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1203 }
1204 
1205 /*
1206  * Allocate a new folio for page migration, according to NUMA mempolicy.
1207  */
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1208 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1209 						    unsigned long private)
1210 {
1211 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1212 	struct mempolicy *pol = mmpol->pol;
1213 	pgoff_t ilx = mmpol->ilx;
1214 	unsigned int order;
1215 	int nid = numa_node_id();
1216 	gfp_t gfp;
1217 
1218 	order = folio_order(src);
1219 	ilx += src->index >> order;
1220 
1221 	if (folio_test_hugetlb(src)) {
1222 		nodemask_t *nodemask;
1223 		struct hstate *h;
1224 
1225 		h = folio_hstate(src);
1226 		gfp = htlb_alloc_mask(h);
1227 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1228 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1229 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1230 	}
1231 
1232 	if (folio_test_large(src))
1233 		gfp = GFP_TRANSHUGE;
1234 	else
1235 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1236 
1237 	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1238 }
1239 #else
1240 
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1241 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1242 				unsigned long flags)
1243 {
1244 	return false;
1245 }
1246 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1247 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1248 		     const nodemask_t *to, int flags)
1249 {
1250 	return -ENOSYS;
1251 }
1252 
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1253 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1254 						    unsigned long private)
1255 {
1256 	return NULL;
1257 }
1258 #endif
1259 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1260 static long do_mbind(unsigned long start, unsigned long len,
1261 		     unsigned short mode, unsigned short mode_flags,
1262 		     nodemask_t *nmask, unsigned long flags)
1263 {
1264 	struct mm_struct *mm = current->mm;
1265 	struct vm_area_struct *vma, *prev;
1266 	struct vma_iterator vmi;
1267 	struct migration_mpol mmpol;
1268 	struct mempolicy *new;
1269 	unsigned long end;
1270 	long err;
1271 	long nr_failed;
1272 	LIST_HEAD(pagelist);
1273 
1274 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1275 		return -EINVAL;
1276 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1277 		return -EPERM;
1278 
1279 	if (start & ~PAGE_MASK)
1280 		return -EINVAL;
1281 
1282 	if (mode == MPOL_DEFAULT)
1283 		flags &= ~MPOL_MF_STRICT;
1284 
1285 	len = PAGE_ALIGN(len);
1286 	end = start + len;
1287 
1288 	if (end < start)
1289 		return -EINVAL;
1290 	if (end == start)
1291 		return 0;
1292 
1293 	new = mpol_new(mode, mode_flags, nmask);
1294 	if (IS_ERR(new))
1295 		return PTR_ERR(new);
1296 
1297 	/*
1298 	 * If we are using the default policy then operation
1299 	 * on discontinuous address spaces is okay after all
1300 	 */
1301 	if (!new)
1302 		flags |= MPOL_MF_DISCONTIG_OK;
1303 
1304 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1305 		lru_cache_disable();
1306 	{
1307 		NODEMASK_SCRATCH(scratch);
1308 		if (scratch) {
1309 			mmap_write_lock(mm);
1310 			err = mpol_set_nodemask(new, nmask, scratch);
1311 			if (err)
1312 				mmap_write_unlock(mm);
1313 		} else
1314 			err = -ENOMEM;
1315 		NODEMASK_SCRATCH_FREE(scratch);
1316 	}
1317 	if (err)
1318 		goto mpol_out;
1319 
1320 	/*
1321 	 * Lock the VMAs before scanning for pages to migrate,
1322 	 * to ensure we don't miss a concurrently inserted page.
1323 	 */
1324 	nr_failed = queue_pages_range(mm, start, end, nmask,
1325 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1326 
1327 	if (nr_failed < 0) {
1328 		err = nr_failed;
1329 		nr_failed = 0;
1330 	} else {
1331 		vma_iter_init(&vmi, mm, start);
1332 		prev = vma_prev(&vmi);
1333 		for_each_vma_range(vmi, vma, end) {
1334 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1335 			if (err)
1336 				break;
1337 		}
1338 	}
1339 
1340 	if (!err && !list_empty(&pagelist)) {
1341 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1342 		if (!new) {
1343 			new = get_task_policy(current);
1344 			mpol_get(new);
1345 		}
1346 		mmpol.pol = new;
1347 		mmpol.ilx = 0;
1348 
1349 		/*
1350 		 * In the interleaved case, attempt to allocate on exactly the
1351 		 * targeted nodes, for the first VMA to be migrated; for later
1352 		 * VMAs, the nodes will still be interleaved from the targeted
1353 		 * nodemask, but one by one may be selected differently.
1354 		 */
1355 		if (new->mode == MPOL_INTERLEAVE ||
1356 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1357 			struct folio *folio;
1358 			unsigned int order;
1359 			unsigned long addr = -EFAULT;
1360 
1361 			list_for_each_entry(folio, &pagelist, lru) {
1362 				if (!folio_test_ksm(folio))
1363 					break;
1364 			}
1365 			if (!list_entry_is_head(folio, &pagelist, lru)) {
1366 				vma_iter_init(&vmi, mm, start);
1367 				for_each_vma_range(vmi, vma, end) {
1368 					addr = page_address_in_vma(
1369 						folio_page(folio, 0), vma);
1370 					if (addr != -EFAULT)
1371 						break;
1372 				}
1373 			}
1374 			if (addr != -EFAULT) {
1375 				order = folio_order(folio);
1376 				/* We already know the pol, but not the ilx */
1377 				mpol_cond_put(get_vma_policy(vma, addr, order,
1378 							     &mmpol.ilx));
1379 				/* Set base from which to increment by index */
1380 				mmpol.ilx -= folio->index >> order;
1381 			}
1382 		}
1383 	}
1384 
1385 	mmap_write_unlock(mm);
1386 
1387 	if (!err && !list_empty(&pagelist)) {
1388 		nr_failed |= migrate_pages(&pagelist,
1389 				alloc_migration_target_by_mpol, NULL,
1390 				(unsigned long)&mmpol, MIGRATE_SYNC,
1391 				MR_MEMPOLICY_MBIND, NULL);
1392 	}
1393 
1394 	if (nr_failed && (flags & MPOL_MF_STRICT))
1395 		err = -EIO;
1396 	if (!list_empty(&pagelist))
1397 		putback_movable_pages(&pagelist);
1398 mpol_out:
1399 	mpol_put(new);
1400 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1401 		lru_cache_enable();
1402 	return err;
1403 }
1404 
1405 /*
1406  * User space interface with variable sized bitmaps for nodelists.
1407  */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1408 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1409 		      unsigned long maxnode)
1410 {
1411 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1412 	int ret;
1413 
1414 	if (in_compat_syscall())
1415 		ret = compat_get_bitmap(mask,
1416 					(const compat_ulong_t __user *)nmask,
1417 					maxnode);
1418 	else
1419 		ret = copy_from_user(mask, nmask,
1420 				     nlongs * sizeof(unsigned long));
1421 
1422 	if (ret)
1423 		return -EFAULT;
1424 
1425 	if (maxnode % BITS_PER_LONG)
1426 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1427 
1428 	return 0;
1429 }
1430 
1431 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1432 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1433 		     unsigned long maxnode)
1434 {
1435 	--maxnode;
1436 	nodes_clear(*nodes);
1437 	if (maxnode == 0 || !nmask)
1438 		return 0;
1439 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1440 		return -EINVAL;
1441 
1442 	/*
1443 	 * When the user specified more nodes than supported just check
1444 	 * if the non supported part is all zero, one word at a time,
1445 	 * starting at the end.
1446 	 */
1447 	while (maxnode > MAX_NUMNODES) {
1448 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1449 		unsigned long t;
1450 
1451 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1452 			return -EFAULT;
1453 
1454 		if (maxnode - bits >= MAX_NUMNODES) {
1455 			maxnode -= bits;
1456 		} else {
1457 			maxnode = MAX_NUMNODES;
1458 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1459 		}
1460 		if (t)
1461 			return -EINVAL;
1462 	}
1463 
1464 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1465 }
1466 
1467 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1468 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1469 			      nodemask_t *nodes)
1470 {
1471 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1472 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1473 	bool compat = in_compat_syscall();
1474 
1475 	if (compat)
1476 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1477 
1478 	if (copy > nbytes) {
1479 		if (copy > PAGE_SIZE)
1480 			return -EINVAL;
1481 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1482 			return -EFAULT;
1483 		copy = nbytes;
1484 		maxnode = nr_node_ids;
1485 	}
1486 
1487 	if (compat)
1488 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1489 					 nodes_addr(*nodes), maxnode);
1490 
1491 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1492 }
1493 
1494 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1495 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1496 {
1497 	*flags = *mode & MPOL_MODE_FLAGS;
1498 	*mode &= ~MPOL_MODE_FLAGS;
1499 
1500 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1501 		return -EINVAL;
1502 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1503 		return -EINVAL;
1504 	if (*flags & MPOL_F_NUMA_BALANCING) {
1505 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1506 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1507 		else
1508 			return -EINVAL;
1509 	}
1510 	return 0;
1511 }
1512 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1513 static long kernel_mbind(unsigned long start, unsigned long len,
1514 			 unsigned long mode, const unsigned long __user *nmask,
1515 			 unsigned long maxnode, unsigned int flags)
1516 {
1517 	unsigned short mode_flags;
1518 	nodemask_t nodes;
1519 	int lmode = mode;
1520 	int err;
1521 
1522 	start = untagged_addr(start);
1523 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1524 	if (err)
1525 		return err;
1526 
1527 	err = get_nodes(&nodes, nmask, maxnode);
1528 	if (err)
1529 		return err;
1530 
1531 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1532 }
1533 
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1534 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1535 		unsigned long, home_node, unsigned long, flags)
1536 {
1537 	struct mm_struct *mm = current->mm;
1538 	struct vm_area_struct *vma, *prev;
1539 	struct mempolicy *new, *old;
1540 	unsigned long end;
1541 	int err = -ENOENT;
1542 	VMA_ITERATOR(vmi, mm, start);
1543 
1544 	start = untagged_addr(start);
1545 	if (start & ~PAGE_MASK)
1546 		return -EINVAL;
1547 	/*
1548 	 * flags is used for future extension if any.
1549 	 */
1550 	if (flags != 0)
1551 		return -EINVAL;
1552 
1553 	/*
1554 	 * Check home_node is online to avoid accessing uninitialized
1555 	 * NODE_DATA.
1556 	 */
1557 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1558 		return -EINVAL;
1559 
1560 	len = PAGE_ALIGN(len);
1561 	end = start + len;
1562 
1563 	if (end < start)
1564 		return -EINVAL;
1565 	if (end == start)
1566 		return 0;
1567 	mmap_write_lock(mm);
1568 	prev = vma_prev(&vmi);
1569 	for_each_vma_range(vmi, vma, end) {
1570 		/*
1571 		 * If any vma in the range got policy other than MPOL_BIND
1572 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1573 		 * the home node for vmas we already updated before.
1574 		 */
1575 		old = vma_policy(vma);
1576 		if (!old) {
1577 			prev = vma;
1578 			continue;
1579 		}
1580 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1581 			err = -EOPNOTSUPP;
1582 			break;
1583 		}
1584 		new = mpol_dup(old);
1585 		if (IS_ERR(new)) {
1586 			err = PTR_ERR(new);
1587 			break;
1588 		}
1589 
1590 		vma_start_write(vma);
1591 		new->home_node = home_node;
1592 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1593 		mpol_put(new);
1594 		if (err)
1595 			break;
1596 	}
1597 	mmap_write_unlock(mm);
1598 	return err;
1599 }
1600 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1601 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1602 		unsigned long, mode, const unsigned long __user *, nmask,
1603 		unsigned long, maxnode, unsigned int, flags)
1604 {
1605 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1606 }
1607 
1608 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1609 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1610 				 unsigned long maxnode)
1611 {
1612 	unsigned short mode_flags;
1613 	nodemask_t nodes;
1614 	int lmode = mode;
1615 	int err;
1616 
1617 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1618 	if (err)
1619 		return err;
1620 
1621 	err = get_nodes(&nodes, nmask, maxnode);
1622 	if (err)
1623 		return err;
1624 
1625 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1626 }
1627 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1628 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1629 		unsigned long, maxnode)
1630 {
1631 	return kernel_set_mempolicy(mode, nmask, maxnode);
1632 }
1633 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1634 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1635 				const unsigned long __user *old_nodes,
1636 				const unsigned long __user *new_nodes)
1637 {
1638 	struct mm_struct *mm = NULL;
1639 	struct task_struct *task;
1640 	nodemask_t task_nodes;
1641 	int err;
1642 	nodemask_t *old;
1643 	nodemask_t *new;
1644 	NODEMASK_SCRATCH(scratch);
1645 
1646 	if (!scratch)
1647 		return -ENOMEM;
1648 
1649 	old = &scratch->mask1;
1650 	new = &scratch->mask2;
1651 
1652 	err = get_nodes(old, old_nodes, maxnode);
1653 	if (err)
1654 		goto out;
1655 
1656 	err = get_nodes(new, new_nodes, maxnode);
1657 	if (err)
1658 		goto out;
1659 
1660 	/* Find the mm_struct */
1661 	rcu_read_lock();
1662 	task = pid ? find_task_by_vpid(pid) : current;
1663 	if (!task) {
1664 		rcu_read_unlock();
1665 		err = -ESRCH;
1666 		goto out;
1667 	}
1668 	get_task_struct(task);
1669 
1670 	err = -EINVAL;
1671 
1672 	/*
1673 	 * Check if this process has the right to modify the specified process.
1674 	 * Use the regular "ptrace_may_access()" checks.
1675 	 */
1676 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1677 		rcu_read_unlock();
1678 		err = -EPERM;
1679 		goto out_put;
1680 	}
1681 	rcu_read_unlock();
1682 
1683 	task_nodes = cpuset_mems_allowed(task);
1684 	/* Is the user allowed to access the target nodes? */
1685 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1686 		err = -EPERM;
1687 		goto out_put;
1688 	}
1689 
1690 	task_nodes = cpuset_mems_allowed(current);
1691 	nodes_and(*new, *new, task_nodes);
1692 	if (nodes_empty(*new))
1693 		goto out_put;
1694 
1695 	err = security_task_movememory(task);
1696 	if (err)
1697 		goto out_put;
1698 
1699 	mm = get_task_mm(task);
1700 	put_task_struct(task);
1701 
1702 	if (!mm) {
1703 		err = -EINVAL;
1704 		goto out;
1705 	}
1706 
1707 	err = do_migrate_pages(mm, old, new,
1708 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1709 
1710 	mmput(mm);
1711 out:
1712 	NODEMASK_SCRATCH_FREE(scratch);
1713 
1714 	return err;
1715 
1716 out_put:
1717 	put_task_struct(task);
1718 	goto out;
1719 }
1720 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1721 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1722 		const unsigned long __user *, old_nodes,
1723 		const unsigned long __user *, new_nodes)
1724 {
1725 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1726 }
1727 
1728 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1729 static int kernel_get_mempolicy(int __user *policy,
1730 				unsigned long __user *nmask,
1731 				unsigned long maxnode,
1732 				unsigned long addr,
1733 				unsigned long flags)
1734 {
1735 	int err;
1736 	int pval;
1737 	nodemask_t nodes;
1738 
1739 	if (nmask != NULL && maxnode < nr_node_ids)
1740 		return -EINVAL;
1741 
1742 	addr = untagged_addr(addr);
1743 
1744 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1745 
1746 	if (err)
1747 		return err;
1748 
1749 	if (policy && put_user(pval, policy))
1750 		return -EFAULT;
1751 
1752 	if (nmask)
1753 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1754 
1755 	return err;
1756 }
1757 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1758 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1759 		unsigned long __user *, nmask, unsigned long, maxnode,
1760 		unsigned long, addr, unsigned long, flags)
1761 {
1762 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1763 }
1764 
vma_migratable(struct vm_area_struct * vma)1765 bool vma_migratable(struct vm_area_struct *vma)
1766 {
1767 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1768 		return false;
1769 
1770 	/*
1771 	 * DAX device mappings require predictable access latency, so avoid
1772 	 * incurring periodic faults.
1773 	 */
1774 	if (vma_is_dax(vma))
1775 		return false;
1776 
1777 	if (is_vm_hugetlb_page(vma) &&
1778 		!hugepage_migration_supported(hstate_vma(vma)))
1779 		return false;
1780 
1781 	/*
1782 	 * Migration allocates pages in the highest zone. If we cannot
1783 	 * do so then migration (at least from node to node) is not
1784 	 * possible.
1785 	 */
1786 	if (vma->vm_file &&
1787 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1788 			< policy_zone)
1789 		return false;
1790 	return true;
1791 }
1792 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)1793 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1794 				   unsigned long addr, pgoff_t *ilx)
1795 {
1796 	*ilx = 0;
1797 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1798 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1799 }
1800 
1801 /*
1802  * get_vma_policy(@vma, @addr, @order, @ilx)
1803  * @vma: virtual memory area whose policy is sought
1804  * @addr: address in @vma for shared policy lookup
1805  * @order: 0, or appropriate huge_page_order for interleaving
1806  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1807  *       MPOL_WEIGHTED_INTERLEAVE
1808  *
1809  * Returns effective policy for a VMA at specified address.
1810  * Falls back to current->mempolicy or system default policy, as necessary.
1811  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1812  * count--added by the get_policy() vm_op, as appropriate--to protect against
1813  * freeing by another task.  It is the caller's responsibility to free the
1814  * extra reference for shared policies.
1815  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr,int order,pgoff_t * ilx)1816 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1817 				 unsigned long addr, int order, pgoff_t *ilx)
1818 {
1819 	struct mempolicy *pol;
1820 
1821 	pol = __get_vma_policy(vma, addr, ilx);
1822 	if (!pol)
1823 		pol = get_task_policy(current);
1824 	if (pol->mode == MPOL_INTERLEAVE ||
1825 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1826 		*ilx += vma->vm_pgoff >> order;
1827 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1828 	}
1829 	return pol;
1830 }
1831 
vma_policy_mof(struct vm_area_struct * vma)1832 bool vma_policy_mof(struct vm_area_struct *vma)
1833 {
1834 	struct mempolicy *pol;
1835 
1836 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1837 		bool ret = false;
1838 		pgoff_t ilx;		/* ignored here */
1839 
1840 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1841 		if (pol && (pol->flags & MPOL_F_MOF))
1842 			ret = true;
1843 		mpol_cond_put(pol);
1844 
1845 		return ret;
1846 	}
1847 
1848 	pol = vma->vm_policy;
1849 	if (!pol)
1850 		pol = get_task_policy(current);
1851 
1852 	return pol->flags & MPOL_F_MOF;
1853 }
1854 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1855 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1856 {
1857 	enum zone_type dynamic_policy_zone = policy_zone;
1858 
1859 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1860 
1861 	/*
1862 	 * if policy->nodes has movable memory only,
1863 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1864 	 *
1865 	 * policy->nodes is intersect with node_states[N_MEMORY].
1866 	 * so if the following test fails, it implies
1867 	 * policy->nodes has movable memory only.
1868 	 */
1869 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1870 		dynamic_policy_zone = ZONE_MOVABLE;
1871 
1872 	return zone >= dynamic_policy_zone;
1873 }
1874 
weighted_interleave_nodes(struct mempolicy * policy)1875 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1876 {
1877 	unsigned int node;
1878 	unsigned int cpuset_mems_cookie;
1879 
1880 retry:
1881 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1882 	cpuset_mems_cookie = read_mems_allowed_begin();
1883 	node = current->il_prev;
1884 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1885 		node = next_node_in(node, policy->nodes);
1886 		if (read_mems_allowed_retry(cpuset_mems_cookie))
1887 			goto retry;
1888 		if (node == MAX_NUMNODES)
1889 			return node;
1890 		current->il_prev = node;
1891 		current->il_weight = get_il_weight(node);
1892 	}
1893 	current->il_weight--;
1894 	return node;
1895 }
1896 
1897 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1898 static unsigned int interleave_nodes(struct mempolicy *policy)
1899 {
1900 	unsigned int nid;
1901 	unsigned int cpuset_mems_cookie;
1902 
1903 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1904 	do {
1905 		cpuset_mems_cookie = read_mems_allowed_begin();
1906 		nid = next_node_in(current->il_prev, policy->nodes);
1907 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1908 
1909 	if (nid < MAX_NUMNODES)
1910 		current->il_prev = nid;
1911 	return nid;
1912 }
1913 
1914 /*
1915  * Depending on the memory policy provide a node from which to allocate the
1916  * next slab entry.
1917  */
mempolicy_slab_node(void)1918 unsigned int mempolicy_slab_node(void)
1919 {
1920 	struct mempolicy *policy;
1921 	int node = numa_mem_id();
1922 
1923 	if (!in_task())
1924 		return node;
1925 
1926 	policy = current->mempolicy;
1927 	if (!policy)
1928 		return node;
1929 
1930 	switch (policy->mode) {
1931 	case MPOL_PREFERRED:
1932 		return first_node(policy->nodes);
1933 
1934 	case MPOL_INTERLEAVE:
1935 		return interleave_nodes(policy);
1936 
1937 	case MPOL_WEIGHTED_INTERLEAVE:
1938 		return weighted_interleave_nodes(policy);
1939 
1940 	case MPOL_BIND:
1941 	case MPOL_PREFERRED_MANY:
1942 	{
1943 		struct zoneref *z;
1944 
1945 		/*
1946 		 * Follow bind policy behavior and start allocation at the
1947 		 * first node.
1948 		 */
1949 		struct zonelist *zonelist;
1950 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1951 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1952 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1953 							&policy->nodes);
1954 		return z->zone ? zone_to_nid(z->zone) : node;
1955 	}
1956 	case MPOL_LOCAL:
1957 		return node;
1958 
1959 	default:
1960 		BUG();
1961 	}
1962 }
1963 
read_once_policy_nodemask(struct mempolicy * pol,nodemask_t * mask)1964 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1965 					      nodemask_t *mask)
1966 {
1967 	/*
1968 	 * barrier stabilizes the nodemask locally so that it can be iterated
1969 	 * over safely without concern for changes. Allocators validate node
1970 	 * selection does not violate mems_allowed, so this is safe.
1971 	 */
1972 	barrier();
1973 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1974 	barrier();
1975 	return nodes_weight(*mask);
1976 }
1977 
weighted_interleave_nid(struct mempolicy * pol,pgoff_t ilx)1978 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1979 {
1980 	nodemask_t nodemask;
1981 	unsigned int target, nr_nodes;
1982 	u8 *table;
1983 	unsigned int weight_total = 0;
1984 	u8 weight;
1985 	int nid;
1986 
1987 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1988 	if (!nr_nodes)
1989 		return numa_node_id();
1990 
1991 	rcu_read_lock();
1992 	table = rcu_dereference(iw_table);
1993 	/* calculate the total weight */
1994 	for_each_node_mask(nid, nodemask) {
1995 		/* detect system default usage */
1996 		weight = table ? table[nid] : 1;
1997 		weight = weight ? weight : 1;
1998 		weight_total += weight;
1999 	}
2000 
2001 	/* Calculate the node offset based on totals */
2002 	target = ilx % weight_total;
2003 	nid = first_node(nodemask);
2004 	while (target) {
2005 		/* detect system default usage */
2006 		weight = table ? table[nid] : 1;
2007 		weight = weight ? weight : 1;
2008 		if (target < weight)
2009 			break;
2010 		target -= weight;
2011 		nid = next_node_in(nid, nodemask);
2012 	}
2013 	rcu_read_unlock();
2014 	return nid;
2015 }
2016 
2017 /*
2018  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2019  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2020  * exceeds the number of present nodes.
2021  */
interleave_nid(struct mempolicy * pol,pgoff_t ilx)2022 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2023 {
2024 	nodemask_t nodemask;
2025 	unsigned int target, nnodes;
2026 	int i;
2027 	int nid;
2028 
2029 	nnodes = read_once_policy_nodemask(pol, &nodemask);
2030 	if (!nnodes)
2031 		return numa_node_id();
2032 	target = ilx % nnodes;
2033 	nid = first_node(nodemask);
2034 	for (i = 0; i < target; i++)
2035 		nid = next_node(nid, nodemask);
2036 	return nid;
2037 }
2038 
2039 /*
2040  * Return a nodemask representing a mempolicy for filtering nodes for
2041  * page allocation, together with preferred node id (or the input node id).
2042  */
policy_nodemask(gfp_t gfp,struct mempolicy * pol,pgoff_t ilx,int * nid)2043 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2044 				   pgoff_t ilx, int *nid)
2045 {
2046 	nodemask_t *nodemask = NULL;
2047 
2048 	switch (pol->mode) {
2049 	case MPOL_PREFERRED:
2050 		/* Override input node id */
2051 		*nid = first_node(pol->nodes);
2052 		break;
2053 	case MPOL_PREFERRED_MANY:
2054 		nodemask = &pol->nodes;
2055 		if (pol->home_node != NUMA_NO_NODE)
2056 			*nid = pol->home_node;
2057 		break;
2058 	case MPOL_BIND:
2059 		/* Restrict to nodemask (but not on lower zones) */
2060 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2061 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2062 			nodemask = &pol->nodes;
2063 		if (pol->home_node != NUMA_NO_NODE)
2064 			*nid = pol->home_node;
2065 		/*
2066 		 * __GFP_THISNODE shouldn't even be used with the bind policy
2067 		 * because we might easily break the expectation to stay on the
2068 		 * requested node and not break the policy.
2069 		 */
2070 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2071 		break;
2072 	case MPOL_INTERLEAVE:
2073 		/* Override input node id */
2074 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2075 			interleave_nodes(pol) : interleave_nid(pol, ilx);
2076 		break;
2077 	case MPOL_WEIGHTED_INTERLEAVE:
2078 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2079 			weighted_interleave_nodes(pol) :
2080 			weighted_interleave_nid(pol, ilx);
2081 		break;
2082 	}
2083 
2084 	return nodemask;
2085 }
2086 
2087 #ifdef CONFIG_HUGETLBFS
2088 /*
2089  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2090  * @vma: virtual memory area whose policy is sought
2091  * @addr: address in @vma for shared policy lookup and interleave policy
2092  * @gfp_flags: for requested zone
2093  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2094  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2095  *
2096  * Returns a nid suitable for a huge page allocation and a pointer
2097  * to the struct mempolicy for conditional unref after allocation.
2098  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2099  * to the mempolicy's @nodemask for filtering the zonelist.
2100  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2101 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2102 		struct mempolicy **mpol, nodemask_t **nodemask)
2103 {
2104 	pgoff_t ilx;
2105 	int nid;
2106 
2107 	nid = numa_node_id();
2108 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2109 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2110 	return nid;
2111 }
2112 
2113 /*
2114  * init_nodemask_of_mempolicy
2115  *
2116  * If the current task's mempolicy is "default" [NULL], return 'false'
2117  * to indicate default policy.  Otherwise, extract the policy nodemask
2118  * for 'bind' or 'interleave' policy into the argument nodemask, or
2119  * initialize the argument nodemask to contain the single node for
2120  * 'preferred' or 'local' policy and return 'true' to indicate presence
2121  * of non-default mempolicy.
2122  *
2123  * We don't bother with reference counting the mempolicy [mpol_get/put]
2124  * because the current task is examining it's own mempolicy and a task's
2125  * mempolicy is only ever changed by the task itself.
2126  *
2127  * N.B., it is the caller's responsibility to free a returned nodemask.
2128  */
init_nodemask_of_mempolicy(nodemask_t * mask)2129 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2130 {
2131 	struct mempolicy *mempolicy;
2132 
2133 	if (!(mask && current->mempolicy))
2134 		return false;
2135 
2136 	task_lock(current);
2137 	mempolicy = current->mempolicy;
2138 	switch (mempolicy->mode) {
2139 	case MPOL_PREFERRED:
2140 	case MPOL_PREFERRED_MANY:
2141 	case MPOL_BIND:
2142 	case MPOL_INTERLEAVE:
2143 	case MPOL_WEIGHTED_INTERLEAVE:
2144 		*mask = mempolicy->nodes;
2145 		break;
2146 
2147 	case MPOL_LOCAL:
2148 		init_nodemask_of_node(mask, numa_node_id());
2149 		break;
2150 
2151 	default:
2152 		BUG();
2153 	}
2154 	task_unlock(current);
2155 
2156 	return true;
2157 }
2158 #endif
2159 
2160 /*
2161  * mempolicy_in_oom_domain
2162  *
2163  * If tsk's mempolicy is "bind", check for intersection between mask and
2164  * the policy nodemask. Otherwise, return true for all other policies
2165  * including "interleave", as a tsk with "interleave" policy may have
2166  * memory allocated from all nodes in system.
2167  *
2168  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2169  */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2170 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2171 					const nodemask_t *mask)
2172 {
2173 	struct mempolicy *mempolicy;
2174 	bool ret = true;
2175 
2176 	if (!mask)
2177 		return ret;
2178 
2179 	task_lock(tsk);
2180 	mempolicy = tsk->mempolicy;
2181 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2182 		ret = nodes_intersects(mempolicy->nodes, *mask);
2183 	task_unlock(tsk);
2184 
2185 	return ret;
2186 }
2187 
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,nodemask_t * nodemask)2188 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2189 						int nid, nodemask_t *nodemask)
2190 {
2191 	struct page *page;
2192 	gfp_t preferred_gfp;
2193 
2194 	/*
2195 	 * This is a two pass approach. The first pass will only try the
2196 	 * preferred nodes but skip the direct reclaim and allow the
2197 	 * allocation to fail, while the second pass will try all the
2198 	 * nodes in system.
2199 	 */
2200 	preferred_gfp = gfp | __GFP_NOWARN;
2201 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2202 	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2203 	if (!page)
2204 		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2205 
2206 	return page;
2207 }
2208 
2209 /**
2210  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2211  * @gfp: GFP flags.
2212  * @order: Order of the page allocation.
2213  * @pol: Pointer to the NUMA mempolicy.
2214  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2215  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2216  *
2217  * Return: The page on success or NULL if allocation fails.
2218  */
alloc_pages_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2219 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2220 		struct mempolicy *pol, pgoff_t ilx, int nid)
2221 {
2222 	nodemask_t *nodemask;
2223 	struct page *page;
2224 
2225 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2226 
2227 	if (pol->mode == MPOL_PREFERRED_MANY)
2228 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2229 
2230 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2231 	    /* filter "hugepage" allocation, unless from alloc_pages() */
2232 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2233 		/*
2234 		 * For hugepage allocation and non-interleave policy which
2235 		 * allows the current node (or other explicitly preferred
2236 		 * node) we only try to allocate from the current/preferred
2237 		 * node and don't fall back to other nodes, as the cost of
2238 		 * remote accesses would likely offset THP benefits.
2239 		 *
2240 		 * If the policy is interleave or does not allow the current
2241 		 * node in its nodemask, we allocate the standard way.
2242 		 */
2243 		if (pol->mode != MPOL_INTERLEAVE &&
2244 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2245 		    (!nodemask || node_isset(nid, *nodemask))) {
2246 			/*
2247 			 * First, try to allocate THP only on local node, but
2248 			 * don't reclaim unnecessarily, just compact.
2249 			 */
2250 			page = __alloc_pages_node_noprof(nid,
2251 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2252 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2253 				return page;
2254 			/*
2255 			 * If hugepage allocations are configured to always
2256 			 * synchronous compact or the vma has been madvised
2257 			 * to prefer hugepage backing, retry allowing remote
2258 			 * memory with both reclaim and compact as well.
2259 			 */
2260 		}
2261 	}
2262 
2263 	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2264 
2265 	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2266 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2267 		if (static_branch_likely(&vm_numa_stat_key) &&
2268 		    page_to_nid(page) == nid) {
2269 			preempt_disable();
2270 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2271 			preempt_enable();
2272 		}
2273 	}
2274 
2275 	return page;
2276 }
2277 
folio_alloc_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2278 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2279 		struct mempolicy *pol, pgoff_t ilx, int nid)
2280 {
2281 	return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2282 							order, pol, ilx, nid));
2283 }
2284 
2285 /**
2286  * vma_alloc_folio - Allocate a folio for a VMA.
2287  * @gfp: GFP flags.
2288  * @order: Order of the folio.
2289  * @vma: Pointer to VMA.
2290  * @addr: Virtual address of the allocation.  Must be inside @vma.
2291  * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2292  *
2293  * Allocate a folio for a specific address in @vma, using the appropriate
2294  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2295  * VMA to prevent it from going away.  Should be used for all allocations
2296  * for folios that will be mapped into user space, excepting hugetlbfs, and
2297  * excepting where direct use of alloc_pages_mpol() is more appropriate.
2298  *
2299  * Return: The folio on success or NULL if allocation fails.
2300  */
vma_alloc_folio_noprof(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,bool hugepage)2301 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2302 		unsigned long addr, bool hugepage)
2303 {
2304 	struct mempolicy *pol;
2305 	pgoff_t ilx;
2306 	struct folio *folio;
2307 
2308 	if (vma->vm_flags & VM_DROPPABLE)
2309 		gfp |= __GFP_NOWARN;
2310 
2311 	pol = get_vma_policy(vma, addr, order, &ilx);
2312 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2313 	mpol_cond_put(pol);
2314 	return folio;
2315 }
2316 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2317 
2318 /**
2319  * alloc_pages - Allocate pages.
2320  * @gfp: GFP flags.
2321  * @order: Power of two of number of pages to allocate.
2322  *
2323  * Allocate 1 << @order contiguous pages.  The physical address of the
2324  * first page is naturally aligned (eg an order-3 allocation will be aligned
2325  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2326  * process is honoured when in process context.
2327  *
2328  * Context: Can be called from any context, providing the appropriate GFP
2329  * flags are used.
2330  * Return: The page on success or NULL if allocation fails.
2331  */
alloc_pages_noprof(gfp_t gfp,unsigned int order)2332 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2333 {
2334 	struct mempolicy *pol = &default_policy;
2335 
2336 	/*
2337 	 * No reference counting needed for current->mempolicy
2338 	 * nor system default_policy
2339 	 */
2340 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2341 		pol = get_task_policy(current);
2342 
2343 	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2344 				       numa_node_id());
2345 }
2346 EXPORT_SYMBOL(alloc_pages_noprof);
2347 
folio_alloc_noprof(gfp_t gfp,unsigned int order)2348 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2349 {
2350 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2351 }
2352 EXPORT_SYMBOL(folio_alloc_noprof);
2353 
alloc_pages_bulk_array_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2354 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2355 		struct mempolicy *pol, unsigned long nr_pages,
2356 		struct page **page_array)
2357 {
2358 	int nodes;
2359 	unsigned long nr_pages_per_node;
2360 	int delta;
2361 	int i;
2362 	unsigned long nr_allocated;
2363 	unsigned long total_allocated = 0;
2364 
2365 	nodes = nodes_weight(pol->nodes);
2366 	nr_pages_per_node = nr_pages / nodes;
2367 	delta = nr_pages - nodes * nr_pages_per_node;
2368 
2369 	for (i = 0; i < nodes; i++) {
2370 		if (delta) {
2371 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2372 					interleave_nodes(pol), NULL,
2373 					nr_pages_per_node + 1, NULL,
2374 					page_array);
2375 			delta--;
2376 		} else {
2377 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2378 					interleave_nodes(pol), NULL,
2379 					nr_pages_per_node, NULL, page_array);
2380 		}
2381 
2382 		page_array += nr_allocated;
2383 		total_allocated += nr_allocated;
2384 	}
2385 
2386 	return total_allocated;
2387 }
2388 
alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2389 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2390 		struct mempolicy *pol, unsigned long nr_pages,
2391 		struct page **page_array)
2392 {
2393 	struct task_struct *me = current;
2394 	unsigned int cpuset_mems_cookie;
2395 	unsigned long total_allocated = 0;
2396 	unsigned long nr_allocated = 0;
2397 	unsigned long rounds;
2398 	unsigned long node_pages, delta;
2399 	u8 *table, *weights, weight;
2400 	unsigned int weight_total = 0;
2401 	unsigned long rem_pages = nr_pages;
2402 	nodemask_t nodes;
2403 	int nnodes, node;
2404 	int resume_node = MAX_NUMNODES - 1;
2405 	u8 resume_weight = 0;
2406 	int prev_node;
2407 	int i;
2408 
2409 	if (!nr_pages)
2410 		return 0;
2411 
2412 	/* read the nodes onto the stack, retry if done during rebind */
2413 	do {
2414 		cpuset_mems_cookie = read_mems_allowed_begin();
2415 		nnodes = read_once_policy_nodemask(pol, &nodes);
2416 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2417 
2418 	/* if the nodemask has become invalid, we cannot do anything */
2419 	if (!nnodes)
2420 		return 0;
2421 
2422 	/* Continue allocating from most recent node and adjust the nr_pages */
2423 	node = me->il_prev;
2424 	weight = me->il_weight;
2425 	if (weight && node_isset(node, nodes)) {
2426 		node_pages = min(rem_pages, weight);
2427 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2428 						  NULL, page_array);
2429 		page_array += nr_allocated;
2430 		total_allocated += nr_allocated;
2431 		/* if that's all the pages, no need to interleave */
2432 		if (rem_pages <= weight) {
2433 			me->il_weight -= rem_pages;
2434 			return total_allocated;
2435 		}
2436 		/* Otherwise we adjust remaining pages, continue from there */
2437 		rem_pages -= weight;
2438 	}
2439 	/* clear active weight in case of an allocation failure */
2440 	me->il_weight = 0;
2441 	prev_node = node;
2442 
2443 	/* create a local copy of node weights to operate on outside rcu */
2444 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2445 	if (!weights)
2446 		return total_allocated;
2447 
2448 	rcu_read_lock();
2449 	table = rcu_dereference(iw_table);
2450 	if (table)
2451 		memcpy(weights, table, nr_node_ids);
2452 	rcu_read_unlock();
2453 
2454 	/* calculate total, detect system default usage */
2455 	for_each_node_mask(node, nodes) {
2456 		if (!weights[node])
2457 			weights[node] = 1;
2458 		weight_total += weights[node];
2459 	}
2460 
2461 	/*
2462 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2463 	 * Track which node weighted interleave should resume from.
2464 	 *
2465 	 * if (rounds > 0) and (delta == 0), resume_node will always be
2466 	 * the node following prev_node and its weight.
2467 	 */
2468 	rounds = rem_pages / weight_total;
2469 	delta = rem_pages % weight_total;
2470 	resume_node = next_node_in(prev_node, nodes);
2471 	resume_weight = weights[resume_node];
2472 	for (i = 0; i < nnodes; i++) {
2473 		node = next_node_in(prev_node, nodes);
2474 		weight = weights[node];
2475 		node_pages = weight * rounds;
2476 		/* If a delta exists, add this node's portion of the delta */
2477 		if (delta > weight) {
2478 			node_pages += weight;
2479 			delta -= weight;
2480 		} else if (delta) {
2481 			/* when delta is depleted, resume from that node */
2482 			node_pages += delta;
2483 			resume_node = node;
2484 			resume_weight = weight - delta;
2485 			delta = 0;
2486 		}
2487 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2488 		if (!node_pages)
2489 			break;
2490 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2491 						  NULL, page_array);
2492 		page_array += nr_allocated;
2493 		total_allocated += nr_allocated;
2494 		if (total_allocated == nr_pages)
2495 			break;
2496 		prev_node = node;
2497 	}
2498 	me->il_prev = resume_node;
2499 	me->il_weight = resume_weight;
2500 	kfree(weights);
2501 	return total_allocated;
2502 }
2503 
alloc_pages_bulk_array_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2504 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2505 		struct mempolicy *pol, unsigned long nr_pages,
2506 		struct page **page_array)
2507 {
2508 	gfp_t preferred_gfp;
2509 	unsigned long nr_allocated = 0;
2510 
2511 	preferred_gfp = gfp | __GFP_NOWARN;
2512 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2513 
2514 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2515 					   nr_pages, NULL, page_array);
2516 
2517 	if (nr_allocated < nr_pages)
2518 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2519 				nr_pages - nr_allocated, NULL,
2520 				page_array + nr_allocated);
2521 	return nr_allocated;
2522 }
2523 
2524 /* alloc pages bulk and mempolicy should be considered at the
2525  * same time in some situation such as vmalloc.
2526  *
2527  * It can accelerate memory allocation especially interleaving
2528  * allocate memory.
2529  */
alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2530 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2531 		unsigned long nr_pages, struct page **page_array)
2532 {
2533 	struct mempolicy *pol = &default_policy;
2534 	nodemask_t *nodemask;
2535 	int nid;
2536 
2537 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2538 		pol = get_task_policy(current);
2539 
2540 	if (pol->mode == MPOL_INTERLEAVE)
2541 		return alloc_pages_bulk_array_interleave(gfp, pol,
2542 							 nr_pages, page_array);
2543 
2544 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2545 		return alloc_pages_bulk_array_weighted_interleave(
2546 				  gfp, pol, nr_pages, page_array);
2547 
2548 	if (pol->mode == MPOL_PREFERRED_MANY)
2549 		return alloc_pages_bulk_array_preferred_many(gfp,
2550 				numa_node_id(), pol, nr_pages, page_array);
2551 
2552 	nid = numa_node_id();
2553 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2554 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2555 				       nr_pages, NULL, page_array);
2556 }
2557 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2558 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2559 {
2560 	struct mempolicy *pol = mpol_dup(src->vm_policy);
2561 
2562 	if (IS_ERR(pol))
2563 		return PTR_ERR(pol);
2564 	dst->vm_policy = pol;
2565 	return 0;
2566 }
2567 
2568 /*
2569  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2570  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2571  * with the mems_allowed returned by cpuset_mems_allowed().  This
2572  * keeps mempolicies cpuset relative after its cpuset moves.  See
2573  * further kernel/cpuset.c update_nodemask().
2574  *
2575  * current's mempolicy may be rebinded by the other task(the task that changes
2576  * cpuset's mems), so we needn't do rebind work for current task.
2577  */
2578 
2579 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2580 struct mempolicy *__mpol_dup(struct mempolicy *old)
2581 {
2582 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2583 
2584 	if (!new)
2585 		return ERR_PTR(-ENOMEM);
2586 
2587 	/* task's mempolicy is protected by alloc_lock */
2588 	if (old == current->mempolicy) {
2589 		task_lock(current);
2590 		*new = *old;
2591 		task_unlock(current);
2592 	} else
2593 		*new = *old;
2594 
2595 	if (current_cpuset_is_being_rebound()) {
2596 		nodemask_t mems = cpuset_mems_allowed(current);
2597 		mpol_rebind_policy(new, &mems);
2598 	}
2599 	atomic_set(&new->refcnt, 1);
2600 	return new;
2601 }
2602 
2603 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2604 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2605 {
2606 	if (!a || !b)
2607 		return false;
2608 	if (a->mode != b->mode)
2609 		return false;
2610 	if (a->flags != b->flags)
2611 		return false;
2612 	if (a->home_node != b->home_node)
2613 		return false;
2614 	if (mpol_store_user_nodemask(a))
2615 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2616 			return false;
2617 
2618 	switch (a->mode) {
2619 	case MPOL_BIND:
2620 	case MPOL_INTERLEAVE:
2621 	case MPOL_PREFERRED:
2622 	case MPOL_PREFERRED_MANY:
2623 	case MPOL_WEIGHTED_INTERLEAVE:
2624 		return !!nodes_equal(a->nodes, b->nodes);
2625 	case MPOL_LOCAL:
2626 		return true;
2627 	default:
2628 		BUG();
2629 		return false;
2630 	}
2631 }
2632 
2633 /*
2634  * Shared memory backing store policy support.
2635  *
2636  * Remember policies even when nobody has shared memory mapped.
2637  * The policies are kept in Red-Black tree linked from the inode.
2638  * They are protected by the sp->lock rwlock, which should be held
2639  * for any accesses to the tree.
2640  */
2641 
2642 /*
2643  * lookup first element intersecting start-end.  Caller holds sp->lock for
2644  * reading or for writing
2645  */
sp_lookup(struct shared_policy * sp,pgoff_t start,pgoff_t end)2646 static struct sp_node *sp_lookup(struct shared_policy *sp,
2647 					pgoff_t start, pgoff_t end)
2648 {
2649 	struct rb_node *n = sp->root.rb_node;
2650 
2651 	while (n) {
2652 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2653 
2654 		if (start >= p->end)
2655 			n = n->rb_right;
2656 		else if (end <= p->start)
2657 			n = n->rb_left;
2658 		else
2659 			break;
2660 	}
2661 	if (!n)
2662 		return NULL;
2663 	for (;;) {
2664 		struct sp_node *w = NULL;
2665 		struct rb_node *prev = rb_prev(n);
2666 		if (!prev)
2667 			break;
2668 		w = rb_entry(prev, struct sp_node, nd);
2669 		if (w->end <= start)
2670 			break;
2671 		n = prev;
2672 	}
2673 	return rb_entry(n, struct sp_node, nd);
2674 }
2675 
2676 /*
2677  * Insert a new shared policy into the list.  Caller holds sp->lock for
2678  * writing.
2679  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2680 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2681 {
2682 	struct rb_node **p = &sp->root.rb_node;
2683 	struct rb_node *parent = NULL;
2684 	struct sp_node *nd;
2685 
2686 	while (*p) {
2687 		parent = *p;
2688 		nd = rb_entry(parent, struct sp_node, nd);
2689 		if (new->start < nd->start)
2690 			p = &(*p)->rb_left;
2691 		else if (new->end > nd->end)
2692 			p = &(*p)->rb_right;
2693 		else
2694 			BUG();
2695 	}
2696 	rb_link_node(&new->nd, parent, p);
2697 	rb_insert_color(&new->nd, &sp->root);
2698 }
2699 
2700 /* Find shared policy intersecting idx */
mpol_shared_policy_lookup(struct shared_policy * sp,pgoff_t idx)2701 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2702 						pgoff_t idx)
2703 {
2704 	struct mempolicy *pol = NULL;
2705 	struct sp_node *sn;
2706 
2707 	if (!sp->root.rb_node)
2708 		return NULL;
2709 	read_lock(&sp->lock);
2710 	sn = sp_lookup(sp, idx, idx+1);
2711 	if (sn) {
2712 		mpol_get(sn->policy);
2713 		pol = sn->policy;
2714 	}
2715 	read_unlock(&sp->lock);
2716 	return pol;
2717 }
2718 
sp_free(struct sp_node * n)2719 static void sp_free(struct sp_node *n)
2720 {
2721 	mpol_put(n->policy);
2722 	kmem_cache_free(sn_cache, n);
2723 }
2724 
2725 /**
2726  * mpol_misplaced - check whether current folio node is valid in policy
2727  *
2728  * @folio: folio to be checked
2729  * @vmf: structure describing the fault
2730  * @addr: virtual address in @vma for shared policy lookup and interleave policy
2731  *
2732  * Lookup current policy node id for vma,addr and "compare to" folio's
2733  * node id.  Policy determination "mimics" alloc_page_vma().
2734  * Called from fault path where we know the vma and faulting address.
2735  *
2736  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2737  * policy, or a suitable node ID to allocate a replacement folio from.
2738  */
mpol_misplaced(struct folio * folio,struct vm_fault * vmf,unsigned long addr)2739 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2740 		   unsigned long addr)
2741 {
2742 	struct mempolicy *pol;
2743 	pgoff_t ilx;
2744 	struct zoneref *z;
2745 	int curnid = folio_nid(folio);
2746 	struct vm_area_struct *vma = vmf->vma;
2747 	int thiscpu = raw_smp_processor_id();
2748 	int thisnid = numa_node_id();
2749 	int polnid = NUMA_NO_NODE;
2750 	int ret = NUMA_NO_NODE;
2751 
2752 	/*
2753 	 * Make sure ptl is held so that we don't preempt and we
2754 	 * have a stable smp processor id
2755 	 */
2756 	lockdep_assert_held(vmf->ptl);
2757 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2758 	if (!(pol->flags & MPOL_F_MOF))
2759 		goto out;
2760 
2761 	switch (pol->mode) {
2762 	case MPOL_INTERLEAVE:
2763 		polnid = interleave_nid(pol, ilx);
2764 		break;
2765 
2766 	case MPOL_WEIGHTED_INTERLEAVE:
2767 		polnid = weighted_interleave_nid(pol, ilx);
2768 		break;
2769 
2770 	case MPOL_PREFERRED:
2771 		if (node_isset(curnid, pol->nodes))
2772 			goto out;
2773 		polnid = first_node(pol->nodes);
2774 		break;
2775 
2776 	case MPOL_LOCAL:
2777 		polnid = numa_node_id();
2778 		break;
2779 
2780 	case MPOL_BIND:
2781 	case MPOL_PREFERRED_MANY:
2782 		/*
2783 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2784 		 * policy nodemask we don't allow numa migration to nodes
2785 		 * outside policy nodemask for now. This is done so that if we
2786 		 * want demotion to slow memory to happen, before allocating
2787 		 * from some DRAM node say 'x', we will end up using a
2788 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2789 		 * we should not promote to node 'x' from slow memory node.
2790 		 */
2791 		if (pol->flags & MPOL_F_MORON) {
2792 			/*
2793 			 * Optimize placement among multiple nodes
2794 			 * via NUMA balancing
2795 			 */
2796 			if (node_isset(thisnid, pol->nodes))
2797 				break;
2798 			goto out;
2799 		}
2800 
2801 		/*
2802 		 * use current page if in policy nodemask,
2803 		 * else select nearest allowed node, if any.
2804 		 * If no allowed nodes, use current [!misplaced].
2805 		 */
2806 		if (node_isset(curnid, pol->nodes))
2807 			goto out;
2808 		z = first_zones_zonelist(
2809 				node_zonelist(thisnid, GFP_HIGHUSER),
2810 				gfp_zone(GFP_HIGHUSER),
2811 				&pol->nodes);
2812 		polnid = zone_to_nid(z->zone);
2813 		break;
2814 
2815 	default:
2816 		BUG();
2817 	}
2818 
2819 	/* Migrate the folio towards the node whose CPU is referencing it */
2820 	if (pol->flags & MPOL_F_MORON) {
2821 		polnid = thisnid;
2822 
2823 		if (!should_numa_migrate_memory(current, folio, curnid,
2824 						thiscpu))
2825 			goto out;
2826 	}
2827 
2828 	if (curnid != polnid)
2829 		ret = polnid;
2830 out:
2831 	mpol_cond_put(pol);
2832 
2833 	return ret;
2834 }
2835 
2836 /*
2837  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2838  * dropped after task->mempolicy is set to NULL so that any allocation done as
2839  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2840  * policy.
2841  */
mpol_put_task_policy(struct task_struct * task)2842 void mpol_put_task_policy(struct task_struct *task)
2843 {
2844 	struct mempolicy *pol;
2845 
2846 	task_lock(task);
2847 	pol = task->mempolicy;
2848 	task->mempolicy = NULL;
2849 	task_unlock(task);
2850 	mpol_put(pol);
2851 }
2852 
sp_delete(struct shared_policy * sp,struct sp_node * n)2853 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2854 {
2855 	rb_erase(&n->nd, &sp->root);
2856 	sp_free(n);
2857 }
2858 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2859 static void sp_node_init(struct sp_node *node, unsigned long start,
2860 			unsigned long end, struct mempolicy *pol)
2861 {
2862 	node->start = start;
2863 	node->end = end;
2864 	node->policy = pol;
2865 }
2866 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2867 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2868 				struct mempolicy *pol)
2869 {
2870 	struct sp_node *n;
2871 	struct mempolicy *newpol;
2872 
2873 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2874 	if (!n)
2875 		return NULL;
2876 
2877 	newpol = mpol_dup(pol);
2878 	if (IS_ERR(newpol)) {
2879 		kmem_cache_free(sn_cache, n);
2880 		return NULL;
2881 	}
2882 	newpol->flags |= MPOL_F_SHARED;
2883 	sp_node_init(n, start, end, newpol);
2884 
2885 	return n;
2886 }
2887 
2888 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,pgoff_t start,pgoff_t end,struct sp_node * new)2889 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2890 				 pgoff_t end, struct sp_node *new)
2891 {
2892 	struct sp_node *n;
2893 	struct sp_node *n_new = NULL;
2894 	struct mempolicy *mpol_new = NULL;
2895 	int ret = 0;
2896 
2897 restart:
2898 	write_lock(&sp->lock);
2899 	n = sp_lookup(sp, start, end);
2900 	/* Take care of old policies in the same range. */
2901 	while (n && n->start < end) {
2902 		struct rb_node *next = rb_next(&n->nd);
2903 		if (n->start >= start) {
2904 			if (n->end <= end)
2905 				sp_delete(sp, n);
2906 			else
2907 				n->start = end;
2908 		} else {
2909 			/* Old policy spanning whole new range. */
2910 			if (n->end > end) {
2911 				if (!n_new)
2912 					goto alloc_new;
2913 
2914 				*mpol_new = *n->policy;
2915 				atomic_set(&mpol_new->refcnt, 1);
2916 				sp_node_init(n_new, end, n->end, mpol_new);
2917 				n->end = start;
2918 				sp_insert(sp, n_new);
2919 				n_new = NULL;
2920 				mpol_new = NULL;
2921 				break;
2922 			} else
2923 				n->end = start;
2924 		}
2925 		if (!next)
2926 			break;
2927 		n = rb_entry(next, struct sp_node, nd);
2928 	}
2929 	if (new)
2930 		sp_insert(sp, new);
2931 	write_unlock(&sp->lock);
2932 	ret = 0;
2933 
2934 err_out:
2935 	if (mpol_new)
2936 		mpol_put(mpol_new);
2937 	if (n_new)
2938 		kmem_cache_free(sn_cache, n_new);
2939 
2940 	return ret;
2941 
2942 alloc_new:
2943 	write_unlock(&sp->lock);
2944 	ret = -ENOMEM;
2945 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2946 	if (!n_new)
2947 		goto err_out;
2948 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2949 	if (!mpol_new)
2950 		goto err_out;
2951 	atomic_set(&mpol_new->refcnt, 1);
2952 	goto restart;
2953 }
2954 
2955 /**
2956  * mpol_shared_policy_init - initialize shared policy for inode
2957  * @sp: pointer to inode shared policy
2958  * @mpol:  struct mempolicy to install
2959  *
2960  * Install non-NULL @mpol in inode's shared policy rb-tree.
2961  * On entry, the current task has a reference on a non-NULL @mpol.
2962  * This must be released on exit.
2963  * This is called at get_inode() calls and we can use GFP_KERNEL.
2964  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2965 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2966 {
2967 	int ret;
2968 
2969 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2970 	rwlock_init(&sp->lock);
2971 
2972 	if (mpol) {
2973 		struct sp_node *sn;
2974 		struct mempolicy *npol;
2975 		NODEMASK_SCRATCH(scratch);
2976 
2977 		if (!scratch)
2978 			goto put_mpol;
2979 
2980 		/* contextualize the tmpfs mount point mempolicy to this file */
2981 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2982 		if (IS_ERR(npol))
2983 			goto free_scratch; /* no valid nodemask intersection */
2984 
2985 		task_lock(current);
2986 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2987 		task_unlock(current);
2988 		if (ret)
2989 			goto put_npol;
2990 
2991 		/* alloc node covering entire file; adds ref to file's npol */
2992 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2993 		if (sn)
2994 			sp_insert(sp, sn);
2995 put_npol:
2996 		mpol_put(npol);	/* drop initial ref on file's npol */
2997 free_scratch:
2998 		NODEMASK_SCRATCH_FREE(scratch);
2999 put_mpol:
3000 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
3001 	}
3002 }
3003 
mpol_set_shared_policy(struct shared_policy * sp,struct vm_area_struct * vma,struct mempolicy * pol)3004 int mpol_set_shared_policy(struct shared_policy *sp,
3005 			struct vm_area_struct *vma, struct mempolicy *pol)
3006 {
3007 	int err;
3008 	struct sp_node *new = NULL;
3009 	unsigned long sz = vma_pages(vma);
3010 
3011 	if (pol) {
3012 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3013 		if (!new)
3014 			return -ENOMEM;
3015 	}
3016 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3017 	if (err && new)
3018 		sp_free(new);
3019 	return err;
3020 }
3021 
3022 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * sp)3023 void mpol_free_shared_policy(struct shared_policy *sp)
3024 {
3025 	struct sp_node *n;
3026 	struct rb_node *next;
3027 
3028 	if (!sp->root.rb_node)
3029 		return;
3030 	write_lock(&sp->lock);
3031 	next = rb_first(&sp->root);
3032 	while (next) {
3033 		n = rb_entry(next, struct sp_node, nd);
3034 		next = rb_next(&n->nd);
3035 		sp_delete(sp, n);
3036 	}
3037 	write_unlock(&sp->lock);
3038 }
3039 
3040 #ifdef CONFIG_NUMA_BALANCING
3041 static int __initdata numabalancing_override;
3042 
check_numabalancing_enable(void)3043 static void __init check_numabalancing_enable(void)
3044 {
3045 	bool numabalancing_default = false;
3046 
3047 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3048 		numabalancing_default = true;
3049 
3050 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3051 	if (numabalancing_override)
3052 		set_numabalancing_state(numabalancing_override == 1);
3053 
3054 	if (num_online_nodes() > 1 && !numabalancing_override) {
3055 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3056 			numabalancing_default ? "Enabling" : "Disabling");
3057 		set_numabalancing_state(numabalancing_default);
3058 	}
3059 }
3060 
setup_numabalancing(char * str)3061 static int __init setup_numabalancing(char *str)
3062 {
3063 	int ret = 0;
3064 	if (!str)
3065 		goto out;
3066 
3067 	if (!strcmp(str, "enable")) {
3068 		numabalancing_override = 1;
3069 		ret = 1;
3070 	} else if (!strcmp(str, "disable")) {
3071 		numabalancing_override = -1;
3072 		ret = 1;
3073 	}
3074 out:
3075 	if (!ret)
3076 		pr_warn("Unable to parse numa_balancing=\n");
3077 
3078 	return ret;
3079 }
3080 __setup("numa_balancing=", setup_numabalancing);
3081 #else
check_numabalancing_enable(void)3082 static inline void __init check_numabalancing_enable(void)
3083 {
3084 }
3085 #endif /* CONFIG_NUMA_BALANCING */
3086 
numa_policy_init(void)3087 void __init numa_policy_init(void)
3088 {
3089 	nodemask_t interleave_nodes;
3090 	unsigned long largest = 0;
3091 	int nid, prefer = 0;
3092 
3093 	policy_cache = kmem_cache_create("numa_policy",
3094 					 sizeof(struct mempolicy),
3095 					 0, SLAB_PANIC, NULL);
3096 
3097 	sn_cache = kmem_cache_create("shared_policy_node",
3098 				     sizeof(struct sp_node),
3099 				     0, SLAB_PANIC, NULL);
3100 
3101 	for_each_node(nid) {
3102 		preferred_node_policy[nid] = (struct mempolicy) {
3103 			.refcnt = ATOMIC_INIT(1),
3104 			.mode = MPOL_PREFERRED,
3105 			.flags = MPOL_F_MOF | MPOL_F_MORON,
3106 			.nodes = nodemask_of_node(nid),
3107 		};
3108 	}
3109 
3110 	/*
3111 	 * Set interleaving policy for system init. Interleaving is only
3112 	 * enabled across suitably sized nodes (default is >= 16MB), or
3113 	 * fall back to the largest node if they're all smaller.
3114 	 */
3115 	nodes_clear(interleave_nodes);
3116 	for_each_node_state(nid, N_MEMORY) {
3117 		unsigned long total_pages = node_present_pages(nid);
3118 
3119 		/* Preserve the largest node */
3120 		if (largest < total_pages) {
3121 			largest = total_pages;
3122 			prefer = nid;
3123 		}
3124 
3125 		/* Interleave this node? */
3126 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3127 			node_set(nid, interleave_nodes);
3128 	}
3129 
3130 	/* All too small, use the largest */
3131 	if (unlikely(nodes_empty(interleave_nodes)))
3132 		node_set(prefer, interleave_nodes);
3133 
3134 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3135 		pr_err("%s: interleaving failed\n", __func__);
3136 
3137 	check_numabalancing_enable();
3138 }
3139 
3140 /* Reset policy of current process to default */
numa_default_policy(void)3141 void numa_default_policy(void)
3142 {
3143 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3144 }
3145 
3146 /*
3147  * Parse and format mempolicy from/to strings
3148  */
3149 static const char * const policy_modes[] =
3150 {
3151 	[MPOL_DEFAULT]    = "default",
3152 	[MPOL_PREFERRED]  = "prefer",
3153 	[MPOL_BIND]       = "bind",
3154 	[MPOL_INTERLEAVE] = "interleave",
3155 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3156 	[MPOL_LOCAL]      = "local",
3157 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3158 };
3159 
3160 #ifdef CONFIG_TMPFS
3161 /**
3162  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3163  * @str:  string containing mempolicy to parse
3164  * @mpol:  pointer to struct mempolicy pointer, returned on success.
3165  *
3166  * Format of input:
3167  *	<mode>[=<flags>][:<nodelist>]
3168  *
3169  * Return: %0 on success, else %1
3170  */
mpol_parse_str(char * str,struct mempolicy ** mpol)3171 int mpol_parse_str(char *str, struct mempolicy **mpol)
3172 {
3173 	struct mempolicy *new = NULL;
3174 	unsigned short mode_flags;
3175 	nodemask_t nodes;
3176 	char *nodelist = strchr(str, ':');
3177 	char *flags = strchr(str, '=');
3178 	int err = 1, mode;
3179 
3180 	if (flags)
3181 		*flags++ = '\0';	/* terminate mode string */
3182 
3183 	if (nodelist) {
3184 		/* NUL-terminate mode or flags string */
3185 		*nodelist++ = '\0';
3186 		if (nodelist_parse(nodelist, nodes))
3187 			goto out;
3188 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3189 			goto out;
3190 	} else
3191 		nodes_clear(nodes);
3192 
3193 	mode = match_string(policy_modes, MPOL_MAX, str);
3194 	if (mode < 0)
3195 		goto out;
3196 
3197 	switch (mode) {
3198 	case MPOL_PREFERRED:
3199 		/*
3200 		 * Insist on a nodelist of one node only, although later
3201 		 * we use first_node(nodes) to grab a single node, so here
3202 		 * nodelist (or nodes) cannot be empty.
3203 		 */
3204 		if (nodelist) {
3205 			char *rest = nodelist;
3206 			while (isdigit(*rest))
3207 				rest++;
3208 			if (*rest)
3209 				goto out;
3210 			if (nodes_empty(nodes))
3211 				goto out;
3212 		}
3213 		break;
3214 	case MPOL_INTERLEAVE:
3215 	case MPOL_WEIGHTED_INTERLEAVE:
3216 		/*
3217 		 * Default to online nodes with memory if no nodelist
3218 		 */
3219 		if (!nodelist)
3220 			nodes = node_states[N_MEMORY];
3221 		break;
3222 	case MPOL_LOCAL:
3223 		/*
3224 		 * Don't allow a nodelist;  mpol_new() checks flags
3225 		 */
3226 		if (nodelist)
3227 			goto out;
3228 		break;
3229 	case MPOL_DEFAULT:
3230 		/*
3231 		 * Insist on a empty nodelist
3232 		 */
3233 		if (!nodelist)
3234 			err = 0;
3235 		goto out;
3236 	case MPOL_PREFERRED_MANY:
3237 	case MPOL_BIND:
3238 		/*
3239 		 * Insist on a nodelist
3240 		 */
3241 		if (!nodelist)
3242 			goto out;
3243 	}
3244 
3245 	mode_flags = 0;
3246 	if (flags) {
3247 		/*
3248 		 * Currently, we only support two mutually exclusive
3249 		 * mode flags.
3250 		 */
3251 		if (!strcmp(flags, "static"))
3252 			mode_flags |= MPOL_F_STATIC_NODES;
3253 		else if (!strcmp(flags, "relative"))
3254 			mode_flags |= MPOL_F_RELATIVE_NODES;
3255 		else
3256 			goto out;
3257 	}
3258 
3259 	new = mpol_new(mode, mode_flags, &nodes);
3260 	if (IS_ERR(new))
3261 		goto out;
3262 
3263 	/*
3264 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3265 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3266 	 */
3267 	if (mode != MPOL_PREFERRED) {
3268 		new->nodes = nodes;
3269 	} else if (nodelist) {
3270 		nodes_clear(new->nodes);
3271 		node_set(first_node(nodes), new->nodes);
3272 	} else {
3273 		new->mode = MPOL_LOCAL;
3274 	}
3275 
3276 	/*
3277 	 * Save nodes for contextualization: this will be used to "clone"
3278 	 * the mempolicy in a specific context [cpuset] at a later time.
3279 	 */
3280 	new->w.user_nodemask = nodes;
3281 
3282 	err = 0;
3283 
3284 out:
3285 	/* Restore string for error message */
3286 	if (nodelist)
3287 		*--nodelist = ':';
3288 	if (flags)
3289 		*--flags = '=';
3290 	if (!err)
3291 		*mpol = new;
3292 	return err;
3293 }
3294 #endif /* CONFIG_TMPFS */
3295 
3296 /**
3297  * mpol_to_str - format a mempolicy structure for printing
3298  * @buffer:  to contain formatted mempolicy string
3299  * @maxlen:  length of @buffer
3300  * @pol:  pointer to mempolicy to be formatted
3301  *
3302  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3303  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3304  * interleave", plus the longest flag flags, "relative|balancing", and to
3305  * display at least a few node ids.
3306  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3307 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3308 {
3309 	char *p = buffer;
3310 	nodemask_t nodes = NODE_MASK_NONE;
3311 	unsigned short mode = MPOL_DEFAULT;
3312 	unsigned short flags = 0;
3313 
3314 	if (pol &&
3315 	    pol != &default_policy &&
3316 	    !(pol >= &preferred_node_policy[0] &&
3317 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3318 		mode = pol->mode;
3319 		flags = pol->flags;
3320 	}
3321 
3322 	switch (mode) {
3323 	case MPOL_DEFAULT:
3324 	case MPOL_LOCAL:
3325 		break;
3326 	case MPOL_PREFERRED:
3327 	case MPOL_PREFERRED_MANY:
3328 	case MPOL_BIND:
3329 	case MPOL_INTERLEAVE:
3330 	case MPOL_WEIGHTED_INTERLEAVE:
3331 		nodes = pol->nodes;
3332 		break;
3333 	default:
3334 		WARN_ON_ONCE(1);
3335 		snprintf(p, maxlen, "unknown");
3336 		return;
3337 	}
3338 
3339 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3340 
3341 	if (flags & MPOL_MODE_FLAGS) {
3342 		p += snprintf(p, buffer + maxlen - p, "=");
3343 
3344 		/*
3345 		 * Static and relative are mutually exclusive.
3346 		 */
3347 		if (flags & MPOL_F_STATIC_NODES)
3348 			p += snprintf(p, buffer + maxlen - p, "static");
3349 		else if (flags & MPOL_F_RELATIVE_NODES)
3350 			p += snprintf(p, buffer + maxlen - p, "relative");
3351 
3352 		if (flags & MPOL_F_NUMA_BALANCING) {
3353 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3354 				p += snprintf(p, buffer + maxlen - p, "|");
3355 			p += snprintf(p, buffer + maxlen - p, "balancing");
3356 		}
3357 	}
3358 
3359 	if (!nodes_empty(nodes))
3360 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3361 			       nodemask_pr_args(&nodes));
3362 }
3363 
3364 #ifdef CONFIG_SYSFS
3365 struct iw_node_attr {
3366 	struct kobj_attribute kobj_attr;
3367 	int nid;
3368 };
3369 
node_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3370 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3371 			 char *buf)
3372 {
3373 	struct iw_node_attr *node_attr;
3374 	u8 weight;
3375 
3376 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3377 	weight = get_il_weight(node_attr->nid);
3378 	return sysfs_emit(buf, "%d\n", weight);
3379 }
3380 
node_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3381 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3382 			  const char *buf, size_t count)
3383 {
3384 	struct iw_node_attr *node_attr;
3385 	u8 *new;
3386 	u8 *old;
3387 	u8 weight = 0;
3388 
3389 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3390 	if (count == 0 || sysfs_streq(buf, ""))
3391 		weight = 0;
3392 	else if (kstrtou8(buf, 0, &weight))
3393 		return -EINVAL;
3394 
3395 	new = kzalloc(nr_node_ids, GFP_KERNEL);
3396 	if (!new)
3397 		return -ENOMEM;
3398 
3399 	mutex_lock(&iw_table_lock);
3400 	old = rcu_dereference_protected(iw_table,
3401 					lockdep_is_held(&iw_table_lock));
3402 	if (old)
3403 		memcpy(new, old, nr_node_ids);
3404 	new[node_attr->nid] = weight;
3405 	rcu_assign_pointer(iw_table, new);
3406 	mutex_unlock(&iw_table_lock);
3407 	synchronize_rcu();
3408 	kfree(old);
3409 	return count;
3410 }
3411 
3412 static struct iw_node_attr **node_attrs;
3413 
sysfs_wi_node_release(struct iw_node_attr * node_attr,struct kobject * parent)3414 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3415 				  struct kobject *parent)
3416 {
3417 	if (!node_attr)
3418 		return;
3419 	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3420 	kfree(node_attr->kobj_attr.attr.name);
3421 	kfree(node_attr);
3422 }
3423 
sysfs_wi_release(struct kobject * wi_kobj)3424 static void sysfs_wi_release(struct kobject *wi_kobj)
3425 {
3426 	int i;
3427 
3428 	for (i = 0; i < nr_node_ids; i++)
3429 		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3430 	kobject_put(wi_kobj);
3431 }
3432 
3433 static const struct kobj_type wi_ktype = {
3434 	.sysfs_ops = &kobj_sysfs_ops,
3435 	.release = sysfs_wi_release,
3436 };
3437 
add_weight_node(int nid,struct kobject * wi_kobj)3438 static int add_weight_node(int nid, struct kobject *wi_kobj)
3439 {
3440 	struct iw_node_attr *node_attr;
3441 	char *name;
3442 
3443 	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3444 	if (!node_attr)
3445 		return -ENOMEM;
3446 
3447 	name = kasprintf(GFP_KERNEL, "node%d", nid);
3448 	if (!name) {
3449 		kfree(node_attr);
3450 		return -ENOMEM;
3451 	}
3452 
3453 	sysfs_attr_init(&node_attr->kobj_attr.attr);
3454 	node_attr->kobj_attr.attr.name = name;
3455 	node_attr->kobj_attr.attr.mode = 0644;
3456 	node_attr->kobj_attr.show = node_show;
3457 	node_attr->kobj_attr.store = node_store;
3458 	node_attr->nid = nid;
3459 
3460 	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3461 		kfree(node_attr->kobj_attr.attr.name);
3462 		kfree(node_attr);
3463 		pr_err("failed to add attribute to weighted_interleave\n");
3464 		return -ENOMEM;
3465 	}
3466 
3467 	node_attrs[nid] = node_attr;
3468 	return 0;
3469 }
3470 
add_weighted_interleave_group(struct kobject * root_kobj)3471 static int add_weighted_interleave_group(struct kobject *root_kobj)
3472 {
3473 	struct kobject *wi_kobj;
3474 	int nid, err;
3475 
3476 	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3477 	if (!wi_kobj)
3478 		return -ENOMEM;
3479 
3480 	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3481 				   "weighted_interleave");
3482 	if (err) {
3483 		kfree(wi_kobj);
3484 		return err;
3485 	}
3486 
3487 	for_each_node_state(nid, N_POSSIBLE) {
3488 		err = add_weight_node(nid, wi_kobj);
3489 		if (err) {
3490 			pr_err("failed to add sysfs [node%d]\n", nid);
3491 			break;
3492 		}
3493 	}
3494 	if (err)
3495 		kobject_put(wi_kobj);
3496 	return 0;
3497 }
3498 
mempolicy_kobj_release(struct kobject * kobj)3499 static void mempolicy_kobj_release(struct kobject *kobj)
3500 {
3501 	u8 *old;
3502 
3503 	mutex_lock(&iw_table_lock);
3504 	old = rcu_dereference_protected(iw_table,
3505 					lockdep_is_held(&iw_table_lock));
3506 	rcu_assign_pointer(iw_table, NULL);
3507 	mutex_unlock(&iw_table_lock);
3508 	synchronize_rcu();
3509 	kfree(old);
3510 	kfree(node_attrs);
3511 	kfree(kobj);
3512 }
3513 
3514 static const struct kobj_type mempolicy_ktype = {
3515 	.release = mempolicy_kobj_release
3516 };
3517 
mempolicy_sysfs_init(void)3518 static int __init mempolicy_sysfs_init(void)
3519 {
3520 	int err;
3521 	static struct kobject *mempolicy_kobj;
3522 
3523 	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3524 	if (!mempolicy_kobj) {
3525 		err = -ENOMEM;
3526 		goto err_out;
3527 	}
3528 
3529 	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3530 			     GFP_KERNEL);
3531 	if (!node_attrs) {
3532 		err = -ENOMEM;
3533 		goto mempol_out;
3534 	}
3535 
3536 	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3537 				   "mempolicy");
3538 	if (err)
3539 		goto node_out;
3540 
3541 	err = add_weighted_interleave_group(mempolicy_kobj);
3542 	if (err) {
3543 		pr_err("mempolicy sysfs structure failed to initialize\n");
3544 		kobject_put(mempolicy_kobj);
3545 		return err;
3546 	}
3547 
3548 	return err;
3549 node_out:
3550 	kfree(node_attrs);
3551 mempol_out:
3552 	kfree(mempolicy_kobj);
3553 err_out:
3554 	pr_err("failed to add mempolicy kobject to the system\n");
3555 	return err;
3556 }
3557 
3558 late_initcall(mempolicy_sysfs_init);
3559 #endif /* CONFIG_SYSFS */
3560