xref: /linux/kernel/fork.c (revision ba6ec09911b805778a2fed6d626bfe77b011a717)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/kernel/fork.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   *  'fork.c' contains the help-routines for the 'fork' system call
10   * (see also entry.S and others).
11   * Fork is rather simple, once you get the hang of it, but the memory
12   * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13   */
14  
15  #include <linux/anon_inodes.h>
16  #include <linux/slab.h>
17  #include <linux/sched/autogroup.h>
18  #include <linux/sched/mm.h>
19  #include <linux/sched/user.h>
20  #include <linux/sched/numa_balancing.h>
21  #include <linux/sched/stat.h>
22  #include <linux/sched/task.h>
23  #include <linux/sched/task_stack.h>
24  #include <linux/sched/cputime.h>
25  #include <linux/sched/ext.h>
26  #include <linux/seq_file.h>
27  #include <linux/rtmutex.h>
28  #include <linux/init.h>
29  #include <linux/unistd.h>
30  #include <linux/module.h>
31  #include <linux/vmalloc.h>
32  #include <linux/completion.h>
33  #include <linux/personality.h>
34  #include <linux/mempolicy.h>
35  #include <linux/sem.h>
36  #include <linux/file.h>
37  #include <linux/fdtable.h>
38  #include <linux/iocontext.h>
39  #include <linux/key.h>
40  #include <linux/kmsan.h>
41  #include <linux/binfmts.h>
42  #include <linux/mman.h>
43  #include <linux/mmu_notifier.h>
44  #include <linux/fs.h>
45  #include <linux/mm.h>
46  #include <linux/mm_inline.h>
47  #include <linux/memblock.h>
48  #include <linux/nsproxy.h>
49  #include <linux/capability.h>
50  #include <linux/cpu.h>
51  #include <linux/cgroup.h>
52  #include <linux/security.h>
53  #include <linux/hugetlb.h>
54  #include <linux/seccomp.h>
55  #include <linux/swap.h>
56  #include <linux/syscalls.h>
57  #include <linux/syscall_user_dispatch.h>
58  #include <linux/jiffies.h>
59  #include <linux/futex.h>
60  #include <linux/compat.h>
61  #include <linux/kthread.h>
62  #include <linux/task_io_accounting_ops.h>
63  #include <linux/rcupdate.h>
64  #include <linux/ptrace.h>
65  #include <linux/mount.h>
66  #include <linux/audit.h>
67  #include <linux/memcontrol.h>
68  #include <linux/ftrace.h>
69  #include <linux/proc_fs.h>
70  #include <linux/profile.h>
71  #include <linux/rmap.h>
72  #include <linux/ksm.h>
73  #include <linux/acct.h>
74  #include <linux/userfaultfd_k.h>
75  #include <linux/tsacct_kern.h>
76  #include <linux/cn_proc.h>
77  #include <linux/freezer.h>
78  #include <linux/delayacct.h>
79  #include <linux/taskstats_kern.h>
80  #include <linux/tty.h>
81  #include <linux/fs_struct.h>
82  #include <linux/magic.h>
83  #include <linux/perf_event.h>
84  #include <linux/posix-timers.h>
85  #include <linux/user-return-notifier.h>
86  #include <linux/oom.h>
87  #include <linux/khugepaged.h>
88  #include <linux/signalfd.h>
89  #include <linux/uprobes.h>
90  #include <linux/aio.h>
91  #include <linux/compiler.h>
92  #include <linux/sysctl.h>
93  #include <linux/kcov.h>
94  #include <linux/livepatch.h>
95  #include <linux/thread_info.h>
96  #include <linux/stackleak.h>
97  #include <linux/kasan.h>
98  #include <linux/scs.h>
99  #include <linux/io_uring.h>
100  #include <linux/bpf.h>
101  #include <linux/stackprotector.h>
102  #include <linux/user_events.h>
103  #include <linux/iommu.h>
104  #include <linux/rseq.h>
105  #include <uapi/linux/pidfd.h>
106  #include <linux/pidfs.h>
107  #include <linux/tick.h>
108  
109  #include <asm/pgalloc.h>
110  #include <linux/uaccess.h>
111  #include <asm/mmu_context.h>
112  #include <asm/cacheflush.h>
113  #include <asm/tlbflush.h>
114  
115  #include <trace/events/sched.h>
116  
117  #define CREATE_TRACE_POINTS
118  #include <trace/events/task.h>
119  
120  #include <kunit/visibility.h>
121  
122  /*
123   * Minimum number of threads to boot the kernel
124   */
125  #define MIN_THREADS 20
126  
127  /*
128   * Maximum number of threads
129   */
130  #define MAX_THREADS FUTEX_TID_MASK
131  
132  /*
133   * Protected counters by write_lock_irq(&tasklist_lock)
134   */
135  unsigned long total_forks;	/* Handle normal Linux uptimes. */
136  int nr_threads;			/* The idle threads do not count.. */
137  
138  static int max_threads;		/* tunable limit on nr_threads */
139  
140  #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141  
142  static const char * const resident_page_types[] = {
143  	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144  	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145  	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146  	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147  };
148  
149  DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150  
151  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152  
153  #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)154  int lockdep_tasklist_lock_is_held(void)
155  {
156  	return lockdep_is_held(&tasklist_lock);
157  }
158  EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159  #endif /* #ifdef CONFIG_PROVE_RCU */
160  
nr_processes(void)161  int nr_processes(void)
162  {
163  	int cpu;
164  	int total = 0;
165  
166  	for_each_possible_cpu(cpu)
167  		total += per_cpu(process_counts, cpu);
168  
169  	return total;
170  }
171  
arch_release_task_struct(struct task_struct * tsk)172  void __weak arch_release_task_struct(struct task_struct *tsk)
173  {
174  }
175  
176  static struct kmem_cache *task_struct_cachep;
177  
alloc_task_struct_node(int node)178  static inline struct task_struct *alloc_task_struct_node(int node)
179  {
180  	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181  }
182  
free_task_struct(struct task_struct * tsk)183  static inline void free_task_struct(struct task_struct *tsk)
184  {
185  	kmem_cache_free(task_struct_cachep, tsk);
186  }
187  
188  /*
189   * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190   * kmemcache based allocator.
191   */
192  # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193  
194  #  ifdef CONFIG_VMAP_STACK
195  /*
196   * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197   * flush.  Try to minimize the number of calls by caching stacks.
198   */
199  #define NR_CACHED_STACKS 2
200  static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201  
202  struct vm_stack {
203  	struct rcu_head rcu;
204  	struct vm_struct *stack_vm_area;
205  };
206  
try_release_thread_stack_to_cache(struct vm_struct * vm)207  static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208  {
209  	unsigned int i;
210  
211  	for (i = 0; i < NR_CACHED_STACKS; i++) {
212  		struct vm_struct *tmp = NULL;
213  
214  		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215  			return true;
216  	}
217  	return false;
218  }
219  
thread_stack_free_rcu(struct rcu_head * rh)220  static void thread_stack_free_rcu(struct rcu_head *rh)
221  {
222  	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223  
224  	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225  		return;
226  
227  	vfree(vm_stack);
228  }
229  
thread_stack_delayed_free(struct task_struct * tsk)230  static void thread_stack_delayed_free(struct task_struct *tsk)
231  {
232  	struct vm_stack *vm_stack = tsk->stack;
233  
234  	vm_stack->stack_vm_area = tsk->stack_vm_area;
235  	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236  }
237  
free_vm_stack_cache(unsigned int cpu)238  static int free_vm_stack_cache(unsigned int cpu)
239  {
240  	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241  	int i;
242  
243  	for (i = 0; i < NR_CACHED_STACKS; i++) {
244  		struct vm_struct *vm_stack = cached_vm_stacks[i];
245  
246  		if (!vm_stack)
247  			continue;
248  
249  		vfree(vm_stack->addr);
250  		cached_vm_stacks[i] = NULL;
251  	}
252  
253  	return 0;
254  }
255  
memcg_charge_kernel_stack(struct vm_struct * vm)256  static int memcg_charge_kernel_stack(struct vm_struct *vm)
257  {
258  	int i;
259  	int ret;
260  	int nr_charged = 0;
261  
262  	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263  
264  	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265  		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266  		if (ret)
267  			goto err;
268  		nr_charged++;
269  	}
270  	return 0;
271  err:
272  	for (i = 0; i < nr_charged; i++)
273  		memcg_kmem_uncharge_page(vm->pages[i], 0);
274  	return ret;
275  }
276  
alloc_thread_stack_node(struct task_struct * tsk,int node)277  static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278  {
279  	struct vm_struct *vm;
280  	void *stack;
281  	int i;
282  
283  	for (i = 0; i < NR_CACHED_STACKS; i++) {
284  		struct vm_struct *s;
285  
286  		s = this_cpu_xchg(cached_stacks[i], NULL);
287  
288  		if (!s)
289  			continue;
290  
291  		/* Reset stack metadata. */
292  		kasan_unpoison_range(s->addr, THREAD_SIZE);
293  
294  		stack = kasan_reset_tag(s->addr);
295  
296  		/* Clear stale pointers from reused stack. */
297  		memset(stack, 0, THREAD_SIZE);
298  
299  		if (memcg_charge_kernel_stack(s)) {
300  			vfree(s->addr);
301  			return -ENOMEM;
302  		}
303  
304  		tsk->stack_vm_area = s;
305  		tsk->stack = stack;
306  		return 0;
307  	}
308  
309  	/*
310  	 * Allocated stacks are cached and later reused by new threads,
311  	 * so memcg accounting is performed manually on assigning/releasing
312  	 * stacks to tasks. Drop __GFP_ACCOUNT.
313  	 */
314  	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315  				     VMALLOC_START, VMALLOC_END,
316  				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317  				     PAGE_KERNEL,
318  				     0, node, __builtin_return_address(0));
319  	if (!stack)
320  		return -ENOMEM;
321  
322  	vm = find_vm_area(stack);
323  	if (memcg_charge_kernel_stack(vm)) {
324  		vfree(stack);
325  		return -ENOMEM;
326  	}
327  	/*
328  	 * We can't call find_vm_area() in interrupt context, and
329  	 * free_thread_stack() can be called in interrupt context,
330  	 * so cache the vm_struct.
331  	 */
332  	tsk->stack_vm_area = vm;
333  	stack = kasan_reset_tag(stack);
334  	tsk->stack = stack;
335  	return 0;
336  }
337  
free_thread_stack(struct task_struct * tsk)338  static void free_thread_stack(struct task_struct *tsk)
339  {
340  	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341  		thread_stack_delayed_free(tsk);
342  
343  	tsk->stack = NULL;
344  	tsk->stack_vm_area = NULL;
345  }
346  
347  #  else /* !CONFIG_VMAP_STACK */
348  
thread_stack_free_rcu(struct rcu_head * rh)349  static void thread_stack_free_rcu(struct rcu_head *rh)
350  {
351  	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352  }
353  
thread_stack_delayed_free(struct task_struct * tsk)354  static void thread_stack_delayed_free(struct task_struct *tsk)
355  {
356  	struct rcu_head *rh = tsk->stack;
357  
358  	call_rcu(rh, thread_stack_free_rcu);
359  }
360  
alloc_thread_stack_node(struct task_struct * tsk,int node)361  static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362  {
363  	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364  					     THREAD_SIZE_ORDER);
365  
366  	if (likely(page)) {
367  		tsk->stack = kasan_reset_tag(page_address(page));
368  		return 0;
369  	}
370  	return -ENOMEM;
371  }
372  
free_thread_stack(struct task_struct * tsk)373  static void free_thread_stack(struct task_struct *tsk)
374  {
375  	thread_stack_delayed_free(tsk);
376  	tsk->stack = NULL;
377  }
378  
379  #  endif /* CONFIG_VMAP_STACK */
380  # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381  
382  static struct kmem_cache *thread_stack_cache;
383  
thread_stack_free_rcu(struct rcu_head * rh)384  static void thread_stack_free_rcu(struct rcu_head *rh)
385  {
386  	kmem_cache_free(thread_stack_cache, rh);
387  }
388  
thread_stack_delayed_free(struct task_struct * tsk)389  static void thread_stack_delayed_free(struct task_struct *tsk)
390  {
391  	struct rcu_head *rh = tsk->stack;
392  
393  	call_rcu(rh, thread_stack_free_rcu);
394  }
395  
alloc_thread_stack_node(struct task_struct * tsk,int node)396  static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397  {
398  	unsigned long *stack;
399  	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400  	stack = kasan_reset_tag(stack);
401  	tsk->stack = stack;
402  	return stack ? 0 : -ENOMEM;
403  }
404  
free_thread_stack(struct task_struct * tsk)405  static void free_thread_stack(struct task_struct *tsk)
406  {
407  	thread_stack_delayed_free(tsk);
408  	tsk->stack = NULL;
409  }
410  
thread_stack_cache_init(void)411  void thread_stack_cache_init(void)
412  {
413  	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414  					THREAD_SIZE, THREAD_SIZE, 0, 0,
415  					THREAD_SIZE, NULL);
416  	BUG_ON(thread_stack_cache == NULL);
417  }
418  
419  # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420  
421  /* SLAB cache for signal_struct structures (tsk->signal) */
422  static struct kmem_cache *signal_cachep;
423  
424  /* SLAB cache for sighand_struct structures (tsk->sighand) */
425  struct kmem_cache *sighand_cachep;
426  
427  /* SLAB cache for files_struct structures (tsk->files) */
428  struct kmem_cache *files_cachep;
429  
430  /* SLAB cache for fs_struct structures (tsk->fs) */
431  struct kmem_cache *fs_cachep;
432  
433  /* SLAB cache for vm_area_struct structures */
434  static struct kmem_cache *vm_area_cachep;
435  
436  /* SLAB cache for mm_struct structures (tsk->mm) */
437  static struct kmem_cache *mm_cachep;
438  
439  #ifdef CONFIG_PER_VMA_LOCK
440  
441  /* SLAB cache for vm_area_struct.lock */
442  static struct kmem_cache *vma_lock_cachep;
443  
vma_lock_alloc(struct vm_area_struct * vma)444  static bool vma_lock_alloc(struct vm_area_struct *vma)
445  {
446  	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447  	if (!vma->vm_lock)
448  		return false;
449  
450  	init_rwsem(&vma->vm_lock->lock);
451  	vma->vm_lock_seq = UINT_MAX;
452  
453  	return true;
454  }
455  
vma_lock_free(struct vm_area_struct * vma)456  static inline void vma_lock_free(struct vm_area_struct *vma)
457  {
458  	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459  }
460  
461  #else /* CONFIG_PER_VMA_LOCK */
462  
vma_lock_alloc(struct vm_area_struct * vma)463  static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)464  static inline void vma_lock_free(struct vm_area_struct *vma) {}
465  
466  #endif /* CONFIG_PER_VMA_LOCK */
467  
vm_area_alloc(struct mm_struct * mm)468  struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469  {
470  	struct vm_area_struct *vma;
471  
472  	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473  	if (!vma)
474  		return NULL;
475  
476  	vma_init(vma, mm);
477  	if (!vma_lock_alloc(vma)) {
478  		kmem_cache_free(vm_area_cachep, vma);
479  		return NULL;
480  	}
481  
482  	return vma;
483  }
484  
vm_area_dup(struct vm_area_struct * orig)485  struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486  {
487  	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488  
489  	if (!new)
490  		return NULL;
491  
492  	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493  	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494  	/*
495  	 * orig->shared.rb may be modified concurrently, but the clone
496  	 * will be reinitialized.
497  	 */
498  	data_race(memcpy(new, orig, sizeof(*new)));
499  	if (!vma_lock_alloc(new)) {
500  		kmem_cache_free(vm_area_cachep, new);
501  		return NULL;
502  	}
503  	INIT_LIST_HEAD(&new->anon_vma_chain);
504  	vma_numab_state_init(new);
505  	dup_anon_vma_name(orig, new);
506  
507  	return new;
508  }
509  
__vm_area_free(struct vm_area_struct * vma)510  void __vm_area_free(struct vm_area_struct *vma)
511  {
512  	vma_numab_state_free(vma);
513  	free_anon_vma_name(vma);
514  	vma_lock_free(vma);
515  	kmem_cache_free(vm_area_cachep, vma);
516  }
517  
518  #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)519  static void vm_area_free_rcu_cb(struct rcu_head *head)
520  {
521  	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522  						  vm_rcu);
523  
524  	/* The vma should not be locked while being destroyed. */
525  	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526  	__vm_area_free(vma);
527  }
528  #endif
529  
vm_area_free(struct vm_area_struct * vma)530  void vm_area_free(struct vm_area_struct *vma)
531  {
532  #ifdef CONFIG_PER_VMA_LOCK
533  	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534  #else
535  	__vm_area_free(vma);
536  #endif
537  }
538  
account_kernel_stack(struct task_struct * tsk,int account)539  static void account_kernel_stack(struct task_struct *tsk, int account)
540  {
541  	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542  		struct vm_struct *vm = task_stack_vm_area(tsk);
543  		int i;
544  
545  		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546  			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547  					      account * (PAGE_SIZE / 1024));
548  	} else {
549  		void *stack = task_stack_page(tsk);
550  
551  		/* All stack pages are in the same node. */
552  		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553  				      account * (THREAD_SIZE / 1024));
554  	}
555  }
556  
exit_task_stack_account(struct task_struct * tsk)557  void exit_task_stack_account(struct task_struct *tsk)
558  {
559  	account_kernel_stack(tsk, -1);
560  
561  	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562  		struct vm_struct *vm;
563  		int i;
564  
565  		vm = task_stack_vm_area(tsk);
566  		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567  			memcg_kmem_uncharge_page(vm->pages[i], 0);
568  	}
569  }
570  
release_task_stack(struct task_struct * tsk)571  static void release_task_stack(struct task_struct *tsk)
572  {
573  	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574  		return;  /* Better to leak the stack than to free prematurely */
575  
576  	free_thread_stack(tsk);
577  }
578  
579  #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)580  void put_task_stack(struct task_struct *tsk)
581  {
582  	if (refcount_dec_and_test(&tsk->stack_refcount))
583  		release_task_stack(tsk);
584  }
585  #endif
586  
free_task(struct task_struct * tsk)587  void free_task(struct task_struct *tsk)
588  {
589  #ifdef CONFIG_SECCOMP
590  	WARN_ON_ONCE(tsk->seccomp.filter);
591  #endif
592  	release_user_cpus_ptr(tsk);
593  	scs_release(tsk);
594  
595  #ifndef CONFIG_THREAD_INFO_IN_TASK
596  	/*
597  	 * The task is finally done with both the stack and thread_info,
598  	 * so free both.
599  	 */
600  	release_task_stack(tsk);
601  #else
602  	/*
603  	 * If the task had a separate stack allocation, it should be gone
604  	 * by now.
605  	 */
606  	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607  #endif
608  	rt_mutex_debug_task_free(tsk);
609  	ftrace_graph_exit_task(tsk);
610  	arch_release_task_struct(tsk);
611  	if (tsk->flags & PF_KTHREAD)
612  		free_kthread_struct(tsk);
613  	bpf_task_storage_free(tsk);
614  	free_task_struct(tsk);
615  }
616  EXPORT_SYMBOL(free_task);
617  
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)618  static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619  {
620  	struct file *exe_file;
621  
622  	exe_file = get_mm_exe_file(oldmm);
623  	RCU_INIT_POINTER(mm->exe_file, exe_file);
624  	/*
625  	 * We depend on the oldmm having properly denied write access to the
626  	 * exe_file already.
627  	 */
628  	if (exe_file && exe_file_deny_write_access(exe_file))
629  		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
630  }
631  
632  #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)633  static __latent_entropy int dup_mmap(struct mm_struct *mm,
634  					struct mm_struct *oldmm)
635  {
636  	struct vm_area_struct *mpnt, *tmp;
637  	int retval;
638  	unsigned long charge = 0;
639  	LIST_HEAD(uf);
640  	VMA_ITERATOR(vmi, mm, 0);
641  
642  	if (mmap_write_lock_killable(oldmm))
643  		return -EINTR;
644  	flush_cache_dup_mm(oldmm);
645  	uprobe_dup_mmap(oldmm, mm);
646  	/*
647  	 * Not linked in yet - no deadlock potential:
648  	 */
649  	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
650  
651  	/* No ordering required: file already has been exposed. */
652  	dup_mm_exe_file(mm, oldmm);
653  
654  	mm->total_vm = oldmm->total_vm;
655  	mm->data_vm = oldmm->data_vm;
656  	mm->exec_vm = oldmm->exec_vm;
657  	mm->stack_vm = oldmm->stack_vm;
658  
659  	/* Use __mt_dup() to efficiently build an identical maple tree. */
660  	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
661  	if (unlikely(retval))
662  		goto out;
663  
664  	mt_clear_in_rcu(vmi.mas.tree);
665  	for_each_vma(vmi, mpnt) {
666  		struct file *file;
667  
668  		vma_start_write(mpnt);
669  		if (mpnt->vm_flags & VM_DONTCOPY) {
670  			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
671  						    mpnt->vm_end, GFP_KERNEL);
672  			if (retval)
673  				goto loop_out;
674  
675  			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
676  			continue;
677  		}
678  		charge = 0;
679  		/*
680  		 * Don't duplicate many vmas if we've been oom-killed (for
681  		 * example)
682  		 */
683  		if (fatal_signal_pending(current)) {
684  			retval = -EINTR;
685  			goto loop_out;
686  		}
687  		if (mpnt->vm_flags & VM_ACCOUNT) {
688  			unsigned long len = vma_pages(mpnt);
689  
690  			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
691  				goto fail_nomem;
692  			charge = len;
693  		}
694  		tmp = vm_area_dup(mpnt);
695  		if (!tmp)
696  			goto fail_nomem;
697  		retval = vma_dup_policy(mpnt, tmp);
698  		if (retval)
699  			goto fail_nomem_policy;
700  		tmp->vm_mm = mm;
701  		retval = dup_userfaultfd(tmp, &uf);
702  		if (retval)
703  			goto fail_nomem_anon_vma_fork;
704  		if (tmp->vm_flags & VM_WIPEONFORK) {
705  			/*
706  			 * VM_WIPEONFORK gets a clean slate in the child.
707  			 * Don't prepare anon_vma until fault since we don't
708  			 * copy page for current vma.
709  			 */
710  			tmp->anon_vma = NULL;
711  		} else if (anon_vma_fork(tmp, mpnt))
712  			goto fail_nomem_anon_vma_fork;
713  		vm_flags_clear(tmp, VM_LOCKED_MASK);
714  		/*
715  		 * Copy/update hugetlb private vma information.
716  		 */
717  		if (is_vm_hugetlb_page(tmp))
718  			hugetlb_dup_vma_private(tmp);
719  
720  		/*
721  		 * Link the vma into the MT. After using __mt_dup(), memory
722  		 * allocation is not necessary here, so it cannot fail.
723  		 */
724  		vma_iter_bulk_store(&vmi, tmp);
725  
726  		mm->map_count++;
727  
728  		if (tmp->vm_ops && tmp->vm_ops->open)
729  			tmp->vm_ops->open(tmp);
730  
731  		file = tmp->vm_file;
732  		if (file) {
733  			struct address_space *mapping = file->f_mapping;
734  
735  			get_file(file);
736  			i_mmap_lock_write(mapping);
737  			if (vma_is_shared_maywrite(tmp))
738  				mapping_allow_writable(mapping);
739  			flush_dcache_mmap_lock(mapping);
740  			/* insert tmp into the share list, just after mpnt */
741  			vma_interval_tree_insert_after(tmp, mpnt,
742  					&mapping->i_mmap);
743  			flush_dcache_mmap_unlock(mapping);
744  			i_mmap_unlock_write(mapping);
745  		}
746  
747  		if (!(tmp->vm_flags & VM_WIPEONFORK))
748  			retval = copy_page_range(tmp, mpnt);
749  
750  		if (retval) {
751  			mpnt = vma_next(&vmi);
752  			goto loop_out;
753  		}
754  	}
755  	/* a new mm has just been created */
756  	retval = arch_dup_mmap(oldmm, mm);
757  loop_out:
758  	vma_iter_free(&vmi);
759  	if (!retval) {
760  		mt_set_in_rcu(vmi.mas.tree);
761  		ksm_fork(mm, oldmm);
762  		khugepaged_fork(mm, oldmm);
763  	} else {
764  
765  		/*
766  		 * The entire maple tree has already been duplicated. If the
767  		 * mmap duplication fails, mark the failure point with
768  		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
769  		 * stop releasing VMAs that have not been duplicated after this
770  		 * point.
771  		 */
772  		if (mpnt) {
773  			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
774  			mas_store(&vmi.mas, XA_ZERO_ENTRY);
775  			/* Avoid OOM iterating a broken tree */
776  			set_bit(MMF_OOM_SKIP, &mm->flags);
777  		}
778  		/*
779  		 * The mm_struct is going to exit, but the locks will be dropped
780  		 * first.  Set the mm_struct as unstable is advisable as it is
781  		 * not fully initialised.
782  		 */
783  		set_bit(MMF_UNSTABLE, &mm->flags);
784  	}
785  out:
786  	mmap_write_unlock(mm);
787  	flush_tlb_mm(oldmm);
788  	mmap_write_unlock(oldmm);
789  	if (!retval)
790  		dup_userfaultfd_complete(&uf);
791  	else
792  		dup_userfaultfd_fail(&uf);
793  	return retval;
794  
795  fail_nomem_anon_vma_fork:
796  	mpol_put(vma_policy(tmp));
797  fail_nomem_policy:
798  	vm_area_free(tmp);
799  fail_nomem:
800  	retval = -ENOMEM;
801  	vm_unacct_memory(charge);
802  	goto loop_out;
803  }
804  
mm_alloc_pgd(struct mm_struct * mm)805  static inline int mm_alloc_pgd(struct mm_struct *mm)
806  {
807  	mm->pgd = pgd_alloc(mm);
808  	if (unlikely(!mm->pgd))
809  		return -ENOMEM;
810  	return 0;
811  }
812  
mm_free_pgd(struct mm_struct * mm)813  static inline void mm_free_pgd(struct mm_struct *mm)
814  {
815  	pgd_free(mm, mm->pgd);
816  }
817  #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)818  static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
819  {
820  	mmap_write_lock(oldmm);
821  	dup_mm_exe_file(mm, oldmm);
822  	mmap_write_unlock(oldmm);
823  	return 0;
824  }
825  #define mm_alloc_pgd(mm)	(0)
826  #define mm_free_pgd(mm)
827  #endif /* CONFIG_MMU */
828  
check_mm(struct mm_struct * mm)829  static void check_mm(struct mm_struct *mm)
830  {
831  	int i;
832  
833  	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
834  			 "Please make sure 'struct resident_page_types[]' is updated as well");
835  
836  	for (i = 0; i < NR_MM_COUNTERS; i++) {
837  		long x = percpu_counter_sum(&mm->rss_stat[i]);
838  
839  		if (unlikely(x))
840  			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
841  				 mm, resident_page_types[i], x);
842  	}
843  
844  	if (mm_pgtables_bytes(mm))
845  		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
846  				mm_pgtables_bytes(mm));
847  
848  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
849  	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
850  #endif
851  }
852  
853  #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
854  #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
855  
do_check_lazy_tlb(void * arg)856  static void do_check_lazy_tlb(void *arg)
857  {
858  	struct mm_struct *mm = arg;
859  
860  	WARN_ON_ONCE(current->active_mm == mm);
861  }
862  
do_shoot_lazy_tlb(void * arg)863  static void do_shoot_lazy_tlb(void *arg)
864  {
865  	struct mm_struct *mm = arg;
866  
867  	if (current->active_mm == mm) {
868  		WARN_ON_ONCE(current->mm);
869  		current->active_mm = &init_mm;
870  		switch_mm(mm, &init_mm, current);
871  	}
872  }
873  
cleanup_lazy_tlbs(struct mm_struct * mm)874  static void cleanup_lazy_tlbs(struct mm_struct *mm)
875  {
876  	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
877  		/*
878  		 * In this case, lazy tlb mms are refounted and would not reach
879  		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
880  		 */
881  		return;
882  	}
883  
884  	/*
885  	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
886  	 * requires lazy mm users to switch to another mm when the refcount
887  	 * drops to zero, before the mm is freed. This requires IPIs here to
888  	 * switch kernel threads to init_mm.
889  	 *
890  	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
891  	 * switch with the final userspace teardown TLB flush which leaves the
892  	 * mm lazy on this CPU but no others, reducing the need for additional
893  	 * IPIs here. There are cases where a final IPI is still required here,
894  	 * such as the final mmdrop being performed on a different CPU than the
895  	 * one exiting, or kernel threads using the mm when userspace exits.
896  	 *
897  	 * IPI overheads have not found to be expensive, but they could be
898  	 * reduced in a number of possible ways, for example (roughly
899  	 * increasing order of complexity):
900  	 * - The last lazy reference created by exit_mm() could instead switch
901  	 *   to init_mm, however it's probable this will run on the same CPU
902  	 *   immediately afterwards, so this may not reduce IPIs much.
903  	 * - A batch of mms requiring IPIs could be gathered and freed at once.
904  	 * - CPUs store active_mm where it can be remotely checked without a
905  	 *   lock, to filter out false-positives in the cpumask.
906  	 * - After mm_users or mm_count reaches zero, switching away from the
907  	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
908  	 *   with some batching or delaying of the final IPIs.
909  	 * - A delayed freeing and RCU-like quiescing sequence based on mm
910  	 *   switching to avoid IPIs completely.
911  	 */
912  	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
913  	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
914  		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
915  }
916  
917  /*
918   * Called when the last reference to the mm
919   * is dropped: either by a lazy thread or by
920   * mmput. Free the page directory and the mm.
921   */
__mmdrop(struct mm_struct * mm)922  void __mmdrop(struct mm_struct *mm)
923  {
924  	BUG_ON(mm == &init_mm);
925  	WARN_ON_ONCE(mm == current->mm);
926  
927  	/* Ensure no CPUs are using this as their lazy tlb mm */
928  	cleanup_lazy_tlbs(mm);
929  
930  	WARN_ON_ONCE(mm == current->active_mm);
931  	mm_free_pgd(mm);
932  	destroy_context(mm);
933  	mmu_notifier_subscriptions_destroy(mm);
934  	check_mm(mm);
935  	put_user_ns(mm->user_ns);
936  	mm_pasid_drop(mm);
937  	mm_destroy_cid(mm);
938  	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
939  
940  	free_mm(mm);
941  }
942  EXPORT_SYMBOL_GPL(__mmdrop);
943  
mmdrop_async_fn(struct work_struct * work)944  static void mmdrop_async_fn(struct work_struct *work)
945  {
946  	struct mm_struct *mm;
947  
948  	mm = container_of(work, struct mm_struct, async_put_work);
949  	__mmdrop(mm);
950  }
951  
mmdrop_async(struct mm_struct * mm)952  static void mmdrop_async(struct mm_struct *mm)
953  {
954  	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
955  		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
956  		schedule_work(&mm->async_put_work);
957  	}
958  }
959  
free_signal_struct(struct signal_struct * sig)960  static inline void free_signal_struct(struct signal_struct *sig)
961  {
962  	taskstats_tgid_free(sig);
963  	sched_autogroup_exit(sig);
964  	/*
965  	 * __mmdrop is not safe to call from softirq context on x86 due to
966  	 * pgd_dtor so postpone it to the async context
967  	 */
968  	if (sig->oom_mm)
969  		mmdrop_async(sig->oom_mm);
970  	kmem_cache_free(signal_cachep, sig);
971  }
972  
put_signal_struct(struct signal_struct * sig)973  static inline void put_signal_struct(struct signal_struct *sig)
974  {
975  	if (refcount_dec_and_test(&sig->sigcnt))
976  		free_signal_struct(sig);
977  }
978  
__put_task_struct(struct task_struct * tsk)979  void __put_task_struct(struct task_struct *tsk)
980  {
981  	WARN_ON(!tsk->exit_state);
982  	WARN_ON(refcount_read(&tsk->usage));
983  	WARN_ON(tsk == current);
984  
985  	sched_ext_free(tsk);
986  	io_uring_free(tsk);
987  	cgroup_free(tsk);
988  	task_numa_free(tsk, true);
989  	security_task_free(tsk);
990  	exit_creds(tsk);
991  	delayacct_tsk_free(tsk);
992  	put_signal_struct(tsk->signal);
993  	sched_core_free(tsk);
994  	free_task(tsk);
995  }
996  EXPORT_SYMBOL_GPL(__put_task_struct);
997  
__put_task_struct_rcu_cb(struct rcu_head * rhp)998  void __put_task_struct_rcu_cb(struct rcu_head *rhp)
999  {
1000  	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1001  
1002  	__put_task_struct(task);
1003  }
1004  EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1005  
arch_task_cache_init(void)1006  void __init __weak arch_task_cache_init(void) { }
1007  
1008  /*
1009   * set_max_threads
1010   */
set_max_threads(unsigned int max_threads_suggested)1011  static void __init set_max_threads(unsigned int max_threads_suggested)
1012  {
1013  	u64 threads;
1014  	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1015  
1016  	/*
1017  	 * The number of threads shall be limited such that the thread
1018  	 * structures may only consume a small part of the available memory.
1019  	 */
1020  	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1021  		threads = MAX_THREADS;
1022  	else
1023  		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1024  				    (u64) THREAD_SIZE * 8UL);
1025  
1026  	if (threads > max_threads_suggested)
1027  		threads = max_threads_suggested;
1028  
1029  	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1030  }
1031  
1032  #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1033  /* Initialized by the architecture: */
1034  int arch_task_struct_size __read_mostly;
1035  #endif
1036  
task_struct_whitelist(unsigned long * offset,unsigned long * size)1037  static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1038  {
1039  	/* Fetch thread_struct whitelist for the architecture. */
1040  	arch_thread_struct_whitelist(offset, size);
1041  
1042  	/*
1043  	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1044  	 * adjust offset to position of thread_struct in task_struct.
1045  	 */
1046  	if (unlikely(*size == 0))
1047  		*offset = 0;
1048  	else
1049  		*offset += offsetof(struct task_struct, thread);
1050  }
1051  
fork_init(void)1052  void __init fork_init(void)
1053  {
1054  	int i;
1055  #ifndef ARCH_MIN_TASKALIGN
1056  #define ARCH_MIN_TASKALIGN	0
1057  #endif
1058  	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1059  	unsigned long useroffset, usersize;
1060  
1061  	/* create a slab on which task_structs can be allocated */
1062  	task_struct_whitelist(&useroffset, &usersize);
1063  	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1064  			arch_task_struct_size, align,
1065  			SLAB_PANIC|SLAB_ACCOUNT,
1066  			useroffset, usersize, NULL);
1067  
1068  	/* do the arch specific task caches init */
1069  	arch_task_cache_init();
1070  
1071  	set_max_threads(MAX_THREADS);
1072  
1073  	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1074  	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1075  	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1076  		init_task.signal->rlim[RLIMIT_NPROC];
1077  
1078  	for (i = 0; i < UCOUNT_COUNTS; i++)
1079  		init_user_ns.ucount_max[i] = max_threads/2;
1080  
1081  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1082  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1083  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1084  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1085  
1086  #ifdef CONFIG_VMAP_STACK
1087  	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1088  			  NULL, free_vm_stack_cache);
1089  #endif
1090  
1091  	scs_init();
1092  
1093  	lockdep_init_task(&init_task);
1094  	uprobes_init();
1095  }
1096  
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1097  int __weak arch_dup_task_struct(struct task_struct *dst,
1098  					       struct task_struct *src)
1099  {
1100  	*dst = *src;
1101  	return 0;
1102  }
1103  
set_task_stack_end_magic(struct task_struct * tsk)1104  void set_task_stack_end_magic(struct task_struct *tsk)
1105  {
1106  	unsigned long *stackend;
1107  
1108  	stackend = end_of_stack(tsk);
1109  	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1110  }
1111  
dup_task_struct(struct task_struct * orig,int node)1112  static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1113  {
1114  	struct task_struct *tsk;
1115  	int err;
1116  
1117  	if (node == NUMA_NO_NODE)
1118  		node = tsk_fork_get_node(orig);
1119  	tsk = alloc_task_struct_node(node);
1120  	if (!tsk)
1121  		return NULL;
1122  
1123  	err = arch_dup_task_struct(tsk, orig);
1124  	if (err)
1125  		goto free_tsk;
1126  
1127  	err = alloc_thread_stack_node(tsk, node);
1128  	if (err)
1129  		goto free_tsk;
1130  
1131  #ifdef CONFIG_THREAD_INFO_IN_TASK
1132  	refcount_set(&tsk->stack_refcount, 1);
1133  #endif
1134  	account_kernel_stack(tsk, 1);
1135  
1136  	err = scs_prepare(tsk, node);
1137  	if (err)
1138  		goto free_stack;
1139  
1140  #ifdef CONFIG_SECCOMP
1141  	/*
1142  	 * We must handle setting up seccomp filters once we're under
1143  	 * the sighand lock in case orig has changed between now and
1144  	 * then. Until then, filter must be NULL to avoid messing up
1145  	 * the usage counts on the error path calling free_task.
1146  	 */
1147  	tsk->seccomp.filter = NULL;
1148  #endif
1149  
1150  	setup_thread_stack(tsk, orig);
1151  	clear_user_return_notifier(tsk);
1152  	clear_tsk_need_resched(tsk);
1153  	set_task_stack_end_magic(tsk);
1154  	clear_syscall_work_syscall_user_dispatch(tsk);
1155  
1156  #ifdef CONFIG_STACKPROTECTOR
1157  	tsk->stack_canary = get_random_canary();
1158  #endif
1159  	if (orig->cpus_ptr == &orig->cpus_mask)
1160  		tsk->cpus_ptr = &tsk->cpus_mask;
1161  	dup_user_cpus_ptr(tsk, orig, node);
1162  
1163  	/*
1164  	 * One for the user space visible state that goes away when reaped.
1165  	 * One for the scheduler.
1166  	 */
1167  	refcount_set(&tsk->rcu_users, 2);
1168  	/* One for the rcu users */
1169  	refcount_set(&tsk->usage, 1);
1170  #ifdef CONFIG_BLK_DEV_IO_TRACE
1171  	tsk->btrace_seq = 0;
1172  #endif
1173  	tsk->splice_pipe = NULL;
1174  	tsk->task_frag.page = NULL;
1175  	tsk->wake_q.next = NULL;
1176  	tsk->worker_private = NULL;
1177  
1178  	kcov_task_init(tsk);
1179  	kmsan_task_create(tsk);
1180  	kmap_local_fork(tsk);
1181  
1182  #ifdef CONFIG_FAULT_INJECTION
1183  	tsk->fail_nth = 0;
1184  #endif
1185  
1186  #ifdef CONFIG_BLK_CGROUP
1187  	tsk->throttle_disk = NULL;
1188  	tsk->use_memdelay = 0;
1189  #endif
1190  
1191  #ifdef CONFIG_ARCH_HAS_CPU_PASID
1192  	tsk->pasid_activated = 0;
1193  #endif
1194  
1195  #ifdef CONFIG_MEMCG
1196  	tsk->active_memcg = NULL;
1197  #endif
1198  
1199  #ifdef CONFIG_X86_BUS_LOCK_DETECT
1200  	tsk->reported_split_lock = 0;
1201  #endif
1202  
1203  #ifdef CONFIG_SCHED_MM_CID
1204  	tsk->mm_cid = -1;
1205  	tsk->last_mm_cid = -1;
1206  	tsk->mm_cid_active = 0;
1207  	tsk->migrate_from_cpu = -1;
1208  #endif
1209  	return tsk;
1210  
1211  free_stack:
1212  	exit_task_stack_account(tsk);
1213  	free_thread_stack(tsk);
1214  free_tsk:
1215  	free_task_struct(tsk);
1216  	return NULL;
1217  }
1218  
1219  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1220  
1221  static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1222  
coredump_filter_setup(char * s)1223  static int __init coredump_filter_setup(char *s)
1224  {
1225  	default_dump_filter =
1226  		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1227  		MMF_DUMP_FILTER_MASK;
1228  	return 1;
1229  }
1230  
1231  __setup("coredump_filter=", coredump_filter_setup);
1232  
1233  #include <linux/init_task.h>
1234  
mm_init_aio(struct mm_struct * mm)1235  static void mm_init_aio(struct mm_struct *mm)
1236  {
1237  #ifdef CONFIG_AIO
1238  	spin_lock_init(&mm->ioctx_lock);
1239  	mm->ioctx_table = NULL;
1240  #endif
1241  }
1242  
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1243  static __always_inline void mm_clear_owner(struct mm_struct *mm,
1244  					   struct task_struct *p)
1245  {
1246  #ifdef CONFIG_MEMCG
1247  	if (mm->owner == p)
1248  		WRITE_ONCE(mm->owner, NULL);
1249  #endif
1250  }
1251  
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1252  static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1253  {
1254  #ifdef CONFIG_MEMCG
1255  	mm->owner = p;
1256  #endif
1257  }
1258  
mm_init_uprobes_state(struct mm_struct * mm)1259  static void mm_init_uprobes_state(struct mm_struct *mm)
1260  {
1261  #ifdef CONFIG_UPROBES
1262  	mm->uprobes_state.xol_area = NULL;
1263  #endif
1264  }
1265  
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1266  static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1267  	struct user_namespace *user_ns)
1268  {
1269  	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1270  	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1271  	atomic_set(&mm->mm_users, 1);
1272  	atomic_set(&mm->mm_count, 1);
1273  	seqcount_init(&mm->write_protect_seq);
1274  	mmap_init_lock(mm);
1275  	INIT_LIST_HEAD(&mm->mmlist);
1276  	mm_pgtables_bytes_init(mm);
1277  	mm->map_count = 0;
1278  	mm->locked_vm = 0;
1279  	atomic64_set(&mm->pinned_vm, 0);
1280  	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1281  	spin_lock_init(&mm->page_table_lock);
1282  	spin_lock_init(&mm->arg_lock);
1283  	mm_init_cpumask(mm);
1284  	mm_init_aio(mm);
1285  	mm_init_owner(mm, p);
1286  	mm_pasid_init(mm);
1287  	RCU_INIT_POINTER(mm->exe_file, NULL);
1288  	mmu_notifier_subscriptions_init(mm);
1289  	init_tlb_flush_pending(mm);
1290  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1291  	mm->pmd_huge_pte = NULL;
1292  #endif
1293  	mm_init_uprobes_state(mm);
1294  	hugetlb_count_init(mm);
1295  
1296  	if (current->mm) {
1297  		mm->flags = mmf_init_flags(current->mm->flags);
1298  		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1299  	} else {
1300  		mm->flags = default_dump_filter;
1301  		mm->def_flags = 0;
1302  	}
1303  
1304  	if (mm_alloc_pgd(mm))
1305  		goto fail_nopgd;
1306  
1307  	if (init_new_context(p, mm))
1308  		goto fail_nocontext;
1309  
1310  	if (mm_alloc_cid(mm, p))
1311  		goto fail_cid;
1312  
1313  	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1314  				     NR_MM_COUNTERS))
1315  		goto fail_pcpu;
1316  
1317  	mm->user_ns = get_user_ns(user_ns);
1318  	lru_gen_init_mm(mm);
1319  	return mm;
1320  
1321  fail_pcpu:
1322  	mm_destroy_cid(mm);
1323  fail_cid:
1324  	destroy_context(mm);
1325  fail_nocontext:
1326  	mm_free_pgd(mm);
1327  fail_nopgd:
1328  	free_mm(mm);
1329  	return NULL;
1330  }
1331  
1332  /*
1333   * Allocate and initialize an mm_struct.
1334   */
mm_alloc(void)1335  struct mm_struct *mm_alloc(void)
1336  {
1337  	struct mm_struct *mm;
1338  
1339  	mm = allocate_mm();
1340  	if (!mm)
1341  		return NULL;
1342  
1343  	memset(mm, 0, sizeof(*mm));
1344  	return mm_init(mm, current, current_user_ns());
1345  }
1346  EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1347  
__mmput(struct mm_struct * mm)1348  static inline void __mmput(struct mm_struct *mm)
1349  {
1350  	VM_BUG_ON(atomic_read(&mm->mm_users));
1351  
1352  	uprobe_clear_state(mm);
1353  	exit_aio(mm);
1354  	ksm_exit(mm);
1355  	khugepaged_exit(mm); /* must run before exit_mmap */
1356  	exit_mmap(mm);
1357  	mm_put_huge_zero_folio(mm);
1358  	set_mm_exe_file(mm, NULL);
1359  	if (!list_empty(&mm->mmlist)) {
1360  		spin_lock(&mmlist_lock);
1361  		list_del(&mm->mmlist);
1362  		spin_unlock(&mmlist_lock);
1363  	}
1364  	if (mm->binfmt)
1365  		module_put(mm->binfmt->module);
1366  	lru_gen_del_mm(mm);
1367  	mmdrop(mm);
1368  }
1369  
1370  /*
1371   * Decrement the use count and release all resources for an mm.
1372   */
mmput(struct mm_struct * mm)1373  void mmput(struct mm_struct *mm)
1374  {
1375  	might_sleep();
1376  
1377  	if (atomic_dec_and_test(&mm->mm_users))
1378  		__mmput(mm);
1379  }
1380  EXPORT_SYMBOL_GPL(mmput);
1381  
1382  #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1383  static void mmput_async_fn(struct work_struct *work)
1384  {
1385  	struct mm_struct *mm = container_of(work, struct mm_struct,
1386  					    async_put_work);
1387  
1388  	__mmput(mm);
1389  }
1390  
mmput_async(struct mm_struct * mm)1391  void mmput_async(struct mm_struct *mm)
1392  {
1393  	if (atomic_dec_and_test(&mm->mm_users)) {
1394  		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1395  		schedule_work(&mm->async_put_work);
1396  	}
1397  }
1398  EXPORT_SYMBOL_GPL(mmput_async);
1399  #endif
1400  
1401  /**
1402   * set_mm_exe_file - change a reference to the mm's executable file
1403   * @mm: The mm to change.
1404   * @new_exe_file: The new file to use.
1405   *
1406   * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1407   *
1408   * Main users are mmput() and sys_execve(). Callers prevent concurrent
1409   * invocations: in mmput() nobody alive left, in execve it happens before
1410   * the new mm is made visible to anyone.
1411   *
1412   * Can only fail if new_exe_file != NULL.
1413   */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1414  int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1415  {
1416  	struct file *old_exe_file;
1417  
1418  	/*
1419  	 * It is safe to dereference the exe_file without RCU as
1420  	 * this function is only called if nobody else can access
1421  	 * this mm -- see comment above for justification.
1422  	 */
1423  	old_exe_file = rcu_dereference_raw(mm->exe_file);
1424  
1425  	if (new_exe_file) {
1426  		/*
1427  		 * We expect the caller (i.e., sys_execve) to already denied
1428  		 * write access, so this is unlikely to fail.
1429  		 */
1430  		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1431  			return -EACCES;
1432  		get_file(new_exe_file);
1433  	}
1434  	rcu_assign_pointer(mm->exe_file, new_exe_file);
1435  	if (old_exe_file) {
1436  		exe_file_allow_write_access(old_exe_file);
1437  		fput(old_exe_file);
1438  	}
1439  	return 0;
1440  }
1441  
1442  /**
1443   * replace_mm_exe_file - replace a reference to the mm's executable file
1444   * @mm: The mm to change.
1445   * @new_exe_file: The new file to use.
1446   *
1447   * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1448   *
1449   * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1450   */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1451  int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1452  {
1453  	struct vm_area_struct *vma;
1454  	struct file *old_exe_file;
1455  	int ret = 0;
1456  
1457  	/* Forbid mm->exe_file change if old file still mapped. */
1458  	old_exe_file = get_mm_exe_file(mm);
1459  	if (old_exe_file) {
1460  		VMA_ITERATOR(vmi, mm, 0);
1461  		mmap_read_lock(mm);
1462  		for_each_vma(vmi, vma) {
1463  			if (!vma->vm_file)
1464  				continue;
1465  			if (path_equal(&vma->vm_file->f_path,
1466  				       &old_exe_file->f_path)) {
1467  				ret = -EBUSY;
1468  				break;
1469  			}
1470  		}
1471  		mmap_read_unlock(mm);
1472  		fput(old_exe_file);
1473  		if (ret)
1474  			return ret;
1475  	}
1476  
1477  	ret = exe_file_deny_write_access(new_exe_file);
1478  	if (ret)
1479  		return -EACCES;
1480  	get_file(new_exe_file);
1481  
1482  	/* set the new file */
1483  	mmap_write_lock(mm);
1484  	old_exe_file = rcu_dereference_raw(mm->exe_file);
1485  	rcu_assign_pointer(mm->exe_file, new_exe_file);
1486  	mmap_write_unlock(mm);
1487  
1488  	if (old_exe_file) {
1489  		exe_file_allow_write_access(old_exe_file);
1490  		fput(old_exe_file);
1491  	}
1492  	return 0;
1493  }
1494  
1495  /**
1496   * get_mm_exe_file - acquire a reference to the mm's executable file
1497   * @mm: The mm of interest.
1498   *
1499   * Returns %NULL if mm has no associated executable file.
1500   * User must release file via fput().
1501   */
get_mm_exe_file(struct mm_struct * mm)1502  struct file *get_mm_exe_file(struct mm_struct *mm)
1503  {
1504  	struct file *exe_file;
1505  
1506  	rcu_read_lock();
1507  	exe_file = get_file_rcu(&mm->exe_file);
1508  	rcu_read_unlock();
1509  	return exe_file;
1510  }
1511  
1512  /**
1513   * get_task_exe_file - acquire a reference to the task's executable file
1514   * @task: The task.
1515   *
1516   * Returns %NULL if task's mm (if any) has no associated executable file or
1517   * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1518   * User must release file via fput().
1519   */
get_task_exe_file(struct task_struct * task)1520  struct file *get_task_exe_file(struct task_struct *task)
1521  {
1522  	struct file *exe_file = NULL;
1523  	struct mm_struct *mm;
1524  
1525  	if (task->flags & PF_KTHREAD)
1526  		return NULL;
1527  
1528  	task_lock(task);
1529  	mm = task->mm;
1530  	if (mm)
1531  		exe_file = get_mm_exe_file(mm);
1532  	task_unlock(task);
1533  	return exe_file;
1534  }
1535  
1536  /**
1537   * get_task_mm - acquire a reference to the task's mm
1538   * @task: The task.
1539   *
1540   * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1541   * this kernel workthread has transiently adopted a user mm with use_mm,
1542   * to do its AIO) is not set and if so returns a reference to it, after
1543   * bumping up the use count.  User must release the mm via mmput()
1544   * after use.  Typically used by /proc and ptrace.
1545   */
get_task_mm(struct task_struct * task)1546  struct mm_struct *get_task_mm(struct task_struct *task)
1547  {
1548  	struct mm_struct *mm;
1549  
1550  	if (task->flags & PF_KTHREAD)
1551  		return NULL;
1552  
1553  	task_lock(task);
1554  	mm = task->mm;
1555  	if (mm)
1556  		mmget(mm);
1557  	task_unlock(task);
1558  	return mm;
1559  }
1560  EXPORT_SYMBOL_GPL(get_task_mm);
1561  
mm_access(struct task_struct * task,unsigned int mode)1562  struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1563  {
1564  	struct mm_struct *mm;
1565  	int err;
1566  
1567  	err =  down_read_killable(&task->signal->exec_update_lock);
1568  	if (err)
1569  		return ERR_PTR(err);
1570  
1571  	mm = get_task_mm(task);
1572  	if (!mm) {
1573  		mm = ERR_PTR(-ESRCH);
1574  	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1575  		mmput(mm);
1576  		mm = ERR_PTR(-EACCES);
1577  	}
1578  	up_read(&task->signal->exec_update_lock);
1579  
1580  	return mm;
1581  }
1582  
complete_vfork_done(struct task_struct * tsk)1583  static void complete_vfork_done(struct task_struct *tsk)
1584  {
1585  	struct completion *vfork;
1586  
1587  	task_lock(tsk);
1588  	vfork = tsk->vfork_done;
1589  	if (likely(vfork)) {
1590  		tsk->vfork_done = NULL;
1591  		complete(vfork);
1592  	}
1593  	task_unlock(tsk);
1594  }
1595  
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1596  static int wait_for_vfork_done(struct task_struct *child,
1597  				struct completion *vfork)
1598  {
1599  	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1600  	int killed;
1601  
1602  	cgroup_enter_frozen();
1603  	killed = wait_for_completion_state(vfork, state);
1604  	cgroup_leave_frozen(false);
1605  
1606  	if (killed) {
1607  		task_lock(child);
1608  		child->vfork_done = NULL;
1609  		task_unlock(child);
1610  	}
1611  
1612  	put_task_struct(child);
1613  	return killed;
1614  }
1615  
1616  /* Please note the differences between mmput and mm_release.
1617   * mmput is called whenever we stop holding onto a mm_struct,
1618   * error success whatever.
1619   *
1620   * mm_release is called after a mm_struct has been removed
1621   * from the current process.
1622   *
1623   * This difference is important for error handling, when we
1624   * only half set up a mm_struct for a new process and need to restore
1625   * the old one.  Because we mmput the new mm_struct before
1626   * restoring the old one. . .
1627   * Eric Biederman 10 January 1998
1628   */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1629  static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1630  {
1631  	uprobe_free_utask(tsk);
1632  
1633  	/* Get rid of any cached register state */
1634  	deactivate_mm(tsk, mm);
1635  
1636  	/*
1637  	 * Signal userspace if we're not exiting with a core dump
1638  	 * because we want to leave the value intact for debugging
1639  	 * purposes.
1640  	 */
1641  	if (tsk->clear_child_tid) {
1642  		if (atomic_read(&mm->mm_users) > 1) {
1643  			/*
1644  			 * We don't check the error code - if userspace has
1645  			 * not set up a proper pointer then tough luck.
1646  			 */
1647  			put_user(0, tsk->clear_child_tid);
1648  			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1649  					1, NULL, NULL, 0, 0);
1650  		}
1651  		tsk->clear_child_tid = NULL;
1652  	}
1653  
1654  	/*
1655  	 * All done, finally we can wake up parent and return this mm to him.
1656  	 * Also kthread_stop() uses this completion for synchronization.
1657  	 */
1658  	if (tsk->vfork_done)
1659  		complete_vfork_done(tsk);
1660  }
1661  
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1662  void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1663  {
1664  	futex_exit_release(tsk);
1665  	mm_release(tsk, mm);
1666  }
1667  
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1668  void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1669  {
1670  	futex_exec_release(tsk);
1671  	mm_release(tsk, mm);
1672  }
1673  
1674  /**
1675   * dup_mm() - duplicates an existing mm structure
1676   * @tsk: the task_struct with which the new mm will be associated.
1677   * @oldmm: the mm to duplicate.
1678   *
1679   * Allocates a new mm structure and duplicates the provided @oldmm structure
1680   * content into it.
1681   *
1682   * Return: the duplicated mm or NULL on failure.
1683   */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1684  static struct mm_struct *dup_mm(struct task_struct *tsk,
1685  				struct mm_struct *oldmm)
1686  {
1687  	struct mm_struct *mm;
1688  	int err;
1689  
1690  	mm = allocate_mm();
1691  	if (!mm)
1692  		goto fail_nomem;
1693  
1694  	memcpy(mm, oldmm, sizeof(*mm));
1695  
1696  	if (!mm_init(mm, tsk, mm->user_ns))
1697  		goto fail_nomem;
1698  
1699  	uprobe_start_dup_mmap();
1700  	err = dup_mmap(mm, oldmm);
1701  	if (err)
1702  		goto free_pt;
1703  	uprobe_end_dup_mmap();
1704  
1705  	mm->hiwater_rss = get_mm_rss(mm);
1706  	mm->hiwater_vm = mm->total_vm;
1707  
1708  	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1709  		goto free_pt;
1710  
1711  	return mm;
1712  
1713  free_pt:
1714  	/* don't put binfmt in mmput, we haven't got module yet */
1715  	mm->binfmt = NULL;
1716  	mm_init_owner(mm, NULL);
1717  	mmput(mm);
1718  	if (err)
1719  		uprobe_end_dup_mmap();
1720  
1721  fail_nomem:
1722  	return NULL;
1723  }
1724  
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1725  static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1726  {
1727  	struct mm_struct *mm, *oldmm;
1728  
1729  	tsk->min_flt = tsk->maj_flt = 0;
1730  	tsk->nvcsw = tsk->nivcsw = 0;
1731  #ifdef CONFIG_DETECT_HUNG_TASK
1732  	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1733  	tsk->last_switch_time = 0;
1734  #endif
1735  
1736  	tsk->mm = NULL;
1737  	tsk->active_mm = NULL;
1738  
1739  	/*
1740  	 * Are we cloning a kernel thread?
1741  	 *
1742  	 * We need to steal a active VM for that..
1743  	 */
1744  	oldmm = current->mm;
1745  	if (!oldmm)
1746  		return 0;
1747  
1748  	if (clone_flags & CLONE_VM) {
1749  		mmget(oldmm);
1750  		mm = oldmm;
1751  	} else {
1752  		mm = dup_mm(tsk, current->mm);
1753  		if (!mm)
1754  			return -ENOMEM;
1755  	}
1756  
1757  	tsk->mm = mm;
1758  	tsk->active_mm = mm;
1759  	sched_mm_cid_fork(tsk);
1760  	return 0;
1761  }
1762  
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1763  static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1764  {
1765  	struct fs_struct *fs = current->fs;
1766  	if (clone_flags & CLONE_FS) {
1767  		/* tsk->fs is already what we want */
1768  		spin_lock(&fs->lock);
1769  		/* "users" and "in_exec" locked for check_unsafe_exec() */
1770  		if (fs->in_exec) {
1771  			spin_unlock(&fs->lock);
1772  			return -EAGAIN;
1773  		}
1774  		fs->users++;
1775  		spin_unlock(&fs->lock);
1776  		return 0;
1777  	}
1778  	tsk->fs = copy_fs_struct(fs);
1779  	if (!tsk->fs)
1780  		return -ENOMEM;
1781  	return 0;
1782  }
1783  
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1784  static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1785  		      int no_files)
1786  {
1787  	struct files_struct *oldf, *newf;
1788  
1789  	/*
1790  	 * A background process may not have any files ...
1791  	 */
1792  	oldf = current->files;
1793  	if (!oldf)
1794  		return 0;
1795  
1796  	if (no_files) {
1797  		tsk->files = NULL;
1798  		return 0;
1799  	}
1800  
1801  	if (clone_flags & CLONE_FILES) {
1802  		atomic_inc(&oldf->count);
1803  		return 0;
1804  	}
1805  
1806  	newf = dup_fd(oldf, NULL);
1807  	if (IS_ERR(newf))
1808  		return PTR_ERR(newf);
1809  
1810  	tsk->files = newf;
1811  	return 0;
1812  }
1813  
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1814  static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1815  {
1816  	struct sighand_struct *sig;
1817  
1818  	if (clone_flags & CLONE_SIGHAND) {
1819  		refcount_inc(&current->sighand->count);
1820  		return 0;
1821  	}
1822  	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1823  	RCU_INIT_POINTER(tsk->sighand, sig);
1824  	if (!sig)
1825  		return -ENOMEM;
1826  
1827  	refcount_set(&sig->count, 1);
1828  	spin_lock_irq(&current->sighand->siglock);
1829  	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1830  	spin_unlock_irq(&current->sighand->siglock);
1831  
1832  	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1833  	if (clone_flags & CLONE_CLEAR_SIGHAND)
1834  		flush_signal_handlers(tsk, 0);
1835  
1836  	return 0;
1837  }
1838  
__cleanup_sighand(struct sighand_struct * sighand)1839  void __cleanup_sighand(struct sighand_struct *sighand)
1840  {
1841  	if (refcount_dec_and_test(&sighand->count)) {
1842  		signalfd_cleanup(sighand);
1843  		/*
1844  		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1845  		 * without an RCU grace period, see __lock_task_sighand().
1846  		 */
1847  		kmem_cache_free(sighand_cachep, sighand);
1848  	}
1849  }
1850  
1851  /*
1852   * Initialize POSIX timer handling for a thread group.
1853   */
posix_cpu_timers_init_group(struct signal_struct * sig)1854  static void posix_cpu_timers_init_group(struct signal_struct *sig)
1855  {
1856  	struct posix_cputimers *pct = &sig->posix_cputimers;
1857  	unsigned long cpu_limit;
1858  
1859  	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1860  	posix_cputimers_group_init(pct, cpu_limit);
1861  }
1862  
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1863  static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1864  {
1865  	struct signal_struct *sig;
1866  
1867  	if (clone_flags & CLONE_THREAD)
1868  		return 0;
1869  
1870  	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1871  	tsk->signal = sig;
1872  	if (!sig)
1873  		return -ENOMEM;
1874  
1875  	sig->nr_threads = 1;
1876  	sig->quick_threads = 1;
1877  	atomic_set(&sig->live, 1);
1878  	refcount_set(&sig->sigcnt, 1);
1879  
1880  	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1881  	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1882  	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1883  
1884  	init_waitqueue_head(&sig->wait_chldexit);
1885  	sig->curr_target = tsk;
1886  	init_sigpending(&sig->shared_pending);
1887  	INIT_HLIST_HEAD(&sig->multiprocess);
1888  	seqlock_init(&sig->stats_lock);
1889  	prev_cputime_init(&sig->prev_cputime);
1890  
1891  #ifdef CONFIG_POSIX_TIMERS
1892  	INIT_HLIST_HEAD(&sig->posix_timers);
1893  	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1894  	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1895  #endif
1896  
1897  	task_lock(current->group_leader);
1898  	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1899  	task_unlock(current->group_leader);
1900  
1901  	posix_cpu_timers_init_group(sig);
1902  
1903  	tty_audit_fork(sig);
1904  	sched_autogroup_fork(sig);
1905  
1906  	sig->oom_score_adj = current->signal->oom_score_adj;
1907  	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1908  
1909  	mutex_init(&sig->cred_guard_mutex);
1910  	init_rwsem(&sig->exec_update_lock);
1911  
1912  	return 0;
1913  }
1914  
copy_seccomp(struct task_struct * p)1915  static void copy_seccomp(struct task_struct *p)
1916  {
1917  #ifdef CONFIG_SECCOMP
1918  	/*
1919  	 * Must be called with sighand->lock held, which is common to
1920  	 * all threads in the group. Holding cred_guard_mutex is not
1921  	 * needed because this new task is not yet running and cannot
1922  	 * be racing exec.
1923  	 */
1924  	assert_spin_locked(&current->sighand->siglock);
1925  
1926  	/* Ref-count the new filter user, and assign it. */
1927  	get_seccomp_filter(current);
1928  	p->seccomp = current->seccomp;
1929  
1930  	/*
1931  	 * Explicitly enable no_new_privs here in case it got set
1932  	 * between the task_struct being duplicated and holding the
1933  	 * sighand lock. The seccomp state and nnp must be in sync.
1934  	 */
1935  	if (task_no_new_privs(current))
1936  		task_set_no_new_privs(p);
1937  
1938  	/*
1939  	 * If the parent gained a seccomp mode after copying thread
1940  	 * flags and between before we held the sighand lock, we have
1941  	 * to manually enable the seccomp thread flag here.
1942  	 */
1943  	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1944  		set_task_syscall_work(p, SECCOMP);
1945  #endif
1946  }
1947  
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1948  SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1949  {
1950  	current->clear_child_tid = tidptr;
1951  
1952  	return task_pid_vnr(current);
1953  }
1954  
rt_mutex_init_task(struct task_struct * p)1955  static void rt_mutex_init_task(struct task_struct *p)
1956  {
1957  	raw_spin_lock_init(&p->pi_lock);
1958  #ifdef CONFIG_RT_MUTEXES
1959  	p->pi_waiters = RB_ROOT_CACHED;
1960  	p->pi_top_task = NULL;
1961  	p->pi_blocked_on = NULL;
1962  #endif
1963  }
1964  
init_task_pid_links(struct task_struct * task)1965  static inline void init_task_pid_links(struct task_struct *task)
1966  {
1967  	enum pid_type type;
1968  
1969  	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1970  		INIT_HLIST_NODE(&task->pid_links[type]);
1971  }
1972  
1973  static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1974  init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1975  {
1976  	if (type == PIDTYPE_PID)
1977  		task->thread_pid = pid;
1978  	else
1979  		task->signal->pids[type] = pid;
1980  }
1981  
rcu_copy_process(struct task_struct * p)1982  static inline void rcu_copy_process(struct task_struct *p)
1983  {
1984  #ifdef CONFIG_PREEMPT_RCU
1985  	p->rcu_read_lock_nesting = 0;
1986  	p->rcu_read_unlock_special.s = 0;
1987  	p->rcu_blocked_node = NULL;
1988  	INIT_LIST_HEAD(&p->rcu_node_entry);
1989  #endif /* #ifdef CONFIG_PREEMPT_RCU */
1990  #ifdef CONFIG_TASKS_RCU
1991  	p->rcu_tasks_holdout = false;
1992  	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1993  	p->rcu_tasks_idle_cpu = -1;
1994  	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1995  #endif /* #ifdef CONFIG_TASKS_RCU */
1996  #ifdef CONFIG_TASKS_TRACE_RCU
1997  	p->trc_reader_nesting = 0;
1998  	p->trc_reader_special.s = 0;
1999  	INIT_LIST_HEAD(&p->trc_holdout_list);
2000  	INIT_LIST_HEAD(&p->trc_blkd_node);
2001  #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2002  }
2003  
2004  /**
2005   * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2006   * @pid:   the struct pid for which to create a pidfd
2007   * @flags: flags of the new @pidfd
2008   * @ret: Where to return the file for the pidfd.
2009   *
2010   * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2011   * caller's file descriptor table. The pidfd is reserved but not installed yet.
2012   *
2013   * The helper doesn't perform checks on @pid which makes it useful for pidfds
2014   * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2015   * pidfd file are prepared.
2016   *
2017   * If this function returns successfully the caller is responsible to either
2018   * call fd_install() passing the returned pidfd and pidfd file as arguments in
2019   * order to install the pidfd into its file descriptor table or they must use
2020   * put_unused_fd() and fput() on the returned pidfd and pidfd file
2021   * respectively.
2022   *
2023   * This function is useful when a pidfd must already be reserved but there
2024   * might still be points of failure afterwards and the caller wants to ensure
2025   * that no pidfd is leaked into its file descriptor table.
2026   *
2027   * Return: On success, a reserved pidfd is returned from the function and a new
2028   *         pidfd file is returned in the last argument to the function. On
2029   *         error, a negative error code is returned from the function and the
2030   *         last argument remains unchanged.
2031   */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2032  static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2033  {
2034  	struct file *pidfd_file;
2035  
2036  	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
2037  	if (pidfd < 0)
2038  		return pidfd;
2039  
2040  	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2041  	if (IS_ERR(pidfd_file))
2042  		return PTR_ERR(pidfd_file);
2043  
2044  	*ret = pidfd_file;
2045  	return take_fd(pidfd);
2046  }
2047  
2048  /**
2049   * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2050   * @pid:   the struct pid for which to create a pidfd
2051   * @flags: flags of the new @pidfd
2052   * @ret: Where to return the pidfd.
2053   *
2054   * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2055   * caller's file descriptor table. The pidfd is reserved but not installed yet.
2056   *
2057   * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2058   * task identified by @pid must be a thread-group leader.
2059   *
2060   * If this function returns successfully the caller is responsible to either
2061   * call fd_install() passing the returned pidfd and pidfd file as arguments in
2062   * order to install the pidfd into its file descriptor table or they must use
2063   * put_unused_fd() and fput() on the returned pidfd and pidfd file
2064   * respectively.
2065   *
2066   * This function is useful when a pidfd must already be reserved but there
2067   * might still be points of failure afterwards and the caller wants to ensure
2068   * that no pidfd is leaked into its file descriptor table.
2069   *
2070   * Return: On success, a reserved pidfd is returned from the function and a new
2071   *         pidfd file is returned in the last argument to the function. On
2072   *         error, a negative error code is returned from the function and the
2073   *         last argument remains unchanged.
2074   */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2075  int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2076  {
2077  	bool thread = flags & PIDFD_THREAD;
2078  
2079  	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2080  		return -EINVAL;
2081  
2082  	return __pidfd_prepare(pid, flags, ret);
2083  }
2084  
__delayed_free_task(struct rcu_head * rhp)2085  static void __delayed_free_task(struct rcu_head *rhp)
2086  {
2087  	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2088  
2089  	free_task(tsk);
2090  }
2091  
delayed_free_task(struct task_struct * tsk)2092  static __always_inline void delayed_free_task(struct task_struct *tsk)
2093  {
2094  	if (IS_ENABLED(CONFIG_MEMCG))
2095  		call_rcu(&tsk->rcu, __delayed_free_task);
2096  	else
2097  		free_task(tsk);
2098  }
2099  
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2100  static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2101  {
2102  	/* Skip if kernel thread */
2103  	if (!tsk->mm)
2104  		return;
2105  
2106  	/* Skip if spawning a thread or using vfork */
2107  	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2108  		return;
2109  
2110  	/* We need to synchronize with __set_oom_adj */
2111  	mutex_lock(&oom_adj_mutex);
2112  	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2113  	/* Update the values in case they were changed after copy_signal */
2114  	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2115  	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2116  	mutex_unlock(&oom_adj_mutex);
2117  }
2118  
2119  #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2120  static void rv_task_fork(struct task_struct *p)
2121  {
2122  	int i;
2123  
2124  	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2125  		p->rv[i].da_mon.monitoring = false;
2126  }
2127  #else
2128  #define rv_task_fork(p) do {} while (0)
2129  #endif
2130  
2131  /*
2132   * This creates a new process as a copy of the old one,
2133   * but does not actually start it yet.
2134   *
2135   * It copies the registers, and all the appropriate
2136   * parts of the process environment (as per the clone
2137   * flags). The actual kick-off is left to the caller.
2138   */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2139  __latent_entropy struct task_struct *copy_process(
2140  					struct pid *pid,
2141  					int trace,
2142  					int node,
2143  					struct kernel_clone_args *args)
2144  {
2145  	int pidfd = -1, retval;
2146  	struct task_struct *p;
2147  	struct multiprocess_signals delayed;
2148  	struct file *pidfile = NULL;
2149  	const u64 clone_flags = args->flags;
2150  	struct nsproxy *nsp = current->nsproxy;
2151  
2152  	/*
2153  	 * Don't allow sharing the root directory with processes in a different
2154  	 * namespace
2155  	 */
2156  	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2157  		return ERR_PTR(-EINVAL);
2158  
2159  	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2160  		return ERR_PTR(-EINVAL);
2161  
2162  	/*
2163  	 * Thread groups must share signals as well, and detached threads
2164  	 * can only be started up within the thread group.
2165  	 */
2166  	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2167  		return ERR_PTR(-EINVAL);
2168  
2169  	/*
2170  	 * Shared signal handlers imply shared VM. By way of the above,
2171  	 * thread groups also imply shared VM. Blocking this case allows
2172  	 * for various simplifications in other code.
2173  	 */
2174  	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2175  		return ERR_PTR(-EINVAL);
2176  
2177  	/*
2178  	 * Siblings of global init remain as zombies on exit since they are
2179  	 * not reaped by their parent (swapper). To solve this and to avoid
2180  	 * multi-rooted process trees, prevent global and container-inits
2181  	 * from creating siblings.
2182  	 */
2183  	if ((clone_flags & CLONE_PARENT) &&
2184  				current->signal->flags & SIGNAL_UNKILLABLE)
2185  		return ERR_PTR(-EINVAL);
2186  
2187  	/*
2188  	 * If the new process will be in a different pid or user namespace
2189  	 * do not allow it to share a thread group with the forking task.
2190  	 */
2191  	if (clone_flags & CLONE_THREAD) {
2192  		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2193  		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2194  			return ERR_PTR(-EINVAL);
2195  	}
2196  
2197  	if (clone_flags & CLONE_PIDFD) {
2198  		/*
2199  		 * - CLONE_DETACHED is blocked so that we can potentially
2200  		 *   reuse it later for CLONE_PIDFD.
2201  		 */
2202  		if (clone_flags & CLONE_DETACHED)
2203  			return ERR_PTR(-EINVAL);
2204  	}
2205  
2206  	/*
2207  	 * Force any signals received before this point to be delivered
2208  	 * before the fork happens.  Collect up signals sent to multiple
2209  	 * processes that happen during the fork and delay them so that
2210  	 * they appear to happen after the fork.
2211  	 */
2212  	sigemptyset(&delayed.signal);
2213  	INIT_HLIST_NODE(&delayed.node);
2214  
2215  	spin_lock_irq(&current->sighand->siglock);
2216  	if (!(clone_flags & CLONE_THREAD))
2217  		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2218  	recalc_sigpending();
2219  	spin_unlock_irq(&current->sighand->siglock);
2220  	retval = -ERESTARTNOINTR;
2221  	if (task_sigpending(current))
2222  		goto fork_out;
2223  
2224  	retval = -ENOMEM;
2225  	p = dup_task_struct(current, node);
2226  	if (!p)
2227  		goto fork_out;
2228  	p->flags &= ~PF_KTHREAD;
2229  	if (args->kthread)
2230  		p->flags |= PF_KTHREAD;
2231  	if (args->user_worker) {
2232  		/*
2233  		 * Mark us a user worker, and block any signal that isn't
2234  		 * fatal or STOP
2235  		 */
2236  		p->flags |= PF_USER_WORKER;
2237  		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2238  	}
2239  	if (args->io_thread)
2240  		p->flags |= PF_IO_WORKER;
2241  
2242  	if (args->name)
2243  		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2244  
2245  	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2246  	/*
2247  	 * Clear TID on mm_release()?
2248  	 */
2249  	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2250  
2251  	ftrace_graph_init_task(p);
2252  
2253  	rt_mutex_init_task(p);
2254  
2255  	lockdep_assert_irqs_enabled();
2256  #ifdef CONFIG_PROVE_LOCKING
2257  	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2258  #endif
2259  	retval = copy_creds(p, clone_flags);
2260  	if (retval < 0)
2261  		goto bad_fork_free;
2262  
2263  	retval = -EAGAIN;
2264  	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2265  		if (p->real_cred->user != INIT_USER &&
2266  		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2267  			goto bad_fork_cleanup_count;
2268  	}
2269  	current->flags &= ~PF_NPROC_EXCEEDED;
2270  
2271  	/*
2272  	 * If multiple threads are within copy_process(), then this check
2273  	 * triggers too late. This doesn't hurt, the check is only there
2274  	 * to stop root fork bombs.
2275  	 */
2276  	retval = -EAGAIN;
2277  	if (data_race(nr_threads >= max_threads))
2278  		goto bad_fork_cleanup_count;
2279  
2280  	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2281  	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2282  	p->flags |= PF_FORKNOEXEC;
2283  	INIT_LIST_HEAD(&p->children);
2284  	INIT_LIST_HEAD(&p->sibling);
2285  	rcu_copy_process(p);
2286  	p->vfork_done = NULL;
2287  	spin_lock_init(&p->alloc_lock);
2288  
2289  	init_sigpending(&p->pending);
2290  
2291  	p->utime = p->stime = p->gtime = 0;
2292  #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2293  	p->utimescaled = p->stimescaled = 0;
2294  #endif
2295  	prev_cputime_init(&p->prev_cputime);
2296  
2297  #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2298  	seqcount_init(&p->vtime.seqcount);
2299  	p->vtime.starttime = 0;
2300  	p->vtime.state = VTIME_INACTIVE;
2301  #endif
2302  
2303  #ifdef CONFIG_IO_URING
2304  	p->io_uring = NULL;
2305  #endif
2306  
2307  	p->default_timer_slack_ns = current->timer_slack_ns;
2308  
2309  #ifdef CONFIG_PSI
2310  	p->psi_flags = 0;
2311  #endif
2312  
2313  	task_io_accounting_init(&p->ioac);
2314  	acct_clear_integrals(p);
2315  
2316  	posix_cputimers_init(&p->posix_cputimers);
2317  	tick_dep_init_task(p);
2318  
2319  	p->io_context = NULL;
2320  	audit_set_context(p, NULL);
2321  	cgroup_fork(p);
2322  	if (args->kthread) {
2323  		if (!set_kthread_struct(p))
2324  			goto bad_fork_cleanup_delayacct;
2325  	}
2326  #ifdef CONFIG_NUMA
2327  	p->mempolicy = mpol_dup(p->mempolicy);
2328  	if (IS_ERR(p->mempolicy)) {
2329  		retval = PTR_ERR(p->mempolicy);
2330  		p->mempolicy = NULL;
2331  		goto bad_fork_cleanup_delayacct;
2332  	}
2333  #endif
2334  #ifdef CONFIG_CPUSETS
2335  	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2336  	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2337  #endif
2338  #ifdef CONFIG_TRACE_IRQFLAGS
2339  	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2340  	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2341  	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2342  	p->softirqs_enabled		= 1;
2343  	p->softirq_context		= 0;
2344  #endif
2345  
2346  	p->pagefault_disabled = 0;
2347  
2348  #ifdef CONFIG_LOCKDEP
2349  	lockdep_init_task(p);
2350  #endif
2351  
2352  #ifdef CONFIG_DEBUG_MUTEXES
2353  	p->blocked_on = NULL; /* not blocked yet */
2354  #endif
2355  #ifdef CONFIG_BCACHE
2356  	p->sequential_io	= 0;
2357  	p->sequential_io_avg	= 0;
2358  #endif
2359  #ifdef CONFIG_BPF_SYSCALL
2360  	RCU_INIT_POINTER(p->bpf_storage, NULL);
2361  	p->bpf_ctx = NULL;
2362  #endif
2363  
2364  	/* Perform scheduler related setup. Assign this task to a CPU. */
2365  	retval = sched_fork(clone_flags, p);
2366  	if (retval)
2367  		goto bad_fork_cleanup_policy;
2368  
2369  	retval = perf_event_init_task(p, clone_flags);
2370  	if (retval)
2371  		goto bad_fork_sched_cancel_fork;
2372  	retval = audit_alloc(p);
2373  	if (retval)
2374  		goto bad_fork_cleanup_perf;
2375  	/* copy all the process information */
2376  	shm_init_task(p);
2377  	retval = security_task_alloc(p, clone_flags);
2378  	if (retval)
2379  		goto bad_fork_cleanup_audit;
2380  	retval = copy_semundo(clone_flags, p);
2381  	if (retval)
2382  		goto bad_fork_cleanup_security;
2383  	retval = copy_files(clone_flags, p, args->no_files);
2384  	if (retval)
2385  		goto bad_fork_cleanup_semundo;
2386  	retval = copy_fs(clone_flags, p);
2387  	if (retval)
2388  		goto bad_fork_cleanup_files;
2389  	retval = copy_sighand(clone_flags, p);
2390  	if (retval)
2391  		goto bad_fork_cleanup_fs;
2392  	retval = copy_signal(clone_flags, p);
2393  	if (retval)
2394  		goto bad_fork_cleanup_sighand;
2395  	retval = copy_mm(clone_flags, p);
2396  	if (retval)
2397  		goto bad_fork_cleanup_signal;
2398  	retval = copy_namespaces(clone_flags, p);
2399  	if (retval)
2400  		goto bad_fork_cleanup_mm;
2401  	retval = copy_io(clone_flags, p);
2402  	if (retval)
2403  		goto bad_fork_cleanup_namespaces;
2404  	retval = copy_thread(p, args);
2405  	if (retval)
2406  		goto bad_fork_cleanup_io;
2407  
2408  	stackleak_task_init(p);
2409  
2410  	if (pid != &init_struct_pid) {
2411  		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2412  				args->set_tid_size);
2413  		if (IS_ERR(pid)) {
2414  			retval = PTR_ERR(pid);
2415  			goto bad_fork_cleanup_thread;
2416  		}
2417  	}
2418  
2419  	/*
2420  	 * This has to happen after we've potentially unshared the file
2421  	 * descriptor table (so that the pidfd doesn't leak into the child
2422  	 * if the fd table isn't shared).
2423  	 */
2424  	if (clone_flags & CLONE_PIDFD) {
2425  		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2426  
2427  		/*
2428  		 * Note that no task has been attached to @pid yet indicate
2429  		 * that via CLONE_PIDFD.
2430  		 */
2431  		retval = __pidfd_prepare(pid, flags | PIDFD_CLONE, &pidfile);
2432  		if (retval < 0)
2433  			goto bad_fork_free_pid;
2434  		pidfd = retval;
2435  
2436  		retval = put_user(pidfd, args->pidfd);
2437  		if (retval)
2438  			goto bad_fork_put_pidfd;
2439  	}
2440  
2441  #ifdef CONFIG_BLOCK
2442  	p->plug = NULL;
2443  #endif
2444  	futex_init_task(p);
2445  
2446  	/*
2447  	 * sigaltstack should be cleared when sharing the same VM
2448  	 */
2449  	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2450  		sas_ss_reset(p);
2451  
2452  	/*
2453  	 * Syscall tracing and stepping should be turned off in the
2454  	 * child regardless of CLONE_PTRACE.
2455  	 */
2456  	user_disable_single_step(p);
2457  	clear_task_syscall_work(p, SYSCALL_TRACE);
2458  #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2459  	clear_task_syscall_work(p, SYSCALL_EMU);
2460  #endif
2461  	clear_tsk_latency_tracing(p);
2462  
2463  	/* ok, now we should be set up.. */
2464  	p->pid = pid_nr(pid);
2465  	if (clone_flags & CLONE_THREAD) {
2466  		p->group_leader = current->group_leader;
2467  		p->tgid = current->tgid;
2468  	} else {
2469  		p->group_leader = p;
2470  		p->tgid = p->pid;
2471  	}
2472  
2473  	p->nr_dirtied = 0;
2474  	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2475  	p->dirty_paused_when = 0;
2476  
2477  	p->pdeath_signal = 0;
2478  	p->task_works = NULL;
2479  	clear_posix_cputimers_work(p);
2480  
2481  #ifdef CONFIG_KRETPROBES
2482  	p->kretprobe_instances.first = NULL;
2483  #endif
2484  #ifdef CONFIG_RETHOOK
2485  	p->rethooks.first = NULL;
2486  #endif
2487  
2488  	/*
2489  	 * Ensure that the cgroup subsystem policies allow the new process to be
2490  	 * forked. It should be noted that the new process's css_set can be changed
2491  	 * between here and cgroup_post_fork() if an organisation operation is in
2492  	 * progress.
2493  	 */
2494  	retval = cgroup_can_fork(p, args);
2495  	if (retval)
2496  		goto bad_fork_put_pidfd;
2497  
2498  	/*
2499  	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2500  	 * the new task on the correct runqueue. All this *before* the task
2501  	 * becomes visible.
2502  	 *
2503  	 * This isn't part of ->can_fork() because while the re-cloning is
2504  	 * cgroup specific, it unconditionally needs to place the task on a
2505  	 * runqueue.
2506  	 */
2507  	retval = sched_cgroup_fork(p, args);
2508  	if (retval)
2509  		goto bad_fork_cancel_cgroup;
2510  
2511  	/*
2512  	 * From this point on we must avoid any synchronous user-space
2513  	 * communication until we take the tasklist-lock. In particular, we do
2514  	 * not want user-space to be able to predict the process start-time by
2515  	 * stalling fork(2) after we recorded the start_time but before it is
2516  	 * visible to the system.
2517  	 */
2518  
2519  	p->start_time = ktime_get_ns();
2520  	p->start_boottime = ktime_get_boottime_ns();
2521  
2522  	/*
2523  	 * Make it visible to the rest of the system, but dont wake it up yet.
2524  	 * Need tasklist lock for parent etc handling!
2525  	 */
2526  	write_lock_irq(&tasklist_lock);
2527  
2528  	/* CLONE_PARENT re-uses the old parent */
2529  	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2530  		p->real_parent = current->real_parent;
2531  		p->parent_exec_id = current->parent_exec_id;
2532  		if (clone_flags & CLONE_THREAD)
2533  			p->exit_signal = -1;
2534  		else
2535  			p->exit_signal = current->group_leader->exit_signal;
2536  	} else {
2537  		p->real_parent = current;
2538  		p->parent_exec_id = current->self_exec_id;
2539  		p->exit_signal = args->exit_signal;
2540  	}
2541  
2542  	klp_copy_process(p);
2543  
2544  	sched_core_fork(p);
2545  
2546  	spin_lock(&current->sighand->siglock);
2547  
2548  	rv_task_fork(p);
2549  
2550  	rseq_fork(p, clone_flags);
2551  
2552  	/* Don't start children in a dying pid namespace */
2553  	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2554  		retval = -ENOMEM;
2555  		goto bad_fork_core_free;
2556  	}
2557  
2558  	/* Let kill terminate clone/fork in the middle */
2559  	if (fatal_signal_pending(current)) {
2560  		retval = -EINTR;
2561  		goto bad_fork_core_free;
2562  	}
2563  
2564  	/* No more failure paths after this point. */
2565  
2566  	/*
2567  	 * Copy seccomp details explicitly here, in case they were changed
2568  	 * before holding sighand lock.
2569  	 */
2570  	copy_seccomp(p);
2571  
2572  	init_task_pid_links(p);
2573  	if (likely(p->pid)) {
2574  		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2575  
2576  		init_task_pid(p, PIDTYPE_PID, pid);
2577  		if (thread_group_leader(p)) {
2578  			init_task_pid(p, PIDTYPE_TGID, pid);
2579  			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2580  			init_task_pid(p, PIDTYPE_SID, task_session(current));
2581  
2582  			if (is_child_reaper(pid)) {
2583  				ns_of_pid(pid)->child_reaper = p;
2584  				p->signal->flags |= SIGNAL_UNKILLABLE;
2585  			}
2586  			p->signal->shared_pending.signal = delayed.signal;
2587  			p->signal->tty = tty_kref_get(current->signal->tty);
2588  			/*
2589  			 * Inherit has_child_subreaper flag under the same
2590  			 * tasklist_lock with adding child to the process tree
2591  			 * for propagate_has_child_subreaper optimization.
2592  			 */
2593  			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2594  							 p->real_parent->signal->is_child_subreaper;
2595  			list_add_tail(&p->sibling, &p->real_parent->children);
2596  			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2597  			attach_pid(p, PIDTYPE_TGID);
2598  			attach_pid(p, PIDTYPE_PGID);
2599  			attach_pid(p, PIDTYPE_SID);
2600  			__this_cpu_inc(process_counts);
2601  		} else {
2602  			current->signal->nr_threads++;
2603  			current->signal->quick_threads++;
2604  			atomic_inc(&current->signal->live);
2605  			refcount_inc(&current->signal->sigcnt);
2606  			task_join_group_stop(p);
2607  			list_add_tail_rcu(&p->thread_node,
2608  					  &p->signal->thread_head);
2609  		}
2610  		attach_pid(p, PIDTYPE_PID);
2611  		nr_threads++;
2612  	}
2613  	total_forks++;
2614  	hlist_del_init(&delayed.node);
2615  	spin_unlock(&current->sighand->siglock);
2616  	syscall_tracepoint_update(p);
2617  	write_unlock_irq(&tasklist_lock);
2618  
2619  	if (pidfile)
2620  		fd_install(pidfd, pidfile);
2621  
2622  	proc_fork_connector(p);
2623  	sched_post_fork(p);
2624  	cgroup_post_fork(p, args);
2625  	perf_event_fork(p);
2626  
2627  	trace_task_newtask(p, clone_flags);
2628  	uprobe_copy_process(p, clone_flags);
2629  	user_events_fork(p, clone_flags);
2630  
2631  	copy_oom_score_adj(clone_flags, p);
2632  
2633  	return p;
2634  
2635  bad_fork_core_free:
2636  	sched_core_free(p);
2637  	spin_unlock(&current->sighand->siglock);
2638  	write_unlock_irq(&tasklist_lock);
2639  bad_fork_cancel_cgroup:
2640  	cgroup_cancel_fork(p, args);
2641  bad_fork_put_pidfd:
2642  	if (clone_flags & CLONE_PIDFD) {
2643  		fput(pidfile);
2644  		put_unused_fd(pidfd);
2645  	}
2646  bad_fork_free_pid:
2647  	if (pid != &init_struct_pid)
2648  		free_pid(pid);
2649  bad_fork_cleanup_thread:
2650  	exit_thread(p);
2651  bad_fork_cleanup_io:
2652  	if (p->io_context)
2653  		exit_io_context(p);
2654  bad_fork_cleanup_namespaces:
2655  	exit_task_namespaces(p);
2656  bad_fork_cleanup_mm:
2657  	if (p->mm) {
2658  		mm_clear_owner(p->mm, p);
2659  		mmput(p->mm);
2660  	}
2661  bad_fork_cleanup_signal:
2662  	if (!(clone_flags & CLONE_THREAD))
2663  		free_signal_struct(p->signal);
2664  bad_fork_cleanup_sighand:
2665  	__cleanup_sighand(p->sighand);
2666  bad_fork_cleanup_fs:
2667  	exit_fs(p); /* blocking */
2668  bad_fork_cleanup_files:
2669  	exit_files(p); /* blocking */
2670  bad_fork_cleanup_semundo:
2671  	exit_sem(p);
2672  bad_fork_cleanup_security:
2673  	security_task_free(p);
2674  bad_fork_cleanup_audit:
2675  	audit_free(p);
2676  bad_fork_cleanup_perf:
2677  	perf_event_free_task(p);
2678  bad_fork_sched_cancel_fork:
2679  	sched_cancel_fork(p);
2680  bad_fork_cleanup_policy:
2681  	lockdep_free_task(p);
2682  #ifdef CONFIG_NUMA
2683  	mpol_put(p->mempolicy);
2684  #endif
2685  bad_fork_cleanup_delayacct:
2686  	delayacct_tsk_free(p);
2687  bad_fork_cleanup_count:
2688  	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2689  	exit_creds(p);
2690  bad_fork_free:
2691  	WRITE_ONCE(p->__state, TASK_DEAD);
2692  	exit_task_stack_account(p);
2693  	put_task_stack(p);
2694  	delayed_free_task(p);
2695  fork_out:
2696  	spin_lock_irq(&current->sighand->siglock);
2697  	hlist_del_init(&delayed.node);
2698  	spin_unlock_irq(&current->sighand->siglock);
2699  	return ERR_PTR(retval);
2700  }
2701  
init_idle_pids(struct task_struct * idle)2702  static inline void init_idle_pids(struct task_struct *idle)
2703  {
2704  	enum pid_type type;
2705  
2706  	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2707  		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2708  		init_task_pid(idle, type, &init_struct_pid);
2709  	}
2710  }
2711  
idle_dummy(void * dummy)2712  static int idle_dummy(void *dummy)
2713  {
2714  	/* This function is never called */
2715  	return 0;
2716  }
2717  
fork_idle(int cpu)2718  struct task_struct * __init fork_idle(int cpu)
2719  {
2720  	struct task_struct *task;
2721  	struct kernel_clone_args args = {
2722  		.flags		= CLONE_VM,
2723  		.fn		= &idle_dummy,
2724  		.fn_arg		= NULL,
2725  		.kthread	= 1,
2726  		.idle		= 1,
2727  	};
2728  
2729  	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2730  	if (!IS_ERR(task)) {
2731  		init_idle_pids(task);
2732  		init_idle(task, cpu);
2733  	}
2734  
2735  	return task;
2736  }
2737  
2738  /*
2739   * This is like kernel_clone(), but shaved down and tailored to just
2740   * creating io_uring workers. It returns a created task, or an error pointer.
2741   * The returned task is inactive, and the caller must fire it up through
2742   * wake_up_new_task(p). All signals are blocked in the created task.
2743   */
create_io_thread(int (* fn)(void *),void * arg,int node)2744  struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2745  {
2746  	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2747  				CLONE_IO;
2748  	struct kernel_clone_args args = {
2749  		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2750  				    CLONE_UNTRACED) & ~CSIGNAL),
2751  		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2752  		.fn		= fn,
2753  		.fn_arg		= arg,
2754  		.io_thread	= 1,
2755  		.user_worker	= 1,
2756  	};
2757  
2758  	return copy_process(NULL, 0, node, &args);
2759  }
2760  
2761  /*
2762   *  Ok, this is the main fork-routine.
2763   *
2764   * It copies the process, and if successful kick-starts
2765   * it and waits for it to finish using the VM if required.
2766   *
2767   * args->exit_signal is expected to be checked for sanity by the caller.
2768   */
kernel_clone(struct kernel_clone_args * args)2769  pid_t kernel_clone(struct kernel_clone_args *args)
2770  {
2771  	u64 clone_flags = args->flags;
2772  	struct completion vfork;
2773  	struct pid *pid;
2774  	struct task_struct *p;
2775  	int trace = 0;
2776  	pid_t nr;
2777  
2778  	/*
2779  	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2780  	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2781  	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2782  	 * field in struct clone_args and it still doesn't make sense to have
2783  	 * them both point at the same memory location. Performing this check
2784  	 * here has the advantage that we don't need to have a separate helper
2785  	 * to check for legacy clone().
2786  	 */
2787  	if ((clone_flags & CLONE_PIDFD) &&
2788  	    (clone_flags & CLONE_PARENT_SETTID) &&
2789  	    (args->pidfd == args->parent_tid))
2790  		return -EINVAL;
2791  
2792  	/*
2793  	 * Determine whether and which event to report to ptracer.  When
2794  	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2795  	 * requested, no event is reported; otherwise, report if the event
2796  	 * for the type of forking is enabled.
2797  	 */
2798  	if (!(clone_flags & CLONE_UNTRACED)) {
2799  		if (clone_flags & CLONE_VFORK)
2800  			trace = PTRACE_EVENT_VFORK;
2801  		else if (args->exit_signal != SIGCHLD)
2802  			trace = PTRACE_EVENT_CLONE;
2803  		else
2804  			trace = PTRACE_EVENT_FORK;
2805  
2806  		if (likely(!ptrace_event_enabled(current, trace)))
2807  			trace = 0;
2808  	}
2809  
2810  	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2811  	add_latent_entropy();
2812  
2813  	if (IS_ERR(p))
2814  		return PTR_ERR(p);
2815  
2816  	/*
2817  	 * Do this prior waking up the new thread - the thread pointer
2818  	 * might get invalid after that point, if the thread exits quickly.
2819  	 */
2820  	trace_sched_process_fork(current, p);
2821  
2822  	pid = get_task_pid(p, PIDTYPE_PID);
2823  	nr = pid_vnr(pid);
2824  
2825  	if (clone_flags & CLONE_PARENT_SETTID)
2826  		put_user(nr, args->parent_tid);
2827  
2828  	if (clone_flags & CLONE_VFORK) {
2829  		p->vfork_done = &vfork;
2830  		init_completion(&vfork);
2831  		get_task_struct(p);
2832  	}
2833  
2834  	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2835  		/* lock the task to synchronize with memcg migration */
2836  		task_lock(p);
2837  		lru_gen_add_mm(p->mm);
2838  		task_unlock(p);
2839  	}
2840  
2841  	wake_up_new_task(p);
2842  
2843  	/* forking complete and child started to run, tell ptracer */
2844  	if (unlikely(trace))
2845  		ptrace_event_pid(trace, pid);
2846  
2847  	if (clone_flags & CLONE_VFORK) {
2848  		if (!wait_for_vfork_done(p, &vfork))
2849  			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2850  	}
2851  
2852  	put_pid(pid);
2853  	return nr;
2854  }
2855  
2856  /*
2857   * Create a kernel thread.
2858   */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2859  pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2860  		    unsigned long flags)
2861  {
2862  	struct kernel_clone_args args = {
2863  		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2864  				    CLONE_UNTRACED) & ~CSIGNAL),
2865  		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2866  		.fn		= fn,
2867  		.fn_arg		= arg,
2868  		.name		= name,
2869  		.kthread	= 1,
2870  	};
2871  
2872  	return kernel_clone(&args);
2873  }
2874  
2875  /*
2876   * Create a user mode thread.
2877   */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2878  pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2879  {
2880  	struct kernel_clone_args args = {
2881  		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2882  				    CLONE_UNTRACED) & ~CSIGNAL),
2883  		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2884  		.fn		= fn,
2885  		.fn_arg		= arg,
2886  	};
2887  
2888  	return kernel_clone(&args);
2889  }
2890  
2891  #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2892  SYSCALL_DEFINE0(fork)
2893  {
2894  #ifdef CONFIG_MMU
2895  	struct kernel_clone_args args = {
2896  		.exit_signal = SIGCHLD,
2897  	};
2898  
2899  	return kernel_clone(&args);
2900  #else
2901  	/* can not support in nommu mode */
2902  	return -EINVAL;
2903  #endif
2904  }
2905  #endif
2906  
2907  #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2908  SYSCALL_DEFINE0(vfork)
2909  {
2910  	struct kernel_clone_args args = {
2911  		.flags		= CLONE_VFORK | CLONE_VM,
2912  		.exit_signal	= SIGCHLD,
2913  	};
2914  
2915  	return kernel_clone(&args);
2916  }
2917  #endif
2918  
2919  #ifdef __ARCH_WANT_SYS_CLONE
2920  #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2921  SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2922  		 int __user *, parent_tidptr,
2923  		 unsigned long, tls,
2924  		 int __user *, child_tidptr)
2925  #elif defined(CONFIG_CLONE_BACKWARDS2)
2926  SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2927  		 int __user *, parent_tidptr,
2928  		 int __user *, child_tidptr,
2929  		 unsigned long, tls)
2930  #elif defined(CONFIG_CLONE_BACKWARDS3)
2931  SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2932  		int, stack_size,
2933  		int __user *, parent_tidptr,
2934  		int __user *, child_tidptr,
2935  		unsigned long, tls)
2936  #else
2937  SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2938  		 int __user *, parent_tidptr,
2939  		 int __user *, child_tidptr,
2940  		 unsigned long, tls)
2941  #endif
2942  {
2943  	struct kernel_clone_args args = {
2944  		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2945  		.pidfd		= parent_tidptr,
2946  		.child_tid	= child_tidptr,
2947  		.parent_tid	= parent_tidptr,
2948  		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2949  		.stack		= newsp,
2950  		.tls		= tls,
2951  	};
2952  
2953  	return kernel_clone(&args);
2954  }
2955  #endif
2956  
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2957  noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2958  					      struct clone_args __user *uargs,
2959  					      size_t usize)
2960  {
2961  	int err;
2962  	struct clone_args args;
2963  	pid_t *kset_tid = kargs->set_tid;
2964  
2965  	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2966  		     CLONE_ARGS_SIZE_VER0);
2967  	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2968  		     CLONE_ARGS_SIZE_VER1);
2969  	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2970  		     CLONE_ARGS_SIZE_VER2);
2971  	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2972  
2973  	if (unlikely(usize > PAGE_SIZE))
2974  		return -E2BIG;
2975  	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2976  		return -EINVAL;
2977  
2978  	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2979  	if (err)
2980  		return err;
2981  
2982  	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2983  		return -EINVAL;
2984  
2985  	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2986  		return -EINVAL;
2987  
2988  	if (unlikely(args.set_tid && args.set_tid_size == 0))
2989  		return -EINVAL;
2990  
2991  	/*
2992  	 * Verify that higher 32bits of exit_signal are unset and that
2993  	 * it is a valid signal
2994  	 */
2995  	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2996  		     !valid_signal(args.exit_signal)))
2997  		return -EINVAL;
2998  
2999  	if ((args.flags & CLONE_INTO_CGROUP) &&
3000  	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3001  		return -EINVAL;
3002  
3003  	*kargs = (struct kernel_clone_args){
3004  		.flags		= args.flags,
3005  		.pidfd		= u64_to_user_ptr(args.pidfd),
3006  		.child_tid	= u64_to_user_ptr(args.child_tid),
3007  		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3008  		.exit_signal	= args.exit_signal,
3009  		.stack		= args.stack,
3010  		.stack_size	= args.stack_size,
3011  		.tls		= args.tls,
3012  		.set_tid_size	= args.set_tid_size,
3013  		.cgroup		= args.cgroup,
3014  	};
3015  
3016  	if (args.set_tid &&
3017  		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3018  			(kargs->set_tid_size * sizeof(pid_t))))
3019  		return -EFAULT;
3020  
3021  	kargs->set_tid = kset_tid;
3022  
3023  	return 0;
3024  }
3025  
3026  /**
3027   * clone3_stack_valid - check and prepare stack
3028   * @kargs: kernel clone args
3029   *
3030   * Verify that the stack arguments userspace gave us are sane.
3031   * In addition, set the stack direction for userspace since it's easy for us to
3032   * determine.
3033   */
clone3_stack_valid(struct kernel_clone_args * kargs)3034  static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3035  {
3036  	if (kargs->stack == 0) {
3037  		if (kargs->stack_size > 0)
3038  			return false;
3039  	} else {
3040  		if (kargs->stack_size == 0)
3041  			return false;
3042  
3043  		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3044  			return false;
3045  
3046  #if !defined(CONFIG_STACK_GROWSUP)
3047  		kargs->stack += kargs->stack_size;
3048  #endif
3049  	}
3050  
3051  	return true;
3052  }
3053  
clone3_args_valid(struct kernel_clone_args * kargs)3054  static bool clone3_args_valid(struct kernel_clone_args *kargs)
3055  {
3056  	/* Verify that no unknown flags are passed along. */
3057  	if (kargs->flags &
3058  	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3059  		return false;
3060  
3061  	/*
3062  	 * - make the CLONE_DETACHED bit reusable for clone3
3063  	 * - make the CSIGNAL bits reusable for clone3
3064  	 */
3065  	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3066  		return false;
3067  
3068  	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3069  	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3070  		return false;
3071  
3072  	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3073  	    kargs->exit_signal)
3074  		return false;
3075  
3076  	if (!clone3_stack_valid(kargs))
3077  		return false;
3078  
3079  	return true;
3080  }
3081  
3082  /**
3083   * sys_clone3 - create a new process with specific properties
3084   * @uargs: argument structure
3085   * @size:  size of @uargs
3086   *
3087   * clone3() is the extensible successor to clone()/clone2().
3088   * It takes a struct as argument that is versioned by its size.
3089   *
3090   * Return: On success, a positive PID for the child process.
3091   *         On error, a negative errno number.
3092   */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3093  SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3094  {
3095  	int err;
3096  
3097  	struct kernel_clone_args kargs;
3098  	pid_t set_tid[MAX_PID_NS_LEVEL];
3099  
3100  #ifdef __ARCH_BROKEN_SYS_CLONE3
3101  #warning clone3() entry point is missing, please fix
3102  	return -ENOSYS;
3103  #endif
3104  
3105  	kargs.set_tid = set_tid;
3106  
3107  	err = copy_clone_args_from_user(&kargs, uargs, size);
3108  	if (err)
3109  		return err;
3110  
3111  	if (!clone3_args_valid(&kargs))
3112  		return -EINVAL;
3113  
3114  	return kernel_clone(&kargs);
3115  }
3116  
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3117  void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3118  {
3119  	struct task_struct *leader, *parent, *child;
3120  	int res;
3121  
3122  	read_lock(&tasklist_lock);
3123  	leader = top = top->group_leader;
3124  down:
3125  	for_each_thread(leader, parent) {
3126  		list_for_each_entry(child, &parent->children, sibling) {
3127  			res = visitor(child, data);
3128  			if (res) {
3129  				if (res < 0)
3130  					goto out;
3131  				leader = child;
3132  				goto down;
3133  			}
3134  up:
3135  			;
3136  		}
3137  	}
3138  
3139  	if (leader != top) {
3140  		child = leader;
3141  		parent = child->real_parent;
3142  		leader = parent->group_leader;
3143  		goto up;
3144  	}
3145  out:
3146  	read_unlock(&tasklist_lock);
3147  }
3148  
3149  #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3150  #define ARCH_MIN_MMSTRUCT_ALIGN 0
3151  #endif
3152  
sighand_ctor(void * data)3153  static void sighand_ctor(void *data)
3154  {
3155  	struct sighand_struct *sighand = data;
3156  
3157  	spin_lock_init(&sighand->siglock);
3158  	init_waitqueue_head(&sighand->signalfd_wqh);
3159  }
3160  
mm_cache_init(void)3161  void __init mm_cache_init(void)
3162  {
3163  	unsigned int mm_size;
3164  
3165  	/*
3166  	 * The mm_cpumask is located at the end of mm_struct, and is
3167  	 * dynamically sized based on the maximum CPU number this system
3168  	 * can have, taking hotplug into account (nr_cpu_ids).
3169  	 */
3170  	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3171  
3172  	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3173  			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3174  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3175  			offsetof(struct mm_struct, saved_auxv),
3176  			sizeof_field(struct mm_struct, saved_auxv),
3177  			NULL);
3178  }
3179  
proc_caches_init(void)3180  void __init proc_caches_init(void)
3181  {
3182  	sighand_cachep = kmem_cache_create("sighand_cache",
3183  			sizeof(struct sighand_struct), 0,
3184  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3185  			SLAB_ACCOUNT, sighand_ctor);
3186  	signal_cachep = kmem_cache_create("signal_cache",
3187  			sizeof(struct signal_struct), 0,
3188  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3189  			NULL);
3190  	files_cachep = kmem_cache_create("files_cache",
3191  			sizeof(struct files_struct), 0,
3192  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3193  			NULL);
3194  	fs_cachep = kmem_cache_create("fs_cache",
3195  			sizeof(struct fs_struct), 0,
3196  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3197  			NULL);
3198  
3199  	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3200  #ifdef CONFIG_PER_VMA_LOCK
3201  	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3202  #endif
3203  	mmap_init();
3204  	nsproxy_cache_init();
3205  }
3206  
3207  /*
3208   * Check constraints on flags passed to the unshare system call.
3209   */
check_unshare_flags(unsigned long unshare_flags)3210  static int check_unshare_flags(unsigned long unshare_flags)
3211  {
3212  	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3213  				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3214  				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3215  				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3216  				CLONE_NEWTIME))
3217  		return -EINVAL;
3218  	/*
3219  	 * Not implemented, but pretend it works if there is nothing
3220  	 * to unshare.  Note that unsharing the address space or the
3221  	 * signal handlers also need to unshare the signal queues (aka
3222  	 * CLONE_THREAD).
3223  	 */
3224  	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3225  		if (!thread_group_empty(current))
3226  			return -EINVAL;
3227  	}
3228  	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3229  		if (refcount_read(&current->sighand->count) > 1)
3230  			return -EINVAL;
3231  	}
3232  	if (unshare_flags & CLONE_VM) {
3233  		if (!current_is_single_threaded())
3234  			return -EINVAL;
3235  	}
3236  
3237  	return 0;
3238  }
3239  
3240  /*
3241   * Unshare the filesystem structure if it is being shared
3242   */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3243  static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3244  {
3245  	struct fs_struct *fs = current->fs;
3246  
3247  	if (!(unshare_flags & CLONE_FS) || !fs)
3248  		return 0;
3249  
3250  	/* don't need lock here; in the worst case we'll do useless copy */
3251  	if (fs->users == 1)
3252  		return 0;
3253  
3254  	*new_fsp = copy_fs_struct(fs);
3255  	if (!*new_fsp)
3256  		return -ENOMEM;
3257  
3258  	return 0;
3259  }
3260  
3261  /*
3262   * Unshare file descriptor table if it is being shared
3263   */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3264  static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3265  {
3266  	struct files_struct *fd = current->files;
3267  
3268  	if ((unshare_flags & CLONE_FILES) &&
3269  	    (fd && atomic_read(&fd->count) > 1)) {
3270  		fd = dup_fd(fd, NULL);
3271  		if (IS_ERR(fd))
3272  			return PTR_ERR(fd);
3273  		*new_fdp = fd;
3274  	}
3275  
3276  	return 0;
3277  }
3278  
3279  /*
3280   * unshare allows a process to 'unshare' part of the process
3281   * context which was originally shared using clone.  copy_*
3282   * functions used by kernel_clone() cannot be used here directly
3283   * because they modify an inactive task_struct that is being
3284   * constructed. Here we are modifying the current, active,
3285   * task_struct.
3286   */
ksys_unshare(unsigned long unshare_flags)3287  int ksys_unshare(unsigned long unshare_flags)
3288  {
3289  	struct fs_struct *fs, *new_fs = NULL;
3290  	struct files_struct *new_fd = NULL;
3291  	struct cred *new_cred = NULL;
3292  	struct nsproxy *new_nsproxy = NULL;
3293  	int do_sysvsem = 0;
3294  	int err;
3295  
3296  	/*
3297  	 * If unsharing a user namespace must also unshare the thread group
3298  	 * and unshare the filesystem root and working directories.
3299  	 */
3300  	if (unshare_flags & CLONE_NEWUSER)
3301  		unshare_flags |= CLONE_THREAD | CLONE_FS;
3302  	/*
3303  	 * If unsharing vm, must also unshare signal handlers.
3304  	 */
3305  	if (unshare_flags & CLONE_VM)
3306  		unshare_flags |= CLONE_SIGHAND;
3307  	/*
3308  	 * If unsharing a signal handlers, must also unshare the signal queues.
3309  	 */
3310  	if (unshare_flags & CLONE_SIGHAND)
3311  		unshare_flags |= CLONE_THREAD;
3312  	/*
3313  	 * If unsharing namespace, must also unshare filesystem information.
3314  	 */
3315  	if (unshare_flags & CLONE_NEWNS)
3316  		unshare_flags |= CLONE_FS;
3317  
3318  	err = check_unshare_flags(unshare_flags);
3319  	if (err)
3320  		goto bad_unshare_out;
3321  	/*
3322  	 * CLONE_NEWIPC must also detach from the undolist: after switching
3323  	 * to a new ipc namespace, the semaphore arrays from the old
3324  	 * namespace are unreachable.
3325  	 */
3326  	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3327  		do_sysvsem = 1;
3328  	err = unshare_fs(unshare_flags, &new_fs);
3329  	if (err)
3330  		goto bad_unshare_out;
3331  	err = unshare_fd(unshare_flags, &new_fd);
3332  	if (err)
3333  		goto bad_unshare_cleanup_fs;
3334  	err = unshare_userns(unshare_flags, &new_cred);
3335  	if (err)
3336  		goto bad_unshare_cleanup_fd;
3337  	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3338  					 new_cred, new_fs);
3339  	if (err)
3340  		goto bad_unshare_cleanup_cred;
3341  
3342  	if (new_cred) {
3343  		err = set_cred_ucounts(new_cred);
3344  		if (err)
3345  			goto bad_unshare_cleanup_cred;
3346  	}
3347  
3348  	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3349  		if (do_sysvsem) {
3350  			/*
3351  			 * CLONE_SYSVSEM is equivalent to sys_exit().
3352  			 */
3353  			exit_sem(current);
3354  		}
3355  		if (unshare_flags & CLONE_NEWIPC) {
3356  			/* Orphan segments in old ns (see sem above). */
3357  			exit_shm(current);
3358  			shm_init_task(current);
3359  		}
3360  
3361  		if (new_nsproxy)
3362  			switch_task_namespaces(current, new_nsproxy);
3363  
3364  		task_lock(current);
3365  
3366  		if (new_fs) {
3367  			fs = current->fs;
3368  			spin_lock(&fs->lock);
3369  			current->fs = new_fs;
3370  			if (--fs->users)
3371  				new_fs = NULL;
3372  			else
3373  				new_fs = fs;
3374  			spin_unlock(&fs->lock);
3375  		}
3376  
3377  		if (new_fd)
3378  			swap(current->files, new_fd);
3379  
3380  		task_unlock(current);
3381  
3382  		if (new_cred) {
3383  			/* Install the new user namespace */
3384  			commit_creds(new_cred);
3385  			new_cred = NULL;
3386  		}
3387  	}
3388  
3389  	perf_event_namespaces(current);
3390  
3391  bad_unshare_cleanup_cred:
3392  	if (new_cred)
3393  		put_cred(new_cred);
3394  bad_unshare_cleanup_fd:
3395  	if (new_fd)
3396  		put_files_struct(new_fd);
3397  
3398  bad_unshare_cleanup_fs:
3399  	if (new_fs)
3400  		free_fs_struct(new_fs);
3401  
3402  bad_unshare_out:
3403  	return err;
3404  }
3405  
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3406  SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3407  {
3408  	return ksys_unshare(unshare_flags);
3409  }
3410  
3411  /*
3412   *	Helper to unshare the files of the current task.
3413   *	We don't want to expose copy_files internals to
3414   *	the exec layer of the kernel.
3415   */
3416  
unshare_files(void)3417  int unshare_files(void)
3418  {
3419  	struct task_struct *task = current;
3420  	struct files_struct *old, *copy = NULL;
3421  	int error;
3422  
3423  	error = unshare_fd(CLONE_FILES, &copy);
3424  	if (error || !copy)
3425  		return error;
3426  
3427  	old = task->files;
3428  	task_lock(task);
3429  	task->files = copy;
3430  	task_unlock(task);
3431  	put_files_struct(old);
3432  	return 0;
3433  }
3434  
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3435  int sysctl_max_threads(const struct ctl_table *table, int write,
3436  		       void *buffer, size_t *lenp, loff_t *ppos)
3437  {
3438  	struct ctl_table t;
3439  	int ret;
3440  	int threads = max_threads;
3441  	int min = 1;
3442  	int max = MAX_THREADS;
3443  
3444  	t = *table;
3445  	t.data = &threads;
3446  	t.extra1 = &min;
3447  	t.extra2 = &max;
3448  
3449  	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3450  	if (ret || !write)
3451  		return ret;
3452  
3453  	max_threads = threads;
3454  
3455  	return 0;
3456  }
3457