1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114
115 #include <trace/events/sched.h>
116
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119
120 #include <kunit/visibility.h>
121
122 /*
123 * Minimum number of threads to boot the kernel
124 */
125 #define MIN_THREADS 20
126
127 /*
128 * Maximum number of threads
129 */
130 #define MAX_THREADS FUTEX_TID_MASK
131
132 /*
133 * Protected counters by write_lock_irq(&tasklist_lock)
134 */
135 unsigned long total_forks; /* Handle normal Linux uptimes. */
136 int nr_threads; /* The idle threads do not count.. */
137
138 static int max_threads; /* tunable limit on nr_threads */
139
140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
141
142 static const char * const resident_page_types[] = {
143 NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
152
153 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)154 int lockdep_tasklist_lock_is_held(void)
155 {
156 return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160
nr_processes(void)161 int nr_processes(void)
162 {
163 int cpu;
164 int total = 0;
165
166 for_each_possible_cpu(cpu)
167 total += per_cpu(process_counts, cpu);
168
169 return total;
170 }
171
arch_release_task_struct(struct task_struct * tsk)172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175
176 static struct kmem_cache *task_struct_cachep;
177
alloc_task_struct_node(int node)178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182
free_task_struct(struct task_struct * tsk)183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 kmem_cache_free(task_struct_cachep, tsk);
186 }
187
188 /*
189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190 * kmemcache based allocator.
191 */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193
194 # ifdef CONFIG_VMAP_STACK
195 /*
196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197 * flush. Try to minimize the number of calls by caching stacks.
198 */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201
202 struct vm_stack {
203 struct rcu_head rcu;
204 struct vm_struct *stack_vm_area;
205 };
206
try_release_thread_stack_to_cache(struct vm_struct * vm)207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 unsigned int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *tmp = NULL;
213
214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 return true;
216 }
217 return false;
218 }
219
thread_stack_free_rcu(struct rcu_head * rh)220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223
224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 return;
226
227 vfree(vm_stack);
228 }
229
thread_stack_delayed_free(struct task_struct * tsk)230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 struct vm_stack *vm_stack = tsk->stack;
233
234 vm_stack->stack_vm_area = tsk->stack_vm_area;
235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237
free_vm_stack_cache(unsigned int cpu)238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 int i;
242
243 for (i = 0; i < NR_CACHED_STACKS; i++) {
244 struct vm_struct *vm_stack = cached_vm_stacks[i];
245
246 if (!vm_stack)
247 continue;
248
249 vfree(vm_stack->addr);
250 cached_vm_stacks[i] = NULL;
251 }
252
253 return 0;
254 }
255
memcg_charge_kernel_stack(struct vm_struct * vm)256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 int i;
259 int ret;
260 int nr_charged = 0;
261
262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 if (ret)
267 goto err;
268 nr_charged++;
269 }
270 return 0;
271 err:
272 for (i = 0; i < nr_charged; i++)
273 memcg_kmem_uncharge_page(vm->pages[i], 0);
274 return ret;
275 }
276
alloc_thread_stack_node(struct task_struct * tsk,int node)277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 struct vm_struct *vm;
280 void *stack;
281 int i;
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 struct vm_struct *s;
285
286 s = this_cpu_xchg(cached_stacks[i], NULL);
287
288 if (!s)
289 continue;
290
291 /* Reset stack metadata. */
292 kasan_unpoison_range(s->addr, THREAD_SIZE);
293
294 stack = kasan_reset_tag(s->addr);
295
296 /* Clear stale pointers from reused stack. */
297 memset(stack, 0, THREAD_SIZE);
298
299 if (memcg_charge_kernel_stack(s)) {
300 vfree(s->addr);
301 return -ENOMEM;
302 }
303
304 tsk->stack_vm_area = s;
305 tsk->stack = stack;
306 return 0;
307 }
308
309 /*
310 * Allocated stacks are cached and later reused by new threads,
311 * so memcg accounting is performed manually on assigning/releasing
312 * stacks to tasks. Drop __GFP_ACCOUNT.
313 */
314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 VMALLOC_START, VMALLOC_END,
316 THREADINFO_GFP & ~__GFP_ACCOUNT,
317 PAGE_KERNEL,
318 0, node, __builtin_return_address(0));
319 if (!stack)
320 return -ENOMEM;
321
322 vm = find_vm_area(stack);
323 if (memcg_charge_kernel_stack(vm)) {
324 vfree(stack);
325 return -ENOMEM;
326 }
327 /*
328 * We can't call find_vm_area() in interrupt context, and
329 * free_thread_stack() can be called in interrupt context,
330 * so cache the vm_struct.
331 */
332 tsk->stack_vm_area = vm;
333 stack = kasan_reset_tag(stack);
334 tsk->stack = stack;
335 return 0;
336 }
337
free_thread_stack(struct task_struct * tsk)338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 thread_stack_delayed_free(tsk);
342
343 tsk->stack = NULL;
344 tsk->stack_vm_area = NULL;
345 }
346
347 # else /* !CONFIG_VMAP_STACK */
348
thread_stack_free_rcu(struct rcu_head * rh)349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353
thread_stack_delayed_free(struct task_struct * tsk)354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 struct rcu_head *rh = tsk->stack;
357
358 call_rcu(rh, thread_stack_free_rcu);
359 }
360
alloc_thread_stack_node(struct task_struct * tsk,int node)361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 THREAD_SIZE_ORDER);
365
366 if (likely(page)) {
367 tsk->stack = kasan_reset_tag(page_address(page));
368 return 0;
369 }
370 return -ENOMEM;
371 }
372
free_thread_stack(struct task_struct * tsk)373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 thread_stack_delayed_free(tsk);
376 tsk->stack = NULL;
377 }
378
379 # endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381
382 static struct kmem_cache *thread_stack_cache;
383
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 kmem_cache_free(thread_stack_cache, rh);
387 }
388
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 struct rcu_head *rh = tsk->stack;
392
393 call_rcu(rh, thread_stack_free_rcu);
394 }
395
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
401 tsk->stack = stack;
402 return stack ? 0 : -ENOMEM;
403 }
404
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 thread_stack_delayed_free(tsk);
408 tsk->stack = NULL;
409 }
410
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 THREAD_SIZE, NULL);
416 BUG_ON(thread_stack_cache == NULL);
417 }
418
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438
439 #ifdef CONFIG_PER_VMA_LOCK
440
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443
vma_lock_alloc(struct vm_area_struct * vma)444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447 if (!vma->vm_lock)
448 return false;
449
450 init_rwsem(&vma->vm_lock->lock);
451 vma->vm_lock_seq = -1;
452
453 return true;
454 }
455
vma_lock_free(struct vm_area_struct * vma)456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460
461 #else /* CONFIG_PER_VMA_LOCK */
462
vma_lock_alloc(struct vm_area_struct * vma)463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465
466 #endif /* CONFIG_PER_VMA_LOCK */
467
vm_area_alloc(struct mm_struct * mm)468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470 struct vm_area_struct *vma;
471
472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473 if (!vma)
474 return NULL;
475
476 vma_init(vma, mm);
477 if (!vma_lock_alloc(vma)) {
478 kmem_cache_free(vm_area_cachep, vma);
479 return NULL;
480 }
481
482 return vma;
483 }
484
vm_area_dup(struct vm_area_struct * orig)485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488
489 if (!new)
490 return NULL;
491
492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494 /*
495 * orig->shared.rb may be modified concurrently, but the clone
496 * will be reinitialized.
497 */
498 data_race(memcpy(new, orig, sizeof(*new)));
499 if (!vma_lock_alloc(new)) {
500 kmem_cache_free(vm_area_cachep, new);
501 return NULL;
502 }
503 INIT_LIST_HEAD(&new->anon_vma_chain);
504 vma_numab_state_init(new);
505 dup_anon_vma_name(orig, new);
506
507 return new;
508 }
509
__vm_area_free(struct vm_area_struct * vma)510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512 vma_numab_state_free(vma);
513 free_anon_vma_name(vma);
514 vma_lock_free(vma);
515 kmem_cache_free(vm_area_cachep, vma);
516 }
517
518 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522 vm_rcu);
523
524 /* The vma should not be locked while being destroyed. */
525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526 __vm_area_free(vma);
527 }
528 #endif
529
vm_area_free(struct vm_area_struct * vma)530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535 __vm_area_free(vma);
536 #endif
537 }
538
account_kernel_stack(struct task_struct * tsk,int account)539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542 struct vm_struct *vm = task_stack_vm_area(tsk);
543 int i;
544
545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547 account * (PAGE_SIZE / 1024));
548 } else {
549 void *stack = task_stack_page(tsk);
550
551 /* All stack pages are in the same node. */
552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553 account * (THREAD_SIZE / 1024));
554 }
555 }
556
exit_task_stack_account(struct task_struct * tsk)557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559 account_kernel_stack(tsk, -1);
560
561 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 struct vm_struct *vm;
563 int i;
564
565 vm = task_stack_vm_area(tsk);
566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 memcg_kmem_uncharge_page(vm->pages[i], 0);
568 }
569 }
570
release_task_stack(struct task_struct * tsk)571 static void release_task_stack(struct task_struct *tsk)
572 {
573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574 return; /* Better to leak the stack than to free prematurely */
575
576 free_thread_stack(tsk);
577 }
578
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)580 void put_task_stack(struct task_struct *tsk)
581 {
582 if (refcount_dec_and_test(&tsk->stack_refcount))
583 release_task_stack(tsk);
584 }
585 #endif
586
free_task(struct task_struct * tsk)587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590 WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592 release_user_cpus_ptr(tsk);
593 scs_release(tsk);
594
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596 /*
597 * The task is finally done with both the stack and thread_info,
598 * so free both.
599 */
600 release_task_stack(tsk);
601 #else
602 /*
603 * If the task had a separate stack allocation, it should be gone
604 * by now.
605 */
606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608 rt_mutex_debug_task_free(tsk);
609 ftrace_graph_exit_task(tsk);
610 arch_release_task_struct(tsk);
611 if (tsk->flags & PF_KTHREAD)
612 free_kthread_struct(tsk);
613 bpf_task_storage_free(tsk);
614 free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620 struct file *exe_file;
621
622 exe_file = get_mm_exe_file(oldmm);
623 RCU_INIT_POINTER(mm->exe_file, exe_file);
624 /*
625 * We depend on the oldmm having properly denied write access to the
626 * exe_file already.
627 */
628 if (exe_file && deny_write_access(exe_file))
629 pr_warn_once("deny_write_access() failed in %s\n", __func__);
630 }
631
632 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)633 static __latent_entropy int dup_mmap(struct mm_struct *mm,
634 struct mm_struct *oldmm)
635 {
636 struct vm_area_struct *mpnt, *tmp;
637 int retval;
638 unsigned long charge = 0;
639 LIST_HEAD(uf);
640 VMA_ITERATOR(vmi, mm, 0);
641
642 if (mmap_write_lock_killable(oldmm))
643 return -EINTR;
644 flush_cache_dup_mm(oldmm);
645 uprobe_dup_mmap(oldmm, mm);
646 /*
647 * Not linked in yet - no deadlock potential:
648 */
649 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
650
651 /* No ordering required: file already has been exposed. */
652 dup_mm_exe_file(mm, oldmm);
653
654 mm->total_vm = oldmm->total_vm;
655 mm->data_vm = oldmm->data_vm;
656 mm->exec_vm = oldmm->exec_vm;
657 mm->stack_vm = oldmm->stack_vm;
658
659 /* Use __mt_dup() to efficiently build an identical maple tree. */
660 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
661 if (unlikely(retval))
662 goto out;
663
664 mt_clear_in_rcu(vmi.mas.tree);
665 for_each_vma(vmi, mpnt) {
666 struct file *file;
667
668 vma_start_write(mpnt);
669 if (mpnt->vm_flags & VM_DONTCOPY) {
670 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
671 mpnt->vm_end, GFP_KERNEL);
672 if (retval)
673 goto loop_out;
674
675 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
676 continue;
677 }
678 charge = 0;
679 /*
680 * Don't duplicate many vmas if we've been oom-killed (for
681 * example)
682 */
683 if (fatal_signal_pending(current)) {
684 retval = -EINTR;
685 goto loop_out;
686 }
687 if (mpnt->vm_flags & VM_ACCOUNT) {
688 unsigned long len = vma_pages(mpnt);
689
690 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
691 goto fail_nomem;
692 charge = len;
693 }
694 tmp = vm_area_dup(mpnt);
695 if (!tmp)
696 goto fail_nomem;
697 retval = vma_dup_policy(mpnt, tmp);
698 if (retval)
699 goto fail_nomem_policy;
700 tmp->vm_mm = mm;
701 retval = dup_userfaultfd(tmp, &uf);
702 if (retval)
703 goto fail_nomem_anon_vma_fork;
704 if (tmp->vm_flags & VM_WIPEONFORK) {
705 /*
706 * VM_WIPEONFORK gets a clean slate in the child.
707 * Don't prepare anon_vma until fault since we don't
708 * copy page for current vma.
709 */
710 tmp->anon_vma = NULL;
711 } else if (anon_vma_fork(tmp, mpnt))
712 goto fail_nomem_anon_vma_fork;
713 vm_flags_clear(tmp, VM_LOCKED_MASK);
714 /*
715 * Copy/update hugetlb private vma information.
716 */
717 if (is_vm_hugetlb_page(tmp))
718 hugetlb_dup_vma_private(tmp);
719
720 /*
721 * Link the vma into the MT. After using __mt_dup(), memory
722 * allocation is not necessary here, so it cannot fail.
723 */
724 vma_iter_bulk_store(&vmi, tmp);
725
726 mm->map_count++;
727
728 if (tmp->vm_ops && tmp->vm_ops->open)
729 tmp->vm_ops->open(tmp);
730
731 file = tmp->vm_file;
732 if (file) {
733 struct address_space *mapping = file->f_mapping;
734
735 get_file(file);
736 i_mmap_lock_write(mapping);
737 if (vma_is_shared_maywrite(tmp))
738 mapping_allow_writable(mapping);
739 flush_dcache_mmap_lock(mapping);
740 /* insert tmp into the share list, just after mpnt */
741 vma_interval_tree_insert_after(tmp, mpnt,
742 &mapping->i_mmap);
743 flush_dcache_mmap_unlock(mapping);
744 i_mmap_unlock_write(mapping);
745 }
746
747 if (!(tmp->vm_flags & VM_WIPEONFORK))
748 retval = copy_page_range(tmp, mpnt);
749
750 if (retval) {
751 mpnt = vma_next(&vmi);
752 goto loop_out;
753 }
754 }
755 /* a new mm has just been created */
756 retval = arch_dup_mmap(oldmm, mm);
757 loop_out:
758 vma_iter_free(&vmi);
759 if (!retval) {
760 mt_set_in_rcu(vmi.mas.tree);
761 ksm_fork(mm, oldmm);
762 khugepaged_fork(mm, oldmm);
763 } else if (mpnt) {
764 /*
765 * The entire maple tree has already been duplicated. If the
766 * mmap duplication fails, mark the failure point with
767 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768 * stop releasing VMAs that have not been duplicated after this
769 * point.
770 */
771 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772 mas_store(&vmi.mas, XA_ZERO_ENTRY);
773 }
774 out:
775 mmap_write_unlock(mm);
776 flush_tlb_mm(oldmm);
777 mmap_write_unlock(oldmm);
778 if (!retval)
779 dup_userfaultfd_complete(&uf);
780 else
781 dup_userfaultfd_fail(&uf);
782 return retval;
783
784 fail_nomem_anon_vma_fork:
785 mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787 vm_area_free(tmp);
788 fail_nomem:
789 retval = -ENOMEM;
790 vm_unacct_memory(charge);
791 goto loop_out;
792 }
793
mm_alloc_pgd(struct mm_struct * mm)794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796 mm->pgd = pgd_alloc(mm);
797 if (unlikely(!mm->pgd))
798 return -ENOMEM;
799 return 0;
800 }
801
mm_free_pgd(struct mm_struct * mm)802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804 pgd_free(mm, mm->pgd);
805 }
806 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809 mmap_write_lock(oldmm);
810 dup_mm_exe_file(mm, oldmm);
811 mmap_write_unlock(oldmm);
812 return 0;
813 }
814 #define mm_alloc_pgd(mm) (0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817
check_mm(struct mm_struct * mm)818 static void check_mm(struct mm_struct *mm)
819 {
820 int i;
821
822 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823 "Please make sure 'struct resident_page_types[]' is updated as well");
824
825 for (i = 0; i < NR_MM_COUNTERS; i++) {
826 long x = percpu_counter_sum(&mm->rss_stat[i]);
827
828 if (unlikely(x))
829 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830 mm, resident_page_types[i], x);
831 }
832
833 if (mm_pgtables_bytes(mm))
834 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835 mm_pgtables_bytes(mm));
836
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841
842 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
844
do_check_lazy_tlb(void * arg)845 static void do_check_lazy_tlb(void *arg)
846 {
847 struct mm_struct *mm = arg;
848
849 WARN_ON_ONCE(current->active_mm == mm);
850 }
851
do_shoot_lazy_tlb(void * arg)852 static void do_shoot_lazy_tlb(void *arg)
853 {
854 struct mm_struct *mm = arg;
855
856 if (current->active_mm == mm) {
857 WARN_ON_ONCE(current->mm);
858 current->active_mm = &init_mm;
859 switch_mm(mm, &init_mm, current);
860 }
861 }
862
cleanup_lazy_tlbs(struct mm_struct * mm)863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 /*
867 * In this case, lazy tlb mms are refounted and would not reach
868 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 */
870 return;
871 }
872
873 /*
874 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875 * requires lazy mm users to switch to another mm when the refcount
876 * drops to zero, before the mm is freed. This requires IPIs here to
877 * switch kernel threads to init_mm.
878 *
879 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880 * switch with the final userspace teardown TLB flush which leaves the
881 * mm lazy on this CPU but no others, reducing the need for additional
882 * IPIs here. There are cases where a final IPI is still required here,
883 * such as the final mmdrop being performed on a different CPU than the
884 * one exiting, or kernel threads using the mm when userspace exits.
885 *
886 * IPI overheads have not found to be expensive, but they could be
887 * reduced in a number of possible ways, for example (roughly
888 * increasing order of complexity):
889 * - The last lazy reference created by exit_mm() could instead switch
890 * to init_mm, however it's probable this will run on the same CPU
891 * immediately afterwards, so this may not reduce IPIs much.
892 * - A batch of mms requiring IPIs could be gathered and freed at once.
893 * - CPUs store active_mm where it can be remotely checked without a
894 * lock, to filter out false-positives in the cpumask.
895 * - After mm_users or mm_count reaches zero, switching away from the
896 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
897 * with some batching or delaying of the final IPIs.
898 * - A delayed freeing and RCU-like quiescing sequence based on mm
899 * switching to avoid IPIs completely.
900 */
901 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905
906 /*
907 * Called when the last reference to the mm
908 * is dropped: either by a lazy thread or by
909 * mmput. Free the page directory and the mm.
910 */
__mmdrop(struct mm_struct * mm)911 void __mmdrop(struct mm_struct *mm)
912 {
913 BUG_ON(mm == &init_mm);
914 WARN_ON_ONCE(mm == current->mm);
915
916 /* Ensure no CPUs are using this as their lazy tlb mm */
917 cleanup_lazy_tlbs(mm);
918
919 WARN_ON_ONCE(mm == current->active_mm);
920 mm_free_pgd(mm);
921 destroy_context(mm);
922 mmu_notifier_subscriptions_destroy(mm);
923 check_mm(mm);
924 put_user_ns(mm->user_ns);
925 mm_pasid_drop(mm);
926 mm_destroy_cid(mm);
927 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928
929 free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932
mmdrop_async_fn(struct work_struct * work)933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935 struct mm_struct *mm;
936
937 mm = container_of(work, struct mm_struct, async_put_work);
938 __mmdrop(mm);
939 }
940
mmdrop_async(struct mm_struct * mm)941 static void mmdrop_async(struct mm_struct *mm)
942 {
943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945 schedule_work(&mm->async_put_work);
946 }
947 }
948
free_signal_struct(struct signal_struct * sig)949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951 taskstats_tgid_free(sig);
952 sched_autogroup_exit(sig);
953 /*
954 * __mmdrop is not safe to call from softirq context on x86 due to
955 * pgd_dtor so postpone it to the async context
956 */
957 if (sig->oom_mm)
958 mmdrop_async(sig->oom_mm);
959 kmem_cache_free(signal_cachep, sig);
960 }
961
put_signal_struct(struct signal_struct * sig)962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964 if (refcount_dec_and_test(&sig->sigcnt))
965 free_signal_struct(sig);
966 }
967
__put_task_struct(struct task_struct * tsk)968 void __put_task_struct(struct task_struct *tsk)
969 {
970 WARN_ON(!tsk->exit_state);
971 WARN_ON(refcount_read(&tsk->usage));
972 WARN_ON(tsk == current);
973
974 sched_ext_free(tsk);
975 io_uring_free(tsk);
976 cgroup_free(tsk);
977 task_numa_free(tsk, true);
978 security_task_free(tsk);
979 exit_creds(tsk);
980 delayacct_tsk_free(tsk);
981 put_signal_struct(tsk->signal);
982 sched_core_free(tsk);
983 free_task(tsk);
984 }
985 EXPORT_SYMBOL_GPL(__put_task_struct);
986
__put_task_struct_rcu_cb(struct rcu_head * rhp)987 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
988 {
989 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
990
991 __put_task_struct(task);
992 }
993 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
994
arch_task_cache_init(void)995 void __init __weak arch_task_cache_init(void) { }
996
997 /*
998 * set_max_threads
999 */
set_max_threads(unsigned int max_threads_suggested)1000 static void __init set_max_threads(unsigned int max_threads_suggested)
1001 {
1002 u64 threads;
1003 unsigned long nr_pages = memblock_estimated_nr_free_pages();
1004
1005 /*
1006 * The number of threads shall be limited such that the thread
1007 * structures may only consume a small part of the available memory.
1008 */
1009 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1010 threads = MAX_THREADS;
1011 else
1012 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1013 (u64) THREAD_SIZE * 8UL);
1014
1015 if (threads > max_threads_suggested)
1016 threads = max_threads_suggested;
1017
1018 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1019 }
1020
1021 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1022 /* Initialized by the architecture: */
1023 int arch_task_struct_size __read_mostly;
1024 #endif
1025
task_struct_whitelist(unsigned long * offset,unsigned long * size)1026 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 {
1028 /* Fetch thread_struct whitelist for the architecture. */
1029 arch_thread_struct_whitelist(offset, size);
1030
1031 /*
1032 * Handle zero-sized whitelist or empty thread_struct, otherwise
1033 * adjust offset to position of thread_struct in task_struct.
1034 */
1035 if (unlikely(*size == 0))
1036 *offset = 0;
1037 else
1038 *offset += offsetof(struct task_struct, thread);
1039 }
1040
fork_init(void)1041 void __init fork_init(void)
1042 {
1043 int i;
1044 #ifndef ARCH_MIN_TASKALIGN
1045 #define ARCH_MIN_TASKALIGN 0
1046 #endif
1047 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1048 unsigned long useroffset, usersize;
1049
1050 /* create a slab on which task_structs can be allocated */
1051 task_struct_whitelist(&useroffset, &usersize);
1052 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1053 arch_task_struct_size, align,
1054 SLAB_PANIC|SLAB_ACCOUNT,
1055 useroffset, usersize, NULL);
1056
1057 /* do the arch specific task caches init */
1058 arch_task_cache_init();
1059
1060 set_max_threads(MAX_THREADS);
1061
1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1064 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1065 init_task.signal->rlim[RLIMIT_NPROC];
1066
1067 for (i = 0; i < UCOUNT_COUNTS; i++)
1068 init_user_ns.ucount_max[i] = max_threads/2;
1069
1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1074
1075 #ifdef CONFIG_VMAP_STACK
1076 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1077 NULL, free_vm_stack_cache);
1078 #endif
1079
1080 scs_init();
1081
1082 lockdep_init_task(&init_task);
1083 uprobes_init();
1084 }
1085
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1086 int __weak arch_dup_task_struct(struct task_struct *dst,
1087 struct task_struct *src)
1088 {
1089 *dst = *src;
1090 return 0;
1091 }
1092
set_task_stack_end_magic(struct task_struct * tsk)1093 void set_task_stack_end_magic(struct task_struct *tsk)
1094 {
1095 unsigned long *stackend;
1096
1097 stackend = end_of_stack(tsk);
1098 *stackend = STACK_END_MAGIC; /* for overflow detection */
1099 }
1100
dup_task_struct(struct task_struct * orig,int node)1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1102 {
1103 struct task_struct *tsk;
1104 int err;
1105
1106 if (node == NUMA_NO_NODE)
1107 node = tsk_fork_get_node(orig);
1108 tsk = alloc_task_struct_node(node);
1109 if (!tsk)
1110 return NULL;
1111
1112 err = arch_dup_task_struct(tsk, orig);
1113 if (err)
1114 goto free_tsk;
1115
1116 err = alloc_thread_stack_node(tsk, node);
1117 if (err)
1118 goto free_tsk;
1119
1120 #ifdef CONFIG_THREAD_INFO_IN_TASK
1121 refcount_set(&tsk->stack_refcount, 1);
1122 #endif
1123 account_kernel_stack(tsk, 1);
1124
1125 err = scs_prepare(tsk, node);
1126 if (err)
1127 goto free_stack;
1128
1129 #ifdef CONFIG_SECCOMP
1130 /*
1131 * We must handle setting up seccomp filters once we're under
1132 * the sighand lock in case orig has changed between now and
1133 * then. Until then, filter must be NULL to avoid messing up
1134 * the usage counts on the error path calling free_task.
1135 */
1136 tsk->seccomp.filter = NULL;
1137 #endif
1138
1139 setup_thread_stack(tsk, orig);
1140 clear_user_return_notifier(tsk);
1141 clear_tsk_need_resched(tsk);
1142 set_task_stack_end_magic(tsk);
1143 clear_syscall_work_syscall_user_dispatch(tsk);
1144
1145 #ifdef CONFIG_STACKPROTECTOR
1146 tsk->stack_canary = get_random_canary();
1147 #endif
1148 if (orig->cpus_ptr == &orig->cpus_mask)
1149 tsk->cpus_ptr = &tsk->cpus_mask;
1150 dup_user_cpus_ptr(tsk, orig, node);
1151
1152 /*
1153 * One for the user space visible state that goes away when reaped.
1154 * One for the scheduler.
1155 */
1156 refcount_set(&tsk->rcu_users, 2);
1157 /* One for the rcu users */
1158 refcount_set(&tsk->usage, 1);
1159 #ifdef CONFIG_BLK_DEV_IO_TRACE
1160 tsk->btrace_seq = 0;
1161 #endif
1162 tsk->splice_pipe = NULL;
1163 tsk->task_frag.page = NULL;
1164 tsk->wake_q.next = NULL;
1165 tsk->worker_private = NULL;
1166
1167 kcov_task_init(tsk);
1168 kmsan_task_create(tsk);
1169 kmap_local_fork(tsk);
1170
1171 #ifdef CONFIG_FAULT_INJECTION
1172 tsk->fail_nth = 0;
1173 #endif
1174
1175 #ifdef CONFIG_BLK_CGROUP
1176 tsk->throttle_disk = NULL;
1177 tsk->use_memdelay = 0;
1178 #endif
1179
1180 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1181 tsk->pasid_activated = 0;
1182 #endif
1183
1184 #ifdef CONFIG_MEMCG
1185 tsk->active_memcg = NULL;
1186 #endif
1187
1188 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1189 tsk->reported_split_lock = 0;
1190 #endif
1191
1192 #ifdef CONFIG_SCHED_MM_CID
1193 tsk->mm_cid = -1;
1194 tsk->last_mm_cid = -1;
1195 tsk->mm_cid_active = 0;
1196 tsk->migrate_from_cpu = -1;
1197 #endif
1198 return tsk;
1199
1200 free_stack:
1201 exit_task_stack_account(tsk);
1202 free_thread_stack(tsk);
1203 free_tsk:
1204 free_task_struct(tsk);
1205 return NULL;
1206 }
1207
1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1209
1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211
coredump_filter_setup(char * s)1212 static int __init coredump_filter_setup(char *s)
1213 {
1214 default_dump_filter =
1215 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1216 MMF_DUMP_FILTER_MASK;
1217 return 1;
1218 }
1219
1220 __setup("coredump_filter=", coredump_filter_setup);
1221
1222 #include <linux/init_task.h>
1223
mm_init_aio(struct mm_struct * mm)1224 static void mm_init_aio(struct mm_struct *mm)
1225 {
1226 #ifdef CONFIG_AIO
1227 spin_lock_init(&mm->ioctx_lock);
1228 mm->ioctx_table = NULL;
1229 #endif
1230 }
1231
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1232 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1233 struct task_struct *p)
1234 {
1235 #ifdef CONFIG_MEMCG
1236 if (mm->owner == p)
1237 WRITE_ONCE(mm->owner, NULL);
1238 #endif
1239 }
1240
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242 {
1243 #ifdef CONFIG_MEMCG
1244 mm->owner = p;
1245 #endif
1246 }
1247
mm_init_uprobes_state(struct mm_struct * mm)1248 static void mm_init_uprobes_state(struct mm_struct *mm)
1249 {
1250 #ifdef CONFIG_UPROBES
1251 mm->uprobes_state.xol_area = NULL;
1252 #endif
1253 }
1254
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1256 struct user_namespace *user_ns)
1257 {
1258 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1259 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1260 atomic_set(&mm->mm_users, 1);
1261 atomic_set(&mm->mm_count, 1);
1262 seqcount_init(&mm->write_protect_seq);
1263 mmap_init_lock(mm);
1264 INIT_LIST_HEAD(&mm->mmlist);
1265 #ifdef CONFIG_PER_VMA_LOCK
1266 mm->mm_lock_seq = 0;
1267 #endif
1268 mm_pgtables_bytes_init(mm);
1269 mm->map_count = 0;
1270 mm->locked_vm = 0;
1271 atomic64_set(&mm->pinned_vm, 0);
1272 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1273 spin_lock_init(&mm->page_table_lock);
1274 spin_lock_init(&mm->arg_lock);
1275 mm_init_cpumask(mm);
1276 mm_init_aio(mm);
1277 mm_init_owner(mm, p);
1278 mm_pasid_init(mm);
1279 RCU_INIT_POINTER(mm->exe_file, NULL);
1280 mmu_notifier_subscriptions_init(mm);
1281 init_tlb_flush_pending(mm);
1282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1283 mm->pmd_huge_pte = NULL;
1284 #endif
1285 mm_init_uprobes_state(mm);
1286 hugetlb_count_init(mm);
1287
1288 if (current->mm) {
1289 mm->flags = mmf_init_flags(current->mm->flags);
1290 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1291 } else {
1292 mm->flags = default_dump_filter;
1293 mm->def_flags = 0;
1294 }
1295
1296 if (mm_alloc_pgd(mm))
1297 goto fail_nopgd;
1298
1299 if (init_new_context(p, mm))
1300 goto fail_nocontext;
1301
1302 if (mm_alloc_cid(mm, p))
1303 goto fail_cid;
1304
1305 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1306 NR_MM_COUNTERS))
1307 goto fail_pcpu;
1308
1309 mm->user_ns = get_user_ns(user_ns);
1310 lru_gen_init_mm(mm);
1311 return mm;
1312
1313 fail_pcpu:
1314 mm_destroy_cid(mm);
1315 fail_cid:
1316 destroy_context(mm);
1317 fail_nocontext:
1318 mm_free_pgd(mm);
1319 fail_nopgd:
1320 free_mm(mm);
1321 return NULL;
1322 }
1323
1324 /*
1325 * Allocate and initialize an mm_struct.
1326 */
mm_alloc(void)1327 struct mm_struct *mm_alloc(void)
1328 {
1329 struct mm_struct *mm;
1330
1331 mm = allocate_mm();
1332 if (!mm)
1333 return NULL;
1334
1335 memset(mm, 0, sizeof(*mm));
1336 return mm_init(mm, current, current_user_ns());
1337 }
1338 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1339
__mmput(struct mm_struct * mm)1340 static inline void __mmput(struct mm_struct *mm)
1341 {
1342 VM_BUG_ON(atomic_read(&mm->mm_users));
1343
1344 uprobe_clear_state(mm);
1345 exit_aio(mm);
1346 ksm_exit(mm);
1347 khugepaged_exit(mm); /* must run before exit_mmap */
1348 exit_mmap(mm);
1349 mm_put_huge_zero_folio(mm);
1350 set_mm_exe_file(mm, NULL);
1351 if (!list_empty(&mm->mmlist)) {
1352 spin_lock(&mmlist_lock);
1353 list_del(&mm->mmlist);
1354 spin_unlock(&mmlist_lock);
1355 }
1356 if (mm->binfmt)
1357 module_put(mm->binfmt->module);
1358 lru_gen_del_mm(mm);
1359 mmdrop(mm);
1360 }
1361
1362 /*
1363 * Decrement the use count and release all resources for an mm.
1364 */
mmput(struct mm_struct * mm)1365 void mmput(struct mm_struct *mm)
1366 {
1367 might_sleep();
1368
1369 if (atomic_dec_and_test(&mm->mm_users))
1370 __mmput(mm);
1371 }
1372 EXPORT_SYMBOL_GPL(mmput);
1373
1374 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1375 static void mmput_async_fn(struct work_struct *work)
1376 {
1377 struct mm_struct *mm = container_of(work, struct mm_struct,
1378 async_put_work);
1379
1380 __mmput(mm);
1381 }
1382
mmput_async(struct mm_struct * mm)1383 void mmput_async(struct mm_struct *mm)
1384 {
1385 if (atomic_dec_and_test(&mm->mm_users)) {
1386 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387 schedule_work(&mm->async_put_work);
1388 }
1389 }
1390 EXPORT_SYMBOL_GPL(mmput_async);
1391 #endif
1392
1393 /**
1394 * set_mm_exe_file - change a reference to the mm's executable file
1395 * @mm: The mm to change.
1396 * @new_exe_file: The new file to use.
1397 *
1398 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399 *
1400 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401 * invocations: in mmput() nobody alive left, in execve it happens before
1402 * the new mm is made visible to anyone.
1403 *
1404 * Can only fail if new_exe_file != NULL.
1405 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408 struct file *old_exe_file;
1409
1410 /*
1411 * It is safe to dereference the exe_file without RCU as
1412 * this function is only called if nobody else can access
1413 * this mm -- see comment above for justification.
1414 */
1415 old_exe_file = rcu_dereference_raw(mm->exe_file);
1416
1417 if (new_exe_file) {
1418 /*
1419 * We expect the caller (i.e., sys_execve) to already denied
1420 * write access, so this is unlikely to fail.
1421 */
1422 if (unlikely(deny_write_access(new_exe_file)))
1423 return -EACCES;
1424 get_file(new_exe_file);
1425 }
1426 rcu_assign_pointer(mm->exe_file, new_exe_file);
1427 if (old_exe_file) {
1428 allow_write_access(old_exe_file);
1429 fput(old_exe_file);
1430 }
1431 return 0;
1432 }
1433
1434 /**
1435 * replace_mm_exe_file - replace a reference to the mm's executable file
1436 * @mm: The mm to change.
1437 * @new_exe_file: The new file to use.
1438 *
1439 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1440 *
1441 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1442 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1443 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1444 {
1445 struct vm_area_struct *vma;
1446 struct file *old_exe_file;
1447 int ret = 0;
1448
1449 /* Forbid mm->exe_file change if old file still mapped. */
1450 old_exe_file = get_mm_exe_file(mm);
1451 if (old_exe_file) {
1452 VMA_ITERATOR(vmi, mm, 0);
1453 mmap_read_lock(mm);
1454 for_each_vma(vmi, vma) {
1455 if (!vma->vm_file)
1456 continue;
1457 if (path_equal(&vma->vm_file->f_path,
1458 &old_exe_file->f_path)) {
1459 ret = -EBUSY;
1460 break;
1461 }
1462 }
1463 mmap_read_unlock(mm);
1464 fput(old_exe_file);
1465 if (ret)
1466 return ret;
1467 }
1468
1469 ret = deny_write_access(new_exe_file);
1470 if (ret)
1471 return -EACCES;
1472 get_file(new_exe_file);
1473
1474 /* set the new file */
1475 mmap_write_lock(mm);
1476 old_exe_file = rcu_dereference_raw(mm->exe_file);
1477 rcu_assign_pointer(mm->exe_file, new_exe_file);
1478 mmap_write_unlock(mm);
1479
1480 if (old_exe_file) {
1481 allow_write_access(old_exe_file);
1482 fput(old_exe_file);
1483 }
1484 return 0;
1485 }
1486
1487 /**
1488 * get_mm_exe_file - acquire a reference to the mm's executable file
1489 * @mm: The mm of interest.
1490 *
1491 * Returns %NULL if mm has no associated executable file.
1492 * User must release file via fput().
1493 */
get_mm_exe_file(struct mm_struct * mm)1494 struct file *get_mm_exe_file(struct mm_struct *mm)
1495 {
1496 struct file *exe_file;
1497
1498 rcu_read_lock();
1499 exe_file = get_file_rcu(&mm->exe_file);
1500 rcu_read_unlock();
1501 return exe_file;
1502 }
1503
1504 /**
1505 * get_task_exe_file - acquire a reference to the task's executable file
1506 * @task: The task.
1507 *
1508 * Returns %NULL if task's mm (if any) has no associated executable file or
1509 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1510 * User must release file via fput().
1511 */
get_task_exe_file(struct task_struct * task)1512 struct file *get_task_exe_file(struct task_struct *task)
1513 {
1514 struct file *exe_file = NULL;
1515 struct mm_struct *mm;
1516
1517 task_lock(task);
1518 mm = task->mm;
1519 if (mm) {
1520 if (!(task->flags & PF_KTHREAD))
1521 exe_file = get_mm_exe_file(mm);
1522 }
1523 task_unlock(task);
1524 return exe_file;
1525 }
1526
1527 /**
1528 * get_task_mm - acquire a reference to the task's mm
1529 * @task: The task.
1530 *
1531 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1532 * this kernel workthread has transiently adopted a user mm with use_mm,
1533 * to do its AIO) is not set and if so returns a reference to it, after
1534 * bumping up the use count. User must release the mm via mmput()
1535 * after use. Typically used by /proc and ptrace.
1536 */
get_task_mm(struct task_struct * task)1537 struct mm_struct *get_task_mm(struct task_struct *task)
1538 {
1539 struct mm_struct *mm;
1540
1541 if (task->flags & PF_KTHREAD)
1542 return NULL;
1543
1544 task_lock(task);
1545 mm = task->mm;
1546 if (mm)
1547 mmget(mm);
1548 task_unlock(task);
1549 return mm;
1550 }
1551 EXPORT_SYMBOL_GPL(get_task_mm);
1552
mm_access(struct task_struct * task,unsigned int mode)1553 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1554 {
1555 struct mm_struct *mm;
1556 int err;
1557
1558 err = down_read_killable(&task->signal->exec_update_lock);
1559 if (err)
1560 return ERR_PTR(err);
1561
1562 mm = get_task_mm(task);
1563 if (!mm) {
1564 mm = ERR_PTR(-ESRCH);
1565 } else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1566 mmput(mm);
1567 mm = ERR_PTR(-EACCES);
1568 }
1569 up_read(&task->signal->exec_update_lock);
1570
1571 return mm;
1572 }
1573
complete_vfork_done(struct task_struct * tsk)1574 static void complete_vfork_done(struct task_struct *tsk)
1575 {
1576 struct completion *vfork;
1577
1578 task_lock(tsk);
1579 vfork = tsk->vfork_done;
1580 if (likely(vfork)) {
1581 tsk->vfork_done = NULL;
1582 complete(vfork);
1583 }
1584 task_unlock(tsk);
1585 }
1586
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1587 static int wait_for_vfork_done(struct task_struct *child,
1588 struct completion *vfork)
1589 {
1590 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1591 int killed;
1592
1593 cgroup_enter_frozen();
1594 killed = wait_for_completion_state(vfork, state);
1595 cgroup_leave_frozen(false);
1596
1597 if (killed) {
1598 task_lock(child);
1599 child->vfork_done = NULL;
1600 task_unlock(child);
1601 }
1602
1603 put_task_struct(child);
1604 return killed;
1605 }
1606
1607 /* Please note the differences between mmput and mm_release.
1608 * mmput is called whenever we stop holding onto a mm_struct,
1609 * error success whatever.
1610 *
1611 * mm_release is called after a mm_struct has been removed
1612 * from the current process.
1613 *
1614 * This difference is important for error handling, when we
1615 * only half set up a mm_struct for a new process and need to restore
1616 * the old one. Because we mmput the new mm_struct before
1617 * restoring the old one. . .
1618 * Eric Biederman 10 January 1998
1619 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1620 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1621 {
1622 uprobe_free_utask(tsk);
1623
1624 /* Get rid of any cached register state */
1625 deactivate_mm(tsk, mm);
1626
1627 /*
1628 * Signal userspace if we're not exiting with a core dump
1629 * because we want to leave the value intact for debugging
1630 * purposes.
1631 */
1632 if (tsk->clear_child_tid) {
1633 if (atomic_read(&mm->mm_users) > 1) {
1634 /*
1635 * We don't check the error code - if userspace has
1636 * not set up a proper pointer then tough luck.
1637 */
1638 put_user(0, tsk->clear_child_tid);
1639 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1640 1, NULL, NULL, 0, 0);
1641 }
1642 tsk->clear_child_tid = NULL;
1643 }
1644
1645 /*
1646 * All done, finally we can wake up parent and return this mm to him.
1647 * Also kthread_stop() uses this completion for synchronization.
1648 */
1649 if (tsk->vfork_done)
1650 complete_vfork_done(tsk);
1651 }
1652
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1653 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1654 {
1655 futex_exit_release(tsk);
1656 mm_release(tsk, mm);
1657 }
1658
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1659 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1660 {
1661 futex_exec_release(tsk);
1662 mm_release(tsk, mm);
1663 }
1664
1665 /**
1666 * dup_mm() - duplicates an existing mm structure
1667 * @tsk: the task_struct with which the new mm will be associated.
1668 * @oldmm: the mm to duplicate.
1669 *
1670 * Allocates a new mm structure and duplicates the provided @oldmm structure
1671 * content into it.
1672 *
1673 * Return: the duplicated mm or NULL on failure.
1674 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1675 static struct mm_struct *dup_mm(struct task_struct *tsk,
1676 struct mm_struct *oldmm)
1677 {
1678 struct mm_struct *mm;
1679 int err;
1680
1681 mm = allocate_mm();
1682 if (!mm)
1683 goto fail_nomem;
1684
1685 memcpy(mm, oldmm, sizeof(*mm));
1686
1687 if (!mm_init(mm, tsk, mm->user_ns))
1688 goto fail_nomem;
1689
1690 uprobe_start_dup_mmap();
1691 err = dup_mmap(mm, oldmm);
1692 if (err)
1693 goto free_pt;
1694 uprobe_end_dup_mmap();
1695
1696 mm->hiwater_rss = get_mm_rss(mm);
1697 mm->hiwater_vm = mm->total_vm;
1698
1699 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1700 goto free_pt;
1701
1702 return mm;
1703
1704 free_pt:
1705 /* don't put binfmt in mmput, we haven't got module yet */
1706 mm->binfmt = NULL;
1707 mm_init_owner(mm, NULL);
1708 mmput(mm);
1709 if (err)
1710 uprobe_end_dup_mmap();
1711
1712 fail_nomem:
1713 return NULL;
1714 }
1715
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1716 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1717 {
1718 struct mm_struct *mm, *oldmm;
1719
1720 tsk->min_flt = tsk->maj_flt = 0;
1721 tsk->nvcsw = tsk->nivcsw = 0;
1722 #ifdef CONFIG_DETECT_HUNG_TASK
1723 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1724 tsk->last_switch_time = 0;
1725 #endif
1726
1727 tsk->mm = NULL;
1728 tsk->active_mm = NULL;
1729
1730 /*
1731 * Are we cloning a kernel thread?
1732 *
1733 * We need to steal a active VM for that..
1734 */
1735 oldmm = current->mm;
1736 if (!oldmm)
1737 return 0;
1738
1739 if (clone_flags & CLONE_VM) {
1740 mmget(oldmm);
1741 mm = oldmm;
1742 } else {
1743 mm = dup_mm(tsk, current->mm);
1744 if (!mm)
1745 return -ENOMEM;
1746 }
1747
1748 tsk->mm = mm;
1749 tsk->active_mm = mm;
1750 sched_mm_cid_fork(tsk);
1751 return 0;
1752 }
1753
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1754 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1755 {
1756 struct fs_struct *fs = current->fs;
1757 if (clone_flags & CLONE_FS) {
1758 /* tsk->fs is already what we want */
1759 spin_lock(&fs->lock);
1760 /* "users" and "in_exec" locked for check_unsafe_exec() */
1761 if (fs->in_exec) {
1762 spin_unlock(&fs->lock);
1763 return -EAGAIN;
1764 }
1765 fs->users++;
1766 spin_unlock(&fs->lock);
1767 return 0;
1768 }
1769 tsk->fs = copy_fs_struct(fs);
1770 if (!tsk->fs)
1771 return -ENOMEM;
1772 return 0;
1773 }
1774
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1775 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1776 int no_files)
1777 {
1778 struct files_struct *oldf, *newf;
1779
1780 /*
1781 * A background process may not have any files ...
1782 */
1783 oldf = current->files;
1784 if (!oldf)
1785 return 0;
1786
1787 if (no_files) {
1788 tsk->files = NULL;
1789 return 0;
1790 }
1791
1792 if (clone_flags & CLONE_FILES) {
1793 atomic_inc(&oldf->count);
1794 return 0;
1795 }
1796
1797 newf = dup_fd(oldf, NULL);
1798 if (IS_ERR(newf))
1799 return PTR_ERR(newf);
1800
1801 tsk->files = newf;
1802 return 0;
1803 }
1804
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1806 {
1807 struct sighand_struct *sig;
1808
1809 if (clone_flags & CLONE_SIGHAND) {
1810 refcount_inc(¤t->sighand->count);
1811 return 0;
1812 }
1813 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1814 RCU_INIT_POINTER(tsk->sighand, sig);
1815 if (!sig)
1816 return -ENOMEM;
1817
1818 refcount_set(&sig->count, 1);
1819 spin_lock_irq(¤t->sighand->siglock);
1820 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1821 spin_unlock_irq(¤t->sighand->siglock);
1822
1823 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1824 if (clone_flags & CLONE_CLEAR_SIGHAND)
1825 flush_signal_handlers(tsk, 0);
1826
1827 return 0;
1828 }
1829
__cleanup_sighand(struct sighand_struct * sighand)1830 void __cleanup_sighand(struct sighand_struct *sighand)
1831 {
1832 if (refcount_dec_and_test(&sighand->count)) {
1833 signalfd_cleanup(sighand);
1834 /*
1835 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1836 * without an RCU grace period, see __lock_task_sighand().
1837 */
1838 kmem_cache_free(sighand_cachep, sighand);
1839 }
1840 }
1841
1842 /*
1843 * Initialize POSIX timer handling for a thread group.
1844 */
posix_cpu_timers_init_group(struct signal_struct * sig)1845 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1846 {
1847 struct posix_cputimers *pct = &sig->posix_cputimers;
1848 unsigned long cpu_limit;
1849
1850 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1851 posix_cputimers_group_init(pct, cpu_limit);
1852 }
1853
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1855 {
1856 struct signal_struct *sig;
1857
1858 if (clone_flags & CLONE_THREAD)
1859 return 0;
1860
1861 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1862 tsk->signal = sig;
1863 if (!sig)
1864 return -ENOMEM;
1865
1866 sig->nr_threads = 1;
1867 sig->quick_threads = 1;
1868 atomic_set(&sig->live, 1);
1869 refcount_set(&sig->sigcnt, 1);
1870
1871 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1872 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1873 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1874
1875 init_waitqueue_head(&sig->wait_chldexit);
1876 sig->curr_target = tsk;
1877 init_sigpending(&sig->shared_pending);
1878 INIT_HLIST_HEAD(&sig->multiprocess);
1879 seqlock_init(&sig->stats_lock);
1880 prev_cputime_init(&sig->prev_cputime);
1881
1882 #ifdef CONFIG_POSIX_TIMERS
1883 INIT_HLIST_HEAD(&sig->posix_timers);
1884 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1885 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1886 sig->real_timer.function = it_real_fn;
1887 #endif
1888
1889 task_lock(current->group_leader);
1890 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1891 task_unlock(current->group_leader);
1892
1893 posix_cpu_timers_init_group(sig);
1894
1895 tty_audit_fork(sig);
1896 sched_autogroup_fork(sig);
1897
1898 sig->oom_score_adj = current->signal->oom_score_adj;
1899 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1900
1901 mutex_init(&sig->cred_guard_mutex);
1902 init_rwsem(&sig->exec_update_lock);
1903
1904 return 0;
1905 }
1906
copy_seccomp(struct task_struct * p)1907 static void copy_seccomp(struct task_struct *p)
1908 {
1909 #ifdef CONFIG_SECCOMP
1910 /*
1911 * Must be called with sighand->lock held, which is common to
1912 * all threads in the group. Holding cred_guard_mutex is not
1913 * needed because this new task is not yet running and cannot
1914 * be racing exec.
1915 */
1916 assert_spin_locked(¤t->sighand->siglock);
1917
1918 /* Ref-count the new filter user, and assign it. */
1919 get_seccomp_filter(current);
1920 p->seccomp = current->seccomp;
1921
1922 /*
1923 * Explicitly enable no_new_privs here in case it got set
1924 * between the task_struct being duplicated and holding the
1925 * sighand lock. The seccomp state and nnp must be in sync.
1926 */
1927 if (task_no_new_privs(current))
1928 task_set_no_new_privs(p);
1929
1930 /*
1931 * If the parent gained a seccomp mode after copying thread
1932 * flags and between before we held the sighand lock, we have
1933 * to manually enable the seccomp thread flag here.
1934 */
1935 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1936 set_task_syscall_work(p, SECCOMP);
1937 #endif
1938 }
1939
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1940 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1941 {
1942 current->clear_child_tid = tidptr;
1943
1944 return task_pid_vnr(current);
1945 }
1946
rt_mutex_init_task(struct task_struct * p)1947 static void rt_mutex_init_task(struct task_struct *p)
1948 {
1949 raw_spin_lock_init(&p->pi_lock);
1950 #ifdef CONFIG_RT_MUTEXES
1951 p->pi_waiters = RB_ROOT_CACHED;
1952 p->pi_top_task = NULL;
1953 p->pi_blocked_on = NULL;
1954 #endif
1955 }
1956
init_task_pid_links(struct task_struct * task)1957 static inline void init_task_pid_links(struct task_struct *task)
1958 {
1959 enum pid_type type;
1960
1961 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1962 INIT_HLIST_NODE(&task->pid_links[type]);
1963 }
1964
1965 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1966 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1967 {
1968 if (type == PIDTYPE_PID)
1969 task->thread_pid = pid;
1970 else
1971 task->signal->pids[type] = pid;
1972 }
1973
rcu_copy_process(struct task_struct * p)1974 static inline void rcu_copy_process(struct task_struct *p)
1975 {
1976 #ifdef CONFIG_PREEMPT_RCU
1977 p->rcu_read_lock_nesting = 0;
1978 p->rcu_read_unlock_special.s = 0;
1979 p->rcu_blocked_node = NULL;
1980 INIT_LIST_HEAD(&p->rcu_node_entry);
1981 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1982 #ifdef CONFIG_TASKS_RCU
1983 p->rcu_tasks_holdout = false;
1984 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1985 p->rcu_tasks_idle_cpu = -1;
1986 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1987 #endif /* #ifdef CONFIG_TASKS_RCU */
1988 #ifdef CONFIG_TASKS_TRACE_RCU
1989 p->trc_reader_nesting = 0;
1990 p->trc_reader_special.s = 0;
1991 INIT_LIST_HEAD(&p->trc_holdout_list);
1992 INIT_LIST_HEAD(&p->trc_blkd_node);
1993 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1994 }
1995
1996 /**
1997 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1998 * @pid: the struct pid for which to create a pidfd
1999 * @flags: flags of the new @pidfd
2000 * @ret: Where to return the file for the pidfd.
2001 *
2002 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2003 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2004 *
2005 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2006 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2007 * pidfd file are prepared.
2008 *
2009 * If this function returns successfully the caller is responsible to either
2010 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2011 * order to install the pidfd into its file descriptor table or they must use
2012 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2013 * respectively.
2014 *
2015 * This function is useful when a pidfd must already be reserved but there
2016 * might still be points of failure afterwards and the caller wants to ensure
2017 * that no pidfd is leaked into its file descriptor table.
2018 *
2019 * Return: On success, a reserved pidfd is returned from the function and a new
2020 * pidfd file is returned in the last argument to the function. On
2021 * error, a negative error code is returned from the function and the
2022 * last argument remains unchanged.
2023 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2024 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2025 {
2026 int pidfd;
2027 struct file *pidfd_file;
2028
2029 pidfd = get_unused_fd_flags(O_CLOEXEC);
2030 if (pidfd < 0)
2031 return pidfd;
2032
2033 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2034 if (IS_ERR(pidfd_file)) {
2035 put_unused_fd(pidfd);
2036 return PTR_ERR(pidfd_file);
2037 }
2038 /*
2039 * anon_inode_getfile() ignores everything outside of the
2040 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2041 */
2042 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2043 *ret = pidfd_file;
2044 return pidfd;
2045 }
2046
2047 /**
2048 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2049 * @pid: the struct pid for which to create a pidfd
2050 * @flags: flags of the new @pidfd
2051 * @ret: Where to return the pidfd.
2052 *
2053 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2054 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2055 *
2056 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2057 * task identified by @pid must be a thread-group leader.
2058 *
2059 * If this function returns successfully the caller is responsible to either
2060 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2061 * order to install the pidfd into its file descriptor table or they must use
2062 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2063 * respectively.
2064 *
2065 * This function is useful when a pidfd must already be reserved but there
2066 * might still be points of failure afterwards and the caller wants to ensure
2067 * that no pidfd is leaked into its file descriptor table.
2068 *
2069 * Return: On success, a reserved pidfd is returned from the function and a new
2070 * pidfd file is returned in the last argument to the function. On
2071 * error, a negative error code is returned from the function and the
2072 * last argument remains unchanged.
2073 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2074 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2075 {
2076 bool thread = flags & PIDFD_THREAD;
2077
2078 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2079 return -EINVAL;
2080
2081 return __pidfd_prepare(pid, flags, ret);
2082 }
2083
__delayed_free_task(struct rcu_head * rhp)2084 static void __delayed_free_task(struct rcu_head *rhp)
2085 {
2086 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2087
2088 free_task(tsk);
2089 }
2090
delayed_free_task(struct task_struct * tsk)2091 static __always_inline void delayed_free_task(struct task_struct *tsk)
2092 {
2093 if (IS_ENABLED(CONFIG_MEMCG))
2094 call_rcu(&tsk->rcu, __delayed_free_task);
2095 else
2096 free_task(tsk);
2097 }
2098
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2099 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2100 {
2101 /* Skip if kernel thread */
2102 if (!tsk->mm)
2103 return;
2104
2105 /* Skip if spawning a thread or using vfork */
2106 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2107 return;
2108
2109 /* We need to synchronize with __set_oom_adj */
2110 mutex_lock(&oom_adj_mutex);
2111 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2112 /* Update the values in case they were changed after copy_signal */
2113 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2114 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2115 mutex_unlock(&oom_adj_mutex);
2116 }
2117
2118 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2119 static void rv_task_fork(struct task_struct *p)
2120 {
2121 int i;
2122
2123 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2124 p->rv[i].da_mon.monitoring = false;
2125 }
2126 #else
2127 #define rv_task_fork(p) do {} while (0)
2128 #endif
2129
2130 /*
2131 * This creates a new process as a copy of the old one,
2132 * but does not actually start it yet.
2133 *
2134 * It copies the registers, and all the appropriate
2135 * parts of the process environment (as per the clone
2136 * flags). The actual kick-off is left to the caller.
2137 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2138 __latent_entropy struct task_struct *copy_process(
2139 struct pid *pid,
2140 int trace,
2141 int node,
2142 struct kernel_clone_args *args)
2143 {
2144 int pidfd = -1, retval;
2145 struct task_struct *p;
2146 struct multiprocess_signals delayed;
2147 struct file *pidfile = NULL;
2148 const u64 clone_flags = args->flags;
2149 struct nsproxy *nsp = current->nsproxy;
2150
2151 /*
2152 * Don't allow sharing the root directory with processes in a different
2153 * namespace
2154 */
2155 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2156 return ERR_PTR(-EINVAL);
2157
2158 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2159 return ERR_PTR(-EINVAL);
2160
2161 /*
2162 * Thread groups must share signals as well, and detached threads
2163 * can only be started up within the thread group.
2164 */
2165 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2166 return ERR_PTR(-EINVAL);
2167
2168 /*
2169 * Shared signal handlers imply shared VM. By way of the above,
2170 * thread groups also imply shared VM. Blocking this case allows
2171 * for various simplifications in other code.
2172 */
2173 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2174 return ERR_PTR(-EINVAL);
2175
2176 /*
2177 * Siblings of global init remain as zombies on exit since they are
2178 * not reaped by their parent (swapper). To solve this and to avoid
2179 * multi-rooted process trees, prevent global and container-inits
2180 * from creating siblings.
2181 */
2182 if ((clone_flags & CLONE_PARENT) &&
2183 current->signal->flags & SIGNAL_UNKILLABLE)
2184 return ERR_PTR(-EINVAL);
2185
2186 /*
2187 * If the new process will be in a different pid or user namespace
2188 * do not allow it to share a thread group with the forking task.
2189 */
2190 if (clone_flags & CLONE_THREAD) {
2191 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2192 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2193 return ERR_PTR(-EINVAL);
2194 }
2195
2196 if (clone_flags & CLONE_PIDFD) {
2197 /*
2198 * - CLONE_DETACHED is blocked so that we can potentially
2199 * reuse it later for CLONE_PIDFD.
2200 */
2201 if (clone_flags & CLONE_DETACHED)
2202 return ERR_PTR(-EINVAL);
2203 }
2204
2205 /*
2206 * Force any signals received before this point to be delivered
2207 * before the fork happens. Collect up signals sent to multiple
2208 * processes that happen during the fork and delay them so that
2209 * they appear to happen after the fork.
2210 */
2211 sigemptyset(&delayed.signal);
2212 INIT_HLIST_NODE(&delayed.node);
2213
2214 spin_lock_irq(¤t->sighand->siglock);
2215 if (!(clone_flags & CLONE_THREAD))
2216 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2217 recalc_sigpending();
2218 spin_unlock_irq(¤t->sighand->siglock);
2219 retval = -ERESTARTNOINTR;
2220 if (task_sigpending(current))
2221 goto fork_out;
2222
2223 retval = -ENOMEM;
2224 p = dup_task_struct(current, node);
2225 if (!p)
2226 goto fork_out;
2227 p->flags &= ~PF_KTHREAD;
2228 if (args->kthread)
2229 p->flags |= PF_KTHREAD;
2230 if (args->user_worker) {
2231 /*
2232 * Mark us a user worker, and block any signal that isn't
2233 * fatal or STOP
2234 */
2235 p->flags |= PF_USER_WORKER;
2236 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2237 }
2238 if (args->io_thread)
2239 p->flags |= PF_IO_WORKER;
2240
2241 if (args->name)
2242 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2243
2244 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2245 /*
2246 * Clear TID on mm_release()?
2247 */
2248 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2249
2250 ftrace_graph_init_task(p);
2251
2252 rt_mutex_init_task(p);
2253
2254 lockdep_assert_irqs_enabled();
2255 #ifdef CONFIG_PROVE_LOCKING
2256 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2257 #endif
2258 retval = copy_creds(p, clone_flags);
2259 if (retval < 0)
2260 goto bad_fork_free;
2261
2262 retval = -EAGAIN;
2263 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2264 if (p->real_cred->user != INIT_USER &&
2265 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2266 goto bad_fork_cleanup_count;
2267 }
2268 current->flags &= ~PF_NPROC_EXCEEDED;
2269
2270 /*
2271 * If multiple threads are within copy_process(), then this check
2272 * triggers too late. This doesn't hurt, the check is only there
2273 * to stop root fork bombs.
2274 */
2275 retval = -EAGAIN;
2276 if (data_race(nr_threads >= max_threads))
2277 goto bad_fork_cleanup_count;
2278
2279 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2280 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2281 p->flags |= PF_FORKNOEXEC;
2282 INIT_LIST_HEAD(&p->children);
2283 INIT_LIST_HEAD(&p->sibling);
2284 rcu_copy_process(p);
2285 p->vfork_done = NULL;
2286 spin_lock_init(&p->alloc_lock);
2287
2288 init_sigpending(&p->pending);
2289
2290 p->utime = p->stime = p->gtime = 0;
2291 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2292 p->utimescaled = p->stimescaled = 0;
2293 #endif
2294 prev_cputime_init(&p->prev_cputime);
2295
2296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2297 seqcount_init(&p->vtime.seqcount);
2298 p->vtime.starttime = 0;
2299 p->vtime.state = VTIME_INACTIVE;
2300 #endif
2301
2302 #ifdef CONFIG_IO_URING
2303 p->io_uring = NULL;
2304 #endif
2305
2306 p->default_timer_slack_ns = current->timer_slack_ns;
2307
2308 #ifdef CONFIG_PSI
2309 p->psi_flags = 0;
2310 #endif
2311
2312 task_io_accounting_init(&p->ioac);
2313 acct_clear_integrals(p);
2314
2315 posix_cputimers_init(&p->posix_cputimers);
2316 tick_dep_init_task(p);
2317
2318 p->io_context = NULL;
2319 audit_set_context(p, NULL);
2320 cgroup_fork(p);
2321 if (args->kthread) {
2322 if (!set_kthread_struct(p))
2323 goto bad_fork_cleanup_delayacct;
2324 }
2325 #ifdef CONFIG_NUMA
2326 p->mempolicy = mpol_dup(p->mempolicy);
2327 if (IS_ERR(p->mempolicy)) {
2328 retval = PTR_ERR(p->mempolicy);
2329 p->mempolicy = NULL;
2330 goto bad_fork_cleanup_delayacct;
2331 }
2332 #endif
2333 #ifdef CONFIG_CPUSETS
2334 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2335 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2336 #endif
2337 #ifdef CONFIG_TRACE_IRQFLAGS
2338 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2339 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2340 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2341 p->softirqs_enabled = 1;
2342 p->softirq_context = 0;
2343 #endif
2344
2345 p->pagefault_disabled = 0;
2346
2347 #ifdef CONFIG_LOCKDEP
2348 lockdep_init_task(p);
2349 #endif
2350
2351 #ifdef CONFIG_DEBUG_MUTEXES
2352 p->blocked_on = NULL; /* not blocked yet */
2353 #endif
2354 #ifdef CONFIG_BCACHE
2355 p->sequential_io = 0;
2356 p->sequential_io_avg = 0;
2357 #endif
2358 #ifdef CONFIG_BPF_SYSCALL
2359 RCU_INIT_POINTER(p->bpf_storage, NULL);
2360 p->bpf_ctx = NULL;
2361 #endif
2362
2363 /* Perform scheduler related setup. Assign this task to a CPU. */
2364 retval = sched_fork(clone_flags, p);
2365 if (retval)
2366 goto bad_fork_cleanup_policy;
2367
2368 retval = perf_event_init_task(p, clone_flags);
2369 if (retval)
2370 goto bad_fork_sched_cancel_fork;
2371 retval = audit_alloc(p);
2372 if (retval)
2373 goto bad_fork_cleanup_perf;
2374 /* copy all the process information */
2375 shm_init_task(p);
2376 retval = security_task_alloc(p, clone_flags);
2377 if (retval)
2378 goto bad_fork_cleanup_audit;
2379 retval = copy_semundo(clone_flags, p);
2380 if (retval)
2381 goto bad_fork_cleanup_security;
2382 retval = copy_files(clone_flags, p, args->no_files);
2383 if (retval)
2384 goto bad_fork_cleanup_semundo;
2385 retval = copy_fs(clone_flags, p);
2386 if (retval)
2387 goto bad_fork_cleanup_files;
2388 retval = copy_sighand(clone_flags, p);
2389 if (retval)
2390 goto bad_fork_cleanup_fs;
2391 retval = copy_signal(clone_flags, p);
2392 if (retval)
2393 goto bad_fork_cleanup_sighand;
2394 retval = copy_mm(clone_flags, p);
2395 if (retval)
2396 goto bad_fork_cleanup_signal;
2397 retval = copy_namespaces(clone_flags, p);
2398 if (retval)
2399 goto bad_fork_cleanup_mm;
2400 retval = copy_io(clone_flags, p);
2401 if (retval)
2402 goto bad_fork_cleanup_namespaces;
2403 retval = copy_thread(p, args);
2404 if (retval)
2405 goto bad_fork_cleanup_io;
2406
2407 stackleak_task_init(p);
2408
2409 if (pid != &init_struct_pid) {
2410 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2411 args->set_tid_size);
2412 if (IS_ERR(pid)) {
2413 retval = PTR_ERR(pid);
2414 goto bad_fork_cleanup_thread;
2415 }
2416 }
2417
2418 /*
2419 * This has to happen after we've potentially unshared the file
2420 * descriptor table (so that the pidfd doesn't leak into the child
2421 * if the fd table isn't shared).
2422 */
2423 if (clone_flags & CLONE_PIDFD) {
2424 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2425
2426 /* Note that no task has been attached to @pid yet. */
2427 retval = __pidfd_prepare(pid, flags, &pidfile);
2428 if (retval < 0)
2429 goto bad_fork_free_pid;
2430 pidfd = retval;
2431
2432 retval = put_user(pidfd, args->pidfd);
2433 if (retval)
2434 goto bad_fork_put_pidfd;
2435 }
2436
2437 #ifdef CONFIG_BLOCK
2438 p->plug = NULL;
2439 #endif
2440 futex_init_task(p);
2441
2442 /*
2443 * sigaltstack should be cleared when sharing the same VM
2444 */
2445 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2446 sas_ss_reset(p);
2447
2448 /*
2449 * Syscall tracing and stepping should be turned off in the
2450 * child regardless of CLONE_PTRACE.
2451 */
2452 user_disable_single_step(p);
2453 clear_task_syscall_work(p, SYSCALL_TRACE);
2454 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2455 clear_task_syscall_work(p, SYSCALL_EMU);
2456 #endif
2457 clear_tsk_latency_tracing(p);
2458
2459 /* ok, now we should be set up.. */
2460 p->pid = pid_nr(pid);
2461 if (clone_flags & CLONE_THREAD) {
2462 p->group_leader = current->group_leader;
2463 p->tgid = current->tgid;
2464 } else {
2465 p->group_leader = p;
2466 p->tgid = p->pid;
2467 }
2468
2469 p->nr_dirtied = 0;
2470 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2471 p->dirty_paused_when = 0;
2472
2473 p->pdeath_signal = 0;
2474 p->task_works = NULL;
2475 clear_posix_cputimers_work(p);
2476
2477 #ifdef CONFIG_KRETPROBES
2478 p->kretprobe_instances.first = NULL;
2479 #endif
2480 #ifdef CONFIG_RETHOOK
2481 p->rethooks.first = NULL;
2482 #endif
2483
2484 /*
2485 * Ensure that the cgroup subsystem policies allow the new process to be
2486 * forked. It should be noted that the new process's css_set can be changed
2487 * between here and cgroup_post_fork() if an organisation operation is in
2488 * progress.
2489 */
2490 retval = cgroup_can_fork(p, args);
2491 if (retval)
2492 goto bad_fork_put_pidfd;
2493
2494 /*
2495 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2496 * the new task on the correct runqueue. All this *before* the task
2497 * becomes visible.
2498 *
2499 * This isn't part of ->can_fork() because while the re-cloning is
2500 * cgroup specific, it unconditionally needs to place the task on a
2501 * runqueue.
2502 */
2503 retval = sched_cgroup_fork(p, args);
2504 if (retval)
2505 goto bad_fork_cancel_cgroup;
2506
2507 /*
2508 * From this point on we must avoid any synchronous user-space
2509 * communication until we take the tasklist-lock. In particular, we do
2510 * not want user-space to be able to predict the process start-time by
2511 * stalling fork(2) after we recorded the start_time but before it is
2512 * visible to the system.
2513 */
2514
2515 p->start_time = ktime_get_ns();
2516 p->start_boottime = ktime_get_boottime_ns();
2517
2518 /*
2519 * Make it visible to the rest of the system, but dont wake it up yet.
2520 * Need tasklist lock for parent etc handling!
2521 */
2522 write_lock_irq(&tasklist_lock);
2523
2524 /* CLONE_PARENT re-uses the old parent */
2525 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2526 p->real_parent = current->real_parent;
2527 p->parent_exec_id = current->parent_exec_id;
2528 if (clone_flags & CLONE_THREAD)
2529 p->exit_signal = -1;
2530 else
2531 p->exit_signal = current->group_leader->exit_signal;
2532 } else {
2533 p->real_parent = current;
2534 p->parent_exec_id = current->self_exec_id;
2535 p->exit_signal = args->exit_signal;
2536 }
2537
2538 klp_copy_process(p);
2539
2540 sched_core_fork(p);
2541
2542 spin_lock(¤t->sighand->siglock);
2543
2544 rv_task_fork(p);
2545
2546 rseq_fork(p, clone_flags);
2547
2548 /* Don't start children in a dying pid namespace */
2549 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2550 retval = -ENOMEM;
2551 goto bad_fork_core_free;
2552 }
2553
2554 /* Let kill terminate clone/fork in the middle */
2555 if (fatal_signal_pending(current)) {
2556 retval = -EINTR;
2557 goto bad_fork_core_free;
2558 }
2559
2560 /* No more failure paths after this point. */
2561
2562 /*
2563 * Copy seccomp details explicitly here, in case they were changed
2564 * before holding sighand lock.
2565 */
2566 copy_seccomp(p);
2567
2568 init_task_pid_links(p);
2569 if (likely(p->pid)) {
2570 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2571
2572 init_task_pid(p, PIDTYPE_PID, pid);
2573 if (thread_group_leader(p)) {
2574 init_task_pid(p, PIDTYPE_TGID, pid);
2575 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2576 init_task_pid(p, PIDTYPE_SID, task_session(current));
2577
2578 if (is_child_reaper(pid)) {
2579 ns_of_pid(pid)->child_reaper = p;
2580 p->signal->flags |= SIGNAL_UNKILLABLE;
2581 }
2582 p->signal->shared_pending.signal = delayed.signal;
2583 p->signal->tty = tty_kref_get(current->signal->tty);
2584 /*
2585 * Inherit has_child_subreaper flag under the same
2586 * tasklist_lock with adding child to the process tree
2587 * for propagate_has_child_subreaper optimization.
2588 */
2589 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2590 p->real_parent->signal->is_child_subreaper;
2591 list_add_tail(&p->sibling, &p->real_parent->children);
2592 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2593 attach_pid(p, PIDTYPE_TGID);
2594 attach_pid(p, PIDTYPE_PGID);
2595 attach_pid(p, PIDTYPE_SID);
2596 __this_cpu_inc(process_counts);
2597 } else {
2598 current->signal->nr_threads++;
2599 current->signal->quick_threads++;
2600 atomic_inc(¤t->signal->live);
2601 refcount_inc(¤t->signal->sigcnt);
2602 task_join_group_stop(p);
2603 list_add_tail_rcu(&p->thread_node,
2604 &p->signal->thread_head);
2605 }
2606 attach_pid(p, PIDTYPE_PID);
2607 nr_threads++;
2608 }
2609 total_forks++;
2610 hlist_del_init(&delayed.node);
2611 spin_unlock(¤t->sighand->siglock);
2612 syscall_tracepoint_update(p);
2613 write_unlock_irq(&tasklist_lock);
2614
2615 if (pidfile)
2616 fd_install(pidfd, pidfile);
2617
2618 proc_fork_connector(p);
2619 sched_post_fork(p);
2620 cgroup_post_fork(p, args);
2621 perf_event_fork(p);
2622
2623 trace_task_newtask(p, clone_flags);
2624 uprobe_copy_process(p, clone_flags);
2625 user_events_fork(p, clone_flags);
2626
2627 copy_oom_score_adj(clone_flags, p);
2628
2629 return p;
2630
2631 bad_fork_core_free:
2632 sched_core_free(p);
2633 spin_unlock(¤t->sighand->siglock);
2634 write_unlock_irq(&tasklist_lock);
2635 bad_fork_cancel_cgroup:
2636 cgroup_cancel_fork(p, args);
2637 bad_fork_put_pidfd:
2638 if (clone_flags & CLONE_PIDFD) {
2639 fput(pidfile);
2640 put_unused_fd(pidfd);
2641 }
2642 bad_fork_free_pid:
2643 if (pid != &init_struct_pid)
2644 free_pid(pid);
2645 bad_fork_cleanup_thread:
2646 exit_thread(p);
2647 bad_fork_cleanup_io:
2648 if (p->io_context)
2649 exit_io_context(p);
2650 bad_fork_cleanup_namespaces:
2651 exit_task_namespaces(p);
2652 bad_fork_cleanup_mm:
2653 if (p->mm) {
2654 mm_clear_owner(p->mm, p);
2655 mmput(p->mm);
2656 }
2657 bad_fork_cleanup_signal:
2658 if (!(clone_flags & CLONE_THREAD))
2659 free_signal_struct(p->signal);
2660 bad_fork_cleanup_sighand:
2661 __cleanup_sighand(p->sighand);
2662 bad_fork_cleanup_fs:
2663 exit_fs(p); /* blocking */
2664 bad_fork_cleanup_files:
2665 exit_files(p); /* blocking */
2666 bad_fork_cleanup_semundo:
2667 exit_sem(p);
2668 bad_fork_cleanup_security:
2669 security_task_free(p);
2670 bad_fork_cleanup_audit:
2671 audit_free(p);
2672 bad_fork_cleanup_perf:
2673 perf_event_free_task(p);
2674 bad_fork_sched_cancel_fork:
2675 sched_cancel_fork(p);
2676 bad_fork_cleanup_policy:
2677 lockdep_free_task(p);
2678 #ifdef CONFIG_NUMA
2679 mpol_put(p->mempolicy);
2680 #endif
2681 bad_fork_cleanup_delayacct:
2682 delayacct_tsk_free(p);
2683 bad_fork_cleanup_count:
2684 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2685 exit_creds(p);
2686 bad_fork_free:
2687 WRITE_ONCE(p->__state, TASK_DEAD);
2688 exit_task_stack_account(p);
2689 put_task_stack(p);
2690 delayed_free_task(p);
2691 fork_out:
2692 spin_lock_irq(¤t->sighand->siglock);
2693 hlist_del_init(&delayed.node);
2694 spin_unlock_irq(¤t->sighand->siglock);
2695 return ERR_PTR(retval);
2696 }
2697
init_idle_pids(struct task_struct * idle)2698 static inline void init_idle_pids(struct task_struct *idle)
2699 {
2700 enum pid_type type;
2701
2702 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2703 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2704 init_task_pid(idle, type, &init_struct_pid);
2705 }
2706 }
2707
idle_dummy(void * dummy)2708 static int idle_dummy(void *dummy)
2709 {
2710 /* This function is never called */
2711 return 0;
2712 }
2713
fork_idle(int cpu)2714 struct task_struct * __init fork_idle(int cpu)
2715 {
2716 struct task_struct *task;
2717 struct kernel_clone_args args = {
2718 .flags = CLONE_VM,
2719 .fn = &idle_dummy,
2720 .fn_arg = NULL,
2721 .kthread = 1,
2722 .idle = 1,
2723 };
2724
2725 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2726 if (!IS_ERR(task)) {
2727 init_idle_pids(task);
2728 init_idle(task, cpu);
2729 }
2730
2731 return task;
2732 }
2733
2734 /*
2735 * This is like kernel_clone(), but shaved down and tailored to just
2736 * creating io_uring workers. It returns a created task, or an error pointer.
2737 * The returned task is inactive, and the caller must fire it up through
2738 * wake_up_new_task(p). All signals are blocked in the created task.
2739 */
create_io_thread(int (* fn)(void *),void * arg,int node)2740 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2741 {
2742 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2743 CLONE_IO;
2744 struct kernel_clone_args args = {
2745 .flags = ((lower_32_bits(flags) | CLONE_VM |
2746 CLONE_UNTRACED) & ~CSIGNAL),
2747 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2748 .fn = fn,
2749 .fn_arg = arg,
2750 .io_thread = 1,
2751 .user_worker = 1,
2752 };
2753
2754 return copy_process(NULL, 0, node, &args);
2755 }
2756
2757 /*
2758 * Ok, this is the main fork-routine.
2759 *
2760 * It copies the process, and if successful kick-starts
2761 * it and waits for it to finish using the VM if required.
2762 *
2763 * args->exit_signal is expected to be checked for sanity by the caller.
2764 */
kernel_clone(struct kernel_clone_args * args)2765 pid_t kernel_clone(struct kernel_clone_args *args)
2766 {
2767 u64 clone_flags = args->flags;
2768 struct completion vfork;
2769 struct pid *pid;
2770 struct task_struct *p;
2771 int trace = 0;
2772 pid_t nr;
2773
2774 /*
2775 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2776 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2777 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2778 * field in struct clone_args and it still doesn't make sense to have
2779 * them both point at the same memory location. Performing this check
2780 * here has the advantage that we don't need to have a separate helper
2781 * to check for legacy clone().
2782 */
2783 if ((clone_flags & CLONE_PIDFD) &&
2784 (clone_flags & CLONE_PARENT_SETTID) &&
2785 (args->pidfd == args->parent_tid))
2786 return -EINVAL;
2787
2788 /*
2789 * Determine whether and which event to report to ptracer. When
2790 * called from kernel_thread or CLONE_UNTRACED is explicitly
2791 * requested, no event is reported; otherwise, report if the event
2792 * for the type of forking is enabled.
2793 */
2794 if (!(clone_flags & CLONE_UNTRACED)) {
2795 if (clone_flags & CLONE_VFORK)
2796 trace = PTRACE_EVENT_VFORK;
2797 else if (args->exit_signal != SIGCHLD)
2798 trace = PTRACE_EVENT_CLONE;
2799 else
2800 trace = PTRACE_EVENT_FORK;
2801
2802 if (likely(!ptrace_event_enabled(current, trace)))
2803 trace = 0;
2804 }
2805
2806 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2807 add_latent_entropy();
2808
2809 if (IS_ERR(p))
2810 return PTR_ERR(p);
2811
2812 /*
2813 * Do this prior waking up the new thread - the thread pointer
2814 * might get invalid after that point, if the thread exits quickly.
2815 */
2816 trace_sched_process_fork(current, p);
2817
2818 pid = get_task_pid(p, PIDTYPE_PID);
2819 nr = pid_vnr(pid);
2820
2821 if (clone_flags & CLONE_PARENT_SETTID)
2822 put_user(nr, args->parent_tid);
2823
2824 if (clone_flags & CLONE_VFORK) {
2825 p->vfork_done = &vfork;
2826 init_completion(&vfork);
2827 get_task_struct(p);
2828 }
2829
2830 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2831 /* lock the task to synchronize with memcg migration */
2832 task_lock(p);
2833 lru_gen_add_mm(p->mm);
2834 task_unlock(p);
2835 }
2836
2837 wake_up_new_task(p);
2838
2839 /* forking complete and child started to run, tell ptracer */
2840 if (unlikely(trace))
2841 ptrace_event_pid(trace, pid);
2842
2843 if (clone_flags & CLONE_VFORK) {
2844 if (!wait_for_vfork_done(p, &vfork))
2845 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2846 }
2847
2848 put_pid(pid);
2849 return nr;
2850 }
2851
2852 /*
2853 * Create a kernel thread.
2854 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2855 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2856 unsigned long flags)
2857 {
2858 struct kernel_clone_args args = {
2859 .flags = ((lower_32_bits(flags) | CLONE_VM |
2860 CLONE_UNTRACED) & ~CSIGNAL),
2861 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2862 .fn = fn,
2863 .fn_arg = arg,
2864 .name = name,
2865 .kthread = 1,
2866 };
2867
2868 return kernel_clone(&args);
2869 }
2870
2871 /*
2872 * Create a user mode thread.
2873 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2874 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2875 {
2876 struct kernel_clone_args args = {
2877 .flags = ((lower_32_bits(flags) | CLONE_VM |
2878 CLONE_UNTRACED) & ~CSIGNAL),
2879 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2880 .fn = fn,
2881 .fn_arg = arg,
2882 };
2883
2884 return kernel_clone(&args);
2885 }
2886
2887 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2888 SYSCALL_DEFINE0(fork)
2889 {
2890 #ifdef CONFIG_MMU
2891 struct kernel_clone_args args = {
2892 .exit_signal = SIGCHLD,
2893 };
2894
2895 return kernel_clone(&args);
2896 #else
2897 /* can not support in nommu mode */
2898 return -EINVAL;
2899 #endif
2900 }
2901 #endif
2902
2903 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2904 SYSCALL_DEFINE0(vfork)
2905 {
2906 struct kernel_clone_args args = {
2907 .flags = CLONE_VFORK | CLONE_VM,
2908 .exit_signal = SIGCHLD,
2909 };
2910
2911 return kernel_clone(&args);
2912 }
2913 #endif
2914
2915 #ifdef __ARCH_WANT_SYS_CLONE
2916 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2917 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2918 int __user *, parent_tidptr,
2919 unsigned long, tls,
2920 int __user *, child_tidptr)
2921 #elif defined(CONFIG_CLONE_BACKWARDS2)
2922 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2923 int __user *, parent_tidptr,
2924 int __user *, child_tidptr,
2925 unsigned long, tls)
2926 #elif defined(CONFIG_CLONE_BACKWARDS3)
2927 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2928 int, stack_size,
2929 int __user *, parent_tidptr,
2930 int __user *, child_tidptr,
2931 unsigned long, tls)
2932 #else
2933 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2934 int __user *, parent_tidptr,
2935 int __user *, child_tidptr,
2936 unsigned long, tls)
2937 #endif
2938 {
2939 struct kernel_clone_args args = {
2940 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2941 .pidfd = parent_tidptr,
2942 .child_tid = child_tidptr,
2943 .parent_tid = parent_tidptr,
2944 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2945 .stack = newsp,
2946 .tls = tls,
2947 };
2948
2949 return kernel_clone(&args);
2950 }
2951 #endif
2952
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2953 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2954 struct clone_args __user *uargs,
2955 size_t usize)
2956 {
2957 int err;
2958 struct clone_args args;
2959 pid_t *kset_tid = kargs->set_tid;
2960
2961 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2962 CLONE_ARGS_SIZE_VER0);
2963 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2964 CLONE_ARGS_SIZE_VER1);
2965 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2966 CLONE_ARGS_SIZE_VER2);
2967 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2968
2969 if (unlikely(usize > PAGE_SIZE))
2970 return -E2BIG;
2971 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2972 return -EINVAL;
2973
2974 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2975 if (err)
2976 return err;
2977
2978 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2979 return -EINVAL;
2980
2981 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2982 return -EINVAL;
2983
2984 if (unlikely(args.set_tid && args.set_tid_size == 0))
2985 return -EINVAL;
2986
2987 /*
2988 * Verify that higher 32bits of exit_signal are unset and that
2989 * it is a valid signal
2990 */
2991 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2992 !valid_signal(args.exit_signal)))
2993 return -EINVAL;
2994
2995 if ((args.flags & CLONE_INTO_CGROUP) &&
2996 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2997 return -EINVAL;
2998
2999 *kargs = (struct kernel_clone_args){
3000 .flags = args.flags,
3001 .pidfd = u64_to_user_ptr(args.pidfd),
3002 .child_tid = u64_to_user_ptr(args.child_tid),
3003 .parent_tid = u64_to_user_ptr(args.parent_tid),
3004 .exit_signal = args.exit_signal,
3005 .stack = args.stack,
3006 .stack_size = args.stack_size,
3007 .tls = args.tls,
3008 .set_tid_size = args.set_tid_size,
3009 .cgroup = args.cgroup,
3010 };
3011
3012 if (args.set_tid &&
3013 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3014 (kargs->set_tid_size * sizeof(pid_t))))
3015 return -EFAULT;
3016
3017 kargs->set_tid = kset_tid;
3018
3019 return 0;
3020 }
3021
3022 /**
3023 * clone3_stack_valid - check and prepare stack
3024 * @kargs: kernel clone args
3025 *
3026 * Verify that the stack arguments userspace gave us are sane.
3027 * In addition, set the stack direction for userspace since it's easy for us to
3028 * determine.
3029 */
clone3_stack_valid(struct kernel_clone_args * kargs)3030 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3031 {
3032 if (kargs->stack == 0) {
3033 if (kargs->stack_size > 0)
3034 return false;
3035 } else {
3036 if (kargs->stack_size == 0)
3037 return false;
3038
3039 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3040 return false;
3041
3042 #if !defined(CONFIG_STACK_GROWSUP)
3043 kargs->stack += kargs->stack_size;
3044 #endif
3045 }
3046
3047 return true;
3048 }
3049
clone3_args_valid(struct kernel_clone_args * kargs)3050 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3051 {
3052 /* Verify that no unknown flags are passed along. */
3053 if (kargs->flags &
3054 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3055 return false;
3056
3057 /*
3058 * - make the CLONE_DETACHED bit reusable for clone3
3059 * - make the CSIGNAL bits reusable for clone3
3060 */
3061 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3062 return false;
3063
3064 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3065 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3066 return false;
3067
3068 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3069 kargs->exit_signal)
3070 return false;
3071
3072 if (!clone3_stack_valid(kargs))
3073 return false;
3074
3075 return true;
3076 }
3077
3078 /**
3079 * sys_clone3 - create a new process with specific properties
3080 * @uargs: argument structure
3081 * @size: size of @uargs
3082 *
3083 * clone3() is the extensible successor to clone()/clone2().
3084 * It takes a struct as argument that is versioned by its size.
3085 *
3086 * Return: On success, a positive PID for the child process.
3087 * On error, a negative errno number.
3088 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3089 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3090 {
3091 int err;
3092
3093 struct kernel_clone_args kargs;
3094 pid_t set_tid[MAX_PID_NS_LEVEL];
3095
3096 #ifdef __ARCH_BROKEN_SYS_CLONE3
3097 #warning clone3() entry point is missing, please fix
3098 return -ENOSYS;
3099 #endif
3100
3101 kargs.set_tid = set_tid;
3102
3103 err = copy_clone_args_from_user(&kargs, uargs, size);
3104 if (err)
3105 return err;
3106
3107 if (!clone3_args_valid(&kargs))
3108 return -EINVAL;
3109
3110 return kernel_clone(&kargs);
3111 }
3112
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3113 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3114 {
3115 struct task_struct *leader, *parent, *child;
3116 int res;
3117
3118 read_lock(&tasklist_lock);
3119 leader = top = top->group_leader;
3120 down:
3121 for_each_thread(leader, parent) {
3122 list_for_each_entry(child, &parent->children, sibling) {
3123 res = visitor(child, data);
3124 if (res) {
3125 if (res < 0)
3126 goto out;
3127 leader = child;
3128 goto down;
3129 }
3130 up:
3131 ;
3132 }
3133 }
3134
3135 if (leader != top) {
3136 child = leader;
3137 parent = child->real_parent;
3138 leader = parent->group_leader;
3139 goto up;
3140 }
3141 out:
3142 read_unlock(&tasklist_lock);
3143 }
3144
3145 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3146 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3147 #endif
3148
sighand_ctor(void * data)3149 static void sighand_ctor(void *data)
3150 {
3151 struct sighand_struct *sighand = data;
3152
3153 spin_lock_init(&sighand->siglock);
3154 init_waitqueue_head(&sighand->signalfd_wqh);
3155 }
3156
mm_cache_init(void)3157 void __init mm_cache_init(void)
3158 {
3159 unsigned int mm_size;
3160
3161 /*
3162 * The mm_cpumask is located at the end of mm_struct, and is
3163 * dynamically sized based on the maximum CPU number this system
3164 * can have, taking hotplug into account (nr_cpu_ids).
3165 */
3166 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3167
3168 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3169 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3170 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3171 offsetof(struct mm_struct, saved_auxv),
3172 sizeof_field(struct mm_struct, saved_auxv),
3173 NULL);
3174 }
3175
proc_caches_init(void)3176 void __init proc_caches_init(void)
3177 {
3178 sighand_cachep = kmem_cache_create("sighand_cache",
3179 sizeof(struct sighand_struct), 0,
3180 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3181 SLAB_ACCOUNT, sighand_ctor);
3182 signal_cachep = kmem_cache_create("signal_cache",
3183 sizeof(struct signal_struct), 0,
3184 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3185 NULL);
3186 files_cachep = kmem_cache_create("files_cache",
3187 sizeof(struct files_struct), 0,
3188 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3189 NULL);
3190 fs_cachep = kmem_cache_create("fs_cache",
3191 sizeof(struct fs_struct), 0,
3192 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3193 NULL);
3194
3195 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3196 #ifdef CONFIG_PER_VMA_LOCK
3197 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3198 #endif
3199 mmap_init();
3200 nsproxy_cache_init();
3201 }
3202
3203 /*
3204 * Check constraints on flags passed to the unshare system call.
3205 */
check_unshare_flags(unsigned long unshare_flags)3206 static int check_unshare_flags(unsigned long unshare_flags)
3207 {
3208 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3209 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3210 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3211 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3212 CLONE_NEWTIME))
3213 return -EINVAL;
3214 /*
3215 * Not implemented, but pretend it works if there is nothing
3216 * to unshare. Note that unsharing the address space or the
3217 * signal handlers also need to unshare the signal queues (aka
3218 * CLONE_THREAD).
3219 */
3220 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3221 if (!thread_group_empty(current))
3222 return -EINVAL;
3223 }
3224 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3225 if (refcount_read(¤t->sighand->count) > 1)
3226 return -EINVAL;
3227 }
3228 if (unshare_flags & CLONE_VM) {
3229 if (!current_is_single_threaded())
3230 return -EINVAL;
3231 }
3232
3233 return 0;
3234 }
3235
3236 /*
3237 * Unshare the filesystem structure if it is being shared
3238 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3239 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3240 {
3241 struct fs_struct *fs = current->fs;
3242
3243 if (!(unshare_flags & CLONE_FS) || !fs)
3244 return 0;
3245
3246 /* don't need lock here; in the worst case we'll do useless copy */
3247 if (fs->users == 1)
3248 return 0;
3249
3250 *new_fsp = copy_fs_struct(fs);
3251 if (!*new_fsp)
3252 return -ENOMEM;
3253
3254 return 0;
3255 }
3256
3257 /*
3258 * Unshare file descriptor table if it is being shared
3259 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3260 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3261 {
3262 struct files_struct *fd = current->files;
3263
3264 if ((unshare_flags & CLONE_FILES) &&
3265 (fd && atomic_read(&fd->count) > 1)) {
3266 fd = dup_fd(fd, NULL);
3267 if (IS_ERR(fd))
3268 return PTR_ERR(fd);
3269 *new_fdp = fd;
3270 }
3271
3272 return 0;
3273 }
3274
3275 /*
3276 * unshare allows a process to 'unshare' part of the process
3277 * context which was originally shared using clone. copy_*
3278 * functions used by kernel_clone() cannot be used here directly
3279 * because they modify an inactive task_struct that is being
3280 * constructed. Here we are modifying the current, active,
3281 * task_struct.
3282 */
ksys_unshare(unsigned long unshare_flags)3283 int ksys_unshare(unsigned long unshare_flags)
3284 {
3285 struct fs_struct *fs, *new_fs = NULL;
3286 struct files_struct *new_fd = NULL;
3287 struct cred *new_cred = NULL;
3288 struct nsproxy *new_nsproxy = NULL;
3289 int do_sysvsem = 0;
3290 int err;
3291
3292 /*
3293 * If unsharing a user namespace must also unshare the thread group
3294 * and unshare the filesystem root and working directories.
3295 */
3296 if (unshare_flags & CLONE_NEWUSER)
3297 unshare_flags |= CLONE_THREAD | CLONE_FS;
3298 /*
3299 * If unsharing vm, must also unshare signal handlers.
3300 */
3301 if (unshare_flags & CLONE_VM)
3302 unshare_flags |= CLONE_SIGHAND;
3303 /*
3304 * If unsharing a signal handlers, must also unshare the signal queues.
3305 */
3306 if (unshare_flags & CLONE_SIGHAND)
3307 unshare_flags |= CLONE_THREAD;
3308 /*
3309 * If unsharing namespace, must also unshare filesystem information.
3310 */
3311 if (unshare_flags & CLONE_NEWNS)
3312 unshare_flags |= CLONE_FS;
3313
3314 err = check_unshare_flags(unshare_flags);
3315 if (err)
3316 goto bad_unshare_out;
3317 /*
3318 * CLONE_NEWIPC must also detach from the undolist: after switching
3319 * to a new ipc namespace, the semaphore arrays from the old
3320 * namespace are unreachable.
3321 */
3322 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3323 do_sysvsem = 1;
3324 err = unshare_fs(unshare_flags, &new_fs);
3325 if (err)
3326 goto bad_unshare_out;
3327 err = unshare_fd(unshare_flags, &new_fd);
3328 if (err)
3329 goto bad_unshare_cleanup_fs;
3330 err = unshare_userns(unshare_flags, &new_cred);
3331 if (err)
3332 goto bad_unshare_cleanup_fd;
3333 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3334 new_cred, new_fs);
3335 if (err)
3336 goto bad_unshare_cleanup_cred;
3337
3338 if (new_cred) {
3339 err = set_cred_ucounts(new_cred);
3340 if (err)
3341 goto bad_unshare_cleanup_cred;
3342 }
3343
3344 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3345 if (do_sysvsem) {
3346 /*
3347 * CLONE_SYSVSEM is equivalent to sys_exit().
3348 */
3349 exit_sem(current);
3350 }
3351 if (unshare_flags & CLONE_NEWIPC) {
3352 /* Orphan segments in old ns (see sem above). */
3353 exit_shm(current);
3354 shm_init_task(current);
3355 }
3356
3357 if (new_nsproxy)
3358 switch_task_namespaces(current, new_nsproxy);
3359
3360 task_lock(current);
3361
3362 if (new_fs) {
3363 fs = current->fs;
3364 spin_lock(&fs->lock);
3365 current->fs = new_fs;
3366 if (--fs->users)
3367 new_fs = NULL;
3368 else
3369 new_fs = fs;
3370 spin_unlock(&fs->lock);
3371 }
3372
3373 if (new_fd)
3374 swap(current->files, new_fd);
3375
3376 task_unlock(current);
3377
3378 if (new_cred) {
3379 /* Install the new user namespace */
3380 commit_creds(new_cred);
3381 new_cred = NULL;
3382 }
3383 }
3384
3385 perf_event_namespaces(current);
3386
3387 bad_unshare_cleanup_cred:
3388 if (new_cred)
3389 put_cred(new_cred);
3390 bad_unshare_cleanup_fd:
3391 if (new_fd)
3392 put_files_struct(new_fd);
3393
3394 bad_unshare_cleanup_fs:
3395 if (new_fs)
3396 free_fs_struct(new_fs);
3397
3398 bad_unshare_out:
3399 return err;
3400 }
3401
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3402 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3403 {
3404 return ksys_unshare(unshare_flags);
3405 }
3406
3407 /*
3408 * Helper to unshare the files of the current task.
3409 * We don't want to expose copy_files internals to
3410 * the exec layer of the kernel.
3411 */
3412
unshare_files(void)3413 int unshare_files(void)
3414 {
3415 struct task_struct *task = current;
3416 struct files_struct *old, *copy = NULL;
3417 int error;
3418
3419 error = unshare_fd(CLONE_FILES, ©);
3420 if (error || !copy)
3421 return error;
3422
3423 old = task->files;
3424 task_lock(task);
3425 task->files = copy;
3426 task_unlock(task);
3427 put_files_struct(old);
3428 return 0;
3429 }
3430
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3431 int sysctl_max_threads(const struct ctl_table *table, int write,
3432 void *buffer, size_t *lenp, loff_t *ppos)
3433 {
3434 struct ctl_table t;
3435 int ret;
3436 int threads = max_threads;
3437 int min = 1;
3438 int max = MAX_THREADS;
3439
3440 t = *table;
3441 t.data = &threads;
3442 t.extra1 = &min;
3443 t.extra2 = &max;
3444
3445 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3446 if (ret || !write)
3447 return ret;
3448
3449 max_threads = threads;
3450
3451 return 0;
3452 }
3453