1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #include "drm/drm_file.h"
8 #include "drm/msm_drm.h"
9 #include "linux/file.h"
10 #include "linux/sync_file.h"
11
12 #include "msm_drv.h"
13 #include "msm_gem.h"
14 #include "msm_gpu.h"
15 #include "msm_mmu.h"
16 #include "msm_syncobj.h"
17
18 #define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__)
19
20 static uint vm_log_shift = 0;
21 MODULE_PARM_DESC(vm_log_shift, "Length of VM op log");
22 module_param_named(vm_log_shift, vm_log_shift, uint, 0600);
23
24 /**
25 * struct msm_vm_map_op - create new pgtable mapping
26 */
27 struct msm_vm_map_op {
28 /** @iova: start address for mapping */
29 uint64_t iova;
30 /** @range: size of the region to map */
31 uint64_t range;
32 /** @offset: offset into @sgt to map */
33 uint64_t offset;
34 /** @sgt: pages to map, or NULL for a PRR mapping */
35 struct sg_table *sgt;
36 /** @prot: the mapping protection flags */
37 int prot;
38
39 /**
40 * @queue_id: The id of the submitqueue the operation is performed
41 * on, or zero for (in particular) UNMAP ops triggered outside of
42 * a submitqueue (ie. process cleanup)
43 */
44 int queue_id;
45 };
46
47 /**
48 * struct msm_vm_unmap_op - unmap a range of pages from pgtable
49 */
50 struct msm_vm_unmap_op {
51 /** @iova: start address for unmap */
52 uint64_t iova;
53 /** @range: size of region to unmap */
54 uint64_t range;
55
56 /** @reason: The reason for the unmap */
57 const char *reason;
58
59 /**
60 * @queue_id: The id of the submitqueue the operation is performed
61 * on, or zero for (in particular) UNMAP ops triggered outside of
62 * a submitqueue (ie. process cleanup)
63 */
64 int queue_id;
65 };
66
67 /**
68 * struct msm_vma_op - A MAP or UNMAP operation
69 */
70 struct msm_vm_op {
71 /** @op: The operation type */
72 enum {
73 MSM_VM_OP_MAP = 1,
74 MSM_VM_OP_UNMAP,
75 } op;
76 union {
77 /** @map: Parameters used if op == MSM_VMA_OP_MAP */
78 struct msm_vm_map_op map;
79 /** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */
80 struct msm_vm_unmap_op unmap;
81 };
82 /** @node: list head in msm_vm_bind_job::vm_ops */
83 struct list_head node;
84
85 /**
86 * @obj: backing object for pages to be mapped/unmapped
87 *
88 * Async unmap ops, in particular, must hold a reference to the
89 * original GEM object backing the mapping that will be unmapped.
90 * But the same can be required in the map path, for example if
91 * there is not a corresponding unmap op, such as process exit.
92 *
93 * This ensures that the pages backing the mapping are not freed
94 * before the mapping is torn down.
95 */
96 struct drm_gem_object *obj;
97 };
98
99 /**
100 * struct msm_vm_bind_job - Tracking for a VM_BIND ioctl
101 *
102 * A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL)
103 * gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP)
104 * which are applied to the pgtables asynchronously. For example a userspace
105 * requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP
106 * to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping.
107 */
108 struct msm_vm_bind_job {
109 /** @base: base class for drm_sched jobs */
110 struct drm_sched_job base;
111 /** @vm: The VM being operated on */
112 struct drm_gpuvm *vm;
113 /** @fence: The fence that is signaled when job completes */
114 struct dma_fence *fence;
115 /** @queue: The queue that the job runs on */
116 struct msm_gpu_submitqueue *queue;
117 /** @prealloc: Tracking for pre-allocated MMU pgtable pages */
118 struct msm_mmu_prealloc prealloc;
119 /** @vm_ops: a list of struct msm_vm_op */
120 struct list_head vm_ops;
121 /** @bos_pinned: are the GEM objects being bound pinned? */
122 bool bos_pinned;
123 /** @nr_ops: the number of userspace requested ops */
124 unsigned int nr_ops;
125 /**
126 * @ops: the userspace requested ops
127 *
128 * The userspace requested ops are copied/parsed and validated
129 * before we start applying the updates to try to do as much up-
130 * front error checking as possible, to avoid the VM being in an
131 * undefined state due to partially executed VM_BIND.
132 *
133 * This table also serves to hold a reference to the backing GEM
134 * objects.
135 */
136 struct msm_vm_bind_op {
137 uint32_t op;
138 uint32_t flags;
139 union {
140 struct drm_gem_object *obj;
141 uint32_t handle;
142 };
143 uint64_t obj_offset;
144 uint64_t iova;
145 uint64_t range;
146 } ops[];
147 };
148
149 #define job_foreach_bo(obj, _job) \
150 for (unsigned i = 0; i < (_job)->nr_ops; i++) \
151 if ((obj = (_job)->ops[i].obj))
152
to_msm_vm_bind_job(struct drm_sched_job * job)153 static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job)
154 {
155 return container_of(job, struct msm_vm_bind_job, base);
156 }
157
158 static void
msm_gem_vm_free(struct drm_gpuvm * gpuvm)159 msm_gem_vm_free(struct drm_gpuvm *gpuvm)
160 {
161 struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base);
162
163 drm_mm_takedown(&vm->mm);
164 if (vm->mmu)
165 vm->mmu->funcs->destroy(vm->mmu);
166 dma_fence_put(vm->last_fence);
167 put_pid(vm->pid);
168 kfree(vm->log);
169 kfree(vm);
170 }
171
172 /**
173 * msm_gem_vm_unusable() - Mark a VM as unusable
174 * @gpuvm: the VM to mark unusable
175 */
176 void
msm_gem_vm_unusable(struct drm_gpuvm * gpuvm)177 msm_gem_vm_unusable(struct drm_gpuvm *gpuvm)
178 {
179 struct msm_gem_vm *vm = to_msm_vm(gpuvm);
180 uint32_t vm_log_len = (1 << vm->log_shift);
181 uint32_t vm_log_mask = vm_log_len - 1;
182 uint32_t nr_vm_logs;
183 int first;
184
185 vm->unusable = true;
186
187 /* Bail if no log, or empty log: */
188 if (!vm->log || !vm->log[0].op)
189 return;
190
191 mutex_lock(&vm->mmu_lock);
192
193 /*
194 * log_idx is the next entry to overwrite, meaning it is the oldest, or
195 * first, entry (other than the special case handled below where the
196 * log hasn't wrapped around yet)
197 */
198 first = vm->log_idx;
199
200 if (!vm->log[first].op) {
201 /*
202 * If the next log entry has not been written yet, then only
203 * entries 0 to idx-1 are valid (ie. we haven't wrapped around
204 * yet)
205 */
206 nr_vm_logs = MAX(0, first - 1);
207 first = 0;
208 } else {
209 nr_vm_logs = vm_log_len;
210 }
211
212 pr_err("vm-log:\n");
213 for (int i = 0; i < nr_vm_logs; i++) {
214 int idx = (i + first) & vm_log_mask;
215 struct msm_gem_vm_log_entry *e = &vm->log[idx];
216 pr_err(" - %s:%d: 0x%016llx-0x%016llx\n",
217 e->op, e->queue_id, e->iova,
218 e->iova + e->range);
219 }
220
221 mutex_unlock(&vm->mmu_lock);
222 }
223
224 static void
vm_log(struct msm_gem_vm * vm,const char * op,uint64_t iova,uint64_t range,int queue_id)225 vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id)
226 {
227 int idx;
228
229 if (!vm->managed)
230 lockdep_assert_held(&vm->mmu_lock);
231
232 vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range);
233
234 if (!vm->log)
235 return;
236
237 idx = vm->log_idx;
238 vm->log[idx].op = op;
239 vm->log[idx].iova = iova;
240 vm->log[idx].range = range;
241 vm->log[idx].queue_id = queue_id;
242 vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1);
243 }
244
245 static void
vm_unmap_op(struct msm_gem_vm * vm,const struct msm_vm_unmap_op * op)246 vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op)
247 {
248 const char *reason = op->reason;
249
250 if (!reason)
251 reason = "unmap";
252
253 vm_log(vm, reason, op->iova, op->range, op->queue_id);
254
255 vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range);
256 }
257
258 static int
vm_map_op(struct msm_gem_vm * vm,const struct msm_vm_map_op * op)259 vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op)
260 {
261 vm_log(vm, "map", op->iova, op->range, op->queue_id);
262
263 return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset,
264 op->range, op->prot);
265 }
266
267 /* Actually unmap memory for the vma */
msm_gem_vma_unmap(struct drm_gpuva * vma,const char * reason)268 void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason)
269 {
270 struct msm_gem_vm *vm = to_msm_vm(vma->vm);
271 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
272
273 /* Don't do anything if the memory isn't mapped */
274 if (!msm_vma->mapped)
275 return;
276
277 /*
278 * The mmu_lock is only needed when preallocation is used. But
279 * in that case we don't need to worry about recursion into
280 * shrinker
281 */
282 if (!vm->managed)
283 mutex_lock(&vm->mmu_lock);
284
285 vm_unmap_op(vm, &(struct msm_vm_unmap_op){
286 .iova = vma->va.addr,
287 .range = vma->va.range,
288 .reason = reason,
289 });
290
291 if (!vm->managed)
292 mutex_unlock(&vm->mmu_lock);
293
294 msm_vma->mapped = false;
295 }
296
297 /* Map and pin vma: */
298 int
msm_gem_vma_map(struct drm_gpuva * vma,int prot,struct sg_table * sgt)299 msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt)
300 {
301 struct msm_gem_vm *vm = to_msm_vm(vma->vm);
302 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
303 int ret;
304
305 if (GEM_WARN_ON(!vma->va.addr))
306 return -EINVAL;
307
308 if (msm_vma->mapped)
309 return 0;
310
311 msm_vma->mapped = true;
312
313 /*
314 * The mmu_lock is only needed when preallocation is used. But
315 * in that case we don't need to worry about recursion into
316 * shrinker
317 */
318 if (!vm->managed)
319 mutex_lock(&vm->mmu_lock);
320
321 /*
322 * NOTE: if not using pgtable preallocation, we cannot hold
323 * a lock across map/unmap which is also used in the job_run()
324 * path, as this can cause deadlock in job_run() vs shrinker/
325 * reclaim.
326 */
327 ret = vm_map_op(vm, &(struct msm_vm_map_op){
328 .iova = vma->va.addr,
329 .range = vma->va.range,
330 .offset = vma->gem.offset,
331 .sgt = sgt,
332 .prot = prot,
333 });
334
335 if (!vm->managed)
336 mutex_unlock(&vm->mmu_lock);
337
338 if (ret)
339 msm_vma->mapped = false;
340
341 return ret;
342 }
343
344 /* Close an iova. Warn if it is still in use */
msm_gem_vma_close(struct drm_gpuva * vma)345 void msm_gem_vma_close(struct drm_gpuva *vma)
346 {
347 struct msm_gem_vm *vm = to_msm_vm(vma->vm);
348 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
349
350 GEM_WARN_ON(msm_vma->mapped);
351
352 drm_gpuvm_resv_assert_held(&vm->base);
353
354 if (vma->gem.obj)
355 msm_gem_assert_locked(vma->gem.obj);
356
357 if (vma->va.addr && vm->managed)
358 drm_mm_remove_node(&msm_vma->node);
359
360 drm_gpuva_remove(vma);
361 drm_gpuva_unlink(vma);
362
363 kfree(vma);
364 }
365
366 /* Create a new vma and allocate an iova for it */
367 struct drm_gpuva *
msm_gem_vma_new(struct drm_gpuvm * gpuvm,struct drm_gem_object * obj,u64 offset,u64 range_start,u64 range_end)368 msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj,
369 u64 offset, u64 range_start, u64 range_end)
370 {
371 struct msm_gem_vm *vm = to_msm_vm(gpuvm);
372 struct drm_gpuvm_bo *vm_bo;
373 struct msm_gem_vma *vma;
374 int ret;
375
376 drm_gpuvm_resv_assert_held(&vm->base);
377
378 vma = kzalloc(sizeof(*vma), GFP_KERNEL);
379 if (!vma)
380 return ERR_PTR(-ENOMEM);
381
382 if (vm->managed) {
383 BUG_ON(offset != 0);
384 BUG_ON(!obj); /* NULL mappings not valid for kernel managed VM */
385 ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node,
386 obj->size, PAGE_SIZE, 0,
387 range_start, range_end, 0);
388
389 if (ret)
390 goto err_free_vma;
391
392 range_start = vma->node.start;
393 range_end = range_start + obj->size;
394 }
395
396 if (obj)
397 GEM_WARN_ON((range_end - range_start) > obj->size);
398
399 drm_gpuva_init(&vma->base, range_start, range_end - range_start, obj, offset);
400 vma->mapped = false;
401
402 ret = drm_gpuva_insert(&vm->base, &vma->base);
403 if (ret)
404 goto err_free_range;
405
406 if (!obj)
407 return &vma->base;
408
409 vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj);
410 if (IS_ERR(vm_bo)) {
411 ret = PTR_ERR(vm_bo);
412 goto err_va_remove;
413 }
414
415 drm_gpuvm_bo_extobj_add(vm_bo);
416 drm_gpuva_link(&vma->base, vm_bo);
417 GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo));
418
419 return &vma->base;
420
421 err_va_remove:
422 drm_gpuva_remove(&vma->base);
423 err_free_range:
424 if (vm->managed)
425 drm_mm_remove_node(&vma->node);
426 err_free_vma:
427 kfree(vma);
428 return ERR_PTR(ret);
429 }
430
431 static int
msm_gem_vm_bo_validate(struct drm_gpuvm_bo * vm_bo,struct drm_exec * exec)432 msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
433 {
434 struct drm_gem_object *obj = vm_bo->obj;
435 struct drm_gpuva *vma;
436 int ret;
437
438 vm_dbg("validate: %p", obj);
439
440 msm_gem_assert_locked(obj);
441
442 drm_gpuvm_bo_for_each_va (vma, vm_bo) {
443 ret = msm_gem_pin_vma_locked(obj, vma);
444 if (ret)
445 return ret;
446 }
447
448 return 0;
449 }
450
451 struct op_arg {
452 unsigned flags;
453 struct msm_vm_bind_job *job;
454 const struct msm_vm_bind_op *op;
455 bool kept;
456 };
457
458 static void
vm_op_enqueue(struct op_arg * arg,struct msm_vm_op _op)459 vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op)
460 {
461 struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL);
462 *op = _op;
463 list_add_tail(&op->node, &arg->job->vm_ops);
464
465 if (op->obj)
466 drm_gem_object_get(op->obj);
467 }
468
469 static struct drm_gpuva *
vma_from_op(struct op_arg * arg,struct drm_gpuva_op_map * op)470 vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op)
471 {
472 return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset,
473 op->va.addr, op->va.addr + op->va.range);
474 }
475
476 static int
msm_gem_vm_sm_step_map(struct drm_gpuva_op * op,void * _arg)477 msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *_arg)
478 {
479 struct op_arg *arg = _arg;
480 struct msm_vm_bind_job *job = arg->job;
481 struct drm_gem_object *obj = op->map.gem.obj;
482 struct drm_gpuva *vma;
483 struct sg_table *sgt;
484 unsigned prot;
485
486 if (arg->kept)
487 return 0;
488
489 vma = vma_from_op(arg, &op->map);
490 if (WARN_ON(IS_ERR(vma)))
491 return PTR_ERR(vma);
492
493 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
494 vma->va.addr, vma->va.range);
495
496 vma->flags = ((struct op_arg *)arg)->flags;
497
498 if (obj) {
499 sgt = to_msm_bo(obj)->sgt;
500 prot = msm_gem_prot(obj);
501 } else {
502 sgt = NULL;
503 prot = IOMMU_READ | IOMMU_WRITE;
504 }
505
506 vm_op_enqueue(arg, (struct msm_vm_op){
507 .op = MSM_VM_OP_MAP,
508 .map = {
509 .sgt = sgt,
510 .iova = vma->va.addr,
511 .range = vma->va.range,
512 .offset = vma->gem.offset,
513 .prot = prot,
514 .queue_id = job->queue->id,
515 },
516 .obj = vma->gem.obj,
517 });
518
519 to_msm_vma(vma)->mapped = true;
520
521 return 0;
522 }
523
524 static int
msm_gem_vm_sm_step_remap(struct drm_gpuva_op * op,void * arg)525 msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg)
526 {
527 struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
528 struct drm_gpuvm *vm = job->vm;
529 struct drm_gpuva *orig_vma = op->remap.unmap->va;
530 struct drm_gpuva *prev_vma = NULL, *next_vma = NULL;
531 struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo;
532 bool mapped = to_msm_vma(orig_vma)->mapped;
533 unsigned flags;
534
535 vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma,
536 orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range);
537
538 if (mapped) {
539 uint64_t unmap_start, unmap_range;
540
541 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
542
543 vm_op_enqueue(arg, (struct msm_vm_op){
544 .op = MSM_VM_OP_UNMAP,
545 .unmap = {
546 .iova = unmap_start,
547 .range = unmap_range,
548 .queue_id = job->queue->id,
549 },
550 .obj = orig_vma->gem.obj,
551 });
552
553 /*
554 * Part of this GEM obj is still mapped, but we're going to kill the
555 * existing VMA and replace it with one or two new ones (ie. two if
556 * the unmapped range is in the middle of the existing (unmap) VMA).
557 * So just set the state to unmapped:
558 */
559 to_msm_vma(orig_vma)->mapped = false;
560 }
561
562 /*
563 * Hold a ref to the vm_bo between the msm_gem_vma_close() and the
564 * creation of the new prev/next vma's, in case the vm_bo is tracked
565 * in the VM's evict list:
566 */
567 if (vm_bo)
568 drm_gpuvm_bo_get(vm_bo);
569
570 /*
571 * The prev_vma and/or next_vma are replacing the unmapped vma, and
572 * therefore should preserve it's flags:
573 */
574 flags = orig_vma->flags;
575
576 msm_gem_vma_close(orig_vma);
577
578 if (op->remap.prev) {
579 prev_vma = vma_from_op(arg, op->remap.prev);
580 if (WARN_ON(IS_ERR(prev_vma)))
581 return PTR_ERR(prev_vma);
582
583 vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range);
584 to_msm_vma(prev_vma)->mapped = mapped;
585 prev_vma->flags = flags;
586 }
587
588 if (op->remap.next) {
589 next_vma = vma_from_op(arg, op->remap.next);
590 if (WARN_ON(IS_ERR(next_vma)))
591 return PTR_ERR(next_vma);
592
593 vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range);
594 to_msm_vma(next_vma)->mapped = mapped;
595 next_vma->flags = flags;
596 }
597
598 if (!mapped)
599 drm_gpuvm_bo_evict(vm_bo, true);
600
601 /* Drop the previous ref: */
602 drm_gpuvm_bo_put(vm_bo);
603
604 return 0;
605 }
606
607 static int
msm_gem_vm_sm_step_unmap(struct drm_gpuva_op * op,void * _arg)608 msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *_arg)
609 {
610 struct op_arg *arg = _arg;
611 struct msm_vm_bind_job *job = arg->job;
612 struct drm_gpuva *vma = op->unmap.va;
613 struct msm_gem_vma *msm_vma = to_msm_vma(vma);
614
615 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
616 vma->va.addr, vma->va.range);
617
618 /*
619 * Detect in-place remap. Turnip does this to change the vma flags,
620 * in particular MSM_VMA_DUMP. In this case we want to avoid actually
621 * touching the page tables, as that would require synchronization
622 * against SUBMIT jobs running on the GPU.
623 */
624 if (op->unmap.keep &&
625 (arg->op->op == MSM_VM_BIND_OP_MAP) &&
626 (vma->gem.obj == arg->op->obj) &&
627 (vma->gem.offset == arg->op->obj_offset) &&
628 (vma->va.addr == arg->op->iova) &&
629 (vma->va.range == arg->op->range)) {
630 /* We are only expecting a single in-place unmap+map cb pair: */
631 WARN_ON(arg->kept);
632
633 /* Leave the existing VMA in place, but signal that to the map cb: */
634 arg->kept = true;
635
636 /* Only flags are changing, so update that in-place: */
637 unsigned orig_flags = vma->flags & (DRM_GPUVA_USERBITS - 1);
638 vma->flags = orig_flags | arg->flags;
639
640 return 0;
641 }
642
643 if (!msm_vma->mapped)
644 goto out_close;
645
646 vm_op_enqueue(arg, (struct msm_vm_op){
647 .op = MSM_VM_OP_UNMAP,
648 .unmap = {
649 .iova = vma->va.addr,
650 .range = vma->va.range,
651 .queue_id = job->queue->id,
652 },
653 .obj = vma->gem.obj,
654 });
655
656 msm_vma->mapped = false;
657
658 out_close:
659 msm_gem_vma_close(vma);
660
661 return 0;
662 }
663
664 static const struct drm_gpuvm_ops msm_gpuvm_ops = {
665 .vm_free = msm_gem_vm_free,
666 .vm_bo_validate = msm_gem_vm_bo_validate,
667 .sm_step_map = msm_gem_vm_sm_step_map,
668 .sm_step_remap = msm_gem_vm_sm_step_remap,
669 .sm_step_unmap = msm_gem_vm_sm_step_unmap,
670 };
671
672 static struct dma_fence *
msm_vma_job_run(struct drm_sched_job * _job)673 msm_vma_job_run(struct drm_sched_job *_job)
674 {
675 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
676 struct msm_gem_vm *vm = to_msm_vm(job->vm);
677 struct drm_gem_object *obj;
678 int ret = vm->unusable ? -EINVAL : 0;
679
680 vm_dbg("");
681
682 mutex_lock(&vm->mmu_lock);
683 vm->mmu->prealloc = &job->prealloc;
684
685 while (!list_empty(&job->vm_ops)) {
686 struct msm_vm_op *op =
687 list_first_entry(&job->vm_ops, struct msm_vm_op, node);
688
689 switch (op->op) {
690 case MSM_VM_OP_MAP:
691 /*
692 * On error, stop trying to map new things.. but we
693 * still want to process the unmaps (or in particular,
694 * the drm_gem_object_put()s)
695 */
696 if (!ret)
697 ret = vm_map_op(vm, &op->map);
698 break;
699 case MSM_VM_OP_UNMAP:
700 vm_unmap_op(vm, &op->unmap);
701 break;
702 }
703 drm_gem_object_put(op->obj);
704 list_del(&op->node);
705 kfree(op);
706 }
707
708 vm->mmu->prealloc = NULL;
709 mutex_unlock(&vm->mmu_lock);
710
711 /*
712 * We failed to perform at least _some_ of the pgtable updates, so
713 * now the VM is in an undefined state. Game over!
714 */
715 if (ret)
716 msm_gem_vm_unusable(job->vm);
717
718 job_foreach_bo (obj, job) {
719 msm_gem_lock(obj);
720 msm_gem_unpin_locked(obj);
721 msm_gem_unlock(obj);
722 }
723
724 /* VM_BIND ops are synchronous, so no fence to wait on: */
725 return NULL;
726 }
727
728 static void
msm_vma_job_free(struct drm_sched_job * _job)729 msm_vma_job_free(struct drm_sched_job *_job)
730 {
731 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
732 struct msm_gem_vm *vm = to_msm_vm(job->vm);
733 struct drm_gem_object *obj;
734
735 vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc);
736
737 atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight);
738
739 drm_sched_job_cleanup(_job);
740
741 job_foreach_bo (obj, job)
742 drm_gem_object_put(obj);
743
744 msm_submitqueue_put(job->queue);
745 dma_fence_put(job->fence);
746
747 /* In error paths, we could have unexecuted ops: */
748 while (!list_empty(&job->vm_ops)) {
749 struct msm_vm_op *op =
750 list_first_entry(&job->vm_ops, struct msm_vm_op, node);
751 list_del(&op->node);
752 kfree(op);
753 }
754
755 wake_up(&vm->prealloc_throttle.wait);
756
757 kfree(job);
758 }
759
760 static const struct drm_sched_backend_ops msm_vm_bind_ops = {
761 .run_job = msm_vma_job_run,
762 .free_job = msm_vma_job_free
763 };
764
765 /**
766 * msm_gem_vm_create() - Create and initialize a &msm_gem_vm
767 * @drm: the drm device
768 * @mmu: the backing MMU objects handling mapping/unmapping
769 * @name: the name of the VM
770 * @va_start: the start offset of the VA space
771 * @va_size: the size of the VA space
772 * @managed: is it a kernel managed VM?
773 *
774 * In a kernel managed VM, the kernel handles address allocation, and only
775 * synchronous operations are supported. In a user managed VM, userspace
776 * handles virtual address allocation, and both async and sync operations
777 * are supported.
778 */
779 struct drm_gpuvm *
msm_gem_vm_create(struct drm_device * drm,struct msm_mmu * mmu,const char * name,u64 va_start,u64 va_size,bool managed)780 msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name,
781 u64 va_start, u64 va_size, bool managed)
782 {
783 /*
784 * We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that
785 * makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose
786 * tracking that an extobj is evicted) :facepalm:
787 */
788 enum drm_gpuvm_flags flags = 0;
789 struct msm_gem_vm *vm;
790 struct drm_gem_object *dummy_gem;
791 int ret = 0;
792
793 if (IS_ERR(mmu))
794 return ERR_CAST(mmu);
795
796 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
797 if (!vm)
798 return ERR_PTR(-ENOMEM);
799
800 dummy_gem = drm_gpuvm_resv_object_alloc(drm);
801 if (!dummy_gem) {
802 ret = -ENOMEM;
803 goto err_free_vm;
804 }
805
806 if (!managed) {
807 struct drm_sched_init_args args = {
808 .ops = &msm_vm_bind_ops,
809 .num_rqs = 1,
810 .credit_limit = 1,
811 .timeout = MAX_SCHEDULE_TIMEOUT,
812 .name = "msm-vm-bind",
813 .dev = drm->dev,
814 };
815
816 ret = drm_sched_init(&vm->sched, &args);
817 if (ret)
818 goto err_free_dummy;
819
820 init_waitqueue_head(&vm->prealloc_throttle.wait);
821 }
822
823 drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem,
824 va_start, va_size, 0, 0, &msm_gpuvm_ops);
825 drm_gem_object_put(dummy_gem);
826
827 vm->mmu = mmu;
828 mutex_init(&vm->mmu_lock);
829 vm->managed = managed;
830
831 drm_mm_init(&vm->mm, va_start, va_size);
832
833 /*
834 * We don't really need vm log for kernel managed VMs, as the kernel
835 * is responsible for ensuring that GEM objs are mapped if they are
836 * used by a submit. Furthermore we piggyback on mmu_lock to serialize
837 * access to the log.
838 *
839 * Limit the max log_shift to 8 to prevent userspace from asking us
840 * for an unreasonable log size.
841 */
842 if (!managed)
843 vm->log_shift = MIN(vm_log_shift, 8);
844
845 if (vm->log_shift) {
846 vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]),
847 GFP_KERNEL | __GFP_ZERO);
848 }
849
850 return &vm->base;
851
852 err_free_dummy:
853 drm_gem_object_put(dummy_gem);
854
855 err_free_vm:
856 kfree(vm);
857 return ERR_PTR(ret);
858 }
859
860 /**
861 * msm_gem_vm_close() - Close a VM
862 * @gpuvm: The VM to close
863 *
864 * Called when the drm device file is closed, to tear down VM related resources
865 * (which will drop refcounts to GEM objects that were still mapped into the
866 * VM at the time).
867 */
868 void
msm_gem_vm_close(struct drm_gpuvm * gpuvm)869 msm_gem_vm_close(struct drm_gpuvm *gpuvm)
870 {
871 struct msm_gem_vm *vm = to_msm_vm(gpuvm);
872 struct drm_gpuva *vma, *tmp;
873 struct drm_exec exec;
874
875 /*
876 * For kernel managed VMs, the VMAs are torn down when the handle is
877 * closed, so nothing more to do.
878 */
879 if (vm->managed)
880 return;
881
882 if (vm->last_fence)
883 dma_fence_wait(vm->last_fence, false);
884
885 /* Kill the scheduler now, so we aren't racing with it for cleanup: */
886 drm_sched_stop(&vm->sched, NULL);
887 drm_sched_fini(&vm->sched);
888
889 /* Tear down any remaining mappings: */
890 drm_exec_init(&exec, 0, 2);
891 drm_exec_until_all_locked (&exec) {
892 drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm));
893 drm_exec_retry_on_contention(&exec);
894
895 drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) {
896 struct drm_gem_object *obj = vma->gem.obj;
897
898 /*
899 * MSM_BO_NO_SHARE objects share the same resv as the
900 * VM, in which case the obj is already locked:
901 */
902 if (obj && (obj->resv == drm_gpuvm_resv(gpuvm)))
903 obj = NULL;
904
905 if (obj) {
906 drm_exec_lock_obj(&exec, obj);
907 drm_exec_retry_on_contention(&exec);
908 }
909
910 msm_gem_vma_unmap(vma, "close");
911 msm_gem_vma_close(vma);
912
913 if (obj) {
914 drm_exec_unlock_obj(&exec, obj);
915 }
916 }
917 }
918 drm_exec_fini(&exec);
919 }
920
921
922 static struct msm_vm_bind_job *
vm_bind_job_create(struct drm_device * dev,struct drm_file * file,struct msm_gpu_submitqueue * queue,uint32_t nr_ops)923 vm_bind_job_create(struct drm_device *dev, struct drm_file *file,
924 struct msm_gpu_submitqueue *queue, uint32_t nr_ops)
925 {
926 struct msm_vm_bind_job *job;
927 uint64_t sz;
928 int ret;
929
930 sz = struct_size(job, ops, nr_ops);
931
932 if (sz > SIZE_MAX)
933 return ERR_PTR(-ENOMEM);
934
935 job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
936 if (!job)
937 return ERR_PTR(-ENOMEM);
938
939 ret = drm_sched_job_init(&job->base, queue->entity, 1, queue,
940 file->client_id);
941 if (ret) {
942 kfree(job);
943 return ERR_PTR(ret);
944 }
945
946 job->vm = msm_context_vm(dev, queue->ctx);
947 job->queue = queue;
948 INIT_LIST_HEAD(&job->vm_ops);
949
950 return job;
951 }
952
invalid_alignment(uint64_t addr)953 static bool invalid_alignment(uint64_t addr)
954 {
955 /*
956 * Technically this is about GPU alignment, not CPU alignment. But
957 * I've not seen any qcom SoC where the SMMU does not support the
958 * CPU's smallest page size.
959 */
960 return !PAGE_ALIGNED(addr);
961 }
962
963 static int
lookup_op(struct msm_vm_bind_job * job,const struct drm_msm_vm_bind_op * op)964 lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op)
965 {
966 struct drm_device *dev = job->vm->drm;
967 int i = job->nr_ops++;
968 int ret = 0;
969
970 job->ops[i].op = op->op;
971 job->ops[i].handle = op->handle;
972 job->ops[i].obj_offset = op->obj_offset;
973 job->ops[i].iova = op->iova;
974 job->ops[i].range = op->range;
975 job->ops[i].flags = op->flags;
976
977 if (op->flags & ~MSM_VM_BIND_OP_FLAGS)
978 ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags);
979
980 if (invalid_alignment(op->iova))
981 ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova);
982
983 if (invalid_alignment(op->obj_offset))
984 ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset);
985
986 if (invalid_alignment(op->range))
987 ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range);
988
989 if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range))
990 ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range);
991
992 /*
993 * MAP must specify a valid handle. But the handle MBZ for
994 * UNMAP or MAP_NULL.
995 */
996 if (op->op == MSM_VM_BIND_OP_MAP) {
997 if (!op->handle)
998 ret = UERR(EINVAL, dev, "invalid handle\n");
999 } else if (op->handle) {
1000 ret = UERR(EINVAL, dev, "handle must be zero\n");
1001 }
1002
1003 switch (op->op) {
1004 case MSM_VM_BIND_OP_MAP:
1005 case MSM_VM_BIND_OP_MAP_NULL:
1006 case MSM_VM_BIND_OP_UNMAP:
1007 break;
1008 default:
1009 ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op);
1010 break;
1011 }
1012
1013 return ret;
1014 }
1015
1016 /*
1017 * ioctl parsing, parameter validation, and GEM handle lookup
1018 */
1019 static int
vm_bind_job_lookup_ops(struct msm_vm_bind_job * job,struct drm_msm_vm_bind * args,struct drm_file * file,int * nr_bos)1020 vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args,
1021 struct drm_file *file, int *nr_bos)
1022 {
1023 struct drm_device *dev = job->vm->drm;
1024 int ret = 0;
1025 int cnt = 0;
1026
1027 if (args->nr_ops == 1) {
1028 /* Single op case, the op is inlined: */
1029 ret = lookup_op(job, &args->op);
1030 } else {
1031 for (unsigned i = 0; i < args->nr_ops; i++) {
1032 struct drm_msm_vm_bind_op op;
1033 void __user *userptr =
1034 u64_to_user_ptr(args->ops + (i * sizeof(op)));
1035
1036 /* make sure we don't have garbage flags, in case we hit
1037 * error path before flags is initialized:
1038 */
1039 job->ops[i].flags = 0;
1040
1041 if (copy_from_user(&op, userptr, sizeof(op))) {
1042 ret = -EFAULT;
1043 break;
1044 }
1045
1046 ret = lookup_op(job, &op);
1047 if (ret)
1048 break;
1049 }
1050 }
1051
1052 if (ret) {
1053 job->nr_ops = 0;
1054 goto out;
1055 }
1056
1057 spin_lock(&file->table_lock);
1058
1059 for (unsigned i = 0; i < args->nr_ops; i++) {
1060 struct drm_gem_object *obj;
1061
1062 if (!job->ops[i].handle) {
1063 job->ops[i].obj = NULL;
1064 continue;
1065 }
1066
1067 /*
1068 * normally use drm_gem_object_lookup(), but for bulk lookup
1069 * all under single table_lock just hit object_idr directly:
1070 */
1071 obj = idr_find(&file->object_idr, job->ops[i].handle);
1072 if (!obj) {
1073 ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", job->ops[i].handle, i);
1074 goto out_unlock;
1075 }
1076
1077 drm_gem_object_get(obj);
1078
1079 job->ops[i].obj = obj;
1080 cnt++;
1081 }
1082
1083 *nr_bos = cnt;
1084
1085 out_unlock:
1086 spin_unlock(&file->table_lock);
1087
1088 out:
1089 return ret;
1090 }
1091
1092 static void
prealloc_count(struct msm_vm_bind_job * job,struct msm_vm_bind_op * first,struct msm_vm_bind_op * last)1093 prealloc_count(struct msm_vm_bind_job *job,
1094 struct msm_vm_bind_op *first,
1095 struct msm_vm_bind_op *last)
1096 {
1097 struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu;
1098
1099 if (!first)
1100 return;
1101
1102 uint64_t start_iova = first->iova;
1103 uint64_t end_iova = last->iova + last->range;
1104
1105 mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova);
1106 }
1107
1108 static bool
ops_are_same_pte(struct msm_vm_bind_op * first,struct msm_vm_bind_op * next)1109 ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next)
1110 {
1111 /*
1112 * Last level pte covers 2MB.. so we should merge two ops, from
1113 * the PoV of figuring out how much pgtable pages to pre-allocate
1114 * if they land in the same 2MB range:
1115 */
1116 uint64_t pte_mask = ~(SZ_2M - 1);
1117 return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask);
1118 }
1119
1120 /*
1121 * Determine the amount of memory to prealloc for pgtables. For sparse images,
1122 * in particular, userspace plays some tricks with the order of page mappings
1123 * to get the desired swizzle pattern, resulting in a large # of tiny MAP ops.
1124 * So detect when multiple MAP operations are physically contiguous, and count
1125 * them as a single mapping. Otherwise the prealloc_count() will not realize
1126 * they can share pagetable pages and vastly overcount.
1127 */
1128 static int
vm_bind_prealloc_count(struct msm_vm_bind_job * job)1129 vm_bind_prealloc_count(struct msm_vm_bind_job *job)
1130 {
1131 struct msm_vm_bind_op *first = NULL, *last = NULL;
1132 struct msm_gem_vm *vm = to_msm_vm(job->vm);
1133 int ret;
1134
1135 for (int i = 0; i < job->nr_ops; i++) {
1136 struct msm_vm_bind_op *op = &job->ops[i];
1137
1138 /* We only care about MAP/MAP_NULL: */
1139 if (op->op == MSM_VM_BIND_OP_UNMAP)
1140 continue;
1141
1142 /*
1143 * If op is contiguous with last in the current range, then
1144 * it becomes the new last in the range and we continue
1145 * looping:
1146 */
1147 if (last && ops_are_same_pte(last, op)) {
1148 last = op;
1149 continue;
1150 }
1151
1152 /*
1153 * If op is not contiguous with the current range, flush
1154 * the current range and start anew:
1155 */
1156 prealloc_count(job, first, last);
1157 first = last = op;
1158 }
1159
1160 /* Flush the remaining range: */
1161 prealloc_count(job, first, last);
1162
1163 /*
1164 * Now that we know the needed amount to pre-alloc, throttle on pending
1165 * VM_BIND jobs if we already have too much pre-alloc memory in flight
1166 */
1167 ret = wait_event_interruptible(
1168 vm->prealloc_throttle.wait,
1169 atomic_read(&vm->prealloc_throttle.in_flight) <= 1024);
1170 if (ret)
1171 return ret;
1172
1173 atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight);
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * Lock VM and GEM objects
1180 */
1181 static int
vm_bind_job_lock_objects(struct msm_vm_bind_job * job,struct drm_exec * exec)1182 vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec)
1183 {
1184 int ret;
1185
1186 /* Lock VM and objects: */
1187 drm_exec_until_all_locked (exec) {
1188 ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm));
1189 drm_exec_retry_on_contention(exec);
1190 if (ret)
1191 return ret;
1192
1193 for (unsigned i = 0; i < job->nr_ops; i++) {
1194 const struct msm_vm_bind_op *op = &job->ops[i];
1195
1196 switch (op->op) {
1197 case MSM_VM_BIND_OP_UNMAP:
1198 ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec,
1199 op->iova,
1200 op->obj_offset);
1201 break;
1202 case MSM_VM_BIND_OP_MAP:
1203 case MSM_VM_BIND_OP_MAP_NULL:
1204 ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1,
1205 op->iova, op->range,
1206 op->obj, op->obj_offset);
1207 break;
1208 default:
1209 /*
1210 * lookup_op() should have already thrown an error for
1211 * invalid ops
1212 */
1213 WARN_ON("unreachable");
1214 }
1215
1216 drm_exec_retry_on_contention(exec);
1217 if (ret)
1218 return ret;
1219 }
1220 }
1221
1222 return 0;
1223 }
1224
1225 /*
1226 * Pin GEM objects, ensuring that we have backing pages. Pinning will move
1227 * the object to the pinned LRU so that the shrinker knows to first consider
1228 * other objects for evicting.
1229 */
1230 static int
vm_bind_job_pin_objects(struct msm_vm_bind_job * job)1231 vm_bind_job_pin_objects(struct msm_vm_bind_job *job)
1232 {
1233 struct drm_gem_object *obj;
1234
1235 /*
1236 * First loop, before holding the LRU lock, avoids holding the
1237 * LRU lock while calling msm_gem_pin_vma_locked (which could
1238 * trigger get_pages())
1239 */
1240 job_foreach_bo (obj, job) {
1241 struct page **pages;
1242
1243 pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED);
1244 if (IS_ERR(pages))
1245 return PTR_ERR(pages);
1246 }
1247
1248 struct msm_drm_private *priv = job->vm->drm->dev_private;
1249
1250 /*
1251 * A second loop while holding the LRU lock (a) avoids acquiring/dropping
1252 * the LRU lock for each individual bo, while (b) avoiding holding the
1253 * LRU lock while calling msm_gem_pin_vma_locked() (which could trigger
1254 * get_pages() which could trigger reclaim.. and if we held the LRU lock
1255 * could trigger deadlock with the shrinker).
1256 */
1257 mutex_lock(&priv->lru.lock);
1258 job_foreach_bo (obj, job)
1259 msm_gem_pin_obj_locked(obj);
1260 mutex_unlock(&priv->lru.lock);
1261
1262 job->bos_pinned = true;
1263
1264 return 0;
1265 }
1266
1267 /*
1268 * Unpin GEM objects. Normally this is done after the bind job is run.
1269 */
1270 static void
vm_bind_job_unpin_objects(struct msm_vm_bind_job * job)1271 vm_bind_job_unpin_objects(struct msm_vm_bind_job *job)
1272 {
1273 struct drm_gem_object *obj;
1274
1275 if (!job->bos_pinned)
1276 return;
1277
1278 job_foreach_bo (obj, job)
1279 msm_gem_unpin_locked(obj);
1280
1281 job->bos_pinned = false;
1282 }
1283
1284 /*
1285 * Pre-allocate pgtable memory, and translate the VM bind requests into a
1286 * sequence of pgtable updates to be applied asynchronously.
1287 */
1288 static int
vm_bind_job_prepare(struct msm_vm_bind_job * job)1289 vm_bind_job_prepare(struct msm_vm_bind_job *job)
1290 {
1291 struct msm_gem_vm *vm = to_msm_vm(job->vm);
1292 struct msm_mmu *mmu = vm->mmu;
1293 int ret;
1294
1295 ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc);
1296 if (ret)
1297 return ret;
1298
1299 for (unsigned i = 0; i < job->nr_ops; i++) {
1300 const struct msm_vm_bind_op *op = &job->ops[i];
1301 struct op_arg arg = {
1302 .job = job,
1303 .op = op,
1304 };
1305
1306 switch (op->op) {
1307 case MSM_VM_BIND_OP_UNMAP:
1308 ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova,
1309 op->range);
1310 break;
1311 case MSM_VM_BIND_OP_MAP:
1312 if (op->flags & MSM_VM_BIND_OP_DUMP)
1313 arg.flags |= MSM_VMA_DUMP;
1314 fallthrough;
1315 case MSM_VM_BIND_OP_MAP_NULL:
1316 ret = drm_gpuvm_sm_map(job->vm, &arg, op->iova,
1317 op->range, op->obj, op->obj_offset);
1318 break;
1319 default:
1320 /*
1321 * lookup_op() should have already thrown an error for
1322 * invalid ops
1323 */
1324 BUG_ON("unreachable");
1325 }
1326
1327 if (ret) {
1328 /*
1329 * If we've already started modifying the vm, we can't
1330 * adequetly describe to userspace the intermediate
1331 * state the vm is in. So throw up our hands!
1332 */
1333 if (i > 0)
1334 msm_gem_vm_unusable(job->vm);
1335 return ret;
1336 }
1337 }
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * Attach fences to the GEM objects being bound. This will signify to
1344 * the shrinker that they are busy even after dropping the locks (ie.
1345 * drm_exec_fini())
1346 */
1347 static void
vm_bind_job_attach_fences(struct msm_vm_bind_job * job)1348 vm_bind_job_attach_fences(struct msm_vm_bind_job *job)
1349 {
1350 for (unsigned i = 0; i < job->nr_ops; i++) {
1351 struct drm_gem_object *obj = job->ops[i].obj;
1352
1353 if (!obj)
1354 continue;
1355
1356 dma_resv_add_fence(obj->resv, job->fence,
1357 DMA_RESV_USAGE_KERNEL);
1358 }
1359 }
1360
1361 int
msm_ioctl_vm_bind(struct drm_device * dev,void * data,struct drm_file * file)1362 msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file)
1363 {
1364 struct msm_drm_private *priv = dev->dev_private;
1365 struct drm_msm_vm_bind *args = data;
1366 struct msm_context *ctx = file->driver_priv;
1367 struct msm_vm_bind_job *job = NULL;
1368 struct msm_gpu *gpu = priv->gpu;
1369 struct msm_gpu_submitqueue *queue;
1370 struct msm_syncobj_post_dep *post_deps = NULL;
1371 struct drm_syncobj **syncobjs_to_reset = NULL;
1372 struct sync_file *sync_file = NULL;
1373 struct dma_fence *fence;
1374 int out_fence_fd = -1;
1375 int ret, nr_bos = 0;
1376 unsigned i;
1377
1378 if (!gpu)
1379 return -ENXIO;
1380
1381 /*
1382 * Maybe we could allow just UNMAP ops? OTOH userspace should just
1383 * immediately close the device file and all will be torn down.
1384 */
1385 if (to_msm_vm(ctx->vm)->unusable)
1386 return UERR(EPIPE, dev, "context is unusable");
1387
1388 /*
1389 * Technically, you cannot create a VM_BIND submitqueue in the first
1390 * place, if you haven't opted in to VM_BIND context. But it is
1391 * cleaner / less confusing, to check this case directly.
1392 */
1393 if (!msm_context_is_vmbind(ctx))
1394 return UERR(EINVAL, dev, "context does not support vmbind");
1395
1396 if (args->flags & ~MSM_VM_BIND_FLAGS)
1397 return UERR(EINVAL, dev, "invalid flags");
1398
1399 queue = msm_submitqueue_get(ctx, args->queue_id);
1400 if (!queue)
1401 return -ENOENT;
1402
1403 if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) {
1404 ret = UERR(EINVAL, dev, "Invalid queue type");
1405 goto out_post_unlock;
1406 }
1407
1408 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1409 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1410 if (out_fence_fd < 0) {
1411 ret = out_fence_fd;
1412 goto out_post_unlock;
1413 }
1414 }
1415
1416 job = vm_bind_job_create(dev, file, queue, args->nr_ops);
1417 if (IS_ERR(job)) {
1418 ret = PTR_ERR(job);
1419 goto out_post_unlock;
1420 }
1421
1422 ret = mutex_lock_interruptible(&queue->lock);
1423 if (ret)
1424 goto out_post_unlock;
1425
1426 if (args->flags & MSM_VM_BIND_FENCE_FD_IN) {
1427 struct dma_fence *in_fence;
1428
1429 in_fence = sync_file_get_fence(args->fence_fd);
1430
1431 if (!in_fence) {
1432 ret = UERR(EINVAL, dev, "invalid in-fence");
1433 goto out_unlock;
1434 }
1435
1436 ret = drm_sched_job_add_dependency(&job->base, in_fence);
1437 if (ret)
1438 goto out_unlock;
1439 }
1440
1441 if (args->in_syncobjs > 0) {
1442 syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base,
1443 file, args->in_syncobjs,
1444 args->nr_in_syncobjs,
1445 args->syncobj_stride);
1446 if (IS_ERR(syncobjs_to_reset)) {
1447 ret = PTR_ERR(syncobjs_to_reset);
1448 goto out_unlock;
1449 }
1450 }
1451
1452 if (args->out_syncobjs > 0) {
1453 post_deps = msm_syncobj_parse_post_deps(dev, file,
1454 args->out_syncobjs,
1455 args->nr_out_syncobjs,
1456 args->syncobj_stride);
1457 if (IS_ERR(post_deps)) {
1458 ret = PTR_ERR(post_deps);
1459 goto out_unlock;
1460 }
1461 }
1462
1463 ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos);
1464 if (ret)
1465 goto out_unlock;
1466
1467 ret = vm_bind_prealloc_count(job);
1468 if (ret)
1469 goto out_unlock;
1470
1471 struct drm_exec exec;
1472 unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT;
1473 drm_exec_init(&exec, flags, nr_bos + 1);
1474
1475 ret = vm_bind_job_lock_objects(job, &exec);
1476 if (ret)
1477 goto out;
1478
1479 ret = vm_bind_job_pin_objects(job);
1480 if (ret)
1481 goto out;
1482
1483 ret = vm_bind_job_prepare(job);
1484 if (ret)
1485 goto out;
1486
1487 drm_sched_job_arm(&job->base);
1488
1489 job->fence = dma_fence_get(&job->base.s_fence->finished);
1490
1491 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1492 sync_file = sync_file_create(job->fence);
1493 if (!sync_file)
1494 ret = -ENOMEM;
1495 }
1496
1497 if (ret)
1498 goto out;
1499
1500 vm_bind_job_attach_fences(job);
1501
1502 /*
1503 * The job can be free'd (and fence unref'd) at any point after
1504 * drm_sched_entity_push_job(), so we need to hold our own ref
1505 */
1506 fence = dma_fence_get(job->fence);
1507
1508 drm_sched_entity_push_job(&job->base);
1509
1510 msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs);
1511 msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence);
1512
1513 dma_fence_put(fence);
1514
1515 out:
1516 if (ret)
1517 vm_bind_job_unpin_objects(job);
1518
1519 drm_exec_fini(&exec);
1520 out_unlock:
1521 mutex_unlock(&queue->lock);
1522 out_post_unlock:
1523 if (ret) {
1524 if (out_fence_fd >= 0)
1525 put_unused_fd(out_fence_fd);
1526 if (sync_file)
1527 fput(sync_file->file);
1528 } else if (sync_file) {
1529 fd_install(out_fence_fd, sync_file->file);
1530 args->fence_fd = out_fence_fd;
1531 }
1532
1533 if (!IS_ERR_OR_NULL(job)) {
1534 if (ret)
1535 msm_vma_job_free(&job->base);
1536 } else {
1537 /*
1538 * If the submit hasn't yet taken ownership of the queue
1539 * then we need to drop the reference ourself:
1540 */
1541 msm_submitqueue_put(queue);
1542 }
1543
1544 if (!IS_ERR_OR_NULL(post_deps)) {
1545 for (i = 0; i < args->nr_out_syncobjs; ++i) {
1546 kfree(post_deps[i].chain);
1547 drm_syncobj_put(post_deps[i].syncobj);
1548 }
1549 kfree(post_deps);
1550 }
1551
1552 if (!IS_ERR_OR_NULL(syncobjs_to_reset)) {
1553 for (i = 0; i < args->nr_in_syncobjs; ++i) {
1554 if (syncobjs_to_reset[i])
1555 drm_syncobj_put(syncobjs_to_reset[i]);
1556 }
1557 kfree(syncobjs_to_reset);
1558 }
1559
1560 return ret;
1561 }
1562