xref: /linux/drivers/gpu/drm/msm/msm_gem_vma.c (revision 18ee2b9b7bd4e2346e467101c973d62300c8ba85)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include "drm/drm_file.h"
8 #include "drm/msm_drm.h"
9 #include "linux/file.h"
10 #include "linux/sync_file.h"
11 
12 #include "msm_drv.h"
13 #include "msm_gem.h"
14 #include "msm_gpu.h"
15 #include "msm_mmu.h"
16 #include "msm_syncobj.h"
17 
18 #define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__)
19 
20 static uint vm_log_shift = 0;
21 MODULE_PARM_DESC(vm_log_shift, "Length of VM op log");
22 module_param_named(vm_log_shift, vm_log_shift, uint, 0600);
23 
24 /**
25  * struct msm_vm_map_op - create new pgtable mapping
26  */
27 struct msm_vm_map_op {
28 	/** @iova: start address for mapping */
29 	uint64_t iova;
30 	/** @range: size of the region to map */
31 	uint64_t range;
32 	/** @offset: offset into @sgt to map */
33 	uint64_t offset;
34 	/** @sgt: pages to map, or NULL for a PRR mapping */
35 	struct sg_table *sgt;
36 	/** @prot: the mapping protection flags */
37 	int prot;
38 
39 	/**
40 	 * @queue_id: The id of the submitqueue the operation is performed
41 	 * on, or zero for (in particular) UNMAP ops triggered outside of
42 	 * a submitqueue (ie. process cleanup)
43 	 */
44 	int queue_id;
45 };
46 
47 /**
48  * struct msm_vm_unmap_op - unmap a range of pages from pgtable
49  */
50 struct msm_vm_unmap_op {
51 	/** @iova: start address for unmap */
52 	uint64_t iova;
53 	/** @range: size of region to unmap */
54 	uint64_t range;
55 
56 	/** @reason: The reason for the unmap */
57 	const char *reason;
58 
59 	/**
60 	 * @queue_id: The id of the submitqueue the operation is performed
61 	 * on, or zero for (in particular) UNMAP ops triggered outside of
62 	 * a submitqueue (ie. process cleanup)
63 	 */
64 	int queue_id;
65 };
66 
67 /**
68  * struct msm_vma_op - A MAP or UNMAP operation
69  */
70 struct msm_vm_op {
71 	/** @op: The operation type */
72 	enum {
73 		MSM_VM_OP_MAP = 1,
74 		MSM_VM_OP_UNMAP,
75 	} op;
76 	union {
77 		/** @map: Parameters used if op == MSM_VMA_OP_MAP */
78 		struct msm_vm_map_op map;
79 		/** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */
80 		struct msm_vm_unmap_op unmap;
81 	};
82 	/** @node: list head in msm_vm_bind_job::vm_ops */
83 	struct list_head node;
84 
85 	/**
86 	 * @obj: backing object for pages to be mapped/unmapped
87 	 *
88 	 * Async unmap ops, in particular, must hold a reference to the
89 	 * original GEM object backing the mapping that will be unmapped.
90 	 * But the same can be required in the map path, for example if
91 	 * there is not a corresponding unmap op, such as process exit.
92 	 *
93 	 * This ensures that the pages backing the mapping are not freed
94 	 * before the mapping is torn down.
95 	 */
96 	struct drm_gem_object *obj;
97 };
98 
99 /**
100  * struct msm_vm_bind_job - Tracking for a VM_BIND ioctl
101  *
102  * A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL)
103  * gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP)
104  * which are applied to the pgtables asynchronously.  For example a userspace
105  * requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP
106  * to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping.
107  */
108 struct msm_vm_bind_job {
109 	/** @base: base class for drm_sched jobs */
110 	struct drm_sched_job base;
111 	/** @vm: The VM being operated on */
112 	struct drm_gpuvm *vm;
113 	/** @fence: The fence that is signaled when job completes */
114 	struct dma_fence *fence;
115 	/** @queue: The queue that the job runs on */
116 	struct msm_gpu_submitqueue *queue;
117 	/** @prealloc: Tracking for pre-allocated MMU pgtable pages */
118 	struct msm_mmu_prealloc prealloc;
119 	/** @vm_ops: a list of struct msm_vm_op */
120 	struct list_head vm_ops;
121 	/** @bos_pinned: are the GEM objects being bound pinned? */
122 	bool bos_pinned;
123 	/** @nr_ops: the number of userspace requested ops */
124 	unsigned int nr_ops;
125 	/**
126 	 * @ops: the userspace requested ops
127 	 *
128 	 * The userspace requested ops are copied/parsed and validated
129 	 * before we start applying the updates to try to do as much up-
130 	 * front error checking as possible, to avoid the VM being in an
131 	 * undefined state due to partially executed VM_BIND.
132 	 *
133 	 * This table also serves to hold a reference to the backing GEM
134 	 * objects.
135 	 */
136 	struct msm_vm_bind_op {
137 		uint32_t op;
138 		uint32_t flags;
139 		union {
140 			struct drm_gem_object *obj;
141 			uint32_t handle;
142 		};
143 		uint64_t obj_offset;
144 		uint64_t iova;
145 		uint64_t range;
146 	} ops[];
147 };
148 
149 #define job_foreach_bo(obj, _job) \
150 	for (unsigned i = 0; i < (_job)->nr_ops; i++) \
151 		if ((obj = (_job)->ops[i].obj))
152 
to_msm_vm_bind_job(struct drm_sched_job * job)153 static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job)
154 {
155 	return container_of(job, struct msm_vm_bind_job, base);
156 }
157 
158 static void
msm_gem_vm_free(struct drm_gpuvm * gpuvm)159 msm_gem_vm_free(struct drm_gpuvm *gpuvm)
160 {
161 	struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base);
162 
163 	drm_mm_takedown(&vm->mm);
164 	if (vm->mmu)
165 		vm->mmu->funcs->destroy(vm->mmu);
166 	dma_fence_put(vm->last_fence);
167 	put_pid(vm->pid);
168 	kfree(vm->log);
169 	kfree(vm);
170 }
171 
172 /**
173  * msm_gem_vm_unusable() - Mark a VM as unusable
174  * @gpuvm: the VM to mark unusable
175  */
176 void
msm_gem_vm_unusable(struct drm_gpuvm * gpuvm)177 msm_gem_vm_unusable(struct drm_gpuvm *gpuvm)
178 {
179 	struct msm_gem_vm *vm = to_msm_vm(gpuvm);
180 	uint32_t vm_log_len = (1 << vm->log_shift);
181 	uint32_t vm_log_mask = vm_log_len - 1;
182 	uint32_t nr_vm_logs;
183 	int first;
184 
185 	vm->unusable = true;
186 
187 	/* Bail if no log, or empty log: */
188 	if (!vm->log || !vm->log[0].op)
189 		return;
190 
191 	mutex_lock(&vm->mmu_lock);
192 
193 	/*
194 	 * log_idx is the next entry to overwrite, meaning it is the oldest, or
195 	 * first, entry (other than the special case handled below where the
196 	 * log hasn't wrapped around yet)
197 	 */
198 	first = vm->log_idx;
199 
200 	if (!vm->log[first].op) {
201 		/*
202 		 * If the next log entry has not been written yet, then only
203 		 * entries 0 to idx-1 are valid (ie. we haven't wrapped around
204 		 * yet)
205 		 */
206 		nr_vm_logs = MAX(0, first - 1);
207 		first = 0;
208 	} else {
209 		nr_vm_logs = vm_log_len;
210 	}
211 
212 	pr_err("vm-log:\n");
213 	for (int i = 0; i < nr_vm_logs; i++) {
214 		int idx = (i + first) & vm_log_mask;
215 		struct msm_gem_vm_log_entry *e = &vm->log[idx];
216 		pr_err("  - %s:%d: 0x%016llx-0x%016llx\n",
217 		       e->op, e->queue_id, e->iova,
218 		       e->iova + e->range);
219 	}
220 
221 	mutex_unlock(&vm->mmu_lock);
222 }
223 
224 static void
vm_log(struct msm_gem_vm * vm,const char * op,uint64_t iova,uint64_t range,int queue_id)225 vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id)
226 {
227 	int idx;
228 
229 	if (!vm->managed)
230 		lockdep_assert_held(&vm->mmu_lock);
231 
232 	vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range);
233 
234 	if (!vm->log)
235 		return;
236 
237 	idx = vm->log_idx;
238 	vm->log[idx].op = op;
239 	vm->log[idx].iova = iova;
240 	vm->log[idx].range = range;
241 	vm->log[idx].queue_id = queue_id;
242 	vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1);
243 }
244 
245 static void
vm_unmap_op(struct msm_gem_vm * vm,const struct msm_vm_unmap_op * op)246 vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op)
247 {
248 	const char *reason = op->reason;
249 
250 	if (!reason)
251 		reason = "unmap";
252 
253 	vm_log(vm, reason, op->iova, op->range, op->queue_id);
254 
255 	vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range);
256 }
257 
258 static int
vm_map_op(struct msm_gem_vm * vm,const struct msm_vm_map_op * op)259 vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op)
260 {
261 	vm_log(vm, "map", op->iova, op->range, op->queue_id);
262 
263 	return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset,
264 				   op->range, op->prot);
265 }
266 
267 /* Actually unmap memory for the vma */
msm_gem_vma_unmap(struct drm_gpuva * vma,const char * reason)268 void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason)
269 {
270 	struct msm_gem_vm *vm = to_msm_vm(vma->vm);
271 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
272 
273 	/* Don't do anything if the memory isn't mapped */
274 	if (!msm_vma->mapped)
275 		return;
276 
277 	/*
278 	 * The mmu_lock is only needed when preallocation is used.  But
279 	 * in that case we don't need to worry about recursion into
280 	 * shrinker
281 	 */
282 	if (!vm->managed)
283 		 mutex_lock(&vm->mmu_lock);
284 
285 	vm_unmap_op(vm, &(struct msm_vm_unmap_op){
286 		.iova = vma->va.addr,
287 		.range = vma->va.range,
288 		.reason = reason,
289 	});
290 
291 	if (!vm->managed)
292 		mutex_unlock(&vm->mmu_lock);
293 
294 	msm_vma->mapped = false;
295 }
296 
297 /* Map and pin vma: */
298 int
msm_gem_vma_map(struct drm_gpuva * vma,int prot,struct sg_table * sgt)299 msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt)
300 {
301 	struct msm_gem_vm *vm = to_msm_vm(vma->vm);
302 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
303 	int ret;
304 
305 	if (GEM_WARN_ON(!vma->va.addr))
306 		return -EINVAL;
307 
308 	if (msm_vma->mapped)
309 		return 0;
310 
311 	msm_vma->mapped = true;
312 
313 	/*
314 	 * The mmu_lock is only needed when preallocation is used.  But
315 	 * in that case we don't need to worry about recursion into
316 	 * shrinker
317 	 */
318 	if (!vm->managed)
319 		mutex_lock(&vm->mmu_lock);
320 
321 	/*
322 	 * NOTE: if not using pgtable preallocation, we cannot hold
323 	 * a lock across map/unmap which is also used in the job_run()
324 	 * path, as this can cause deadlock in job_run() vs shrinker/
325 	 * reclaim.
326 	 */
327 	ret = vm_map_op(vm, &(struct msm_vm_map_op){
328 		.iova = vma->va.addr,
329 		.range = vma->va.range,
330 		.offset = vma->gem.offset,
331 		.sgt = sgt,
332 		.prot = prot,
333 	});
334 
335 	if (!vm->managed)
336 		mutex_unlock(&vm->mmu_lock);
337 
338 	if (ret)
339 		msm_vma->mapped = false;
340 
341 	return ret;
342 }
343 
344 /* Close an iova.  Warn if it is still in use */
msm_gem_vma_close(struct drm_gpuva * vma)345 void msm_gem_vma_close(struct drm_gpuva *vma)
346 {
347 	struct msm_gem_vm *vm = to_msm_vm(vma->vm);
348 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
349 
350 	GEM_WARN_ON(msm_vma->mapped);
351 
352 	drm_gpuvm_resv_assert_held(&vm->base);
353 
354 	if (vma->gem.obj)
355 		msm_gem_assert_locked(vma->gem.obj);
356 
357 	if (vma->va.addr && vm->managed)
358 		drm_mm_remove_node(&msm_vma->node);
359 
360 	drm_gpuva_remove(vma);
361 	drm_gpuva_unlink(vma);
362 
363 	kfree(vma);
364 }
365 
366 /* Create a new vma and allocate an iova for it */
367 struct drm_gpuva *
msm_gem_vma_new(struct drm_gpuvm * gpuvm,struct drm_gem_object * obj,u64 offset,u64 range_start,u64 range_end)368 msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj,
369 		u64 offset, u64 range_start, u64 range_end)
370 {
371 	struct msm_gem_vm *vm = to_msm_vm(gpuvm);
372 	struct drm_gpuvm_bo *vm_bo;
373 	struct msm_gem_vma *vma;
374 	int ret;
375 
376 	drm_gpuvm_resv_assert_held(&vm->base);
377 
378 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
379 	if (!vma)
380 		return ERR_PTR(-ENOMEM);
381 
382 	if (vm->managed) {
383 		BUG_ON(offset != 0);
384 		BUG_ON(!obj);  /* NULL mappings not valid for kernel managed VM */
385 		ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node,
386 						obj->size, PAGE_SIZE, 0,
387 						range_start, range_end, 0);
388 
389 		if (ret)
390 			goto err_free_vma;
391 
392 		range_start = vma->node.start;
393 		range_end   = range_start + obj->size;
394 	}
395 
396 	if (obj)
397 		GEM_WARN_ON((range_end - range_start) > obj->size);
398 
399 	drm_gpuva_init(&vma->base, range_start, range_end - range_start, obj, offset);
400 	vma->mapped = false;
401 
402 	ret = drm_gpuva_insert(&vm->base, &vma->base);
403 	if (ret)
404 		goto err_free_range;
405 
406 	if (!obj)
407 		return &vma->base;
408 
409 	vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj);
410 	if (IS_ERR(vm_bo)) {
411 		ret = PTR_ERR(vm_bo);
412 		goto err_va_remove;
413 	}
414 
415 	drm_gpuvm_bo_extobj_add(vm_bo);
416 	drm_gpuva_link(&vma->base, vm_bo);
417 	GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo));
418 
419 	return &vma->base;
420 
421 err_va_remove:
422 	drm_gpuva_remove(&vma->base);
423 err_free_range:
424 	if (vm->managed)
425 		drm_mm_remove_node(&vma->node);
426 err_free_vma:
427 	kfree(vma);
428 	return ERR_PTR(ret);
429 }
430 
431 static int
msm_gem_vm_bo_validate(struct drm_gpuvm_bo * vm_bo,struct drm_exec * exec)432 msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
433 {
434 	struct drm_gem_object *obj = vm_bo->obj;
435 	struct drm_gpuva *vma;
436 	int ret;
437 
438 	vm_dbg("validate: %p", obj);
439 
440 	msm_gem_assert_locked(obj);
441 
442 	drm_gpuvm_bo_for_each_va (vma, vm_bo) {
443 		ret = msm_gem_pin_vma_locked(obj, vma);
444 		if (ret)
445 			return ret;
446 	}
447 
448 	return 0;
449 }
450 
451 struct op_arg {
452 	unsigned flags;
453 	struct msm_vm_bind_job *job;
454 	const struct msm_vm_bind_op *op;
455 	bool kept;
456 };
457 
458 static void
vm_op_enqueue(struct op_arg * arg,struct msm_vm_op _op)459 vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op)
460 {
461 	struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL);
462 	*op = _op;
463 	list_add_tail(&op->node, &arg->job->vm_ops);
464 
465 	if (op->obj)
466 		drm_gem_object_get(op->obj);
467 }
468 
469 static struct drm_gpuva *
vma_from_op(struct op_arg * arg,struct drm_gpuva_op_map * op)470 vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op)
471 {
472 	return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset,
473 			       op->va.addr, op->va.addr + op->va.range);
474 }
475 
476 static int
msm_gem_vm_sm_step_map(struct drm_gpuva_op * op,void * _arg)477 msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *_arg)
478 {
479 	struct op_arg *arg = _arg;
480 	struct msm_vm_bind_job *job = arg->job;
481 	struct drm_gem_object *obj = op->map.gem.obj;
482 	struct drm_gpuva *vma;
483 	struct sg_table *sgt;
484 	unsigned prot;
485 
486 	if (arg->kept)
487 		return 0;
488 
489 	vma = vma_from_op(arg, &op->map);
490 	if (WARN_ON(IS_ERR(vma)))
491 		return PTR_ERR(vma);
492 
493 	vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
494 	       vma->va.addr, vma->va.range);
495 
496 	vma->flags = ((struct op_arg *)arg)->flags;
497 
498 	if (obj) {
499 		sgt = to_msm_bo(obj)->sgt;
500 		prot = msm_gem_prot(obj);
501 	} else {
502 		sgt = NULL;
503 		prot = IOMMU_READ | IOMMU_WRITE;
504 	}
505 
506 	vm_op_enqueue(arg, (struct msm_vm_op){
507 		.op = MSM_VM_OP_MAP,
508 		.map = {
509 			.sgt = sgt,
510 			.iova = vma->va.addr,
511 			.range = vma->va.range,
512 			.offset = vma->gem.offset,
513 			.prot = prot,
514 			.queue_id = job->queue->id,
515 		},
516 		.obj = vma->gem.obj,
517 	});
518 
519 	to_msm_vma(vma)->mapped = true;
520 
521 	return 0;
522 }
523 
524 static int
msm_gem_vm_sm_step_remap(struct drm_gpuva_op * op,void * arg)525 msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg)
526 {
527 	struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
528 	struct drm_gpuvm *vm = job->vm;
529 	struct drm_gpuva *orig_vma = op->remap.unmap->va;
530 	struct drm_gpuva *prev_vma = NULL, *next_vma = NULL;
531 	struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo;
532 	bool mapped = to_msm_vma(orig_vma)->mapped;
533 	unsigned flags;
534 
535 	vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma,
536 	       orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range);
537 
538 	if (mapped) {
539 		uint64_t unmap_start, unmap_range;
540 
541 		drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
542 
543 		vm_op_enqueue(arg, (struct msm_vm_op){
544 			.op = MSM_VM_OP_UNMAP,
545 			.unmap = {
546 				.iova = unmap_start,
547 				.range = unmap_range,
548 				.queue_id = job->queue->id,
549 			},
550 			.obj = orig_vma->gem.obj,
551 		});
552 
553 		/*
554 		 * Part of this GEM obj is still mapped, but we're going to kill the
555 		 * existing VMA and replace it with one or two new ones (ie. two if
556 		 * the unmapped range is in the middle of the existing (unmap) VMA).
557 		 * So just set the state to unmapped:
558 		 */
559 		to_msm_vma(orig_vma)->mapped = false;
560 	}
561 
562 	/*
563 	 * Hold a ref to the vm_bo between the msm_gem_vma_close() and the
564 	 * creation of the new prev/next vma's, in case the vm_bo is tracked
565 	 * in the VM's evict list:
566 	 */
567 	if (vm_bo)
568 		drm_gpuvm_bo_get(vm_bo);
569 
570 	/*
571 	 * The prev_vma and/or next_vma are replacing the unmapped vma, and
572 	 * therefore should preserve it's flags:
573 	 */
574 	flags = orig_vma->flags;
575 
576 	msm_gem_vma_close(orig_vma);
577 
578 	if (op->remap.prev) {
579 		prev_vma = vma_from_op(arg, op->remap.prev);
580 		if (WARN_ON(IS_ERR(prev_vma)))
581 			return PTR_ERR(prev_vma);
582 
583 		vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range);
584 		to_msm_vma(prev_vma)->mapped = mapped;
585 		prev_vma->flags = flags;
586 	}
587 
588 	if (op->remap.next) {
589 		next_vma = vma_from_op(arg, op->remap.next);
590 		if (WARN_ON(IS_ERR(next_vma)))
591 			return PTR_ERR(next_vma);
592 
593 		vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range);
594 		to_msm_vma(next_vma)->mapped = mapped;
595 		next_vma->flags = flags;
596 	}
597 
598 	if (!mapped)
599 		drm_gpuvm_bo_evict(vm_bo, true);
600 
601 	/* Drop the previous ref: */
602 	drm_gpuvm_bo_put(vm_bo);
603 
604 	return 0;
605 }
606 
607 static int
msm_gem_vm_sm_step_unmap(struct drm_gpuva_op * op,void * _arg)608 msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *_arg)
609 {
610 	struct op_arg *arg = _arg;
611 	struct msm_vm_bind_job *job = arg->job;
612 	struct drm_gpuva *vma = op->unmap.va;
613 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
614 
615 	vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
616 	       vma->va.addr, vma->va.range);
617 
618 	/*
619 	 * Detect in-place remap.  Turnip does this to change the vma flags,
620 	 * in particular MSM_VMA_DUMP.  In this case we want to avoid actually
621 	 * touching the page tables, as that would require synchronization
622 	 * against SUBMIT jobs running on the GPU.
623 	 */
624 	if (op->unmap.keep &&
625 	    (arg->op->op == MSM_VM_BIND_OP_MAP) &&
626 	    (vma->gem.obj == arg->op->obj) &&
627 	    (vma->gem.offset == arg->op->obj_offset) &&
628 	    (vma->va.addr == arg->op->iova) &&
629 	    (vma->va.range == arg->op->range)) {
630 		/* We are only expecting a single in-place unmap+map cb pair: */
631 		WARN_ON(arg->kept);
632 
633 		/* Leave the existing VMA in place, but signal that to the map cb: */
634 		arg->kept = true;
635 
636 		/* Only flags are changing, so update that in-place: */
637 		unsigned orig_flags = vma->flags & (DRM_GPUVA_USERBITS - 1);
638 		vma->flags = orig_flags | arg->flags;
639 
640 		return 0;
641 	}
642 
643 	if (!msm_vma->mapped)
644 		goto out_close;
645 
646 	vm_op_enqueue(arg, (struct msm_vm_op){
647 		.op = MSM_VM_OP_UNMAP,
648 		.unmap = {
649 			.iova = vma->va.addr,
650 			.range = vma->va.range,
651 			.queue_id = job->queue->id,
652 		},
653 		.obj = vma->gem.obj,
654 	});
655 
656 	msm_vma->mapped = false;
657 
658 out_close:
659 	msm_gem_vma_close(vma);
660 
661 	return 0;
662 }
663 
664 static const struct drm_gpuvm_ops msm_gpuvm_ops = {
665 	.vm_free = msm_gem_vm_free,
666 	.vm_bo_validate = msm_gem_vm_bo_validate,
667 	.sm_step_map = msm_gem_vm_sm_step_map,
668 	.sm_step_remap = msm_gem_vm_sm_step_remap,
669 	.sm_step_unmap = msm_gem_vm_sm_step_unmap,
670 };
671 
672 static struct dma_fence *
msm_vma_job_run(struct drm_sched_job * _job)673 msm_vma_job_run(struct drm_sched_job *_job)
674 {
675 	struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
676 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
677 	struct drm_gem_object *obj;
678 	int ret = vm->unusable ? -EINVAL : 0;
679 
680 	vm_dbg("");
681 
682 	mutex_lock(&vm->mmu_lock);
683 	vm->mmu->prealloc = &job->prealloc;
684 
685 	while (!list_empty(&job->vm_ops)) {
686 		struct msm_vm_op *op =
687 			list_first_entry(&job->vm_ops, struct msm_vm_op, node);
688 
689 		switch (op->op) {
690 		case MSM_VM_OP_MAP:
691 			/*
692 			 * On error, stop trying to map new things.. but we
693 			 * still want to process the unmaps (or in particular,
694 			 * the drm_gem_object_put()s)
695 			 */
696 			if (!ret)
697 				ret = vm_map_op(vm, &op->map);
698 			break;
699 		case MSM_VM_OP_UNMAP:
700 			vm_unmap_op(vm, &op->unmap);
701 			break;
702 		}
703 		drm_gem_object_put(op->obj);
704 		list_del(&op->node);
705 		kfree(op);
706 	}
707 
708 	vm->mmu->prealloc = NULL;
709 	mutex_unlock(&vm->mmu_lock);
710 
711 	/*
712 	 * We failed to perform at least _some_ of the pgtable updates, so
713 	 * now the VM is in an undefined state.  Game over!
714 	 */
715 	if (ret)
716 		msm_gem_vm_unusable(job->vm);
717 
718 	job_foreach_bo (obj, job) {
719 		msm_gem_lock(obj);
720 		msm_gem_unpin_locked(obj);
721 		msm_gem_unlock(obj);
722 	}
723 
724 	/* VM_BIND ops are synchronous, so no fence to wait on: */
725 	return NULL;
726 }
727 
728 static void
msm_vma_job_free(struct drm_sched_job * _job)729 msm_vma_job_free(struct drm_sched_job *_job)
730 {
731 	struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
732 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
733 	struct drm_gem_object *obj;
734 
735 	vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc);
736 
737 	atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight);
738 
739 	drm_sched_job_cleanup(_job);
740 
741 	job_foreach_bo (obj, job)
742 		drm_gem_object_put(obj);
743 
744 	msm_submitqueue_put(job->queue);
745 	dma_fence_put(job->fence);
746 
747 	/* In error paths, we could have unexecuted ops: */
748 	while (!list_empty(&job->vm_ops)) {
749 		struct msm_vm_op *op =
750 			list_first_entry(&job->vm_ops, struct msm_vm_op, node);
751 		list_del(&op->node);
752 		kfree(op);
753 	}
754 
755 	wake_up(&vm->prealloc_throttle.wait);
756 
757 	kfree(job);
758 }
759 
760 static const struct drm_sched_backend_ops msm_vm_bind_ops = {
761 	.run_job = msm_vma_job_run,
762 	.free_job = msm_vma_job_free
763 };
764 
765 /**
766  * msm_gem_vm_create() - Create and initialize a &msm_gem_vm
767  * @drm: the drm device
768  * @mmu: the backing MMU objects handling mapping/unmapping
769  * @name: the name of the VM
770  * @va_start: the start offset of the VA space
771  * @va_size: the size of the VA space
772  * @managed: is it a kernel managed VM?
773  *
774  * In a kernel managed VM, the kernel handles address allocation, and only
775  * synchronous operations are supported.  In a user managed VM, userspace
776  * handles virtual address allocation, and both async and sync operations
777  * are supported.
778  */
779 struct drm_gpuvm *
msm_gem_vm_create(struct drm_device * drm,struct msm_mmu * mmu,const char * name,u64 va_start,u64 va_size,bool managed)780 msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name,
781 		  u64 va_start, u64 va_size, bool managed)
782 {
783 	/*
784 	 * We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that
785 	 * makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose
786 	 * tracking that an extobj is evicted) :facepalm:
787 	 */
788 	enum drm_gpuvm_flags flags = 0;
789 	struct msm_gem_vm *vm;
790 	struct drm_gem_object *dummy_gem;
791 	int ret = 0;
792 
793 	if (IS_ERR(mmu))
794 		return ERR_CAST(mmu);
795 
796 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
797 	if (!vm)
798 		return ERR_PTR(-ENOMEM);
799 
800 	dummy_gem = drm_gpuvm_resv_object_alloc(drm);
801 	if (!dummy_gem) {
802 		ret = -ENOMEM;
803 		goto err_free_vm;
804 	}
805 
806 	if (!managed) {
807 		struct drm_sched_init_args args = {
808 			.ops = &msm_vm_bind_ops,
809 			.num_rqs = 1,
810 			.credit_limit = 1,
811 			.timeout = MAX_SCHEDULE_TIMEOUT,
812 			.name = "msm-vm-bind",
813 			.dev = drm->dev,
814 		};
815 
816 		ret = drm_sched_init(&vm->sched, &args);
817 		if (ret)
818 			goto err_free_dummy;
819 
820 		init_waitqueue_head(&vm->prealloc_throttle.wait);
821 	}
822 
823 	drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem,
824 		       va_start, va_size, 0, 0, &msm_gpuvm_ops);
825 	drm_gem_object_put(dummy_gem);
826 
827 	vm->mmu = mmu;
828 	mutex_init(&vm->mmu_lock);
829 	vm->managed = managed;
830 
831 	drm_mm_init(&vm->mm, va_start, va_size);
832 
833 	/*
834 	 * We don't really need vm log for kernel managed VMs, as the kernel
835 	 * is responsible for ensuring that GEM objs are mapped if they are
836 	 * used by a submit.  Furthermore we piggyback on mmu_lock to serialize
837 	 * access to the log.
838 	 *
839 	 * Limit the max log_shift to 8 to prevent userspace from asking us
840 	 * for an unreasonable log size.
841 	 */
842 	if (!managed)
843 		vm->log_shift = MIN(vm_log_shift, 8);
844 
845 	if (vm->log_shift) {
846 		vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]),
847 					GFP_KERNEL | __GFP_ZERO);
848 	}
849 
850 	return &vm->base;
851 
852 err_free_dummy:
853 	drm_gem_object_put(dummy_gem);
854 
855 err_free_vm:
856 	kfree(vm);
857 	return ERR_PTR(ret);
858 }
859 
860 /**
861  * msm_gem_vm_close() - Close a VM
862  * @gpuvm: The VM to close
863  *
864  * Called when the drm device file is closed, to tear down VM related resources
865  * (which will drop refcounts to GEM objects that were still mapped into the
866  * VM at the time).
867  */
868 void
msm_gem_vm_close(struct drm_gpuvm * gpuvm)869 msm_gem_vm_close(struct drm_gpuvm *gpuvm)
870 {
871 	struct msm_gem_vm *vm = to_msm_vm(gpuvm);
872 	struct drm_gpuva *vma, *tmp;
873 	struct drm_exec exec;
874 
875 	/*
876 	 * For kernel managed VMs, the VMAs are torn down when the handle is
877 	 * closed, so nothing more to do.
878 	 */
879 	if (vm->managed)
880 		return;
881 
882 	if (vm->last_fence)
883 		dma_fence_wait(vm->last_fence, false);
884 
885 	/* Kill the scheduler now, so we aren't racing with it for cleanup: */
886 	drm_sched_stop(&vm->sched, NULL);
887 	drm_sched_fini(&vm->sched);
888 
889 	/* Tear down any remaining mappings: */
890 	drm_exec_init(&exec, 0, 2);
891 	drm_exec_until_all_locked (&exec) {
892 		drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm));
893 		drm_exec_retry_on_contention(&exec);
894 
895 		drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) {
896 			struct drm_gem_object *obj = vma->gem.obj;
897 
898 			/*
899 			 * MSM_BO_NO_SHARE objects share the same resv as the
900 			 * VM, in which case the obj is already locked:
901 			 */
902 			if (obj && (obj->resv == drm_gpuvm_resv(gpuvm)))
903 				obj = NULL;
904 
905 			if (obj) {
906 				drm_exec_lock_obj(&exec, obj);
907 				drm_exec_retry_on_contention(&exec);
908 			}
909 
910 			msm_gem_vma_unmap(vma, "close");
911 			msm_gem_vma_close(vma);
912 
913 			if (obj) {
914 				drm_exec_unlock_obj(&exec, obj);
915 			}
916 		}
917 	}
918 	drm_exec_fini(&exec);
919 }
920 
921 
922 static struct msm_vm_bind_job *
vm_bind_job_create(struct drm_device * dev,struct drm_file * file,struct msm_gpu_submitqueue * queue,uint32_t nr_ops)923 vm_bind_job_create(struct drm_device *dev, struct drm_file *file,
924 		   struct msm_gpu_submitqueue *queue, uint32_t nr_ops)
925 {
926 	struct msm_vm_bind_job *job;
927 	uint64_t sz;
928 	int ret;
929 
930 	sz = struct_size(job, ops, nr_ops);
931 
932 	if (sz > SIZE_MAX)
933 		return ERR_PTR(-ENOMEM);
934 
935 	job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
936 	if (!job)
937 		return ERR_PTR(-ENOMEM);
938 
939 	ret = drm_sched_job_init(&job->base, queue->entity, 1, queue,
940 				 file->client_id);
941 	if (ret) {
942 		kfree(job);
943 		return ERR_PTR(ret);
944 	}
945 
946 	job->vm = msm_context_vm(dev, queue->ctx);
947 	job->queue = queue;
948 	INIT_LIST_HEAD(&job->vm_ops);
949 
950 	return job;
951 }
952 
invalid_alignment(uint64_t addr)953 static bool invalid_alignment(uint64_t addr)
954 {
955 	/*
956 	 * Technically this is about GPU alignment, not CPU alignment.  But
957 	 * I've not seen any qcom SoC where the SMMU does not support the
958 	 * CPU's smallest page size.
959 	 */
960 	return !PAGE_ALIGNED(addr);
961 }
962 
963 static int
lookup_op(struct msm_vm_bind_job * job,const struct drm_msm_vm_bind_op * op)964 lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op)
965 {
966 	struct drm_device *dev = job->vm->drm;
967 	int i = job->nr_ops++;
968 	int ret = 0;
969 
970 	job->ops[i].op = op->op;
971 	job->ops[i].handle = op->handle;
972 	job->ops[i].obj_offset = op->obj_offset;
973 	job->ops[i].iova = op->iova;
974 	job->ops[i].range = op->range;
975 	job->ops[i].flags = op->flags;
976 
977 	if (op->flags & ~MSM_VM_BIND_OP_FLAGS)
978 		ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags);
979 
980 	if (invalid_alignment(op->iova))
981 		ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova);
982 
983 	if (invalid_alignment(op->obj_offset))
984 		ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset);
985 
986 	if (invalid_alignment(op->range))
987 		ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range);
988 
989 	if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range))
990 		ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range);
991 
992 	/*
993 	 * MAP must specify a valid handle.  But the handle MBZ for
994 	 * UNMAP or MAP_NULL.
995 	 */
996 	if (op->op == MSM_VM_BIND_OP_MAP) {
997 		if (!op->handle)
998 			ret = UERR(EINVAL, dev, "invalid handle\n");
999 	} else if (op->handle) {
1000 		ret = UERR(EINVAL, dev, "handle must be zero\n");
1001 	}
1002 
1003 	switch (op->op) {
1004 	case MSM_VM_BIND_OP_MAP:
1005 	case MSM_VM_BIND_OP_MAP_NULL:
1006 	case MSM_VM_BIND_OP_UNMAP:
1007 		break;
1008 	default:
1009 		ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op);
1010 		break;
1011 	}
1012 
1013 	return ret;
1014 }
1015 
1016 /*
1017  * ioctl parsing, parameter validation, and GEM handle lookup
1018  */
1019 static int
vm_bind_job_lookup_ops(struct msm_vm_bind_job * job,struct drm_msm_vm_bind * args,struct drm_file * file,int * nr_bos)1020 vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args,
1021 		       struct drm_file *file, int *nr_bos)
1022 {
1023 	struct drm_device *dev = job->vm->drm;
1024 	int ret = 0;
1025 	int cnt = 0;
1026 
1027 	if (args->nr_ops == 1) {
1028 		/* Single op case, the op is inlined: */
1029 		ret = lookup_op(job, &args->op);
1030 	} else {
1031 		for (unsigned i = 0; i < args->nr_ops; i++) {
1032 			struct drm_msm_vm_bind_op op;
1033 			void __user *userptr =
1034 				u64_to_user_ptr(args->ops + (i * sizeof(op)));
1035 
1036 			/* make sure we don't have garbage flags, in case we hit
1037 			 * error path before flags is initialized:
1038 			 */
1039 			job->ops[i].flags = 0;
1040 
1041 			if (copy_from_user(&op, userptr, sizeof(op))) {
1042 				ret = -EFAULT;
1043 				break;
1044 			}
1045 
1046 			ret = lookup_op(job, &op);
1047 			if (ret)
1048 				break;
1049 		}
1050 	}
1051 
1052 	if (ret) {
1053 		job->nr_ops = 0;
1054 		goto out;
1055 	}
1056 
1057 	spin_lock(&file->table_lock);
1058 
1059 	for (unsigned i = 0; i < args->nr_ops; i++) {
1060 		struct drm_gem_object *obj;
1061 
1062 		if (!job->ops[i].handle) {
1063 			job->ops[i].obj = NULL;
1064 			continue;
1065 		}
1066 
1067 		/*
1068 		 * normally use drm_gem_object_lookup(), but for bulk lookup
1069 		 * all under single table_lock just hit object_idr directly:
1070 		 */
1071 		obj = idr_find(&file->object_idr, job->ops[i].handle);
1072 		if (!obj) {
1073 			ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", job->ops[i].handle, i);
1074 			goto out_unlock;
1075 		}
1076 
1077 		drm_gem_object_get(obj);
1078 
1079 		job->ops[i].obj = obj;
1080 		cnt++;
1081 	}
1082 
1083 	*nr_bos = cnt;
1084 
1085 out_unlock:
1086 	spin_unlock(&file->table_lock);
1087 
1088 out:
1089 	return ret;
1090 }
1091 
1092 static void
prealloc_count(struct msm_vm_bind_job * job,struct msm_vm_bind_op * first,struct msm_vm_bind_op * last)1093 prealloc_count(struct msm_vm_bind_job *job,
1094 	       struct msm_vm_bind_op *first,
1095 	       struct msm_vm_bind_op *last)
1096 {
1097 	struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu;
1098 
1099 	if (!first)
1100 		return;
1101 
1102 	uint64_t start_iova = first->iova;
1103 	uint64_t end_iova = last->iova + last->range;
1104 
1105 	mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova);
1106 }
1107 
1108 static bool
ops_are_same_pte(struct msm_vm_bind_op * first,struct msm_vm_bind_op * next)1109 ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next)
1110 {
1111 	/*
1112 	 * Last level pte covers 2MB.. so we should merge two ops, from
1113 	 * the PoV of figuring out how much pgtable pages to pre-allocate
1114 	 * if they land in the same 2MB range:
1115 	 */
1116 	uint64_t pte_mask = ~(SZ_2M - 1);
1117 	return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask);
1118 }
1119 
1120 /*
1121  * Determine the amount of memory to prealloc for pgtables.  For sparse images,
1122  * in particular, userspace plays some tricks with the order of page mappings
1123  * to get the desired swizzle pattern, resulting in a large # of tiny MAP ops.
1124  * So detect when multiple MAP operations are physically contiguous, and count
1125  * them as a single mapping.  Otherwise the prealloc_count() will not realize
1126  * they can share pagetable pages and vastly overcount.
1127  */
1128 static int
vm_bind_prealloc_count(struct msm_vm_bind_job * job)1129 vm_bind_prealloc_count(struct msm_vm_bind_job *job)
1130 {
1131 	struct msm_vm_bind_op *first = NULL, *last = NULL;
1132 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
1133 	int ret;
1134 
1135 	for (int i = 0; i < job->nr_ops; i++) {
1136 		struct msm_vm_bind_op *op = &job->ops[i];
1137 
1138 		/* We only care about MAP/MAP_NULL: */
1139 		if (op->op == MSM_VM_BIND_OP_UNMAP)
1140 			continue;
1141 
1142 		/*
1143 		 * If op is contiguous with last in the current range, then
1144 		 * it becomes the new last in the range and we continue
1145 		 * looping:
1146 		 */
1147 		if (last && ops_are_same_pte(last, op)) {
1148 			last = op;
1149 			continue;
1150 		}
1151 
1152 		/*
1153 		 * If op is not contiguous with the current range, flush
1154 		 * the current range and start anew:
1155 		 */
1156 		prealloc_count(job, first, last);
1157 		first = last = op;
1158 	}
1159 
1160 	/* Flush the remaining range: */
1161 	prealloc_count(job, first, last);
1162 
1163 	/*
1164 	 * Now that we know the needed amount to pre-alloc, throttle on pending
1165 	 * VM_BIND jobs if we already have too much pre-alloc memory in flight
1166 	 */
1167 	ret = wait_event_interruptible(
1168 			vm->prealloc_throttle.wait,
1169 			atomic_read(&vm->prealloc_throttle.in_flight) <= 1024);
1170 	if (ret)
1171 		return ret;
1172 
1173 	atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight);
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Lock VM and GEM objects
1180  */
1181 static int
vm_bind_job_lock_objects(struct msm_vm_bind_job * job,struct drm_exec * exec)1182 vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec)
1183 {
1184 	int ret;
1185 
1186 	/* Lock VM and objects: */
1187 	drm_exec_until_all_locked (exec) {
1188 		ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm));
1189 		drm_exec_retry_on_contention(exec);
1190 		if (ret)
1191 			return ret;
1192 
1193 		for (unsigned i = 0; i < job->nr_ops; i++) {
1194 			const struct msm_vm_bind_op *op = &job->ops[i];
1195 
1196 			switch (op->op) {
1197 			case MSM_VM_BIND_OP_UNMAP:
1198 				ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec,
1199 							      op->iova,
1200 							      op->obj_offset);
1201 				break;
1202 			case MSM_VM_BIND_OP_MAP:
1203 			case MSM_VM_BIND_OP_MAP_NULL:
1204 				ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1,
1205 							    op->iova, op->range,
1206 							    op->obj, op->obj_offset);
1207 				break;
1208 			default:
1209 				/*
1210 				 * lookup_op() should have already thrown an error for
1211 				 * invalid ops
1212 				 */
1213 				WARN_ON("unreachable");
1214 			}
1215 
1216 			drm_exec_retry_on_contention(exec);
1217 			if (ret)
1218 				return ret;
1219 		}
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Pin GEM objects, ensuring that we have backing pages.  Pinning will move
1227  * the object to the pinned LRU so that the shrinker knows to first consider
1228  * other objects for evicting.
1229  */
1230 static int
vm_bind_job_pin_objects(struct msm_vm_bind_job * job)1231 vm_bind_job_pin_objects(struct msm_vm_bind_job *job)
1232 {
1233 	struct drm_gem_object *obj;
1234 
1235 	/*
1236 	 * First loop, before holding the LRU lock, avoids holding the
1237 	 * LRU lock while calling msm_gem_pin_vma_locked (which could
1238 	 * trigger get_pages())
1239 	 */
1240 	job_foreach_bo (obj, job) {
1241 		struct page **pages;
1242 
1243 		pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED);
1244 		if (IS_ERR(pages))
1245 			return PTR_ERR(pages);
1246 	}
1247 
1248 	struct msm_drm_private *priv = job->vm->drm->dev_private;
1249 
1250 	/*
1251 	 * A second loop while holding the LRU lock (a) avoids acquiring/dropping
1252 	 * the LRU lock for each individual bo, while (b) avoiding holding the
1253 	 * LRU lock while calling msm_gem_pin_vma_locked() (which could trigger
1254 	 * get_pages() which could trigger reclaim.. and if we held the LRU lock
1255 	 * could trigger deadlock with the shrinker).
1256 	 */
1257 	mutex_lock(&priv->lru.lock);
1258 	job_foreach_bo (obj, job)
1259 		msm_gem_pin_obj_locked(obj);
1260 	mutex_unlock(&priv->lru.lock);
1261 
1262 	job->bos_pinned = true;
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Unpin GEM objects.  Normally this is done after the bind job is run.
1269  */
1270 static void
vm_bind_job_unpin_objects(struct msm_vm_bind_job * job)1271 vm_bind_job_unpin_objects(struct msm_vm_bind_job *job)
1272 {
1273 	struct drm_gem_object *obj;
1274 
1275 	if (!job->bos_pinned)
1276 		return;
1277 
1278 	job_foreach_bo (obj, job)
1279 		msm_gem_unpin_locked(obj);
1280 
1281 	job->bos_pinned = false;
1282 }
1283 
1284 /*
1285  * Pre-allocate pgtable memory, and translate the VM bind requests into a
1286  * sequence of pgtable updates to be applied asynchronously.
1287  */
1288 static int
vm_bind_job_prepare(struct msm_vm_bind_job * job)1289 vm_bind_job_prepare(struct msm_vm_bind_job *job)
1290 {
1291 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
1292 	struct msm_mmu *mmu = vm->mmu;
1293 	int ret;
1294 
1295 	ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc);
1296 	if (ret)
1297 		return ret;
1298 
1299 	for (unsigned i = 0; i < job->nr_ops; i++) {
1300 		const struct msm_vm_bind_op *op = &job->ops[i];
1301 		struct op_arg arg = {
1302 			.job = job,
1303 			.op = op,
1304 		};
1305 
1306 		switch (op->op) {
1307 		case MSM_VM_BIND_OP_UNMAP:
1308 			ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova,
1309 						 op->range);
1310 			break;
1311 		case MSM_VM_BIND_OP_MAP:
1312 			if (op->flags & MSM_VM_BIND_OP_DUMP)
1313 				arg.flags |= MSM_VMA_DUMP;
1314 			fallthrough;
1315 		case MSM_VM_BIND_OP_MAP_NULL:
1316 			ret = drm_gpuvm_sm_map(job->vm, &arg, op->iova,
1317 					       op->range, op->obj, op->obj_offset);
1318 			break;
1319 		default:
1320 			/*
1321 			 * lookup_op() should have already thrown an error for
1322 			 * invalid ops
1323 			 */
1324 			BUG_ON("unreachable");
1325 		}
1326 
1327 		if (ret) {
1328 			/*
1329 			 * If we've already started modifying the vm, we can't
1330 			 * adequetly describe to userspace the intermediate
1331 			 * state the vm is in.  So throw up our hands!
1332 			 */
1333 			if (i > 0)
1334 				msm_gem_vm_unusable(job->vm);
1335 			return ret;
1336 		}
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /*
1343  * Attach fences to the GEM objects being bound.  This will signify to
1344  * the shrinker that they are busy even after dropping the locks (ie.
1345  * drm_exec_fini())
1346  */
1347 static void
vm_bind_job_attach_fences(struct msm_vm_bind_job * job)1348 vm_bind_job_attach_fences(struct msm_vm_bind_job *job)
1349 {
1350 	for (unsigned i = 0; i < job->nr_ops; i++) {
1351 		struct drm_gem_object *obj = job->ops[i].obj;
1352 
1353 		if (!obj)
1354 			continue;
1355 
1356 		dma_resv_add_fence(obj->resv, job->fence,
1357 				   DMA_RESV_USAGE_KERNEL);
1358 	}
1359 }
1360 
1361 int
msm_ioctl_vm_bind(struct drm_device * dev,void * data,struct drm_file * file)1362 msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file)
1363 {
1364 	struct msm_drm_private *priv = dev->dev_private;
1365 	struct drm_msm_vm_bind *args = data;
1366 	struct msm_context *ctx = file->driver_priv;
1367 	struct msm_vm_bind_job *job = NULL;
1368 	struct msm_gpu *gpu = priv->gpu;
1369 	struct msm_gpu_submitqueue *queue;
1370 	struct msm_syncobj_post_dep *post_deps = NULL;
1371 	struct drm_syncobj **syncobjs_to_reset = NULL;
1372 	struct sync_file *sync_file = NULL;
1373 	struct dma_fence *fence;
1374 	int out_fence_fd = -1;
1375 	int ret, nr_bos = 0;
1376 	unsigned i;
1377 
1378 	if (!gpu)
1379 		return -ENXIO;
1380 
1381 	/*
1382 	 * Maybe we could allow just UNMAP ops?  OTOH userspace should just
1383 	 * immediately close the device file and all will be torn down.
1384 	 */
1385 	if (to_msm_vm(ctx->vm)->unusable)
1386 		return UERR(EPIPE, dev, "context is unusable");
1387 
1388 	/*
1389 	 * Technically, you cannot create a VM_BIND submitqueue in the first
1390 	 * place, if you haven't opted in to VM_BIND context.  But it is
1391 	 * cleaner / less confusing, to check this case directly.
1392 	 */
1393 	if (!msm_context_is_vmbind(ctx))
1394 		return UERR(EINVAL, dev, "context does not support vmbind");
1395 
1396 	if (args->flags & ~MSM_VM_BIND_FLAGS)
1397 		return UERR(EINVAL, dev, "invalid flags");
1398 
1399 	queue = msm_submitqueue_get(ctx, args->queue_id);
1400 	if (!queue)
1401 		return -ENOENT;
1402 
1403 	if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) {
1404 		ret = UERR(EINVAL, dev, "Invalid queue type");
1405 		goto out_post_unlock;
1406 	}
1407 
1408 	if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1409 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1410 		if (out_fence_fd < 0) {
1411 			ret = out_fence_fd;
1412 			goto out_post_unlock;
1413 		}
1414 	}
1415 
1416 	job = vm_bind_job_create(dev, file, queue, args->nr_ops);
1417 	if (IS_ERR(job)) {
1418 		ret = PTR_ERR(job);
1419 		goto out_post_unlock;
1420 	}
1421 
1422 	ret = mutex_lock_interruptible(&queue->lock);
1423 	if (ret)
1424 		goto out_post_unlock;
1425 
1426 	if (args->flags & MSM_VM_BIND_FENCE_FD_IN) {
1427 		struct dma_fence *in_fence;
1428 
1429 		in_fence = sync_file_get_fence(args->fence_fd);
1430 
1431 		if (!in_fence) {
1432 			ret = UERR(EINVAL, dev, "invalid in-fence");
1433 			goto out_unlock;
1434 		}
1435 
1436 		ret = drm_sched_job_add_dependency(&job->base, in_fence);
1437 		if (ret)
1438 			goto out_unlock;
1439 	}
1440 
1441 	if (args->in_syncobjs > 0) {
1442 		syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base,
1443 							   file, args->in_syncobjs,
1444 							   args->nr_in_syncobjs,
1445 							   args->syncobj_stride);
1446 		if (IS_ERR(syncobjs_to_reset)) {
1447 			ret = PTR_ERR(syncobjs_to_reset);
1448 			goto out_unlock;
1449 		}
1450 	}
1451 
1452 	if (args->out_syncobjs > 0) {
1453 		post_deps = msm_syncobj_parse_post_deps(dev, file,
1454 							args->out_syncobjs,
1455 							args->nr_out_syncobjs,
1456 							args->syncobj_stride);
1457 		if (IS_ERR(post_deps)) {
1458 			ret = PTR_ERR(post_deps);
1459 			goto out_unlock;
1460 		}
1461 	}
1462 
1463 	ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos);
1464 	if (ret)
1465 		goto out_unlock;
1466 
1467 	ret = vm_bind_prealloc_count(job);
1468 	if (ret)
1469 		goto out_unlock;
1470 
1471 	struct drm_exec exec;
1472 	unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT;
1473 	drm_exec_init(&exec, flags, nr_bos + 1);
1474 
1475 	ret = vm_bind_job_lock_objects(job, &exec);
1476 	if (ret)
1477 		goto out;
1478 
1479 	ret = vm_bind_job_pin_objects(job);
1480 	if (ret)
1481 		goto out;
1482 
1483 	ret = vm_bind_job_prepare(job);
1484 	if (ret)
1485 		goto out;
1486 
1487 	drm_sched_job_arm(&job->base);
1488 
1489 	job->fence = dma_fence_get(&job->base.s_fence->finished);
1490 
1491 	if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1492 		sync_file = sync_file_create(job->fence);
1493 		if (!sync_file)
1494 			ret = -ENOMEM;
1495 	}
1496 
1497 	if (ret)
1498 		goto out;
1499 
1500 	vm_bind_job_attach_fences(job);
1501 
1502 	/*
1503 	 * The job can be free'd (and fence unref'd) at any point after
1504 	 * drm_sched_entity_push_job(), so we need to hold our own ref
1505 	 */
1506 	fence = dma_fence_get(job->fence);
1507 
1508 	drm_sched_entity_push_job(&job->base);
1509 
1510 	msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs);
1511 	msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence);
1512 
1513 	dma_fence_put(fence);
1514 
1515 out:
1516 	if (ret)
1517 		vm_bind_job_unpin_objects(job);
1518 
1519 	drm_exec_fini(&exec);
1520 out_unlock:
1521 	mutex_unlock(&queue->lock);
1522 out_post_unlock:
1523 	if (ret) {
1524 		if (out_fence_fd >= 0)
1525 			put_unused_fd(out_fence_fd);
1526 		if (sync_file)
1527 			fput(sync_file->file);
1528 	} else if (sync_file) {
1529 		fd_install(out_fence_fd, sync_file->file);
1530 		args->fence_fd = out_fence_fd;
1531 	}
1532 
1533 	if (!IS_ERR_OR_NULL(job)) {
1534 		if (ret)
1535 			msm_vma_job_free(&job->base);
1536 	} else {
1537 		/*
1538 		 * If the submit hasn't yet taken ownership of the queue
1539 		 * then we need to drop the reference ourself:
1540 		 */
1541 		msm_submitqueue_put(queue);
1542 	}
1543 
1544 	if (!IS_ERR_OR_NULL(post_deps)) {
1545 		for (i = 0; i < args->nr_out_syncobjs; ++i) {
1546 			kfree(post_deps[i].chain);
1547 			drm_syncobj_put(post_deps[i].syncobj);
1548 		}
1549 		kfree(post_deps);
1550 	}
1551 
1552 	if (!IS_ERR_OR_NULL(syncobjs_to_reset)) {
1553 		for (i = 0; i < args->nr_in_syncobjs; ++i) {
1554 			if (syncobjs_to_reset[i])
1555 				drm_syncobj_put(syncobjs_to_reset[i]);
1556 		}
1557 		kfree(syncobjs_to_reset);
1558 	}
1559 
1560 	return ret;
1561 }
1562