1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/memcontrol.h>
14 #include <linux/mm.h>
15 #include <linux/psi.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/string_choices.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/damon.h>
22
23 static DEFINE_MUTEX(damon_lock);
24 static int nr_running_ctxs;
25 static bool running_exclusive_ctxs;
26
27 static DEFINE_MUTEX(damon_ops_lock);
28 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
29
30 static struct kmem_cache *damon_region_cache __ro_after_init;
31
32 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)33 static bool __damon_is_registered_ops(enum damon_ops_id id)
34 {
35 struct damon_operations empty_ops = {};
36
37 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
38 return false;
39 return true;
40 }
41
42 /**
43 * damon_is_registered_ops() - Check if a given damon_operations is registered.
44 * @id: Id of the damon_operations to check if registered.
45 *
46 * Return: true if the ops is set, false otherwise.
47 */
damon_is_registered_ops(enum damon_ops_id id)48 bool damon_is_registered_ops(enum damon_ops_id id)
49 {
50 bool registered;
51
52 if (id >= NR_DAMON_OPS)
53 return false;
54 mutex_lock(&damon_ops_lock);
55 registered = __damon_is_registered_ops(id);
56 mutex_unlock(&damon_ops_lock);
57 return registered;
58 }
59
60 /**
61 * damon_register_ops() - Register a monitoring operations set to DAMON.
62 * @ops: monitoring operations set to register.
63 *
64 * This function registers a monitoring operations set of valid &struct
65 * damon_operations->id so that others can find and use them later.
66 *
67 * Return: 0 on success, negative error code otherwise.
68 */
damon_register_ops(struct damon_operations * ops)69 int damon_register_ops(struct damon_operations *ops)
70 {
71 int err = 0;
72
73 if (ops->id >= NR_DAMON_OPS)
74 return -EINVAL;
75
76 mutex_lock(&damon_ops_lock);
77 /* Fail for already registered ops */
78 if (__damon_is_registered_ops(ops->id))
79 err = -EINVAL;
80 else
81 damon_registered_ops[ops->id] = *ops;
82 mutex_unlock(&damon_ops_lock);
83 return err;
84 }
85
86 /**
87 * damon_select_ops() - Select a monitoring operations to use with the context.
88 * @ctx: monitoring context to use the operations.
89 * @id: id of the registered monitoring operations to select.
90 *
91 * This function finds registered monitoring operations set of @id and make
92 * @ctx to use it.
93 *
94 * Return: 0 on success, negative error code otherwise.
95 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)96 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
97 {
98 int err = 0;
99
100 if (id >= NR_DAMON_OPS)
101 return -EINVAL;
102
103 mutex_lock(&damon_ops_lock);
104 if (!__damon_is_registered_ops(id))
105 err = -EINVAL;
106 else
107 ctx->ops = damon_registered_ops[id];
108 mutex_unlock(&damon_ops_lock);
109 return err;
110 }
111
112 /*
113 * Construct a damon_region struct
114 *
115 * Returns the pointer to the new struct if success, or NULL otherwise
116 */
damon_new_region(unsigned long start,unsigned long end)117 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
118 {
119 struct damon_region *region;
120
121 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
122 if (!region)
123 return NULL;
124
125 region->ar.start = start;
126 region->ar.end = end;
127 region->nr_accesses = 0;
128 region->nr_accesses_bp = 0;
129 INIT_LIST_HEAD(®ion->list);
130
131 region->age = 0;
132 region->last_nr_accesses = 0;
133
134 return region;
135 }
136
damon_add_region(struct damon_region * r,struct damon_target * t)137 void damon_add_region(struct damon_region *r, struct damon_target *t)
138 {
139 list_add_tail(&r->list, &t->regions_list);
140 t->nr_regions++;
141 }
142
damon_del_region(struct damon_region * r,struct damon_target * t)143 static void damon_del_region(struct damon_region *r, struct damon_target *t)
144 {
145 list_del(&r->list);
146 t->nr_regions--;
147 }
148
damon_free_region(struct damon_region * r)149 static void damon_free_region(struct damon_region *r)
150 {
151 kmem_cache_free(damon_region_cache, r);
152 }
153
damon_destroy_region(struct damon_region * r,struct damon_target * t)154 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
155 {
156 damon_del_region(r, t);
157 damon_free_region(r);
158 }
159
160 /*
161 * Check whether a region is intersecting an address range
162 *
163 * Returns true if it is.
164 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)165 static bool damon_intersect(struct damon_region *r,
166 struct damon_addr_range *re)
167 {
168 return !(r->ar.end <= re->start || re->end <= r->ar.start);
169 }
170
171 /*
172 * Fill holes in regions with new regions.
173 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)174 static int damon_fill_regions_holes(struct damon_region *first,
175 struct damon_region *last, struct damon_target *t)
176 {
177 struct damon_region *r = first;
178
179 damon_for_each_region_from(r, t) {
180 struct damon_region *next, *newr;
181
182 if (r == last)
183 break;
184 next = damon_next_region(r);
185 if (r->ar.end != next->ar.start) {
186 newr = damon_new_region(r->ar.end, next->ar.start);
187 if (!newr)
188 return -ENOMEM;
189 damon_insert_region(newr, r, next, t);
190 }
191 }
192 return 0;
193 }
194
195 /*
196 * damon_set_regions() - Set regions of a target for given address ranges.
197 * @t: the given target.
198 * @ranges: array of new monitoring target ranges.
199 * @nr_ranges: length of @ranges.
200 * @min_sz_region: minimum region size.
201 *
202 * This function adds new regions to, or modify existing regions of a
203 * monitoring target to fit in specific ranges.
204 *
205 * Return: 0 if success, or negative error code otherwise.
206 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges,unsigned long min_sz_region)207 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
208 unsigned int nr_ranges, unsigned long min_sz_region)
209 {
210 struct damon_region *r, *next;
211 unsigned int i;
212 int err;
213
214 /* Remove regions which are not in the new ranges */
215 damon_for_each_region_safe(r, next, t) {
216 for (i = 0; i < nr_ranges; i++) {
217 if (damon_intersect(r, &ranges[i]))
218 break;
219 }
220 if (i == nr_ranges)
221 damon_destroy_region(r, t);
222 }
223
224 r = damon_first_region(t);
225 /* Add new regions or resize existing regions to fit in the ranges */
226 for (i = 0; i < nr_ranges; i++) {
227 struct damon_region *first = NULL, *last, *newr;
228 struct damon_addr_range *range;
229
230 range = &ranges[i];
231 /* Get the first/last regions intersecting with the range */
232 damon_for_each_region_from(r, t) {
233 if (damon_intersect(r, range)) {
234 if (!first)
235 first = r;
236 last = r;
237 }
238 if (r->ar.start >= range->end)
239 break;
240 }
241 if (!first) {
242 /* no region intersects with this range */
243 newr = damon_new_region(
244 ALIGN_DOWN(range->start,
245 min_sz_region),
246 ALIGN(range->end, min_sz_region));
247 if (!newr)
248 return -ENOMEM;
249 damon_insert_region(newr, damon_prev_region(r), r, t);
250 } else {
251 /* resize intersecting regions to fit in this range */
252 first->ar.start = ALIGN_DOWN(range->start,
253 min_sz_region);
254 last->ar.end = ALIGN(range->end, min_sz_region);
255
256 /* fill possible holes in the range */
257 err = damon_fill_regions_holes(first, last, t);
258 if (err)
259 return err;
260 }
261 }
262 return 0;
263 }
264
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)265 struct damos_filter *damos_new_filter(enum damos_filter_type type,
266 bool matching, bool allow)
267 {
268 struct damos_filter *filter;
269
270 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
271 if (!filter)
272 return NULL;
273 filter->type = type;
274 filter->matching = matching;
275 filter->allow = allow;
276 INIT_LIST_HEAD(&filter->list);
277 return filter;
278 }
279
280 /**
281 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
282 * @type: type of the filter.
283 *
284 * Return: true if the filter of @type needs to be handled by ops layer, false
285 * otherwise.
286 */
damos_filter_for_ops(enum damos_filter_type type)287 bool damos_filter_for_ops(enum damos_filter_type type)
288 {
289 switch (type) {
290 case DAMOS_FILTER_TYPE_ADDR:
291 case DAMOS_FILTER_TYPE_TARGET:
292 return false;
293 default:
294 break;
295 }
296 return true;
297 }
298
damos_add_filter(struct damos * s,struct damos_filter * f)299 void damos_add_filter(struct damos *s, struct damos_filter *f)
300 {
301 if (damos_filter_for_ops(f->type))
302 list_add_tail(&f->list, &s->ops_filters);
303 else
304 list_add_tail(&f->list, &s->core_filters);
305 }
306
damos_del_filter(struct damos_filter * f)307 static void damos_del_filter(struct damos_filter *f)
308 {
309 list_del(&f->list);
310 }
311
damos_free_filter(struct damos_filter * f)312 static void damos_free_filter(struct damos_filter *f)
313 {
314 kfree(f);
315 }
316
damos_destroy_filter(struct damos_filter * f)317 void damos_destroy_filter(struct damos_filter *f)
318 {
319 damos_del_filter(f);
320 damos_free_filter(f);
321 }
322
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)323 struct damos_quota_goal *damos_new_quota_goal(
324 enum damos_quota_goal_metric metric,
325 unsigned long target_value)
326 {
327 struct damos_quota_goal *goal;
328
329 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
330 if (!goal)
331 return NULL;
332 goal->metric = metric;
333 goal->target_value = target_value;
334 INIT_LIST_HEAD(&goal->list);
335 return goal;
336 }
337
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)338 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
339 {
340 list_add_tail(&g->list, &q->goals);
341 }
342
damos_del_quota_goal(struct damos_quota_goal * g)343 static void damos_del_quota_goal(struct damos_quota_goal *g)
344 {
345 list_del(&g->list);
346 }
347
damos_free_quota_goal(struct damos_quota_goal * g)348 static void damos_free_quota_goal(struct damos_quota_goal *g)
349 {
350 kfree(g);
351 }
352
damos_destroy_quota_goal(struct damos_quota_goal * g)353 void damos_destroy_quota_goal(struct damos_quota_goal *g)
354 {
355 damos_del_quota_goal(g);
356 damos_free_quota_goal(g);
357 }
358
359 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)360 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
361 {
362 quota->esz = 0;
363 quota->total_charged_sz = 0;
364 quota->total_charged_ns = 0;
365 quota->charged_sz = 0;
366 quota->charged_from = 0;
367 quota->charge_target_from = NULL;
368 quota->charge_addr_from = 0;
369 quota->esz_bp = 0;
370 return quota;
371 }
372
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)373 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
374 enum damos_action action,
375 unsigned long apply_interval_us,
376 struct damos_quota *quota,
377 struct damos_watermarks *wmarks,
378 int target_nid)
379 {
380 struct damos *scheme;
381
382 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
383 if (!scheme)
384 return NULL;
385 scheme->pattern = *pattern;
386 scheme->action = action;
387 scheme->apply_interval_us = apply_interval_us;
388 /*
389 * next_apply_sis will be set when kdamond starts. While kdamond is
390 * running, it will also updated when it is added to the DAMON context,
391 * or damon_attrs are updated.
392 */
393 scheme->next_apply_sis = 0;
394 scheme->walk_completed = false;
395 INIT_LIST_HEAD(&scheme->core_filters);
396 INIT_LIST_HEAD(&scheme->ops_filters);
397 scheme->stat = (struct damos_stat){};
398 INIT_LIST_HEAD(&scheme->list);
399
400 scheme->quota = *(damos_quota_init(quota));
401 /* quota.goals should be separately set by caller */
402 INIT_LIST_HEAD(&scheme->quota.goals);
403
404 scheme->wmarks = *wmarks;
405 scheme->wmarks.activated = true;
406
407 scheme->migrate_dests = (struct damos_migrate_dests){};
408 scheme->target_nid = target_nid;
409
410 return scheme;
411 }
412
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)413 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
414 {
415 unsigned long sample_interval = ctx->attrs.sample_interval ?
416 ctx->attrs.sample_interval : 1;
417 unsigned long apply_interval = s->apply_interval_us ?
418 s->apply_interval_us : ctx->attrs.aggr_interval;
419
420 s->next_apply_sis = ctx->passed_sample_intervals +
421 apply_interval / sample_interval;
422 }
423
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)424 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
425 {
426 list_add_tail(&s->list, &ctx->schemes);
427 damos_set_next_apply_sis(s, ctx);
428 }
429
damon_del_scheme(struct damos * s)430 static void damon_del_scheme(struct damos *s)
431 {
432 list_del(&s->list);
433 }
434
damon_free_scheme(struct damos * s)435 static void damon_free_scheme(struct damos *s)
436 {
437 kfree(s);
438 }
439
damon_destroy_scheme(struct damos * s)440 void damon_destroy_scheme(struct damos *s)
441 {
442 struct damos_quota_goal *g, *g_next;
443 struct damos_filter *f, *next;
444
445 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
446 damos_destroy_quota_goal(g);
447
448 damos_for_each_core_filter_safe(f, next, s)
449 damos_destroy_filter(f);
450
451 damos_for_each_ops_filter_safe(f, next, s)
452 damos_destroy_filter(f);
453
454 kfree(s->migrate_dests.node_id_arr);
455 kfree(s->migrate_dests.weight_arr);
456 damon_del_scheme(s);
457 damon_free_scheme(s);
458 }
459
460 /*
461 * Construct a damon_target struct
462 *
463 * Returns the pointer to the new struct if success, or NULL otherwise
464 */
damon_new_target(void)465 struct damon_target *damon_new_target(void)
466 {
467 struct damon_target *t;
468
469 t = kmalloc(sizeof(*t), GFP_KERNEL);
470 if (!t)
471 return NULL;
472
473 t->pid = NULL;
474 t->nr_regions = 0;
475 INIT_LIST_HEAD(&t->regions_list);
476 INIT_LIST_HEAD(&t->list);
477 t->obsolete = false;
478
479 return t;
480 }
481
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)482 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
483 {
484 list_add_tail(&t->list, &ctx->adaptive_targets);
485 }
486
damon_targets_empty(struct damon_ctx * ctx)487 bool damon_targets_empty(struct damon_ctx *ctx)
488 {
489 return list_empty(&ctx->adaptive_targets);
490 }
491
damon_del_target(struct damon_target * t)492 static void damon_del_target(struct damon_target *t)
493 {
494 list_del(&t->list);
495 }
496
damon_free_target(struct damon_target * t)497 void damon_free_target(struct damon_target *t)
498 {
499 struct damon_region *r, *next;
500
501 damon_for_each_region_safe(r, next, t)
502 damon_free_region(r);
503 kfree(t);
504 }
505
damon_destroy_target(struct damon_target * t,struct damon_ctx * ctx)506 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx)
507 {
508
509 if (ctx && ctx->ops.cleanup_target)
510 ctx->ops.cleanup_target(t);
511
512 damon_del_target(t);
513 damon_free_target(t);
514 }
515
damon_nr_regions(struct damon_target * t)516 unsigned int damon_nr_regions(struct damon_target *t)
517 {
518 return t->nr_regions;
519 }
520
damon_new_ctx(void)521 struct damon_ctx *damon_new_ctx(void)
522 {
523 struct damon_ctx *ctx;
524
525 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
526 if (!ctx)
527 return NULL;
528
529 init_completion(&ctx->kdamond_started);
530
531 ctx->attrs.sample_interval = 5 * 1000;
532 ctx->attrs.aggr_interval = 100 * 1000;
533 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
534
535 ctx->passed_sample_intervals = 0;
536 /* These will be set from kdamond_init_ctx() */
537 ctx->next_aggregation_sis = 0;
538 ctx->next_ops_update_sis = 0;
539
540 mutex_init(&ctx->kdamond_lock);
541 INIT_LIST_HEAD(&ctx->call_controls);
542 mutex_init(&ctx->call_controls_lock);
543 mutex_init(&ctx->walk_control_lock);
544
545 ctx->attrs.min_nr_regions = 10;
546 ctx->attrs.max_nr_regions = 1000;
547
548 ctx->addr_unit = 1;
549 ctx->min_sz_region = DAMON_MIN_REGION;
550
551 INIT_LIST_HEAD(&ctx->adaptive_targets);
552 INIT_LIST_HEAD(&ctx->schemes);
553
554 return ctx;
555 }
556
damon_destroy_targets(struct damon_ctx * ctx)557 static void damon_destroy_targets(struct damon_ctx *ctx)
558 {
559 struct damon_target *t, *next_t;
560
561 damon_for_each_target_safe(t, next_t, ctx)
562 damon_destroy_target(t, ctx);
563 }
564
damon_destroy_ctx(struct damon_ctx * ctx)565 void damon_destroy_ctx(struct damon_ctx *ctx)
566 {
567 struct damos *s, *next_s;
568
569 damon_destroy_targets(ctx);
570
571 damon_for_each_scheme_safe(s, next_s, ctx)
572 damon_destroy_scheme(s);
573
574 kfree(ctx);
575 }
576
damon_attrs_equals(const struct damon_attrs * attrs1,const struct damon_attrs * attrs2)577 static bool damon_attrs_equals(const struct damon_attrs *attrs1,
578 const struct damon_attrs *attrs2)
579 {
580 const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal;
581 const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal;
582
583 return attrs1->sample_interval == attrs2->sample_interval &&
584 attrs1->aggr_interval == attrs2->aggr_interval &&
585 attrs1->ops_update_interval == attrs2->ops_update_interval &&
586 attrs1->min_nr_regions == attrs2->min_nr_regions &&
587 attrs1->max_nr_regions == attrs2->max_nr_regions &&
588 ig1->access_bp == ig2->access_bp &&
589 ig1->aggrs == ig2->aggrs &&
590 ig1->min_sample_us == ig2->min_sample_us &&
591 ig1->max_sample_us == ig2->max_sample_us;
592 }
593
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)594 static unsigned int damon_age_for_new_attrs(unsigned int age,
595 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
596 {
597 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
598 }
599
600 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)601 static unsigned int damon_accesses_bp_to_nr_accesses(
602 unsigned int accesses_bp, struct damon_attrs *attrs)
603 {
604 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
605 }
606
607 /*
608 * Convert nr_accesses to access ratio in bp (per 10,000).
609 *
610 * Callers should ensure attrs.aggr_interval is not zero, like
611 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
612 * happen.
613 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)614 static unsigned int damon_nr_accesses_to_accesses_bp(
615 unsigned int nr_accesses, struct damon_attrs *attrs)
616 {
617 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
618 }
619
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)620 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
621 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
622 {
623 return damon_accesses_bp_to_nr_accesses(
624 damon_nr_accesses_to_accesses_bp(
625 nr_accesses, old_attrs),
626 new_attrs);
627 }
628
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)629 static void damon_update_monitoring_result(struct damon_region *r,
630 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
631 bool aggregating)
632 {
633 if (!aggregating) {
634 r->nr_accesses = damon_nr_accesses_for_new_attrs(
635 r->nr_accesses, old_attrs, new_attrs);
636 r->nr_accesses_bp = r->nr_accesses * 10000;
637 } else {
638 /*
639 * if this is called in the middle of the aggregation, reset
640 * the aggregations we made so far for this aggregation
641 * interval. In other words, make the status like
642 * kdamond_reset_aggregated() is called.
643 */
644 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
645 r->last_nr_accesses, old_attrs, new_attrs);
646 r->nr_accesses_bp = r->last_nr_accesses * 10000;
647 r->nr_accesses = 0;
648 }
649 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
650 }
651
652 /*
653 * region->nr_accesses is the number of sampling intervals in the last
654 * aggregation interval that access to the region has found, and region->age is
655 * the number of aggregation intervals that its access pattern has maintained.
656 * For the reason, the real meaning of the two fields depend on current
657 * sampling interval and aggregation interval. This function updates
658 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
659 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)660 static void damon_update_monitoring_results(struct damon_ctx *ctx,
661 struct damon_attrs *new_attrs, bool aggregating)
662 {
663 struct damon_attrs *old_attrs = &ctx->attrs;
664 struct damon_target *t;
665 struct damon_region *r;
666
667 /* if any interval is zero, simply forgive conversion */
668 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
669 !new_attrs->sample_interval ||
670 !new_attrs->aggr_interval)
671 return;
672
673 damon_for_each_target(t, ctx)
674 damon_for_each_region(r, t)
675 damon_update_monitoring_result(
676 r, old_attrs, new_attrs, aggregating);
677 }
678
679 /*
680 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
681 * valid.
682 */
damon_valid_intervals_goal(struct damon_attrs * attrs)683 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
684 {
685 struct damon_intervals_goal *goal = &attrs->intervals_goal;
686
687 /* tuning is disabled */
688 if (!goal->aggrs)
689 return true;
690 if (goal->min_sample_us > goal->max_sample_us)
691 return false;
692 if (attrs->sample_interval < goal->min_sample_us ||
693 goal->max_sample_us < attrs->sample_interval)
694 return false;
695 return true;
696 }
697
698 /**
699 * damon_set_attrs() - Set attributes for the monitoring.
700 * @ctx: monitoring context
701 * @attrs: monitoring attributes
702 *
703 * This function should be called while the kdamond is not running, an access
704 * check results aggregation is not ongoing (e.g., from damon_call().
705 *
706 * Every time interval is in micro-seconds.
707 *
708 * Return: 0 on success, negative error code otherwise.
709 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)710 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
711 {
712 unsigned long sample_interval = attrs->sample_interval ?
713 attrs->sample_interval : 1;
714 struct damos *s;
715 bool aggregating = ctx->passed_sample_intervals <
716 ctx->next_aggregation_sis;
717
718 if (!damon_valid_intervals_goal(attrs))
719 return -EINVAL;
720
721 if (attrs->min_nr_regions < 3)
722 return -EINVAL;
723 if (attrs->min_nr_regions > attrs->max_nr_regions)
724 return -EINVAL;
725 if (attrs->sample_interval > attrs->aggr_interval)
726 return -EINVAL;
727
728 /* calls from core-external doesn't set this. */
729 if (!attrs->aggr_samples)
730 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
731
732 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
733 attrs->aggr_interval / sample_interval;
734 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
735 attrs->ops_update_interval / sample_interval;
736
737 damon_update_monitoring_results(ctx, attrs, aggregating);
738 ctx->attrs = *attrs;
739
740 damon_for_each_scheme(s, ctx)
741 damos_set_next_apply_sis(s, ctx);
742
743 return 0;
744 }
745
746 /**
747 * damon_set_schemes() - Set data access monitoring based operation schemes.
748 * @ctx: monitoring context
749 * @schemes: array of the schemes
750 * @nr_schemes: number of entries in @schemes
751 *
752 * This function should not be called while the kdamond of the context is
753 * running.
754 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)755 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
756 ssize_t nr_schemes)
757 {
758 struct damos *s, *next;
759 ssize_t i;
760
761 damon_for_each_scheme_safe(s, next, ctx)
762 damon_destroy_scheme(s);
763 for (i = 0; i < nr_schemes; i++)
764 damon_add_scheme(ctx, schemes[i]);
765 }
766
damos_nth_quota_goal(int n,struct damos_quota * q)767 static struct damos_quota_goal *damos_nth_quota_goal(
768 int n, struct damos_quota *q)
769 {
770 struct damos_quota_goal *goal;
771 int i = 0;
772
773 damos_for_each_quota_goal(goal, q) {
774 if (i++ == n)
775 return goal;
776 }
777 return NULL;
778 }
779
damos_commit_quota_goal_union(struct damos_quota_goal * dst,struct damos_quota_goal * src)780 static void damos_commit_quota_goal_union(
781 struct damos_quota_goal *dst, struct damos_quota_goal *src)
782 {
783 switch (dst->metric) {
784 case DAMOS_QUOTA_NODE_MEM_USED_BP:
785 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
786 dst->nid = src->nid;
787 break;
788 case DAMOS_QUOTA_NODE_MEMCG_USED_BP:
789 case DAMOS_QUOTA_NODE_MEMCG_FREE_BP:
790 dst->nid = src->nid;
791 dst->memcg_id = src->memcg_id;
792 break;
793 default:
794 break;
795 }
796 }
797
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)798 static void damos_commit_quota_goal(
799 struct damos_quota_goal *dst, struct damos_quota_goal *src)
800 {
801 dst->metric = src->metric;
802 dst->target_value = src->target_value;
803 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
804 dst->current_value = src->current_value;
805 /* keep last_psi_total as is, since it will be updated in next cycle */
806 damos_commit_quota_goal_union(dst, src);
807 }
808
809 /**
810 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
811 * @dst: The commit destination DAMOS quota.
812 * @src: The commit source DAMOS quota.
813 *
814 * Copies user-specified parameters for quota goals from @src to @dst. Users
815 * should use this function for quota goals-level parameters update of running
816 * DAMON contexts, instead of manual in-place updates.
817 *
818 * This function should be called from parameters-update safe context, like
819 * damon_call().
820 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)821 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
822 {
823 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
824 int i = 0, j = 0;
825
826 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
827 src_goal = damos_nth_quota_goal(i++, src);
828 if (src_goal)
829 damos_commit_quota_goal(dst_goal, src_goal);
830 else
831 damos_destroy_quota_goal(dst_goal);
832 }
833 damos_for_each_quota_goal_safe(src_goal, next, src) {
834 if (j++ < i)
835 continue;
836 new_goal = damos_new_quota_goal(
837 src_goal->metric, src_goal->target_value);
838 if (!new_goal)
839 return -ENOMEM;
840 damos_commit_quota_goal(new_goal, src_goal);
841 damos_add_quota_goal(dst, new_goal);
842 }
843 return 0;
844 }
845
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)846 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
847 {
848 int err;
849
850 dst->reset_interval = src->reset_interval;
851 dst->ms = src->ms;
852 dst->sz = src->sz;
853 err = damos_commit_quota_goals(dst, src);
854 if (err)
855 return err;
856 dst->weight_sz = src->weight_sz;
857 dst->weight_nr_accesses = src->weight_nr_accesses;
858 dst->weight_age = src->weight_age;
859 return 0;
860 }
861
damos_nth_core_filter(int n,struct damos * s)862 static struct damos_filter *damos_nth_core_filter(int n, struct damos *s)
863 {
864 struct damos_filter *filter;
865 int i = 0;
866
867 damos_for_each_core_filter(filter, s) {
868 if (i++ == n)
869 return filter;
870 }
871 return NULL;
872 }
873
damos_nth_ops_filter(int n,struct damos * s)874 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s)
875 {
876 struct damos_filter *filter;
877 int i = 0;
878
879 damos_for_each_ops_filter(filter, s) {
880 if (i++ == n)
881 return filter;
882 }
883 return NULL;
884 }
885
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)886 static void damos_commit_filter_arg(
887 struct damos_filter *dst, struct damos_filter *src)
888 {
889 switch (dst->type) {
890 case DAMOS_FILTER_TYPE_MEMCG:
891 dst->memcg_id = src->memcg_id;
892 break;
893 case DAMOS_FILTER_TYPE_ADDR:
894 dst->addr_range = src->addr_range;
895 break;
896 case DAMOS_FILTER_TYPE_TARGET:
897 dst->target_idx = src->target_idx;
898 break;
899 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
900 dst->sz_range = src->sz_range;
901 break;
902 default:
903 break;
904 }
905 }
906
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)907 static void damos_commit_filter(
908 struct damos_filter *dst, struct damos_filter *src)
909 {
910 dst->type = src->type;
911 dst->matching = src->matching;
912 dst->allow = src->allow;
913 damos_commit_filter_arg(dst, src);
914 }
915
damos_commit_core_filters(struct damos * dst,struct damos * src)916 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
917 {
918 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
919 int i = 0, j = 0;
920
921 damos_for_each_core_filter_safe(dst_filter, next, dst) {
922 src_filter = damos_nth_core_filter(i++, src);
923 if (src_filter)
924 damos_commit_filter(dst_filter, src_filter);
925 else
926 damos_destroy_filter(dst_filter);
927 }
928
929 damos_for_each_core_filter_safe(src_filter, next, src) {
930 if (j++ < i)
931 continue;
932
933 new_filter = damos_new_filter(
934 src_filter->type, src_filter->matching,
935 src_filter->allow);
936 if (!new_filter)
937 return -ENOMEM;
938 damos_commit_filter_arg(new_filter, src_filter);
939 damos_add_filter(dst, new_filter);
940 }
941 return 0;
942 }
943
damos_commit_ops_filters(struct damos * dst,struct damos * src)944 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
945 {
946 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
947 int i = 0, j = 0;
948
949 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
950 src_filter = damos_nth_ops_filter(i++, src);
951 if (src_filter)
952 damos_commit_filter(dst_filter, src_filter);
953 else
954 damos_destroy_filter(dst_filter);
955 }
956
957 damos_for_each_ops_filter_safe(src_filter, next, src) {
958 if (j++ < i)
959 continue;
960
961 new_filter = damos_new_filter(
962 src_filter->type, src_filter->matching,
963 src_filter->allow);
964 if (!new_filter)
965 return -ENOMEM;
966 damos_commit_filter_arg(new_filter, src_filter);
967 damos_add_filter(dst, new_filter);
968 }
969 return 0;
970 }
971
972 /**
973 * damos_filters_default_reject() - decide whether to reject memory that didn't
974 * match with any given filter.
975 * @filters: Given DAMOS filters of a group.
976 */
damos_filters_default_reject(struct list_head * filters)977 static bool damos_filters_default_reject(struct list_head *filters)
978 {
979 struct damos_filter *last_filter;
980
981 if (list_empty(filters))
982 return false;
983 last_filter = list_last_entry(filters, struct damos_filter, list);
984 return last_filter->allow;
985 }
986
damos_set_filters_default_reject(struct damos * s)987 static void damos_set_filters_default_reject(struct damos *s)
988 {
989 if (!list_empty(&s->ops_filters))
990 s->core_filters_default_reject = false;
991 else
992 s->core_filters_default_reject =
993 damos_filters_default_reject(&s->core_filters);
994 s->ops_filters_default_reject =
995 damos_filters_default_reject(&s->ops_filters);
996 }
997
damos_commit_dests(struct damos_migrate_dests * dst,struct damos_migrate_dests * src)998 static int damos_commit_dests(struct damos_migrate_dests *dst,
999 struct damos_migrate_dests *src)
1000 {
1001 if (dst->nr_dests != src->nr_dests) {
1002 kfree(dst->node_id_arr);
1003 kfree(dst->weight_arr);
1004
1005 dst->node_id_arr = kmalloc_array(src->nr_dests,
1006 sizeof(*dst->node_id_arr), GFP_KERNEL);
1007 if (!dst->node_id_arr) {
1008 dst->weight_arr = NULL;
1009 return -ENOMEM;
1010 }
1011
1012 dst->weight_arr = kmalloc_array(src->nr_dests,
1013 sizeof(*dst->weight_arr), GFP_KERNEL);
1014 if (!dst->weight_arr) {
1015 /* ->node_id_arr will be freed by scheme destruction */
1016 return -ENOMEM;
1017 }
1018 }
1019
1020 dst->nr_dests = src->nr_dests;
1021 for (int i = 0; i < src->nr_dests; i++) {
1022 dst->node_id_arr[i] = src->node_id_arr[i];
1023 dst->weight_arr[i] = src->weight_arr[i];
1024 }
1025
1026 return 0;
1027 }
1028
damos_commit_filters(struct damos * dst,struct damos * src)1029 static int damos_commit_filters(struct damos *dst, struct damos *src)
1030 {
1031 int err;
1032
1033 err = damos_commit_core_filters(dst, src);
1034 if (err)
1035 return err;
1036 err = damos_commit_ops_filters(dst, src);
1037 if (err)
1038 return err;
1039 damos_set_filters_default_reject(dst);
1040 return 0;
1041 }
1042
damon_nth_scheme(int n,struct damon_ctx * ctx)1043 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
1044 {
1045 struct damos *s;
1046 int i = 0;
1047
1048 damon_for_each_scheme(s, ctx) {
1049 if (i++ == n)
1050 return s;
1051 }
1052 return NULL;
1053 }
1054
damos_commit(struct damos * dst,struct damos * src)1055 static int damos_commit(struct damos *dst, struct damos *src)
1056 {
1057 int err;
1058
1059 dst->pattern = src->pattern;
1060 dst->action = src->action;
1061 dst->apply_interval_us = src->apply_interval_us;
1062
1063 err = damos_commit_quota(&dst->quota, &src->quota);
1064 if (err)
1065 return err;
1066
1067 dst->wmarks = src->wmarks;
1068 dst->target_nid = src->target_nid;
1069
1070 err = damos_commit_dests(&dst->migrate_dests, &src->migrate_dests);
1071 if (err)
1072 return err;
1073
1074 err = damos_commit_filters(dst, src);
1075 return err;
1076 }
1077
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)1078 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1079 {
1080 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1081 int i = 0, j = 0, err;
1082
1083 damon_for_each_scheme_safe(dst_scheme, next, dst) {
1084 src_scheme = damon_nth_scheme(i++, src);
1085 if (src_scheme) {
1086 err = damos_commit(dst_scheme, src_scheme);
1087 if (err)
1088 return err;
1089 } else {
1090 damon_destroy_scheme(dst_scheme);
1091 }
1092 }
1093
1094 damon_for_each_scheme_safe(src_scheme, next, src) {
1095 if (j++ < i)
1096 continue;
1097 new_scheme = damon_new_scheme(&src_scheme->pattern,
1098 src_scheme->action,
1099 src_scheme->apply_interval_us,
1100 &src_scheme->quota, &src_scheme->wmarks,
1101 NUMA_NO_NODE);
1102 if (!new_scheme)
1103 return -ENOMEM;
1104 err = damos_commit(new_scheme, src_scheme);
1105 if (err) {
1106 damon_destroy_scheme(new_scheme);
1107 return err;
1108 }
1109 damon_add_scheme(dst, new_scheme);
1110 }
1111 return 0;
1112 }
1113
damon_nth_target(int n,struct damon_ctx * ctx)1114 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1115 {
1116 struct damon_target *t;
1117 int i = 0;
1118
1119 damon_for_each_target(t, ctx) {
1120 if (i++ == n)
1121 return t;
1122 }
1123 return NULL;
1124 }
1125
1126 /*
1127 * The caller should ensure the regions of @src are
1128 * 1. valid (end >= src) and
1129 * 2. sorted by starting address.
1130 *
1131 * If @src has no region, @dst keeps current regions.
1132 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src,unsigned long src_min_sz_region)1133 static int damon_commit_target_regions(struct damon_target *dst,
1134 struct damon_target *src, unsigned long src_min_sz_region)
1135 {
1136 struct damon_region *src_region;
1137 struct damon_addr_range *ranges;
1138 int i = 0, err;
1139
1140 damon_for_each_region(src_region, src)
1141 i++;
1142 if (!i)
1143 return 0;
1144
1145 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1146 if (!ranges)
1147 return -ENOMEM;
1148 i = 0;
1149 damon_for_each_region(src_region, src)
1150 ranges[i++] = src_region->ar;
1151 err = damon_set_regions(dst, ranges, i, src_min_sz_region);
1152 kfree(ranges);
1153 return err;
1154 }
1155
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid,unsigned long src_min_sz_region)1156 static int damon_commit_target(
1157 struct damon_target *dst, bool dst_has_pid,
1158 struct damon_target *src, bool src_has_pid,
1159 unsigned long src_min_sz_region)
1160 {
1161 int err;
1162
1163 err = damon_commit_target_regions(dst, src, src_min_sz_region);
1164 if (err)
1165 return err;
1166 if (dst_has_pid)
1167 put_pid(dst->pid);
1168 if (src_has_pid)
1169 get_pid(src->pid);
1170 dst->pid = src->pid;
1171 return 0;
1172 }
1173
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1174 static int damon_commit_targets(
1175 struct damon_ctx *dst, struct damon_ctx *src)
1176 {
1177 struct damon_target *dst_target, *next, *src_target, *new_target;
1178 int i = 0, j = 0, err;
1179
1180 damon_for_each_target_safe(dst_target, next, dst) {
1181 src_target = damon_nth_target(i++, src);
1182 /*
1183 * If src target is obsolete, do not commit the parameters to
1184 * the dst target, and further remove the dst target.
1185 */
1186 if (src_target && !src_target->obsolete) {
1187 err = damon_commit_target(
1188 dst_target, damon_target_has_pid(dst),
1189 src_target, damon_target_has_pid(src),
1190 src->min_sz_region);
1191 if (err)
1192 return err;
1193 } else {
1194 struct damos *s;
1195
1196 damon_destroy_target(dst_target, dst);
1197 damon_for_each_scheme(s, dst) {
1198 if (s->quota.charge_target_from == dst_target) {
1199 s->quota.charge_target_from = NULL;
1200 s->quota.charge_addr_from = 0;
1201 }
1202 }
1203 }
1204 }
1205
1206 damon_for_each_target_safe(src_target, next, src) {
1207 if (j++ < i)
1208 continue;
1209 /* target to remove has no matching dst */
1210 if (src_target->obsolete)
1211 return -EINVAL;
1212 new_target = damon_new_target();
1213 if (!new_target)
1214 return -ENOMEM;
1215 err = damon_commit_target(new_target, false,
1216 src_target, damon_target_has_pid(src),
1217 src->min_sz_region);
1218 if (err) {
1219 damon_destroy_target(new_target, NULL);
1220 return err;
1221 }
1222 damon_add_target(dst, new_target);
1223 }
1224 return 0;
1225 }
1226
1227 /**
1228 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1229 * @dst: The commit destination DAMON context.
1230 * @src: The commit source DAMON context.
1231 *
1232 * This function copies user-specified parameters from @src to @dst and update
1233 * the internal status and results accordingly. Users should use this function
1234 * for context-level parameters update of running context, instead of manual
1235 * in-place updates.
1236 *
1237 * This function should be called from parameters-update safe context, like
1238 * damon_call().
1239 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1240 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1241 {
1242 int err;
1243
1244 err = damon_commit_schemes(dst, src);
1245 if (err)
1246 return err;
1247 err = damon_commit_targets(dst, src);
1248 if (err)
1249 return err;
1250 /*
1251 * schemes and targets should be updated first, since
1252 * 1. damon_set_attrs() updates monitoring results of targets and
1253 * next_apply_sis of schemes, and
1254 * 2. ops update should be done after pid handling is done (target
1255 * committing require putting pids).
1256 */
1257 if (!damon_attrs_equals(&dst->attrs, &src->attrs)) {
1258 err = damon_set_attrs(dst, &src->attrs);
1259 if (err)
1260 return err;
1261 }
1262 dst->ops = src->ops;
1263 dst->addr_unit = src->addr_unit;
1264 dst->min_sz_region = src->min_sz_region;
1265
1266 return 0;
1267 }
1268
1269 /**
1270 * damon_nr_running_ctxs() - Return number of currently running contexts.
1271 */
damon_nr_running_ctxs(void)1272 int damon_nr_running_ctxs(void)
1273 {
1274 int nr_ctxs;
1275
1276 mutex_lock(&damon_lock);
1277 nr_ctxs = nr_running_ctxs;
1278 mutex_unlock(&damon_lock);
1279
1280 return nr_ctxs;
1281 }
1282
1283 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1284 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1285 {
1286 struct damon_target *t;
1287 struct damon_region *r;
1288 unsigned long sz = 0;
1289
1290 damon_for_each_target(t, ctx) {
1291 damon_for_each_region(r, t)
1292 sz += damon_sz_region(r);
1293 }
1294
1295 if (ctx->attrs.min_nr_regions)
1296 sz /= ctx->attrs.min_nr_regions;
1297 if (sz < ctx->min_sz_region)
1298 sz = ctx->min_sz_region;
1299
1300 return sz;
1301 }
1302
1303 static int kdamond_fn(void *data);
1304
1305 /*
1306 * __damon_start() - Starts monitoring with given context.
1307 * @ctx: monitoring context
1308 *
1309 * This function should be called while damon_lock is hold.
1310 *
1311 * Return: 0 on success, negative error code otherwise.
1312 */
__damon_start(struct damon_ctx * ctx)1313 static int __damon_start(struct damon_ctx *ctx)
1314 {
1315 int err = -EBUSY;
1316
1317 mutex_lock(&ctx->kdamond_lock);
1318 if (!ctx->kdamond) {
1319 err = 0;
1320 reinit_completion(&ctx->kdamond_started);
1321 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1322 nr_running_ctxs);
1323 if (IS_ERR(ctx->kdamond)) {
1324 err = PTR_ERR(ctx->kdamond);
1325 ctx->kdamond = NULL;
1326 } else {
1327 wait_for_completion(&ctx->kdamond_started);
1328 }
1329 }
1330 mutex_unlock(&ctx->kdamond_lock);
1331
1332 return err;
1333 }
1334
1335 /**
1336 * damon_start() - Starts the monitorings for a given group of contexts.
1337 * @ctxs: an array of the pointers for contexts to start monitoring
1338 * @nr_ctxs: size of @ctxs
1339 * @exclusive: exclusiveness of this contexts group
1340 *
1341 * This function starts a group of monitoring threads for a group of monitoring
1342 * contexts. One thread per each context is created and run in parallel. The
1343 * caller should handle synchronization between the threads by itself. If
1344 * @exclusive is true and a group of threads that created by other
1345 * 'damon_start()' call is currently running, this function does nothing but
1346 * returns -EBUSY.
1347 *
1348 * Return: 0 on success, negative error code otherwise.
1349 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1350 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1351 {
1352 int i;
1353 int err = 0;
1354
1355 mutex_lock(&damon_lock);
1356 if ((exclusive && nr_running_ctxs) ||
1357 (!exclusive && running_exclusive_ctxs)) {
1358 mutex_unlock(&damon_lock);
1359 return -EBUSY;
1360 }
1361
1362 for (i = 0; i < nr_ctxs; i++) {
1363 err = __damon_start(ctxs[i]);
1364 if (err)
1365 break;
1366 nr_running_ctxs++;
1367 }
1368 if (exclusive && nr_running_ctxs)
1369 running_exclusive_ctxs = true;
1370 mutex_unlock(&damon_lock);
1371
1372 return err;
1373 }
1374
1375 /*
1376 * __damon_stop() - Stops monitoring of a given context.
1377 * @ctx: monitoring context
1378 *
1379 * Return: 0 on success, negative error code otherwise.
1380 */
__damon_stop(struct damon_ctx * ctx)1381 static int __damon_stop(struct damon_ctx *ctx)
1382 {
1383 struct task_struct *tsk;
1384
1385 mutex_lock(&ctx->kdamond_lock);
1386 tsk = ctx->kdamond;
1387 if (tsk) {
1388 get_task_struct(tsk);
1389 mutex_unlock(&ctx->kdamond_lock);
1390 kthread_stop_put(tsk);
1391 return 0;
1392 }
1393 mutex_unlock(&ctx->kdamond_lock);
1394
1395 return -EPERM;
1396 }
1397
1398 /**
1399 * damon_stop() - Stops the monitorings for a given group of contexts.
1400 * @ctxs: an array of the pointers for contexts to stop monitoring
1401 * @nr_ctxs: size of @ctxs
1402 *
1403 * Return: 0 on success, negative error code otherwise.
1404 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1405 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1406 {
1407 int i, err = 0;
1408
1409 for (i = 0; i < nr_ctxs; i++) {
1410 /* nr_running_ctxs is decremented in kdamond_fn */
1411 err = __damon_stop(ctxs[i]);
1412 if (err)
1413 break;
1414 }
1415 return err;
1416 }
1417
1418 /**
1419 * damon_is_running() - Returns if a given DAMON context is running.
1420 * @ctx: The DAMON context to see if running.
1421 *
1422 * Return: true if @ctx is running, false otherwise.
1423 */
damon_is_running(struct damon_ctx * ctx)1424 bool damon_is_running(struct damon_ctx *ctx)
1425 {
1426 bool running;
1427
1428 mutex_lock(&ctx->kdamond_lock);
1429 running = ctx->kdamond != NULL;
1430 mutex_unlock(&ctx->kdamond_lock);
1431 return running;
1432 }
1433
1434 /**
1435 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1436 * @ctx: DAMON context to call the function for.
1437 * @control: Control variable of the call request.
1438 *
1439 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1440 * argument data that respectively passed via &damon_call_control->fn and
1441 * &damon_call_control->data of @control. If &damon_call_control->repeat of
1442 * @control is unset, further wait until the kdamond finishes handling of the
1443 * request. Otherwise, return as soon as the request is made.
1444 *
1445 * The kdamond executes the function with the argument in the main loop, just
1446 * after a sampling of the iteration is finished. The function can hence
1447 * safely access the internal data of the &struct damon_ctx without additional
1448 * synchronization. The return value of the function will be saved in
1449 * &damon_call_control->return_code.
1450 *
1451 * Return: 0 on success, negative error code otherwise.
1452 */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1453 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1454 {
1455 if (!control->repeat)
1456 init_completion(&control->completion);
1457 control->canceled = false;
1458 INIT_LIST_HEAD(&control->list);
1459
1460 mutex_lock(&ctx->call_controls_lock);
1461 list_add_tail(&control->list, &ctx->call_controls);
1462 mutex_unlock(&ctx->call_controls_lock);
1463 if (!damon_is_running(ctx))
1464 return -EINVAL;
1465 if (control->repeat)
1466 return 0;
1467 wait_for_completion(&control->completion);
1468 if (control->canceled)
1469 return -ECANCELED;
1470 return 0;
1471 }
1472
1473 /**
1474 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1475 * @ctx: DAMON context to call the functions for.
1476 * @control: Control variable of the walk request.
1477 *
1478 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1479 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1480 * finishes handling of the request.
1481 *
1482 * The kdamond executes the given function in the main loop, for each region
1483 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1484 * made only within one &damos->apply_interval_us since damos_walk()
1485 * invocation, for each scheme. The given callback function can hence safely
1486 * access the internal data of &struct damon_ctx and &struct damon_region that
1487 * each of the scheme will apply the action for next interval, without
1488 * additional synchronizations against the kdamond. If every scheme of @ctx
1489 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1490 * completed so that damos_walk() can wakeup and return.
1491 *
1492 * Return: 0 on success, negative error code otherwise.
1493 */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1494 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1495 {
1496 init_completion(&control->completion);
1497 control->canceled = false;
1498 mutex_lock(&ctx->walk_control_lock);
1499 if (ctx->walk_control) {
1500 mutex_unlock(&ctx->walk_control_lock);
1501 return -EBUSY;
1502 }
1503 ctx->walk_control = control;
1504 mutex_unlock(&ctx->walk_control_lock);
1505 if (!damon_is_running(ctx))
1506 return -EINVAL;
1507 wait_for_completion(&control->completion);
1508 if (control->canceled)
1509 return -ECANCELED;
1510 return 0;
1511 }
1512
1513 /*
1514 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1515 * the problem being propagated.
1516 */
damon_warn_fix_nr_accesses_corruption(struct damon_region * r)1517 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1518 {
1519 if (r->nr_accesses_bp == r->nr_accesses * 10000)
1520 return;
1521 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1522 r->nr_accesses_bp, r->nr_accesses);
1523 r->nr_accesses_bp = r->nr_accesses * 10000;
1524 }
1525
1526 /*
1527 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1528 */
kdamond_reset_aggregated(struct damon_ctx * c)1529 static void kdamond_reset_aggregated(struct damon_ctx *c)
1530 {
1531 struct damon_target *t;
1532 unsigned int ti = 0; /* target's index */
1533
1534 damon_for_each_target(t, c) {
1535 struct damon_region *r;
1536
1537 damon_for_each_region(r, t) {
1538 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1539 damon_warn_fix_nr_accesses_corruption(r);
1540 r->last_nr_accesses = r->nr_accesses;
1541 r->nr_accesses = 0;
1542 }
1543 ti++;
1544 }
1545 }
1546
damon_get_intervals_score(struct damon_ctx * c)1547 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1548 {
1549 struct damon_target *t;
1550 struct damon_region *r;
1551 unsigned long sz_region, max_access_events = 0, access_events = 0;
1552 unsigned long target_access_events;
1553 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1554
1555 damon_for_each_target(t, c) {
1556 damon_for_each_region(r, t) {
1557 sz_region = damon_sz_region(r);
1558 max_access_events += sz_region * c->attrs.aggr_samples;
1559 access_events += sz_region * r->nr_accesses;
1560 }
1561 }
1562 target_access_events = max_access_events * goal_bp / 10000;
1563 target_access_events = target_access_events ? : 1;
1564 return access_events * 10000 / target_access_events;
1565 }
1566
1567 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1568 unsigned long score);
1569
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1570 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1571 {
1572 unsigned long score_bp, adaptation_bp;
1573
1574 score_bp = damon_get_intervals_score(c);
1575 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1576 10000;
1577 /*
1578 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1579 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1580 */
1581 if (adaptation_bp <= 10000)
1582 adaptation_bp = 5000 + adaptation_bp / 2;
1583 return adaptation_bp;
1584 }
1585
kdamond_tune_intervals(struct damon_ctx * c)1586 static void kdamond_tune_intervals(struct damon_ctx *c)
1587 {
1588 unsigned long adaptation_bp;
1589 struct damon_attrs new_attrs;
1590 struct damon_intervals_goal *goal;
1591
1592 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1593 if (adaptation_bp == 10000)
1594 return;
1595
1596 new_attrs = c->attrs;
1597 goal = &c->attrs.intervals_goal;
1598 new_attrs.sample_interval = min(goal->max_sample_us,
1599 c->attrs.sample_interval * adaptation_bp / 10000);
1600 new_attrs.sample_interval = max(goal->min_sample_us,
1601 new_attrs.sample_interval);
1602 new_attrs.aggr_interval = new_attrs.sample_interval *
1603 c->attrs.aggr_samples;
1604 trace_damon_monitor_intervals_tune(new_attrs.sample_interval);
1605 damon_set_attrs(c, &new_attrs);
1606 }
1607
1608 static void damon_split_region_at(struct damon_target *t,
1609 struct damon_region *r, unsigned long sz_r);
1610
__damos_valid_target(struct damon_region * r,struct damos * s)1611 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1612 {
1613 unsigned long sz;
1614 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1615
1616 sz = damon_sz_region(r);
1617 return s->pattern.min_sz_region <= sz &&
1618 sz <= s->pattern.max_sz_region &&
1619 s->pattern.min_nr_accesses <= nr_accesses &&
1620 nr_accesses <= s->pattern.max_nr_accesses &&
1621 s->pattern.min_age_region <= r->age &&
1622 r->age <= s->pattern.max_age_region;
1623 }
1624
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1625 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1626 struct damon_region *r, struct damos *s)
1627 {
1628 bool ret = __damos_valid_target(r, s);
1629
1630 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1631 return ret;
1632
1633 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1634 }
1635
1636 /*
1637 * damos_skip_charged_region() - Check if the given region or starting part of
1638 * it is already charged for the DAMOS quota.
1639 * @t: The target of the region.
1640 * @rp: The pointer to the region.
1641 * @s: The scheme to be applied.
1642 * @min_sz_region: minimum region size.
1643 *
1644 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1645 * action would applied to only a part of the target access pattern fulfilling
1646 * regions. To avoid applying the scheme action to only already applied
1647 * regions, DAMON skips applying the scheme action to the regions that charged
1648 * in the previous charge window.
1649 *
1650 * This function checks if a given region should be skipped or not for the
1651 * reason. If only the starting part of the region has previously charged,
1652 * this function splits the region into two so that the second one covers the
1653 * area that not charged in the previous charge widnow and saves the second
1654 * region in *rp and returns false, so that the caller can apply DAMON action
1655 * to the second one.
1656 *
1657 * Return: true if the region should be entirely skipped, false otherwise.
1658 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s,unsigned long min_sz_region)1659 static bool damos_skip_charged_region(struct damon_target *t,
1660 struct damon_region **rp, struct damos *s, unsigned long min_sz_region)
1661 {
1662 struct damon_region *r = *rp;
1663 struct damos_quota *quota = &s->quota;
1664 unsigned long sz_to_skip;
1665
1666 /* Skip previously charged regions */
1667 if (quota->charge_target_from) {
1668 if (t != quota->charge_target_from)
1669 return true;
1670 if (r == damon_last_region(t)) {
1671 quota->charge_target_from = NULL;
1672 quota->charge_addr_from = 0;
1673 return true;
1674 }
1675 if (quota->charge_addr_from &&
1676 r->ar.end <= quota->charge_addr_from)
1677 return true;
1678
1679 if (quota->charge_addr_from && r->ar.start <
1680 quota->charge_addr_from) {
1681 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1682 r->ar.start, min_sz_region);
1683 if (!sz_to_skip) {
1684 if (damon_sz_region(r) <= min_sz_region)
1685 return true;
1686 sz_to_skip = min_sz_region;
1687 }
1688 damon_split_region_at(t, r, sz_to_skip);
1689 r = damon_next_region(r);
1690 *rp = r;
1691 }
1692 quota->charge_target_from = NULL;
1693 quota->charge_addr_from = 0;
1694 }
1695 return false;
1696 }
1697
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1698 static void damos_update_stat(struct damos *s,
1699 unsigned long sz_tried, unsigned long sz_applied,
1700 unsigned long sz_ops_filter_passed)
1701 {
1702 s->stat.nr_tried++;
1703 s->stat.sz_tried += sz_tried;
1704 if (sz_applied)
1705 s->stat.nr_applied++;
1706 s->stat.sz_applied += sz_applied;
1707 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1708 }
1709
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter,unsigned long min_sz_region)1710 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1711 struct damon_region *r, struct damos_filter *filter,
1712 unsigned long min_sz_region)
1713 {
1714 bool matched = false;
1715 struct damon_target *ti;
1716 int target_idx = 0;
1717 unsigned long start, end;
1718
1719 switch (filter->type) {
1720 case DAMOS_FILTER_TYPE_TARGET:
1721 damon_for_each_target(ti, ctx) {
1722 if (ti == t)
1723 break;
1724 target_idx++;
1725 }
1726 matched = target_idx == filter->target_idx;
1727 break;
1728 case DAMOS_FILTER_TYPE_ADDR:
1729 start = ALIGN_DOWN(filter->addr_range.start, min_sz_region);
1730 end = ALIGN_DOWN(filter->addr_range.end, min_sz_region);
1731
1732 /* inside the range */
1733 if (start <= r->ar.start && r->ar.end <= end) {
1734 matched = true;
1735 break;
1736 }
1737 /* outside of the range */
1738 if (r->ar.end <= start || end <= r->ar.start) {
1739 matched = false;
1740 break;
1741 }
1742 /* start before the range and overlap */
1743 if (r->ar.start < start) {
1744 damon_split_region_at(t, r, start - r->ar.start);
1745 matched = false;
1746 break;
1747 }
1748 /* start inside the range */
1749 damon_split_region_at(t, r, end - r->ar.start);
1750 matched = true;
1751 break;
1752 default:
1753 return false;
1754 }
1755
1756 return matched == filter->matching;
1757 }
1758
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1759 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1760 struct damon_region *r, struct damos *s)
1761 {
1762 struct damos_filter *filter;
1763
1764 s->core_filters_allowed = false;
1765 damos_for_each_core_filter(filter, s) {
1766 if (damos_filter_match(ctx, t, r, filter, ctx->min_sz_region)) {
1767 if (filter->allow)
1768 s->core_filters_allowed = true;
1769 return !filter->allow;
1770 }
1771 }
1772 return s->core_filters_default_reject;
1773 }
1774
1775 /*
1776 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1777 * @ctx: The context of &damon_ctx->walk_control.
1778 * @t: The monitoring target of @r that @s will be applied.
1779 * @r: The region of @t that @s will be applied.
1780 * @s: The scheme of @ctx that will be applied to @r.
1781 *
1782 * This function is called from kdamond whenever it asked the operation set to
1783 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1784 * installed by damos_walk() and not yet uninstalled, invoke it.
1785 */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1786 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1787 struct damon_region *r, struct damos *s,
1788 unsigned long sz_filter_passed)
1789 {
1790 struct damos_walk_control *control;
1791
1792 if (s->walk_completed)
1793 return;
1794
1795 control = ctx->walk_control;
1796 if (!control)
1797 return;
1798
1799 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1800 }
1801
1802 /*
1803 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1804 * @ctx: The context of &damon_ctx->walk_control.
1805 * @s: A scheme of @ctx that all walks are now done.
1806 *
1807 * This function is called when kdamond finished applying the action of a DAMOS
1808 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1809 * If every scheme of @ctx including @s now finished walking for at least one
1810 * &damos->apply_interval_us, this function makrs the handling of the given
1811 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1812 */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1813 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1814 {
1815 struct damos *siter;
1816 struct damos_walk_control *control;
1817
1818 control = ctx->walk_control;
1819 if (!control)
1820 return;
1821
1822 s->walk_completed = true;
1823 /* if all schemes completed, signal completion to walker */
1824 damon_for_each_scheme(siter, ctx) {
1825 if (!siter->walk_completed)
1826 return;
1827 }
1828 damon_for_each_scheme(siter, ctx)
1829 siter->walk_completed = false;
1830
1831 complete(&control->completion);
1832 ctx->walk_control = NULL;
1833 }
1834
1835 /*
1836 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1837 * @ctx: The context of &damon_ctx->walk_control.
1838 *
1839 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1840 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1841 * is already out of the main loop and therefore gonna be terminated, and hence
1842 * cannot continue the walks. This function therefore marks the walk request
1843 * as canceled, so that damos_walk() can wake up and return.
1844 */
damos_walk_cancel(struct damon_ctx * ctx)1845 static void damos_walk_cancel(struct damon_ctx *ctx)
1846 {
1847 struct damos_walk_control *control;
1848
1849 mutex_lock(&ctx->walk_control_lock);
1850 control = ctx->walk_control;
1851 mutex_unlock(&ctx->walk_control_lock);
1852
1853 if (!control)
1854 return;
1855 control->canceled = true;
1856 complete(&control->completion);
1857 mutex_lock(&ctx->walk_control_lock);
1858 ctx->walk_control = NULL;
1859 mutex_unlock(&ctx->walk_control_lock);
1860 }
1861
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1862 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1863 struct damon_region *r, struct damos *s)
1864 {
1865 struct damos_quota *quota = &s->quota;
1866 unsigned long sz = damon_sz_region(r);
1867 struct timespec64 begin, end;
1868 unsigned long sz_applied = 0;
1869 unsigned long sz_ops_filter_passed = 0;
1870 /*
1871 * We plan to support multiple context per kdamond, as DAMON sysfs
1872 * implies with 'nr_contexts' file. Nevertheless, only single context
1873 * per kdamond is supported for now. So, we can simply use '0' context
1874 * index here.
1875 */
1876 unsigned int cidx = 0;
1877 struct damos *siter; /* schemes iterator */
1878 unsigned int sidx = 0;
1879 struct damon_target *titer; /* targets iterator */
1880 unsigned int tidx = 0;
1881 bool do_trace = false;
1882
1883 /* get indices for trace_damos_before_apply() */
1884 if (trace_damos_before_apply_enabled()) {
1885 damon_for_each_scheme(siter, c) {
1886 if (siter == s)
1887 break;
1888 sidx++;
1889 }
1890 damon_for_each_target(titer, c) {
1891 if (titer == t)
1892 break;
1893 tidx++;
1894 }
1895 do_trace = true;
1896 }
1897
1898 if (c->ops.apply_scheme) {
1899 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1900 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1901 c->min_sz_region);
1902 if (!sz)
1903 goto update_stat;
1904 damon_split_region_at(t, r, sz);
1905 }
1906 if (damos_filter_out(c, t, r, s))
1907 return;
1908 ktime_get_coarse_ts64(&begin);
1909 trace_damos_before_apply(cidx, sidx, tidx, r,
1910 damon_nr_regions(t), do_trace);
1911 sz_applied = c->ops.apply_scheme(c, t, r, s,
1912 &sz_ops_filter_passed);
1913 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1914 ktime_get_coarse_ts64(&end);
1915 quota->total_charged_ns += timespec64_to_ns(&end) -
1916 timespec64_to_ns(&begin);
1917 quota->charged_sz += sz;
1918 if (quota->esz && quota->charged_sz >= quota->esz) {
1919 quota->charge_target_from = t;
1920 quota->charge_addr_from = r->ar.end + 1;
1921 }
1922 }
1923 if (s->action != DAMOS_STAT)
1924 r->age = 0;
1925
1926 update_stat:
1927 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1928 }
1929
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1930 static void damon_do_apply_schemes(struct damon_ctx *c,
1931 struct damon_target *t,
1932 struct damon_region *r)
1933 {
1934 struct damos *s;
1935
1936 damon_for_each_scheme(s, c) {
1937 struct damos_quota *quota = &s->quota;
1938
1939 if (c->passed_sample_intervals < s->next_apply_sis)
1940 continue;
1941
1942 if (!s->wmarks.activated)
1943 continue;
1944
1945 /* Check the quota */
1946 if (quota->esz && quota->charged_sz >= quota->esz)
1947 continue;
1948
1949 if (damos_skip_charged_region(t, &r, s, c->min_sz_region))
1950 continue;
1951
1952 if (!damos_valid_target(c, t, r, s))
1953 continue;
1954
1955 damos_apply_scheme(c, t, r, s);
1956 }
1957 }
1958
1959 /*
1960 * damon_feed_loop_next_input() - get next input to achieve a target score.
1961 * @last_input The last input.
1962 * @score Current score that made with @last_input.
1963 *
1964 * Calculate next input to achieve the target score, based on the last input
1965 * and current score. Assuming the input and the score are positively
1966 * proportional, calculate how much compensation should be added to or
1967 * subtracted from the last input as a proportion of the last input. Avoid
1968 * next input always being zero by setting it non-zero always. In short form
1969 * (assuming support of float and signed calculations), the algorithm is as
1970 * below.
1971 *
1972 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1973 *
1974 * For simple implementation, we assume the target score is always 10,000. The
1975 * caller should adjust @score for this.
1976 *
1977 * Returns next input that assumed to achieve the target score.
1978 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1979 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1980 unsigned long score)
1981 {
1982 const unsigned long goal = 10000;
1983 /* Set minimum input as 10000 to avoid compensation be zero */
1984 const unsigned long min_input = 10000;
1985 unsigned long score_goal_diff, compensation;
1986 bool over_achieving = score > goal;
1987
1988 if (score == goal)
1989 return last_input;
1990 if (score >= goal * 2)
1991 return min_input;
1992
1993 if (over_achieving)
1994 score_goal_diff = score - goal;
1995 else
1996 score_goal_diff = goal - score;
1997
1998 if (last_input < ULONG_MAX / score_goal_diff)
1999 compensation = last_input * score_goal_diff / goal;
2000 else
2001 compensation = last_input / goal * score_goal_diff;
2002
2003 if (over_achieving)
2004 return max(last_input - compensation, min_input);
2005 if (last_input < ULONG_MAX - compensation)
2006 return last_input + compensation;
2007 return ULONG_MAX;
2008 }
2009
2010 #ifdef CONFIG_PSI
2011
damos_get_some_mem_psi_total(void)2012 static u64 damos_get_some_mem_psi_total(void)
2013 {
2014 if (static_branch_likely(&psi_disabled))
2015 return 0;
2016 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
2017 NSEC_PER_USEC);
2018 }
2019
2020 #else /* CONFIG_PSI */
2021
damos_get_some_mem_psi_total(void)2022 static inline u64 damos_get_some_mem_psi_total(void)
2023 {
2024 return 0;
2025 };
2026
2027 #endif /* CONFIG_PSI */
2028
2029 #ifdef CONFIG_NUMA
damos_get_node_mem_bp(struct damos_quota_goal * goal)2030 static __kernel_ulong_t damos_get_node_mem_bp(
2031 struct damos_quota_goal *goal)
2032 {
2033 struct sysinfo i;
2034 __kernel_ulong_t numerator;
2035
2036 si_meminfo_node(&i, goal->nid);
2037 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
2038 numerator = i.totalram - i.freeram;
2039 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */
2040 numerator = i.freeram;
2041 return numerator * 10000 / i.totalram;
2042 }
2043
damos_get_node_memcg_used_bp(struct damos_quota_goal * goal)2044 static unsigned long damos_get_node_memcg_used_bp(
2045 struct damos_quota_goal *goal)
2046 {
2047 struct mem_cgroup *memcg;
2048 struct lruvec *lruvec;
2049 unsigned long used_pages, numerator;
2050 struct sysinfo i;
2051
2052 rcu_read_lock();
2053 memcg = mem_cgroup_from_id(goal->memcg_id);
2054 rcu_read_unlock();
2055 if (!memcg) {
2056 if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP)
2057 return 0;
2058 else /* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */
2059 return 10000;
2060 }
2061 mem_cgroup_flush_stats(memcg);
2062 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(goal->nid));
2063 used_pages = lruvec_page_state(lruvec, NR_ACTIVE_ANON);
2064 used_pages += lruvec_page_state(lruvec, NR_INACTIVE_ANON);
2065 used_pages += lruvec_page_state(lruvec, NR_ACTIVE_FILE);
2066 used_pages += lruvec_page_state(lruvec, NR_INACTIVE_FILE);
2067
2068 si_meminfo_node(&i, goal->nid);
2069 if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP)
2070 numerator = used_pages;
2071 else /* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */
2072 numerator = i.totalram - used_pages;
2073 return numerator * 10000 / i.totalram;
2074 }
2075 #else
damos_get_node_mem_bp(struct damos_quota_goal * goal)2076 static __kernel_ulong_t damos_get_node_mem_bp(
2077 struct damos_quota_goal *goal)
2078 {
2079 return 0;
2080 }
2081
damos_get_node_memcg_used_bp(struct damos_quota_goal * goal)2082 static unsigned long damos_get_node_memcg_used_bp(
2083 struct damos_quota_goal *goal)
2084 {
2085 return 0;
2086 }
2087 #endif
2088
2089
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)2090 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
2091 {
2092 u64 now_psi_total;
2093
2094 switch (goal->metric) {
2095 case DAMOS_QUOTA_USER_INPUT:
2096 /* User should already set goal->current_value */
2097 break;
2098 case DAMOS_QUOTA_SOME_MEM_PSI_US:
2099 now_psi_total = damos_get_some_mem_psi_total();
2100 goal->current_value = now_psi_total - goal->last_psi_total;
2101 goal->last_psi_total = now_psi_total;
2102 break;
2103 case DAMOS_QUOTA_NODE_MEM_USED_BP:
2104 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
2105 goal->current_value = damos_get_node_mem_bp(goal);
2106 break;
2107 case DAMOS_QUOTA_NODE_MEMCG_USED_BP:
2108 case DAMOS_QUOTA_NODE_MEMCG_FREE_BP:
2109 goal->current_value = damos_get_node_memcg_used_bp(goal);
2110 break;
2111 default:
2112 break;
2113 }
2114 }
2115
2116 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)2117 static unsigned long damos_quota_score(struct damos_quota *quota)
2118 {
2119 struct damos_quota_goal *goal;
2120 unsigned long highest_score = 0;
2121
2122 damos_for_each_quota_goal(goal, quota) {
2123 damos_set_quota_goal_current_value(goal);
2124 highest_score = max(highest_score,
2125 goal->current_value * 10000 /
2126 goal->target_value);
2127 }
2128
2129 return highest_score;
2130 }
2131
2132 /*
2133 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
2134 */
damos_set_effective_quota(struct damos_quota * quota)2135 static void damos_set_effective_quota(struct damos_quota *quota)
2136 {
2137 unsigned long throughput;
2138 unsigned long esz = ULONG_MAX;
2139
2140 if (!quota->ms && list_empty("a->goals)) {
2141 quota->esz = quota->sz;
2142 return;
2143 }
2144
2145 if (!list_empty("a->goals)) {
2146 unsigned long score = damos_quota_score(quota);
2147
2148 quota->esz_bp = damon_feed_loop_next_input(
2149 max(quota->esz_bp, 10000UL),
2150 score);
2151 esz = quota->esz_bp / 10000;
2152 }
2153
2154 if (quota->ms) {
2155 if (quota->total_charged_ns)
2156 throughput = mult_frac(quota->total_charged_sz, 1000000,
2157 quota->total_charged_ns);
2158 else
2159 throughput = PAGE_SIZE * 1024;
2160 esz = min(throughput * quota->ms, esz);
2161 }
2162
2163 if (quota->sz && quota->sz < esz)
2164 esz = quota->sz;
2165
2166 quota->esz = esz;
2167 }
2168
damos_trace_esz(struct damon_ctx * c,struct damos * s,struct damos_quota * quota)2169 static void damos_trace_esz(struct damon_ctx *c, struct damos *s,
2170 struct damos_quota *quota)
2171 {
2172 unsigned int cidx = 0, sidx = 0;
2173 struct damos *siter;
2174
2175 damon_for_each_scheme(siter, c) {
2176 if (siter == s)
2177 break;
2178 sidx++;
2179 }
2180 trace_damos_esz(cidx, sidx, quota->esz);
2181 }
2182
damos_adjust_quota(struct damon_ctx * c,struct damos * s)2183 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2184 {
2185 struct damos_quota *quota = &s->quota;
2186 struct damon_target *t;
2187 struct damon_region *r;
2188 unsigned long cumulated_sz, cached_esz;
2189 unsigned int score, max_score = 0;
2190
2191 if (!quota->ms && !quota->sz && list_empty("a->goals))
2192 return;
2193
2194 /* First charge window */
2195 if (!quota->total_charged_sz && !quota->charged_from) {
2196 quota->charged_from = jiffies;
2197 damos_set_effective_quota(quota);
2198 }
2199
2200 /* New charge window starts */
2201 if (time_after_eq(jiffies, quota->charged_from +
2202 msecs_to_jiffies(quota->reset_interval))) {
2203 if (quota->esz && quota->charged_sz >= quota->esz)
2204 s->stat.qt_exceeds++;
2205 quota->total_charged_sz += quota->charged_sz;
2206 quota->charged_from = jiffies;
2207 quota->charged_sz = 0;
2208 if (trace_damos_esz_enabled())
2209 cached_esz = quota->esz;
2210 damos_set_effective_quota(quota);
2211 if (trace_damos_esz_enabled() && quota->esz != cached_esz)
2212 damos_trace_esz(c, s, quota);
2213 }
2214
2215 if (!c->ops.get_scheme_score)
2216 return;
2217
2218 /* Fill up the score histogram */
2219 memset(c->regions_score_histogram, 0,
2220 sizeof(*c->regions_score_histogram) *
2221 (DAMOS_MAX_SCORE + 1));
2222 damon_for_each_target(t, c) {
2223 damon_for_each_region(r, t) {
2224 if (!__damos_valid_target(r, s))
2225 continue;
2226 score = c->ops.get_scheme_score(c, t, r, s);
2227 c->regions_score_histogram[score] +=
2228 damon_sz_region(r);
2229 if (score > max_score)
2230 max_score = score;
2231 }
2232 }
2233
2234 /* Set the min score limit */
2235 for (cumulated_sz = 0, score = max_score; ; score--) {
2236 cumulated_sz += c->regions_score_histogram[score];
2237 if (cumulated_sz >= quota->esz || !score)
2238 break;
2239 }
2240 quota->min_score = score;
2241 }
2242
kdamond_apply_schemes(struct damon_ctx * c)2243 static void kdamond_apply_schemes(struct damon_ctx *c)
2244 {
2245 struct damon_target *t;
2246 struct damon_region *r, *next_r;
2247 struct damos *s;
2248 unsigned long sample_interval = c->attrs.sample_interval ?
2249 c->attrs.sample_interval : 1;
2250 bool has_schemes_to_apply = false;
2251
2252 damon_for_each_scheme(s, c) {
2253 if (c->passed_sample_intervals < s->next_apply_sis)
2254 continue;
2255
2256 if (!s->wmarks.activated)
2257 continue;
2258
2259 has_schemes_to_apply = true;
2260
2261 damos_adjust_quota(c, s);
2262 }
2263
2264 if (!has_schemes_to_apply)
2265 return;
2266
2267 mutex_lock(&c->walk_control_lock);
2268 damon_for_each_target(t, c) {
2269 damon_for_each_region_safe(r, next_r, t)
2270 damon_do_apply_schemes(c, t, r);
2271 }
2272
2273 damon_for_each_scheme(s, c) {
2274 if (c->passed_sample_intervals < s->next_apply_sis)
2275 continue;
2276 damos_walk_complete(c, s);
2277 s->next_apply_sis = c->passed_sample_intervals +
2278 (s->apply_interval_us ? s->apply_interval_us :
2279 c->attrs.aggr_interval) / sample_interval;
2280 s->last_applied = NULL;
2281 }
2282 mutex_unlock(&c->walk_control_lock);
2283 }
2284
2285 /*
2286 * Merge two adjacent regions into one region
2287 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2288 static void damon_merge_two_regions(struct damon_target *t,
2289 struct damon_region *l, struct damon_region *r)
2290 {
2291 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2292
2293 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2294 (sz_l + sz_r);
2295 l->nr_accesses_bp = l->nr_accesses * 10000;
2296 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2297 l->ar.end = r->ar.end;
2298 damon_destroy_region(r, t);
2299 }
2300
2301 /*
2302 * Merge adjacent regions having similar access frequencies
2303 *
2304 * t target affected by this merge operation
2305 * thres '->nr_accesses' diff threshold for the merge
2306 * sz_limit size upper limit of each region
2307 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2308 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2309 unsigned long sz_limit)
2310 {
2311 struct damon_region *r, *prev = NULL, *next;
2312
2313 damon_for_each_region_safe(r, next, t) {
2314 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2315 r->age = 0;
2316 else if ((r->nr_accesses == 0) != (r->last_nr_accesses == 0))
2317 r->age = 0;
2318 else
2319 r->age++;
2320
2321 if (prev && prev->ar.end == r->ar.start &&
2322 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2323 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2324 damon_merge_two_regions(t, prev, r);
2325 else
2326 prev = r;
2327 }
2328 }
2329
2330 /*
2331 * Merge adjacent regions having similar access frequencies
2332 *
2333 * threshold '->nr_accesses' diff threshold for the merge
2334 * sz_limit size upper limit of each region
2335 *
2336 * This function merges monitoring target regions which are adjacent and their
2337 * access frequencies are similar. This is for minimizing the monitoring
2338 * overhead under the dynamically changeable access pattern. If a merge was
2339 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2340 *
2341 * The total number of regions could be higher than the user-defined limit,
2342 * max_nr_regions for some cases. For example, the user can update
2343 * max_nr_regions to a number that lower than the current number of regions
2344 * while DAMON is running. For such a case, repeat merging until the limit is
2345 * met while increasing @threshold up to possible maximum level.
2346 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2347 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2348 unsigned long sz_limit)
2349 {
2350 struct damon_target *t;
2351 unsigned int nr_regions;
2352 unsigned int max_thres;
2353
2354 max_thres = c->attrs.aggr_interval /
2355 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2356 do {
2357 nr_regions = 0;
2358 damon_for_each_target(t, c) {
2359 damon_merge_regions_of(t, threshold, sz_limit);
2360 nr_regions += damon_nr_regions(t);
2361 }
2362 threshold = max(1, threshold * 2);
2363 } while (nr_regions > c->attrs.max_nr_regions &&
2364 threshold / 2 < max_thres);
2365 }
2366
2367 /*
2368 * Split a region in two
2369 *
2370 * r the region to be split
2371 * sz_r size of the first sub-region that will be made
2372 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2373 static void damon_split_region_at(struct damon_target *t,
2374 struct damon_region *r, unsigned long sz_r)
2375 {
2376 struct damon_region *new;
2377
2378 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2379 if (!new)
2380 return;
2381
2382 r->ar.end = new->ar.start;
2383
2384 new->age = r->age;
2385 new->last_nr_accesses = r->last_nr_accesses;
2386 new->nr_accesses_bp = r->nr_accesses_bp;
2387 new->nr_accesses = r->nr_accesses;
2388
2389 damon_insert_region(new, r, damon_next_region(r), t);
2390 }
2391
2392 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs,unsigned long min_sz_region)2393 static void damon_split_regions_of(struct damon_target *t, int nr_subs,
2394 unsigned long min_sz_region)
2395 {
2396 struct damon_region *r, *next;
2397 unsigned long sz_region, sz_sub = 0;
2398 int i;
2399
2400 damon_for_each_region_safe(r, next, t) {
2401 sz_region = damon_sz_region(r);
2402
2403 for (i = 0; i < nr_subs - 1 &&
2404 sz_region > 2 * min_sz_region; i++) {
2405 /*
2406 * Randomly select size of left sub-region to be at
2407 * least 10 percent and at most 90% of original region
2408 */
2409 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2410 sz_region / 10, min_sz_region);
2411 /* Do not allow blank region */
2412 if (sz_sub == 0 || sz_sub >= sz_region)
2413 continue;
2414
2415 damon_split_region_at(t, r, sz_sub);
2416 sz_region = sz_sub;
2417 }
2418 }
2419 }
2420
2421 /*
2422 * Split every target region into randomly-sized small regions
2423 *
2424 * This function splits every target region into random-sized small regions if
2425 * current total number of the regions is equal or smaller than half of the
2426 * user-specified maximum number of regions. This is for maximizing the
2427 * monitoring accuracy under the dynamically changeable access patterns. If a
2428 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2429 * it.
2430 */
kdamond_split_regions(struct damon_ctx * ctx)2431 static void kdamond_split_regions(struct damon_ctx *ctx)
2432 {
2433 struct damon_target *t;
2434 unsigned int nr_regions = 0;
2435 static unsigned int last_nr_regions;
2436 int nr_subregions = 2;
2437
2438 damon_for_each_target(t, ctx)
2439 nr_regions += damon_nr_regions(t);
2440
2441 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2442 return;
2443
2444 /* Maybe the middle of the region has different access frequency */
2445 if (last_nr_regions == nr_regions &&
2446 nr_regions < ctx->attrs.max_nr_regions / 3)
2447 nr_subregions = 3;
2448
2449 damon_for_each_target(t, ctx)
2450 damon_split_regions_of(t, nr_subregions, ctx->min_sz_region);
2451
2452 last_nr_regions = nr_regions;
2453 }
2454
2455 /*
2456 * Check whether current monitoring should be stopped
2457 *
2458 * The monitoring is stopped when either the user requested to stop, or all
2459 * monitoring targets are invalid.
2460 *
2461 * Returns true if need to stop current monitoring.
2462 */
kdamond_need_stop(struct damon_ctx * ctx)2463 static bool kdamond_need_stop(struct damon_ctx *ctx)
2464 {
2465 struct damon_target *t;
2466
2467 if (kthread_should_stop())
2468 return true;
2469
2470 if (!ctx->ops.target_valid)
2471 return false;
2472
2473 damon_for_each_target(t, ctx) {
2474 if (ctx->ops.target_valid(t))
2475 return false;
2476 }
2477
2478 return true;
2479 }
2480
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2481 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2482 unsigned long *metric_value)
2483 {
2484 switch (metric) {
2485 case DAMOS_WMARK_FREE_MEM_RATE:
2486 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2487 totalram_pages();
2488 return 0;
2489 default:
2490 break;
2491 }
2492 return -EINVAL;
2493 }
2494
2495 /*
2496 * Returns zero if the scheme is active. Else, returns time to wait for next
2497 * watermark check in micro-seconds.
2498 */
damos_wmark_wait_us(struct damos * scheme)2499 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2500 {
2501 unsigned long metric;
2502
2503 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2504 return 0;
2505
2506 /* higher than high watermark or lower than low watermark */
2507 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2508 if (scheme->wmarks.activated)
2509 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2510 scheme->action,
2511 str_high_low(metric > scheme->wmarks.high));
2512 scheme->wmarks.activated = false;
2513 return scheme->wmarks.interval;
2514 }
2515
2516 /* inactive and higher than middle watermark */
2517 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2518 !scheme->wmarks.activated)
2519 return scheme->wmarks.interval;
2520
2521 if (!scheme->wmarks.activated)
2522 pr_debug("activate a scheme (%d)\n", scheme->action);
2523 scheme->wmarks.activated = true;
2524 return 0;
2525 }
2526
kdamond_usleep(unsigned long usecs)2527 static void kdamond_usleep(unsigned long usecs)
2528 {
2529 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2530 schedule_timeout_idle(usecs_to_jiffies(usecs));
2531 else
2532 usleep_range_idle(usecs, usecs + 1);
2533 }
2534
2535 /*
2536 * kdamond_call() - handle damon_call_control objects.
2537 * @ctx: The &struct damon_ctx of the kdamond.
2538 * @cancel: Whether to cancel the invocation of the function.
2539 *
2540 * If there are &struct damon_call_control requests that registered via
2541 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2542 * on @cancel. @cancel is set when the kdamond is already out of the main loop
2543 * and therefore will be terminated.
2544 */
kdamond_call(struct damon_ctx * ctx,bool cancel)2545 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2546 {
2547 struct damon_call_control *control;
2548 LIST_HEAD(repeat_controls);
2549 int ret = 0;
2550
2551 while (true) {
2552 mutex_lock(&ctx->call_controls_lock);
2553 control = list_first_entry_or_null(&ctx->call_controls,
2554 struct damon_call_control, list);
2555 mutex_unlock(&ctx->call_controls_lock);
2556 if (!control)
2557 break;
2558 if (cancel) {
2559 control->canceled = true;
2560 } else {
2561 ret = control->fn(control->data);
2562 control->return_code = ret;
2563 }
2564 mutex_lock(&ctx->call_controls_lock);
2565 list_del(&control->list);
2566 mutex_unlock(&ctx->call_controls_lock);
2567 if (!control->repeat) {
2568 complete(&control->completion);
2569 } else if (control->canceled && control->dealloc_on_cancel) {
2570 kfree(control);
2571 continue;
2572 } else {
2573 list_add(&control->list, &repeat_controls);
2574 }
2575 }
2576 control = list_first_entry_or_null(&repeat_controls,
2577 struct damon_call_control, list);
2578 if (!control || cancel)
2579 return;
2580 mutex_lock(&ctx->call_controls_lock);
2581 list_add_tail(&control->list, &ctx->call_controls);
2582 mutex_unlock(&ctx->call_controls_lock);
2583 }
2584
2585 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2586 static int kdamond_wait_activation(struct damon_ctx *ctx)
2587 {
2588 struct damos *s;
2589 unsigned long wait_time;
2590 unsigned long min_wait_time = 0;
2591 bool init_wait_time = false;
2592
2593 while (!kdamond_need_stop(ctx)) {
2594 damon_for_each_scheme(s, ctx) {
2595 wait_time = damos_wmark_wait_us(s);
2596 if (!init_wait_time || wait_time < min_wait_time) {
2597 init_wait_time = true;
2598 min_wait_time = wait_time;
2599 }
2600 }
2601 if (!min_wait_time)
2602 return 0;
2603
2604 kdamond_usleep(min_wait_time);
2605
2606 kdamond_call(ctx, false);
2607 damos_walk_cancel(ctx);
2608 }
2609 return -EBUSY;
2610 }
2611
kdamond_init_ctx(struct damon_ctx * ctx)2612 static void kdamond_init_ctx(struct damon_ctx *ctx)
2613 {
2614 unsigned long sample_interval = ctx->attrs.sample_interval ?
2615 ctx->attrs.sample_interval : 1;
2616 unsigned long apply_interval;
2617 struct damos *scheme;
2618
2619 ctx->passed_sample_intervals = 0;
2620 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2621 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2622 sample_interval;
2623 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2624 ctx->attrs.intervals_goal.aggrs;
2625
2626 damon_for_each_scheme(scheme, ctx) {
2627 apply_interval = scheme->apply_interval_us ?
2628 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2629 scheme->next_apply_sis = apply_interval / sample_interval;
2630 damos_set_filters_default_reject(scheme);
2631 }
2632 }
2633
2634 /*
2635 * The monitoring daemon that runs as a kernel thread
2636 */
kdamond_fn(void * data)2637 static int kdamond_fn(void *data)
2638 {
2639 struct damon_ctx *ctx = data;
2640 struct damon_target *t;
2641 struct damon_region *r, *next;
2642 unsigned int max_nr_accesses = 0;
2643 unsigned long sz_limit = 0;
2644
2645 pr_debug("kdamond (%d) starts\n", current->pid);
2646
2647 complete(&ctx->kdamond_started);
2648 kdamond_init_ctx(ctx);
2649
2650 if (ctx->ops.init)
2651 ctx->ops.init(ctx);
2652 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2653 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2654 if (!ctx->regions_score_histogram)
2655 goto done;
2656
2657 sz_limit = damon_region_sz_limit(ctx);
2658
2659 while (!kdamond_need_stop(ctx)) {
2660 /*
2661 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2662 * be changed from kdamond_call(). Read the values here, and
2663 * use those for this iteration. That is, damon_set_attrs()
2664 * updated new values are respected from next iteration.
2665 */
2666 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2667 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2668 unsigned long sample_interval = ctx->attrs.sample_interval;
2669
2670 if (kdamond_wait_activation(ctx))
2671 break;
2672
2673 if (ctx->ops.prepare_access_checks)
2674 ctx->ops.prepare_access_checks(ctx);
2675
2676 kdamond_usleep(sample_interval);
2677 ctx->passed_sample_intervals++;
2678
2679 if (ctx->ops.check_accesses)
2680 max_nr_accesses = ctx->ops.check_accesses(ctx);
2681
2682 if (ctx->passed_sample_intervals >= next_aggregation_sis)
2683 kdamond_merge_regions(ctx,
2684 max_nr_accesses / 10,
2685 sz_limit);
2686
2687 /*
2688 * do kdamond_call() and kdamond_apply_schemes() after
2689 * kdamond_merge_regions() if possible, to reduce overhead
2690 */
2691 kdamond_call(ctx, false);
2692 if (!list_empty(&ctx->schemes))
2693 kdamond_apply_schemes(ctx);
2694 else
2695 damos_walk_cancel(ctx);
2696
2697 sample_interval = ctx->attrs.sample_interval ?
2698 ctx->attrs.sample_interval : 1;
2699 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2700 if (ctx->attrs.intervals_goal.aggrs &&
2701 ctx->passed_sample_intervals >=
2702 ctx->next_intervals_tune_sis) {
2703 /*
2704 * ctx->next_aggregation_sis might be updated
2705 * from kdamond_call(). In the case,
2706 * damon_set_attrs() which will be called from
2707 * kdamond_tune_interval() may wrongly think
2708 * this is in the middle of the current
2709 * aggregation, and make aggregation
2710 * information reset for all regions. Then,
2711 * following kdamond_reset_aggregated() call
2712 * will make the region information invalid,
2713 * particularly for ->nr_accesses_bp.
2714 *
2715 * Reset ->next_aggregation_sis to avoid that.
2716 * It will anyway correctly updated after this
2717 * if caluse.
2718 */
2719 ctx->next_aggregation_sis =
2720 next_aggregation_sis;
2721 ctx->next_intervals_tune_sis +=
2722 ctx->attrs.aggr_samples *
2723 ctx->attrs.intervals_goal.aggrs;
2724 kdamond_tune_intervals(ctx);
2725 sample_interval = ctx->attrs.sample_interval ?
2726 ctx->attrs.sample_interval : 1;
2727
2728 }
2729 ctx->next_aggregation_sis = next_aggregation_sis +
2730 ctx->attrs.aggr_interval / sample_interval;
2731
2732 kdamond_reset_aggregated(ctx);
2733 kdamond_split_regions(ctx);
2734 }
2735
2736 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2737 ctx->next_ops_update_sis = next_ops_update_sis +
2738 ctx->attrs.ops_update_interval /
2739 sample_interval;
2740 if (ctx->ops.update)
2741 ctx->ops.update(ctx);
2742 sz_limit = damon_region_sz_limit(ctx);
2743 }
2744 }
2745 done:
2746 damon_for_each_target(t, ctx) {
2747 damon_for_each_region_safe(r, next, t)
2748 damon_destroy_region(r, t);
2749 }
2750
2751 if (ctx->ops.cleanup)
2752 ctx->ops.cleanup(ctx);
2753 kfree(ctx->regions_score_histogram);
2754
2755 pr_debug("kdamond (%d) finishes\n", current->pid);
2756 mutex_lock(&ctx->kdamond_lock);
2757 ctx->kdamond = NULL;
2758 mutex_unlock(&ctx->kdamond_lock);
2759
2760 kdamond_call(ctx, true);
2761 damos_walk_cancel(ctx);
2762
2763 mutex_lock(&damon_lock);
2764 nr_running_ctxs--;
2765 if (!nr_running_ctxs && running_exclusive_ctxs)
2766 running_exclusive_ctxs = false;
2767 mutex_unlock(&damon_lock);
2768
2769 damon_destroy_targets(ctx);
2770 return 0;
2771 }
2772
2773 /*
2774 * struct damon_system_ram_region - System RAM resource address region of
2775 * [@start, @end).
2776 * @start: Start address of the region (inclusive).
2777 * @end: End address of the region (exclusive).
2778 */
2779 struct damon_system_ram_region {
2780 unsigned long start;
2781 unsigned long end;
2782 };
2783
walk_system_ram(struct resource * res,void * arg)2784 static int walk_system_ram(struct resource *res, void *arg)
2785 {
2786 struct damon_system_ram_region *a = arg;
2787
2788 if (a->end - a->start < resource_size(res)) {
2789 a->start = res->start;
2790 a->end = res->end;
2791 }
2792 return 0;
2793 }
2794
2795 /*
2796 * Find biggest 'System RAM' resource and store its start and end address in
2797 * @start and @end, respectively. If no System RAM is found, returns false.
2798 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2799 static bool damon_find_biggest_system_ram(unsigned long *start,
2800 unsigned long *end)
2801
2802 {
2803 struct damon_system_ram_region arg = {};
2804
2805 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2806 if (arg.end <= arg.start)
2807 return false;
2808
2809 *start = arg.start;
2810 *end = arg.end;
2811 return true;
2812 }
2813
2814 /**
2815 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2816 * monitoring target as requested, or biggest 'System RAM'.
2817 * @t: The monitoring target to set the region.
2818 * @start: The pointer to the start address of the region.
2819 * @end: The pointer to the end address of the region.
2820 * @min_sz_region: Minimum region size.
2821 *
2822 * This function sets the region of @t as requested by @start and @end. If the
2823 * values of @start and @end are zero, however, this function finds the biggest
2824 * 'System RAM' resource and sets the region to cover the resource. In the
2825 * latter case, this function saves the start and end addresses of the resource
2826 * in @start and @end, respectively.
2827 *
2828 * Return: 0 on success, negative error code otherwise.
2829 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end,unsigned long min_sz_region)2830 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2831 unsigned long *start, unsigned long *end,
2832 unsigned long min_sz_region)
2833 {
2834 struct damon_addr_range addr_range;
2835
2836 if (*start > *end)
2837 return -EINVAL;
2838
2839 if (!*start && !*end &&
2840 !damon_find_biggest_system_ram(start, end))
2841 return -EINVAL;
2842
2843 addr_range.start = *start;
2844 addr_range.end = *end;
2845 return damon_set_regions(t, &addr_range, 1, min_sz_region);
2846 }
2847
2848 /*
2849 * damon_moving_sum() - Calculate an inferred moving sum value.
2850 * @mvsum: Inferred sum of the last @len_window values.
2851 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2852 * @len_window: The number of last values to take care of.
2853 * @new_value: New value that will be added to the pseudo moving sum.
2854 *
2855 * Moving sum (moving average * window size) is good for handling noise, but
2856 * the cost of keeping past values can be high for arbitrary window size. This
2857 * function implements a lightweight pseudo moving sum function that doesn't
2858 * keep the past window values.
2859 *
2860 * It simply assumes there was no noise in the past, and get the no-noise
2861 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2862 * non-moving sum of the last window. For example, if @len_window is 10 and we
2863 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2864 * values. Hence, this function simply drops @nomvsum / @len_window from
2865 * given @mvsum and add @new_value.
2866 *
2867 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2868 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2869 * calculating next moving sum with a new value, we should drop 0 from 50 and
2870 * add the new value. However, this function assumes it got value 5 for each
2871 * of the last ten times. Based on the assumption, when the next value is
2872 * measured, it drops the assumed past value, 5 from the current sum, and add
2873 * the new value to get the updated pseduo-moving average.
2874 *
2875 * This means the value could have errors, but the errors will be disappeared
2876 * for every @len_window aligned calls. For example, if @len_window is 10, the
2877 * pseudo moving sum with 11th value to 19th value would have an error. But
2878 * the sum with 20th value will not have the error.
2879 *
2880 * Return: Pseudo-moving average after getting the @new_value.
2881 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2882 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2883 unsigned int len_window, unsigned int new_value)
2884 {
2885 return mvsum - nomvsum / len_window + new_value;
2886 }
2887
2888 /**
2889 * damon_update_region_access_rate() - Update the access rate of a region.
2890 * @r: The DAMON region to update for its access check result.
2891 * @accessed: Whether the region has accessed during last sampling interval.
2892 * @attrs: The damon_attrs of the DAMON context.
2893 *
2894 * Update the access rate of a region with the region's last sampling interval
2895 * access check result.
2896 *
2897 * Usually this will be called by &damon_operations->check_accesses callback.
2898 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2899 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2900 struct damon_attrs *attrs)
2901 {
2902 unsigned int len_window = 1;
2903
2904 /*
2905 * sample_interval can be zero, but cannot be larger than
2906 * aggr_interval, owing to validation of damon_set_attrs().
2907 */
2908 if (attrs->sample_interval)
2909 len_window = damon_max_nr_accesses(attrs);
2910 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2911 r->last_nr_accesses * 10000, len_window,
2912 accessed ? 10000 : 0);
2913
2914 if (accessed)
2915 r->nr_accesses++;
2916 }
2917
2918 /**
2919 * damon_initialized() - Return if DAMON is ready to be used.
2920 *
2921 * Return: true if DAMON is ready to be used, false otherwise.
2922 */
damon_initialized(void)2923 bool damon_initialized(void)
2924 {
2925 return damon_region_cache != NULL;
2926 }
2927
damon_init(void)2928 static int __init damon_init(void)
2929 {
2930 damon_region_cache = KMEM_CACHE(damon_region, 0);
2931 if (unlikely(!damon_region_cache)) {
2932 pr_err("creating damon_region_cache fails\n");
2933 return -ENOMEM;
2934 }
2935
2936 return 0;
2937 }
2938
2939 subsys_initcall(damon_init);
2940
2941 #include "tests/core-kunit.h"
2942