xref: /linux/kernel/bpf/btf.c (revision 319fc77f8f45a1b3dba15b0cc1a869778fd222f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29 
30 #include <net/netfilter/nf_bpf_link.h>
31 
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35 
36 /* BTF (BPF Type Format) is the meta data format which describes
37  * the data types of BPF program/map.  Hence, it basically focus
38  * on the C programming language which the modern BPF is primary
39  * using.
40  *
41  * ELF Section:
42  * ~~~~~~~~~~~
43  * The BTF data is stored under the ".BTF" ELF section
44  *
45  * struct btf_type:
46  * ~~~~~~~~~~~~~~~
47  * Each 'struct btf_type' object describes a C data type.
48  * Depending on the type it is describing, a 'struct btf_type'
49  * object may be followed by more data.  F.e.
50  * To describe an array, 'struct btf_type' is followed by
51  * 'struct btf_array'.
52  *
53  * 'struct btf_type' and any extra data following it are
54  * 4 bytes aligned.
55  *
56  * Type section:
57  * ~~~~~~~~~~~~~
58  * The BTF type section contains a list of 'struct btf_type' objects.
59  * Each one describes a C type.  Recall from the above section
60  * that a 'struct btf_type' object could be immediately followed by extra
61  * data in order to describe some particular C types.
62  *
63  * type_id:
64  * ~~~~~~~
65  * Each btf_type object is identified by a type_id.  The type_id
66  * is implicitly implied by the location of the btf_type object in
67  * the BTF type section.  The first one has type_id 1.  The second
68  * one has type_id 2...etc.  Hence, an earlier btf_type has
69  * a smaller type_id.
70  *
71  * A btf_type object may refer to another btf_type object by using
72  * type_id (i.e. the "type" in the "struct btf_type").
73  *
74  * NOTE that we cannot assume any reference-order.
75  * A btf_type object can refer to an earlier btf_type object
76  * but it can also refer to a later btf_type object.
77  *
78  * For example, to describe "const void *".  A btf_type
79  * object describing "const" may refer to another btf_type
80  * object describing "void *".  This type-reference is done
81  * by specifying type_id:
82  *
83  * [1] CONST (anon) type_id=2
84  * [2] PTR (anon) type_id=0
85  *
86  * The above is the btf_verifier debug log:
87  *   - Each line started with "[?]" is a btf_type object
88  *   - [?] is the type_id of the btf_type object.
89  *   - CONST/PTR is the BTF_KIND_XXX
90  *   - "(anon)" is the name of the type.  It just
91  *     happens that CONST and PTR has no name.
92  *   - type_id=XXX is the 'u32 type' in btf_type
93  *
94  * NOTE: "void" has type_id 0
95  *
96  * String section:
97  * ~~~~~~~~~~~~~~
98  * The BTF string section contains the names used by the type section.
99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *	struct A {
140  *		struct B b;
141  *	};
142  *
143  *	struct B {
144  *		struct A a;
145  *	};
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *	struct A {
163  *		int m;
164  *		struct A *a;
165  *	};
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)		\
195 	for (i = from, member = btf_type_member(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);				\
197 	     i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)				\
200 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201 	     i < btf_type_vlen(struct_type);					\
202 	     i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208 	BTF_KFUNC_HOOK_COMMON,
209 	BTF_KFUNC_HOOK_XDP,
210 	BTF_KFUNC_HOOK_TC,
211 	BTF_KFUNC_HOOK_STRUCT_OPS,
212 	BTF_KFUNC_HOOK_TRACING,
213 	BTF_KFUNC_HOOK_SYSCALL,
214 	BTF_KFUNC_HOOK_FMODRET,
215 	BTF_KFUNC_HOOK_CGROUP,
216 	BTF_KFUNC_HOOK_SCHED_ACT,
217 	BTF_KFUNC_HOOK_SK_SKB,
218 	BTF_KFUNC_HOOK_SOCKET_FILTER,
219 	BTF_KFUNC_HOOK_LWT,
220 	BTF_KFUNC_HOOK_NETFILTER,
221 	BTF_KFUNC_HOOK_KPROBE,
222 	BTF_KFUNC_HOOK_MAX,
223 };
224 
225 enum {
226 	BTF_KFUNC_SET_MAX_CNT = 256,
227 	BTF_DTOR_KFUNC_MAX_CNT = 256,
228 	BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230 
231 struct btf_kfunc_hook_filter {
232 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233 	u32 nr_filters;
234 };
235 
236 struct btf_kfunc_set_tab {
237 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240 
241 struct btf_id_dtor_kfunc_tab {
242 	u32 cnt;
243 	struct btf_id_dtor_kfunc dtors[];
244 };
245 
246 struct btf_struct_ops_tab {
247 	u32 cnt;
248 	u32 capacity;
249 	struct bpf_struct_ops_desc ops[];
250 };
251 
252 struct btf {
253 	void *data;
254 	struct btf_type **types;
255 	u32 *resolved_ids;
256 	u32 *resolved_sizes;
257 	const char *strings;
258 	void *nohdr_data;
259 	struct btf_header hdr;
260 	u32 nr_types; /* includes VOID for base BTF */
261 	u32 types_size;
262 	u32 data_size;
263 	refcount_t refcnt;
264 	u32 id;
265 	struct rcu_head rcu;
266 	struct btf_kfunc_set_tab *kfunc_set_tab;
267 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268 	struct btf_struct_metas *struct_meta_tab;
269 	struct btf_struct_ops_tab *struct_ops_tab;
270 
271 	/* split BTF support */
272 	struct btf *base_btf;
273 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274 	u32 start_str_off; /* first string offset (0 for base BTF) */
275 	char name[MODULE_NAME_LEN];
276 	bool kernel_btf;
277 	__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279 
280 enum verifier_phase {
281 	CHECK_META,
282 	CHECK_TYPE,
283 };
284 
285 struct resolve_vertex {
286 	const struct btf_type *t;
287 	u32 type_id;
288 	u16 next_member;
289 };
290 
291 enum visit_state {
292 	NOT_VISITED,
293 	VISITED,
294 	RESOLVED,
295 };
296 
297 enum resolve_mode {
298 	RESOLVE_TBD,	/* To Be Determined */
299 	RESOLVE_PTR,	/* Resolving for Pointer */
300 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
301 					 * or array
302 					 */
303 };
304 
305 #define MAX_RESOLVE_DEPTH 32
306 
307 struct btf_sec_info {
308 	u32 off;
309 	u32 len;
310 };
311 
312 struct btf_verifier_env {
313 	struct btf *btf;
314 	u8 *visit_states;
315 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316 	struct bpf_verifier_log log;
317 	u32 log_type_id;
318 	u32 top_stack;
319 	enum verifier_phase phase;
320 	enum resolve_mode resolve_mode;
321 };
322 
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324 	[BTF_KIND_UNKN]		= "UNKNOWN",
325 	[BTF_KIND_INT]		= "INT",
326 	[BTF_KIND_PTR]		= "PTR",
327 	[BTF_KIND_ARRAY]	= "ARRAY",
328 	[BTF_KIND_STRUCT]	= "STRUCT",
329 	[BTF_KIND_UNION]	= "UNION",
330 	[BTF_KIND_ENUM]		= "ENUM",
331 	[BTF_KIND_FWD]		= "FWD",
332 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
333 	[BTF_KIND_VOLATILE]	= "VOLATILE",
334 	[BTF_KIND_CONST]	= "CONST",
335 	[BTF_KIND_RESTRICT]	= "RESTRICT",
336 	[BTF_KIND_FUNC]		= "FUNC",
337 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
338 	[BTF_KIND_VAR]		= "VAR",
339 	[BTF_KIND_DATASEC]	= "DATASEC",
340 	[BTF_KIND_FLOAT]	= "FLOAT",
341 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
342 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
343 	[BTF_KIND_ENUM64]	= "ENUM64",
344 };
345 
btf_type_str(const struct btf_type * t)346 const char *btf_type_str(const struct btf_type *t)
347 {
348 	return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350 
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE		32
353 
354 /*
355  * This is the maximum size of a base type value (equivalent to a
356  * 128-bit int); if we are at the end of our safe buffer and have
357  * less than 16 bytes space we can't be assured of being able
358  * to copy the next type safely, so in such cases we will initiate
359  * a new copy.
360  */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
362 
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE		80
365 
366 /*
367  * The suffix of a type that indicates it cannot alias another type when
368  * comparing BTF IDs for kfunc invocations.
369  */
370 #define NOCAST_ALIAS_SUFFIX		"___init"
371 
372 /*
373  * Common data to all BTF show operations. Private show functions can add
374  * their own data to a structure containing a struct btf_show and consult it
375  * in the show callback.  See btf_type_show() below.
376  *
377  * One challenge with showing nested data is we want to skip 0-valued
378  * data, but in order to figure out whether a nested object is all zeros
379  * we need to walk through it.  As a result, we need to make two passes
380  * when handling structs, unions and arrays; the first path simply looks
381  * for nonzero data, while the second actually does the display.  The first
382  * pass is signalled by show->state.depth_check being set, and if we
383  * encounter a non-zero value we set show->state.depth_to_show to
384  * the depth at which we encountered it.  When we have completed the
385  * first pass, we will know if anything needs to be displayed if
386  * depth_to_show > depth.  See btf_[struct,array]_show() for the
387  * implementation of this.
388  *
389  * Another problem is we want to ensure the data for display is safe to
390  * access.  To support this, the anonymous "struct {} obj" tracks the data
391  * object and our safe copy of it.  We copy portions of the data needed
392  * to the object "copy" buffer, but because its size is limited to
393  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394  * traverse larger objects for display.
395  *
396  * The various data type show functions all start with a call to
397  * btf_show_start_type() which returns a pointer to the safe copy
398  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399  * raw data itself).  btf_show_obj_safe() is responsible for
400  * using copy_from_kernel_nofault() to update the safe data if necessary
401  * as we traverse the object's data.  skbuff-like semantics are
402  * used:
403  *
404  * - obj.head points to the start of the toplevel object for display
405  * - obj.size is the size of the toplevel object
406  * - obj.data points to the current point in the original data at
407  *   which our safe data starts.  obj.data will advance as we copy
408  *   portions of the data.
409  *
410  * In most cases a single copy will suffice, but larger data structures
411  * such as "struct task_struct" will require many copies.  The logic in
412  * btf_show_obj_safe() handles the logic that determines if a new
413  * copy_from_kernel_nofault() is needed.
414  */
415 struct btf_show {
416 	u64 flags;
417 	void *target;	/* target of show operation (seq file, buffer) */
418 	__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419 	const struct btf *btf;
420 	/* below are used during iteration */
421 	struct {
422 		u8 depth;
423 		u8 depth_to_show;
424 		u8 depth_check;
425 		u8 array_member:1,
426 		   array_terminated:1;
427 		u16 array_encoding;
428 		u32 type_id;
429 		int status;			/* non-zero for error */
430 		const struct btf_type *type;
431 		const struct btf_member *member;
432 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
433 	} state;
434 	struct {
435 		u32 size;
436 		void *head;
437 		void *data;
438 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439 	} obj;
440 };
441 
442 struct btf_kind_operations {
443 	s32 (*check_meta)(struct btf_verifier_env *env,
444 			  const struct btf_type *t,
445 			  u32 meta_left);
446 	int (*resolve)(struct btf_verifier_env *env,
447 		       const struct resolve_vertex *v);
448 	int (*check_member)(struct btf_verifier_env *env,
449 			    const struct btf_type *struct_type,
450 			    const struct btf_member *member,
451 			    const struct btf_type *member_type);
452 	int (*check_kflag_member)(struct btf_verifier_env *env,
453 				  const struct btf_type *struct_type,
454 				  const struct btf_member *member,
455 				  const struct btf_type *member_type);
456 	void (*log_details)(struct btf_verifier_env *env,
457 			    const struct btf_type *t);
458 	void (*show)(const struct btf *btf, const struct btf_type *t,
459 			 u32 type_id, void *data, u8 bits_offsets,
460 			 struct btf_show *show);
461 };
462 
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465 
466 static int btf_resolve(struct btf_verifier_env *env,
467 		       const struct btf_type *t, u32 type_id);
468 
469 static int btf_func_check(struct btf_verifier_env *env,
470 			  const struct btf_type *t);
471 
btf_type_is_modifier(const struct btf_type * t)472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474 	/* Some of them is not strictly a C modifier
475 	 * but they are grouped into the same bucket
476 	 * for BTF concern:
477 	 *   A type (t) that refers to another
478 	 *   type through t->type AND its size cannot
479 	 *   be determined without following the t->type.
480 	 *
481 	 * ptr does not fall into this bucket
482 	 * because its size is always sizeof(void *).
483 	 */
484 	switch (BTF_INFO_KIND(t->info)) {
485 	case BTF_KIND_TYPEDEF:
486 	case BTF_KIND_VOLATILE:
487 	case BTF_KIND_CONST:
488 	case BTF_KIND_RESTRICT:
489 	case BTF_KIND_TYPE_TAG:
490 		return true;
491 	}
492 
493 	return false;
494 }
495 
btf_type_is_void(const struct btf_type * t)496 bool btf_type_is_void(const struct btf_type *t)
497 {
498 	return t == &btf_void;
499 }
500 
btf_type_is_datasec(const struct btf_type * t)501 static bool btf_type_is_datasec(const struct btf_type *t)
502 {
503 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
504 }
505 
btf_type_is_decl_tag(const struct btf_type * t)506 static bool btf_type_is_decl_tag(const struct btf_type *t)
507 {
508 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
509 }
510 
btf_type_nosize(const struct btf_type * t)511 static bool btf_type_nosize(const struct btf_type *t)
512 {
513 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
514 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
515 	       btf_type_is_decl_tag(t);
516 }
517 
btf_type_nosize_or_null(const struct btf_type * t)518 static bool btf_type_nosize_or_null(const struct btf_type *t)
519 {
520 	return !t || btf_type_nosize(t);
521 }
522 
btf_type_is_decl_tag_target(const struct btf_type * t)523 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
524 {
525 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
526 	       btf_type_is_var(t) || btf_type_is_typedef(t);
527 }
528 
btf_is_vmlinux(const struct btf * btf)529 bool btf_is_vmlinux(const struct btf *btf)
530 {
531 	return btf->kernel_btf && !btf->base_btf;
532 }
533 
btf_nr_types(const struct btf * btf)534 u32 btf_nr_types(const struct btf *btf)
535 {
536 	u32 total = 0;
537 
538 	while (btf) {
539 		total += btf->nr_types;
540 		btf = btf->base_btf;
541 	}
542 
543 	return total;
544 }
545 
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)546 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
547 {
548 	const struct btf_type *t;
549 	const char *tname;
550 	u32 i, total;
551 
552 	total = btf_nr_types(btf);
553 	for (i = 1; i < total; i++) {
554 		t = btf_type_by_id(btf, i);
555 		if (BTF_INFO_KIND(t->info) != kind)
556 			continue;
557 
558 		tname = btf_name_by_offset(btf, t->name_off);
559 		if (!strcmp(tname, name))
560 			return i;
561 	}
562 
563 	return -ENOENT;
564 }
565 
bpf_find_btf_id(const char * name,u32 kind,struct btf ** btf_p)566 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
567 {
568 	struct btf *btf;
569 	s32 ret;
570 	int id;
571 
572 	btf = bpf_get_btf_vmlinux();
573 	if (IS_ERR(btf))
574 		return PTR_ERR(btf);
575 	if (!btf)
576 		return -EINVAL;
577 
578 	ret = btf_find_by_name_kind(btf, name, kind);
579 	/* ret is never zero, since btf_find_by_name_kind returns
580 	 * positive btf_id or negative error.
581 	 */
582 	if (ret > 0) {
583 		btf_get(btf);
584 		*btf_p = btf;
585 		return ret;
586 	}
587 
588 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
589 	spin_lock_bh(&btf_idr_lock);
590 	idr_for_each_entry(&btf_idr, btf, id) {
591 		if (!btf_is_module(btf))
592 			continue;
593 		/* linear search could be slow hence unlock/lock
594 		 * the IDR to avoiding holding it for too long
595 		 */
596 		btf_get(btf);
597 		spin_unlock_bh(&btf_idr_lock);
598 		ret = btf_find_by_name_kind(btf, name, kind);
599 		if (ret > 0) {
600 			*btf_p = btf;
601 			return ret;
602 		}
603 		btf_put(btf);
604 		spin_lock_bh(&btf_idr_lock);
605 	}
606 	spin_unlock_bh(&btf_idr_lock);
607 	return ret;
608 }
609 
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)610 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
611 					       u32 id, u32 *res_id)
612 {
613 	const struct btf_type *t = btf_type_by_id(btf, id);
614 
615 	while (btf_type_is_modifier(t)) {
616 		id = t->type;
617 		t = btf_type_by_id(btf, t->type);
618 	}
619 
620 	if (res_id)
621 		*res_id = id;
622 
623 	return t;
624 }
625 
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)626 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
627 					    u32 id, u32 *res_id)
628 {
629 	const struct btf_type *t;
630 
631 	t = btf_type_skip_modifiers(btf, id, NULL);
632 	if (!btf_type_is_ptr(t))
633 		return NULL;
634 
635 	return btf_type_skip_modifiers(btf, t->type, res_id);
636 }
637 
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)638 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
639 						 u32 id, u32 *res_id)
640 {
641 	const struct btf_type *ptype;
642 
643 	ptype = btf_type_resolve_ptr(btf, id, res_id);
644 	if (ptype && btf_type_is_func_proto(ptype))
645 		return ptype;
646 
647 	return NULL;
648 }
649 
650 /* Types that act only as a source, not sink or intermediate
651  * type when resolving.
652  */
btf_type_is_resolve_source_only(const struct btf_type * t)653 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
654 {
655 	return btf_type_is_var(t) ||
656 	       btf_type_is_decl_tag(t) ||
657 	       btf_type_is_datasec(t);
658 }
659 
660 /* What types need to be resolved?
661  *
662  * btf_type_is_modifier() is an obvious one.
663  *
664  * btf_type_is_struct() because its member refers to
665  * another type (through member->type).
666  *
667  * btf_type_is_var() because the variable refers to
668  * another type. btf_type_is_datasec() holds multiple
669  * btf_type_is_var() types that need resolving.
670  *
671  * btf_type_is_array() because its element (array->type)
672  * refers to another type.  Array can be thought of a
673  * special case of struct while array just has the same
674  * member-type repeated by array->nelems of times.
675  */
btf_type_needs_resolve(const struct btf_type * t)676 static bool btf_type_needs_resolve(const struct btf_type *t)
677 {
678 	return btf_type_is_modifier(t) ||
679 	       btf_type_is_ptr(t) ||
680 	       btf_type_is_struct(t) ||
681 	       btf_type_is_array(t) ||
682 	       btf_type_is_var(t) ||
683 	       btf_type_is_func(t) ||
684 	       btf_type_is_decl_tag(t) ||
685 	       btf_type_is_datasec(t);
686 }
687 
688 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)689 static bool btf_type_has_size(const struct btf_type *t)
690 {
691 	switch (BTF_INFO_KIND(t->info)) {
692 	case BTF_KIND_INT:
693 	case BTF_KIND_STRUCT:
694 	case BTF_KIND_UNION:
695 	case BTF_KIND_ENUM:
696 	case BTF_KIND_DATASEC:
697 	case BTF_KIND_FLOAT:
698 	case BTF_KIND_ENUM64:
699 		return true;
700 	}
701 
702 	return false;
703 }
704 
btf_int_encoding_str(u8 encoding)705 static const char *btf_int_encoding_str(u8 encoding)
706 {
707 	if (encoding == 0)
708 		return "(none)";
709 	else if (encoding == BTF_INT_SIGNED)
710 		return "SIGNED";
711 	else if (encoding == BTF_INT_CHAR)
712 		return "CHAR";
713 	else if (encoding == BTF_INT_BOOL)
714 		return "BOOL";
715 	else
716 		return "UNKN";
717 }
718 
btf_type_int(const struct btf_type * t)719 static u32 btf_type_int(const struct btf_type *t)
720 {
721 	return *(u32 *)(t + 1);
722 }
723 
btf_type_array(const struct btf_type * t)724 static const struct btf_array *btf_type_array(const struct btf_type *t)
725 {
726 	return (const struct btf_array *)(t + 1);
727 }
728 
btf_type_enum(const struct btf_type * t)729 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
730 {
731 	return (const struct btf_enum *)(t + 1);
732 }
733 
btf_type_var(const struct btf_type * t)734 static const struct btf_var *btf_type_var(const struct btf_type *t)
735 {
736 	return (const struct btf_var *)(t + 1);
737 }
738 
btf_type_decl_tag(const struct btf_type * t)739 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
740 {
741 	return (const struct btf_decl_tag *)(t + 1);
742 }
743 
btf_type_enum64(const struct btf_type * t)744 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
745 {
746 	return (const struct btf_enum64 *)(t + 1);
747 }
748 
btf_type_ops(const struct btf_type * t)749 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
750 {
751 	return kind_ops[BTF_INFO_KIND(t->info)];
752 }
753 
btf_name_offset_valid(const struct btf * btf,u32 offset)754 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
755 {
756 	if (!BTF_STR_OFFSET_VALID(offset))
757 		return false;
758 
759 	while (offset < btf->start_str_off)
760 		btf = btf->base_btf;
761 
762 	offset -= btf->start_str_off;
763 	return offset < btf->hdr.str_len;
764 }
765 
__btf_name_char_ok(char c,bool first)766 static bool __btf_name_char_ok(char c, bool first)
767 {
768 	if ((first ? !isalpha(c) :
769 		     !isalnum(c)) &&
770 	    c != '_' &&
771 	    c != '.')
772 		return false;
773 	return true;
774 }
775 
btf_str_by_offset(const struct btf * btf,u32 offset)776 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
777 {
778 	while (offset < btf->start_str_off)
779 		btf = btf->base_btf;
780 
781 	offset -= btf->start_str_off;
782 	if (offset < btf->hdr.str_len)
783 		return &btf->strings[offset];
784 
785 	return NULL;
786 }
787 
btf_name_valid_identifier(const struct btf * btf,u32 offset)788 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
789 {
790 	/* offset must be valid */
791 	const char *src = btf_str_by_offset(btf, offset);
792 	const char *src_limit;
793 
794 	if (!__btf_name_char_ok(*src, true))
795 		return false;
796 
797 	/* set a limit on identifier length */
798 	src_limit = src + KSYM_NAME_LEN;
799 	src++;
800 	while (*src && src < src_limit) {
801 		if (!__btf_name_char_ok(*src, false))
802 			return false;
803 		src++;
804 	}
805 
806 	return !*src;
807 }
808 
809 /* Allow any printable character in DATASEC names */
btf_name_valid_section(const struct btf * btf,u32 offset)810 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
811 {
812 	/* offset must be valid */
813 	const char *src = btf_str_by_offset(btf, offset);
814 	const char *src_limit;
815 
816 	if (!*src)
817 		return false;
818 
819 	/* set a limit on identifier length */
820 	src_limit = src + KSYM_NAME_LEN;
821 	while (*src && src < src_limit) {
822 		if (!isprint(*src))
823 			return false;
824 		src++;
825 	}
826 
827 	return !*src;
828 }
829 
__btf_name_by_offset(const struct btf * btf,u32 offset)830 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
831 {
832 	const char *name;
833 
834 	if (!offset)
835 		return "(anon)";
836 
837 	name = btf_str_by_offset(btf, offset);
838 	return name ?: "(invalid-name-offset)";
839 }
840 
btf_name_by_offset(const struct btf * btf,u32 offset)841 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
842 {
843 	return btf_str_by_offset(btf, offset);
844 }
845 
btf_type_by_id(const struct btf * btf,u32 type_id)846 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
847 {
848 	while (type_id < btf->start_id)
849 		btf = btf->base_btf;
850 
851 	type_id -= btf->start_id;
852 	if (type_id >= btf->nr_types)
853 		return NULL;
854 	return btf->types[type_id];
855 }
856 EXPORT_SYMBOL_GPL(btf_type_by_id);
857 
858 /*
859  * Regular int is not a bit field and it must be either
860  * u8/u16/u32/u64 or __int128.
861  */
btf_type_int_is_regular(const struct btf_type * t)862 static bool btf_type_int_is_regular(const struct btf_type *t)
863 {
864 	u8 nr_bits, nr_bytes;
865 	u32 int_data;
866 
867 	int_data = btf_type_int(t);
868 	nr_bits = BTF_INT_BITS(int_data);
869 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
870 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
871 	    BTF_INT_OFFSET(int_data) ||
872 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
873 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
874 	     nr_bytes != (2 * sizeof(u64)))) {
875 		return false;
876 	}
877 
878 	return true;
879 }
880 
881 /*
882  * Check that given struct member is a regular int with expected
883  * offset and size.
884  */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)885 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
886 			   const struct btf_member *m,
887 			   u32 expected_offset, u32 expected_size)
888 {
889 	const struct btf_type *t;
890 	u32 id, int_data;
891 	u8 nr_bits;
892 
893 	id = m->type;
894 	t = btf_type_id_size(btf, &id, NULL);
895 	if (!t || !btf_type_is_int(t))
896 		return false;
897 
898 	int_data = btf_type_int(t);
899 	nr_bits = BTF_INT_BITS(int_data);
900 	if (btf_type_kflag(s)) {
901 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
902 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
903 
904 		/* if kflag set, int should be a regular int and
905 		 * bit offset should be at byte boundary.
906 		 */
907 		return !bitfield_size &&
908 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
909 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
910 	}
911 
912 	if (BTF_INT_OFFSET(int_data) ||
913 	    BITS_PER_BYTE_MASKED(m->offset) ||
914 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
915 	    BITS_PER_BYTE_MASKED(nr_bits) ||
916 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
917 		return false;
918 
919 	return true;
920 }
921 
922 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)923 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
924 						       u32 id)
925 {
926 	const struct btf_type *t = btf_type_by_id(btf, id);
927 
928 	while (btf_type_is_modifier(t) &&
929 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
930 		t = btf_type_by_id(btf, t->type);
931 	}
932 
933 	return t;
934 }
935 
936 #define BTF_SHOW_MAX_ITER	10
937 
938 #define BTF_KIND_BIT(kind)	(1ULL << kind)
939 
940 /*
941  * Populate show->state.name with type name information.
942  * Format of type name is
943  *
944  * [.member_name = ] (type_name)
945  */
btf_show_name(struct btf_show * show)946 static const char *btf_show_name(struct btf_show *show)
947 {
948 	/* BTF_MAX_ITER array suffixes "[]" */
949 	const char *array_suffixes = "[][][][][][][][][][]";
950 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
951 	/* BTF_MAX_ITER pointer suffixes "*" */
952 	const char *ptr_suffixes = "**********";
953 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
954 	const char *name = NULL, *prefix = "", *parens = "";
955 	const struct btf_member *m = show->state.member;
956 	const struct btf_type *t;
957 	const struct btf_array *array;
958 	u32 id = show->state.type_id;
959 	const char *member = NULL;
960 	bool show_member = false;
961 	u64 kinds = 0;
962 	int i;
963 
964 	show->state.name[0] = '\0';
965 
966 	/*
967 	 * Don't show type name if we're showing an array member;
968 	 * in that case we show the array type so don't need to repeat
969 	 * ourselves for each member.
970 	 */
971 	if (show->state.array_member)
972 		return "";
973 
974 	/* Retrieve member name, if any. */
975 	if (m) {
976 		member = btf_name_by_offset(show->btf, m->name_off);
977 		show_member = strlen(member) > 0;
978 		id = m->type;
979 	}
980 
981 	/*
982 	 * Start with type_id, as we have resolved the struct btf_type *
983 	 * via btf_modifier_show() past the parent typedef to the child
984 	 * struct, int etc it is defined as.  In such cases, the type_id
985 	 * still represents the starting type while the struct btf_type *
986 	 * in our show->state points at the resolved type of the typedef.
987 	 */
988 	t = btf_type_by_id(show->btf, id);
989 	if (!t)
990 		return "";
991 
992 	/*
993 	 * The goal here is to build up the right number of pointer and
994 	 * array suffixes while ensuring the type name for a typedef
995 	 * is represented.  Along the way we accumulate a list of
996 	 * BTF kinds we have encountered, since these will inform later
997 	 * display; for example, pointer types will not require an
998 	 * opening "{" for struct, we will just display the pointer value.
999 	 *
1000 	 * We also want to accumulate the right number of pointer or array
1001 	 * indices in the format string while iterating until we get to
1002 	 * the typedef/pointee/array member target type.
1003 	 *
1004 	 * We start by pointing at the end of pointer and array suffix
1005 	 * strings; as we accumulate pointers and arrays we move the pointer
1006 	 * or array string backwards so it will show the expected number of
1007 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1008 	 * and/or arrays and typedefs are supported as a precaution.
1009 	 *
1010 	 * We also want to get typedef name while proceeding to resolve
1011 	 * type it points to so that we can add parentheses if it is a
1012 	 * "typedef struct" etc.
1013 	 */
1014 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1015 
1016 		switch (BTF_INFO_KIND(t->info)) {
1017 		case BTF_KIND_TYPEDEF:
1018 			if (!name)
1019 				name = btf_name_by_offset(show->btf,
1020 							       t->name_off);
1021 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1022 			id = t->type;
1023 			break;
1024 		case BTF_KIND_ARRAY:
1025 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1026 			parens = "[";
1027 			if (!t)
1028 				return "";
1029 			array = btf_type_array(t);
1030 			if (array_suffix > array_suffixes)
1031 				array_suffix -= 2;
1032 			id = array->type;
1033 			break;
1034 		case BTF_KIND_PTR:
1035 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1036 			if (ptr_suffix > ptr_suffixes)
1037 				ptr_suffix -= 1;
1038 			id = t->type;
1039 			break;
1040 		default:
1041 			id = 0;
1042 			break;
1043 		}
1044 		if (!id)
1045 			break;
1046 		t = btf_type_skip_qualifiers(show->btf, id);
1047 	}
1048 	/* We may not be able to represent this type; bail to be safe */
1049 	if (i == BTF_SHOW_MAX_ITER)
1050 		return "";
1051 
1052 	if (!name)
1053 		name = btf_name_by_offset(show->btf, t->name_off);
1054 
1055 	switch (BTF_INFO_KIND(t->info)) {
1056 	case BTF_KIND_STRUCT:
1057 	case BTF_KIND_UNION:
1058 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1059 			 "struct" : "union";
1060 		/* if it's an array of struct/union, parens is already set */
1061 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1062 			parens = "{";
1063 		break;
1064 	case BTF_KIND_ENUM:
1065 	case BTF_KIND_ENUM64:
1066 		prefix = "enum";
1067 		break;
1068 	default:
1069 		break;
1070 	}
1071 
1072 	/* pointer does not require parens */
1073 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1074 		parens = "";
1075 	/* typedef does not require struct/union/enum prefix */
1076 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1077 		prefix = "";
1078 
1079 	if (!name)
1080 		name = "";
1081 
1082 	/* Even if we don't want type name info, we want parentheses etc */
1083 	if (show->flags & BTF_SHOW_NONAME)
1084 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1085 			 parens);
1086 	else
1087 		snprintf(show->state.name, sizeof(show->state.name),
1088 			 "%s%s%s(%s%s%s%s%s%s)%s",
1089 			 /* first 3 strings comprise ".member = " */
1090 			 show_member ? "." : "",
1091 			 show_member ? member : "",
1092 			 show_member ? " = " : "",
1093 			 /* ...next is our prefix (struct, enum, etc) */
1094 			 prefix,
1095 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1096 			 /* ...this is the type name itself */
1097 			 name,
1098 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1099 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1100 			 array_suffix, parens);
1101 
1102 	return show->state.name;
1103 }
1104 
__btf_show_indent(struct btf_show * show)1105 static const char *__btf_show_indent(struct btf_show *show)
1106 {
1107 	const char *indents = "                                ";
1108 	const char *indent = &indents[strlen(indents)];
1109 
1110 	if ((indent - show->state.depth) >= indents)
1111 		return indent - show->state.depth;
1112 	return indents;
1113 }
1114 
btf_show_indent(struct btf_show * show)1115 static const char *btf_show_indent(struct btf_show *show)
1116 {
1117 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1118 }
1119 
btf_show_newline(struct btf_show * show)1120 static const char *btf_show_newline(struct btf_show *show)
1121 {
1122 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1123 }
1124 
btf_show_delim(struct btf_show * show)1125 static const char *btf_show_delim(struct btf_show *show)
1126 {
1127 	if (show->state.depth == 0)
1128 		return "";
1129 
1130 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1131 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1132 		return "|";
1133 
1134 	return ",";
1135 }
1136 
btf_show(struct btf_show * show,const char * fmt,...)1137 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1138 {
1139 	va_list args;
1140 
1141 	if (!show->state.depth_check) {
1142 		va_start(args, fmt);
1143 		show->showfn(show, fmt, args);
1144 		va_end(args);
1145 	}
1146 }
1147 
1148 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1149  * format specifiers to the format specifier passed in; these do the work of
1150  * adding indentation, delimiters etc while the caller simply has to specify
1151  * the type value(s) in the format specifier + value(s).
1152  */
1153 #define btf_show_type_value(show, fmt, value)				       \
1154 	do {								       \
1155 		if ((value) != (__typeof__(value))0 ||			       \
1156 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1157 		    show->state.depth == 0) {				       \
1158 			btf_show(show, "%s%s" fmt "%s%s",		       \
1159 				 btf_show_indent(show),			       \
1160 				 btf_show_name(show),			       \
1161 				 value, btf_show_delim(show),		       \
1162 				 btf_show_newline(show));		       \
1163 			if (show->state.depth > show->state.depth_to_show)     \
1164 				show->state.depth_to_show = show->state.depth; \
1165 		}							       \
1166 	} while (0)
1167 
1168 #define btf_show_type_values(show, fmt, ...)				       \
1169 	do {								       \
1170 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1171 			 btf_show_name(show),				       \
1172 			 __VA_ARGS__, btf_show_delim(show),		       \
1173 			 btf_show_newline(show));			       \
1174 		if (show->state.depth > show->state.depth_to_show)	       \
1175 			show->state.depth_to_show = show->state.depth;	       \
1176 	} while (0)
1177 
1178 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1179 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1180 {
1181 	return show->obj.head + show->obj.size - data;
1182 }
1183 
1184 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1185 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1186 {
1187 	return data >= show->obj.data &&
1188 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1189 }
1190 
1191 /*
1192  * If object pointed to by @data of @size falls within our safe buffer, return
1193  * the equivalent pointer to the same safe data.  Assumes
1194  * copy_from_kernel_nofault() has already happened and our safe buffer is
1195  * populated.
1196  */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1197 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1198 {
1199 	if (btf_show_obj_is_safe(show, data, size))
1200 		return show->obj.safe + (data - show->obj.data);
1201 	return NULL;
1202 }
1203 
1204 /*
1205  * Return a safe-to-access version of data pointed to by @data.
1206  * We do this by copying the relevant amount of information
1207  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1208  *
1209  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1210  * safe copy is needed.
1211  *
1212  * Otherwise we need to determine if we have the required amount
1213  * of data (determined by the @data pointer and the size of the
1214  * largest base type we can encounter (represented by
1215  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1216  * that we will be able to print some of the current object,
1217  * and if more is needed a copy will be triggered.
1218  * Some objects such as structs will not fit into the buffer;
1219  * in such cases additional copies when we iterate over their
1220  * members may be needed.
1221  *
1222  * btf_show_obj_safe() is used to return a safe buffer for
1223  * btf_show_start_type(); this ensures that as we recurse into
1224  * nested types we always have safe data for the given type.
1225  * This approach is somewhat wasteful; it's possible for example
1226  * that when iterating over a large union we'll end up copying the
1227  * same data repeatedly, but the goal is safety not performance.
1228  * We use stack data as opposed to per-CPU buffers because the
1229  * iteration over a type can take some time, and preemption handling
1230  * would greatly complicate use of the safe buffer.
1231  */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1232 static void *btf_show_obj_safe(struct btf_show *show,
1233 			       const struct btf_type *t,
1234 			       void *data)
1235 {
1236 	const struct btf_type *rt;
1237 	int size_left, size;
1238 	void *safe = NULL;
1239 
1240 	if (show->flags & BTF_SHOW_UNSAFE)
1241 		return data;
1242 
1243 	rt = btf_resolve_size(show->btf, t, &size);
1244 	if (IS_ERR(rt)) {
1245 		show->state.status = PTR_ERR(rt);
1246 		return NULL;
1247 	}
1248 
1249 	/*
1250 	 * Is this toplevel object? If so, set total object size and
1251 	 * initialize pointers.  Otherwise check if we still fall within
1252 	 * our safe object data.
1253 	 */
1254 	if (show->state.depth == 0) {
1255 		show->obj.size = size;
1256 		show->obj.head = data;
1257 	} else {
1258 		/*
1259 		 * If the size of the current object is > our remaining
1260 		 * safe buffer we _may_ need to do a new copy.  However
1261 		 * consider the case of a nested struct; it's size pushes
1262 		 * us over the safe buffer limit, but showing any individual
1263 		 * struct members does not.  In such cases, we don't need
1264 		 * to initiate a fresh copy yet; however we definitely need
1265 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1266 		 * in our buffer, regardless of the current object size.
1267 		 * The logic here is that as we resolve types we will
1268 		 * hit a base type at some point, and we need to be sure
1269 		 * the next chunk of data is safely available to display
1270 		 * that type info safely.  We cannot rely on the size of
1271 		 * the current object here because it may be much larger
1272 		 * than our current buffer (e.g. task_struct is 8k).
1273 		 * All we want to do here is ensure that we can print the
1274 		 * next basic type, which we can if either
1275 		 * - the current type size is within the safe buffer; or
1276 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1277 		 *   the safe buffer.
1278 		 */
1279 		safe = __btf_show_obj_safe(show, data,
1280 					   min(size,
1281 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1282 	}
1283 
1284 	/*
1285 	 * We need a new copy to our safe object, either because we haven't
1286 	 * yet copied and are initializing safe data, or because the data
1287 	 * we want falls outside the boundaries of the safe object.
1288 	 */
1289 	if (!safe) {
1290 		size_left = btf_show_obj_size_left(show, data);
1291 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1292 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1293 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1294 							      data, size_left);
1295 		if (!show->state.status) {
1296 			show->obj.data = data;
1297 			safe = show->obj.safe;
1298 		}
1299 	}
1300 
1301 	return safe;
1302 }
1303 
1304 /*
1305  * Set the type we are starting to show and return a safe data pointer
1306  * to be used for showing the associated data.
1307  */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1308 static void *btf_show_start_type(struct btf_show *show,
1309 				 const struct btf_type *t,
1310 				 u32 type_id, void *data)
1311 {
1312 	show->state.type = t;
1313 	show->state.type_id = type_id;
1314 	show->state.name[0] = '\0';
1315 
1316 	return btf_show_obj_safe(show, t, data);
1317 }
1318 
btf_show_end_type(struct btf_show * show)1319 static void btf_show_end_type(struct btf_show *show)
1320 {
1321 	show->state.type = NULL;
1322 	show->state.type_id = 0;
1323 	show->state.name[0] = '\0';
1324 }
1325 
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1326 static void *btf_show_start_aggr_type(struct btf_show *show,
1327 				      const struct btf_type *t,
1328 				      u32 type_id, void *data)
1329 {
1330 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1331 
1332 	if (!safe_data)
1333 		return safe_data;
1334 
1335 	btf_show(show, "%s%s%s", btf_show_indent(show),
1336 		 btf_show_name(show),
1337 		 btf_show_newline(show));
1338 	show->state.depth++;
1339 	return safe_data;
1340 }
1341 
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1342 static void btf_show_end_aggr_type(struct btf_show *show,
1343 				   const char *suffix)
1344 {
1345 	show->state.depth--;
1346 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1347 		 btf_show_delim(show), btf_show_newline(show));
1348 	btf_show_end_type(show);
1349 }
1350 
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1351 static void btf_show_start_member(struct btf_show *show,
1352 				  const struct btf_member *m)
1353 {
1354 	show->state.member = m;
1355 }
1356 
btf_show_start_array_member(struct btf_show * show)1357 static void btf_show_start_array_member(struct btf_show *show)
1358 {
1359 	show->state.array_member = 1;
1360 	btf_show_start_member(show, NULL);
1361 }
1362 
btf_show_end_member(struct btf_show * show)1363 static void btf_show_end_member(struct btf_show *show)
1364 {
1365 	show->state.member = NULL;
1366 }
1367 
btf_show_end_array_member(struct btf_show * show)1368 static void btf_show_end_array_member(struct btf_show *show)
1369 {
1370 	show->state.array_member = 0;
1371 	btf_show_end_member(show);
1372 }
1373 
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1374 static void *btf_show_start_array_type(struct btf_show *show,
1375 				       const struct btf_type *t,
1376 				       u32 type_id,
1377 				       u16 array_encoding,
1378 				       void *data)
1379 {
1380 	show->state.array_encoding = array_encoding;
1381 	show->state.array_terminated = 0;
1382 	return btf_show_start_aggr_type(show, t, type_id, data);
1383 }
1384 
btf_show_end_array_type(struct btf_show * show)1385 static void btf_show_end_array_type(struct btf_show *show)
1386 {
1387 	show->state.array_encoding = 0;
1388 	show->state.array_terminated = 0;
1389 	btf_show_end_aggr_type(show, "]");
1390 }
1391 
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1392 static void *btf_show_start_struct_type(struct btf_show *show,
1393 					const struct btf_type *t,
1394 					u32 type_id,
1395 					void *data)
1396 {
1397 	return btf_show_start_aggr_type(show, t, type_id, data);
1398 }
1399 
btf_show_end_struct_type(struct btf_show * show)1400 static void btf_show_end_struct_type(struct btf_show *show)
1401 {
1402 	btf_show_end_aggr_type(show, "}");
1403 }
1404 
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1405 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1406 					      const char *fmt, ...)
1407 {
1408 	va_list args;
1409 
1410 	va_start(args, fmt);
1411 	bpf_verifier_vlog(log, fmt, args);
1412 	va_end(args);
1413 }
1414 
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1415 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1416 					    const char *fmt, ...)
1417 {
1418 	struct bpf_verifier_log *log = &env->log;
1419 	va_list args;
1420 
1421 	if (!bpf_verifier_log_needed(log))
1422 		return;
1423 
1424 	va_start(args, fmt);
1425 	bpf_verifier_vlog(log, fmt, args);
1426 	va_end(args);
1427 }
1428 
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1429 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1430 						   const struct btf_type *t,
1431 						   bool log_details,
1432 						   const char *fmt, ...)
1433 {
1434 	struct bpf_verifier_log *log = &env->log;
1435 	struct btf *btf = env->btf;
1436 	va_list args;
1437 
1438 	if (!bpf_verifier_log_needed(log))
1439 		return;
1440 
1441 	if (log->level == BPF_LOG_KERNEL) {
1442 		/* btf verifier prints all types it is processing via
1443 		 * btf_verifier_log_type(..., fmt = NULL).
1444 		 * Skip those prints for in-kernel BTF verification.
1445 		 */
1446 		if (!fmt)
1447 			return;
1448 
1449 		/* Skip logging when loading module BTF with mismatches permitted */
1450 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1451 			return;
1452 	}
1453 
1454 	__btf_verifier_log(log, "[%u] %s %s%s",
1455 			   env->log_type_id,
1456 			   btf_type_str(t),
1457 			   __btf_name_by_offset(btf, t->name_off),
1458 			   log_details ? " " : "");
1459 
1460 	if (log_details)
1461 		btf_type_ops(t)->log_details(env, t);
1462 
1463 	if (fmt && *fmt) {
1464 		__btf_verifier_log(log, " ");
1465 		va_start(args, fmt);
1466 		bpf_verifier_vlog(log, fmt, args);
1467 		va_end(args);
1468 	}
1469 
1470 	__btf_verifier_log(log, "\n");
1471 }
1472 
1473 #define btf_verifier_log_type(env, t, ...) \
1474 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1475 #define btf_verifier_log_basic(env, t, ...) \
1476 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1477 
1478 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1479 static void btf_verifier_log_member(struct btf_verifier_env *env,
1480 				    const struct btf_type *struct_type,
1481 				    const struct btf_member *member,
1482 				    const char *fmt, ...)
1483 {
1484 	struct bpf_verifier_log *log = &env->log;
1485 	struct btf *btf = env->btf;
1486 	va_list args;
1487 
1488 	if (!bpf_verifier_log_needed(log))
1489 		return;
1490 
1491 	if (log->level == BPF_LOG_KERNEL) {
1492 		if (!fmt)
1493 			return;
1494 
1495 		/* Skip logging when loading module BTF with mismatches permitted */
1496 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1497 			return;
1498 	}
1499 
1500 	/* The CHECK_META phase already did a btf dump.
1501 	 *
1502 	 * If member is logged again, it must hit an error in
1503 	 * parsing this member.  It is useful to print out which
1504 	 * struct this member belongs to.
1505 	 */
1506 	if (env->phase != CHECK_META)
1507 		btf_verifier_log_type(env, struct_type, NULL);
1508 
1509 	if (btf_type_kflag(struct_type))
1510 		__btf_verifier_log(log,
1511 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1512 				   __btf_name_by_offset(btf, member->name_off),
1513 				   member->type,
1514 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1515 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1516 	else
1517 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1518 				   __btf_name_by_offset(btf, member->name_off),
1519 				   member->type, member->offset);
1520 
1521 	if (fmt && *fmt) {
1522 		__btf_verifier_log(log, " ");
1523 		va_start(args, fmt);
1524 		bpf_verifier_vlog(log, fmt, args);
1525 		va_end(args);
1526 	}
1527 
1528 	__btf_verifier_log(log, "\n");
1529 }
1530 
1531 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1532 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1533 				 const struct btf_type *datasec_type,
1534 				 const struct btf_var_secinfo *vsi,
1535 				 const char *fmt, ...)
1536 {
1537 	struct bpf_verifier_log *log = &env->log;
1538 	va_list args;
1539 
1540 	if (!bpf_verifier_log_needed(log))
1541 		return;
1542 	if (log->level == BPF_LOG_KERNEL && !fmt)
1543 		return;
1544 	if (env->phase != CHECK_META)
1545 		btf_verifier_log_type(env, datasec_type, NULL);
1546 
1547 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1548 			   vsi->type, vsi->offset, vsi->size);
1549 	if (fmt && *fmt) {
1550 		__btf_verifier_log(log, " ");
1551 		va_start(args, fmt);
1552 		bpf_verifier_vlog(log, fmt, args);
1553 		va_end(args);
1554 	}
1555 
1556 	__btf_verifier_log(log, "\n");
1557 }
1558 
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1559 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1560 				 u32 btf_data_size)
1561 {
1562 	struct bpf_verifier_log *log = &env->log;
1563 	const struct btf *btf = env->btf;
1564 	const struct btf_header *hdr;
1565 
1566 	if (!bpf_verifier_log_needed(log))
1567 		return;
1568 
1569 	if (log->level == BPF_LOG_KERNEL)
1570 		return;
1571 	hdr = &btf->hdr;
1572 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1573 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1574 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1575 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1576 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1577 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1578 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1579 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1580 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1581 }
1582 
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1583 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1584 {
1585 	struct btf *btf = env->btf;
1586 
1587 	if (btf->types_size == btf->nr_types) {
1588 		/* Expand 'types' array */
1589 
1590 		struct btf_type **new_types;
1591 		u32 expand_by, new_size;
1592 
1593 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1594 			btf_verifier_log(env, "Exceeded max num of types");
1595 			return -E2BIG;
1596 		}
1597 
1598 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1599 		new_size = min_t(u32, BTF_MAX_TYPE,
1600 				 btf->types_size + expand_by);
1601 
1602 		new_types = kvcalloc(new_size, sizeof(*new_types),
1603 				     GFP_KERNEL | __GFP_NOWARN);
1604 		if (!new_types)
1605 			return -ENOMEM;
1606 
1607 		if (btf->nr_types == 0) {
1608 			if (!btf->base_btf) {
1609 				/* lazily init VOID type */
1610 				new_types[0] = &btf_void;
1611 				btf->nr_types++;
1612 			}
1613 		} else {
1614 			memcpy(new_types, btf->types,
1615 			       sizeof(*btf->types) * btf->nr_types);
1616 		}
1617 
1618 		kvfree(btf->types);
1619 		btf->types = new_types;
1620 		btf->types_size = new_size;
1621 	}
1622 
1623 	btf->types[btf->nr_types++] = t;
1624 
1625 	return 0;
1626 }
1627 
btf_alloc_id(struct btf * btf)1628 static int btf_alloc_id(struct btf *btf)
1629 {
1630 	int id;
1631 
1632 	idr_preload(GFP_KERNEL);
1633 	spin_lock_bh(&btf_idr_lock);
1634 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1635 	if (id > 0)
1636 		btf->id = id;
1637 	spin_unlock_bh(&btf_idr_lock);
1638 	idr_preload_end();
1639 
1640 	if (WARN_ON_ONCE(!id))
1641 		return -ENOSPC;
1642 
1643 	return id > 0 ? 0 : id;
1644 }
1645 
btf_free_id(struct btf * btf)1646 static void btf_free_id(struct btf *btf)
1647 {
1648 	unsigned long flags;
1649 
1650 	/*
1651 	 * In map-in-map, calling map_delete_elem() on outer
1652 	 * map will call bpf_map_put on the inner map.
1653 	 * It will then eventually call btf_free_id()
1654 	 * on the inner map.  Some of the map_delete_elem()
1655 	 * implementation may have irq disabled, so
1656 	 * we need to use the _irqsave() version instead
1657 	 * of the _bh() version.
1658 	 */
1659 	spin_lock_irqsave(&btf_idr_lock, flags);
1660 	idr_remove(&btf_idr, btf->id);
1661 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1662 }
1663 
btf_free_kfunc_set_tab(struct btf * btf)1664 static void btf_free_kfunc_set_tab(struct btf *btf)
1665 {
1666 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1667 	int hook;
1668 
1669 	if (!tab)
1670 		return;
1671 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1672 		kfree(tab->sets[hook]);
1673 	kfree(tab);
1674 	btf->kfunc_set_tab = NULL;
1675 }
1676 
btf_free_dtor_kfunc_tab(struct btf * btf)1677 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1678 {
1679 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1680 
1681 	if (!tab)
1682 		return;
1683 	kfree(tab);
1684 	btf->dtor_kfunc_tab = NULL;
1685 }
1686 
btf_struct_metas_free(struct btf_struct_metas * tab)1687 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1688 {
1689 	int i;
1690 
1691 	if (!tab)
1692 		return;
1693 	for (i = 0; i < tab->cnt; i++)
1694 		btf_record_free(tab->types[i].record);
1695 	kfree(tab);
1696 }
1697 
btf_free_struct_meta_tab(struct btf * btf)1698 static void btf_free_struct_meta_tab(struct btf *btf)
1699 {
1700 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1701 
1702 	btf_struct_metas_free(tab);
1703 	btf->struct_meta_tab = NULL;
1704 }
1705 
btf_free_struct_ops_tab(struct btf * btf)1706 static void btf_free_struct_ops_tab(struct btf *btf)
1707 {
1708 	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1709 	u32 i;
1710 
1711 	if (!tab)
1712 		return;
1713 
1714 	for (i = 0; i < tab->cnt; i++)
1715 		bpf_struct_ops_desc_release(&tab->ops[i]);
1716 
1717 	kfree(tab);
1718 	btf->struct_ops_tab = NULL;
1719 }
1720 
btf_free(struct btf * btf)1721 static void btf_free(struct btf *btf)
1722 {
1723 	btf_free_struct_meta_tab(btf);
1724 	btf_free_dtor_kfunc_tab(btf);
1725 	btf_free_kfunc_set_tab(btf);
1726 	btf_free_struct_ops_tab(btf);
1727 	kvfree(btf->types);
1728 	kvfree(btf->resolved_sizes);
1729 	kvfree(btf->resolved_ids);
1730 	/* vmlinux does not allocate btf->data, it simply points it at
1731 	 * __start_BTF.
1732 	 */
1733 	if (!btf_is_vmlinux(btf))
1734 		kvfree(btf->data);
1735 	kvfree(btf->base_id_map);
1736 	kfree(btf);
1737 }
1738 
btf_free_rcu(struct rcu_head * rcu)1739 static void btf_free_rcu(struct rcu_head *rcu)
1740 {
1741 	struct btf *btf = container_of(rcu, struct btf, rcu);
1742 
1743 	btf_free(btf);
1744 }
1745 
btf_get_name(const struct btf * btf)1746 const char *btf_get_name(const struct btf *btf)
1747 {
1748 	return btf->name;
1749 }
1750 
btf_get(struct btf * btf)1751 void btf_get(struct btf *btf)
1752 {
1753 	refcount_inc(&btf->refcnt);
1754 }
1755 
btf_put(struct btf * btf)1756 void btf_put(struct btf *btf)
1757 {
1758 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1759 		btf_free_id(btf);
1760 		call_rcu(&btf->rcu, btf_free_rcu);
1761 	}
1762 }
1763 
btf_base_btf(const struct btf * btf)1764 struct btf *btf_base_btf(const struct btf *btf)
1765 {
1766 	return btf->base_btf;
1767 }
1768 
btf_header(const struct btf * btf)1769 const struct btf_header *btf_header(const struct btf *btf)
1770 {
1771 	return &btf->hdr;
1772 }
1773 
btf_set_base_btf(struct btf * btf,const struct btf * base_btf)1774 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1775 {
1776 	btf->base_btf = (struct btf *)base_btf;
1777 	btf->start_id = btf_nr_types(base_btf);
1778 	btf->start_str_off = base_btf->hdr.str_len;
1779 }
1780 
env_resolve_init(struct btf_verifier_env * env)1781 static int env_resolve_init(struct btf_verifier_env *env)
1782 {
1783 	struct btf *btf = env->btf;
1784 	u32 nr_types = btf->nr_types;
1785 	u32 *resolved_sizes = NULL;
1786 	u32 *resolved_ids = NULL;
1787 	u8 *visit_states = NULL;
1788 
1789 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1790 				  GFP_KERNEL | __GFP_NOWARN);
1791 	if (!resolved_sizes)
1792 		goto nomem;
1793 
1794 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1795 				GFP_KERNEL | __GFP_NOWARN);
1796 	if (!resolved_ids)
1797 		goto nomem;
1798 
1799 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1800 				GFP_KERNEL | __GFP_NOWARN);
1801 	if (!visit_states)
1802 		goto nomem;
1803 
1804 	btf->resolved_sizes = resolved_sizes;
1805 	btf->resolved_ids = resolved_ids;
1806 	env->visit_states = visit_states;
1807 
1808 	return 0;
1809 
1810 nomem:
1811 	kvfree(resolved_sizes);
1812 	kvfree(resolved_ids);
1813 	kvfree(visit_states);
1814 	return -ENOMEM;
1815 }
1816 
btf_verifier_env_free(struct btf_verifier_env * env)1817 static void btf_verifier_env_free(struct btf_verifier_env *env)
1818 {
1819 	kvfree(env->visit_states);
1820 	kfree(env);
1821 }
1822 
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1823 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1824 				     const struct btf_type *next_type)
1825 {
1826 	switch (env->resolve_mode) {
1827 	case RESOLVE_TBD:
1828 		/* int, enum or void is a sink */
1829 		return !btf_type_needs_resolve(next_type);
1830 	case RESOLVE_PTR:
1831 		/* int, enum, void, struct, array, func or func_proto is a sink
1832 		 * for ptr
1833 		 */
1834 		return !btf_type_is_modifier(next_type) &&
1835 			!btf_type_is_ptr(next_type);
1836 	case RESOLVE_STRUCT_OR_ARRAY:
1837 		/* int, enum, void, ptr, func or func_proto is a sink
1838 		 * for struct and array
1839 		 */
1840 		return !btf_type_is_modifier(next_type) &&
1841 			!btf_type_is_array(next_type) &&
1842 			!btf_type_is_struct(next_type);
1843 	default:
1844 		BUG();
1845 	}
1846 }
1847 
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1848 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1849 				 u32 type_id)
1850 {
1851 	/* base BTF types should be resolved by now */
1852 	if (type_id < env->btf->start_id)
1853 		return true;
1854 
1855 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1856 }
1857 
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1858 static int env_stack_push(struct btf_verifier_env *env,
1859 			  const struct btf_type *t, u32 type_id)
1860 {
1861 	const struct btf *btf = env->btf;
1862 	struct resolve_vertex *v;
1863 
1864 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1865 		return -E2BIG;
1866 
1867 	if (type_id < btf->start_id
1868 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1869 		return -EEXIST;
1870 
1871 	env->visit_states[type_id - btf->start_id] = VISITED;
1872 
1873 	v = &env->stack[env->top_stack++];
1874 	v->t = t;
1875 	v->type_id = type_id;
1876 	v->next_member = 0;
1877 
1878 	if (env->resolve_mode == RESOLVE_TBD) {
1879 		if (btf_type_is_ptr(t))
1880 			env->resolve_mode = RESOLVE_PTR;
1881 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1882 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1888 static void env_stack_set_next_member(struct btf_verifier_env *env,
1889 				      u16 next_member)
1890 {
1891 	env->stack[env->top_stack - 1].next_member = next_member;
1892 }
1893 
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1894 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1895 				   u32 resolved_type_id,
1896 				   u32 resolved_size)
1897 {
1898 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1899 	struct btf *btf = env->btf;
1900 
1901 	type_id -= btf->start_id; /* adjust to local type id */
1902 	btf->resolved_sizes[type_id] = resolved_size;
1903 	btf->resolved_ids[type_id] = resolved_type_id;
1904 	env->visit_states[type_id] = RESOLVED;
1905 }
1906 
env_stack_peak(struct btf_verifier_env * env)1907 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1908 {
1909 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1910 }
1911 
1912 /* Resolve the size of a passed-in "type"
1913  *
1914  * type: is an array (e.g. u32 array[x][y])
1915  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1916  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1917  *             corresponds to the return type.
1918  * *elem_type: u32
1919  * *elem_id: id of u32
1920  * *total_nelems: (x * y).  Hence, individual elem size is
1921  *                (*type_size / *total_nelems)
1922  * *type_id: id of type if it's changed within the function, 0 if not
1923  *
1924  * type: is not an array (e.g. const struct X)
1925  * return type: type "struct X"
1926  * *type_size: sizeof(struct X)
1927  * *elem_type: same as return type ("struct X")
1928  * *elem_id: 0
1929  * *total_nelems: 1
1930  * *type_id: id of type if it's changed within the function, 0 if not
1931  */
1932 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1933 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1934 		   u32 *type_size, const struct btf_type **elem_type,
1935 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1936 {
1937 	const struct btf_type *array_type = NULL;
1938 	const struct btf_array *array = NULL;
1939 	u32 i, size, nelems = 1, id = 0;
1940 
1941 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1942 		switch (BTF_INFO_KIND(type->info)) {
1943 		/* type->size can be used */
1944 		case BTF_KIND_INT:
1945 		case BTF_KIND_STRUCT:
1946 		case BTF_KIND_UNION:
1947 		case BTF_KIND_ENUM:
1948 		case BTF_KIND_FLOAT:
1949 		case BTF_KIND_ENUM64:
1950 			size = type->size;
1951 			goto resolved;
1952 
1953 		case BTF_KIND_PTR:
1954 			size = sizeof(void *);
1955 			goto resolved;
1956 
1957 		/* Modifiers */
1958 		case BTF_KIND_TYPEDEF:
1959 		case BTF_KIND_VOLATILE:
1960 		case BTF_KIND_CONST:
1961 		case BTF_KIND_RESTRICT:
1962 		case BTF_KIND_TYPE_TAG:
1963 			id = type->type;
1964 			type = btf_type_by_id(btf, type->type);
1965 			break;
1966 
1967 		case BTF_KIND_ARRAY:
1968 			if (!array_type)
1969 				array_type = type;
1970 			array = btf_type_array(type);
1971 			if (nelems && array->nelems > U32_MAX / nelems)
1972 				return ERR_PTR(-EINVAL);
1973 			nelems *= array->nelems;
1974 			type = btf_type_by_id(btf, array->type);
1975 			break;
1976 
1977 		/* type without size */
1978 		default:
1979 			return ERR_PTR(-EINVAL);
1980 		}
1981 	}
1982 
1983 	return ERR_PTR(-EINVAL);
1984 
1985 resolved:
1986 	if (nelems && size > U32_MAX / nelems)
1987 		return ERR_PTR(-EINVAL);
1988 
1989 	*type_size = nelems * size;
1990 	if (total_nelems)
1991 		*total_nelems = nelems;
1992 	if (elem_type)
1993 		*elem_type = type;
1994 	if (elem_id)
1995 		*elem_id = array ? array->type : 0;
1996 	if (type_id && id)
1997 		*type_id = id;
1998 
1999 	return array_type ? : type;
2000 }
2001 
2002 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)2003 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2004 		 u32 *type_size)
2005 {
2006 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2007 }
2008 
btf_resolved_type_id(const struct btf * btf,u32 type_id)2009 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2010 {
2011 	while (type_id < btf->start_id)
2012 		btf = btf->base_btf;
2013 
2014 	return btf->resolved_ids[type_id - btf->start_id];
2015 }
2016 
2017 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)2018 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2019 						  u32 *type_id)
2020 {
2021 	*type_id = btf_resolved_type_id(btf, *type_id);
2022 	return btf_type_by_id(btf, *type_id);
2023 }
2024 
btf_resolved_type_size(const struct btf * btf,u32 type_id)2025 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2026 {
2027 	while (type_id < btf->start_id)
2028 		btf = btf->base_btf;
2029 
2030 	return btf->resolved_sizes[type_id - btf->start_id];
2031 }
2032 
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)2033 const struct btf_type *btf_type_id_size(const struct btf *btf,
2034 					u32 *type_id, u32 *ret_size)
2035 {
2036 	const struct btf_type *size_type;
2037 	u32 size_type_id = *type_id;
2038 	u32 size = 0;
2039 
2040 	size_type = btf_type_by_id(btf, size_type_id);
2041 	if (btf_type_nosize_or_null(size_type))
2042 		return NULL;
2043 
2044 	if (btf_type_has_size(size_type)) {
2045 		size = size_type->size;
2046 	} else if (btf_type_is_array(size_type)) {
2047 		size = btf_resolved_type_size(btf, size_type_id);
2048 	} else if (btf_type_is_ptr(size_type)) {
2049 		size = sizeof(void *);
2050 	} else {
2051 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2052 				 !btf_type_is_var(size_type)))
2053 			return NULL;
2054 
2055 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2056 		size_type = btf_type_by_id(btf, size_type_id);
2057 		if (btf_type_nosize_or_null(size_type))
2058 			return NULL;
2059 		else if (btf_type_has_size(size_type))
2060 			size = size_type->size;
2061 		else if (btf_type_is_array(size_type))
2062 			size = btf_resolved_type_size(btf, size_type_id);
2063 		else if (btf_type_is_ptr(size_type))
2064 			size = sizeof(void *);
2065 		else
2066 			return NULL;
2067 	}
2068 
2069 	*type_id = size_type_id;
2070 	if (ret_size)
2071 		*ret_size = size;
2072 
2073 	return size_type;
2074 }
2075 
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2076 static int btf_df_check_member(struct btf_verifier_env *env,
2077 			       const struct btf_type *struct_type,
2078 			       const struct btf_member *member,
2079 			       const struct btf_type *member_type)
2080 {
2081 	btf_verifier_log_basic(env, struct_type,
2082 			       "Unsupported check_member");
2083 	return -EINVAL;
2084 }
2085 
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2086 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2087 				     const struct btf_type *struct_type,
2088 				     const struct btf_member *member,
2089 				     const struct btf_type *member_type)
2090 {
2091 	btf_verifier_log_basic(env, struct_type,
2092 			       "Unsupported check_kflag_member");
2093 	return -EINVAL;
2094 }
2095 
2096 /* Used for ptr, array struct/union and float type members.
2097  * int, enum and modifier types have their specific callback functions.
2098  */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2099 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2100 					  const struct btf_type *struct_type,
2101 					  const struct btf_member *member,
2102 					  const struct btf_type *member_type)
2103 {
2104 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2105 		btf_verifier_log_member(env, struct_type, member,
2106 					"Invalid member bitfield_size");
2107 		return -EINVAL;
2108 	}
2109 
2110 	/* bitfield size is 0, so member->offset represents bit offset only.
2111 	 * It is safe to call non kflag check_member variants.
2112 	 */
2113 	return btf_type_ops(member_type)->check_member(env, struct_type,
2114 						       member,
2115 						       member_type);
2116 }
2117 
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2118 static int btf_df_resolve(struct btf_verifier_env *env,
2119 			  const struct resolve_vertex *v)
2120 {
2121 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2122 	return -EINVAL;
2123 }
2124 
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)2125 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2126 			u32 type_id, void *data, u8 bits_offsets,
2127 			struct btf_show *show)
2128 {
2129 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2130 }
2131 
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2132 static int btf_int_check_member(struct btf_verifier_env *env,
2133 				const struct btf_type *struct_type,
2134 				const struct btf_member *member,
2135 				const struct btf_type *member_type)
2136 {
2137 	u32 int_data = btf_type_int(member_type);
2138 	u32 struct_bits_off = member->offset;
2139 	u32 struct_size = struct_type->size;
2140 	u32 nr_copy_bits;
2141 	u32 bytes_offset;
2142 
2143 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2144 		btf_verifier_log_member(env, struct_type, member,
2145 					"bits_offset exceeds U32_MAX");
2146 		return -EINVAL;
2147 	}
2148 
2149 	struct_bits_off += BTF_INT_OFFSET(int_data);
2150 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2151 	nr_copy_bits = BTF_INT_BITS(int_data) +
2152 		BITS_PER_BYTE_MASKED(struct_bits_off);
2153 
2154 	if (nr_copy_bits > BITS_PER_U128) {
2155 		btf_verifier_log_member(env, struct_type, member,
2156 					"nr_copy_bits exceeds 128");
2157 		return -EINVAL;
2158 	}
2159 
2160 	if (struct_size < bytes_offset ||
2161 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2162 		btf_verifier_log_member(env, struct_type, member,
2163 					"Member exceeds struct_size");
2164 		return -EINVAL;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2170 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2171 				      const struct btf_type *struct_type,
2172 				      const struct btf_member *member,
2173 				      const struct btf_type *member_type)
2174 {
2175 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2176 	u32 int_data = btf_type_int(member_type);
2177 	u32 struct_size = struct_type->size;
2178 	u32 nr_copy_bits;
2179 
2180 	/* a regular int type is required for the kflag int member */
2181 	if (!btf_type_int_is_regular(member_type)) {
2182 		btf_verifier_log_member(env, struct_type, member,
2183 					"Invalid member base type");
2184 		return -EINVAL;
2185 	}
2186 
2187 	/* check sanity of bitfield size */
2188 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2189 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2190 	nr_int_data_bits = BTF_INT_BITS(int_data);
2191 	if (!nr_bits) {
2192 		/* Not a bitfield member, member offset must be at byte
2193 		 * boundary.
2194 		 */
2195 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2196 			btf_verifier_log_member(env, struct_type, member,
2197 						"Invalid member offset");
2198 			return -EINVAL;
2199 		}
2200 
2201 		nr_bits = nr_int_data_bits;
2202 	} else if (nr_bits > nr_int_data_bits) {
2203 		btf_verifier_log_member(env, struct_type, member,
2204 					"Invalid member bitfield_size");
2205 		return -EINVAL;
2206 	}
2207 
2208 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2209 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2210 	if (nr_copy_bits > BITS_PER_U128) {
2211 		btf_verifier_log_member(env, struct_type, member,
2212 					"nr_copy_bits exceeds 128");
2213 		return -EINVAL;
2214 	}
2215 
2216 	if (struct_size < bytes_offset ||
2217 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2218 		btf_verifier_log_member(env, struct_type, member,
2219 					"Member exceeds struct_size");
2220 		return -EINVAL;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2226 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2227 			      const struct btf_type *t,
2228 			      u32 meta_left)
2229 {
2230 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2231 	u16 encoding;
2232 
2233 	if (meta_left < meta_needed) {
2234 		btf_verifier_log_basic(env, t,
2235 				       "meta_left:%u meta_needed:%u",
2236 				       meta_left, meta_needed);
2237 		return -EINVAL;
2238 	}
2239 
2240 	if (btf_type_vlen(t)) {
2241 		btf_verifier_log_type(env, t, "vlen != 0");
2242 		return -EINVAL;
2243 	}
2244 
2245 	if (btf_type_kflag(t)) {
2246 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2247 		return -EINVAL;
2248 	}
2249 
2250 	int_data = btf_type_int(t);
2251 	if (int_data & ~BTF_INT_MASK) {
2252 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2253 				       int_data);
2254 		return -EINVAL;
2255 	}
2256 
2257 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2258 
2259 	if (nr_bits > BITS_PER_U128) {
2260 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2261 				      BITS_PER_U128);
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2266 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2267 		return -EINVAL;
2268 	}
2269 
2270 	/*
2271 	 * Only one of the encoding bits is allowed and it
2272 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2273 	 * Multiple bits can be allowed later if it is found
2274 	 * to be insufficient.
2275 	 */
2276 	encoding = BTF_INT_ENCODING(int_data);
2277 	if (encoding &&
2278 	    encoding != BTF_INT_SIGNED &&
2279 	    encoding != BTF_INT_CHAR &&
2280 	    encoding != BTF_INT_BOOL) {
2281 		btf_verifier_log_type(env, t, "Unsupported encoding");
2282 		return -ENOTSUPP;
2283 	}
2284 
2285 	btf_verifier_log_type(env, t, NULL);
2286 
2287 	return meta_needed;
2288 }
2289 
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2290 static void btf_int_log(struct btf_verifier_env *env,
2291 			const struct btf_type *t)
2292 {
2293 	int int_data = btf_type_int(t);
2294 
2295 	btf_verifier_log(env,
2296 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2297 			 t->size, BTF_INT_OFFSET(int_data),
2298 			 BTF_INT_BITS(int_data),
2299 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2300 }
2301 
btf_int128_print(struct btf_show * show,void * data)2302 static void btf_int128_print(struct btf_show *show, void *data)
2303 {
2304 	/* data points to a __int128 number.
2305 	 * Suppose
2306 	 *     int128_num = *(__int128 *)data;
2307 	 * The below formulas shows what upper_num and lower_num represents:
2308 	 *     upper_num = int128_num >> 64;
2309 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2310 	 */
2311 	u64 upper_num, lower_num;
2312 
2313 #ifdef __BIG_ENDIAN_BITFIELD
2314 	upper_num = *(u64 *)data;
2315 	lower_num = *(u64 *)(data + 8);
2316 #else
2317 	upper_num = *(u64 *)(data + 8);
2318 	lower_num = *(u64 *)data;
2319 #endif
2320 	if (upper_num == 0)
2321 		btf_show_type_value(show, "0x%llx", lower_num);
2322 	else
2323 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2324 				     lower_num);
2325 }
2326 
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2327 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2328 			     u16 right_shift_bits)
2329 {
2330 	u64 upper_num, lower_num;
2331 
2332 #ifdef __BIG_ENDIAN_BITFIELD
2333 	upper_num = print_num[0];
2334 	lower_num = print_num[1];
2335 #else
2336 	upper_num = print_num[1];
2337 	lower_num = print_num[0];
2338 #endif
2339 
2340 	/* shake out un-needed bits by shift/or operations */
2341 	if (left_shift_bits >= 64) {
2342 		upper_num = lower_num << (left_shift_bits - 64);
2343 		lower_num = 0;
2344 	} else {
2345 		upper_num = (upper_num << left_shift_bits) |
2346 			    (lower_num >> (64 - left_shift_bits));
2347 		lower_num = lower_num << left_shift_bits;
2348 	}
2349 
2350 	if (right_shift_bits >= 64) {
2351 		lower_num = upper_num >> (right_shift_bits - 64);
2352 		upper_num = 0;
2353 	} else {
2354 		lower_num = (lower_num >> right_shift_bits) |
2355 			    (upper_num << (64 - right_shift_bits));
2356 		upper_num = upper_num >> right_shift_bits;
2357 	}
2358 
2359 #ifdef __BIG_ENDIAN_BITFIELD
2360 	print_num[0] = upper_num;
2361 	print_num[1] = lower_num;
2362 #else
2363 	print_num[0] = lower_num;
2364 	print_num[1] = upper_num;
2365 #endif
2366 }
2367 
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2368 static void btf_bitfield_show(void *data, u8 bits_offset,
2369 			      u8 nr_bits, struct btf_show *show)
2370 {
2371 	u16 left_shift_bits, right_shift_bits;
2372 	u8 nr_copy_bytes;
2373 	u8 nr_copy_bits;
2374 	u64 print_num[2] = {};
2375 
2376 	nr_copy_bits = nr_bits + bits_offset;
2377 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2378 
2379 	memcpy(print_num, data, nr_copy_bytes);
2380 
2381 #ifdef __BIG_ENDIAN_BITFIELD
2382 	left_shift_bits = bits_offset;
2383 #else
2384 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2385 #endif
2386 	right_shift_bits = BITS_PER_U128 - nr_bits;
2387 
2388 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2389 	btf_int128_print(show, print_num);
2390 }
2391 
2392 
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2393 static void btf_int_bits_show(const struct btf *btf,
2394 			      const struct btf_type *t,
2395 			      void *data, u8 bits_offset,
2396 			      struct btf_show *show)
2397 {
2398 	u32 int_data = btf_type_int(t);
2399 	u8 nr_bits = BTF_INT_BITS(int_data);
2400 	u8 total_bits_offset;
2401 
2402 	/*
2403 	 * bits_offset is at most 7.
2404 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2405 	 */
2406 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2407 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2408 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2409 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2410 }
2411 
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2412 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2413 			 u32 type_id, void *data, u8 bits_offset,
2414 			 struct btf_show *show)
2415 {
2416 	u32 int_data = btf_type_int(t);
2417 	u8 encoding = BTF_INT_ENCODING(int_data);
2418 	bool sign = encoding & BTF_INT_SIGNED;
2419 	u8 nr_bits = BTF_INT_BITS(int_data);
2420 	void *safe_data;
2421 
2422 	safe_data = btf_show_start_type(show, t, type_id, data);
2423 	if (!safe_data)
2424 		return;
2425 
2426 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2427 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2428 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2429 		goto out;
2430 	}
2431 
2432 	switch (nr_bits) {
2433 	case 128:
2434 		btf_int128_print(show, safe_data);
2435 		break;
2436 	case 64:
2437 		if (sign)
2438 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2439 		else
2440 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2441 		break;
2442 	case 32:
2443 		if (sign)
2444 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2445 		else
2446 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2447 		break;
2448 	case 16:
2449 		if (sign)
2450 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2451 		else
2452 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2453 		break;
2454 	case 8:
2455 		if (show->state.array_encoding == BTF_INT_CHAR) {
2456 			/* check for null terminator */
2457 			if (show->state.array_terminated)
2458 				break;
2459 			if (*(char *)data == '\0') {
2460 				show->state.array_terminated = 1;
2461 				break;
2462 			}
2463 			if (isprint(*(char *)data)) {
2464 				btf_show_type_value(show, "'%c'",
2465 						    *(char *)safe_data);
2466 				break;
2467 			}
2468 		}
2469 		if (sign)
2470 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2471 		else
2472 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2473 		break;
2474 	default:
2475 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2476 		break;
2477 	}
2478 out:
2479 	btf_show_end_type(show);
2480 }
2481 
2482 static const struct btf_kind_operations int_ops = {
2483 	.check_meta = btf_int_check_meta,
2484 	.resolve = btf_df_resolve,
2485 	.check_member = btf_int_check_member,
2486 	.check_kflag_member = btf_int_check_kflag_member,
2487 	.log_details = btf_int_log,
2488 	.show = btf_int_show,
2489 };
2490 
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2491 static int btf_modifier_check_member(struct btf_verifier_env *env,
2492 				     const struct btf_type *struct_type,
2493 				     const struct btf_member *member,
2494 				     const struct btf_type *member_type)
2495 {
2496 	const struct btf_type *resolved_type;
2497 	u32 resolved_type_id = member->type;
2498 	struct btf_member resolved_member;
2499 	struct btf *btf = env->btf;
2500 
2501 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2502 	if (!resolved_type) {
2503 		btf_verifier_log_member(env, struct_type, member,
2504 					"Invalid member");
2505 		return -EINVAL;
2506 	}
2507 
2508 	resolved_member = *member;
2509 	resolved_member.type = resolved_type_id;
2510 
2511 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2512 							 &resolved_member,
2513 							 resolved_type);
2514 }
2515 
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2516 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2517 					   const struct btf_type *struct_type,
2518 					   const struct btf_member *member,
2519 					   const struct btf_type *member_type)
2520 {
2521 	const struct btf_type *resolved_type;
2522 	u32 resolved_type_id = member->type;
2523 	struct btf_member resolved_member;
2524 	struct btf *btf = env->btf;
2525 
2526 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2527 	if (!resolved_type) {
2528 		btf_verifier_log_member(env, struct_type, member,
2529 					"Invalid member");
2530 		return -EINVAL;
2531 	}
2532 
2533 	resolved_member = *member;
2534 	resolved_member.type = resolved_type_id;
2535 
2536 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2537 							       &resolved_member,
2538 							       resolved_type);
2539 }
2540 
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2541 static int btf_ptr_check_member(struct btf_verifier_env *env,
2542 				const struct btf_type *struct_type,
2543 				const struct btf_member *member,
2544 				const struct btf_type *member_type)
2545 {
2546 	u32 struct_size, struct_bits_off, bytes_offset;
2547 
2548 	struct_size = struct_type->size;
2549 	struct_bits_off = member->offset;
2550 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2551 
2552 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2553 		btf_verifier_log_member(env, struct_type, member,
2554 					"Member is not byte aligned");
2555 		return -EINVAL;
2556 	}
2557 
2558 	if (struct_size - bytes_offset < sizeof(void *)) {
2559 		btf_verifier_log_member(env, struct_type, member,
2560 					"Member exceeds struct_size");
2561 		return -EINVAL;
2562 	}
2563 
2564 	return 0;
2565 }
2566 
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2567 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2568 				   const struct btf_type *t,
2569 				   u32 meta_left)
2570 {
2571 	const char *value;
2572 
2573 	if (btf_type_vlen(t)) {
2574 		btf_verifier_log_type(env, t, "vlen != 0");
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (btf_type_kflag(t)) {
2579 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2580 		return -EINVAL;
2581 	}
2582 
2583 	if (!BTF_TYPE_ID_VALID(t->type)) {
2584 		btf_verifier_log_type(env, t, "Invalid type_id");
2585 		return -EINVAL;
2586 	}
2587 
2588 	/* typedef/type_tag type must have a valid name, and other ref types,
2589 	 * volatile, const, restrict, should have a null name.
2590 	 */
2591 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2592 		if (!t->name_off ||
2593 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2594 			btf_verifier_log_type(env, t, "Invalid name");
2595 			return -EINVAL;
2596 		}
2597 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2598 		value = btf_name_by_offset(env->btf, t->name_off);
2599 		if (!value || !value[0]) {
2600 			btf_verifier_log_type(env, t, "Invalid name");
2601 			return -EINVAL;
2602 		}
2603 	} else {
2604 		if (t->name_off) {
2605 			btf_verifier_log_type(env, t, "Invalid name");
2606 			return -EINVAL;
2607 		}
2608 	}
2609 
2610 	btf_verifier_log_type(env, t, NULL);
2611 
2612 	return 0;
2613 }
2614 
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2615 static int btf_modifier_resolve(struct btf_verifier_env *env,
2616 				const struct resolve_vertex *v)
2617 {
2618 	const struct btf_type *t = v->t;
2619 	const struct btf_type *next_type;
2620 	u32 next_type_id = t->type;
2621 	struct btf *btf = env->btf;
2622 
2623 	next_type = btf_type_by_id(btf, next_type_id);
2624 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2625 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2626 		return -EINVAL;
2627 	}
2628 
2629 	if (!env_type_is_resolve_sink(env, next_type) &&
2630 	    !env_type_is_resolved(env, next_type_id))
2631 		return env_stack_push(env, next_type, next_type_id);
2632 
2633 	/* Figure out the resolved next_type_id with size.
2634 	 * They will be stored in the current modifier's
2635 	 * resolved_ids and resolved_sizes such that it can
2636 	 * save us a few type-following when we use it later (e.g. in
2637 	 * pretty print).
2638 	 */
2639 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2640 		if (env_type_is_resolved(env, next_type_id))
2641 			next_type = btf_type_id_resolve(btf, &next_type_id);
2642 
2643 		/* "typedef void new_void", "const void"...etc */
2644 		if (!btf_type_is_void(next_type) &&
2645 		    !btf_type_is_fwd(next_type) &&
2646 		    !btf_type_is_func_proto(next_type)) {
2647 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2648 			return -EINVAL;
2649 		}
2650 	}
2651 
2652 	env_stack_pop_resolved(env, next_type_id, 0);
2653 
2654 	return 0;
2655 }
2656 
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2657 static int btf_var_resolve(struct btf_verifier_env *env,
2658 			   const struct resolve_vertex *v)
2659 {
2660 	const struct btf_type *next_type;
2661 	const struct btf_type *t = v->t;
2662 	u32 next_type_id = t->type;
2663 	struct btf *btf = env->btf;
2664 
2665 	next_type = btf_type_by_id(btf, next_type_id);
2666 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2667 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2668 		return -EINVAL;
2669 	}
2670 
2671 	if (!env_type_is_resolve_sink(env, next_type) &&
2672 	    !env_type_is_resolved(env, next_type_id))
2673 		return env_stack_push(env, next_type, next_type_id);
2674 
2675 	if (btf_type_is_modifier(next_type)) {
2676 		const struct btf_type *resolved_type;
2677 		u32 resolved_type_id;
2678 
2679 		resolved_type_id = next_type_id;
2680 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2681 
2682 		if (btf_type_is_ptr(resolved_type) &&
2683 		    !env_type_is_resolve_sink(env, resolved_type) &&
2684 		    !env_type_is_resolved(env, resolved_type_id))
2685 			return env_stack_push(env, resolved_type,
2686 					      resolved_type_id);
2687 	}
2688 
2689 	/* We must resolve to something concrete at this point, no
2690 	 * forward types or similar that would resolve to size of
2691 	 * zero is allowed.
2692 	 */
2693 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2694 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2695 		return -EINVAL;
2696 	}
2697 
2698 	env_stack_pop_resolved(env, next_type_id, 0);
2699 
2700 	return 0;
2701 }
2702 
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2703 static int btf_ptr_resolve(struct btf_verifier_env *env,
2704 			   const struct resolve_vertex *v)
2705 {
2706 	const struct btf_type *next_type;
2707 	const struct btf_type *t = v->t;
2708 	u32 next_type_id = t->type;
2709 	struct btf *btf = env->btf;
2710 
2711 	next_type = btf_type_by_id(btf, next_type_id);
2712 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2713 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2714 		return -EINVAL;
2715 	}
2716 
2717 	if (!env_type_is_resolve_sink(env, next_type) &&
2718 	    !env_type_is_resolved(env, next_type_id))
2719 		return env_stack_push(env, next_type, next_type_id);
2720 
2721 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2722 	 * the modifier may have stopped resolving when it was resolved
2723 	 * to a ptr (last-resolved-ptr).
2724 	 *
2725 	 * We now need to continue from the last-resolved-ptr to
2726 	 * ensure the last-resolved-ptr will not referring back to
2727 	 * the current ptr (t).
2728 	 */
2729 	if (btf_type_is_modifier(next_type)) {
2730 		const struct btf_type *resolved_type;
2731 		u32 resolved_type_id;
2732 
2733 		resolved_type_id = next_type_id;
2734 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2735 
2736 		if (btf_type_is_ptr(resolved_type) &&
2737 		    !env_type_is_resolve_sink(env, resolved_type) &&
2738 		    !env_type_is_resolved(env, resolved_type_id))
2739 			return env_stack_push(env, resolved_type,
2740 					      resolved_type_id);
2741 	}
2742 
2743 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2744 		if (env_type_is_resolved(env, next_type_id))
2745 			next_type = btf_type_id_resolve(btf, &next_type_id);
2746 
2747 		if (!btf_type_is_void(next_type) &&
2748 		    !btf_type_is_fwd(next_type) &&
2749 		    !btf_type_is_func_proto(next_type)) {
2750 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2751 			return -EINVAL;
2752 		}
2753 	}
2754 
2755 	env_stack_pop_resolved(env, next_type_id, 0);
2756 
2757 	return 0;
2758 }
2759 
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2760 static void btf_modifier_show(const struct btf *btf,
2761 			      const struct btf_type *t,
2762 			      u32 type_id, void *data,
2763 			      u8 bits_offset, struct btf_show *show)
2764 {
2765 	if (btf->resolved_ids)
2766 		t = btf_type_id_resolve(btf, &type_id);
2767 	else
2768 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2769 
2770 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2771 }
2772 
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2773 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2774 			 u32 type_id, void *data, u8 bits_offset,
2775 			 struct btf_show *show)
2776 {
2777 	t = btf_type_id_resolve(btf, &type_id);
2778 
2779 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2780 }
2781 
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2782 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2783 			 u32 type_id, void *data, u8 bits_offset,
2784 			 struct btf_show *show)
2785 {
2786 	void *safe_data;
2787 
2788 	safe_data = btf_show_start_type(show, t, type_id, data);
2789 	if (!safe_data)
2790 		return;
2791 
2792 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2793 	if (show->flags & BTF_SHOW_PTR_RAW)
2794 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2795 	else
2796 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2797 	btf_show_end_type(show);
2798 }
2799 
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2800 static void btf_ref_type_log(struct btf_verifier_env *env,
2801 			     const struct btf_type *t)
2802 {
2803 	btf_verifier_log(env, "type_id=%u", t->type);
2804 }
2805 
2806 static const struct btf_kind_operations modifier_ops = {
2807 	.check_meta = btf_ref_type_check_meta,
2808 	.resolve = btf_modifier_resolve,
2809 	.check_member = btf_modifier_check_member,
2810 	.check_kflag_member = btf_modifier_check_kflag_member,
2811 	.log_details = btf_ref_type_log,
2812 	.show = btf_modifier_show,
2813 };
2814 
2815 static const struct btf_kind_operations ptr_ops = {
2816 	.check_meta = btf_ref_type_check_meta,
2817 	.resolve = btf_ptr_resolve,
2818 	.check_member = btf_ptr_check_member,
2819 	.check_kflag_member = btf_generic_check_kflag_member,
2820 	.log_details = btf_ref_type_log,
2821 	.show = btf_ptr_show,
2822 };
2823 
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2824 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2825 			      const struct btf_type *t,
2826 			      u32 meta_left)
2827 {
2828 	if (btf_type_vlen(t)) {
2829 		btf_verifier_log_type(env, t, "vlen != 0");
2830 		return -EINVAL;
2831 	}
2832 
2833 	if (t->type) {
2834 		btf_verifier_log_type(env, t, "type != 0");
2835 		return -EINVAL;
2836 	}
2837 
2838 	/* fwd type must have a valid name */
2839 	if (!t->name_off ||
2840 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2841 		btf_verifier_log_type(env, t, "Invalid name");
2842 		return -EINVAL;
2843 	}
2844 
2845 	btf_verifier_log_type(env, t, NULL);
2846 
2847 	return 0;
2848 }
2849 
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2850 static void btf_fwd_type_log(struct btf_verifier_env *env,
2851 			     const struct btf_type *t)
2852 {
2853 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2854 }
2855 
2856 static const struct btf_kind_operations fwd_ops = {
2857 	.check_meta = btf_fwd_check_meta,
2858 	.resolve = btf_df_resolve,
2859 	.check_member = btf_df_check_member,
2860 	.check_kflag_member = btf_df_check_kflag_member,
2861 	.log_details = btf_fwd_type_log,
2862 	.show = btf_df_show,
2863 };
2864 
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2865 static int btf_array_check_member(struct btf_verifier_env *env,
2866 				  const struct btf_type *struct_type,
2867 				  const struct btf_member *member,
2868 				  const struct btf_type *member_type)
2869 {
2870 	u32 struct_bits_off = member->offset;
2871 	u32 struct_size, bytes_offset;
2872 	u32 array_type_id, array_size;
2873 	struct btf *btf = env->btf;
2874 
2875 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2876 		btf_verifier_log_member(env, struct_type, member,
2877 					"Member is not byte aligned");
2878 		return -EINVAL;
2879 	}
2880 
2881 	array_type_id = member->type;
2882 	btf_type_id_size(btf, &array_type_id, &array_size);
2883 	struct_size = struct_type->size;
2884 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2885 	if (struct_size - bytes_offset < array_size) {
2886 		btf_verifier_log_member(env, struct_type, member,
2887 					"Member exceeds struct_size");
2888 		return -EINVAL;
2889 	}
2890 
2891 	return 0;
2892 }
2893 
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2894 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2895 				const struct btf_type *t,
2896 				u32 meta_left)
2897 {
2898 	const struct btf_array *array = btf_type_array(t);
2899 	u32 meta_needed = sizeof(*array);
2900 
2901 	if (meta_left < meta_needed) {
2902 		btf_verifier_log_basic(env, t,
2903 				       "meta_left:%u meta_needed:%u",
2904 				       meta_left, meta_needed);
2905 		return -EINVAL;
2906 	}
2907 
2908 	/* array type should not have a name */
2909 	if (t->name_off) {
2910 		btf_verifier_log_type(env, t, "Invalid name");
2911 		return -EINVAL;
2912 	}
2913 
2914 	if (btf_type_vlen(t)) {
2915 		btf_verifier_log_type(env, t, "vlen != 0");
2916 		return -EINVAL;
2917 	}
2918 
2919 	if (btf_type_kflag(t)) {
2920 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2921 		return -EINVAL;
2922 	}
2923 
2924 	if (t->size) {
2925 		btf_verifier_log_type(env, t, "size != 0");
2926 		return -EINVAL;
2927 	}
2928 
2929 	/* Array elem type and index type cannot be in type void,
2930 	 * so !array->type and !array->index_type are not allowed.
2931 	 */
2932 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2933 		btf_verifier_log_type(env, t, "Invalid elem");
2934 		return -EINVAL;
2935 	}
2936 
2937 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2938 		btf_verifier_log_type(env, t, "Invalid index");
2939 		return -EINVAL;
2940 	}
2941 
2942 	btf_verifier_log_type(env, t, NULL);
2943 
2944 	return meta_needed;
2945 }
2946 
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2947 static int btf_array_resolve(struct btf_verifier_env *env,
2948 			     const struct resolve_vertex *v)
2949 {
2950 	const struct btf_array *array = btf_type_array(v->t);
2951 	const struct btf_type *elem_type, *index_type;
2952 	u32 elem_type_id, index_type_id;
2953 	struct btf *btf = env->btf;
2954 	u32 elem_size;
2955 
2956 	/* Check array->index_type */
2957 	index_type_id = array->index_type;
2958 	index_type = btf_type_by_id(btf, index_type_id);
2959 	if (btf_type_nosize_or_null(index_type) ||
2960 	    btf_type_is_resolve_source_only(index_type)) {
2961 		btf_verifier_log_type(env, v->t, "Invalid index");
2962 		return -EINVAL;
2963 	}
2964 
2965 	if (!env_type_is_resolve_sink(env, index_type) &&
2966 	    !env_type_is_resolved(env, index_type_id))
2967 		return env_stack_push(env, index_type, index_type_id);
2968 
2969 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2970 	if (!index_type || !btf_type_is_int(index_type) ||
2971 	    !btf_type_int_is_regular(index_type)) {
2972 		btf_verifier_log_type(env, v->t, "Invalid index");
2973 		return -EINVAL;
2974 	}
2975 
2976 	/* Check array->type */
2977 	elem_type_id = array->type;
2978 	elem_type = btf_type_by_id(btf, elem_type_id);
2979 	if (btf_type_nosize_or_null(elem_type) ||
2980 	    btf_type_is_resolve_source_only(elem_type)) {
2981 		btf_verifier_log_type(env, v->t,
2982 				      "Invalid elem");
2983 		return -EINVAL;
2984 	}
2985 
2986 	if (!env_type_is_resolve_sink(env, elem_type) &&
2987 	    !env_type_is_resolved(env, elem_type_id))
2988 		return env_stack_push(env, elem_type, elem_type_id);
2989 
2990 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2991 	if (!elem_type) {
2992 		btf_verifier_log_type(env, v->t, "Invalid elem");
2993 		return -EINVAL;
2994 	}
2995 
2996 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2997 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2998 		return -EINVAL;
2999 	}
3000 
3001 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
3002 		btf_verifier_log_type(env, v->t,
3003 				      "Array size overflows U32_MAX");
3004 		return -EINVAL;
3005 	}
3006 
3007 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3008 
3009 	return 0;
3010 }
3011 
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)3012 static void btf_array_log(struct btf_verifier_env *env,
3013 			  const struct btf_type *t)
3014 {
3015 	const struct btf_array *array = btf_type_array(t);
3016 
3017 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3018 			 array->type, array->index_type, array->nelems);
3019 }
3020 
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3021 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3022 			     u32 type_id, void *data, u8 bits_offset,
3023 			     struct btf_show *show)
3024 {
3025 	const struct btf_array *array = btf_type_array(t);
3026 	const struct btf_kind_operations *elem_ops;
3027 	const struct btf_type *elem_type;
3028 	u32 i, elem_size = 0, elem_type_id;
3029 	u16 encoding = 0;
3030 
3031 	elem_type_id = array->type;
3032 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3033 	if (elem_type && btf_type_has_size(elem_type))
3034 		elem_size = elem_type->size;
3035 
3036 	if (elem_type && btf_type_is_int(elem_type)) {
3037 		u32 int_type = btf_type_int(elem_type);
3038 
3039 		encoding = BTF_INT_ENCODING(int_type);
3040 
3041 		/*
3042 		 * BTF_INT_CHAR encoding never seems to be set for
3043 		 * char arrays, so if size is 1 and element is
3044 		 * printable as a char, we'll do that.
3045 		 */
3046 		if (elem_size == 1)
3047 			encoding = BTF_INT_CHAR;
3048 	}
3049 
3050 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3051 		return;
3052 
3053 	if (!elem_type)
3054 		goto out;
3055 	elem_ops = btf_type_ops(elem_type);
3056 
3057 	for (i = 0; i < array->nelems; i++) {
3058 
3059 		btf_show_start_array_member(show);
3060 
3061 		elem_ops->show(btf, elem_type, elem_type_id, data,
3062 			       bits_offset, show);
3063 		data += elem_size;
3064 
3065 		btf_show_end_array_member(show);
3066 
3067 		if (show->state.array_terminated)
3068 			break;
3069 	}
3070 out:
3071 	btf_show_end_array_type(show);
3072 }
3073 
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3074 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3075 			   u32 type_id, void *data, u8 bits_offset,
3076 			   struct btf_show *show)
3077 {
3078 	const struct btf_member *m = show->state.member;
3079 
3080 	/*
3081 	 * First check if any members would be shown (are non-zero).
3082 	 * See comments above "struct btf_show" definition for more
3083 	 * details on how this works at a high-level.
3084 	 */
3085 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3086 		if (!show->state.depth_check) {
3087 			show->state.depth_check = show->state.depth + 1;
3088 			show->state.depth_to_show = 0;
3089 		}
3090 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3091 		show->state.member = m;
3092 
3093 		if (show->state.depth_check != show->state.depth + 1)
3094 			return;
3095 		show->state.depth_check = 0;
3096 
3097 		if (show->state.depth_to_show <= show->state.depth)
3098 			return;
3099 		/*
3100 		 * Reaching here indicates we have recursed and found
3101 		 * non-zero array member(s).
3102 		 */
3103 	}
3104 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3105 }
3106 
3107 static const struct btf_kind_operations array_ops = {
3108 	.check_meta = btf_array_check_meta,
3109 	.resolve = btf_array_resolve,
3110 	.check_member = btf_array_check_member,
3111 	.check_kflag_member = btf_generic_check_kflag_member,
3112 	.log_details = btf_array_log,
3113 	.show = btf_array_show,
3114 };
3115 
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3116 static int btf_struct_check_member(struct btf_verifier_env *env,
3117 				   const struct btf_type *struct_type,
3118 				   const struct btf_member *member,
3119 				   const struct btf_type *member_type)
3120 {
3121 	u32 struct_bits_off = member->offset;
3122 	u32 struct_size, bytes_offset;
3123 
3124 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3125 		btf_verifier_log_member(env, struct_type, member,
3126 					"Member is not byte aligned");
3127 		return -EINVAL;
3128 	}
3129 
3130 	struct_size = struct_type->size;
3131 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3132 	if (struct_size - bytes_offset < member_type->size) {
3133 		btf_verifier_log_member(env, struct_type, member,
3134 					"Member exceeds struct_size");
3135 		return -EINVAL;
3136 	}
3137 
3138 	return 0;
3139 }
3140 
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3141 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3142 				 const struct btf_type *t,
3143 				 u32 meta_left)
3144 {
3145 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3146 	const struct btf_member *member;
3147 	u32 meta_needed, last_offset;
3148 	struct btf *btf = env->btf;
3149 	u32 struct_size = t->size;
3150 	u32 offset;
3151 	u16 i;
3152 
3153 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3154 	if (meta_left < meta_needed) {
3155 		btf_verifier_log_basic(env, t,
3156 				       "meta_left:%u meta_needed:%u",
3157 				       meta_left, meta_needed);
3158 		return -EINVAL;
3159 	}
3160 
3161 	/* struct type either no name or a valid one */
3162 	if (t->name_off &&
3163 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3164 		btf_verifier_log_type(env, t, "Invalid name");
3165 		return -EINVAL;
3166 	}
3167 
3168 	btf_verifier_log_type(env, t, NULL);
3169 
3170 	last_offset = 0;
3171 	for_each_member(i, t, member) {
3172 		if (!btf_name_offset_valid(btf, member->name_off)) {
3173 			btf_verifier_log_member(env, t, member,
3174 						"Invalid member name_offset:%u",
3175 						member->name_off);
3176 			return -EINVAL;
3177 		}
3178 
3179 		/* struct member either no name or a valid one */
3180 		if (member->name_off &&
3181 		    !btf_name_valid_identifier(btf, member->name_off)) {
3182 			btf_verifier_log_member(env, t, member, "Invalid name");
3183 			return -EINVAL;
3184 		}
3185 		/* A member cannot be in type void */
3186 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3187 			btf_verifier_log_member(env, t, member,
3188 						"Invalid type_id");
3189 			return -EINVAL;
3190 		}
3191 
3192 		offset = __btf_member_bit_offset(t, member);
3193 		if (is_union && offset) {
3194 			btf_verifier_log_member(env, t, member,
3195 						"Invalid member bits_offset");
3196 			return -EINVAL;
3197 		}
3198 
3199 		/*
3200 		 * ">" instead of ">=" because the last member could be
3201 		 * "char a[0];"
3202 		 */
3203 		if (last_offset > offset) {
3204 			btf_verifier_log_member(env, t, member,
3205 						"Invalid member bits_offset");
3206 			return -EINVAL;
3207 		}
3208 
3209 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3210 			btf_verifier_log_member(env, t, member,
3211 						"Member bits_offset exceeds its struct size");
3212 			return -EINVAL;
3213 		}
3214 
3215 		btf_verifier_log_member(env, t, member, NULL);
3216 		last_offset = offset;
3217 	}
3218 
3219 	return meta_needed;
3220 }
3221 
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3222 static int btf_struct_resolve(struct btf_verifier_env *env,
3223 			      const struct resolve_vertex *v)
3224 {
3225 	const struct btf_member *member;
3226 	int err;
3227 	u16 i;
3228 
3229 	/* Before continue resolving the next_member,
3230 	 * ensure the last member is indeed resolved to a
3231 	 * type with size info.
3232 	 */
3233 	if (v->next_member) {
3234 		const struct btf_type *last_member_type;
3235 		const struct btf_member *last_member;
3236 		u32 last_member_type_id;
3237 
3238 		last_member = btf_type_member(v->t) + v->next_member - 1;
3239 		last_member_type_id = last_member->type;
3240 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3241 						       last_member_type_id)))
3242 			return -EINVAL;
3243 
3244 		last_member_type = btf_type_by_id(env->btf,
3245 						  last_member_type_id);
3246 		if (btf_type_kflag(v->t))
3247 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3248 								last_member,
3249 								last_member_type);
3250 		else
3251 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3252 								last_member,
3253 								last_member_type);
3254 		if (err)
3255 			return err;
3256 	}
3257 
3258 	for_each_member_from(i, v->next_member, v->t, member) {
3259 		u32 member_type_id = member->type;
3260 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3261 								member_type_id);
3262 
3263 		if (btf_type_nosize_or_null(member_type) ||
3264 		    btf_type_is_resolve_source_only(member_type)) {
3265 			btf_verifier_log_member(env, v->t, member,
3266 						"Invalid member");
3267 			return -EINVAL;
3268 		}
3269 
3270 		if (!env_type_is_resolve_sink(env, member_type) &&
3271 		    !env_type_is_resolved(env, member_type_id)) {
3272 			env_stack_set_next_member(env, i + 1);
3273 			return env_stack_push(env, member_type, member_type_id);
3274 		}
3275 
3276 		if (btf_type_kflag(v->t))
3277 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3278 									    member,
3279 									    member_type);
3280 		else
3281 			err = btf_type_ops(member_type)->check_member(env, v->t,
3282 								      member,
3283 								      member_type);
3284 		if (err)
3285 			return err;
3286 	}
3287 
3288 	env_stack_pop_resolved(env, 0, 0);
3289 
3290 	return 0;
3291 }
3292 
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3293 static void btf_struct_log(struct btf_verifier_env *env,
3294 			   const struct btf_type *t)
3295 {
3296 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3297 }
3298 
3299 enum {
3300 	BTF_FIELD_IGNORE = 0,
3301 	BTF_FIELD_FOUND  = 1,
3302 };
3303 
3304 struct btf_field_info {
3305 	enum btf_field_type type;
3306 	u32 off;
3307 	union {
3308 		struct {
3309 			u32 type_id;
3310 		} kptr;
3311 		struct {
3312 			const char *node_name;
3313 			u32 value_btf_id;
3314 		} graph_root;
3315 	};
3316 };
3317 
btf_find_struct(const struct btf * btf,const struct btf_type * t,u32 off,int sz,enum btf_field_type field_type,struct btf_field_info * info)3318 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3319 			   u32 off, int sz, enum btf_field_type field_type,
3320 			   struct btf_field_info *info)
3321 {
3322 	if (!__btf_type_is_struct(t))
3323 		return BTF_FIELD_IGNORE;
3324 	if (t->size != sz)
3325 		return BTF_FIELD_IGNORE;
3326 	info->type = field_type;
3327 	info->off = off;
3328 	return BTF_FIELD_FOUND;
3329 }
3330 
btf_find_kptr(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info,u32 field_mask)3331 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3332 			 u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3333 {
3334 	enum btf_field_type type;
3335 	u32 res_id;
3336 
3337 	/* Permit modifiers on the pointer itself */
3338 	if (btf_type_is_volatile(t))
3339 		t = btf_type_by_id(btf, t->type);
3340 	/* For PTR, sz is always == 8 */
3341 	if (!btf_type_is_ptr(t))
3342 		return BTF_FIELD_IGNORE;
3343 	t = btf_type_by_id(btf, t->type);
3344 
3345 	if (!btf_type_is_type_tag(t))
3346 		return BTF_FIELD_IGNORE;
3347 	/* Reject extra tags */
3348 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3349 		return -EINVAL;
3350 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3351 		type = BPF_KPTR_UNREF;
3352 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3353 		type = BPF_KPTR_REF;
3354 	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3355 		type = BPF_KPTR_PERCPU;
3356 	else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off)))
3357 		type = BPF_UPTR;
3358 	else
3359 		return -EINVAL;
3360 
3361 	if (!(type & field_mask))
3362 		return BTF_FIELD_IGNORE;
3363 
3364 	/* Get the base type */
3365 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3366 	/* Only pointer to struct is allowed */
3367 	if (!__btf_type_is_struct(t))
3368 		return -EINVAL;
3369 
3370 	info->type = type;
3371 	info->off = off;
3372 	info->kptr.type_id = res_id;
3373 	return BTF_FIELD_FOUND;
3374 }
3375 
btf_find_next_decl_tag(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key,int last_id)3376 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3377 			   int comp_idx, const char *tag_key, int last_id)
3378 {
3379 	int len = strlen(tag_key);
3380 	int i, n;
3381 
3382 	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3383 		const struct btf_type *t = btf_type_by_id(btf, i);
3384 
3385 		if (!btf_type_is_decl_tag(t))
3386 			continue;
3387 		if (pt != btf_type_by_id(btf, t->type))
3388 			continue;
3389 		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3390 			continue;
3391 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3392 			continue;
3393 		return i;
3394 	}
3395 	return -ENOENT;
3396 }
3397 
btf_find_decl_tag_value(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key)3398 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3399 				    int comp_idx, const char *tag_key)
3400 {
3401 	const char *value = NULL;
3402 	const struct btf_type *t;
3403 	int len, id;
3404 
3405 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3406 	if (id < 0)
3407 		return ERR_PTR(id);
3408 
3409 	t = btf_type_by_id(btf, id);
3410 	len = strlen(tag_key);
3411 	value = __btf_name_by_offset(btf, t->name_off) + len;
3412 
3413 	/* Prevent duplicate entries for same type */
3414 	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3415 	if (id >= 0)
3416 		return ERR_PTR(-EEXIST);
3417 
3418 	return value;
3419 }
3420 
3421 static int
btf_find_graph_root(const struct btf * btf,const struct btf_type * pt,const struct btf_type * t,int comp_idx,u32 off,int sz,struct btf_field_info * info,enum btf_field_type head_type)3422 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3423 		    const struct btf_type *t, int comp_idx, u32 off,
3424 		    int sz, struct btf_field_info *info,
3425 		    enum btf_field_type head_type)
3426 {
3427 	const char *node_field_name;
3428 	const char *value_type;
3429 	s32 id;
3430 
3431 	if (!__btf_type_is_struct(t))
3432 		return BTF_FIELD_IGNORE;
3433 	if (t->size != sz)
3434 		return BTF_FIELD_IGNORE;
3435 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3436 	if (IS_ERR(value_type))
3437 		return -EINVAL;
3438 	node_field_name = strstr(value_type, ":");
3439 	if (!node_field_name)
3440 		return -EINVAL;
3441 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3442 	if (!value_type)
3443 		return -ENOMEM;
3444 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3445 	kfree(value_type);
3446 	if (id < 0)
3447 		return id;
3448 	node_field_name++;
3449 	if (str_is_empty(node_field_name))
3450 		return -EINVAL;
3451 	info->type = head_type;
3452 	info->off = off;
3453 	info->graph_root.value_btf_id = id;
3454 	info->graph_root.node_name = node_field_name;
3455 	return BTF_FIELD_FOUND;
3456 }
3457 
3458 #define field_mask_test_name(field_type, field_type_str) \
3459 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3460 		type = field_type;					\
3461 		goto end;						\
3462 	}
3463 
btf_get_field_type(const struct btf * btf,const struct btf_type * var_type,u32 field_mask,u32 * seen_mask,int * align,int * sz)3464 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3465 			      u32 field_mask, u32 *seen_mask,
3466 			      int *align, int *sz)
3467 {
3468 	int type = 0;
3469 	const char *name = __btf_name_by_offset(btf, var_type->name_off);
3470 
3471 	if (field_mask & BPF_SPIN_LOCK) {
3472 		if (!strcmp(name, "bpf_spin_lock")) {
3473 			if (*seen_mask & BPF_SPIN_LOCK)
3474 				return -E2BIG;
3475 			*seen_mask |= BPF_SPIN_LOCK;
3476 			type = BPF_SPIN_LOCK;
3477 			goto end;
3478 		}
3479 	}
3480 	if (field_mask & BPF_TIMER) {
3481 		if (!strcmp(name, "bpf_timer")) {
3482 			if (*seen_mask & BPF_TIMER)
3483 				return -E2BIG;
3484 			*seen_mask |= BPF_TIMER;
3485 			type = BPF_TIMER;
3486 			goto end;
3487 		}
3488 	}
3489 	if (field_mask & BPF_WORKQUEUE) {
3490 		if (!strcmp(name, "bpf_wq")) {
3491 			if (*seen_mask & BPF_WORKQUEUE)
3492 				return -E2BIG;
3493 			*seen_mask |= BPF_WORKQUEUE;
3494 			type = BPF_WORKQUEUE;
3495 			goto end;
3496 		}
3497 	}
3498 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3499 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3500 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3501 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3502 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3503 
3504 	/* Only return BPF_KPTR when all other types with matchable names fail */
3505 	if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3506 		type = BPF_KPTR_REF;
3507 		goto end;
3508 	}
3509 	return 0;
3510 end:
3511 	*sz = btf_field_type_size(type);
3512 	*align = btf_field_type_align(type);
3513 	return type;
3514 }
3515 
3516 #undef field_mask_test_name
3517 
3518 /* Repeat a number of fields for a specified number of times.
3519  *
3520  * Copy the fields starting from the first field and repeat them for
3521  * repeat_cnt times. The fields are repeated by adding the offset of each
3522  * field with
3523  *   (i + 1) * elem_size
3524  * where i is the repeat index and elem_size is the size of an element.
3525  */
btf_repeat_fields(struct btf_field_info * info,int info_cnt,u32 field_cnt,u32 repeat_cnt,u32 elem_size)3526 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3527 			     u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3528 {
3529 	u32 i, j;
3530 	u32 cur;
3531 
3532 	/* Ensure not repeating fields that should not be repeated. */
3533 	for (i = 0; i < field_cnt; i++) {
3534 		switch (info[i].type) {
3535 		case BPF_KPTR_UNREF:
3536 		case BPF_KPTR_REF:
3537 		case BPF_KPTR_PERCPU:
3538 		case BPF_UPTR:
3539 		case BPF_LIST_HEAD:
3540 		case BPF_RB_ROOT:
3541 			break;
3542 		default:
3543 			return -EINVAL;
3544 		}
3545 	}
3546 
3547 	/* The type of struct size or variable size is u32,
3548 	 * so the multiplication will not overflow.
3549 	 */
3550 	if (field_cnt * (repeat_cnt + 1) > info_cnt)
3551 		return -E2BIG;
3552 
3553 	cur = field_cnt;
3554 	for (i = 0; i < repeat_cnt; i++) {
3555 		memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3556 		for (j = 0; j < field_cnt; j++)
3557 			info[cur++].off += (i + 1) * elem_size;
3558 	}
3559 
3560 	return 0;
3561 }
3562 
3563 static int btf_find_struct_field(const struct btf *btf,
3564 				 const struct btf_type *t, u32 field_mask,
3565 				 struct btf_field_info *info, int info_cnt,
3566 				 u32 level);
3567 
3568 /* Find special fields in the struct type of a field.
3569  *
3570  * This function is used to find fields of special types that is not a
3571  * global variable or a direct field of a struct type. It also handles the
3572  * repetition if it is the element type of an array.
3573  */
btf_find_nested_struct(const struct btf * btf,const struct btf_type * t,u32 off,u32 nelems,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3574 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3575 				  u32 off, u32 nelems,
3576 				  u32 field_mask, struct btf_field_info *info,
3577 				  int info_cnt, u32 level)
3578 {
3579 	int ret, err, i;
3580 
3581 	level++;
3582 	if (level >= MAX_RESOLVE_DEPTH)
3583 		return -E2BIG;
3584 
3585 	ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3586 
3587 	if (ret <= 0)
3588 		return ret;
3589 
3590 	/* Shift the offsets of the nested struct fields to the offsets
3591 	 * related to the container.
3592 	 */
3593 	for (i = 0; i < ret; i++)
3594 		info[i].off += off;
3595 
3596 	if (nelems > 1) {
3597 		err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3598 		if (err == 0)
3599 			ret *= nelems;
3600 		else
3601 			ret = err;
3602 	}
3603 
3604 	return ret;
3605 }
3606 
btf_find_field_one(const struct btf * btf,const struct btf_type * var,const struct btf_type * var_type,int var_idx,u32 off,u32 expected_size,u32 field_mask,u32 * seen_mask,struct btf_field_info * info,int info_cnt,u32 level)3607 static int btf_find_field_one(const struct btf *btf,
3608 			      const struct btf_type *var,
3609 			      const struct btf_type *var_type,
3610 			      int var_idx,
3611 			      u32 off, u32 expected_size,
3612 			      u32 field_mask, u32 *seen_mask,
3613 			      struct btf_field_info *info, int info_cnt,
3614 			      u32 level)
3615 {
3616 	int ret, align, sz, field_type;
3617 	struct btf_field_info tmp;
3618 	const struct btf_array *array;
3619 	u32 i, nelems = 1;
3620 
3621 	/* Walk into array types to find the element type and the number of
3622 	 * elements in the (flattened) array.
3623 	 */
3624 	for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3625 		array = btf_array(var_type);
3626 		nelems *= array->nelems;
3627 		var_type = btf_type_by_id(btf, array->type);
3628 	}
3629 	if (i == MAX_RESOLVE_DEPTH)
3630 		return -E2BIG;
3631 	if (nelems == 0)
3632 		return 0;
3633 
3634 	field_type = btf_get_field_type(btf, var_type,
3635 					field_mask, seen_mask, &align, &sz);
3636 	/* Look into variables of struct types */
3637 	if (!field_type && __btf_type_is_struct(var_type)) {
3638 		sz = var_type->size;
3639 		if (expected_size && expected_size != sz * nelems)
3640 			return 0;
3641 		ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3642 					     &info[0], info_cnt, level);
3643 		return ret;
3644 	}
3645 
3646 	if (field_type == 0)
3647 		return 0;
3648 	if (field_type < 0)
3649 		return field_type;
3650 
3651 	if (expected_size && expected_size != sz * nelems)
3652 		return 0;
3653 	if (off % align)
3654 		return 0;
3655 
3656 	switch (field_type) {
3657 	case BPF_SPIN_LOCK:
3658 	case BPF_TIMER:
3659 	case BPF_WORKQUEUE:
3660 	case BPF_LIST_NODE:
3661 	case BPF_RB_NODE:
3662 	case BPF_REFCOUNT:
3663 		ret = btf_find_struct(btf, var_type, off, sz, field_type,
3664 				      info_cnt ? &info[0] : &tmp);
3665 		if (ret < 0)
3666 			return ret;
3667 		break;
3668 	case BPF_KPTR_UNREF:
3669 	case BPF_KPTR_REF:
3670 	case BPF_KPTR_PERCPU:
3671 	case BPF_UPTR:
3672 		ret = btf_find_kptr(btf, var_type, off, sz,
3673 				    info_cnt ? &info[0] : &tmp, field_mask);
3674 		if (ret < 0)
3675 			return ret;
3676 		break;
3677 	case BPF_LIST_HEAD:
3678 	case BPF_RB_ROOT:
3679 		ret = btf_find_graph_root(btf, var, var_type,
3680 					  var_idx, off, sz,
3681 					  info_cnt ? &info[0] : &tmp,
3682 					  field_type);
3683 		if (ret < 0)
3684 			return ret;
3685 		break;
3686 	default:
3687 		return -EFAULT;
3688 	}
3689 
3690 	if (ret == BTF_FIELD_IGNORE)
3691 		return 0;
3692 	if (!info_cnt)
3693 		return -E2BIG;
3694 	if (nelems > 1) {
3695 		ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3696 		if (ret < 0)
3697 			return ret;
3698 	}
3699 	return nelems;
3700 }
3701 
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3702 static int btf_find_struct_field(const struct btf *btf,
3703 				 const struct btf_type *t, u32 field_mask,
3704 				 struct btf_field_info *info, int info_cnt,
3705 				 u32 level)
3706 {
3707 	int ret, idx = 0;
3708 	const struct btf_member *member;
3709 	u32 i, off, seen_mask = 0;
3710 
3711 	for_each_member(i, t, member) {
3712 		const struct btf_type *member_type = btf_type_by_id(btf,
3713 								    member->type);
3714 
3715 		off = __btf_member_bit_offset(t, member);
3716 		if (off % 8)
3717 			/* valid C code cannot generate such BTF */
3718 			return -EINVAL;
3719 		off /= 8;
3720 
3721 		ret = btf_find_field_one(btf, t, member_type, i,
3722 					 off, 0,
3723 					 field_mask, &seen_mask,
3724 					 &info[idx], info_cnt - idx, level);
3725 		if (ret < 0)
3726 			return ret;
3727 		idx += ret;
3728 	}
3729 	return idx;
3730 }
3731 
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3732 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3733 				u32 field_mask, struct btf_field_info *info,
3734 				int info_cnt, u32 level)
3735 {
3736 	int ret, idx = 0;
3737 	const struct btf_var_secinfo *vsi;
3738 	u32 i, off, seen_mask = 0;
3739 
3740 	for_each_vsi(i, t, vsi) {
3741 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3742 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3743 
3744 		off = vsi->offset;
3745 		ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3746 					 field_mask, &seen_mask,
3747 					 &info[idx], info_cnt - idx,
3748 					 level);
3749 		if (ret < 0)
3750 			return ret;
3751 		idx += ret;
3752 	}
3753 	return idx;
3754 }
3755 
btf_find_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3756 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3757 			  u32 field_mask, struct btf_field_info *info,
3758 			  int info_cnt)
3759 {
3760 	if (__btf_type_is_struct(t))
3761 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3762 	else if (btf_type_is_datasec(t))
3763 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3764 	return -EINVAL;
3765 }
3766 
3767 /* Callers have to ensure the life cycle of btf if it is program BTF */
btf_parse_kptr(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3768 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3769 			  struct btf_field_info *info)
3770 {
3771 	struct module *mod = NULL;
3772 	const struct btf_type *t;
3773 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3774 	 * is that BTF, otherwise it's program BTF
3775 	 */
3776 	struct btf *kptr_btf;
3777 	int ret;
3778 	s32 id;
3779 
3780 	/* Find type in map BTF, and use it to look up the matching type
3781 	 * in vmlinux or module BTFs, by name and kind.
3782 	 */
3783 	t = btf_type_by_id(btf, info->kptr.type_id);
3784 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3785 			     &kptr_btf);
3786 	if (id == -ENOENT) {
3787 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3788 		WARN_ON_ONCE(btf_is_kernel(btf));
3789 
3790 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3791 		 * kptr allocated via bpf_obj_new
3792 		 */
3793 		field->kptr.dtor = NULL;
3794 		id = info->kptr.type_id;
3795 		kptr_btf = (struct btf *)btf;
3796 		goto found_dtor;
3797 	}
3798 	if (id < 0)
3799 		return id;
3800 
3801 	/* Find and stash the function pointer for the destruction function that
3802 	 * needs to be eventually invoked from the map free path.
3803 	 */
3804 	if (info->type == BPF_KPTR_REF) {
3805 		const struct btf_type *dtor_func;
3806 		const char *dtor_func_name;
3807 		unsigned long addr;
3808 		s32 dtor_btf_id;
3809 
3810 		/* This call also serves as a whitelist of allowed objects that
3811 		 * can be used as a referenced pointer and be stored in a map at
3812 		 * the same time.
3813 		 */
3814 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3815 		if (dtor_btf_id < 0) {
3816 			ret = dtor_btf_id;
3817 			goto end_btf;
3818 		}
3819 
3820 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3821 		if (!dtor_func) {
3822 			ret = -ENOENT;
3823 			goto end_btf;
3824 		}
3825 
3826 		if (btf_is_module(kptr_btf)) {
3827 			mod = btf_try_get_module(kptr_btf);
3828 			if (!mod) {
3829 				ret = -ENXIO;
3830 				goto end_btf;
3831 			}
3832 		}
3833 
3834 		/* We already verified dtor_func to be btf_type_is_func
3835 		 * in register_btf_id_dtor_kfuncs.
3836 		 */
3837 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3838 		addr = kallsyms_lookup_name(dtor_func_name);
3839 		if (!addr) {
3840 			ret = -EINVAL;
3841 			goto end_mod;
3842 		}
3843 		field->kptr.dtor = (void *)addr;
3844 	}
3845 
3846 found_dtor:
3847 	field->kptr.btf_id = id;
3848 	field->kptr.btf = kptr_btf;
3849 	field->kptr.module = mod;
3850 	return 0;
3851 end_mod:
3852 	module_put(mod);
3853 end_btf:
3854 	btf_put(kptr_btf);
3855 	return ret;
3856 }
3857 
btf_parse_graph_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info,const char * node_type_name,size_t node_type_align)3858 static int btf_parse_graph_root(const struct btf *btf,
3859 				struct btf_field *field,
3860 				struct btf_field_info *info,
3861 				const char *node_type_name,
3862 				size_t node_type_align)
3863 {
3864 	const struct btf_type *t, *n = NULL;
3865 	const struct btf_member *member;
3866 	u32 offset;
3867 	int i;
3868 
3869 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3870 	/* We've already checked that value_btf_id is a struct type. We
3871 	 * just need to figure out the offset of the list_node, and
3872 	 * verify its type.
3873 	 */
3874 	for_each_member(i, t, member) {
3875 		if (strcmp(info->graph_root.node_name,
3876 			   __btf_name_by_offset(btf, member->name_off)))
3877 			continue;
3878 		/* Invalid BTF, two members with same name */
3879 		if (n)
3880 			return -EINVAL;
3881 		n = btf_type_by_id(btf, member->type);
3882 		if (!__btf_type_is_struct(n))
3883 			return -EINVAL;
3884 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3885 			return -EINVAL;
3886 		offset = __btf_member_bit_offset(n, member);
3887 		if (offset % 8)
3888 			return -EINVAL;
3889 		offset /= 8;
3890 		if (offset % node_type_align)
3891 			return -EINVAL;
3892 
3893 		field->graph_root.btf = (struct btf *)btf;
3894 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3895 		field->graph_root.node_offset = offset;
3896 	}
3897 	if (!n)
3898 		return -ENOENT;
3899 	return 0;
3900 }
3901 
btf_parse_list_head(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3902 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3903 			       struct btf_field_info *info)
3904 {
3905 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3906 					    __alignof__(struct bpf_list_node));
3907 }
3908 
btf_parse_rb_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3909 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3910 			     struct btf_field_info *info)
3911 {
3912 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3913 					    __alignof__(struct bpf_rb_node));
3914 }
3915 
btf_field_cmp(const void * _a,const void * _b,const void * priv)3916 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3917 {
3918 	const struct btf_field *a = (const struct btf_field *)_a;
3919 	const struct btf_field *b = (const struct btf_field *)_b;
3920 
3921 	if (a->offset < b->offset)
3922 		return -1;
3923 	else if (a->offset > b->offset)
3924 		return 1;
3925 	return 0;
3926 }
3927 
btf_parse_fields(const struct btf * btf,const struct btf_type * t,u32 field_mask,u32 value_size)3928 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3929 				    u32 field_mask, u32 value_size)
3930 {
3931 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3932 	u32 next_off = 0, field_type_size;
3933 	struct btf_record *rec;
3934 	int ret, i, cnt;
3935 
3936 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3937 	if (ret < 0)
3938 		return ERR_PTR(ret);
3939 	if (!ret)
3940 		return NULL;
3941 
3942 	cnt = ret;
3943 	/* This needs to be kzalloc to zero out padding and unused fields, see
3944 	 * comment in btf_record_equal.
3945 	 */
3946 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3947 	if (!rec)
3948 		return ERR_PTR(-ENOMEM);
3949 
3950 	rec->spin_lock_off = -EINVAL;
3951 	rec->timer_off = -EINVAL;
3952 	rec->wq_off = -EINVAL;
3953 	rec->refcount_off = -EINVAL;
3954 	for (i = 0; i < cnt; i++) {
3955 		field_type_size = btf_field_type_size(info_arr[i].type);
3956 		if (info_arr[i].off + field_type_size > value_size) {
3957 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3958 			ret = -EFAULT;
3959 			goto end;
3960 		}
3961 		if (info_arr[i].off < next_off) {
3962 			ret = -EEXIST;
3963 			goto end;
3964 		}
3965 		next_off = info_arr[i].off + field_type_size;
3966 
3967 		rec->field_mask |= info_arr[i].type;
3968 		rec->fields[i].offset = info_arr[i].off;
3969 		rec->fields[i].type = info_arr[i].type;
3970 		rec->fields[i].size = field_type_size;
3971 
3972 		switch (info_arr[i].type) {
3973 		case BPF_SPIN_LOCK:
3974 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3975 			/* Cache offset for faster lookup at runtime */
3976 			rec->spin_lock_off = rec->fields[i].offset;
3977 			break;
3978 		case BPF_TIMER:
3979 			WARN_ON_ONCE(rec->timer_off >= 0);
3980 			/* Cache offset for faster lookup at runtime */
3981 			rec->timer_off = rec->fields[i].offset;
3982 			break;
3983 		case BPF_WORKQUEUE:
3984 			WARN_ON_ONCE(rec->wq_off >= 0);
3985 			/* Cache offset for faster lookup at runtime */
3986 			rec->wq_off = rec->fields[i].offset;
3987 			break;
3988 		case BPF_REFCOUNT:
3989 			WARN_ON_ONCE(rec->refcount_off >= 0);
3990 			/* Cache offset for faster lookup at runtime */
3991 			rec->refcount_off = rec->fields[i].offset;
3992 			break;
3993 		case BPF_KPTR_UNREF:
3994 		case BPF_KPTR_REF:
3995 		case BPF_KPTR_PERCPU:
3996 		case BPF_UPTR:
3997 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3998 			if (ret < 0)
3999 				goto end;
4000 			break;
4001 		case BPF_LIST_HEAD:
4002 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4003 			if (ret < 0)
4004 				goto end;
4005 			break;
4006 		case BPF_RB_ROOT:
4007 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4008 			if (ret < 0)
4009 				goto end;
4010 			break;
4011 		case BPF_LIST_NODE:
4012 		case BPF_RB_NODE:
4013 			break;
4014 		default:
4015 			ret = -EFAULT;
4016 			goto end;
4017 		}
4018 		rec->cnt++;
4019 	}
4020 
4021 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
4022 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4023 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4024 		ret = -EINVAL;
4025 		goto end;
4026 	}
4027 
4028 	if (rec->refcount_off < 0 &&
4029 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
4030 	    btf_record_has_field(rec, BPF_RB_NODE)) {
4031 		ret = -EINVAL;
4032 		goto end;
4033 	}
4034 
4035 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4036 	       NULL, rec);
4037 
4038 	return rec;
4039 end:
4040 	btf_record_free(rec);
4041 	return ERR_PTR(ret);
4042 }
4043 
btf_check_and_fixup_fields(const struct btf * btf,struct btf_record * rec)4044 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4045 {
4046 	int i;
4047 
4048 	/* There are three types that signify ownership of some other type:
4049 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
4050 	 * kptr_ref only supports storing kernel types, which can't store
4051 	 * references to program allocated local types.
4052 	 *
4053 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4054 	 * does not form cycles.
4055 	 */
4056 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4057 		return 0;
4058 	for (i = 0; i < rec->cnt; i++) {
4059 		struct btf_struct_meta *meta;
4060 		const struct btf_type *t;
4061 		u32 btf_id;
4062 
4063 		if (rec->fields[i].type == BPF_UPTR) {
4064 			/* The uptr only supports pinning one page and cannot
4065 			 * point to a kernel struct
4066 			 */
4067 			if (btf_is_kernel(rec->fields[i].kptr.btf))
4068 				return -EINVAL;
4069 			t = btf_type_by_id(rec->fields[i].kptr.btf,
4070 					   rec->fields[i].kptr.btf_id);
4071 			if (!t->size)
4072 				return -EINVAL;
4073 			if (t->size > PAGE_SIZE)
4074 				return -E2BIG;
4075 			continue;
4076 		}
4077 
4078 		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4079 			continue;
4080 		btf_id = rec->fields[i].graph_root.value_btf_id;
4081 		meta = btf_find_struct_meta(btf, btf_id);
4082 		if (!meta)
4083 			return -EFAULT;
4084 		rec->fields[i].graph_root.value_rec = meta->record;
4085 
4086 		/* We need to set value_rec for all root types, but no need
4087 		 * to check ownership cycle for a type unless it's also a
4088 		 * node type.
4089 		 */
4090 		if (!(rec->field_mask & BPF_GRAPH_NODE))
4091 			continue;
4092 
4093 		/* We need to ensure ownership acyclicity among all types. The
4094 		 * proper way to do it would be to topologically sort all BTF
4095 		 * IDs based on the ownership edges, since there can be multiple
4096 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
4097 		 * following resaoning:
4098 		 *
4099 		 * - A type can only be owned by another type in user BTF if it
4100 		 *   has a bpf_{list,rb}_node. Let's call these node types.
4101 		 * - A type can only _own_ another type in user BTF if it has a
4102 		 *   bpf_{list_head,rb_root}. Let's call these root types.
4103 		 *
4104 		 * We ensure that if a type is both a root and node, its
4105 		 * element types cannot be root types.
4106 		 *
4107 		 * To ensure acyclicity:
4108 		 *
4109 		 * When A is an root type but not a node, its ownership
4110 		 * chain can be:
4111 		 *	A -> B -> C
4112 		 * Where:
4113 		 * - A is an root, e.g. has bpf_rb_root.
4114 		 * - B is both a root and node, e.g. has bpf_rb_node and
4115 		 *   bpf_list_head.
4116 		 * - C is only an root, e.g. has bpf_list_node
4117 		 *
4118 		 * When A is both a root and node, some other type already
4119 		 * owns it in the BTF domain, hence it can not own
4120 		 * another root type through any of the ownership edges.
4121 		 *	A -> B
4122 		 * Where:
4123 		 * - A is both an root and node.
4124 		 * - B is only an node.
4125 		 */
4126 		if (meta->record->field_mask & BPF_GRAPH_ROOT)
4127 			return -ELOOP;
4128 	}
4129 	return 0;
4130 }
4131 
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4132 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4133 			      u32 type_id, void *data, u8 bits_offset,
4134 			      struct btf_show *show)
4135 {
4136 	const struct btf_member *member;
4137 	void *safe_data;
4138 	u32 i;
4139 
4140 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4141 	if (!safe_data)
4142 		return;
4143 
4144 	for_each_member(i, t, member) {
4145 		const struct btf_type *member_type = btf_type_by_id(btf,
4146 								member->type);
4147 		const struct btf_kind_operations *ops;
4148 		u32 member_offset, bitfield_size;
4149 		u32 bytes_offset;
4150 		u8 bits8_offset;
4151 
4152 		btf_show_start_member(show, member);
4153 
4154 		member_offset = __btf_member_bit_offset(t, member);
4155 		bitfield_size = __btf_member_bitfield_size(t, member);
4156 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4157 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4158 		if (bitfield_size) {
4159 			safe_data = btf_show_start_type(show, member_type,
4160 							member->type,
4161 							data + bytes_offset);
4162 			if (safe_data)
4163 				btf_bitfield_show(safe_data,
4164 						  bits8_offset,
4165 						  bitfield_size, show);
4166 			btf_show_end_type(show);
4167 		} else {
4168 			ops = btf_type_ops(member_type);
4169 			ops->show(btf, member_type, member->type,
4170 				  data + bytes_offset, bits8_offset, show);
4171 		}
4172 
4173 		btf_show_end_member(show);
4174 	}
4175 
4176 	btf_show_end_struct_type(show);
4177 }
4178 
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4179 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4180 			    u32 type_id, void *data, u8 bits_offset,
4181 			    struct btf_show *show)
4182 {
4183 	const struct btf_member *m = show->state.member;
4184 
4185 	/*
4186 	 * First check if any members would be shown (are non-zero).
4187 	 * See comments above "struct btf_show" definition for more
4188 	 * details on how this works at a high-level.
4189 	 */
4190 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4191 		if (!show->state.depth_check) {
4192 			show->state.depth_check = show->state.depth + 1;
4193 			show->state.depth_to_show = 0;
4194 		}
4195 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4196 		/* Restore saved member data here */
4197 		show->state.member = m;
4198 		if (show->state.depth_check != show->state.depth + 1)
4199 			return;
4200 		show->state.depth_check = 0;
4201 
4202 		if (show->state.depth_to_show <= show->state.depth)
4203 			return;
4204 		/*
4205 		 * Reaching here indicates we have recursed and found
4206 		 * non-zero child values.
4207 		 */
4208 	}
4209 
4210 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4211 }
4212 
4213 static const struct btf_kind_operations struct_ops = {
4214 	.check_meta = btf_struct_check_meta,
4215 	.resolve = btf_struct_resolve,
4216 	.check_member = btf_struct_check_member,
4217 	.check_kflag_member = btf_generic_check_kflag_member,
4218 	.log_details = btf_struct_log,
4219 	.show = btf_struct_show,
4220 };
4221 
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4222 static int btf_enum_check_member(struct btf_verifier_env *env,
4223 				 const struct btf_type *struct_type,
4224 				 const struct btf_member *member,
4225 				 const struct btf_type *member_type)
4226 {
4227 	u32 struct_bits_off = member->offset;
4228 	u32 struct_size, bytes_offset;
4229 
4230 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4231 		btf_verifier_log_member(env, struct_type, member,
4232 					"Member is not byte aligned");
4233 		return -EINVAL;
4234 	}
4235 
4236 	struct_size = struct_type->size;
4237 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4238 	if (struct_size - bytes_offset < member_type->size) {
4239 		btf_verifier_log_member(env, struct_type, member,
4240 					"Member exceeds struct_size");
4241 		return -EINVAL;
4242 	}
4243 
4244 	return 0;
4245 }
4246 
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4247 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4248 				       const struct btf_type *struct_type,
4249 				       const struct btf_member *member,
4250 				       const struct btf_type *member_type)
4251 {
4252 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4253 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4254 
4255 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4256 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4257 	if (!nr_bits) {
4258 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4259 			btf_verifier_log_member(env, struct_type, member,
4260 						"Member is not byte aligned");
4261 			return -EINVAL;
4262 		}
4263 
4264 		nr_bits = int_bitsize;
4265 	} else if (nr_bits > int_bitsize) {
4266 		btf_verifier_log_member(env, struct_type, member,
4267 					"Invalid member bitfield_size");
4268 		return -EINVAL;
4269 	}
4270 
4271 	struct_size = struct_type->size;
4272 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4273 	if (struct_size < bytes_end) {
4274 		btf_verifier_log_member(env, struct_type, member,
4275 					"Member exceeds struct_size");
4276 		return -EINVAL;
4277 	}
4278 
4279 	return 0;
4280 }
4281 
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4282 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4283 			       const struct btf_type *t,
4284 			       u32 meta_left)
4285 {
4286 	const struct btf_enum *enums = btf_type_enum(t);
4287 	struct btf *btf = env->btf;
4288 	const char *fmt_str;
4289 	u16 i, nr_enums;
4290 	u32 meta_needed;
4291 
4292 	nr_enums = btf_type_vlen(t);
4293 	meta_needed = nr_enums * sizeof(*enums);
4294 
4295 	if (meta_left < meta_needed) {
4296 		btf_verifier_log_basic(env, t,
4297 				       "meta_left:%u meta_needed:%u",
4298 				       meta_left, meta_needed);
4299 		return -EINVAL;
4300 	}
4301 
4302 	if (t->size > 8 || !is_power_of_2(t->size)) {
4303 		btf_verifier_log_type(env, t, "Unexpected size");
4304 		return -EINVAL;
4305 	}
4306 
4307 	/* enum type either no name or a valid one */
4308 	if (t->name_off &&
4309 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4310 		btf_verifier_log_type(env, t, "Invalid name");
4311 		return -EINVAL;
4312 	}
4313 
4314 	btf_verifier_log_type(env, t, NULL);
4315 
4316 	for (i = 0; i < nr_enums; i++) {
4317 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4318 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4319 					 enums[i].name_off);
4320 			return -EINVAL;
4321 		}
4322 
4323 		/* enum member must have a valid name */
4324 		if (!enums[i].name_off ||
4325 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4326 			btf_verifier_log_type(env, t, "Invalid name");
4327 			return -EINVAL;
4328 		}
4329 
4330 		if (env->log.level == BPF_LOG_KERNEL)
4331 			continue;
4332 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4333 		btf_verifier_log(env, fmt_str,
4334 				 __btf_name_by_offset(btf, enums[i].name_off),
4335 				 enums[i].val);
4336 	}
4337 
4338 	return meta_needed;
4339 }
4340 
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)4341 static void btf_enum_log(struct btf_verifier_env *env,
4342 			 const struct btf_type *t)
4343 {
4344 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4345 }
4346 
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4347 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4348 			  u32 type_id, void *data, u8 bits_offset,
4349 			  struct btf_show *show)
4350 {
4351 	const struct btf_enum *enums = btf_type_enum(t);
4352 	u32 i, nr_enums = btf_type_vlen(t);
4353 	void *safe_data;
4354 	int v;
4355 
4356 	safe_data = btf_show_start_type(show, t, type_id, data);
4357 	if (!safe_data)
4358 		return;
4359 
4360 	v = *(int *)safe_data;
4361 
4362 	for (i = 0; i < nr_enums; i++) {
4363 		if (v != enums[i].val)
4364 			continue;
4365 
4366 		btf_show_type_value(show, "%s",
4367 				    __btf_name_by_offset(btf,
4368 							 enums[i].name_off));
4369 
4370 		btf_show_end_type(show);
4371 		return;
4372 	}
4373 
4374 	if (btf_type_kflag(t))
4375 		btf_show_type_value(show, "%d", v);
4376 	else
4377 		btf_show_type_value(show, "%u", v);
4378 	btf_show_end_type(show);
4379 }
4380 
4381 static const struct btf_kind_operations enum_ops = {
4382 	.check_meta = btf_enum_check_meta,
4383 	.resolve = btf_df_resolve,
4384 	.check_member = btf_enum_check_member,
4385 	.check_kflag_member = btf_enum_check_kflag_member,
4386 	.log_details = btf_enum_log,
4387 	.show = btf_enum_show,
4388 };
4389 
btf_enum64_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4390 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4391 				 const struct btf_type *t,
4392 				 u32 meta_left)
4393 {
4394 	const struct btf_enum64 *enums = btf_type_enum64(t);
4395 	struct btf *btf = env->btf;
4396 	const char *fmt_str;
4397 	u16 i, nr_enums;
4398 	u32 meta_needed;
4399 
4400 	nr_enums = btf_type_vlen(t);
4401 	meta_needed = nr_enums * sizeof(*enums);
4402 
4403 	if (meta_left < meta_needed) {
4404 		btf_verifier_log_basic(env, t,
4405 				       "meta_left:%u meta_needed:%u",
4406 				       meta_left, meta_needed);
4407 		return -EINVAL;
4408 	}
4409 
4410 	if (t->size > 8 || !is_power_of_2(t->size)) {
4411 		btf_verifier_log_type(env, t, "Unexpected size");
4412 		return -EINVAL;
4413 	}
4414 
4415 	/* enum type either no name or a valid one */
4416 	if (t->name_off &&
4417 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4418 		btf_verifier_log_type(env, t, "Invalid name");
4419 		return -EINVAL;
4420 	}
4421 
4422 	btf_verifier_log_type(env, t, NULL);
4423 
4424 	for (i = 0; i < nr_enums; i++) {
4425 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4426 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4427 					 enums[i].name_off);
4428 			return -EINVAL;
4429 		}
4430 
4431 		/* enum member must have a valid name */
4432 		if (!enums[i].name_off ||
4433 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4434 			btf_verifier_log_type(env, t, "Invalid name");
4435 			return -EINVAL;
4436 		}
4437 
4438 		if (env->log.level == BPF_LOG_KERNEL)
4439 			continue;
4440 
4441 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4442 		btf_verifier_log(env, fmt_str,
4443 				 __btf_name_by_offset(btf, enums[i].name_off),
4444 				 btf_enum64_value(enums + i));
4445 	}
4446 
4447 	return meta_needed;
4448 }
4449 
btf_enum64_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4450 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4451 			    u32 type_id, void *data, u8 bits_offset,
4452 			    struct btf_show *show)
4453 {
4454 	const struct btf_enum64 *enums = btf_type_enum64(t);
4455 	u32 i, nr_enums = btf_type_vlen(t);
4456 	void *safe_data;
4457 	s64 v;
4458 
4459 	safe_data = btf_show_start_type(show, t, type_id, data);
4460 	if (!safe_data)
4461 		return;
4462 
4463 	v = *(u64 *)safe_data;
4464 
4465 	for (i = 0; i < nr_enums; i++) {
4466 		if (v != btf_enum64_value(enums + i))
4467 			continue;
4468 
4469 		btf_show_type_value(show, "%s",
4470 				    __btf_name_by_offset(btf,
4471 							 enums[i].name_off));
4472 
4473 		btf_show_end_type(show);
4474 		return;
4475 	}
4476 
4477 	if (btf_type_kflag(t))
4478 		btf_show_type_value(show, "%lld", v);
4479 	else
4480 		btf_show_type_value(show, "%llu", v);
4481 	btf_show_end_type(show);
4482 }
4483 
4484 static const struct btf_kind_operations enum64_ops = {
4485 	.check_meta = btf_enum64_check_meta,
4486 	.resolve = btf_df_resolve,
4487 	.check_member = btf_enum_check_member,
4488 	.check_kflag_member = btf_enum_check_kflag_member,
4489 	.log_details = btf_enum_log,
4490 	.show = btf_enum64_show,
4491 };
4492 
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4493 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4494 				     const struct btf_type *t,
4495 				     u32 meta_left)
4496 {
4497 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4498 
4499 	if (meta_left < meta_needed) {
4500 		btf_verifier_log_basic(env, t,
4501 				       "meta_left:%u meta_needed:%u",
4502 				       meta_left, meta_needed);
4503 		return -EINVAL;
4504 	}
4505 
4506 	if (t->name_off) {
4507 		btf_verifier_log_type(env, t, "Invalid name");
4508 		return -EINVAL;
4509 	}
4510 
4511 	if (btf_type_kflag(t)) {
4512 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4513 		return -EINVAL;
4514 	}
4515 
4516 	btf_verifier_log_type(env, t, NULL);
4517 
4518 	return meta_needed;
4519 }
4520 
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)4521 static void btf_func_proto_log(struct btf_verifier_env *env,
4522 			       const struct btf_type *t)
4523 {
4524 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4525 	u16 nr_args = btf_type_vlen(t), i;
4526 
4527 	btf_verifier_log(env, "return=%u args=(", t->type);
4528 	if (!nr_args) {
4529 		btf_verifier_log(env, "void");
4530 		goto done;
4531 	}
4532 
4533 	if (nr_args == 1 && !args[0].type) {
4534 		/* Only one vararg */
4535 		btf_verifier_log(env, "vararg");
4536 		goto done;
4537 	}
4538 
4539 	btf_verifier_log(env, "%u %s", args[0].type,
4540 			 __btf_name_by_offset(env->btf,
4541 					      args[0].name_off));
4542 	for (i = 1; i < nr_args - 1; i++)
4543 		btf_verifier_log(env, ", %u %s", args[i].type,
4544 				 __btf_name_by_offset(env->btf,
4545 						      args[i].name_off));
4546 
4547 	if (nr_args > 1) {
4548 		const struct btf_param *last_arg = &args[nr_args - 1];
4549 
4550 		if (last_arg->type)
4551 			btf_verifier_log(env, ", %u %s", last_arg->type,
4552 					 __btf_name_by_offset(env->btf,
4553 							      last_arg->name_off));
4554 		else
4555 			btf_verifier_log(env, ", vararg");
4556 	}
4557 
4558 done:
4559 	btf_verifier_log(env, ")");
4560 }
4561 
4562 static const struct btf_kind_operations func_proto_ops = {
4563 	.check_meta = btf_func_proto_check_meta,
4564 	.resolve = btf_df_resolve,
4565 	/*
4566 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4567 	 * a struct's member.
4568 	 *
4569 	 * It should be a function pointer instead.
4570 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4571 	 *
4572 	 * Hence, there is no btf_func_check_member().
4573 	 */
4574 	.check_member = btf_df_check_member,
4575 	.check_kflag_member = btf_df_check_kflag_member,
4576 	.log_details = btf_func_proto_log,
4577 	.show = btf_df_show,
4578 };
4579 
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4580 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4581 			       const struct btf_type *t,
4582 			       u32 meta_left)
4583 {
4584 	if (!t->name_off ||
4585 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4586 		btf_verifier_log_type(env, t, "Invalid name");
4587 		return -EINVAL;
4588 	}
4589 
4590 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4591 		btf_verifier_log_type(env, t, "Invalid func linkage");
4592 		return -EINVAL;
4593 	}
4594 
4595 	if (btf_type_kflag(t)) {
4596 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4597 		return -EINVAL;
4598 	}
4599 
4600 	btf_verifier_log_type(env, t, NULL);
4601 
4602 	return 0;
4603 }
4604 
btf_func_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4605 static int btf_func_resolve(struct btf_verifier_env *env,
4606 			    const struct resolve_vertex *v)
4607 {
4608 	const struct btf_type *t = v->t;
4609 	u32 next_type_id = t->type;
4610 	int err;
4611 
4612 	err = btf_func_check(env, t);
4613 	if (err)
4614 		return err;
4615 
4616 	env_stack_pop_resolved(env, next_type_id, 0);
4617 	return 0;
4618 }
4619 
4620 static const struct btf_kind_operations func_ops = {
4621 	.check_meta = btf_func_check_meta,
4622 	.resolve = btf_func_resolve,
4623 	.check_member = btf_df_check_member,
4624 	.check_kflag_member = btf_df_check_kflag_member,
4625 	.log_details = btf_ref_type_log,
4626 	.show = btf_df_show,
4627 };
4628 
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4629 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4630 			      const struct btf_type *t,
4631 			      u32 meta_left)
4632 {
4633 	const struct btf_var *var;
4634 	u32 meta_needed = sizeof(*var);
4635 
4636 	if (meta_left < meta_needed) {
4637 		btf_verifier_log_basic(env, t,
4638 				       "meta_left:%u meta_needed:%u",
4639 				       meta_left, meta_needed);
4640 		return -EINVAL;
4641 	}
4642 
4643 	if (btf_type_vlen(t)) {
4644 		btf_verifier_log_type(env, t, "vlen != 0");
4645 		return -EINVAL;
4646 	}
4647 
4648 	if (btf_type_kflag(t)) {
4649 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4650 		return -EINVAL;
4651 	}
4652 
4653 	if (!t->name_off ||
4654 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4655 		btf_verifier_log_type(env, t, "Invalid name");
4656 		return -EINVAL;
4657 	}
4658 
4659 	/* A var cannot be in type void */
4660 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4661 		btf_verifier_log_type(env, t, "Invalid type_id");
4662 		return -EINVAL;
4663 	}
4664 
4665 	var = btf_type_var(t);
4666 	if (var->linkage != BTF_VAR_STATIC &&
4667 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4668 		btf_verifier_log_type(env, t, "Linkage not supported");
4669 		return -EINVAL;
4670 	}
4671 
4672 	btf_verifier_log_type(env, t, NULL);
4673 
4674 	return meta_needed;
4675 }
4676 
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)4677 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4678 {
4679 	const struct btf_var *var = btf_type_var(t);
4680 
4681 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4682 }
4683 
4684 static const struct btf_kind_operations var_ops = {
4685 	.check_meta		= btf_var_check_meta,
4686 	.resolve		= btf_var_resolve,
4687 	.check_member		= btf_df_check_member,
4688 	.check_kflag_member	= btf_df_check_kflag_member,
4689 	.log_details		= btf_var_log,
4690 	.show			= btf_var_show,
4691 };
4692 
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4693 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4694 				  const struct btf_type *t,
4695 				  u32 meta_left)
4696 {
4697 	const struct btf_var_secinfo *vsi;
4698 	u64 last_vsi_end_off = 0, sum = 0;
4699 	u32 i, meta_needed;
4700 
4701 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4702 	if (meta_left < meta_needed) {
4703 		btf_verifier_log_basic(env, t,
4704 				       "meta_left:%u meta_needed:%u",
4705 				       meta_left, meta_needed);
4706 		return -EINVAL;
4707 	}
4708 
4709 	if (!t->size) {
4710 		btf_verifier_log_type(env, t, "size == 0");
4711 		return -EINVAL;
4712 	}
4713 
4714 	if (btf_type_kflag(t)) {
4715 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4716 		return -EINVAL;
4717 	}
4718 
4719 	if (!t->name_off ||
4720 	    !btf_name_valid_section(env->btf, t->name_off)) {
4721 		btf_verifier_log_type(env, t, "Invalid name");
4722 		return -EINVAL;
4723 	}
4724 
4725 	btf_verifier_log_type(env, t, NULL);
4726 
4727 	for_each_vsi(i, t, vsi) {
4728 		/* A var cannot be in type void */
4729 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4730 			btf_verifier_log_vsi(env, t, vsi,
4731 					     "Invalid type_id");
4732 			return -EINVAL;
4733 		}
4734 
4735 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4736 			btf_verifier_log_vsi(env, t, vsi,
4737 					     "Invalid offset");
4738 			return -EINVAL;
4739 		}
4740 
4741 		if (!vsi->size || vsi->size > t->size) {
4742 			btf_verifier_log_vsi(env, t, vsi,
4743 					     "Invalid size");
4744 			return -EINVAL;
4745 		}
4746 
4747 		last_vsi_end_off = vsi->offset + vsi->size;
4748 		if (last_vsi_end_off > t->size) {
4749 			btf_verifier_log_vsi(env, t, vsi,
4750 					     "Invalid offset+size");
4751 			return -EINVAL;
4752 		}
4753 
4754 		btf_verifier_log_vsi(env, t, vsi, NULL);
4755 		sum += vsi->size;
4756 	}
4757 
4758 	if (t->size < sum) {
4759 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4760 		return -EINVAL;
4761 	}
4762 
4763 	return meta_needed;
4764 }
4765 
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4766 static int btf_datasec_resolve(struct btf_verifier_env *env,
4767 			       const struct resolve_vertex *v)
4768 {
4769 	const struct btf_var_secinfo *vsi;
4770 	struct btf *btf = env->btf;
4771 	u16 i;
4772 
4773 	env->resolve_mode = RESOLVE_TBD;
4774 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4775 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4776 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4777 								 var_type_id);
4778 		if (!var_type || !btf_type_is_var(var_type)) {
4779 			btf_verifier_log_vsi(env, v->t, vsi,
4780 					     "Not a VAR kind member");
4781 			return -EINVAL;
4782 		}
4783 
4784 		if (!env_type_is_resolve_sink(env, var_type) &&
4785 		    !env_type_is_resolved(env, var_type_id)) {
4786 			env_stack_set_next_member(env, i + 1);
4787 			return env_stack_push(env, var_type, var_type_id);
4788 		}
4789 
4790 		type_id = var_type->type;
4791 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4792 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4793 			return -EINVAL;
4794 		}
4795 
4796 		if (vsi->size < type_size) {
4797 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4798 			return -EINVAL;
4799 		}
4800 	}
4801 
4802 	env_stack_pop_resolved(env, 0, 0);
4803 	return 0;
4804 }
4805 
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)4806 static void btf_datasec_log(struct btf_verifier_env *env,
4807 			    const struct btf_type *t)
4808 {
4809 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4810 }
4811 
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4812 static void btf_datasec_show(const struct btf *btf,
4813 			     const struct btf_type *t, u32 type_id,
4814 			     void *data, u8 bits_offset,
4815 			     struct btf_show *show)
4816 {
4817 	const struct btf_var_secinfo *vsi;
4818 	const struct btf_type *var;
4819 	u32 i;
4820 
4821 	if (!btf_show_start_type(show, t, type_id, data))
4822 		return;
4823 
4824 	btf_show_type_value(show, "section (\"%s\") = {",
4825 			    __btf_name_by_offset(btf, t->name_off));
4826 	for_each_vsi(i, t, vsi) {
4827 		var = btf_type_by_id(btf, vsi->type);
4828 		if (i)
4829 			btf_show(show, ",");
4830 		btf_type_ops(var)->show(btf, var, vsi->type,
4831 					data + vsi->offset, bits_offset, show);
4832 	}
4833 	btf_show_end_type(show);
4834 }
4835 
4836 static const struct btf_kind_operations datasec_ops = {
4837 	.check_meta		= btf_datasec_check_meta,
4838 	.resolve		= btf_datasec_resolve,
4839 	.check_member		= btf_df_check_member,
4840 	.check_kflag_member	= btf_df_check_kflag_member,
4841 	.log_details		= btf_datasec_log,
4842 	.show			= btf_datasec_show,
4843 };
4844 
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4845 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4846 				const struct btf_type *t,
4847 				u32 meta_left)
4848 {
4849 	if (btf_type_vlen(t)) {
4850 		btf_verifier_log_type(env, t, "vlen != 0");
4851 		return -EINVAL;
4852 	}
4853 
4854 	if (btf_type_kflag(t)) {
4855 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4856 		return -EINVAL;
4857 	}
4858 
4859 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4860 	    t->size != 16) {
4861 		btf_verifier_log_type(env, t, "Invalid type_size");
4862 		return -EINVAL;
4863 	}
4864 
4865 	btf_verifier_log_type(env, t, NULL);
4866 
4867 	return 0;
4868 }
4869 
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4870 static int btf_float_check_member(struct btf_verifier_env *env,
4871 				  const struct btf_type *struct_type,
4872 				  const struct btf_member *member,
4873 				  const struct btf_type *member_type)
4874 {
4875 	u64 start_offset_bytes;
4876 	u64 end_offset_bytes;
4877 	u64 misalign_bits;
4878 	u64 align_bytes;
4879 	u64 align_bits;
4880 
4881 	/* Different architectures have different alignment requirements, so
4882 	 * here we check only for the reasonable minimum. This way we ensure
4883 	 * that types after CO-RE can pass the kernel BTF verifier.
4884 	 */
4885 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4886 	align_bits = align_bytes * BITS_PER_BYTE;
4887 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4888 	if (misalign_bits) {
4889 		btf_verifier_log_member(env, struct_type, member,
4890 					"Member is not properly aligned");
4891 		return -EINVAL;
4892 	}
4893 
4894 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4895 	end_offset_bytes = start_offset_bytes + member_type->size;
4896 	if (end_offset_bytes > struct_type->size) {
4897 		btf_verifier_log_member(env, struct_type, member,
4898 					"Member exceeds struct_size");
4899 		return -EINVAL;
4900 	}
4901 
4902 	return 0;
4903 }
4904 
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)4905 static void btf_float_log(struct btf_verifier_env *env,
4906 			  const struct btf_type *t)
4907 {
4908 	btf_verifier_log(env, "size=%u", t->size);
4909 }
4910 
4911 static const struct btf_kind_operations float_ops = {
4912 	.check_meta = btf_float_check_meta,
4913 	.resolve = btf_df_resolve,
4914 	.check_member = btf_float_check_member,
4915 	.check_kflag_member = btf_generic_check_kflag_member,
4916 	.log_details = btf_float_log,
4917 	.show = btf_df_show,
4918 };
4919 
btf_decl_tag_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4920 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4921 			      const struct btf_type *t,
4922 			      u32 meta_left)
4923 {
4924 	const struct btf_decl_tag *tag;
4925 	u32 meta_needed = sizeof(*tag);
4926 	s32 component_idx;
4927 	const char *value;
4928 
4929 	if (meta_left < meta_needed) {
4930 		btf_verifier_log_basic(env, t,
4931 				       "meta_left:%u meta_needed:%u",
4932 				       meta_left, meta_needed);
4933 		return -EINVAL;
4934 	}
4935 
4936 	value = btf_name_by_offset(env->btf, t->name_off);
4937 	if (!value || !value[0]) {
4938 		btf_verifier_log_type(env, t, "Invalid value");
4939 		return -EINVAL;
4940 	}
4941 
4942 	if (btf_type_vlen(t)) {
4943 		btf_verifier_log_type(env, t, "vlen != 0");
4944 		return -EINVAL;
4945 	}
4946 
4947 	if (btf_type_kflag(t)) {
4948 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4949 		return -EINVAL;
4950 	}
4951 
4952 	component_idx = btf_type_decl_tag(t)->component_idx;
4953 	if (component_idx < -1) {
4954 		btf_verifier_log_type(env, t, "Invalid component_idx");
4955 		return -EINVAL;
4956 	}
4957 
4958 	btf_verifier_log_type(env, t, NULL);
4959 
4960 	return meta_needed;
4961 }
4962 
btf_decl_tag_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4963 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4964 			   const struct resolve_vertex *v)
4965 {
4966 	const struct btf_type *next_type;
4967 	const struct btf_type *t = v->t;
4968 	u32 next_type_id = t->type;
4969 	struct btf *btf = env->btf;
4970 	s32 component_idx;
4971 	u32 vlen;
4972 
4973 	next_type = btf_type_by_id(btf, next_type_id);
4974 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4975 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4976 		return -EINVAL;
4977 	}
4978 
4979 	if (!env_type_is_resolve_sink(env, next_type) &&
4980 	    !env_type_is_resolved(env, next_type_id))
4981 		return env_stack_push(env, next_type, next_type_id);
4982 
4983 	component_idx = btf_type_decl_tag(t)->component_idx;
4984 	if (component_idx != -1) {
4985 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4986 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4987 			return -EINVAL;
4988 		}
4989 
4990 		if (btf_type_is_struct(next_type)) {
4991 			vlen = btf_type_vlen(next_type);
4992 		} else {
4993 			/* next_type should be a function */
4994 			next_type = btf_type_by_id(btf, next_type->type);
4995 			vlen = btf_type_vlen(next_type);
4996 		}
4997 
4998 		if ((u32)component_idx >= vlen) {
4999 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
5000 			return -EINVAL;
5001 		}
5002 	}
5003 
5004 	env_stack_pop_resolved(env, next_type_id, 0);
5005 
5006 	return 0;
5007 }
5008 
btf_decl_tag_log(struct btf_verifier_env * env,const struct btf_type * t)5009 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5010 {
5011 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5012 			 btf_type_decl_tag(t)->component_idx);
5013 }
5014 
5015 static const struct btf_kind_operations decl_tag_ops = {
5016 	.check_meta = btf_decl_tag_check_meta,
5017 	.resolve = btf_decl_tag_resolve,
5018 	.check_member = btf_df_check_member,
5019 	.check_kflag_member = btf_df_check_kflag_member,
5020 	.log_details = btf_decl_tag_log,
5021 	.show = btf_df_show,
5022 };
5023 
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)5024 static int btf_func_proto_check(struct btf_verifier_env *env,
5025 				const struct btf_type *t)
5026 {
5027 	const struct btf_type *ret_type;
5028 	const struct btf_param *args;
5029 	const struct btf *btf;
5030 	u16 nr_args, i;
5031 	int err;
5032 
5033 	btf = env->btf;
5034 	args = (const struct btf_param *)(t + 1);
5035 	nr_args = btf_type_vlen(t);
5036 
5037 	/* Check func return type which could be "void" (t->type == 0) */
5038 	if (t->type) {
5039 		u32 ret_type_id = t->type;
5040 
5041 		ret_type = btf_type_by_id(btf, ret_type_id);
5042 		if (!ret_type) {
5043 			btf_verifier_log_type(env, t, "Invalid return type");
5044 			return -EINVAL;
5045 		}
5046 
5047 		if (btf_type_is_resolve_source_only(ret_type)) {
5048 			btf_verifier_log_type(env, t, "Invalid return type");
5049 			return -EINVAL;
5050 		}
5051 
5052 		if (btf_type_needs_resolve(ret_type) &&
5053 		    !env_type_is_resolved(env, ret_type_id)) {
5054 			err = btf_resolve(env, ret_type, ret_type_id);
5055 			if (err)
5056 				return err;
5057 		}
5058 
5059 		/* Ensure the return type is a type that has a size */
5060 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5061 			btf_verifier_log_type(env, t, "Invalid return type");
5062 			return -EINVAL;
5063 		}
5064 	}
5065 
5066 	if (!nr_args)
5067 		return 0;
5068 
5069 	/* Last func arg type_id could be 0 if it is a vararg */
5070 	if (!args[nr_args - 1].type) {
5071 		if (args[nr_args - 1].name_off) {
5072 			btf_verifier_log_type(env, t, "Invalid arg#%u",
5073 					      nr_args);
5074 			return -EINVAL;
5075 		}
5076 		nr_args--;
5077 	}
5078 
5079 	for (i = 0; i < nr_args; i++) {
5080 		const struct btf_type *arg_type;
5081 		u32 arg_type_id;
5082 
5083 		arg_type_id = args[i].type;
5084 		arg_type = btf_type_by_id(btf, arg_type_id);
5085 		if (!arg_type) {
5086 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5087 			return -EINVAL;
5088 		}
5089 
5090 		if (btf_type_is_resolve_source_only(arg_type)) {
5091 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5092 			return -EINVAL;
5093 		}
5094 
5095 		if (args[i].name_off &&
5096 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
5097 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
5098 			btf_verifier_log_type(env, t,
5099 					      "Invalid arg#%u", i + 1);
5100 			return -EINVAL;
5101 		}
5102 
5103 		if (btf_type_needs_resolve(arg_type) &&
5104 		    !env_type_is_resolved(env, arg_type_id)) {
5105 			err = btf_resolve(env, arg_type, arg_type_id);
5106 			if (err)
5107 				return err;
5108 		}
5109 
5110 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5111 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5112 			return -EINVAL;
5113 		}
5114 	}
5115 
5116 	return 0;
5117 }
5118 
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)5119 static int btf_func_check(struct btf_verifier_env *env,
5120 			  const struct btf_type *t)
5121 {
5122 	const struct btf_type *proto_type;
5123 	const struct btf_param *args;
5124 	const struct btf *btf;
5125 	u16 nr_args, i;
5126 
5127 	btf = env->btf;
5128 	proto_type = btf_type_by_id(btf, t->type);
5129 
5130 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5131 		btf_verifier_log_type(env, t, "Invalid type_id");
5132 		return -EINVAL;
5133 	}
5134 
5135 	args = (const struct btf_param *)(proto_type + 1);
5136 	nr_args = btf_type_vlen(proto_type);
5137 	for (i = 0; i < nr_args; i++) {
5138 		if (!args[i].name_off && args[i].type) {
5139 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5140 			return -EINVAL;
5141 		}
5142 	}
5143 
5144 	return 0;
5145 }
5146 
5147 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5148 	[BTF_KIND_INT] = &int_ops,
5149 	[BTF_KIND_PTR] = &ptr_ops,
5150 	[BTF_KIND_ARRAY] = &array_ops,
5151 	[BTF_KIND_STRUCT] = &struct_ops,
5152 	[BTF_KIND_UNION] = &struct_ops,
5153 	[BTF_KIND_ENUM] = &enum_ops,
5154 	[BTF_KIND_FWD] = &fwd_ops,
5155 	[BTF_KIND_TYPEDEF] = &modifier_ops,
5156 	[BTF_KIND_VOLATILE] = &modifier_ops,
5157 	[BTF_KIND_CONST] = &modifier_ops,
5158 	[BTF_KIND_RESTRICT] = &modifier_ops,
5159 	[BTF_KIND_FUNC] = &func_ops,
5160 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5161 	[BTF_KIND_VAR] = &var_ops,
5162 	[BTF_KIND_DATASEC] = &datasec_ops,
5163 	[BTF_KIND_FLOAT] = &float_ops,
5164 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5165 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5166 	[BTF_KIND_ENUM64] = &enum64_ops,
5167 };
5168 
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)5169 static s32 btf_check_meta(struct btf_verifier_env *env,
5170 			  const struct btf_type *t,
5171 			  u32 meta_left)
5172 {
5173 	u32 saved_meta_left = meta_left;
5174 	s32 var_meta_size;
5175 
5176 	if (meta_left < sizeof(*t)) {
5177 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5178 				 env->log_type_id, meta_left, sizeof(*t));
5179 		return -EINVAL;
5180 	}
5181 	meta_left -= sizeof(*t);
5182 
5183 	if (t->info & ~BTF_INFO_MASK) {
5184 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5185 				 env->log_type_id, t->info);
5186 		return -EINVAL;
5187 	}
5188 
5189 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5190 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5191 		btf_verifier_log(env, "[%u] Invalid kind:%u",
5192 				 env->log_type_id, BTF_INFO_KIND(t->info));
5193 		return -EINVAL;
5194 	}
5195 
5196 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5197 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5198 				 env->log_type_id, t->name_off);
5199 		return -EINVAL;
5200 	}
5201 
5202 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5203 	if (var_meta_size < 0)
5204 		return var_meta_size;
5205 
5206 	meta_left -= var_meta_size;
5207 
5208 	return saved_meta_left - meta_left;
5209 }
5210 
btf_check_all_metas(struct btf_verifier_env * env)5211 static int btf_check_all_metas(struct btf_verifier_env *env)
5212 {
5213 	struct btf *btf = env->btf;
5214 	struct btf_header *hdr;
5215 	void *cur, *end;
5216 
5217 	hdr = &btf->hdr;
5218 	cur = btf->nohdr_data + hdr->type_off;
5219 	end = cur + hdr->type_len;
5220 
5221 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5222 	while (cur < end) {
5223 		struct btf_type *t = cur;
5224 		s32 meta_size;
5225 
5226 		meta_size = btf_check_meta(env, t, end - cur);
5227 		if (meta_size < 0)
5228 			return meta_size;
5229 
5230 		btf_add_type(env, t);
5231 		cur += meta_size;
5232 		env->log_type_id++;
5233 	}
5234 
5235 	return 0;
5236 }
5237 
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5238 static bool btf_resolve_valid(struct btf_verifier_env *env,
5239 			      const struct btf_type *t,
5240 			      u32 type_id)
5241 {
5242 	struct btf *btf = env->btf;
5243 
5244 	if (!env_type_is_resolved(env, type_id))
5245 		return false;
5246 
5247 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5248 		return !btf_resolved_type_id(btf, type_id) &&
5249 		       !btf_resolved_type_size(btf, type_id);
5250 
5251 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5252 		return btf_resolved_type_id(btf, type_id) &&
5253 		       !btf_resolved_type_size(btf, type_id);
5254 
5255 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5256 	    btf_type_is_var(t)) {
5257 		t = btf_type_id_resolve(btf, &type_id);
5258 		return t &&
5259 		       !btf_type_is_modifier(t) &&
5260 		       !btf_type_is_var(t) &&
5261 		       !btf_type_is_datasec(t);
5262 	}
5263 
5264 	if (btf_type_is_array(t)) {
5265 		const struct btf_array *array = btf_type_array(t);
5266 		const struct btf_type *elem_type;
5267 		u32 elem_type_id = array->type;
5268 		u32 elem_size;
5269 
5270 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5271 		return elem_type && !btf_type_is_modifier(elem_type) &&
5272 			(array->nelems * elem_size ==
5273 			 btf_resolved_type_size(btf, type_id));
5274 	}
5275 
5276 	return false;
5277 }
5278 
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5279 static int btf_resolve(struct btf_verifier_env *env,
5280 		       const struct btf_type *t, u32 type_id)
5281 {
5282 	u32 save_log_type_id = env->log_type_id;
5283 	const struct resolve_vertex *v;
5284 	int err = 0;
5285 
5286 	env->resolve_mode = RESOLVE_TBD;
5287 	env_stack_push(env, t, type_id);
5288 	while (!err && (v = env_stack_peak(env))) {
5289 		env->log_type_id = v->type_id;
5290 		err = btf_type_ops(v->t)->resolve(env, v);
5291 	}
5292 
5293 	env->log_type_id = type_id;
5294 	if (err == -E2BIG) {
5295 		btf_verifier_log_type(env, t,
5296 				      "Exceeded max resolving depth:%u",
5297 				      MAX_RESOLVE_DEPTH);
5298 	} else if (err == -EEXIST) {
5299 		btf_verifier_log_type(env, t, "Loop detected");
5300 	}
5301 
5302 	/* Final sanity check */
5303 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5304 		btf_verifier_log_type(env, t, "Invalid resolve state");
5305 		err = -EINVAL;
5306 	}
5307 
5308 	env->log_type_id = save_log_type_id;
5309 	return err;
5310 }
5311 
btf_check_all_types(struct btf_verifier_env * env)5312 static int btf_check_all_types(struct btf_verifier_env *env)
5313 {
5314 	struct btf *btf = env->btf;
5315 	const struct btf_type *t;
5316 	u32 type_id, i;
5317 	int err;
5318 
5319 	err = env_resolve_init(env);
5320 	if (err)
5321 		return err;
5322 
5323 	env->phase++;
5324 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5325 		type_id = btf->start_id + i;
5326 		t = btf_type_by_id(btf, type_id);
5327 
5328 		env->log_type_id = type_id;
5329 		if (btf_type_needs_resolve(t) &&
5330 		    !env_type_is_resolved(env, type_id)) {
5331 			err = btf_resolve(env, t, type_id);
5332 			if (err)
5333 				return err;
5334 		}
5335 
5336 		if (btf_type_is_func_proto(t)) {
5337 			err = btf_func_proto_check(env, t);
5338 			if (err)
5339 				return err;
5340 		}
5341 	}
5342 
5343 	return 0;
5344 }
5345 
btf_parse_type_sec(struct btf_verifier_env * env)5346 static int btf_parse_type_sec(struct btf_verifier_env *env)
5347 {
5348 	const struct btf_header *hdr = &env->btf->hdr;
5349 	int err;
5350 
5351 	/* Type section must align to 4 bytes */
5352 	if (hdr->type_off & (sizeof(u32) - 1)) {
5353 		btf_verifier_log(env, "Unaligned type_off");
5354 		return -EINVAL;
5355 	}
5356 
5357 	if (!env->btf->base_btf && !hdr->type_len) {
5358 		btf_verifier_log(env, "No type found");
5359 		return -EINVAL;
5360 	}
5361 
5362 	err = btf_check_all_metas(env);
5363 	if (err)
5364 		return err;
5365 
5366 	return btf_check_all_types(env);
5367 }
5368 
btf_parse_str_sec(struct btf_verifier_env * env)5369 static int btf_parse_str_sec(struct btf_verifier_env *env)
5370 {
5371 	const struct btf_header *hdr;
5372 	struct btf *btf = env->btf;
5373 	const char *start, *end;
5374 
5375 	hdr = &btf->hdr;
5376 	start = btf->nohdr_data + hdr->str_off;
5377 	end = start + hdr->str_len;
5378 
5379 	if (end != btf->data + btf->data_size) {
5380 		btf_verifier_log(env, "String section is not at the end");
5381 		return -EINVAL;
5382 	}
5383 
5384 	btf->strings = start;
5385 
5386 	if (btf->base_btf && !hdr->str_len)
5387 		return 0;
5388 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5389 		btf_verifier_log(env, "Invalid string section");
5390 		return -EINVAL;
5391 	}
5392 	if (!btf->base_btf && start[0]) {
5393 		btf_verifier_log(env, "Invalid string section");
5394 		return -EINVAL;
5395 	}
5396 
5397 	return 0;
5398 }
5399 
5400 static const size_t btf_sec_info_offset[] = {
5401 	offsetof(struct btf_header, type_off),
5402 	offsetof(struct btf_header, str_off),
5403 };
5404 
btf_sec_info_cmp(const void * a,const void * b)5405 static int btf_sec_info_cmp(const void *a, const void *b)
5406 {
5407 	const struct btf_sec_info *x = a;
5408 	const struct btf_sec_info *y = b;
5409 
5410 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5411 }
5412 
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)5413 static int btf_check_sec_info(struct btf_verifier_env *env,
5414 			      u32 btf_data_size)
5415 {
5416 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5417 	u32 total, expected_total, i;
5418 	const struct btf_header *hdr;
5419 	const struct btf *btf;
5420 
5421 	btf = env->btf;
5422 	hdr = &btf->hdr;
5423 
5424 	/* Populate the secs from hdr */
5425 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5426 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5427 						   btf_sec_info_offset[i]);
5428 
5429 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5430 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5431 
5432 	/* Check for gaps and overlap among sections */
5433 	total = 0;
5434 	expected_total = btf_data_size - hdr->hdr_len;
5435 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5436 		if (expected_total < secs[i].off) {
5437 			btf_verifier_log(env, "Invalid section offset");
5438 			return -EINVAL;
5439 		}
5440 		if (total < secs[i].off) {
5441 			/* gap */
5442 			btf_verifier_log(env, "Unsupported section found");
5443 			return -EINVAL;
5444 		}
5445 		if (total > secs[i].off) {
5446 			btf_verifier_log(env, "Section overlap found");
5447 			return -EINVAL;
5448 		}
5449 		if (expected_total - total < secs[i].len) {
5450 			btf_verifier_log(env,
5451 					 "Total section length too long");
5452 			return -EINVAL;
5453 		}
5454 		total += secs[i].len;
5455 	}
5456 
5457 	/* There is data other than hdr and known sections */
5458 	if (expected_total != total) {
5459 		btf_verifier_log(env, "Unsupported section found");
5460 		return -EINVAL;
5461 	}
5462 
5463 	return 0;
5464 }
5465 
btf_parse_hdr(struct btf_verifier_env * env)5466 static int btf_parse_hdr(struct btf_verifier_env *env)
5467 {
5468 	u32 hdr_len, hdr_copy, btf_data_size;
5469 	const struct btf_header *hdr;
5470 	struct btf *btf;
5471 
5472 	btf = env->btf;
5473 	btf_data_size = btf->data_size;
5474 
5475 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5476 		btf_verifier_log(env, "hdr_len not found");
5477 		return -EINVAL;
5478 	}
5479 
5480 	hdr = btf->data;
5481 	hdr_len = hdr->hdr_len;
5482 	if (btf_data_size < hdr_len) {
5483 		btf_verifier_log(env, "btf_header not found");
5484 		return -EINVAL;
5485 	}
5486 
5487 	/* Ensure the unsupported header fields are zero */
5488 	if (hdr_len > sizeof(btf->hdr)) {
5489 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5490 		u8 *end = btf->data + hdr_len;
5491 
5492 		for (; expected_zero < end; expected_zero++) {
5493 			if (*expected_zero) {
5494 				btf_verifier_log(env, "Unsupported btf_header");
5495 				return -E2BIG;
5496 			}
5497 		}
5498 	}
5499 
5500 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5501 	memcpy(&btf->hdr, btf->data, hdr_copy);
5502 
5503 	hdr = &btf->hdr;
5504 
5505 	btf_verifier_log_hdr(env, btf_data_size);
5506 
5507 	if (hdr->magic != BTF_MAGIC) {
5508 		btf_verifier_log(env, "Invalid magic");
5509 		return -EINVAL;
5510 	}
5511 
5512 	if (hdr->version != BTF_VERSION) {
5513 		btf_verifier_log(env, "Unsupported version");
5514 		return -ENOTSUPP;
5515 	}
5516 
5517 	if (hdr->flags) {
5518 		btf_verifier_log(env, "Unsupported flags");
5519 		return -ENOTSUPP;
5520 	}
5521 
5522 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5523 		btf_verifier_log(env, "No data");
5524 		return -EINVAL;
5525 	}
5526 
5527 	return btf_check_sec_info(env, btf_data_size);
5528 }
5529 
5530 static const char *alloc_obj_fields[] = {
5531 	"bpf_spin_lock",
5532 	"bpf_list_head",
5533 	"bpf_list_node",
5534 	"bpf_rb_root",
5535 	"bpf_rb_node",
5536 	"bpf_refcount",
5537 };
5538 
5539 static struct btf_struct_metas *
btf_parse_struct_metas(struct bpf_verifier_log * log,struct btf * btf)5540 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5541 {
5542 	struct btf_struct_metas *tab = NULL;
5543 	struct btf_id_set *aof;
5544 	int i, n, id, ret;
5545 
5546 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5547 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5548 
5549 	aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5550 	if (!aof)
5551 		return ERR_PTR(-ENOMEM);
5552 	aof->cnt = 0;
5553 
5554 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5555 		/* Try to find whether this special type exists in user BTF, and
5556 		 * if so remember its ID so we can easily find it among members
5557 		 * of structs that we iterate in the next loop.
5558 		 */
5559 		struct btf_id_set *new_aof;
5560 
5561 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5562 		if (id < 0)
5563 			continue;
5564 
5565 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5566 				   GFP_KERNEL | __GFP_NOWARN);
5567 		if (!new_aof) {
5568 			ret = -ENOMEM;
5569 			goto free_aof;
5570 		}
5571 		aof = new_aof;
5572 		aof->ids[aof->cnt++] = id;
5573 	}
5574 
5575 	n = btf_nr_types(btf);
5576 	for (i = 1; i < n; i++) {
5577 		/* Try to find if there are kptrs in user BTF and remember their ID */
5578 		struct btf_id_set *new_aof;
5579 		struct btf_field_info tmp;
5580 		const struct btf_type *t;
5581 
5582 		t = btf_type_by_id(btf, i);
5583 		if (!t) {
5584 			ret = -EINVAL;
5585 			goto free_aof;
5586 		}
5587 
5588 		ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5589 		if (ret != BTF_FIELD_FOUND)
5590 			continue;
5591 
5592 		new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5593 				   GFP_KERNEL | __GFP_NOWARN);
5594 		if (!new_aof) {
5595 			ret = -ENOMEM;
5596 			goto free_aof;
5597 		}
5598 		aof = new_aof;
5599 		aof->ids[aof->cnt++] = i;
5600 	}
5601 
5602 	if (!aof->cnt) {
5603 		kfree(aof);
5604 		return NULL;
5605 	}
5606 	sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5607 
5608 	for (i = 1; i < n; i++) {
5609 		struct btf_struct_metas *new_tab;
5610 		const struct btf_member *member;
5611 		struct btf_struct_meta *type;
5612 		struct btf_record *record;
5613 		const struct btf_type *t;
5614 		int j, tab_cnt;
5615 
5616 		t = btf_type_by_id(btf, i);
5617 		if (!__btf_type_is_struct(t))
5618 			continue;
5619 
5620 		cond_resched();
5621 
5622 		for_each_member(j, t, member) {
5623 			if (btf_id_set_contains(aof, member->type))
5624 				goto parse;
5625 		}
5626 		continue;
5627 	parse:
5628 		tab_cnt = tab ? tab->cnt : 0;
5629 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5630 				   GFP_KERNEL | __GFP_NOWARN);
5631 		if (!new_tab) {
5632 			ret = -ENOMEM;
5633 			goto free;
5634 		}
5635 		if (!tab)
5636 			new_tab->cnt = 0;
5637 		tab = new_tab;
5638 
5639 		type = &tab->types[tab->cnt];
5640 		type->btf_id = i;
5641 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5642 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5643 						  BPF_KPTR, t->size);
5644 		/* The record cannot be unset, treat it as an error if so */
5645 		if (IS_ERR_OR_NULL(record)) {
5646 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5647 			goto free;
5648 		}
5649 		type->record = record;
5650 		tab->cnt++;
5651 	}
5652 	kfree(aof);
5653 	return tab;
5654 free:
5655 	btf_struct_metas_free(tab);
5656 free_aof:
5657 	kfree(aof);
5658 	return ERR_PTR(ret);
5659 }
5660 
btf_find_struct_meta(const struct btf * btf,u32 btf_id)5661 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5662 {
5663 	struct btf_struct_metas *tab;
5664 
5665 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5666 	tab = btf->struct_meta_tab;
5667 	if (!tab)
5668 		return NULL;
5669 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5670 }
5671 
btf_check_type_tags(struct btf_verifier_env * env,struct btf * btf,int start_id)5672 static int btf_check_type_tags(struct btf_verifier_env *env,
5673 			       struct btf *btf, int start_id)
5674 {
5675 	int i, n, good_id = start_id - 1;
5676 	bool in_tags;
5677 
5678 	n = btf_nr_types(btf);
5679 	for (i = start_id; i < n; i++) {
5680 		const struct btf_type *t;
5681 		int chain_limit = 32;
5682 		u32 cur_id = i;
5683 
5684 		t = btf_type_by_id(btf, i);
5685 		if (!t)
5686 			return -EINVAL;
5687 		if (!btf_type_is_modifier(t))
5688 			continue;
5689 
5690 		cond_resched();
5691 
5692 		in_tags = btf_type_is_type_tag(t);
5693 		while (btf_type_is_modifier(t)) {
5694 			if (!chain_limit--) {
5695 				btf_verifier_log(env, "Max chain length or cycle detected");
5696 				return -ELOOP;
5697 			}
5698 			if (btf_type_is_type_tag(t)) {
5699 				if (!in_tags) {
5700 					btf_verifier_log(env, "Type tags don't precede modifiers");
5701 					return -EINVAL;
5702 				}
5703 			} else if (in_tags) {
5704 				in_tags = false;
5705 			}
5706 			if (cur_id <= good_id)
5707 				break;
5708 			/* Move to next type */
5709 			cur_id = t->type;
5710 			t = btf_type_by_id(btf, cur_id);
5711 			if (!t)
5712 				return -EINVAL;
5713 		}
5714 		good_id = i;
5715 	}
5716 	return 0;
5717 }
5718 
finalize_log(struct bpf_verifier_log * log,bpfptr_t uattr,u32 uattr_size)5719 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5720 {
5721 	u32 log_true_size;
5722 	int err;
5723 
5724 	err = bpf_vlog_finalize(log, &log_true_size);
5725 
5726 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5727 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5728 				  &log_true_size, sizeof(log_true_size)))
5729 		err = -EFAULT;
5730 
5731 	return err;
5732 }
5733 
btf_parse(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)5734 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5735 {
5736 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5737 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5738 	struct btf_struct_metas *struct_meta_tab;
5739 	struct btf_verifier_env *env = NULL;
5740 	struct btf *btf = NULL;
5741 	u8 *data;
5742 	int err, ret;
5743 
5744 	if (attr->btf_size > BTF_MAX_SIZE)
5745 		return ERR_PTR(-E2BIG);
5746 
5747 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5748 	if (!env)
5749 		return ERR_PTR(-ENOMEM);
5750 
5751 	/* user could have requested verbose verifier output
5752 	 * and supplied buffer to store the verification trace
5753 	 */
5754 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5755 			    log_ubuf, attr->btf_log_size);
5756 	if (err)
5757 		goto errout_free;
5758 
5759 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5760 	if (!btf) {
5761 		err = -ENOMEM;
5762 		goto errout;
5763 	}
5764 	env->btf = btf;
5765 
5766 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5767 	if (!data) {
5768 		err = -ENOMEM;
5769 		goto errout;
5770 	}
5771 
5772 	btf->data = data;
5773 	btf->data_size = attr->btf_size;
5774 
5775 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5776 		err = -EFAULT;
5777 		goto errout;
5778 	}
5779 
5780 	err = btf_parse_hdr(env);
5781 	if (err)
5782 		goto errout;
5783 
5784 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5785 
5786 	err = btf_parse_str_sec(env);
5787 	if (err)
5788 		goto errout;
5789 
5790 	err = btf_parse_type_sec(env);
5791 	if (err)
5792 		goto errout;
5793 
5794 	err = btf_check_type_tags(env, btf, 1);
5795 	if (err)
5796 		goto errout;
5797 
5798 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5799 	if (IS_ERR(struct_meta_tab)) {
5800 		err = PTR_ERR(struct_meta_tab);
5801 		goto errout;
5802 	}
5803 	btf->struct_meta_tab = struct_meta_tab;
5804 
5805 	if (struct_meta_tab) {
5806 		int i;
5807 
5808 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5809 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5810 			if (err < 0)
5811 				goto errout_meta;
5812 		}
5813 	}
5814 
5815 	err = finalize_log(&env->log, uattr, uattr_size);
5816 	if (err)
5817 		goto errout_free;
5818 
5819 	btf_verifier_env_free(env);
5820 	refcount_set(&btf->refcnt, 1);
5821 	return btf;
5822 
5823 errout_meta:
5824 	btf_free_struct_meta_tab(btf);
5825 errout:
5826 	/* overwrite err with -ENOSPC or -EFAULT */
5827 	ret = finalize_log(&env->log, uattr, uattr_size);
5828 	if (ret)
5829 		err = ret;
5830 errout_free:
5831 	btf_verifier_env_free(env);
5832 	if (btf)
5833 		btf_free(btf);
5834 	return ERR_PTR(err);
5835 }
5836 
5837 extern char __start_BTF[];
5838 extern char __stop_BTF[];
5839 extern struct btf *btf_vmlinux;
5840 
5841 #define BPF_MAP_TYPE(_id, _ops)
5842 #define BPF_LINK_TYPE(_id, _name)
5843 static union {
5844 	struct bpf_ctx_convert {
5845 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5846 	prog_ctx_type _id##_prog; \
5847 	kern_ctx_type _id##_kern;
5848 #include <linux/bpf_types.h>
5849 #undef BPF_PROG_TYPE
5850 	} *__t;
5851 	/* 't' is written once under lock. Read many times. */
5852 	const struct btf_type *t;
5853 } bpf_ctx_convert;
5854 enum {
5855 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5856 	__ctx_convert##_id,
5857 #include <linux/bpf_types.h>
5858 #undef BPF_PROG_TYPE
5859 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5860 };
5861 static u8 bpf_ctx_convert_map[] = {
5862 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5863 	[_id] = __ctx_convert##_id,
5864 #include <linux/bpf_types.h>
5865 #undef BPF_PROG_TYPE
5866 	0, /* avoid empty array */
5867 };
5868 #undef BPF_MAP_TYPE
5869 #undef BPF_LINK_TYPE
5870 
find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)5871 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5872 {
5873 	const struct btf_type *conv_struct;
5874 	const struct btf_member *ctx_type;
5875 
5876 	conv_struct = bpf_ctx_convert.t;
5877 	if (!conv_struct)
5878 		return NULL;
5879 	/* prog_type is valid bpf program type. No need for bounds check. */
5880 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5881 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5882 	 * Like 'struct __sk_buff'
5883 	 */
5884 	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5885 }
5886 
find_kern_ctx_type_id(enum bpf_prog_type prog_type)5887 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5888 {
5889 	const struct btf_type *conv_struct;
5890 	const struct btf_member *ctx_type;
5891 
5892 	conv_struct = bpf_ctx_convert.t;
5893 	if (!conv_struct)
5894 		return -EFAULT;
5895 	/* prog_type is valid bpf program type. No need for bounds check. */
5896 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5897 	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5898 	 * Like 'struct sk_buff'
5899 	 */
5900 	return ctx_type->type;
5901 }
5902 
btf_is_projection_of(const char * pname,const char * tname)5903 bool btf_is_projection_of(const char *pname, const char *tname)
5904 {
5905 	if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5906 		return true;
5907 	if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5908 		return true;
5909 	return false;
5910 }
5911 
btf_is_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5912 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5913 			  const struct btf_type *t, enum bpf_prog_type prog_type,
5914 			  int arg)
5915 {
5916 	const struct btf_type *ctx_type;
5917 	const char *tname, *ctx_tname;
5918 
5919 	t = btf_type_by_id(btf, t->type);
5920 
5921 	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5922 	 * check before we skip all the typedef below.
5923 	 */
5924 	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5925 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5926 			t = btf_type_by_id(btf, t->type);
5927 
5928 		if (btf_type_is_typedef(t)) {
5929 			tname = btf_name_by_offset(btf, t->name_off);
5930 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5931 				return true;
5932 		}
5933 	}
5934 
5935 	while (btf_type_is_modifier(t))
5936 		t = btf_type_by_id(btf, t->type);
5937 	if (!btf_type_is_struct(t)) {
5938 		/* Only pointer to struct is supported for now.
5939 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5940 		 * is not supported yet.
5941 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5942 		 */
5943 		return false;
5944 	}
5945 	tname = btf_name_by_offset(btf, t->name_off);
5946 	if (!tname) {
5947 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5948 		return false;
5949 	}
5950 
5951 	ctx_type = find_canonical_prog_ctx_type(prog_type);
5952 	if (!ctx_type) {
5953 		bpf_log(log, "btf_vmlinux is malformed\n");
5954 		/* should not happen */
5955 		return false;
5956 	}
5957 again:
5958 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5959 	if (!ctx_tname) {
5960 		/* should not happen */
5961 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5962 		return false;
5963 	}
5964 	/* program types without named context types work only with arg:ctx tag */
5965 	if (ctx_tname[0] == '\0')
5966 		return false;
5967 	/* only compare that prog's ctx type name is the same as
5968 	 * kernel expects. No need to compare field by field.
5969 	 * It's ok for bpf prog to do:
5970 	 * struct __sk_buff {};
5971 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5972 	 * { // no fields of skb are ever used }
5973 	 */
5974 	if (btf_is_projection_of(ctx_tname, tname))
5975 		return true;
5976 	if (strcmp(ctx_tname, tname)) {
5977 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5978 		 * underlying struct and check name again
5979 		 */
5980 		if (!btf_type_is_modifier(ctx_type))
5981 			return false;
5982 		while (btf_type_is_modifier(ctx_type))
5983 			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5984 		goto again;
5985 	}
5986 	return true;
5987 }
5988 
5989 /* forward declarations for arch-specific underlying types of
5990  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5991  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5992  * works correctly with __builtin_types_compatible_p() on respective
5993  * architectures
5994  */
5995 struct user_regs_struct;
5996 struct user_pt_regs;
5997 
btf_validate_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int arg,enum bpf_prog_type prog_type,enum bpf_attach_type attach_type)5998 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5999 				      const struct btf_type *t, int arg,
6000 				      enum bpf_prog_type prog_type,
6001 				      enum bpf_attach_type attach_type)
6002 {
6003 	const struct btf_type *ctx_type;
6004 	const char *tname, *ctx_tname;
6005 
6006 	if (!btf_is_ptr(t)) {
6007 		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6008 		return -EINVAL;
6009 	}
6010 	t = btf_type_by_id(btf, t->type);
6011 
6012 	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6013 	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6014 		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6015 			t = btf_type_by_id(btf, t->type);
6016 
6017 		if (btf_type_is_typedef(t)) {
6018 			tname = btf_name_by_offset(btf, t->name_off);
6019 			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6020 				return 0;
6021 		}
6022 	}
6023 
6024 	/* all other program types don't use typedefs for context type */
6025 	while (btf_type_is_modifier(t))
6026 		t = btf_type_by_id(btf, t->type);
6027 
6028 	/* `void *ctx __arg_ctx` is always valid */
6029 	if (btf_type_is_void(t))
6030 		return 0;
6031 
6032 	tname = btf_name_by_offset(btf, t->name_off);
6033 	if (str_is_empty(tname)) {
6034 		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6035 		return -EINVAL;
6036 	}
6037 
6038 	/* special cases */
6039 	switch (prog_type) {
6040 	case BPF_PROG_TYPE_KPROBE:
6041 		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6042 			return 0;
6043 		break;
6044 	case BPF_PROG_TYPE_PERF_EVENT:
6045 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6046 		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6047 			return 0;
6048 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6049 		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6050 			return 0;
6051 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6052 		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6053 			return 0;
6054 		break;
6055 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6056 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6057 		/* allow u64* as ctx */
6058 		if (btf_is_int(t) && t->size == 8)
6059 			return 0;
6060 		break;
6061 	case BPF_PROG_TYPE_TRACING:
6062 		switch (attach_type) {
6063 		case BPF_TRACE_RAW_TP:
6064 			/* tp_btf program is TRACING, so need special case here */
6065 			if (__btf_type_is_struct(t) &&
6066 			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6067 				return 0;
6068 			/* allow u64* as ctx */
6069 			if (btf_is_int(t) && t->size == 8)
6070 				return 0;
6071 			break;
6072 		case BPF_TRACE_ITER:
6073 			/* allow struct bpf_iter__xxx types only */
6074 			if (__btf_type_is_struct(t) &&
6075 			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6076 				return 0;
6077 			break;
6078 		case BPF_TRACE_FENTRY:
6079 		case BPF_TRACE_FEXIT:
6080 		case BPF_MODIFY_RETURN:
6081 			/* allow u64* as ctx */
6082 			if (btf_is_int(t) && t->size == 8)
6083 				return 0;
6084 			break;
6085 		default:
6086 			break;
6087 		}
6088 		break;
6089 	case BPF_PROG_TYPE_LSM:
6090 	case BPF_PROG_TYPE_STRUCT_OPS:
6091 		/* allow u64* as ctx */
6092 		if (btf_is_int(t) && t->size == 8)
6093 			return 0;
6094 		break;
6095 	case BPF_PROG_TYPE_TRACEPOINT:
6096 	case BPF_PROG_TYPE_SYSCALL:
6097 	case BPF_PROG_TYPE_EXT:
6098 		return 0; /* anything goes */
6099 	default:
6100 		break;
6101 	}
6102 
6103 	ctx_type = find_canonical_prog_ctx_type(prog_type);
6104 	if (!ctx_type) {
6105 		/* should not happen */
6106 		bpf_log(log, "btf_vmlinux is malformed\n");
6107 		return -EINVAL;
6108 	}
6109 
6110 	/* resolve typedefs and check that underlying structs are matching as well */
6111 	while (btf_type_is_modifier(ctx_type))
6112 		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6113 
6114 	/* if program type doesn't have distinctly named struct type for
6115 	 * context, then __arg_ctx argument can only be `void *`, which we
6116 	 * already checked above
6117 	 */
6118 	if (!__btf_type_is_struct(ctx_type)) {
6119 		bpf_log(log, "arg#%d should be void pointer\n", arg);
6120 		return -EINVAL;
6121 	}
6122 
6123 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6124 	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6125 		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6126 		return -EINVAL;
6127 	}
6128 
6129 	return 0;
6130 }
6131 
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)6132 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6133 				     struct btf *btf,
6134 				     const struct btf_type *t,
6135 				     enum bpf_prog_type prog_type,
6136 				     int arg)
6137 {
6138 	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6139 		return -ENOENT;
6140 	return find_kern_ctx_type_id(prog_type);
6141 }
6142 
get_kern_ctx_btf_id(struct bpf_verifier_log * log,enum bpf_prog_type prog_type)6143 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6144 {
6145 	const struct btf_member *kctx_member;
6146 	const struct btf_type *conv_struct;
6147 	const struct btf_type *kctx_type;
6148 	u32 kctx_type_id;
6149 
6150 	conv_struct = bpf_ctx_convert.t;
6151 	/* get member for kernel ctx type */
6152 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6153 	kctx_type_id = kctx_member->type;
6154 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6155 	if (!btf_type_is_struct(kctx_type)) {
6156 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6157 		return -EINVAL;
6158 	}
6159 
6160 	return kctx_type_id;
6161 }
6162 
6163 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)6164 BTF_ID(struct, bpf_ctx_convert)
6165 
6166 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6167 				  void *data, unsigned int data_size)
6168 {
6169 	struct btf *btf = NULL;
6170 	int err;
6171 
6172 	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6173 		return ERR_PTR(-ENOENT);
6174 
6175 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6176 	if (!btf) {
6177 		err = -ENOMEM;
6178 		goto errout;
6179 	}
6180 	env->btf = btf;
6181 
6182 	btf->data = data;
6183 	btf->data_size = data_size;
6184 	btf->kernel_btf = true;
6185 	snprintf(btf->name, sizeof(btf->name), "%s", name);
6186 
6187 	err = btf_parse_hdr(env);
6188 	if (err)
6189 		goto errout;
6190 
6191 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6192 
6193 	err = btf_parse_str_sec(env);
6194 	if (err)
6195 		goto errout;
6196 
6197 	err = btf_check_all_metas(env);
6198 	if (err)
6199 		goto errout;
6200 
6201 	err = btf_check_type_tags(env, btf, 1);
6202 	if (err)
6203 		goto errout;
6204 
6205 	refcount_set(&btf->refcnt, 1);
6206 
6207 	return btf;
6208 
6209 errout:
6210 	if (btf) {
6211 		kvfree(btf->types);
6212 		kfree(btf);
6213 	}
6214 	return ERR_PTR(err);
6215 }
6216 
btf_parse_vmlinux(void)6217 struct btf *btf_parse_vmlinux(void)
6218 {
6219 	struct btf_verifier_env *env = NULL;
6220 	struct bpf_verifier_log *log;
6221 	struct btf *btf;
6222 	int err;
6223 
6224 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6225 	if (!env)
6226 		return ERR_PTR(-ENOMEM);
6227 
6228 	log = &env->log;
6229 	log->level = BPF_LOG_KERNEL;
6230 	btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6231 	if (IS_ERR(btf))
6232 		goto err_out;
6233 
6234 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6235 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6236 	err = btf_alloc_id(btf);
6237 	if (err) {
6238 		btf_free(btf);
6239 		btf = ERR_PTR(err);
6240 	}
6241 err_out:
6242 	btf_verifier_env_free(env);
6243 	return btf;
6244 }
6245 
6246 /* If .BTF_ids section was created with distilled base BTF, both base and
6247  * split BTF ids will need to be mapped to actual base/split ids for
6248  * BTF now that it has been relocated.
6249  */
btf_relocate_id(const struct btf * btf,__u32 id)6250 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6251 {
6252 	if (!btf->base_btf || !btf->base_id_map)
6253 		return id;
6254 	return btf->base_id_map[id];
6255 }
6256 
6257 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6258 
btf_parse_module(const char * module_name,const void * data,unsigned int data_size,void * base_data,unsigned int base_data_size)6259 static struct btf *btf_parse_module(const char *module_name, const void *data,
6260 				    unsigned int data_size, void *base_data,
6261 				    unsigned int base_data_size)
6262 {
6263 	struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6264 	struct btf_verifier_env *env = NULL;
6265 	struct bpf_verifier_log *log;
6266 	int err = 0;
6267 
6268 	vmlinux_btf = bpf_get_btf_vmlinux();
6269 	if (IS_ERR(vmlinux_btf))
6270 		return vmlinux_btf;
6271 	if (!vmlinux_btf)
6272 		return ERR_PTR(-EINVAL);
6273 
6274 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6275 	if (!env)
6276 		return ERR_PTR(-ENOMEM);
6277 
6278 	log = &env->log;
6279 	log->level = BPF_LOG_KERNEL;
6280 
6281 	if (base_data) {
6282 		base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6283 		if (IS_ERR(base_btf)) {
6284 			err = PTR_ERR(base_btf);
6285 			goto errout;
6286 		}
6287 	} else {
6288 		base_btf = vmlinux_btf;
6289 	}
6290 
6291 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6292 	if (!btf) {
6293 		err = -ENOMEM;
6294 		goto errout;
6295 	}
6296 	env->btf = btf;
6297 
6298 	btf->base_btf = base_btf;
6299 	btf->start_id = base_btf->nr_types;
6300 	btf->start_str_off = base_btf->hdr.str_len;
6301 	btf->kernel_btf = true;
6302 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6303 
6304 	btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6305 	if (!btf->data) {
6306 		err = -ENOMEM;
6307 		goto errout;
6308 	}
6309 	btf->data_size = data_size;
6310 
6311 	err = btf_parse_hdr(env);
6312 	if (err)
6313 		goto errout;
6314 
6315 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6316 
6317 	err = btf_parse_str_sec(env);
6318 	if (err)
6319 		goto errout;
6320 
6321 	err = btf_check_all_metas(env);
6322 	if (err)
6323 		goto errout;
6324 
6325 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6326 	if (err)
6327 		goto errout;
6328 
6329 	if (base_btf != vmlinux_btf) {
6330 		err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6331 		if (err)
6332 			goto errout;
6333 		btf_free(base_btf);
6334 		base_btf = vmlinux_btf;
6335 	}
6336 
6337 	btf_verifier_env_free(env);
6338 	refcount_set(&btf->refcnt, 1);
6339 	return btf;
6340 
6341 errout:
6342 	btf_verifier_env_free(env);
6343 	if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6344 		btf_free(base_btf);
6345 	if (btf) {
6346 		kvfree(btf->data);
6347 		kvfree(btf->types);
6348 		kfree(btf);
6349 	}
6350 	return ERR_PTR(err);
6351 }
6352 
6353 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6354 
bpf_prog_get_target_btf(const struct bpf_prog * prog)6355 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6356 {
6357 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6358 
6359 	if (tgt_prog)
6360 		return tgt_prog->aux->btf;
6361 	else
6362 		return prog->aux->attach_btf;
6363 }
6364 
is_int_ptr(struct btf * btf,const struct btf_type * t)6365 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6366 {
6367 	/* skip modifiers */
6368 	t = btf_type_skip_modifiers(btf, t->type, NULL);
6369 
6370 	return btf_type_is_int(t);
6371 }
6372 
get_ctx_arg_idx(struct btf * btf,const struct btf_type * func_proto,int off)6373 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6374 			   int off)
6375 {
6376 	const struct btf_param *args;
6377 	const struct btf_type *t;
6378 	u32 offset = 0, nr_args;
6379 	int i;
6380 
6381 	if (!func_proto)
6382 		return off / 8;
6383 
6384 	nr_args = btf_type_vlen(func_proto);
6385 	args = (const struct btf_param *)(func_proto + 1);
6386 	for (i = 0; i < nr_args; i++) {
6387 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6388 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6389 		if (off < offset)
6390 			return i;
6391 	}
6392 
6393 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6394 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6395 	if (off < offset)
6396 		return nr_args;
6397 
6398 	return nr_args + 1;
6399 }
6400 
prog_args_trusted(const struct bpf_prog * prog)6401 static bool prog_args_trusted(const struct bpf_prog *prog)
6402 {
6403 	enum bpf_attach_type atype = prog->expected_attach_type;
6404 
6405 	switch (prog->type) {
6406 	case BPF_PROG_TYPE_TRACING:
6407 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6408 	case BPF_PROG_TYPE_LSM:
6409 		return bpf_lsm_is_trusted(prog);
6410 	case BPF_PROG_TYPE_STRUCT_OPS:
6411 		return true;
6412 	default:
6413 		return false;
6414 	}
6415 }
6416 
btf_ctx_arg_offset(const struct btf * btf,const struct btf_type * func_proto,u32 arg_no)6417 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6418 		       u32 arg_no)
6419 {
6420 	const struct btf_param *args;
6421 	const struct btf_type *t;
6422 	int off = 0, i;
6423 	u32 sz;
6424 
6425 	args = btf_params(func_proto);
6426 	for (i = 0; i < arg_no; i++) {
6427 		t = btf_type_by_id(btf, args[i].type);
6428 		t = btf_resolve_size(btf, t, &sz);
6429 		if (IS_ERR(t))
6430 			return PTR_ERR(t);
6431 		off += roundup(sz, 8);
6432 	}
6433 
6434 	return off;
6435 }
6436 
6437 struct bpf_raw_tp_null_args {
6438 	const char *func;
6439 	u64 mask;
6440 };
6441 
6442 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6443 	/* sched */
6444 	{ "sched_pi_setprio", 0x10 },
6445 	/* ... from sched_numa_pair_template event class */
6446 	{ "sched_stick_numa", 0x100 },
6447 	{ "sched_swap_numa", 0x100 },
6448 	/* afs */
6449 	{ "afs_make_fs_call", 0x10 },
6450 	{ "afs_make_fs_calli", 0x10 },
6451 	{ "afs_make_fs_call1", 0x10 },
6452 	{ "afs_make_fs_call2", 0x10 },
6453 	{ "afs_protocol_error", 0x1 },
6454 	{ "afs_flock_ev", 0x10 },
6455 	/* cachefiles */
6456 	{ "cachefiles_lookup", 0x1 | 0x200 },
6457 	{ "cachefiles_unlink", 0x1 },
6458 	{ "cachefiles_rename", 0x1 },
6459 	{ "cachefiles_prep_read", 0x1 },
6460 	{ "cachefiles_mark_active", 0x1 },
6461 	{ "cachefiles_mark_failed", 0x1 },
6462 	{ "cachefiles_mark_inactive", 0x1 },
6463 	{ "cachefiles_vfs_error", 0x1 },
6464 	{ "cachefiles_io_error", 0x1 },
6465 	{ "cachefiles_ondemand_open", 0x1 },
6466 	{ "cachefiles_ondemand_copen", 0x1 },
6467 	{ "cachefiles_ondemand_close", 0x1 },
6468 	{ "cachefiles_ondemand_read", 0x1 },
6469 	{ "cachefiles_ondemand_cread", 0x1 },
6470 	{ "cachefiles_ondemand_fd_write", 0x1 },
6471 	{ "cachefiles_ondemand_fd_release", 0x1 },
6472 	/* ext4, from ext4__mballoc event class */
6473 	{ "ext4_mballoc_discard", 0x10 },
6474 	{ "ext4_mballoc_free", 0x10 },
6475 	/* fib */
6476 	{ "fib_table_lookup", 0x100 },
6477 	/* filelock */
6478 	/* ... from filelock_lock event class */
6479 	{ "posix_lock_inode", 0x10 },
6480 	{ "fcntl_setlk", 0x10 },
6481 	{ "locks_remove_posix", 0x10 },
6482 	{ "flock_lock_inode", 0x10 },
6483 	/* ... from filelock_lease event class */
6484 	{ "break_lease_noblock", 0x10 },
6485 	{ "break_lease_block", 0x10 },
6486 	{ "break_lease_unblock", 0x10 },
6487 	{ "generic_delete_lease", 0x10 },
6488 	{ "time_out_leases", 0x10 },
6489 	/* host1x */
6490 	{ "host1x_cdma_push_gather", 0x10000 },
6491 	/* huge_memory */
6492 	{ "mm_khugepaged_scan_pmd", 0x10 },
6493 	{ "mm_collapse_huge_page_isolate", 0x1 },
6494 	{ "mm_khugepaged_scan_file", 0x10 },
6495 	{ "mm_khugepaged_collapse_file", 0x10 },
6496 	/* kmem */
6497 	{ "mm_page_alloc", 0x1 },
6498 	{ "mm_page_pcpu_drain", 0x1 },
6499 	/* .. from mm_page event class */
6500 	{ "mm_page_alloc_zone_locked", 0x1 },
6501 	/* netfs */
6502 	{ "netfs_failure", 0x10 },
6503 	/* power */
6504 	{ "device_pm_callback_start", 0x10 },
6505 	/* qdisc */
6506 	{ "qdisc_dequeue", 0x1000 },
6507 	/* rxrpc */
6508 	{ "rxrpc_recvdata", 0x1 },
6509 	{ "rxrpc_resend", 0x10 },
6510 	/* skb */
6511 	{"kfree_skb", 0x1000},
6512 	/* sunrpc */
6513 	{ "xs_stream_read_data", 0x1 },
6514 	/* ... from xprt_cong_event event class */
6515 	{ "xprt_reserve_cong", 0x10 },
6516 	{ "xprt_release_cong", 0x10 },
6517 	{ "xprt_get_cong", 0x10 },
6518 	{ "xprt_put_cong", 0x10 },
6519 	/* tcp */
6520 	{ "tcp_send_reset", 0x11 },
6521 	/* tegra_apb_dma */
6522 	{ "tegra_dma_tx_status", 0x100 },
6523 	/* timer_migration */
6524 	{ "tmigr_update_events", 0x1 },
6525 	/* writeback, from writeback_folio_template event class */
6526 	{ "writeback_dirty_folio", 0x10 },
6527 	{ "folio_wait_writeback", 0x10 },
6528 	/* rdma */
6529 	{ "mr_integ_alloc", 0x2000 },
6530 	/* bpf_testmod */
6531 	{ "bpf_testmod_test_read", 0x0 },
6532 };
6533 
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6534 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6535 		    const struct bpf_prog *prog,
6536 		    struct bpf_insn_access_aux *info)
6537 {
6538 	const struct btf_type *t = prog->aux->attach_func_proto;
6539 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6540 	struct btf *btf = bpf_prog_get_target_btf(prog);
6541 	const char *tname = prog->aux->attach_func_name;
6542 	struct bpf_verifier_log *log = info->log;
6543 	const struct btf_param *args;
6544 	bool ptr_err_raw_tp = false;
6545 	const char *tag_value;
6546 	u32 nr_args, arg;
6547 	int i, ret;
6548 
6549 	if (off % 8) {
6550 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6551 			tname, off);
6552 		return false;
6553 	}
6554 	arg = get_ctx_arg_idx(btf, t, off);
6555 	args = (const struct btf_param *)(t + 1);
6556 	/* if (t == NULL) Fall back to default BPF prog with
6557 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6558 	 */
6559 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6560 	if (prog->aux->attach_btf_trace) {
6561 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6562 		args++;
6563 		nr_args--;
6564 	}
6565 
6566 	if (arg > nr_args) {
6567 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6568 			tname, arg + 1);
6569 		return false;
6570 	}
6571 
6572 	if (arg == nr_args) {
6573 		switch (prog->expected_attach_type) {
6574 		case BPF_LSM_MAC:
6575 			/* mark we are accessing the return value */
6576 			info->is_retval = true;
6577 			fallthrough;
6578 		case BPF_LSM_CGROUP:
6579 		case BPF_TRACE_FEXIT:
6580 			/* When LSM programs are attached to void LSM hooks
6581 			 * they use FEXIT trampolines and when attached to
6582 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6583 			 *
6584 			 * While the LSM programs are BPF_MODIFY_RETURN-like
6585 			 * the check:
6586 			 *
6587 			 *	if (ret_type != 'int')
6588 			 *		return -EINVAL;
6589 			 *
6590 			 * is _not_ done here. This is still safe as LSM hooks
6591 			 * have only void and int return types.
6592 			 */
6593 			if (!t)
6594 				return true;
6595 			t = btf_type_by_id(btf, t->type);
6596 			break;
6597 		case BPF_MODIFY_RETURN:
6598 			/* For now the BPF_MODIFY_RETURN can only be attached to
6599 			 * functions that return an int.
6600 			 */
6601 			if (!t)
6602 				return false;
6603 
6604 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6605 			if (!btf_type_is_small_int(t)) {
6606 				bpf_log(log,
6607 					"ret type %s not allowed for fmod_ret\n",
6608 					btf_type_str(t));
6609 				return false;
6610 			}
6611 			break;
6612 		default:
6613 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6614 				tname, arg + 1);
6615 			return false;
6616 		}
6617 	} else {
6618 		if (!t)
6619 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6620 			return true;
6621 		t = btf_type_by_id(btf, args[arg].type);
6622 	}
6623 
6624 	/* skip modifiers */
6625 	while (btf_type_is_modifier(t))
6626 		t = btf_type_by_id(btf, t->type);
6627 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6628 		/* accessing a scalar */
6629 		return true;
6630 	if (!btf_type_is_ptr(t)) {
6631 		bpf_log(log,
6632 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6633 			tname, arg,
6634 			__btf_name_by_offset(btf, t->name_off),
6635 			btf_type_str(t));
6636 		return false;
6637 	}
6638 
6639 	if (size != sizeof(u64)) {
6640 		bpf_log(log, "func '%s' size %d must be 8\n",
6641 			tname, size);
6642 		return false;
6643 	}
6644 
6645 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6646 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6647 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6648 		u32 type, flag;
6649 
6650 		type = base_type(ctx_arg_info->reg_type);
6651 		flag = type_flag(ctx_arg_info->reg_type);
6652 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6653 		    (flag & PTR_MAYBE_NULL)) {
6654 			info->reg_type = ctx_arg_info->reg_type;
6655 			return true;
6656 		}
6657 	}
6658 
6659 	if (t->type == 0)
6660 		/* This is a pointer to void.
6661 		 * It is the same as scalar from the verifier safety pov.
6662 		 * No further pointer walking is allowed.
6663 		 */
6664 		return true;
6665 
6666 	if (is_int_ptr(btf, t))
6667 		return true;
6668 
6669 	/* this is a pointer to another type */
6670 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6671 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6672 
6673 		if (ctx_arg_info->offset == off) {
6674 			if (!ctx_arg_info->btf_id) {
6675 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6676 				return false;
6677 			}
6678 
6679 			info->reg_type = ctx_arg_info->reg_type;
6680 			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6681 			info->btf_id = ctx_arg_info->btf_id;
6682 			return true;
6683 		}
6684 	}
6685 
6686 	info->reg_type = PTR_TO_BTF_ID;
6687 	if (prog_args_trusted(prog))
6688 		info->reg_type |= PTR_TRUSTED;
6689 
6690 	if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6691 		info->reg_type |= PTR_MAYBE_NULL;
6692 
6693 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6694 		struct btf *btf = prog->aux->attach_btf;
6695 		const struct btf_type *t;
6696 		const char *tname;
6697 
6698 		/* BTF lookups cannot fail, return false on error */
6699 		t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6700 		if (!t)
6701 			return false;
6702 		tname = btf_name_by_offset(btf, t->name_off);
6703 		if (!tname)
6704 			return false;
6705 		/* Checked by bpf_check_attach_target */
6706 		tname += sizeof("btf_trace_") - 1;
6707 		for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6708 			/* Is this a func with potential NULL args? */
6709 			if (strcmp(tname, raw_tp_null_args[i].func))
6710 				continue;
6711 			if (raw_tp_null_args[i].mask & (0x1 << (arg * 4)))
6712 				info->reg_type |= PTR_MAYBE_NULL;
6713 			/* Is the current arg IS_ERR? */
6714 			if (raw_tp_null_args[i].mask & (0x2 << (arg * 4)))
6715 				ptr_err_raw_tp = true;
6716 			break;
6717 		}
6718 		/* If we don't know NULL-ness specification and the tracepoint
6719 		 * is coming from a loadable module, be conservative and mark
6720 		 * argument as PTR_MAYBE_NULL.
6721 		 */
6722 		if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6723 			info->reg_type |= PTR_MAYBE_NULL;
6724 	}
6725 
6726 	if (tgt_prog) {
6727 		enum bpf_prog_type tgt_type;
6728 
6729 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6730 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6731 		else
6732 			tgt_type = tgt_prog->type;
6733 
6734 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6735 		if (ret > 0) {
6736 			info->btf = btf_vmlinux;
6737 			info->btf_id = ret;
6738 			return true;
6739 		} else {
6740 			return false;
6741 		}
6742 	}
6743 
6744 	info->btf = btf;
6745 	info->btf_id = t->type;
6746 	t = btf_type_by_id(btf, t->type);
6747 
6748 	if (btf_type_is_type_tag(t)) {
6749 		tag_value = __btf_name_by_offset(btf, t->name_off);
6750 		if (strcmp(tag_value, "user") == 0)
6751 			info->reg_type |= MEM_USER;
6752 		if (strcmp(tag_value, "percpu") == 0)
6753 			info->reg_type |= MEM_PERCPU;
6754 	}
6755 
6756 	/* skip modifiers */
6757 	while (btf_type_is_modifier(t)) {
6758 		info->btf_id = t->type;
6759 		t = btf_type_by_id(btf, t->type);
6760 	}
6761 	if (!btf_type_is_struct(t)) {
6762 		bpf_log(log,
6763 			"func '%s' arg%d type %s is not a struct\n",
6764 			tname, arg, btf_type_str(t));
6765 		return false;
6766 	}
6767 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6768 		tname, arg, info->btf_id, btf_type_str(t),
6769 		__btf_name_by_offset(btf, t->name_off));
6770 
6771 	/* Perform all checks on the validity of type for this argument, but if
6772 	 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
6773 	 * scalar.
6774 	 */
6775 	if (ptr_err_raw_tp) {
6776 		bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
6777 		info->reg_type = SCALAR_VALUE;
6778 	}
6779 	return true;
6780 }
6781 EXPORT_SYMBOL_GPL(btf_ctx_access);
6782 
6783 enum bpf_struct_walk_result {
6784 	/* < 0 error */
6785 	WALK_SCALAR = 0,
6786 	WALK_PTR,
6787 	WALK_STRUCT,
6788 };
6789 
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)6790 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6791 			   const struct btf_type *t, int off, int size,
6792 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6793 			   const char **field_name)
6794 {
6795 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6796 	const struct btf_type *mtype, *elem_type = NULL;
6797 	const struct btf_member *member;
6798 	const char *tname, *mname, *tag_value;
6799 	u32 vlen, elem_id, mid;
6800 
6801 again:
6802 	if (btf_type_is_modifier(t))
6803 		t = btf_type_skip_modifiers(btf, t->type, NULL);
6804 	tname = __btf_name_by_offset(btf, t->name_off);
6805 	if (!btf_type_is_struct(t)) {
6806 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6807 		return -EINVAL;
6808 	}
6809 
6810 	vlen = btf_type_vlen(t);
6811 	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6812 		/*
6813 		 * walking unions yields untrusted pointers
6814 		 * with exception of __bpf_md_ptr and other
6815 		 * unions with a single member
6816 		 */
6817 		*flag |= PTR_UNTRUSTED;
6818 
6819 	if (off + size > t->size) {
6820 		/* If the last element is a variable size array, we may
6821 		 * need to relax the rule.
6822 		 */
6823 		struct btf_array *array_elem;
6824 
6825 		if (vlen == 0)
6826 			goto error;
6827 
6828 		member = btf_type_member(t) + vlen - 1;
6829 		mtype = btf_type_skip_modifiers(btf, member->type,
6830 						NULL);
6831 		if (!btf_type_is_array(mtype))
6832 			goto error;
6833 
6834 		array_elem = (struct btf_array *)(mtype + 1);
6835 		if (array_elem->nelems != 0)
6836 			goto error;
6837 
6838 		moff = __btf_member_bit_offset(t, member) / 8;
6839 		if (off < moff)
6840 			goto error;
6841 
6842 		/* allow structure and integer */
6843 		t = btf_type_skip_modifiers(btf, array_elem->type,
6844 					    NULL);
6845 
6846 		if (btf_type_is_int(t))
6847 			return WALK_SCALAR;
6848 
6849 		if (!btf_type_is_struct(t))
6850 			goto error;
6851 
6852 		off = (off - moff) % t->size;
6853 		goto again;
6854 
6855 error:
6856 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6857 			tname, off, size);
6858 		return -EACCES;
6859 	}
6860 
6861 	for_each_member(i, t, member) {
6862 		/* offset of the field in bytes */
6863 		moff = __btf_member_bit_offset(t, member) / 8;
6864 		if (off + size <= moff)
6865 			/* won't find anything, field is already too far */
6866 			break;
6867 
6868 		if (__btf_member_bitfield_size(t, member)) {
6869 			u32 end_bit = __btf_member_bit_offset(t, member) +
6870 				__btf_member_bitfield_size(t, member);
6871 
6872 			/* off <= moff instead of off == moff because clang
6873 			 * does not generate a BTF member for anonymous
6874 			 * bitfield like the ":16" here:
6875 			 * struct {
6876 			 *	int :16;
6877 			 *	int x:8;
6878 			 * };
6879 			 */
6880 			if (off <= moff &&
6881 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6882 				return WALK_SCALAR;
6883 
6884 			/* off may be accessing a following member
6885 			 *
6886 			 * or
6887 			 *
6888 			 * Doing partial access at either end of this
6889 			 * bitfield.  Continue on this case also to
6890 			 * treat it as not accessing this bitfield
6891 			 * and eventually error out as field not
6892 			 * found to keep it simple.
6893 			 * It could be relaxed if there was a legit
6894 			 * partial access case later.
6895 			 */
6896 			continue;
6897 		}
6898 
6899 		/* In case of "off" is pointing to holes of a struct */
6900 		if (off < moff)
6901 			break;
6902 
6903 		/* type of the field */
6904 		mid = member->type;
6905 		mtype = btf_type_by_id(btf, member->type);
6906 		mname = __btf_name_by_offset(btf, member->name_off);
6907 
6908 		mtype = __btf_resolve_size(btf, mtype, &msize,
6909 					   &elem_type, &elem_id, &total_nelems,
6910 					   &mid);
6911 		if (IS_ERR(mtype)) {
6912 			bpf_log(log, "field %s doesn't have size\n", mname);
6913 			return -EFAULT;
6914 		}
6915 
6916 		mtrue_end = moff + msize;
6917 		if (off >= mtrue_end)
6918 			/* no overlap with member, keep iterating */
6919 			continue;
6920 
6921 		if (btf_type_is_array(mtype)) {
6922 			u32 elem_idx;
6923 
6924 			/* __btf_resolve_size() above helps to
6925 			 * linearize a multi-dimensional array.
6926 			 *
6927 			 * The logic here is treating an array
6928 			 * in a struct as the following way:
6929 			 *
6930 			 * struct outer {
6931 			 *	struct inner array[2][2];
6932 			 * };
6933 			 *
6934 			 * looks like:
6935 			 *
6936 			 * struct outer {
6937 			 *	struct inner array_elem0;
6938 			 *	struct inner array_elem1;
6939 			 *	struct inner array_elem2;
6940 			 *	struct inner array_elem3;
6941 			 * };
6942 			 *
6943 			 * When accessing outer->array[1][0], it moves
6944 			 * moff to "array_elem2", set mtype to
6945 			 * "struct inner", and msize also becomes
6946 			 * sizeof(struct inner).  Then most of the
6947 			 * remaining logic will fall through without
6948 			 * caring the current member is an array or
6949 			 * not.
6950 			 *
6951 			 * Unlike mtype/msize/moff, mtrue_end does not
6952 			 * change.  The naming difference ("_true") tells
6953 			 * that it is not always corresponding to
6954 			 * the current mtype/msize/moff.
6955 			 * It is the true end of the current
6956 			 * member (i.e. array in this case).  That
6957 			 * will allow an int array to be accessed like
6958 			 * a scratch space,
6959 			 * i.e. allow access beyond the size of
6960 			 *      the array's element as long as it is
6961 			 *      within the mtrue_end boundary.
6962 			 */
6963 
6964 			/* skip empty array */
6965 			if (moff == mtrue_end)
6966 				continue;
6967 
6968 			msize /= total_nelems;
6969 			elem_idx = (off - moff) / msize;
6970 			moff += elem_idx * msize;
6971 			mtype = elem_type;
6972 			mid = elem_id;
6973 		}
6974 
6975 		/* the 'off' we're looking for is either equal to start
6976 		 * of this field or inside of this struct
6977 		 */
6978 		if (btf_type_is_struct(mtype)) {
6979 			/* our field must be inside that union or struct */
6980 			t = mtype;
6981 
6982 			/* return if the offset matches the member offset */
6983 			if (off == moff) {
6984 				*next_btf_id = mid;
6985 				return WALK_STRUCT;
6986 			}
6987 
6988 			/* adjust offset we're looking for */
6989 			off -= moff;
6990 			goto again;
6991 		}
6992 
6993 		if (btf_type_is_ptr(mtype)) {
6994 			const struct btf_type *stype, *t;
6995 			enum bpf_type_flag tmp_flag = 0;
6996 			u32 id;
6997 
6998 			if (msize != size || off != moff) {
6999 				bpf_log(log,
7000 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7001 					mname, moff, tname, off, size);
7002 				return -EACCES;
7003 			}
7004 
7005 			/* check type tag */
7006 			t = btf_type_by_id(btf, mtype->type);
7007 			if (btf_type_is_type_tag(t)) {
7008 				tag_value = __btf_name_by_offset(btf, t->name_off);
7009 				/* check __user tag */
7010 				if (strcmp(tag_value, "user") == 0)
7011 					tmp_flag = MEM_USER;
7012 				/* check __percpu tag */
7013 				if (strcmp(tag_value, "percpu") == 0)
7014 					tmp_flag = MEM_PERCPU;
7015 				/* check __rcu tag */
7016 				if (strcmp(tag_value, "rcu") == 0)
7017 					tmp_flag = MEM_RCU;
7018 			}
7019 
7020 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7021 			if (btf_type_is_struct(stype)) {
7022 				*next_btf_id = id;
7023 				*flag |= tmp_flag;
7024 				if (field_name)
7025 					*field_name = mname;
7026 				return WALK_PTR;
7027 			}
7028 		}
7029 
7030 		/* Allow more flexible access within an int as long as
7031 		 * it is within mtrue_end.
7032 		 * Since mtrue_end could be the end of an array,
7033 		 * that also allows using an array of int as a scratch
7034 		 * space. e.g. skb->cb[].
7035 		 */
7036 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7037 			bpf_log(log,
7038 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7039 				mname, mtrue_end, tname, off, size);
7040 			return -EACCES;
7041 		}
7042 
7043 		return WALK_SCALAR;
7044 	}
7045 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7046 	return -EINVAL;
7047 }
7048 
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)7049 int btf_struct_access(struct bpf_verifier_log *log,
7050 		      const struct bpf_reg_state *reg,
7051 		      int off, int size, enum bpf_access_type atype __maybe_unused,
7052 		      u32 *next_btf_id, enum bpf_type_flag *flag,
7053 		      const char **field_name)
7054 {
7055 	const struct btf *btf = reg->btf;
7056 	enum bpf_type_flag tmp_flag = 0;
7057 	const struct btf_type *t;
7058 	u32 id = reg->btf_id;
7059 	int err;
7060 
7061 	while (type_is_alloc(reg->type)) {
7062 		struct btf_struct_meta *meta;
7063 		struct btf_record *rec;
7064 		int i;
7065 
7066 		meta = btf_find_struct_meta(btf, id);
7067 		if (!meta)
7068 			break;
7069 		rec = meta->record;
7070 		for (i = 0; i < rec->cnt; i++) {
7071 			struct btf_field *field = &rec->fields[i];
7072 			u32 offset = field->offset;
7073 			if (off < offset + field->size && offset < off + size) {
7074 				bpf_log(log,
7075 					"direct access to %s is disallowed\n",
7076 					btf_field_type_name(field->type));
7077 				return -EACCES;
7078 			}
7079 		}
7080 		break;
7081 	}
7082 
7083 	t = btf_type_by_id(btf, id);
7084 	do {
7085 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7086 
7087 		switch (err) {
7088 		case WALK_PTR:
7089 			/* For local types, the destination register cannot
7090 			 * become a pointer again.
7091 			 */
7092 			if (type_is_alloc(reg->type))
7093 				return SCALAR_VALUE;
7094 			/* If we found the pointer or scalar on t+off,
7095 			 * we're done.
7096 			 */
7097 			*next_btf_id = id;
7098 			*flag = tmp_flag;
7099 			return PTR_TO_BTF_ID;
7100 		case WALK_SCALAR:
7101 			return SCALAR_VALUE;
7102 		case WALK_STRUCT:
7103 			/* We found nested struct, so continue the search
7104 			 * by diving in it. At this point the offset is
7105 			 * aligned with the new type, so set it to 0.
7106 			 */
7107 			t = btf_type_by_id(btf, id);
7108 			off = 0;
7109 			break;
7110 		default:
7111 			/* It's either error or unknown return value..
7112 			 * scream and leave.
7113 			 */
7114 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7115 				return -EINVAL;
7116 			return err;
7117 		}
7118 	} while (t);
7119 
7120 	return -EINVAL;
7121 }
7122 
7123 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7124  * the same. Trivial ID check is not enough due to module BTFs, because we can
7125  * end up with two different module BTFs, but IDs point to the common type in
7126  * vmlinux BTF.
7127  */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)7128 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7129 			const struct btf *btf2, u32 id2)
7130 {
7131 	if (id1 != id2)
7132 		return false;
7133 	if (btf1 == btf2)
7134 		return true;
7135 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7136 }
7137 
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id,bool strict)7138 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7139 			  const struct btf *btf, u32 id, int off,
7140 			  const struct btf *need_btf, u32 need_type_id,
7141 			  bool strict)
7142 {
7143 	const struct btf_type *type;
7144 	enum bpf_type_flag flag = 0;
7145 	int err;
7146 
7147 	/* Are we already done? */
7148 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7149 		return true;
7150 	/* In case of strict type match, we do not walk struct, the top level
7151 	 * type match must succeed. When strict is true, off should have already
7152 	 * been 0.
7153 	 */
7154 	if (strict)
7155 		return false;
7156 again:
7157 	type = btf_type_by_id(btf, id);
7158 	if (!type)
7159 		return false;
7160 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7161 	if (err != WALK_STRUCT)
7162 		return false;
7163 
7164 	/* We found nested struct object. If it matches
7165 	 * the requested ID, we're done. Otherwise let's
7166 	 * continue the search with offset 0 in the new
7167 	 * type.
7168 	 */
7169 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7170 		off = 0;
7171 		goto again;
7172 	}
7173 
7174 	return true;
7175 }
7176 
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** ret_type)7177 static int __get_type_size(struct btf *btf, u32 btf_id,
7178 			   const struct btf_type **ret_type)
7179 {
7180 	const struct btf_type *t;
7181 
7182 	*ret_type = btf_type_by_id(btf, 0);
7183 	if (!btf_id)
7184 		/* void */
7185 		return 0;
7186 	t = btf_type_by_id(btf, btf_id);
7187 	while (t && btf_type_is_modifier(t))
7188 		t = btf_type_by_id(btf, t->type);
7189 	if (!t)
7190 		return -EINVAL;
7191 	*ret_type = t;
7192 	if (btf_type_is_ptr(t))
7193 		/* kernel size of pointer. Not BPF's size of pointer*/
7194 		return sizeof(void *);
7195 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
7196 		return t->size;
7197 	return -EINVAL;
7198 }
7199 
__get_type_fmodel_flags(const struct btf_type * t)7200 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7201 {
7202 	u8 flags = 0;
7203 
7204 	if (__btf_type_is_struct(t))
7205 		flags |= BTF_FMODEL_STRUCT_ARG;
7206 	if (btf_type_is_signed_int(t))
7207 		flags |= BTF_FMODEL_SIGNED_ARG;
7208 
7209 	return flags;
7210 }
7211 
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)7212 int btf_distill_func_proto(struct bpf_verifier_log *log,
7213 			   struct btf *btf,
7214 			   const struct btf_type *func,
7215 			   const char *tname,
7216 			   struct btf_func_model *m)
7217 {
7218 	const struct btf_param *args;
7219 	const struct btf_type *t;
7220 	u32 i, nargs;
7221 	int ret;
7222 
7223 	if (!func) {
7224 		/* BTF function prototype doesn't match the verifier types.
7225 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7226 		 */
7227 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7228 			m->arg_size[i] = 8;
7229 			m->arg_flags[i] = 0;
7230 		}
7231 		m->ret_size = 8;
7232 		m->ret_flags = 0;
7233 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7234 		return 0;
7235 	}
7236 	args = (const struct btf_param *)(func + 1);
7237 	nargs = btf_type_vlen(func);
7238 	if (nargs > MAX_BPF_FUNC_ARGS) {
7239 		bpf_log(log,
7240 			"The function %s has %d arguments. Too many.\n",
7241 			tname, nargs);
7242 		return -EINVAL;
7243 	}
7244 	ret = __get_type_size(btf, func->type, &t);
7245 	if (ret < 0 || __btf_type_is_struct(t)) {
7246 		bpf_log(log,
7247 			"The function %s return type %s is unsupported.\n",
7248 			tname, btf_type_str(t));
7249 		return -EINVAL;
7250 	}
7251 	m->ret_size = ret;
7252 	m->ret_flags = __get_type_fmodel_flags(t);
7253 
7254 	for (i = 0; i < nargs; i++) {
7255 		if (i == nargs - 1 && args[i].type == 0) {
7256 			bpf_log(log,
7257 				"The function %s with variable args is unsupported.\n",
7258 				tname);
7259 			return -EINVAL;
7260 		}
7261 		ret = __get_type_size(btf, args[i].type, &t);
7262 
7263 		/* No support of struct argument size greater than 16 bytes */
7264 		if (ret < 0 || ret > 16) {
7265 			bpf_log(log,
7266 				"The function %s arg%d type %s is unsupported.\n",
7267 				tname, i, btf_type_str(t));
7268 			return -EINVAL;
7269 		}
7270 		if (ret == 0) {
7271 			bpf_log(log,
7272 				"The function %s has malformed void argument.\n",
7273 				tname);
7274 			return -EINVAL;
7275 		}
7276 		m->arg_size[i] = ret;
7277 		m->arg_flags[i] = __get_type_fmodel_flags(t);
7278 	}
7279 	m->nr_args = nargs;
7280 	return 0;
7281 }
7282 
7283 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7284  * t1 points to BTF_KIND_FUNC in btf1
7285  * t2 points to BTF_KIND_FUNC in btf2
7286  * Returns:
7287  * EINVAL - function prototype mismatch
7288  * EFAULT - verifier bug
7289  * 0 - 99% match. The last 1% is validated by the verifier.
7290  */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)7291 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7292 				     struct btf *btf1, const struct btf_type *t1,
7293 				     struct btf *btf2, const struct btf_type *t2)
7294 {
7295 	const struct btf_param *args1, *args2;
7296 	const char *fn1, *fn2, *s1, *s2;
7297 	u32 nargs1, nargs2, i;
7298 
7299 	fn1 = btf_name_by_offset(btf1, t1->name_off);
7300 	fn2 = btf_name_by_offset(btf2, t2->name_off);
7301 
7302 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7303 		bpf_log(log, "%s() is not a global function\n", fn1);
7304 		return -EINVAL;
7305 	}
7306 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7307 		bpf_log(log, "%s() is not a global function\n", fn2);
7308 		return -EINVAL;
7309 	}
7310 
7311 	t1 = btf_type_by_id(btf1, t1->type);
7312 	if (!t1 || !btf_type_is_func_proto(t1))
7313 		return -EFAULT;
7314 	t2 = btf_type_by_id(btf2, t2->type);
7315 	if (!t2 || !btf_type_is_func_proto(t2))
7316 		return -EFAULT;
7317 
7318 	args1 = (const struct btf_param *)(t1 + 1);
7319 	nargs1 = btf_type_vlen(t1);
7320 	args2 = (const struct btf_param *)(t2 + 1);
7321 	nargs2 = btf_type_vlen(t2);
7322 
7323 	if (nargs1 != nargs2) {
7324 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
7325 			fn1, nargs1, fn2, nargs2);
7326 		return -EINVAL;
7327 	}
7328 
7329 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7330 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7331 	if (t1->info != t2->info) {
7332 		bpf_log(log,
7333 			"Return type %s of %s() doesn't match type %s of %s()\n",
7334 			btf_type_str(t1), fn1,
7335 			btf_type_str(t2), fn2);
7336 		return -EINVAL;
7337 	}
7338 
7339 	for (i = 0; i < nargs1; i++) {
7340 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7341 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7342 
7343 		if (t1->info != t2->info) {
7344 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7345 				i, fn1, btf_type_str(t1),
7346 				fn2, btf_type_str(t2));
7347 			return -EINVAL;
7348 		}
7349 		if (btf_type_has_size(t1) && t1->size != t2->size) {
7350 			bpf_log(log,
7351 				"arg%d in %s() has size %d while %s() has %d\n",
7352 				i, fn1, t1->size,
7353 				fn2, t2->size);
7354 			return -EINVAL;
7355 		}
7356 
7357 		/* global functions are validated with scalars and pointers
7358 		 * to context only. And only global functions can be replaced.
7359 		 * Hence type check only those types.
7360 		 */
7361 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7362 			continue;
7363 		if (!btf_type_is_ptr(t1)) {
7364 			bpf_log(log,
7365 				"arg%d in %s() has unrecognized type\n",
7366 				i, fn1);
7367 			return -EINVAL;
7368 		}
7369 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7370 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7371 		if (!btf_type_is_struct(t1)) {
7372 			bpf_log(log,
7373 				"arg%d in %s() is not a pointer to context\n",
7374 				i, fn1);
7375 			return -EINVAL;
7376 		}
7377 		if (!btf_type_is_struct(t2)) {
7378 			bpf_log(log,
7379 				"arg%d in %s() is not a pointer to context\n",
7380 				i, fn2);
7381 			return -EINVAL;
7382 		}
7383 		/* This is an optional check to make program writing easier.
7384 		 * Compare names of structs and report an error to the user.
7385 		 * btf_prepare_func_args() already checked that t2 struct
7386 		 * is a context type. btf_prepare_func_args() will check
7387 		 * later that t1 struct is a context type as well.
7388 		 */
7389 		s1 = btf_name_by_offset(btf1, t1->name_off);
7390 		s2 = btf_name_by_offset(btf2, t2->name_off);
7391 		if (strcmp(s1, s2)) {
7392 			bpf_log(log,
7393 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7394 				i, fn1, s1, fn2, s2);
7395 			return -EINVAL;
7396 		}
7397 	}
7398 	return 0;
7399 }
7400 
7401 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)7402 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7403 			 struct btf *btf2, const struct btf_type *t2)
7404 {
7405 	struct btf *btf1 = prog->aux->btf;
7406 	const struct btf_type *t1;
7407 	u32 btf_id = 0;
7408 
7409 	if (!prog->aux->func_info) {
7410 		bpf_log(log, "Program extension requires BTF\n");
7411 		return -EINVAL;
7412 	}
7413 
7414 	btf_id = prog->aux->func_info[0].type_id;
7415 	if (!btf_id)
7416 		return -EFAULT;
7417 
7418 	t1 = btf_type_by_id(btf1, btf_id);
7419 	if (!t1 || !btf_type_is_func(t1))
7420 		return -EFAULT;
7421 
7422 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7423 }
7424 
btf_is_dynptr_ptr(const struct btf * btf,const struct btf_type * t)7425 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7426 {
7427 	const char *name;
7428 
7429 	t = btf_type_by_id(btf, t->type); /* skip PTR */
7430 
7431 	while (btf_type_is_modifier(t))
7432 		t = btf_type_by_id(btf, t->type);
7433 
7434 	/* allow either struct or struct forward declaration */
7435 	if (btf_type_is_struct(t) ||
7436 	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7437 		name = btf_str_by_offset(btf, t->name_off);
7438 		return name && strcmp(name, "bpf_dynptr") == 0;
7439 	}
7440 
7441 	return false;
7442 }
7443 
7444 struct bpf_cand_cache {
7445 	const char *name;
7446 	u32 name_len;
7447 	u16 kind;
7448 	u16 cnt;
7449 	struct {
7450 		const struct btf *btf;
7451 		u32 id;
7452 	} cands[];
7453 };
7454 
7455 static DEFINE_MUTEX(cand_cache_mutex);
7456 
7457 static struct bpf_cand_cache *
7458 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7459 
btf_get_ptr_to_btf_id(struct bpf_verifier_log * log,int arg_idx,const struct btf * btf,const struct btf_type * t)7460 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7461 				 const struct btf *btf, const struct btf_type *t)
7462 {
7463 	struct bpf_cand_cache *cc;
7464 	struct bpf_core_ctx ctx = {
7465 		.btf = btf,
7466 		.log = log,
7467 	};
7468 	u32 kern_type_id, type_id;
7469 	int err = 0;
7470 
7471 	/* skip PTR and modifiers */
7472 	type_id = t->type;
7473 	t = btf_type_by_id(btf, t->type);
7474 	while (btf_type_is_modifier(t)) {
7475 		type_id = t->type;
7476 		t = btf_type_by_id(btf, t->type);
7477 	}
7478 
7479 	mutex_lock(&cand_cache_mutex);
7480 	cc = bpf_core_find_cands(&ctx, type_id);
7481 	if (IS_ERR(cc)) {
7482 		err = PTR_ERR(cc);
7483 		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7484 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7485 			err);
7486 		goto cand_cache_unlock;
7487 	}
7488 	if (cc->cnt != 1) {
7489 		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7490 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7491 			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7492 		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7493 		goto cand_cache_unlock;
7494 	}
7495 	if (btf_is_module(cc->cands[0].btf)) {
7496 		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7497 			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7498 		err = -EOPNOTSUPP;
7499 		goto cand_cache_unlock;
7500 	}
7501 	kern_type_id = cc->cands[0].id;
7502 
7503 cand_cache_unlock:
7504 	mutex_unlock(&cand_cache_mutex);
7505 	if (err)
7506 		return err;
7507 
7508 	return kern_type_id;
7509 }
7510 
7511 enum btf_arg_tag {
7512 	ARG_TAG_CTX	 = BIT_ULL(0),
7513 	ARG_TAG_NONNULL  = BIT_ULL(1),
7514 	ARG_TAG_TRUSTED  = BIT_ULL(2),
7515 	ARG_TAG_NULLABLE = BIT_ULL(3),
7516 	ARG_TAG_ARENA	 = BIT_ULL(4),
7517 };
7518 
7519 /* Process BTF of a function to produce high-level expectation of function
7520  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7521  * is cached in subprog info for reuse.
7522  * Returns:
7523  * EFAULT - there is a verifier bug. Abort verification.
7524  * EINVAL - cannot convert BTF.
7525  * 0 - Successfully processed BTF and constructed argument expectations.
7526  */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog)7527 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7528 {
7529 	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7530 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7531 	struct bpf_verifier_log *log = &env->log;
7532 	struct bpf_prog *prog = env->prog;
7533 	enum bpf_prog_type prog_type = prog->type;
7534 	struct btf *btf = prog->aux->btf;
7535 	const struct btf_param *args;
7536 	const struct btf_type *t, *ref_t, *fn_t;
7537 	u32 i, nargs, btf_id;
7538 	const char *tname;
7539 
7540 	if (sub->args_cached)
7541 		return 0;
7542 
7543 	if (!prog->aux->func_info) {
7544 		bpf_log(log, "Verifier bug\n");
7545 		return -EFAULT;
7546 	}
7547 
7548 	btf_id = prog->aux->func_info[subprog].type_id;
7549 	if (!btf_id) {
7550 		if (!is_global) /* not fatal for static funcs */
7551 			return -EINVAL;
7552 		bpf_log(log, "Global functions need valid BTF\n");
7553 		return -EFAULT;
7554 	}
7555 
7556 	fn_t = btf_type_by_id(btf, btf_id);
7557 	if (!fn_t || !btf_type_is_func(fn_t)) {
7558 		/* These checks were already done by the verifier while loading
7559 		 * struct bpf_func_info
7560 		 */
7561 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7562 			subprog);
7563 		return -EFAULT;
7564 	}
7565 	tname = btf_name_by_offset(btf, fn_t->name_off);
7566 
7567 	if (prog->aux->func_info_aux[subprog].unreliable) {
7568 		bpf_log(log, "Verifier bug in function %s()\n", tname);
7569 		return -EFAULT;
7570 	}
7571 	if (prog_type == BPF_PROG_TYPE_EXT)
7572 		prog_type = prog->aux->dst_prog->type;
7573 
7574 	t = btf_type_by_id(btf, fn_t->type);
7575 	if (!t || !btf_type_is_func_proto(t)) {
7576 		bpf_log(log, "Invalid type of function %s()\n", tname);
7577 		return -EFAULT;
7578 	}
7579 	args = (const struct btf_param *)(t + 1);
7580 	nargs = btf_type_vlen(t);
7581 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7582 		if (!is_global)
7583 			return -EINVAL;
7584 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7585 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7586 		return -EINVAL;
7587 	}
7588 	/* check that function returns int, exception cb also requires this */
7589 	t = btf_type_by_id(btf, t->type);
7590 	while (btf_type_is_modifier(t))
7591 		t = btf_type_by_id(btf, t->type);
7592 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7593 		if (!is_global)
7594 			return -EINVAL;
7595 		bpf_log(log,
7596 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7597 			tname);
7598 		return -EINVAL;
7599 	}
7600 	/* Convert BTF function arguments into verifier types.
7601 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7602 	 */
7603 	for (i = 0; i < nargs; i++) {
7604 		u32 tags = 0;
7605 		int id = 0;
7606 
7607 		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7608 		 * register type from BTF type itself
7609 		 */
7610 		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7611 			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7612 			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7613 
7614 			/* disallow arg tags in static subprogs */
7615 			if (!is_global) {
7616 				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7617 				return -EOPNOTSUPP;
7618 			}
7619 
7620 			if (strcmp(tag, "ctx") == 0) {
7621 				tags |= ARG_TAG_CTX;
7622 			} else if (strcmp(tag, "trusted") == 0) {
7623 				tags |= ARG_TAG_TRUSTED;
7624 			} else if (strcmp(tag, "nonnull") == 0) {
7625 				tags |= ARG_TAG_NONNULL;
7626 			} else if (strcmp(tag, "nullable") == 0) {
7627 				tags |= ARG_TAG_NULLABLE;
7628 			} else if (strcmp(tag, "arena") == 0) {
7629 				tags |= ARG_TAG_ARENA;
7630 			} else {
7631 				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7632 				return -EOPNOTSUPP;
7633 			}
7634 		}
7635 		if (id != -ENOENT) {
7636 			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7637 			return id;
7638 		}
7639 
7640 		t = btf_type_by_id(btf, args[i].type);
7641 		while (btf_type_is_modifier(t))
7642 			t = btf_type_by_id(btf, t->type);
7643 		if (!btf_type_is_ptr(t))
7644 			goto skip_pointer;
7645 
7646 		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7647 			if (tags & ~ARG_TAG_CTX) {
7648 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7649 				return -EINVAL;
7650 			}
7651 			if ((tags & ARG_TAG_CTX) &&
7652 			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7653 						       prog->expected_attach_type))
7654 				return -EINVAL;
7655 			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7656 			continue;
7657 		}
7658 		if (btf_is_dynptr_ptr(btf, t)) {
7659 			if (tags) {
7660 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7661 				return -EINVAL;
7662 			}
7663 			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7664 			continue;
7665 		}
7666 		if (tags & ARG_TAG_TRUSTED) {
7667 			int kern_type_id;
7668 
7669 			if (tags & ARG_TAG_NONNULL) {
7670 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7671 				return -EINVAL;
7672 			}
7673 
7674 			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7675 			if (kern_type_id < 0)
7676 				return kern_type_id;
7677 
7678 			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7679 			if (tags & ARG_TAG_NULLABLE)
7680 				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7681 			sub->args[i].btf_id = kern_type_id;
7682 			continue;
7683 		}
7684 		if (tags & ARG_TAG_ARENA) {
7685 			if (tags & ~ARG_TAG_ARENA) {
7686 				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7687 				return -EINVAL;
7688 			}
7689 			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7690 			continue;
7691 		}
7692 		if (is_global) { /* generic user data pointer */
7693 			u32 mem_size;
7694 
7695 			if (tags & ARG_TAG_NULLABLE) {
7696 				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7697 				return -EINVAL;
7698 			}
7699 
7700 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7701 			ref_t = btf_resolve_size(btf, t, &mem_size);
7702 			if (IS_ERR(ref_t)) {
7703 				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7704 					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7705 					PTR_ERR(ref_t));
7706 				return -EINVAL;
7707 			}
7708 
7709 			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7710 			if (tags & ARG_TAG_NONNULL)
7711 				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7712 			sub->args[i].mem_size = mem_size;
7713 			continue;
7714 		}
7715 
7716 skip_pointer:
7717 		if (tags) {
7718 			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7719 			return -EINVAL;
7720 		}
7721 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7722 			sub->args[i].arg_type = ARG_ANYTHING;
7723 			continue;
7724 		}
7725 		if (!is_global)
7726 			return -EINVAL;
7727 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7728 			i, btf_type_str(t), tname);
7729 		return -EINVAL;
7730 	}
7731 
7732 	sub->arg_cnt = nargs;
7733 	sub->args_cached = true;
7734 
7735 	return 0;
7736 }
7737 
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)7738 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7739 			  struct btf_show *show)
7740 {
7741 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7742 
7743 	show->btf = btf;
7744 	memset(&show->state, 0, sizeof(show->state));
7745 	memset(&show->obj, 0, sizeof(show->obj));
7746 
7747 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7748 }
7749 
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)7750 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7751 					va_list args)
7752 {
7753 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7754 }
7755 
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)7756 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7757 			    void *obj, struct seq_file *m, u64 flags)
7758 {
7759 	struct btf_show sseq;
7760 
7761 	sseq.target = m;
7762 	sseq.showfn = btf_seq_show;
7763 	sseq.flags = flags;
7764 
7765 	btf_type_show(btf, type_id, obj, &sseq);
7766 
7767 	return sseq.state.status;
7768 }
7769 
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)7770 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7771 		       struct seq_file *m)
7772 {
7773 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7774 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7775 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7776 }
7777 
7778 struct btf_show_snprintf {
7779 	struct btf_show show;
7780 	int len_left;		/* space left in string */
7781 	int len;		/* length we would have written */
7782 };
7783 
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)7784 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7785 					     va_list args)
7786 {
7787 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7788 	int len;
7789 
7790 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7791 
7792 	if (len < 0) {
7793 		ssnprintf->len_left = 0;
7794 		ssnprintf->len = len;
7795 	} else if (len >= ssnprintf->len_left) {
7796 		/* no space, drive on to get length we would have written */
7797 		ssnprintf->len_left = 0;
7798 		ssnprintf->len += len;
7799 	} else {
7800 		ssnprintf->len_left -= len;
7801 		ssnprintf->len += len;
7802 		show->target += len;
7803 	}
7804 }
7805 
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)7806 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7807 			   char *buf, int len, u64 flags)
7808 {
7809 	struct btf_show_snprintf ssnprintf;
7810 
7811 	ssnprintf.show.target = buf;
7812 	ssnprintf.show.flags = flags;
7813 	ssnprintf.show.showfn = btf_snprintf_show;
7814 	ssnprintf.len_left = len;
7815 	ssnprintf.len = 0;
7816 
7817 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7818 
7819 	/* If we encountered an error, return it. */
7820 	if (ssnprintf.show.state.status)
7821 		return ssnprintf.show.state.status;
7822 
7823 	/* Otherwise return length we would have written */
7824 	return ssnprintf.len;
7825 }
7826 
7827 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)7828 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7829 {
7830 	const struct btf *btf = filp->private_data;
7831 
7832 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7833 }
7834 #endif
7835 
btf_release(struct inode * inode,struct file * filp)7836 static int btf_release(struct inode *inode, struct file *filp)
7837 {
7838 	btf_put(filp->private_data);
7839 	return 0;
7840 }
7841 
7842 const struct file_operations btf_fops = {
7843 #ifdef CONFIG_PROC_FS
7844 	.show_fdinfo	= bpf_btf_show_fdinfo,
7845 #endif
7846 	.release	= btf_release,
7847 };
7848 
__btf_new_fd(struct btf * btf)7849 static int __btf_new_fd(struct btf *btf)
7850 {
7851 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7852 }
7853 
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)7854 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7855 {
7856 	struct btf *btf;
7857 	int ret;
7858 
7859 	btf = btf_parse(attr, uattr, uattr_size);
7860 	if (IS_ERR(btf))
7861 		return PTR_ERR(btf);
7862 
7863 	ret = btf_alloc_id(btf);
7864 	if (ret) {
7865 		btf_free(btf);
7866 		return ret;
7867 	}
7868 
7869 	/*
7870 	 * The BTF ID is published to the userspace.
7871 	 * All BTF free must go through call_rcu() from
7872 	 * now on (i.e. free by calling btf_put()).
7873 	 */
7874 
7875 	ret = __btf_new_fd(btf);
7876 	if (ret < 0)
7877 		btf_put(btf);
7878 
7879 	return ret;
7880 }
7881 
btf_get_by_fd(int fd)7882 struct btf *btf_get_by_fd(int fd)
7883 {
7884 	struct btf *btf;
7885 	CLASS(fd, f)(fd);
7886 
7887 	btf = __btf_get_by_fd(f);
7888 	if (!IS_ERR(btf))
7889 		refcount_inc(&btf->refcnt);
7890 
7891 	return btf;
7892 }
7893 
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)7894 int btf_get_info_by_fd(const struct btf *btf,
7895 		       const union bpf_attr *attr,
7896 		       union bpf_attr __user *uattr)
7897 {
7898 	struct bpf_btf_info __user *uinfo;
7899 	struct bpf_btf_info info;
7900 	u32 info_copy, btf_copy;
7901 	void __user *ubtf;
7902 	char __user *uname;
7903 	u32 uinfo_len, uname_len, name_len;
7904 	int ret = 0;
7905 
7906 	uinfo = u64_to_user_ptr(attr->info.info);
7907 	uinfo_len = attr->info.info_len;
7908 
7909 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7910 	memset(&info, 0, sizeof(info));
7911 	if (copy_from_user(&info, uinfo, info_copy))
7912 		return -EFAULT;
7913 
7914 	info.id = btf->id;
7915 	ubtf = u64_to_user_ptr(info.btf);
7916 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7917 	if (copy_to_user(ubtf, btf->data, btf_copy))
7918 		return -EFAULT;
7919 	info.btf_size = btf->data_size;
7920 
7921 	info.kernel_btf = btf->kernel_btf;
7922 
7923 	uname = u64_to_user_ptr(info.name);
7924 	uname_len = info.name_len;
7925 	if (!uname ^ !uname_len)
7926 		return -EINVAL;
7927 
7928 	name_len = strlen(btf->name);
7929 	info.name_len = name_len;
7930 
7931 	if (uname) {
7932 		if (uname_len >= name_len + 1) {
7933 			if (copy_to_user(uname, btf->name, name_len + 1))
7934 				return -EFAULT;
7935 		} else {
7936 			char zero = '\0';
7937 
7938 			if (copy_to_user(uname, btf->name, uname_len - 1))
7939 				return -EFAULT;
7940 			if (put_user(zero, uname + uname_len - 1))
7941 				return -EFAULT;
7942 			/* let user-space know about too short buffer */
7943 			ret = -ENOSPC;
7944 		}
7945 	}
7946 
7947 	if (copy_to_user(uinfo, &info, info_copy) ||
7948 	    put_user(info_copy, &uattr->info.info_len))
7949 		return -EFAULT;
7950 
7951 	return ret;
7952 }
7953 
btf_get_fd_by_id(u32 id)7954 int btf_get_fd_by_id(u32 id)
7955 {
7956 	struct btf *btf;
7957 	int fd;
7958 
7959 	rcu_read_lock();
7960 	btf = idr_find(&btf_idr, id);
7961 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7962 		btf = ERR_PTR(-ENOENT);
7963 	rcu_read_unlock();
7964 
7965 	if (IS_ERR(btf))
7966 		return PTR_ERR(btf);
7967 
7968 	fd = __btf_new_fd(btf);
7969 	if (fd < 0)
7970 		btf_put(btf);
7971 
7972 	return fd;
7973 }
7974 
btf_obj_id(const struct btf * btf)7975 u32 btf_obj_id(const struct btf *btf)
7976 {
7977 	return btf->id;
7978 }
7979 
btf_is_kernel(const struct btf * btf)7980 bool btf_is_kernel(const struct btf *btf)
7981 {
7982 	return btf->kernel_btf;
7983 }
7984 
btf_is_module(const struct btf * btf)7985 bool btf_is_module(const struct btf *btf)
7986 {
7987 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7988 }
7989 
7990 enum {
7991 	BTF_MODULE_F_LIVE = (1 << 0),
7992 };
7993 
7994 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7995 struct btf_module {
7996 	struct list_head list;
7997 	struct module *module;
7998 	struct btf *btf;
7999 	struct bin_attribute *sysfs_attr;
8000 	int flags;
8001 };
8002 
8003 static LIST_HEAD(btf_modules);
8004 static DEFINE_MUTEX(btf_module_mutex);
8005 
8006 static void purge_cand_cache(struct btf *btf);
8007 
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)8008 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8009 			     void *module)
8010 {
8011 	struct btf_module *btf_mod, *tmp;
8012 	struct module *mod = module;
8013 	struct btf *btf;
8014 	int err = 0;
8015 
8016 	if (mod->btf_data_size == 0 ||
8017 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8018 	     op != MODULE_STATE_GOING))
8019 		goto out;
8020 
8021 	switch (op) {
8022 	case MODULE_STATE_COMING:
8023 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8024 		if (!btf_mod) {
8025 			err = -ENOMEM;
8026 			goto out;
8027 		}
8028 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8029 				       mod->btf_base_data, mod->btf_base_data_size);
8030 		if (IS_ERR(btf)) {
8031 			kfree(btf_mod);
8032 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8033 				pr_warn("failed to validate module [%s] BTF: %ld\n",
8034 					mod->name, PTR_ERR(btf));
8035 				err = PTR_ERR(btf);
8036 			} else {
8037 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8038 			}
8039 			goto out;
8040 		}
8041 		err = btf_alloc_id(btf);
8042 		if (err) {
8043 			btf_free(btf);
8044 			kfree(btf_mod);
8045 			goto out;
8046 		}
8047 
8048 		purge_cand_cache(NULL);
8049 		mutex_lock(&btf_module_mutex);
8050 		btf_mod->module = module;
8051 		btf_mod->btf = btf;
8052 		list_add(&btf_mod->list, &btf_modules);
8053 		mutex_unlock(&btf_module_mutex);
8054 
8055 		if (IS_ENABLED(CONFIG_SYSFS)) {
8056 			struct bin_attribute *attr;
8057 
8058 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8059 			if (!attr)
8060 				goto out;
8061 
8062 			sysfs_bin_attr_init(attr);
8063 			attr->attr.name = btf->name;
8064 			attr->attr.mode = 0444;
8065 			attr->size = btf->data_size;
8066 			attr->private = btf->data;
8067 			attr->read_new = sysfs_bin_attr_simple_read;
8068 
8069 			err = sysfs_create_bin_file(btf_kobj, attr);
8070 			if (err) {
8071 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8072 					mod->name, err);
8073 				kfree(attr);
8074 				err = 0;
8075 				goto out;
8076 			}
8077 
8078 			btf_mod->sysfs_attr = attr;
8079 		}
8080 
8081 		break;
8082 	case MODULE_STATE_LIVE:
8083 		mutex_lock(&btf_module_mutex);
8084 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8085 			if (btf_mod->module != module)
8086 				continue;
8087 
8088 			btf_mod->flags |= BTF_MODULE_F_LIVE;
8089 			break;
8090 		}
8091 		mutex_unlock(&btf_module_mutex);
8092 		break;
8093 	case MODULE_STATE_GOING:
8094 		mutex_lock(&btf_module_mutex);
8095 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8096 			if (btf_mod->module != module)
8097 				continue;
8098 
8099 			list_del(&btf_mod->list);
8100 			if (btf_mod->sysfs_attr)
8101 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8102 			purge_cand_cache(btf_mod->btf);
8103 			btf_put(btf_mod->btf);
8104 			kfree(btf_mod->sysfs_attr);
8105 			kfree(btf_mod);
8106 			break;
8107 		}
8108 		mutex_unlock(&btf_module_mutex);
8109 		break;
8110 	}
8111 out:
8112 	return notifier_from_errno(err);
8113 }
8114 
8115 static struct notifier_block btf_module_nb = {
8116 	.notifier_call = btf_module_notify,
8117 };
8118 
btf_module_init(void)8119 static int __init btf_module_init(void)
8120 {
8121 	register_module_notifier(&btf_module_nb);
8122 	return 0;
8123 }
8124 
8125 fs_initcall(btf_module_init);
8126 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8127 
btf_try_get_module(const struct btf * btf)8128 struct module *btf_try_get_module(const struct btf *btf)
8129 {
8130 	struct module *res = NULL;
8131 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8132 	struct btf_module *btf_mod, *tmp;
8133 
8134 	mutex_lock(&btf_module_mutex);
8135 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8136 		if (btf_mod->btf != btf)
8137 			continue;
8138 
8139 		/* We must only consider module whose __init routine has
8140 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8141 		 * which is set from the notifier callback for
8142 		 * MODULE_STATE_LIVE.
8143 		 */
8144 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8145 			res = btf_mod->module;
8146 
8147 		break;
8148 	}
8149 	mutex_unlock(&btf_module_mutex);
8150 #endif
8151 
8152 	return res;
8153 }
8154 
8155 /* Returns struct btf corresponding to the struct module.
8156  * This function can return NULL or ERR_PTR.
8157  */
btf_get_module_btf(const struct module * module)8158 static struct btf *btf_get_module_btf(const struct module *module)
8159 {
8160 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8161 	struct btf_module *btf_mod, *tmp;
8162 #endif
8163 	struct btf *btf = NULL;
8164 
8165 	if (!module) {
8166 		btf = bpf_get_btf_vmlinux();
8167 		if (!IS_ERR_OR_NULL(btf))
8168 			btf_get(btf);
8169 		return btf;
8170 	}
8171 
8172 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8173 	mutex_lock(&btf_module_mutex);
8174 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8175 		if (btf_mod->module != module)
8176 			continue;
8177 
8178 		btf_get(btf_mod->btf);
8179 		btf = btf_mod->btf;
8180 		break;
8181 	}
8182 	mutex_unlock(&btf_module_mutex);
8183 #endif
8184 
8185 	return btf;
8186 }
8187 
check_btf_kconfigs(const struct module * module,const char * feature)8188 static int check_btf_kconfigs(const struct module *module, const char *feature)
8189 {
8190 	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8191 		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8192 		return -ENOENT;
8193 	}
8194 	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8195 		pr_warn("missing module BTF, cannot register %s\n", feature);
8196 	return 0;
8197 }
8198 
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)8199 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8200 {
8201 	struct btf *btf = NULL;
8202 	int btf_obj_fd = 0;
8203 	long ret;
8204 
8205 	if (flags)
8206 		return -EINVAL;
8207 
8208 	if (name_sz <= 1 || name[name_sz - 1])
8209 		return -EINVAL;
8210 
8211 	ret = bpf_find_btf_id(name, kind, &btf);
8212 	if (ret > 0 && btf_is_module(btf)) {
8213 		btf_obj_fd = __btf_new_fd(btf);
8214 		if (btf_obj_fd < 0) {
8215 			btf_put(btf);
8216 			return btf_obj_fd;
8217 		}
8218 		return ret | (((u64)btf_obj_fd) << 32);
8219 	}
8220 	if (ret > 0)
8221 		btf_put(btf);
8222 	return ret;
8223 }
8224 
8225 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8226 	.func		= bpf_btf_find_by_name_kind,
8227 	.gpl_only	= false,
8228 	.ret_type	= RET_INTEGER,
8229 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
8230 	.arg2_type	= ARG_CONST_SIZE,
8231 	.arg3_type	= ARG_ANYTHING,
8232 	.arg4_type	= ARG_ANYTHING,
8233 };
8234 
BTF_ID_LIST_GLOBAL(btf_tracing_ids,MAX_BTF_TRACING_TYPE)8235 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8236 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8237 BTF_TRACING_TYPE_xxx
8238 #undef BTF_TRACING_TYPE
8239 
8240 /* Validate well-formedness of iter argument type.
8241  * On success, return positive BTF ID of iter state's STRUCT type.
8242  * On error, negative error is returned.
8243  */
8244 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8245 {
8246 	const struct btf_param *arg;
8247 	const struct btf_type *t;
8248 	const char *name;
8249 	int btf_id;
8250 
8251 	if (btf_type_vlen(func) <= arg_idx)
8252 		return -EINVAL;
8253 
8254 	arg = &btf_params(func)[arg_idx];
8255 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8256 	if (!t || !btf_type_is_ptr(t))
8257 		return -EINVAL;
8258 	t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8259 	if (!t || !__btf_type_is_struct(t))
8260 		return -EINVAL;
8261 
8262 	name = btf_name_by_offset(btf, t->name_off);
8263 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8264 		return -EINVAL;
8265 
8266 	return btf_id;
8267 }
8268 
btf_check_iter_kfuncs(struct btf * btf,const char * func_name,const struct btf_type * func,u32 func_flags)8269 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8270 				 const struct btf_type *func, u32 func_flags)
8271 {
8272 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8273 	const char *sfx, *iter_name;
8274 	const struct btf_type *t;
8275 	char exp_name[128];
8276 	u32 nr_args;
8277 	int btf_id;
8278 
8279 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8280 	if (!flags || (flags & (flags - 1)))
8281 		return -EINVAL;
8282 
8283 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8284 	nr_args = btf_type_vlen(func);
8285 	if (nr_args < 1)
8286 		return -EINVAL;
8287 
8288 	btf_id = btf_check_iter_arg(btf, func, 0);
8289 	if (btf_id < 0)
8290 		return btf_id;
8291 
8292 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8293 	 * fit nicely in stack slots
8294 	 */
8295 	t = btf_type_by_id(btf, btf_id);
8296 	if (t->size == 0 || (t->size % 8))
8297 		return -EINVAL;
8298 
8299 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8300 	 * naming pattern
8301 	 */
8302 	iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8303 	if (flags & KF_ITER_NEW)
8304 		sfx = "new";
8305 	else if (flags & KF_ITER_NEXT)
8306 		sfx = "next";
8307 	else /* (flags & KF_ITER_DESTROY) */
8308 		sfx = "destroy";
8309 
8310 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8311 	if (strcmp(func_name, exp_name))
8312 		return -EINVAL;
8313 
8314 	/* only iter constructor should have extra arguments */
8315 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
8316 		return -EINVAL;
8317 
8318 	if (flags & KF_ITER_NEXT) {
8319 		/* bpf_iter_<type>_next() should return pointer */
8320 		t = btf_type_skip_modifiers(btf, func->type, NULL);
8321 		if (!t || !btf_type_is_ptr(t))
8322 			return -EINVAL;
8323 	}
8324 
8325 	if (flags & KF_ITER_DESTROY) {
8326 		/* bpf_iter_<type>_destroy() should return void */
8327 		t = btf_type_by_id(btf, func->type);
8328 		if (!t || !btf_type_is_void(t))
8329 			return -EINVAL;
8330 	}
8331 
8332 	return 0;
8333 }
8334 
btf_check_kfunc_protos(struct btf * btf,u32 func_id,u32 func_flags)8335 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8336 {
8337 	const struct btf_type *func;
8338 	const char *func_name;
8339 	int err;
8340 
8341 	/* any kfunc should be FUNC -> FUNC_PROTO */
8342 	func = btf_type_by_id(btf, func_id);
8343 	if (!func || !btf_type_is_func(func))
8344 		return -EINVAL;
8345 
8346 	/* sanity check kfunc name */
8347 	func_name = btf_name_by_offset(btf, func->name_off);
8348 	if (!func_name || !func_name[0])
8349 		return -EINVAL;
8350 
8351 	func = btf_type_by_id(btf, func->type);
8352 	if (!func || !btf_type_is_func_proto(func))
8353 		return -EINVAL;
8354 
8355 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8356 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8357 		if (err)
8358 			return err;
8359 	}
8360 
8361 	return 0;
8362 }
8363 
8364 /* Kernel Function (kfunc) BTF ID set registration API */
8365 
btf_populate_kfunc_set(struct btf * btf,enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8366 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8367 				  const struct btf_kfunc_id_set *kset)
8368 {
8369 	struct btf_kfunc_hook_filter *hook_filter;
8370 	struct btf_id_set8 *add_set = kset->set;
8371 	bool vmlinux_set = !btf_is_module(btf);
8372 	bool add_filter = !!kset->filter;
8373 	struct btf_kfunc_set_tab *tab;
8374 	struct btf_id_set8 *set;
8375 	u32 set_cnt, i;
8376 	int ret;
8377 
8378 	if (hook >= BTF_KFUNC_HOOK_MAX) {
8379 		ret = -EINVAL;
8380 		goto end;
8381 	}
8382 
8383 	if (!add_set->cnt)
8384 		return 0;
8385 
8386 	tab = btf->kfunc_set_tab;
8387 
8388 	if (tab && add_filter) {
8389 		u32 i;
8390 
8391 		hook_filter = &tab->hook_filters[hook];
8392 		for (i = 0; i < hook_filter->nr_filters; i++) {
8393 			if (hook_filter->filters[i] == kset->filter) {
8394 				add_filter = false;
8395 				break;
8396 			}
8397 		}
8398 
8399 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8400 			ret = -E2BIG;
8401 			goto end;
8402 		}
8403 	}
8404 
8405 	if (!tab) {
8406 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8407 		if (!tab)
8408 			return -ENOMEM;
8409 		btf->kfunc_set_tab = tab;
8410 	}
8411 
8412 	set = tab->sets[hook];
8413 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8414 	 * for module sets.
8415 	 */
8416 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8417 		ret = -EINVAL;
8418 		goto end;
8419 	}
8420 
8421 	/* In case of vmlinux sets, there may be more than one set being
8422 	 * registered per hook. To create a unified set, we allocate a new set
8423 	 * and concatenate all individual sets being registered. While each set
8424 	 * is individually sorted, they may become unsorted when concatenated,
8425 	 * hence re-sorting the final set again is required to make binary
8426 	 * searching the set using btf_id_set8_contains function work.
8427 	 *
8428 	 * For module sets, we need to allocate as we may need to relocate
8429 	 * BTF ids.
8430 	 */
8431 	set_cnt = set ? set->cnt : 0;
8432 
8433 	if (set_cnt > U32_MAX - add_set->cnt) {
8434 		ret = -EOVERFLOW;
8435 		goto end;
8436 	}
8437 
8438 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8439 		ret = -E2BIG;
8440 		goto end;
8441 	}
8442 
8443 	/* Grow set */
8444 	set = krealloc(tab->sets[hook],
8445 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8446 		       GFP_KERNEL | __GFP_NOWARN);
8447 	if (!set) {
8448 		ret = -ENOMEM;
8449 		goto end;
8450 	}
8451 
8452 	/* For newly allocated set, initialize set->cnt to 0 */
8453 	if (!tab->sets[hook])
8454 		set->cnt = 0;
8455 	tab->sets[hook] = set;
8456 
8457 	/* Concatenate the two sets */
8458 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8459 	/* Now that the set is copied, update with relocated BTF ids */
8460 	for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8461 		set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8462 
8463 	set->cnt += add_set->cnt;
8464 
8465 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8466 
8467 	if (add_filter) {
8468 		hook_filter = &tab->hook_filters[hook];
8469 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8470 	}
8471 	return 0;
8472 end:
8473 	btf_free_kfunc_set_tab(btf);
8474 	return ret;
8475 }
8476 
__btf_kfunc_id_set_contains(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id,const struct bpf_prog * prog)8477 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8478 					enum btf_kfunc_hook hook,
8479 					u32 kfunc_btf_id,
8480 					const struct bpf_prog *prog)
8481 {
8482 	struct btf_kfunc_hook_filter *hook_filter;
8483 	struct btf_id_set8 *set;
8484 	u32 *id, i;
8485 
8486 	if (hook >= BTF_KFUNC_HOOK_MAX)
8487 		return NULL;
8488 	if (!btf->kfunc_set_tab)
8489 		return NULL;
8490 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8491 	for (i = 0; i < hook_filter->nr_filters; i++) {
8492 		if (hook_filter->filters[i](prog, kfunc_btf_id))
8493 			return NULL;
8494 	}
8495 	set = btf->kfunc_set_tab->sets[hook];
8496 	if (!set)
8497 		return NULL;
8498 	id = btf_id_set8_contains(set, kfunc_btf_id);
8499 	if (!id)
8500 		return NULL;
8501 	/* The flags for BTF ID are located next to it */
8502 	return id + 1;
8503 }
8504 
bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)8505 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8506 {
8507 	switch (prog_type) {
8508 	case BPF_PROG_TYPE_UNSPEC:
8509 		return BTF_KFUNC_HOOK_COMMON;
8510 	case BPF_PROG_TYPE_XDP:
8511 		return BTF_KFUNC_HOOK_XDP;
8512 	case BPF_PROG_TYPE_SCHED_CLS:
8513 		return BTF_KFUNC_HOOK_TC;
8514 	case BPF_PROG_TYPE_STRUCT_OPS:
8515 		return BTF_KFUNC_HOOK_STRUCT_OPS;
8516 	case BPF_PROG_TYPE_TRACING:
8517 	case BPF_PROG_TYPE_TRACEPOINT:
8518 	case BPF_PROG_TYPE_PERF_EVENT:
8519 	case BPF_PROG_TYPE_LSM:
8520 		return BTF_KFUNC_HOOK_TRACING;
8521 	case BPF_PROG_TYPE_SYSCALL:
8522 		return BTF_KFUNC_HOOK_SYSCALL;
8523 	case BPF_PROG_TYPE_CGROUP_SKB:
8524 	case BPF_PROG_TYPE_CGROUP_SOCK:
8525 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8526 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8527 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8528 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8529 		return BTF_KFUNC_HOOK_CGROUP;
8530 	case BPF_PROG_TYPE_SCHED_ACT:
8531 		return BTF_KFUNC_HOOK_SCHED_ACT;
8532 	case BPF_PROG_TYPE_SK_SKB:
8533 		return BTF_KFUNC_HOOK_SK_SKB;
8534 	case BPF_PROG_TYPE_SOCKET_FILTER:
8535 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8536 	case BPF_PROG_TYPE_LWT_OUT:
8537 	case BPF_PROG_TYPE_LWT_IN:
8538 	case BPF_PROG_TYPE_LWT_XMIT:
8539 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8540 		return BTF_KFUNC_HOOK_LWT;
8541 	case BPF_PROG_TYPE_NETFILTER:
8542 		return BTF_KFUNC_HOOK_NETFILTER;
8543 	case BPF_PROG_TYPE_KPROBE:
8544 		return BTF_KFUNC_HOOK_KPROBE;
8545 	default:
8546 		return BTF_KFUNC_HOOK_MAX;
8547 	}
8548 }
8549 
8550 /* Caution:
8551  * Reference to the module (obtained using btf_try_get_module) corresponding to
8552  * the struct btf *MUST* be held when calling this function from verifier
8553  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8554  * keeping the reference for the duration of the call provides the necessary
8555  * protection for looking up a well-formed btf->kfunc_set_tab.
8556  */
btf_kfunc_id_set_contains(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8557 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8558 			       u32 kfunc_btf_id,
8559 			       const struct bpf_prog *prog)
8560 {
8561 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8562 	enum btf_kfunc_hook hook;
8563 	u32 *kfunc_flags;
8564 
8565 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8566 	if (kfunc_flags)
8567 		return kfunc_flags;
8568 
8569 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8570 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8571 }
8572 
btf_kfunc_is_modify_return(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8573 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8574 				const struct bpf_prog *prog)
8575 {
8576 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8577 }
8578 
__register_btf_kfunc_id_set(enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8579 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8580 				       const struct btf_kfunc_id_set *kset)
8581 {
8582 	struct btf *btf;
8583 	int ret, i;
8584 
8585 	btf = btf_get_module_btf(kset->owner);
8586 	if (!btf)
8587 		return check_btf_kconfigs(kset->owner, "kfunc");
8588 	if (IS_ERR(btf))
8589 		return PTR_ERR(btf);
8590 
8591 	for (i = 0; i < kset->set->cnt; i++) {
8592 		ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8593 					     kset->set->pairs[i].flags);
8594 		if (ret)
8595 			goto err_out;
8596 	}
8597 
8598 	ret = btf_populate_kfunc_set(btf, hook, kset);
8599 
8600 err_out:
8601 	btf_put(btf);
8602 	return ret;
8603 }
8604 
8605 /* This function must be invoked only from initcalls/module init functions */
register_btf_kfunc_id_set(enum bpf_prog_type prog_type,const struct btf_kfunc_id_set * kset)8606 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8607 			      const struct btf_kfunc_id_set *kset)
8608 {
8609 	enum btf_kfunc_hook hook;
8610 
8611 	/* All kfuncs need to be tagged as such in BTF.
8612 	 * WARN() for initcall registrations that do not check errors.
8613 	 */
8614 	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8615 		WARN_ON(!kset->owner);
8616 		return -EINVAL;
8617 	}
8618 
8619 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8620 	return __register_btf_kfunc_id_set(hook, kset);
8621 }
8622 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8623 
8624 /* This function must be invoked only from initcalls/module init functions */
register_btf_fmodret_id_set(const struct btf_kfunc_id_set * kset)8625 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8626 {
8627 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8628 }
8629 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8630 
btf_find_dtor_kfunc(struct btf * btf,u32 btf_id)8631 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8632 {
8633 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8634 	struct btf_id_dtor_kfunc *dtor;
8635 
8636 	if (!tab)
8637 		return -ENOENT;
8638 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8639 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8640 	 */
8641 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8642 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8643 	if (!dtor)
8644 		return -ENOENT;
8645 	return dtor->kfunc_btf_id;
8646 }
8647 
btf_check_dtor_kfuncs(struct btf * btf,const struct btf_id_dtor_kfunc * dtors,u32 cnt)8648 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8649 {
8650 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8651 	const struct btf_param *args;
8652 	s32 dtor_btf_id;
8653 	u32 nr_args, i;
8654 
8655 	for (i = 0; i < cnt; i++) {
8656 		dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8657 
8658 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8659 		if (!dtor_func || !btf_type_is_func(dtor_func))
8660 			return -EINVAL;
8661 
8662 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8663 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8664 			return -EINVAL;
8665 
8666 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8667 		t = btf_type_by_id(btf, dtor_func_proto->type);
8668 		if (!t || !btf_type_is_void(t))
8669 			return -EINVAL;
8670 
8671 		nr_args = btf_type_vlen(dtor_func_proto);
8672 		if (nr_args != 1)
8673 			return -EINVAL;
8674 		args = btf_params(dtor_func_proto);
8675 		t = btf_type_by_id(btf, args[0].type);
8676 		/* Allow any pointer type, as width on targets Linux supports
8677 		 * will be same for all pointer types (i.e. sizeof(void *))
8678 		 */
8679 		if (!t || !btf_type_is_ptr(t))
8680 			return -EINVAL;
8681 	}
8682 	return 0;
8683 }
8684 
8685 /* This function must be invoked only from initcalls/module init functions */
register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc * dtors,u32 add_cnt,struct module * owner)8686 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8687 				struct module *owner)
8688 {
8689 	struct btf_id_dtor_kfunc_tab *tab;
8690 	struct btf *btf;
8691 	u32 tab_cnt, i;
8692 	int ret;
8693 
8694 	btf = btf_get_module_btf(owner);
8695 	if (!btf)
8696 		return check_btf_kconfigs(owner, "dtor kfuncs");
8697 	if (IS_ERR(btf))
8698 		return PTR_ERR(btf);
8699 
8700 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8701 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8702 		ret = -E2BIG;
8703 		goto end;
8704 	}
8705 
8706 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8707 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8708 	if (ret < 0)
8709 		goto end;
8710 
8711 	tab = btf->dtor_kfunc_tab;
8712 	/* Only one call allowed for modules */
8713 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8714 		ret = -EINVAL;
8715 		goto end;
8716 	}
8717 
8718 	tab_cnt = tab ? tab->cnt : 0;
8719 	if (tab_cnt > U32_MAX - add_cnt) {
8720 		ret = -EOVERFLOW;
8721 		goto end;
8722 	}
8723 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8724 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8725 		ret = -E2BIG;
8726 		goto end;
8727 	}
8728 
8729 	tab = krealloc(btf->dtor_kfunc_tab,
8730 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8731 		       GFP_KERNEL | __GFP_NOWARN);
8732 	if (!tab) {
8733 		ret = -ENOMEM;
8734 		goto end;
8735 	}
8736 
8737 	if (!btf->dtor_kfunc_tab)
8738 		tab->cnt = 0;
8739 	btf->dtor_kfunc_tab = tab;
8740 
8741 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8742 
8743 	/* remap BTF ids based on BTF relocation (if any) */
8744 	for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8745 		tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8746 		tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8747 	}
8748 
8749 	tab->cnt += add_cnt;
8750 
8751 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8752 
8753 end:
8754 	if (ret)
8755 		btf_free_dtor_kfunc_tab(btf);
8756 	btf_put(btf);
8757 	return ret;
8758 }
8759 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8760 
8761 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8762 
8763 /* Check local and target types for compatibility. This check is used for
8764  * type-based CO-RE relocations and follow slightly different rules than
8765  * field-based relocations. This function assumes that root types were already
8766  * checked for name match. Beyond that initial root-level name check, names
8767  * are completely ignored. Compatibility rules are as follows:
8768  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8769  *     kind should match for local and target types (i.e., STRUCT is not
8770  *     compatible with UNION);
8771  *   - for ENUMs/ENUM64s, the size is ignored;
8772  *   - for INT, size and signedness are ignored;
8773  *   - for ARRAY, dimensionality is ignored, element types are checked for
8774  *     compatibility recursively;
8775  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8776  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8777  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8778  *     number of input args and compatible return and argument types.
8779  * These rules are not set in stone and probably will be adjusted as we get
8780  * more experience with using BPF CO-RE relocations.
8781  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)8782 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8783 			      const struct btf *targ_btf, __u32 targ_id)
8784 {
8785 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8786 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8787 }
8788 
8789 #define MAX_TYPES_MATCH_DEPTH 2
8790 
bpf_core_types_match(const struct btf * local_btf,u32 local_id,const struct btf * targ_btf,u32 targ_id)8791 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8792 			 const struct btf *targ_btf, u32 targ_id)
8793 {
8794 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8795 				      MAX_TYPES_MATCH_DEPTH);
8796 }
8797 
bpf_core_is_flavor_sep(const char * s)8798 static bool bpf_core_is_flavor_sep(const char *s)
8799 {
8800 	/* check X___Y name pattern, where X and Y are not underscores */
8801 	return s[0] != '_' &&				      /* X */
8802 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8803 	       s[4] != '_';				      /* Y */
8804 }
8805 
bpf_core_essential_name_len(const char * name)8806 size_t bpf_core_essential_name_len(const char *name)
8807 {
8808 	size_t n = strlen(name);
8809 	int i;
8810 
8811 	for (i = n - 5; i >= 0; i--) {
8812 		if (bpf_core_is_flavor_sep(name + i))
8813 			return i + 1;
8814 	}
8815 	return n;
8816 }
8817 
bpf_free_cands(struct bpf_cand_cache * cands)8818 static void bpf_free_cands(struct bpf_cand_cache *cands)
8819 {
8820 	if (!cands->cnt)
8821 		/* empty candidate array was allocated on stack */
8822 		return;
8823 	kfree(cands);
8824 }
8825 
bpf_free_cands_from_cache(struct bpf_cand_cache * cands)8826 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8827 {
8828 	kfree(cands->name);
8829 	kfree(cands);
8830 }
8831 
8832 #define VMLINUX_CAND_CACHE_SIZE 31
8833 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8834 
8835 #define MODULE_CAND_CACHE_SIZE 31
8836 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8837 
__print_cand_cache(struct bpf_verifier_log * log,struct bpf_cand_cache ** cache,int cache_size)8838 static void __print_cand_cache(struct bpf_verifier_log *log,
8839 			       struct bpf_cand_cache **cache,
8840 			       int cache_size)
8841 {
8842 	struct bpf_cand_cache *cc;
8843 	int i, j;
8844 
8845 	for (i = 0; i < cache_size; i++) {
8846 		cc = cache[i];
8847 		if (!cc)
8848 			continue;
8849 		bpf_log(log, "[%d]%s(", i, cc->name);
8850 		for (j = 0; j < cc->cnt; j++) {
8851 			bpf_log(log, "%d", cc->cands[j].id);
8852 			if (j < cc->cnt - 1)
8853 				bpf_log(log, " ");
8854 		}
8855 		bpf_log(log, "), ");
8856 	}
8857 }
8858 
print_cand_cache(struct bpf_verifier_log * log)8859 static void print_cand_cache(struct bpf_verifier_log *log)
8860 {
8861 	mutex_lock(&cand_cache_mutex);
8862 	bpf_log(log, "vmlinux_cand_cache:");
8863 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8864 	bpf_log(log, "\nmodule_cand_cache:");
8865 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8866 	bpf_log(log, "\n");
8867 	mutex_unlock(&cand_cache_mutex);
8868 }
8869 
hash_cands(struct bpf_cand_cache * cands)8870 static u32 hash_cands(struct bpf_cand_cache *cands)
8871 {
8872 	return jhash(cands->name, cands->name_len, 0);
8873 }
8874 
check_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8875 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8876 					       struct bpf_cand_cache **cache,
8877 					       int cache_size)
8878 {
8879 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8880 
8881 	if (cc && cc->name_len == cands->name_len &&
8882 	    !strncmp(cc->name, cands->name, cands->name_len))
8883 		return cc;
8884 	return NULL;
8885 }
8886 
sizeof_cands(int cnt)8887 static size_t sizeof_cands(int cnt)
8888 {
8889 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8890 }
8891 
populate_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8892 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8893 						  struct bpf_cand_cache **cache,
8894 						  int cache_size)
8895 {
8896 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8897 
8898 	if (*cc) {
8899 		bpf_free_cands_from_cache(*cc);
8900 		*cc = NULL;
8901 	}
8902 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8903 	if (!new_cands) {
8904 		bpf_free_cands(cands);
8905 		return ERR_PTR(-ENOMEM);
8906 	}
8907 	/* strdup the name, since it will stay in cache.
8908 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8909 	 */
8910 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8911 	bpf_free_cands(cands);
8912 	if (!new_cands->name) {
8913 		kfree(new_cands);
8914 		return ERR_PTR(-ENOMEM);
8915 	}
8916 	*cc = new_cands;
8917 	return new_cands;
8918 }
8919 
8920 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
__purge_cand_cache(struct btf * btf,struct bpf_cand_cache ** cache,int cache_size)8921 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8922 			       int cache_size)
8923 {
8924 	struct bpf_cand_cache *cc;
8925 	int i, j;
8926 
8927 	for (i = 0; i < cache_size; i++) {
8928 		cc = cache[i];
8929 		if (!cc)
8930 			continue;
8931 		if (!btf) {
8932 			/* when new module is loaded purge all of module_cand_cache,
8933 			 * since new module might have candidates with the name
8934 			 * that matches cached cands.
8935 			 */
8936 			bpf_free_cands_from_cache(cc);
8937 			cache[i] = NULL;
8938 			continue;
8939 		}
8940 		/* when module is unloaded purge cache entries
8941 		 * that match module's btf
8942 		 */
8943 		for (j = 0; j < cc->cnt; j++)
8944 			if (cc->cands[j].btf == btf) {
8945 				bpf_free_cands_from_cache(cc);
8946 				cache[i] = NULL;
8947 				break;
8948 			}
8949 	}
8950 
8951 }
8952 
purge_cand_cache(struct btf * btf)8953 static void purge_cand_cache(struct btf *btf)
8954 {
8955 	mutex_lock(&cand_cache_mutex);
8956 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8957 	mutex_unlock(&cand_cache_mutex);
8958 }
8959 #endif
8960 
8961 static struct bpf_cand_cache *
bpf_core_add_cands(struct bpf_cand_cache * cands,const struct btf * targ_btf,int targ_start_id)8962 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8963 		   int targ_start_id)
8964 {
8965 	struct bpf_cand_cache *new_cands;
8966 	const struct btf_type *t;
8967 	const char *targ_name;
8968 	size_t targ_essent_len;
8969 	int n, i;
8970 
8971 	n = btf_nr_types(targ_btf);
8972 	for (i = targ_start_id; i < n; i++) {
8973 		t = btf_type_by_id(targ_btf, i);
8974 		if (btf_kind(t) != cands->kind)
8975 			continue;
8976 
8977 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8978 		if (!targ_name)
8979 			continue;
8980 
8981 		/* the resched point is before strncmp to make sure that search
8982 		 * for non-existing name will have a chance to schedule().
8983 		 */
8984 		cond_resched();
8985 
8986 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8987 			continue;
8988 
8989 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8990 		if (targ_essent_len != cands->name_len)
8991 			continue;
8992 
8993 		/* most of the time there is only one candidate for a given kind+name pair */
8994 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8995 		if (!new_cands) {
8996 			bpf_free_cands(cands);
8997 			return ERR_PTR(-ENOMEM);
8998 		}
8999 
9000 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9001 		bpf_free_cands(cands);
9002 		cands = new_cands;
9003 		cands->cands[cands->cnt].btf = targ_btf;
9004 		cands->cands[cands->cnt].id = i;
9005 		cands->cnt++;
9006 	}
9007 	return cands;
9008 }
9009 
9010 static struct bpf_cand_cache *
bpf_core_find_cands(struct bpf_core_ctx * ctx,u32 local_type_id)9011 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9012 {
9013 	struct bpf_cand_cache *cands, *cc, local_cand = {};
9014 	const struct btf *local_btf = ctx->btf;
9015 	const struct btf_type *local_type;
9016 	const struct btf *main_btf;
9017 	size_t local_essent_len;
9018 	struct btf *mod_btf;
9019 	const char *name;
9020 	int id;
9021 
9022 	main_btf = bpf_get_btf_vmlinux();
9023 	if (IS_ERR(main_btf))
9024 		return ERR_CAST(main_btf);
9025 	if (!main_btf)
9026 		return ERR_PTR(-EINVAL);
9027 
9028 	local_type = btf_type_by_id(local_btf, local_type_id);
9029 	if (!local_type)
9030 		return ERR_PTR(-EINVAL);
9031 
9032 	name = btf_name_by_offset(local_btf, local_type->name_off);
9033 	if (str_is_empty(name))
9034 		return ERR_PTR(-EINVAL);
9035 	local_essent_len = bpf_core_essential_name_len(name);
9036 
9037 	cands = &local_cand;
9038 	cands->name = name;
9039 	cands->kind = btf_kind(local_type);
9040 	cands->name_len = local_essent_len;
9041 
9042 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9043 	/* cands is a pointer to stack here */
9044 	if (cc) {
9045 		if (cc->cnt)
9046 			return cc;
9047 		goto check_modules;
9048 	}
9049 
9050 	/* Attempt to find target candidates in vmlinux BTF first */
9051 	cands = bpf_core_add_cands(cands, main_btf, 1);
9052 	if (IS_ERR(cands))
9053 		return ERR_CAST(cands);
9054 
9055 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9056 
9057 	/* populate cache even when cands->cnt == 0 */
9058 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9059 	if (IS_ERR(cc))
9060 		return ERR_CAST(cc);
9061 
9062 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
9063 	if (cc->cnt)
9064 		return cc;
9065 
9066 check_modules:
9067 	/* cands is a pointer to stack here and cands->cnt == 0 */
9068 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9069 	if (cc)
9070 		/* if cache has it return it even if cc->cnt == 0 */
9071 		return cc;
9072 
9073 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9074 	spin_lock_bh(&btf_idr_lock);
9075 	idr_for_each_entry(&btf_idr, mod_btf, id) {
9076 		if (!btf_is_module(mod_btf))
9077 			continue;
9078 		/* linear search could be slow hence unlock/lock
9079 		 * the IDR to avoiding holding it for too long
9080 		 */
9081 		btf_get(mod_btf);
9082 		spin_unlock_bh(&btf_idr_lock);
9083 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
9084 		btf_put(mod_btf);
9085 		if (IS_ERR(cands))
9086 			return ERR_CAST(cands);
9087 		spin_lock_bh(&btf_idr_lock);
9088 	}
9089 	spin_unlock_bh(&btf_idr_lock);
9090 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
9091 	 * or pointer to stack if cands->cnd == 0.
9092 	 * Copy it into the cache even when cands->cnt == 0 and
9093 	 * return the result.
9094 	 */
9095 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9096 }
9097 
bpf_core_apply(struct bpf_core_ctx * ctx,const struct bpf_core_relo * relo,int relo_idx,void * insn)9098 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9099 		   int relo_idx, void *insn)
9100 {
9101 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9102 	struct bpf_core_cand_list cands = {};
9103 	struct bpf_core_relo_res targ_res;
9104 	struct bpf_core_spec *specs;
9105 	const struct btf_type *type;
9106 	int err;
9107 
9108 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9109 	 * into arrays of btf_ids of struct fields and array indices.
9110 	 */
9111 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
9112 	if (!specs)
9113 		return -ENOMEM;
9114 
9115 	type = btf_type_by_id(ctx->btf, relo->type_id);
9116 	if (!type) {
9117 		bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9118 			relo_idx, relo->type_id);
9119 		kfree(specs);
9120 		return -EINVAL;
9121 	}
9122 
9123 	if (need_cands) {
9124 		struct bpf_cand_cache *cc;
9125 		int i;
9126 
9127 		mutex_lock(&cand_cache_mutex);
9128 		cc = bpf_core_find_cands(ctx, relo->type_id);
9129 		if (IS_ERR(cc)) {
9130 			bpf_log(ctx->log, "target candidate search failed for %d\n",
9131 				relo->type_id);
9132 			err = PTR_ERR(cc);
9133 			goto out;
9134 		}
9135 		if (cc->cnt) {
9136 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
9137 			if (!cands.cands) {
9138 				err = -ENOMEM;
9139 				goto out;
9140 			}
9141 		}
9142 		for (i = 0; i < cc->cnt; i++) {
9143 			bpf_log(ctx->log,
9144 				"CO-RE relocating %s %s: found target candidate [%d]\n",
9145 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9146 			cands.cands[i].btf = cc->cands[i].btf;
9147 			cands.cands[i].id = cc->cands[i].id;
9148 		}
9149 		cands.len = cc->cnt;
9150 		/* cand_cache_mutex needs to span the cache lookup and
9151 		 * copy of btf pointer into bpf_core_cand_list,
9152 		 * since module can be unloaded while bpf_core_calc_relo_insn
9153 		 * is working with module's btf.
9154 		 */
9155 	}
9156 
9157 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9158 				      &targ_res);
9159 	if (err)
9160 		goto out;
9161 
9162 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9163 				  &targ_res);
9164 
9165 out:
9166 	kfree(specs);
9167 	if (need_cands) {
9168 		kfree(cands.cands);
9169 		mutex_unlock(&cand_cache_mutex);
9170 		if (ctx->log->level & BPF_LOG_LEVEL2)
9171 			print_cand_cache(ctx->log);
9172 	}
9173 	return err;
9174 }
9175 
btf_nested_type_is_trusted(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,const char * field_name,u32 btf_id,const char * suffix)9176 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9177 				const struct bpf_reg_state *reg,
9178 				const char *field_name, u32 btf_id, const char *suffix)
9179 {
9180 	struct btf *btf = reg->btf;
9181 	const struct btf_type *walk_type, *safe_type;
9182 	const char *tname;
9183 	char safe_tname[64];
9184 	long ret, safe_id;
9185 	const struct btf_member *member;
9186 	u32 i;
9187 
9188 	walk_type = btf_type_by_id(btf, reg->btf_id);
9189 	if (!walk_type)
9190 		return false;
9191 
9192 	tname = btf_name_by_offset(btf, walk_type->name_off);
9193 
9194 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9195 	if (ret >= sizeof(safe_tname))
9196 		return false;
9197 
9198 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9199 	if (safe_id < 0)
9200 		return false;
9201 
9202 	safe_type = btf_type_by_id(btf, safe_id);
9203 	if (!safe_type)
9204 		return false;
9205 
9206 	for_each_member(i, safe_type, member) {
9207 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
9208 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9209 		u32 id;
9210 
9211 		if (!btf_type_is_ptr(mtype))
9212 			continue;
9213 
9214 		btf_type_skip_modifiers(btf, mtype->type, &id);
9215 		/* If we match on both type and name, the field is considered trusted. */
9216 		if (btf_id == id && !strcmp(field_name, m_name))
9217 			return true;
9218 	}
9219 
9220 	return false;
9221 }
9222 
btf_type_ids_nocast_alias(struct bpf_verifier_log * log,const struct btf * reg_btf,u32 reg_id,const struct btf * arg_btf,u32 arg_id)9223 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9224 			       const struct btf *reg_btf, u32 reg_id,
9225 			       const struct btf *arg_btf, u32 arg_id)
9226 {
9227 	const char *reg_name, *arg_name, *search_needle;
9228 	const struct btf_type *reg_type, *arg_type;
9229 	int reg_len, arg_len, cmp_len;
9230 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9231 
9232 	reg_type = btf_type_by_id(reg_btf, reg_id);
9233 	if (!reg_type)
9234 		return false;
9235 
9236 	arg_type = btf_type_by_id(arg_btf, arg_id);
9237 	if (!arg_type)
9238 		return false;
9239 
9240 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9241 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9242 
9243 	reg_len = strlen(reg_name);
9244 	arg_len = strlen(arg_name);
9245 
9246 	/* Exactly one of the two type names may be suffixed with ___init, so
9247 	 * if the strings are the same size, they can't possibly be no-cast
9248 	 * aliases of one another. If you have two of the same type names, e.g.
9249 	 * they're both nf_conn___init, it would be improper to return true
9250 	 * because they are _not_ no-cast aliases, they are the same type.
9251 	 */
9252 	if (reg_len == arg_len)
9253 		return false;
9254 
9255 	/* Either of the two names must be the other name, suffixed with ___init. */
9256 	if ((reg_len != arg_len + pattern_len) &&
9257 	    (arg_len != reg_len + pattern_len))
9258 		return false;
9259 
9260 	if (reg_len < arg_len) {
9261 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9262 		cmp_len = reg_len;
9263 	} else {
9264 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9265 		cmp_len = arg_len;
9266 	}
9267 
9268 	if (!search_needle)
9269 		return false;
9270 
9271 	/* ___init suffix must come at the end of the name */
9272 	if (*(search_needle + pattern_len) != '\0')
9273 		return false;
9274 
9275 	return !strncmp(reg_name, arg_name, cmp_len);
9276 }
9277 
9278 #ifdef CONFIG_BPF_JIT
9279 static int
btf_add_struct_ops(struct btf * btf,struct bpf_struct_ops * st_ops,struct bpf_verifier_log * log)9280 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9281 		   struct bpf_verifier_log *log)
9282 {
9283 	struct btf_struct_ops_tab *tab, *new_tab;
9284 	int i, err;
9285 
9286 	tab = btf->struct_ops_tab;
9287 	if (!tab) {
9288 		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9289 			      GFP_KERNEL);
9290 		if (!tab)
9291 			return -ENOMEM;
9292 		tab->capacity = 4;
9293 		btf->struct_ops_tab = tab;
9294 	}
9295 
9296 	for (i = 0; i < tab->cnt; i++)
9297 		if (tab->ops[i].st_ops == st_ops)
9298 			return -EEXIST;
9299 
9300 	if (tab->cnt == tab->capacity) {
9301 		new_tab = krealloc(tab,
9302 				   offsetof(struct btf_struct_ops_tab,
9303 					    ops[tab->capacity * 2]),
9304 				   GFP_KERNEL);
9305 		if (!new_tab)
9306 			return -ENOMEM;
9307 		tab = new_tab;
9308 		tab->capacity *= 2;
9309 		btf->struct_ops_tab = tab;
9310 	}
9311 
9312 	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9313 
9314 	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9315 	if (err)
9316 		return err;
9317 
9318 	btf->struct_ops_tab->cnt++;
9319 
9320 	return 0;
9321 }
9322 
9323 const struct bpf_struct_ops_desc *
bpf_struct_ops_find_value(struct btf * btf,u32 value_id)9324 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9325 {
9326 	const struct bpf_struct_ops_desc *st_ops_list;
9327 	unsigned int i;
9328 	u32 cnt;
9329 
9330 	if (!value_id)
9331 		return NULL;
9332 	if (!btf->struct_ops_tab)
9333 		return NULL;
9334 
9335 	cnt = btf->struct_ops_tab->cnt;
9336 	st_ops_list = btf->struct_ops_tab->ops;
9337 	for (i = 0; i < cnt; i++) {
9338 		if (st_ops_list[i].value_id == value_id)
9339 			return &st_ops_list[i];
9340 	}
9341 
9342 	return NULL;
9343 }
9344 
9345 const struct bpf_struct_ops_desc *
bpf_struct_ops_find(struct btf * btf,u32 type_id)9346 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9347 {
9348 	const struct bpf_struct_ops_desc *st_ops_list;
9349 	unsigned int i;
9350 	u32 cnt;
9351 
9352 	if (!type_id)
9353 		return NULL;
9354 	if (!btf->struct_ops_tab)
9355 		return NULL;
9356 
9357 	cnt = btf->struct_ops_tab->cnt;
9358 	st_ops_list = btf->struct_ops_tab->ops;
9359 	for (i = 0; i < cnt; i++) {
9360 		if (st_ops_list[i].type_id == type_id)
9361 			return &st_ops_list[i];
9362 	}
9363 
9364 	return NULL;
9365 }
9366 
__register_bpf_struct_ops(struct bpf_struct_ops * st_ops)9367 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9368 {
9369 	struct bpf_verifier_log *log;
9370 	struct btf *btf;
9371 	int err = 0;
9372 
9373 	btf = btf_get_module_btf(st_ops->owner);
9374 	if (!btf)
9375 		return check_btf_kconfigs(st_ops->owner, "struct_ops");
9376 	if (IS_ERR(btf))
9377 		return PTR_ERR(btf);
9378 
9379 	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9380 	if (!log) {
9381 		err = -ENOMEM;
9382 		goto errout;
9383 	}
9384 
9385 	log->level = BPF_LOG_KERNEL;
9386 
9387 	err = btf_add_struct_ops(btf, st_ops, log);
9388 
9389 errout:
9390 	kfree(log);
9391 	btf_put(btf);
9392 
9393 	return err;
9394 }
9395 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9396 #endif
9397 
btf_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)9398 bool btf_param_match_suffix(const struct btf *btf,
9399 			    const struct btf_param *arg,
9400 			    const char *suffix)
9401 {
9402 	int suffix_len = strlen(suffix), len;
9403 	const char *param_name;
9404 
9405 	/* In the future, this can be ported to use BTF tagging */
9406 	param_name = btf_name_by_offset(btf, arg->name_off);
9407 	if (str_is_empty(param_name))
9408 		return false;
9409 	len = strlen(param_name);
9410 	if (len <= suffix_len)
9411 		return false;
9412 	param_name += len - suffix_len;
9413 	return !strncmp(param_name, suffix, suffix_len);
9414 }
9415