1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9
10 #include "compress.h"
11 #include "dso.h"
12 #include "libbfd.h"
13 #include "map.h"
14 #include "maps.h"
15 #include "symbol.h"
16 #include "symsrc.h"
17 #include "machine.h"
18 #include "vdso.h"
19 #include "debug.h"
20 #include "util/copyfile.h"
21 #include <linux/ctype.h>
22 #include <linux/kernel.h>
23 #include <linux/zalloc.h>
24 #include <linux/string.h>
25 #include <symbol/kallsyms.h>
26 #include <internal/lib.h>
27
28 #ifndef EM_AARCH64
29 #define EM_AARCH64 183 /* ARM 64 bit */
30 #endif
31
32 #ifndef EM_LOONGARCH
33 #define EM_LOONGARCH 258
34 #endif
35
36 #ifndef ELF32_ST_VISIBILITY
37 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
38 #endif
39
40 /* For ELF64 the definitions are the same. */
41 #ifndef ELF64_ST_VISIBILITY
42 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
43 #endif
44
45 /* How to extract information held in the st_other field. */
46 #ifndef GELF_ST_VISIBILITY
47 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
48 #endif
49
50 typedef Elf64_Nhdr GElf_Nhdr;
51
52
53 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
elf_getphdrnum(Elf * elf,size_t * dst)54 static int elf_getphdrnum(Elf *elf, size_t *dst)
55 {
56 GElf_Ehdr gehdr;
57 GElf_Ehdr *ehdr;
58
59 ehdr = gelf_getehdr(elf, &gehdr);
60 if (!ehdr)
61 return -1;
62
63 *dst = ehdr->e_phnum;
64
65 return 0;
66 }
67 #endif
68
69 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
elf_getshdrstrndx(Elf * elf __maybe_unused,size_t * dst __maybe_unused)70 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
71 {
72 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
73 return -1;
74 }
75 #endif
76
77 #ifndef NT_GNU_BUILD_ID
78 #define NT_GNU_BUILD_ID 3
79 #endif
80
81 /**
82 * elf_symtab__for_each_symbol - iterate thru all the symbols
83 *
84 * @syms: struct elf_symtab instance to iterate
85 * @idx: uint32_t idx
86 * @sym: GElf_Sym iterator
87 */
88 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
89 for (idx = 0, gelf_getsym(syms, idx, &sym);\
90 idx < nr_syms; \
91 idx++, gelf_getsym(syms, idx, &sym))
92
elf_sym__type(const GElf_Sym * sym)93 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
94 {
95 return GELF_ST_TYPE(sym->st_info);
96 }
97
elf_sym__visibility(const GElf_Sym * sym)98 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
99 {
100 return GELF_ST_VISIBILITY(sym->st_other);
101 }
102
103 #ifndef STT_GNU_IFUNC
104 #define STT_GNU_IFUNC 10
105 #endif
106
elf_sym__is_function(const GElf_Sym * sym)107 static inline int elf_sym__is_function(const GElf_Sym *sym)
108 {
109 return (elf_sym__type(sym) == STT_FUNC ||
110 elf_sym__type(sym) == STT_GNU_IFUNC) &&
111 sym->st_name != 0 &&
112 sym->st_shndx != SHN_UNDEF;
113 }
114
elf_sym__is_object(const GElf_Sym * sym)115 static inline bool elf_sym__is_object(const GElf_Sym *sym)
116 {
117 return elf_sym__type(sym) == STT_OBJECT &&
118 sym->st_name != 0 &&
119 sym->st_shndx != SHN_UNDEF;
120 }
121
elf_sym__is_label(const GElf_Sym * sym)122 static inline int elf_sym__is_label(const GElf_Sym *sym)
123 {
124 return elf_sym__type(sym) == STT_NOTYPE &&
125 sym->st_name != 0 &&
126 sym->st_shndx != SHN_UNDEF &&
127 sym->st_shndx != SHN_ABS &&
128 elf_sym__visibility(sym) != STV_HIDDEN &&
129 elf_sym__visibility(sym) != STV_INTERNAL;
130 }
131
elf_sym__filter(GElf_Sym * sym)132 static bool elf_sym__filter(GElf_Sym *sym)
133 {
134 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
135 }
136
elf_sym__name(const GElf_Sym * sym,const Elf_Data * symstrs)137 static inline const char *elf_sym__name(const GElf_Sym *sym,
138 const Elf_Data *symstrs)
139 {
140 return symstrs->d_buf + sym->st_name;
141 }
142
elf_sec__name(const GElf_Shdr * shdr,const Elf_Data * secstrs)143 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
144 const Elf_Data *secstrs)
145 {
146 return secstrs->d_buf + shdr->sh_name;
147 }
148
elf_sec__is_text(const GElf_Shdr * shdr,const Elf_Data * secstrs)149 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
150 const Elf_Data *secstrs)
151 {
152 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
153 }
154
elf_sec__is_data(const GElf_Shdr * shdr,const Elf_Data * secstrs)155 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
156 const Elf_Data *secstrs)
157 {
158 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
159 }
160
elf_sec__filter(GElf_Shdr * shdr,Elf_Data * secstrs)161 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
162 {
163 return elf_sec__is_text(shdr, secstrs) ||
164 elf_sec__is_data(shdr, secstrs);
165 }
166
elf_addr_to_index(Elf * elf,GElf_Addr addr)167 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
168 {
169 Elf_Scn *sec = NULL;
170 GElf_Shdr shdr;
171 size_t cnt = 1;
172
173 while ((sec = elf_nextscn(elf, sec)) != NULL) {
174 gelf_getshdr(sec, &shdr);
175
176 if ((addr >= shdr.sh_addr) &&
177 (addr < (shdr.sh_addr + shdr.sh_size)))
178 return cnt;
179
180 ++cnt;
181 }
182
183 return -1;
184 }
185
elf_section_by_name(Elf * elf,GElf_Ehdr * ep,GElf_Shdr * shp,const char * name,size_t * idx)186 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
187 GElf_Shdr *shp, const char *name, size_t *idx)
188 {
189 Elf_Scn *sec = NULL;
190 size_t cnt = 1;
191
192 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
193 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
194 return NULL;
195
196 while ((sec = elf_nextscn(elf, sec)) != NULL) {
197 char *str;
198
199 gelf_getshdr(sec, shp);
200 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
201 if (str && !strcmp(name, str)) {
202 if (idx)
203 *idx = cnt;
204 return sec;
205 }
206 ++cnt;
207 }
208
209 return NULL;
210 }
211
filename__has_section(const char * filename,const char * sec)212 bool filename__has_section(const char *filename, const char *sec)
213 {
214 int fd;
215 Elf *elf;
216 GElf_Ehdr ehdr;
217 GElf_Shdr shdr;
218 bool found = false;
219
220 fd = open(filename, O_RDONLY);
221 if (fd < 0)
222 return false;
223
224 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
225 if (elf == NULL)
226 goto out;
227
228 if (gelf_getehdr(elf, &ehdr) == NULL)
229 goto elf_out;
230
231 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
232
233 elf_out:
234 elf_end(elf);
235 out:
236 close(fd);
237 return found;
238 }
239
elf_read_program_header(Elf * elf,u64 vaddr,GElf_Phdr * phdr)240 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
241 {
242 size_t i, phdrnum;
243 u64 sz;
244
245 if (elf_getphdrnum(elf, &phdrnum))
246 return -1;
247
248 for (i = 0; i < phdrnum; i++) {
249 if (gelf_getphdr(elf, i, phdr) == NULL)
250 return -1;
251
252 if (phdr->p_type != PT_LOAD)
253 continue;
254
255 sz = max(phdr->p_memsz, phdr->p_filesz);
256 if (!sz)
257 continue;
258
259 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
260 return 0;
261 }
262
263 /* Not found any valid program header */
264 return -1;
265 }
266
267 struct rel_info {
268 u32 nr_entries;
269 u32 *sorted;
270 bool is_rela;
271 Elf_Data *reldata;
272 GElf_Rela rela;
273 GElf_Rel rel;
274 };
275
get_rel_symidx(struct rel_info * ri,u32 idx)276 static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
277 {
278 idx = ri->sorted ? ri->sorted[idx] : idx;
279 if (ri->is_rela) {
280 gelf_getrela(ri->reldata, idx, &ri->rela);
281 return GELF_R_SYM(ri->rela.r_info);
282 }
283 gelf_getrel(ri->reldata, idx, &ri->rel);
284 return GELF_R_SYM(ri->rel.r_info);
285 }
286
get_rel_offset(struct rel_info * ri,u32 x)287 static u64 get_rel_offset(struct rel_info *ri, u32 x)
288 {
289 if (ri->is_rela) {
290 GElf_Rela rela;
291
292 gelf_getrela(ri->reldata, x, &rela);
293 return rela.r_offset;
294 } else {
295 GElf_Rel rel;
296
297 gelf_getrel(ri->reldata, x, &rel);
298 return rel.r_offset;
299 }
300 }
301
rel_cmp(const void * a,const void * b,void * r)302 static int rel_cmp(const void *a, const void *b, void *r)
303 {
304 struct rel_info *ri = r;
305 u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
306 u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
307
308 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
309 }
310
sort_rel(struct rel_info * ri)311 static int sort_rel(struct rel_info *ri)
312 {
313 size_t sz = sizeof(ri->sorted[0]);
314 u32 i;
315
316 ri->sorted = calloc(ri->nr_entries, sz);
317 if (!ri->sorted)
318 return -1;
319 for (i = 0; i < ri->nr_entries; i++)
320 ri->sorted[i] = i;
321 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
322 return 0;
323 }
324
325 /*
326 * For x86_64, the GNU linker is putting IFUNC information in the relocation
327 * addend.
328 */
addend_may_be_ifunc(GElf_Ehdr * ehdr,struct rel_info * ri)329 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
330 {
331 return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
332 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
333 }
334
get_ifunc_name(Elf * elf,struct dso * dso,GElf_Ehdr * ehdr,struct rel_info * ri,char * buf,size_t buf_sz)335 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
336 struct rel_info *ri, char *buf, size_t buf_sz)
337 {
338 u64 addr = ri->rela.r_addend;
339 struct symbol *sym;
340 GElf_Phdr phdr;
341
342 if (!addend_may_be_ifunc(ehdr, ri))
343 return false;
344
345 if (elf_read_program_header(elf, addr, &phdr))
346 return false;
347
348 addr -= phdr.p_vaddr - phdr.p_offset;
349
350 sym = dso__find_symbol_nocache(dso, addr);
351
352 /* Expecting the address to be an IFUNC or IFUNC alias */
353 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
354 return false;
355
356 snprintf(buf, buf_sz, "%s@plt", sym->name);
357
358 return true;
359 }
360
exit_rel(struct rel_info * ri)361 static void exit_rel(struct rel_info *ri)
362 {
363 zfree(&ri->sorted);
364 }
365
get_plt_sizes(struct dso * dso,GElf_Ehdr * ehdr,GElf_Shdr * shdr_plt,u64 * plt_header_size,u64 * plt_entry_size)366 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
367 u64 *plt_header_size, u64 *plt_entry_size)
368 {
369 switch (ehdr->e_machine) {
370 case EM_ARM:
371 *plt_header_size = 20;
372 *plt_entry_size = 12;
373 return true;
374 case EM_AARCH64:
375 *plt_header_size = 32;
376 *plt_entry_size = 16;
377 return true;
378 case EM_LOONGARCH:
379 *plt_header_size = 32;
380 *plt_entry_size = 16;
381 return true;
382 case EM_SPARC:
383 *plt_header_size = 48;
384 *plt_entry_size = 12;
385 return true;
386 case EM_SPARCV9:
387 *plt_header_size = 128;
388 *plt_entry_size = 32;
389 return true;
390 case EM_386:
391 case EM_X86_64:
392 *plt_entry_size = shdr_plt->sh_entsize;
393 /* Size is 8 or 16, if not, assume alignment indicates size */
394 if (*plt_entry_size != 8 && *plt_entry_size != 16)
395 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
396 *plt_header_size = *plt_entry_size;
397 break;
398 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
399 *plt_header_size = shdr_plt->sh_entsize;
400 *plt_entry_size = shdr_plt->sh_entsize;
401 break;
402 }
403 if (*plt_entry_size)
404 return true;
405 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso));
406 return false;
407 }
408
machine_is_x86(GElf_Half e_machine)409 static bool machine_is_x86(GElf_Half e_machine)
410 {
411 return e_machine == EM_386 || e_machine == EM_X86_64;
412 }
413
414 struct rela_dyn {
415 GElf_Addr offset;
416 u32 sym_idx;
417 };
418
419 struct rela_dyn_info {
420 struct dso *dso;
421 Elf_Data *plt_got_data;
422 u32 nr_entries;
423 struct rela_dyn *sorted;
424 Elf_Data *dynsym_data;
425 Elf_Data *dynstr_data;
426 Elf_Data *rela_dyn_data;
427 };
428
exit_rela_dyn(struct rela_dyn_info * di)429 static void exit_rela_dyn(struct rela_dyn_info *di)
430 {
431 zfree(&di->sorted);
432 }
433
cmp_offset(const void * a,const void * b)434 static int cmp_offset(const void *a, const void *b)
435 {
436 const struct rela_dyn *va = a;
437 const struct rela_dyn *vb = b;
438
439 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
440 }
441
sort_rela_dyn(struct rela_dyn_info * di)442 static int sort_rela_dyn(struct rela_dyn_info *di)
443 {
444 u32 i, n;
445
446 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
447 if (!di->sorted)
448 return -1;
449
450 /* Get data for sorting: the offset and symbol index */
451 for (i = 0, n = 0; i < di->nr_entries; i++) {
452 GElf_Rela rela;
453 u32 sym_idx;
454
455 gelf_getrela(di->rela_dyn_data, i, &rela);
456 sym_idx = GELF_R_SYM(rela.r_info);
457 if (sym_idx) {
458 di->sorted[n].sym_idx = sym_idx;
459 di->sorted[n].offset = rela.r_offset;
460 n += 1;
461 }
462 }
463
464 /* Sort by offset */
465 di->nr_entries = n;
466 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
467
468 return 0;
469 }
470
get_rela_dyn_info(Elf * elf,GElf_Ehdr * ehdr,struct rela_dyn_info * di,Elf_Scn * scn)471 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
472 {
473 GElf_Shdr rela_dyn_shdr;
474 GElf_Shdr shdr;
475
476 di->plt_got_data = elf_getdata(scn, NULL);
477
478 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
479 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
480 return;
481
482 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
483 di->rela_dyn_data = elf_getdata(scn, NULL);
484
485 scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
486 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
487 return;
488
489 di->dynsym_data = elf_getdata(scn, NULL);
490 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
491
492 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
493 return;
494
495 /* Sort into offset order */
496 sort_rela_dyn(di);
497 }
498
499 /* Get instruction displacement from a plt entry for x86_64 */
get_x86_64_plt_disp(const u8 * p)500 static u32 get_x86_64_plt_disp(const u8 *p)
501 {
502 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
503 int n = 0;
504
505 /* Skip endbr64 */
506 if (!memcmp(p, endbr64, sizeof(endbr64)))
507 n += sizeof(endbr64);
508 /* Skip bnd prefix */
509 if (p[n] == 0xf2)
510 n += 1;
511 /* jmp with 4-byte displacement */
512 if (p[n] == 0xff && p[n + 1] == 0x25) {
513 u32 disp;
514
515 n += 2;
516 /* Also add offset from start of entry to end of instruction */
517 memcpy(&disp, p + n, sizeof(disp));
518 return n + 4 + le32toh(disp);
519 }
520 return 0;
521 }
522
get_plt_got_name(GElf_Shdr * shdr,size_t i,struct rela_dyn_info * di,char * buf,size_t buf_sz)523 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
524 struct rela_dyn_info *di,
525 char *buf, size_t buf_sz)
526 {
527 struct rela_dyn vi, *vr;
528 const char *sym_name;
529 char *demangled;
530 GElf_Sym sym;
531 bool result;
532 u32 disp;
533
534 if (!di->sorted)
535 return false;
536
537 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
538 if (!disp)
539 return false;
540
541 /* Compute target offset of the .plt.got entry */
542 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
543
544 /* Find that offset in .rela.dyn (sorted by offset) */
545 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
546 if (!vr)
547 return false;
548
549 /* Get the associated symbol */
550 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
551 sym_name = elf_sym__name(&sym, di->dynstr_data);
552 demangled = dso__demangle_sym(di->dso, /*kmodule=*/0, sym_name);
553 if (demangled != NULL)
554 sym_name = demangled;
555
556 snprintf(buf, buf_sz, "%s@plt", sym_name);
557
558 result = *sym_name;
559
560 free(demangled);
561
562 return result;
563 }
564
dso__synthesize_plt_got_symbols(struct dso * dso,Elf * elf,GElf_Ehdr * ehdr,char * buf,size_t buf_sz)565 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
566 GElf_Ehdr *ehdr,
567 char *buf, size_t buf_sz)
568 {
569 struct rela_dyn_info di = { .dso = dso };
570 struct symbol *sym;
571 GElf_Shdr shdr;
572 Elf_Scn *scn;
573 int err = -1;
574 size_t i;
575
576 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
577 if (!scn || !shdr.sh_entsize)
578 return 0;
579
580 if (ehdr->e_machine == EM_X86_64)
581 get_rela_dyn_info(elf, ehdr, &di, scn);
582
583 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
584 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
585 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
586 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
587 if (!sym)
588 goto out;
589 symbols__insert(dso__symbols(dso), sym);
590 }
591 err = 0;
592 out:
593 exit_rela_dyn(&di);
594 return err;
595 }
596
597 /*
598 * We need to check if we have a .dynsym, so that we can handle the
599 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
600 * .dynsym or .symtab).
601 * And always look at the original dso, not at debuginfo packages, that
602 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
603 */
dso__synthesize_plt_symbols(struct dso * dso,struct symsrc * ss)604 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
605 {
606 uint32_t idx;
607 GElf_Sym sym;
608 u64 plt_offset, plt_header_size, plt_entry_size;
609 GElf_Shdr shdr_plt, plt_sec_shdr;
610 struct symbol *f, *plt_sym;
611 GElf_Shdr shdr_rel_plt, shdr_dynsym;
612 Elf_Data *syms, *symstrs;
613 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
614 GElf_Ehdr ehdr;
615 char sympltname[1024];
616 Elf *elf;
617 int nr = 0, err = -1;
618 struct rel_info ri = { .is_rela = false };
619 bool lazy_plt;
620
621 elf = ss->elf;
622 ehdr = ss->ehdr;
623
624 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
625 return 0;
626
627 /*
628 * A symbol from a previous section (e.g. .init) can have been expanded
629 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
630 * a symbol for .plt header.
631 */
632 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
633 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
634 f->end = shdr_plt.sh_offset;
635
636 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
637 return 0;
638
639 /* Add a symbol for .plt header */
640 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
641 if (!plt_sym)
642 goto out_elf_end;
643 symbols__insert(dso__symbols(dso), plt_sym);
644
645 /* Only x86 has .plt.got */
646 if (machine_is_x86(ehdr.e_machine) &&
647 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
648 goto out_elf_end;
649
650 /* Only x86 has .plt.sec */
651 if (machine_is_x86(ehdr.e_machine) &&
652 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
653 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
654 return 0;
655 /* Extend .plt symbol to entire .plt */
656 plt_sym->end = plt_sym->start + shdr_plt.sh_size;
657 /* Use .plt.sec offset */
658 plt_offset = plt_sec_shdr.sh_offset;
659 lazy_plt = false;
660 } else {
661 plt_offset = shdr_plt.sh_offset;
662 lazy_plt = true;
663 }
664
665 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
666 ".rela.plt", NULL);
667 if (scn_plt_rel == NULL) {
668 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
669 ".rel.plt", NULL);
670 if (scn_plt_rel == NULL)
671 return 0;
672 }
673
674 if (shdr_rel_plt.sh_type != SHT_RELA &&
675 shdr_rel_plt.sh_type != SHT_REL)
676 return 0;
677
678 if (!shdr_rel_plt.sh_link)
679 return 0;
680
681 if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
682 scn_dynsym = ss->dynsym;
683 shdr_dynsym = ss->dynshdr;
684 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
685 /*
686 * A static executable can have a .plt due to IFUNCs, in which
687 * case .symtab is used not .dynsym.
688 */
689 scn_dynsym = ss->symtab;
690 shdr_dynsym = ss->symshdr;
691 } else {
692 goto out_elf_end;
693 }
694
695 if (!scn_dynsym)
696 return 0;
697
698 /*
699 * Fetch the relocation section to find the idxes to the GOT
700 * and the symbols in the .dynsym they refer to.
701 */
702 ri.reldata = elf_getdata(scn_plt_rel, NULL);
703 if (!ri.reldata)
704 goto out_elf_end;
705
706 syms = elf_getdata(scn_dynsym, NULL);
707 if (syms == NULL)
708 goto out_elf_end;
709
710 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
711 if (scn_symstrs == NULL)
712 goto out_elf_end;
713
714 symstrs = elf_getdata(scn_symstrs, NULL);
715 if (symstrs == NULL)
716 goto out_elf_end;
717
718 if (symstrs->d_size == 0)
719 goto out_elf_end;
720
721 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
722
723 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
724
725 if (lazy_plt) {
726 /*
727 * Assume a .plt with the same number of entries as the number
728 * of relocation entries is not lazy and does not have a header.
729 */
730 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
731 dso__delete_symbol(dso, plt_sym);
732 else
733 plt_offset += plt_header_size;
734 }
735
736 /*
737 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
738 * back in order.
739 */
740 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
741 goto out_elf_end;
742
743 for (idx = 0; idx < ri.nr_entries; idx++) {
744 const char *elf_name = NULL;
745 char *demangled = NULL;
746
747 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
748
749 elf_name = elf_sym__name(&sym, symstrs);
750 demangled = dso__demangle_sym(dso, /*kmodule=*/0, elf_name);
751 if (demangled)
752 elf_name = demangled;
753 if (*elf_name)
754 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
755 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
756 snprintf(sympltname, sizeof(sympltname),
757 "offset_%#" PRIx64 "@plt", plt_offset);
758 free(demangled);
759
760 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
761 if (!f)
762 goto out_elf_end;
763
764 plt_offset += plt_entry_size;
765 symbols__insert(dso__symbols(dso), f);
766 ++nr;
767 }
768
769 err = 0;
770 out_elf_end:
771 exit_rel(&ri);
772 if (err == 0)
773 return nr;
774 pr_debug("%s: problems reading %s PLT info.\n",
775 __func__, dso__long_name(dso));
776 return 0;
777 }
778
779 /*
780 * Align offset to 4 bytes as needed for note name and descriptor data.
781 */
782 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
783
elf_read_build_id(Elf * elf,void * bf,size_t size)784 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
785 {
786 int err = -1;
787 GElf_Ehdr ehdr;
788 GElf_Shdr shdr;
789 Elf_Data *data;
790 Elf_Scn *sec;
791 Elf_Kind ek;
792 void *ptr;
793
794 if (size < BUILD_ID_SIZE)
795 goto out;
796
797 ek = elf_kind(elf);
798 if (ek != ELF_K_ELF)
799 goto out;
800
801 if (gelf_getehdr(elf, &ehdr) == NULL) {
802 pr_err("%s: cannot get elf header.\n", __func__);
803 goto out;
804 }
805
806 /*
807 * Check following sections for notes:
808 * '.note.gnu.build-id'
809 * '.notes'
810 * '.note' (VDSO specific)
811 */
812 do {
813 sec = elf_section_by_name(elf, &ehdr, &shdr,
814 ".note.gnu.build-id", NULL);
815 if (sec)
816 break;
817
818 sec = elf_section_by_name(elf, &ehdr, &shdr,
819 ".notes", NULL);
820 if (sec)
821 break;
822
823 sec = elf_section_by_name(elf, &ehdr, &shdr,
824 ".note", NULL);
825 if (sec)
826 break;
827
828 return err;
829
830 } while (0);
831
832 data = elf_getdata(sec, NULL);
833 if (data == NULL)
834 goto out;
835
836 ptr = data->d_buf;
837 while (ptr < (data->d_buf + data->d_size)) {
838 GElf_Nhdr *nhdr = ptr;
839 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
840 descsz = NOTE_ALIGN(nhdr->n_descsz);
841 const char *name;
842
843 ptr += sizeof(*nhdr);
844 name = ptr;
845 ptr += namesz;
846 if (nhdr->n_type == NT_GNU_BUILD_ID &&
847 nhdr->n_namesz == sizeof("GNU")) {
848 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
849 size_t sz = min(size, descsz);
850 memcpy(bf, ptr, sz);
851 memset(bf + sz, 0, size - sz);
852 err = sz;
853 break;
854 }
855 }
856 ptr += descsz;
857 }
858
859 out:
860 return err;
861 }
862
read_build_id(const char * filename,struct build_id * bid)863 static int read_build_id(const char *filename, struct build_id *bid)
864 {
865 size_t size = sizeof(bid->data);
866 int fd, err;
867 Elf *elf;
868
869 err = libbfd__read_build_id(filename, bid);
870 if (err >= 0)
871 goto out;
872
873 if (size < BUILD_ID_SIZE)
874 goto out;
875
876 fd = open(filename, O_RDONLY);
877 if (fd < 0)
878 goto out;
879
880 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
881 if (elf == NULL) {
882 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
883 goto out_close;
884 }
885
886 err = elf_read_build_id(elf, bid->data, size);
887 if (err > 0)
888 bid->size = err;
889
890 elf_end(elf);
891 out_close:
892 close(fd);
893 out:
894 return err;
895 }
896
filename__read_build_id(const char * filename,struct build_id * bid)897 int filename__read_build_id(const char *filename, struct build_id *bid)
898 {
899 struct kmod_path m = { .name = NULL, };
900 char path[PATH_MAX];
901 int err;
902
903 if (!filename)
904 return -EFAULT;
905 if (!is_regular_file(filename))
906 return -EWOULDBLOCK;
907
908 err = kmod_path__parse(&m, filename);
909 if (err)
910 return -1;
911
912 if (m.comp) {
913 int error = 0, fd;
914
915 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
916 if (fd < 0) {
917 pr_debug("Failed to decompress (error %d) %s\n",
918 error, filename);
919 return -1;
920 }
921 close(fd);
922 filename = path;
923 }
924
925 err = read_build_id(filename, bid);
926
927 if (m.comp)
928 unlink(filename);
929 return err;
930 }
931
sysfs__read_build_id(const char * filename,struct build_id * bid)932 int sysfs__read_build_id(const char *filename, struct build_id *bid)
933 {
934 size_t size = sizeof(bid->data);
935 int fd, err = -1;
936
937 fd = open(filename, O_RDONLY);
938 if (fd < 0)
939 goto out;
940
941 while (1) {
942 char bf[BUFSIZ];
943 GElf_Nhdr nhdr;
944 size_t namesz, descsz;
945
946 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
947 break;
948
949 namesz = NOTE_ALIGN(nhdr.n_namesz);
950 descsz = NOTE_ALIGN(nhdr.n_descsz);
951 if (nhdr.n_type == NT_GNU_BUILD_ID &&
952 nhdr.n_namesz == sizeof("GNU")) {
953 if (read(fd, bf, namesz) != (ssize_t)namesz)
954 break;
955 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
956 size_t sz = min(descsz, size);
957 if (read(fd, bid->data, sz) == (ssize_t)sz) {
958 memset(bid->data + sz, 0, size - sz);
959 bid->size = sz;
960 err = 0;
961 break;
962 }
963 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
964 break;
965 } else {
966 int n = namesz + descsz;
967
968 if (n > (int)sizeof(bf)) {
969 n = sizeof(bf);
970 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
971 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
972 }
973 if (read(fd, bf, n) != n)
974 break;
975 }
976 }
977 close(fd);
978 out:
979 return err;
980 }
981
filename__read_debuglink(const char * filename,char * debuglink,size_t size)982 int filename__read_debuglink(const char *filename, char *debuglink,
983 size_t size)
984 {
985 int fd, err = -1;
986 Elf *elf;
987 GElf_Ehdr ehdr;
988 GElf_Shdr shdr;
989 Elf_Data *data;
990 Elf_Scn *sec;
991 Elf_Kind ek;
992
993 err = libbfd_filename__read_debuglink(filename, debuglink, size);
994 if (err >= 0)
995 goto out;
996
997 fd = open(filename, O_RDONLY);
998 if (fd < 0)
999 goto out;
1000
1001 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1002 if (elf == NULL) {
1003 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1004 goto out_close;
1005 }
1006
1007 ek = elf_kind(elf);
1008 if (ek != ELF_K_ELF)
1009 goto out_elf_end;
1010
1011 if (gelf_getehdr(elf, &ehdr) == NULL) {
1012 pr_err("%s: cannot get elf header.\n", __func__);
1013 goto out_elf_end;
1014 }
1015
1016 sec = elf_section_by_name(elf, &ehdr, &shdr,
1017 ".gnu_debuglink", NULL);
1018 if (sec == NULL)
1019 goto out_elf_end;
1020
1021 data = elf_getdata(sec, NULL);
1022 if (data == NULL)
1023 goto out_elf_end;
1024
1025 /* the start of this section is a zero-terminated string */
1026 strncpy(debuglink, data->d_buf, size);
1027
1028 err = 0;
1029
1030 out_elf_end:
1031 elf_end(elf);
1032 out_close:
1033 close(fd);
1034 out:
1035 return err;
1036 }
1037
symsrc__possibly_runtime(struct symsrc * ss)1038 bool symsrc__possibly_runtime(struct symsrc *ss)
1039 {
1040 return ss->dynsym || ss->opdsec;
1041 }
1042
symsrc__has_symtab(struct symsrc * ss)1043 bool symsrc__has_symtab(struct symsrc *ss)
1044 {
1045 return ss->symtab != NULL;
1046 }
1047
symsrc__destroy(struct symsrc * ss)1048 void symsrc__destroy(struct symsrc *ss)
1049 {
1050 zfree(&ss->name);
1051 elf_end(ss->elf);
1052 close(ss->fd);
1053 }
1054
elf__needs_adjust_symbols(GElf_Ehdr ehdr)1055 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1056 {
1057 /*
1058 * Usually vmlinux is an ELF file with type ET_EXEC for most
1059 * architectures; except Arm64 kernel is linked with option
1060 * '-share', so need to check type ET_DYN.
1061 */
1062 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1063 ehdr.e_type == ET_DYN;
1064 }
1065
read_gnu_debugdata(struct dso * dso,Elf * elf,const char * name,int * fd_ret)1066 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret)
1067 {
1068 Elf *elf_embedded;
1069 GElf_Ehdr ehdr;
1070 GElf_Shdr shdr;
1071 Elf_Scn *scn;
1072 Elf_Data *scn_data;
1073 FILE *wrapped;
1074 size_t shndx;
1075 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX";
1076 int ret, temp_fd;
1077
1078 if (gelf_getehdr(elf, &ehdr) == NULL) {
1079 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1080 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1081 return NULL;
1082 }
1083
1084 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx);
1085 if (!scn) {
1086 *dso__load_errno(dso) = -ENOENT;
1087 return NULL;
1088 }
1089
1090 if (shdr.sh_type == SHT_NOBITS) {
1091 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name);
1092 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1093 return NULL;
1094 }
1095
1096 scn_data = elf_rawdata(scn, NULL);
1097 if (!scn_data) {
1098 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1099 name, elf_errmsg(-1));
1100 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1101 return NULL;
1102 }
1103
1104 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r");
1105 if (!wrapped) {
1106 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno));
1107 *dso__load_errno(dso) = -errno;
1108 return NULL;
1109 }
1110
1111 temp_fd = mkstemp(temp_filename);
1112 if (temp_fd < 0) {
1113 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno));
1114 *dso__load_errno(dso) = -errno;
1115 fclose(wrapped);
1116 return NULL;
1117 }
1118 unlink(temp_filename);
1119
1120 ret = lzma_decompress_stream_to_file(wrapped, temp_fd);
1121 fclose(wrapped);
1122 if (ret < 0) {
1123 *dso__load_errno(dso) = -errno;
1124 close(temp_fd);
1125 return NULL;
1126 }
1127
1128 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL);
1129 if (!elf_embedded) {
1130 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1131 name, elf_errmsg(-1));
1132 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1133 close(temp_fd);
1134 return NULL;
1135 }
1136 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name);
1137 *fd_ret = temp_fd;
1138 return elf_embedded;
1139 }
1140
symsrc__init(struct symsrc * ss,struct dso * dso,const char * name,enum dso_binary_type type)1141 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1142 enum dso_binary_type type)
1143 {
1144 GElf_Ehdr ehdr;
1145 Elf *elf;
1146 int fd;
1147
1148 if (dso__needs_decompress(dso)) {
1149 fd = dso__decompress_kmodule_fd(dso, name);
1150 if (fd < 0)
1151 return -1;
1152
1153 type = dso__symtab_type(dso);
1154 } else {
1155 fd = open(name, O_RDONLY);
1156 if (fd < 0) {
1157 *dso__load_errno(dso) = errno;
1158 return -1;
1159 }
1160 }
1161
1162 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1163 if (elf == NULL) {
1164 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1165 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1166 goto out_close;
1167 }
1168
1169 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) {
1170 int new_fd;
1171 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd);
1172
1173 if (!embedded)
1174 goto out_close;
1175
1176 elf_end(elf);
1177 close(fd);
1178 fd = new_fd;
1179 elf = embedded;
1180 }
1181
1182 if (gelf_getehdr(elf, &ehdr) == NULL) {
1183 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1184 pr_debug("%s: cannot get elf header.\n", __func__);
1185 goto out_elf_end;
1186 }
1187
1188 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1189 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1190 goto out_elf_end;
1191 }
1192
1193 /* Always reject images with a mismatched build-id: */
1194 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) {
1195 u8 build_id[BUILD_ID_SIZE];
1196 struct build_id bid;
1197 int size;
1198
1199 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1200 if (size <= 0) {
1201 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1202 goto out_elf_end;
1203 }
1204
1205 build_id__init(&bid, build_id, size);
1206 if (!dso__build_id_equal(dso, &bid)) {
1207 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1208 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1209 goto out_elf_end;
1210 }
1211 }
1212
1213 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1214
1215 ss->symtab_idx = 0;
1216 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1217 &ss->symtab_idx);
1218 if (ss->symshdr.sh_type != SHT_SYMTAB)
1219 ss->symtab = NULL;
1220
1221 ss->dynsym_idx = 0;
1222 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1223 &ss->dynsym_idx);
1224 if (ss->dynshdr.sh_type != SHT_DYNSYM)
1225 ss->dynsym = NULL;
1226
1227 ss->opdidx = 0;
1228 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1229 &ss->opdidx);
1230 if (ss->opdshdr.sh_type != SHT_PROGBITS)
1231 ss->opdsec = NULL;
1232
1233 if (dso__kernel(dso) == DSO_SPACE__USER)
1234 ss->adjust_symbols = true;
1235 else
1236 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1237
1238 ss->name = strdup(name);
1239 if (!ss->name) {
1240 *dso__load_errno(dso) = errno;
1241 goto out_elf_end;
1242 }
1243
1244 ss->elf = elf;
1245 ss->fd = fd;
1246 ss->ehdr = ehdr;
1247 ss->type = type;
1248
1249 return 0;
1250
1251 out_elf_end:
1252 elf_end(elf);
1253 out_close:
1254 close(fd);
1255 return -1;
1256 }
1257
is_exe_text(int flags)1258 static bool is_exe_text(int flags)
1259 {
1260 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR);
1261 }
1262
1263 /*
1264 * Some executable module sections like .noinstr.text might be laid out with
1265 * .text so they can use the same mapping (memory address to file offset).
1266 * Check if that is the case. Refer to kernel layout_sections(). Return the
1267 * maximum offset.
1268 */
max_text_section(Elf * elf,GElf_Ehdr * ehdr)1269 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr)
1270 {
1271 Elf_Scn *sec = NULL;
1272 GElf_Shdr shdr;
1273 u64 offs = 0;
1274
1275 /* Doesn't work for some arch */
1276 if (ehdr->e_machine == EM_PARISC ||
1277 ehdr->e_machine == EM_ALPHA)
1278 return 0;
1279
1280 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1281 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL))
1282 return 0;
1283
1284 while ((sec = elf_nextscn(elf, sec)) != NULL) {
1285 char *sec_name;
1286
1287 if (!gelf_getshdr(sec, &shdr))
1288 break;
1289
1290 if (!is_exe_text(shdr.sh_flags))
1291 continue;
1292
1293 /* .init and .exit sections are not placed with .text */
1294 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name);
1295 if (!sec_name ||
1296 strstarts(sec_name, ".init") ||
1297 strstarts(sec_name, ".exit"))
1298 break;
1299
1300 /* Must be next to previous, assumes .text is first */
1301 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset)
1302 break;
1303
1304 offs = shdr.sh_offset + shdr.sh_size;
1305 }
1306
1307 return offs;
1308 }
1309
1310 /**
1311 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1312 * @kmap: kernel maps and relocation reference symbol
1313 *
1314 * This function returns %true if we are dealing with the kernel maps and the
1315 * relocation reference symbol has not yet been found. Otherwise %false is
1316 * returned.
1317 */
ref_reloc_sym_not_found(struct kmap * kmap)1318 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1319 {
1320 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1321 !kmap->ref_reloc_sym->unrelocated_addr;
1322 }
1323
1324 /**
1325 * ref_reloc - kernel relocation offset.
1326 * @kmap: kernel maps and relocation reference symbol
1327 *
1328 * This function returns the offset of kernel addresses as determined by using
1329 * the relocation reference symbol i.e. if the kernel has not been relocated
1330 * then the return value is zero.
1331 */
ref_reloc(struct kmap * kmap)1332 static u64 ref_reloc(struct kmap *kmap)
1333 {
1334 if (kmap && kmap->ref_reloc_sym &&
1335 kmap->ref_reloc_sym->unrelocated_addr)
1336 return kmap->ref_reloc_sym->addr -
1337 kmap->ref_reloc_sym->unrelocated_addr;
1338 return 0;
1339 }
1340
arch__sym_update(struct symbol * s __maybe_unused,GElf_Sym * sym __maybe_unused)1341 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1342 GElf_Sym *sym __maybe_unused) { }
1343
dso__process_kernel_symbol(struct dso * dso,struct map * map,GElf_Sym * sym,GElf_Shdr * shdr,struct maps * kmaps,struct kmap * kmap,struct dso ** curr_dsop,const char * section_name,bool adjust_kernel_syms,bool kmodule,bool * remap_kernel,u64 max_text_sh_offset)1344 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1345 GElf_Sym *sym, GElf_Shdr *shdr,
1346 struct maps *kmaps, struct kmap *kmap,
1347 struct dso **curr_dsop,
1348 const char *section_name,
1349 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel,
1350 u64 max_text_sh_offset)
1351 {
1352 struct dso *curr_dso = *curr_dsop;
1353 struct map *curr_map;
1354 char dso_name[PATH_MAX];
1355
1356 /* Adjust symbol to map to file offset */
1357 if (adjust_kernel_syms)
1358 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1359
1360 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0)
1361 return 0;
1362
1363 if (strcmp(section_name, ".text") == 0) {
1364 /*
1365 * The initial kernel mapping is based on
1366 * kallsyms and identity maps. Overwrite it to
1367 * map to the kernel dso.
1368 */
1369 if (*remap_kernel && dso__kernel(dso) && !kmodule) {
1370 *remap_kernel = false;
1371 map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1372 map__set_end(map, map__start(map) + shdr->sh_size);
1373 map__set_pgoff(map, shdr->sh_offset);
1374 map__set_mapping_type(map, MAPPING_TYPE__DSO);
1375 /* Ensure maps are correctly ordered */
1376 if (kmaps) {
1377 int err;
1378 struct map *tmp = map__get(map);
1379
1380 maps__remove(kmaps, map);
1381 err = maps__insert(kmaps, map);
1382 map__put(tmp);
1383 if (err)
1384 return err;
1385 }
1386 }
1387
1388 /*
1389 * The initial module mapping is based on
1390 * /proc/modules mapped to offset zero.
1391 * Overwrite it to map to the module dso.
1392 */
1393 if (*remap_kernel && kmodule) {
1394 *remap_kernel = false;
1395 map__set_pgoff(map, shdr->sh_offset);
1396 }
1397
1398 dso__put(*curr_dsop);
1399 *curr_dsop = dso__get(dso);
1400 return 0;
1401 }
1402
1403 if (!kmap)
1404 return 0;
1405
1406 /*
1407 * perf does not record module section addresses except for .text, but
1408 * some sections can use the same mapping as .text.
1409 */
1410 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) &&
1411 shdr->sh_offset <= max_text_sh_offset) {
1412 dso__put(*curr_dsop);
1413 *curr_dsop = dso__get(dso);
1414 return 0;
1415 }
1416
1417 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name);
1418
1419 curr_map = maps__find_by_name(kmaps, dso_name);
1420 if (curr_map == NULL) {
1421 u64 start = sym->st_value;
1422
1423 if (kmodule)
1424 start += map__start(map) + shdr->sh_offset;
1425
1426 curr_dso = dso__new(dso_name);
1427 if (curr_dso == NULL)
1428 return -1;
1429 dso__set_kernel(curr_dso, dso__kernel(dso));
1430 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso);
1431 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso);
1432 dso__set_binary_type(curr_dso, dso__binary_type(dso));
1433 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso));
1434 curr_map = map__new2(start, curr_dso);
1435 if (curr_map == NULL) {
1436 dso__put(curr_dso);
1437 return -1;
1438 }
1439 if (dso__kernel(curr_dso))
1440 map__kmap(curr_map)->kmaps = kmaps;
1441
1442 if (adjust_kernel_syms) {
1443 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1444 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1445 map__set_pgoff(curr_map, shdr->sh_offset);
1446 } else {
1447 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1448 }
1449 dso__set_symtab_type(curr_dso, dso__symtab_type(dso));
1450 if (maps__insert(kmaps, curr_map)) {
1451 dso__put(curr_dso);
1452 map__put(curr_map);
1453 return -1;
1454 }
1455 dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1456 dso__set_loaded(curr_dso);
1457 dso__put(*curr_dsop);
1458 *curr_dsop = curr_dso;
1459 } else {
1460 dso__put(*curr_dsop);
1461 *curr_dsop = dso__get(map__dso(curr_map));
1462 }
1463 map__put(curr_map);
1464
1465 return 0;
1466 }
1467
1468 static int
dso__load_sym_internal(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule,int dynsym)1469 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1470 struct symsrc *runtime_ss, int kmodule, int dynsym)
1471 {
1472 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL;
1473 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1474 struct dso *curr_dso = NULL;
1475 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1476 uint32_t nr_syms;
1477 uint32_t idx;
1478 GElf_Ehdr ehdr;
1479 GElf_Shdr shdr;
1480 GElf_Shdr tshdr;
1481 Elf_Data *syms, *opddata = NULL;
1482 GElf_Sym sym;
1483 Elf_Scn *sec, *sec_strndx;
1484 Elf *elf;
1485 int nr = 0;
1486 bool remap_kernel = false, adjust_kernel_syms = false;
1487 u64 max_text_sh_offset = 0;
1488
1489 if (kmap && !kmaps)
1490 return -1;
1491
1492 elf = syms_ss->elf;
1493 ehdr = syms_ss->ehdr;
1494 if (dynsym) {
1495 sec = syms_ss->dynsym;
1496 shdr = syms_ss->dynshdr;
1497 } else {
1498 sec = syms_ss->symtab;
1499 shdr = syms_ss->symshdr;
1500 }
1501
1502 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1503 ".text", NULL)) {
1504 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset);
1505 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size);
1506 }
1507
1508 if (runtime_ss->opdsec)
1509 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1510
1511 syms = elf_getdata(sec, NULL);
1512 if (syms == NULL)
1513 goto out_elf_end;
1514
1515 sec = elf_getscn(elf, shdr.sh_link);
1516 if (sec == NULL)
1517 goto out_elf_end;
1518
1519 symstrs = elf_getdata(sec, NULL);
1520 if (symstrs == NULL)
1521 goto out_elf_end;
1522
1523 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1524 if (sec_strndx == NULL)
1525 goto out_elf_end;
1526
1527 secstrs_run = elf_getdata(sec_strndx, NULL);
1528 if (secstrs_run == NULL)
1529 goto out_elf_end;
1530
1531 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1532 if (sec_strndx == NULL)
1533 goto out_elf_end;
1534
1535 secstrs_sym = elf_getdata(sec_strndx, NULL);
1536 if (secstrs_sym == NULL)
1537 goto out_elf_end;
1538
1539 nr_syms = shdr.sh_size / shdr.sh_entsize;
1540
1541 memset(&sym, 0, sizeof(sym));
1542
1543 /*
1544 * The kernel relocation symbol is needed in advance in order to adjust
1545 * kernel maps correctly.
1546 */
1547 if (ref_reloc_sym_not_found(kmap)) {
1548 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1549 const char *elf_name = elf_sym__name(&sym, symstrs);
1550
1551 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1552 continue;
1553 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1554 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1555 break;
1556 }
1557 }
1558
1559 /*
1560 * Handle any relocation of vdso necessary because older kernels
1561 * attempted to prelink vdso to its virtual address.
1562 */
1563 if (dso__is_vdso(dso))
1564 map__set_reloc(map, map__start(map) - dso__text_offset(dso));
1565
1566 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap));
1567 /*
1568 * Initial kernel and module mappings do not map to the dso.
1569 * Flag the fixups.
1570 */
1571 if (dso__kernel(dso)) {
1572 remap_kernel = true;
1573 adjust_kernel_syms = dso__adjust_symbols(dso);
1574 }
1575
1576 if (kmodule && adjust_kernel_syms)
1577 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr);
1578
1579 curr_dso = dso__get(dso);
1580 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1581 struct symbol *f;
1582 const char *elf_name = elf_sym__name(&sym, symstrs);
1583 char *demangled = NULL;
1584 int is_label = elf_sym__is_label(&sym);
1585 const char *section_name;
1586 bool used_opd = false;
1587
1588 if (!is_label && !elf_sym__filter(&sym))
1589 continue;
1590
1591 /* Reject ARM ELF "mapping symbols": these aren't unique and
1592 * don't identify functions, so will confuse the profile
1593 * output: */
1594 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1595 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1596 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1597 continue;
1598 }
1599
1600 /* Reject RISCV ELF "mapping symbols" */
1601 if (ehdr.e_machine == EM_RISCV) {
1602 if (elf_name[0] == '$' && strchr("dx", elf_name[1]))
1603 continue;
1604 }
1605
1606 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1607 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1608 u64 *opd = opddata->d_buf + offset;
1609 sym.st_value = DSO__SWAP(dso, u64, *opd);
1610 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1611 sym.st_value);
1612 used_opd = true;
1613 }
1614
1615 /*
1616 * When loading symbols in a data mapping, ABS symbols (which
1617 * has a value of SHN_ABS in its st_shndx) failed at
1618 * elf_getscn(). And it marks the loading as a failure so
1619 * already loaded symbols cannot be fixed up.
1620 *
1621 * I'm not sure what should be done. Just ignore them for now.
1622 * - Namhyung Kim
1623 */
1624 if (sym.st_shndx == SHN_ABS)
1625 continue;
1626
1627 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1628 if (!sec)
1629 goto out_elf_end;
1630
1631 gelf_getshdr(sec, &shdr);
1632
1633 /*
1634 * If the attribute bit SHF_ALLOC is not set, the section
1635 * doesn't occupy memory during process execution.
1636 * E.g. ".gnu.warning.*" section is used by linker to generate
1637 * warnings when calling deprecated functions, the symbols in
1638 * the section aren't loaded to memory during process execution,
1639 * so skip them.
1640 */
1641 if (!(shdr.sh_flags & SHF_ALLOC))
1642 continue;
1643
1644 secstrs = secstrs_sym;
1645
1646 /*
1647 * We have to fallback to runtime when syms' section header has
1648 * NOBITS set. NOBITS results in file offset (sh_offset) not
1649 * being incremented. So sh_offset used below has different
1650 * values for syms (invalid) and runtime (valid).
1651 */
1652 if (shdr.sh_type == SHT_NOBITS) {
1653 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1654 if (!sec)
1655 goto out_elf_end;
1656
1657 gelf_getshdr(sec, &shdr);
1658 secstrs = secstrs_run;
1659 }
1660
1661 if (is_label && !elf_sec__filter(&shdr, secstrs))
1662 continue;
1663
1664 section_name = elf_sec__name(&shdr, secstrs);
1665
1666 /* On ARM, symbols for thumb functions have 1 added to
1667 * the symbol address as a flag - remove it */
1668 if ((ehdr.e_machine == EM_ARM) &&
1669 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1670 (sym.st_value & 1))
1671 --sym.st_value;
1672
1673 if (dso__kernel(dso)) {
1674 if (dso__process_kernel_symbol(dso, map, &sym, &shdr,
1675 kmaps, kmap, &curr_dso,
1676 section_name,
1677 adjust_kernel_syms,
1678 kmodule,
1679 &remap_kernel,
1680 max_text_sh_offset))
1681 goto out_elf_end;
1682 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1683 (!used_opd && syms_ss->adjust_symbols)) {
1684 GElf_Phdr phdr;
1685
1686 if (elf_read_program_header(runtime_ss->elf,
1687 (u64)sym.st_value, &phdr)) {
1688 pr_debug4("%s: failed to find program header for "
1689 "symbol: %s st_value: %#" PRIx64 "\n",
1690 __func__, elf_name, (u64)sym.st_value);
1691 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1692 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1693 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1694 (u64)shdr.sh_offset);
1695 /*
1696 * Fail to find program header, let's rollback
1697 * to use shdr.sh_addr and shdr.sh_offset to
1698 * calibrate symbol's file address, though this
1699 * is not necessary for normal C ELF file, we
1700 * still need to handle java JIT symbols in this
1701 * case.
1702 */
1703 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1704 } else {
1705 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1706 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1707 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1708 (u64)phdr.p_offset);
1709 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1710 }
1711 }
1712
1713 demangled = dso__demangle_sym(dso, kmodule, elf_name);
1714 if (demangled != NULL)
1715 elf_name = demangled;
1716
1717 f = symbol__new(sym.st_value, sym.st_size,
1718 GELF_ST_BIND(sym.st_info),
1719 GELF_ST_TYPE(sym.st_info), elf_name);
1720 free(demangled);
1721 if (!f)
1722 goto out_elf_end;
1723
1724 arch__sym_update(f, &sym);
1725
1726 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso));
1727 nr++;
1728 }
1729 dso__put(curr_dso);
1730
1731 /*
1732 * For misannotated, zeroed, ASM function sizes.
1733 */
1734 if (nr > 0) {
1735 symbols__fixup_end(dso__symbols(dso), false);
1736 symbols__fixup_duplicate(dso__symbols(dso));
1737 if (kmap) {
1738 /*
1739 * We need to fixup this here too because we create new
1740 * maps here, for things like vsyscall sections.
1741 */
1742 maps__fixup_end(kmaps);
1743 }
1744 }
1745 return nr;
1746 out_elf_end:
1747 dso__put(curr_dso);
1748 return -1;
1749 }
1750
dso__load_sym(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule)1751 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1752 struct symsrc *runtime_ss, int kmodule)
1753 {
1754 int nr = 0;
1755 int err = -1;
1756
1757 dso__set_symtab_type(dso, syms_ss->type);
1758 dso__set_is_64_bit(dso, syms_ss->is_64_bit);
1759 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL);
1760
1761 /*
1762 * Modules may already have symbols from kallsyms, but those symbols
1763 * have the wrong values for the dso maps, so remove them.
1764 */
1765 if (kmodule && syms_ss->symtab)
1766 symbols__delete(dso__symbols(dso));
1767
1768 if (!syms_ss->symtab) {
1769 /*
1770 * If the vmlinux is stripped, fail so we will fall back
1771 * to using kallsyms. The vmlinux runtime symbols aren't
1772 * of much use.
1773 */
1774 if (dso__kernel(dso))
1775 return err;
1776 } else {
1777 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1778 kmodule, 0);
1779 if (err < 0)
1780 return err;
1781 nr = err;
1782 }
1783
1784 if (syms_ss->dynsym) {
1785 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1786 kmodule, 1);
1787 if (err < 0)
1788 return err;
1789 nr += err;
1790 }
1791
1792 /*
1793 * The .gnu_debugdata is a special situation: it contains a symbol
1794 * table, but the runtime file may also contain dynsym entries which are
1795 * not present there. We need to load both.
1796 */
1797 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) {
1798 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss,
1799 kmodule, 1);
1800 if (err < 0)
1801 return err;
1802 nr += err;
1803 }
1804
1805 return nr;
1806 }
1807
elf_read_maps(Elf * elf,bool exe,mapfn_t mapfn,void * data)1808 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1809 {
1810 GElf_Phdr phdr;
1811 size_t i, phdrnum;
1812 int err;
1813 u64 sz;
1814
1815 if (elf_getphdrnum(elf, &phdrnum))
1816 return -1;
1817
1818 for (i = 0; i < phdrnum; i++) {
1819 if (gelf_getphdr(elf, i, &phdr) == NULL)
1820 return -1;
1821 if (phdr.p_type != PT_LOAD)
1822 continue;
1823 if (exe) {
1824 if (!(phdr.p_flags & PF_X))
1825 continue;
1826 } else {
1827 if (!(phdr.p_flags & PF_R))
1828 continue;
1829 }
1830 sz = min(phdr.p_memsz, phdr.p_filesz);
1831 if (!sz)
1832 continue;
1833 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1834 if (err)
1835 return err;
1836 }
1837 return 0;
1838 }
1839
file__read_maps(int fd,bool exe,mapfn_t mapfn,void * data,bool * is_64_bit)1840 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1841 bool *is_64_bit)
1842 {
1843 int err;
1844 Elf *elf;
1845
1846 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1847 if (elf == NULL)
1848 return -1;
1849
1850 if (is_64_bit)
1851 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1852
1853 err = elf_read_maps(elf, exe, mapfn, data);
1854
1855 elf_end(elf);
1856 return err;
1857 }
1858
dso__type_fd(int fd)1859 enum dso_type dso__type_fd(int fd)
1860 {
1861 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1862 GElf_Ehdr ehdr;
1863 Elf_Kind ek;
1864 Elf *elf;
1865
1866 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1867 if (elf == NULL)
1868 goto out;
1869
1870 ek = elf_kind(elf);
1871 if (ek != ELF_K_ELF)
1872 goto out_end;
1873
1874 if (gelf_getclass(elf) == ELFCLASS64) {
1875 dso_type = DSO__TYPE_64BIT;
1876 goto out_end;
1877 }
1878
1879 if (gelf_getehdr(elf, &ehdr) == NULL)
1880 goto out_end;
1881
1882 if (ehdr.e_machine == EM_X86_64)
1883 dso_type = DSO__TYPE_X32BIT;
1884 else
1885 dso_type = DSO__TYPE_32BIT;
1886 out_end:
1887 elf_end(elf);
1888 out:
1889 return dso_type;
1890 }
1891
copy_bytes(int from,off_t from_offs,int to,off_t to_offs,u64 len)1892 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1893 {
1894 ssize_t r;
1895 size_t n;
1896 int err = -1;
1897 char *buf = malloc(page_size);
1898
1899 if (buf == NULL)
1900 return -1;
1901
1902 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1903 goto out;
1904
1905 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1906 goto out;
1907
1908 while (len) {
1909 n = page_size;
1910 if (len < n)
1911 n = len;
1912 /* Use read because mmap won't work on proc files */
1913 r = read(from, buf, n);
1914 if (r < 0)
1915 goto out;
1916 if (!r)
1917 break;
1918 n = r;
1919 r = write(to, buf, n);
1920 if (r < 0)
1921 goto out;
1922 if ((size_t)r != n)
1923 goto out;
1924 len -= n;
1925 }
1926
1927 err = 0;
1928 out:
1929 free(buf);
1930 return err;
1931 }
1932
1933 struct kcore {
1934 int fd;
1935 int elfclass;
1936 Elf *elf;
1937 GElf_Ehdr ehdr;
1938 };
1939
kcore__open(struct kcore * kcore,const char * filename)1940 static int kcore__open(struct kcore *kcore, const char *filename)
1941 {
1942 GElf_Ehdr *ehdr;
1943
1944 kcore->fd = open(filename, O_RDONLY);
1945 if (kcore->fd == -1)
1946 return -1;
1947
1948 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1949 if (!kcore->elf)
1950 goto out_close;
1951
1952 kcore->elfclass = gelf_getclass(kcore->elf);
1953 if (kcore->elfclass == ELFCLASSNONE)
1954 goto out_end;
1955
1956 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1957 if (!ehdr)
1958 goto out_end;
1959
1960 return 0;
1961
1962 out_end:
1963 elf_end(kcore->elf);
1964 out_close:
1965 close(kcore->fd);
1966 return -1;
1967 }
1968
kcore__init(struct kcore * kcore,char * filename,int elfclass,bool temp)1969 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1970 bool temp)
1971 {
1972 kcore->elfclass = elfclass;
1973
1974 if (temp)
1975 kcore->fd = mkstemp(filename);
1976 else
1977 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1978 if (kcore->fd == -1)
1979 return -1;
1980
1981 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1982 if (!kcore->elf)
1983 goto out_close;
1984
1985 if (!gelf_newehdr(kcore->elf, elfclass))
1986 goto out_end;
1987
1988 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1989
1990 return 0;
1991
1992 out_end:
1993 elf_end(kcore->elf);
1994 out_close:
1995 close(kcore->fd);
1996 unlink(filename);
1997 return -1;
1998 }
1999
kcore__close(struct kcore * kcore)2000 static void kcore__close(struct kcore *kcore)
2001 {
2002 elf_end(kcore->elf);
2003 close(kcore->fd);
2004 }
2005
kcore__copy_hdr(struct kcore * from,struct kcore * to,size_t count)2006 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
2007 {
2008 GElf_Ehdr *ehdr = &to->ehdr;
2009 GElf_Ehdr *kehdr = &from->ehdr;
2010
2011 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
2012 ehdr->e_type = kehdr->e_type;
2013 ehdr->e_machine = kehdr->e_machine;
2014 ehdr->e_version = kehdr->e_version;
2015 ehdr->e_entry = 0;
2016 ehdr->e_shoff = 0;
2017 ehdr->e_flags = kehdr->e_flags;
2018 ehdr->e_phnum = count;
2019 ehdr->e_shentsize = 0;
2020 ehdr->e_shnum = 0;
2021 ehdr->e_shstrndx = 0;
2022
2023 if (from->elfclass == ELFCLASS32) {
2024 ehdr->e_phoff = sizeof(Elf32_Ehdr);
2025 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
2026 ehdr->e_phentsize = sizeof(Elf32_Phdr);
2027 } else {
2028 ehdr->e_phoff = sizeof(Elf64_Ehdr);
2029 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
2030 ehdr->e_phentsize = sizeof(Elf64_Phdr);
2031 }
2032
2033 if (!gelf_update_ehdr(to->elf, ehdr))
2034 return -1;
2035
2036 if (!gelf_newphdr(to->elf, count))
2037 return -1;
2038
2039 return 0;
2040 }
2041
kcore__add_phdr(struct kcore * kcore,int idx,off_t offset,u64 addr,u64 len)2042 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2043 u64 addr, u64 len)
2044 {
2045 GElf_Phdr phdr = {
2046 .p_type = PT_LOAD,
2047 .p_flags = PF_R | PF_W | PF_X,
2048 .p_offset = offset,
2049 .p_vaddr = addr,
2050 .p_paddr = 0,
2051 .p_filesz = len,
2052 .p_memsz = len,
2053 .p_align = page_size,
2054 };
2055
2056 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2057 return -1;
2058
2059 return 0;
2060 }
2061
kcore__write(struct kcore * kcore)2062 static off_t kcore__write(struct kcore *kcore)
2063 {
2064 return elf_update(kcore->elf, ELF_C_WRITE);
2065 }
2066
2067 struct phdr_data {
2068 off_t offset;
2069 off_t rel;
2070 u64 addr;
2071 u64 len;
2072 struct list_head node;
2073 struct phdr_data *remaps;
2074 };
2075
2076 struct sym_data {
2077 u64 addr;
2078 struct list_head node;
2079 };
2080
2081 struct kcore_copy_info {
2082 u64 stext;
2083 u64 etext;
2084 u64 first_symbol;
2085 u64 last_symbol;
2086 u64 first_module;
2087 u64 first_module_symbol;
2088 u64 last_module_symbol;
2089 size_t phnum;
2090 struct list_head phdrs;
2091 struct list_head syms;
2092 };
2093
2094 #define kcore_copy__for_each_phdr(k, p) \
2095 list_for_each_entry((p), &(k)->phdrs, node)
2096
phdr_data__new(u64 addr,u64 len,off_t offset)2097 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2098 {
2099 struct phdr_data *p = zalloc(sizeof(*p));
2100
2101 if (p) {
2102 p->addr = addr;
2103 p->len = len;
2104 p->offset = offset;
2105 }
2106
2107 return p;
2108 }
2109
kcore_copy_info__addnew(struct kcore_copy_info * kci,u64 addr,u64 len,off_t offset)2110 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2111 u64 addr, u64 len,
2112 off_t offset)
2113 {
2114 struct phdr_data *p = phdr_data__new(addr, len, offset);
2115
2116 if (p)
2117 list_add_tail(&p->node, &kci->phdrs);
2118
2119 return p;
2120 }
2121
kcore_copy__free_phdrs(struct kcore_copy_info * kci)2122 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2123 {
2124 struct phdr_data *p, *tmp;
2125
2126 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2127 list_del_init(&p->node);
2128 free(p);
2129 }
2130 }
2131
kcore_copy__new_sym(struct kcore_copy_info * kci,u64 addr)2132 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2133 u64 addr)
2134 {
2135 struct sym_data *s = zalloc(sizeof(*s));
2136
2137 if (s) {
2138 s->addr = addr;
2139 list_add_tail(&s->node, &kci->syms);
2140 }
2141
2142 return s;
2143 }
2144
kcore_copy__free_syms(struct kcore_copy_info * kci)2145 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2146 {
2147 struct sym_data *s, *tmp;
2148
2149 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2150 list_del_init(&s->node);
2151 free(s);
2152 }
2153 }
2154
kcore_copy__process_kallsyms(void * arg,const char * name,char type,u64 start)2155 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2156 u64 start)
2157 {
2158 struct kcore_copy_info *kci = arg;
2159
2160 if (!kallsyms__is_function(type))
2161 return 0;
2162
2163 if (strchr(name, '[')) {
2164 if (!kci->first_module_symbol || start < kci->first_module_symbol)
2165 kci->first_module_symbol = start;
2166 if (start > kci->last_module_symbol)
2167 kci->last_module_symbol = start;
2168 return 0;
2169 }
2170
2171 if (!kci->first_symbol || start < kci->first_symbol)
2172 kci->first_symbol = start;
2173
2174 if (!kci->last_symbol || start > kci->last_symbol)
2175 kci->last_symbol = start;
2176
2177 if (!strcmp(name, "_stext")) {
2178 kci->stext = start;
2179 return 0;
2180 }
2181
2182 if (!strcmp(name, "_etext")) {
2183 kci->etext = start;
2184 return 0;
2185 }
2186
2187 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2188 return -1;
2189
2190 return 0;
2191 }
2192
kcore_copy__parse_kallsyms(struct kcore_copy_info * kci,const char * dir)2193 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2194 const char *dir)
2195 {
2196 char kallsyms_filename[PATH_MAX];
2197
2198 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2199
2200 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2201 return -1;
2202
2203 if (kallsyms__parse(kallsyms_filename, kci,
2204 kcore_copy__process_kallsyms) < 0)
2205 return -1;
2206
2207 return 0;
2208 }
2209
kcore_copy__process_modules(void * arg,const char * name __maybe_unused,u64 start,u64 size __maybe_unused)2210 static int kcore_copy__process_modules(void *arg,
2211 const char *name __maybe_unused,
2212 u64 start, u64 size __maybe_unused)
2213 {
2214 struct kcore_copy_info *kci = arg;
2215
2216 if (!kci->first_module || start < kci->first_module)
2217 kci->first_module = start;
2218
2219 return 0;
2220 }
2221
kcore_copy__parse_modules(struct kcore_copy_info * kci,const char * dir)2222 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2223 const char *dir)
2224 {
2225 char modules_filename[PATH_MAX];
2226
2227 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2228
2229 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2230 return -1;
2231
2232 if (modules__parse(modules_filename, kci,
2233 kcore_copy__process_modules) < 0)
2234 return -1;
2235
2236 return 0;
2237 }
2238
kcore_copy__map(struct kcore_copy_info * kci,u64 start,u64 end,u64 pgoff,u64 s,u64 e)2239 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2240 u64 pgoff, u64 s, u64 e)
2241 {
2242 u64 len, offset;
2243
2244 if (s < start || s >= end)
2245 return 0;
2246
2247 offset = (s - start) + pgoff;
2248 len = e < end ? e - s : end - s;
2249
2250 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2251 }
2252
kcore_copy__read_map(u64 start,u64 len,u64 pgoff,void * data)2253 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2254 {
2255 struct kcore_copy_info *kci = data;
2256 u64 end = start + len;
2257 struct sym_data *sdat;
2258
2259 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2260 return -1;
2261
2262 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2263 kci->last_module_symbol))
2264 return -1;
2265
2266 list_for_each_entry(sdat, &kci->syms, node) {
2267 u64 s = round_down(sdat->addr, page_size);
2268
2269 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2270 return -1;
2271 }
2272
2273 return 0;
2274 }
2275
kcore_copy__read_maps(struct kcore_copy_info * kci,Elf * elf)2276 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2277 {
2278 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2279 return -1;
2280
2281 return 0;
2282 }
2283
kcore_copy__find_remaps(struct kcore_copy_info * kci)2284 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2285 {
2286 struct phdr_data *p, *k = NULL;
2287 u64 kend;
2288
2289 if (!kci->stext)
2290 return;
2291
2292 /* Find phdr that corresponds to the kernel map (contains stext) */
2293 kcore_copy__for_each_phdr(kci, p) {
2294 u64 pend = p->addr + p->len - 1;
2295
2296 if (p->addr <= kci->stext && pend >= kci->stext) {
2297 k = p;
2298 break;
2299 }
2300 }
2301
2302 if (!k)
2303 return;
2304
2305 kend = k->offset + k->len;
2306
2307 /* Find phdrs that remap the kernel */
2308 kcore_copy__for_each_phdr(kci, p) {
2309 u64 pend = p->offset + p->len;
2310
2311 if (p == k)
2312 continue;
2313
2314 if (p->offset >= k->offset && pend <= kend)
2315 p->remaps = k;
2316 }
2317 }
2318
kcore_copy__layout(struct kcore_copy_info * kci)2319 static void kcore_copy__layout(struct kcore_copy_info *kci)
2320 {
2321 struct phdr_data *p;
2322 off_t rel = 0;
2323
2324 kcore_copy__find_remaps(kci);
2325
2326 kcore_copy__for_each_phdr(kci, p) {
2327 if (!p->remaps) {
2328 p->rel = rel;
2329 rel += p->len;
2330 }
2331 kci->phnum += 1;
2332 }
2333
2334 kcore_copy__for_each_phdr(kci, p) {
2335 struct phdr_data *k = p->remaps;
2336
2337 if (k)
2338 p->rel = p->offset - k->offset + k->rel;
2339 }
2340 }
2341
kcore_copy__calc_maps(struct kcore_copy_info * kci,const char * dir,Elf * elf)2342 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2343 Elf *elf)
2344 {
2345 if (kcore_copy__parse_kallsyms(kci, dir))
2346 return -1;
2347
2348 if (kcore_copy__parse_modules(kci, dir))
2349 return -1;
2350
2351 if (kci->stext)
2352 kci->stext = round_down(kci->stext, page_size);
2353 else
2354 kci->stext = round_down(kci->first_symbol, page_size);
2355
2356 if (kci->etext) {
2357 kci->etext = round_up(kci->etext, page_size);
2358 } else if (kci->last_symbol) {
2359 kci->etext = round_up(kci->last_symbol, page_size);
2360 kci->etext += page_size;
2361 }
2362
2363 if (kci->first_module_symbol &&
2364 (!kci->first_module || kci->first_module_symbol < kci->first_module))
2365 kci->first_module = kci->first_module_symbol;
2366
2367 kci->first_module = round_down(kci->first_module, page_size);
2368
2369 if (kci->last_module_symbol) {
2370 kci->last_module_symbol = round_up(kci->last_module_symbol,
2371 page_size);
2372 kci->last_module_symbol += page_size;
2373 }
2374
2375 if (!kci->stext || !kci->etext)
2376 return -1;
2377
2378 if (kci->first_module && !kci->last_module_symbol)
2379 return -1;
2380
2381 if (kcore_copy__read_maps(kci, elf))
2382 return -1;
2383
2384 kcore_copy__layout(kci);
2385
2386 return 0;
2387 }
2388
kcore_copy__copy_file(const char * from_dir,const char * to_dir,const char * name)2389 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2390 const char *name)
2391 {
2392 char from_filename[PATH_MAX];
2393 char to_filename[PATH_MAX];
2394
2395 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2396 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2397
2398 return copyfile_mode(from_filename, to_filename, 0400);
2399 }
2400
kcore_copy__unlink(const char * dir,const char * name)2401 static int kcore_copy__unlink(const char *dir, const char *name)
2402 {
2403 char filename[PATH_MAX];
2404
2405 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2406
2407 return unlink(filename);
2408 }
2409
kcore_copy__compare_fds(int from,int to)2410 static int kcore_copy__compare_fds(int from, int to)
2411 {
2412 char *buf_from;
2413 char *buf_to;
2414 ssize_t ret;
2415 size_t len;
2416 int err = -1;
2417
2418 buf_from = malloc(page_size);
2419 buf_to = malloc(page_size);
2420 if (!buf_from || !buf_to)
2421 goto out;
2422
2423 while (1) {
2424 /* Use read because mmap won't work on proc files */
2425 ret = read(from, buf_from, page_size);
2426 if (ret < 0)
2427 goto out;
2428
2429 if (!ret)
2430 break;
2431
2432 len = ret;
2433
2434 if (readn(to, buf_to, len) != (int)len)
2435 goto out;
2436
2437 if (memcmp(buf_from, buf_to, len))
2438 goto out;
2439 }
2440
2441 err = 0;
2442 out:
2443 free(buf_to);
2444 free(buf_from);
2445 return err;
2446 }
2447
kcore_copy__compare_files(const char * from_filename,const char * to_filename)2448 static int kcore_copy__compare_files(const char *from_filename,
2449 const char *to_filename)
2450 {
2451 int from, to, err = -1;
2452
2453 from = open(from_filename, O_RDONLY);
2454 if (from < 0)
2455 return -1;
2456
2457 to = open(to_filename, O_RDONLY);
2458 if (to < 0)
2459 goto out_close_from;
2460
2461 err = kcore_copy__compare_fds(from, to);
2462
2463 close(to);
2464 out_close_from:
2465 close(from);
2466 return err;
2467 }
2468
kcore_copy__compare_file(const char * from_dir,const char * to_dir,const char * name)2469 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2470 const char *name)
2471 {
2472 char from_filename[PATH_MAX];
2473 char to_filename[PATH_MAX];
2474
2475 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2476 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2477
2478 return kcore_copy__compare_files(from_filename, to_filename);
2479 }
2480
2481 /**
2482 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2483 * @from_dir: from directory
2484 * @to_dir: to directory
2485 *
2486 * This function copies kallsyms, modules and kcore files from one directory to
2487 * another. kallsyms and modules are copied entirely. Only code segments are
2488 * copied from kcore. It is assumed that two segments suffice: one for the
2489 * kernel proper and one for all the modules. The code segments are determined
2490 * from kallsyms and modules files. The kernel map starts at _stext or the
2491 * lowest function symbol, and ends at _etext or the highest function symbol.
2492 * The module map starts at the lowest module address and ends at the highest
2493 * module symbol. Start addresses are rounded down to the nearest page. End
2494 * addresses are rounded up to the nearest page. An extra page is added to the
2495 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2496 * symbol too. Because it contains only code sections, the resulting kcore is
2497 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2498 * is not the same for the kernel map and the modules map. That happens because
2499 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2500 * kallsyms file is compared with its copy to check that modules have not been
2501 * loaded or unloaded while the copies were taking place.
2502 *
2503 * Return: %0 on success, %-1 on failure.
2504 */
kcore_copy(const char * from_dir,const char * to_dir)2505 int kcore_copy(const char *from_dir, const char *to_dir)
2506 {
2507 struct kcore kcore;
2508 struct kcore extract;
2509 int idx = 0, err = -1;
2510 off_t offset, sz;
2511 struct kcore_copy_info kci = { .stext = 0, };
2512 char kcore_filename[PATH_MAX];
2513 char extract_filename[PATH_MAX];
2514 struct phdr_data *p;
2515
2516 INIT_LIST_HEAD(&kci.phdrs);
2517 INIT_LIST_HEAD(&kci.syms);
2518
2519 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2520 return -1;
2521
2522 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2523 goto out_unlink_kallsyms;
2524
2525 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2526 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2527
2528 if (kcore__open(&kcore, kcore_filename))
2529 goto out_unlink_modules;
2530
2531 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2532 goto out_kcore_close;
2533
2534 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2535 goto out_kcore_close;
2536
2537 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2538 goto out_extract_close;
2539
2540 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2541 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2542 offset = round_up(offset, page_size);
2543
2544 kcore_copy__for_each_phdr(&kci, p) {
2545 off_t offs = p->rel + offset;
2546
2547 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2548 goto out_extract_close;
2549 }
2550
2551 sz = kcore__write(&extract);
2552 if (sz < 0 || sz > offset)
2553 goto out_extract_close;
2554
2555 kcore_copy__for_each_phdr(&kci, p) {
2556 off_t offs = p->rel + offset;
2557
2558 if (p->remaps)
2559 continue;
2560 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2561 goto out_extract_close;
2562 }
2563
2564 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2565 goto out_extract_close;
2566
2567 err = 0;
2568
2569 out_extract_close:
2570 kcore__close(&extract);
2571 if (err)
2572 unlink(extract_filename);
2573 out_kcore_close:
2574 kcore__close(&kcore);
2575 out_unlink_modules:
2576 if (err)
2577 kcore_copy__unlink(to_dir, "modules");
2578 out_unlink_kallsyms:
2579 if (err)
2580 kcore_copy__unlink(to_dir, "kallsyms");
2581
2582 kcore_copy__free_phdrs(&kci);
2583 kcore_copy__free_syms(&kci);
2584
2585 return err;
2586 }
2587
kcore_extract__create(struct kcore_extract * kce)2588 int kcore_extract__create(struct kcore_extract *kce)
2589 {
2590 struct kcore kcore;
2591 struct kcore extract;
2592 size_t count = 1;
2593 int idx = 0, err = -1;
2594 off_t offset = page_size, sz;
2595
2596 if (kcore__open(&kcore, kce->kcore_filename))
2597 return -1;
2598
2599 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2600 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2601 goto out_kcore_close;
2602
2603 if (kcore__copy_hdr(&kcore, &extract, count))
2604 goto out_extract_close;
2605
2606 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2607 goto out_extract_close;
2608
2609 sz = kcore__write(&extract);
2610 if (sz < 0 || sz > offset)
2611 goto out_extract_close;
2612
2613 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2614 goto out_extract_close;
2615
2616 err = 0;
2617
2618 out_extract_close:
2619 kcore__close(&extract);
2620 if (err)
2621 unlink(kce->extract_filename);
2622 out_kcore_close:
2623 kcore__close(&kcore);
2624
2625 return err;
2626 }
2627
kcore_extract__delete(struct kcore_extract * kce)2628 void kcore_extract__delete(struct kcore_extract *kce)
2629 {
2630 unlink(kce->extract_filename);
2631 }
2632
2633 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2634
sdt_adjust_loc(struct sdt_note * tmp,GElf_Addr base_off)2635 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2636 {
2637 if (!base_off)
2638 return;
2639
2640 if (tmp->bit32)
2641 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2642 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2643 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2644 else
2645 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2646 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2647 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2648 }
2649
sdt_adjust_refctr(struct sdt_note * tmp,GElf_Addr base_addr,GElf_Addr base_off)2650 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2651 GElf_Addr base_off)
2652 {
2653 if (!base_off)
2654 return;
2655
2656 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2657 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2658 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2659 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2660 }
2661
2662 /**
2663 * populate_sdt_note : Parse raw data and identify SDT note
2664 * @elf: elf of the opened file
2665 * @data: raw data of a section with description offset applied
2666 * @len: note description size
2667 * @type: type of the note
2668 * @sdt_notes: List to add the SDT note
2669 *
2670 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2671 * if its an SDT note, it appends to @sdt_notes list.
2672 */
populate_sdt_note(Elf ** elf,const char * data,size_t len,struct list_head * sdt_notes)2673 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2674 struct list_head *sdt_notes)
2675 {
2676 const char *provider, *name, *args;
2677 struct sdt_note *tmp = NULL;
2678 GElf_Ehdr ehdr;
2679 GElf_Shdr shdr;
2680 int ret = -EINVAL;
2681
2682 union {
2683 Elf64_Addr a64[NR_ADDR];
2684 Elf32_Addr a32[NR_ADDR];
2685 } buf;
2686
2687 Elf_Data dst = {
2688 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2689 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2690 .d_off = 0, .d_align = 0
2691 };
2692 Elf_Data src = {
2693 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2694 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2695 .d_align = 0
2696 };
2697
2698 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2699 if (!tmp) {
2700 ret = -ENOMEM;
2701 goto out_err;
2702 }
2703
2704 INIT_LIST_HEAD(&tmp->note_list);
2705
2706 if (len < dst.d_size + 3)
2707 goto out_free_note;
2708
2709 /* Translation from file representation to memory representation */
2710 if (gelf_xlatetom(*elf, &dst, &src,
2711 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2712 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2713 goto out_free_note;
2714 }
2715
2716 /* Populate the fields of sdt_note */
2717 provider = data + dst.d_size;
2718
2719 name = (const char *)memchr(provider, '\0', data + len - provider);
2720 if (name++ == NULL)
2721 goto out_free_note;
2722
2723 tmp->provider = strdup(provider);
2724 if (!tmp->provider) {
2725 ret = -ENOMEM;
2726 goto out_free_note;
2727 }
2728 tmp->name = strdup(name);
2729 if (!tmp->name) {
2730 ret = -ENOMEM;
2731 goto out_free_prov;
2732 }
2733
2734 args = memchr(name, '\0', data + len - name);
2735
2736 /*
2737 * There is no argument if:
2738 * - We reached the end of the note;
2739 * - There is not enough room to hold a potential string;
2740 * - The argument string is empty or just contains ':'.
2741 */
2742 if (args == NULL || data + len - args < 2 ||
2743 args[1] == ':' || args[1] == '\0')
2744 tmp->args = NULL;
2745 else {
2746 tmp->args = strdup(++args);
2747 if (!tmp->args) {
2748 ret = -ENOMEM;
2749 goto out_free_name;
2750 }
2751 }
2752
2753 if (gelf_getclass(*elf) == ELFCLASS32) {
2754 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2755 tmp->bit32 = true;
2756 } else {
2757 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2758 tmp->bit32 = false;
2759 }
2760
2761 if (!gelf_getehdr(*elf, &ehdr)) {
2762 pr_debug("%s : cannot get elf header.\n", __func__);
2763 ret = -EBADF;
2764 goto out_free_args;
2765 }
2766
2767 /* Adjust the prelink effect :
2768 * Find out the .stapsdt.base section.
2769 * This scn will help us to handle prelinking (if present).
2770 * Compare the retrieved file offset of the base section with the
2771 * base address in the description of the SDT note. If its different,
2772 * then accordingly, adjust the note location.
2773 */
2774 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2775 sdt_adjust_loc(tmp, shdr.sh_offset);
2776
2777 /* Adjust reference counter offset */
2778 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2779 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2780
2781 list_add_tail(&tmp->note_list, sdt_notes);
2782 return 0;
2783
2784 out_free_args:
2785 zfree(&tmp->args);
2786 out_free_name:
2787 zfree(&tmp->name);
2788 out_free_prov:
2789 zfree(&tmp->provider);
2790 out_free_note:
2791 free(tmp);
2792 out_err:
2793 return ret;
2794 }
2795
2796 /**
2797 * construct_sdt_notes_list : constructs a list of SDT notes
2798 * @elf : elf to look into
2799 * @sdt_notes : empty list_head
2800 *
2801 * Scans the sections in 'elf' for the section
2802 * .note.stapsdt. It, then calls populate_sdt_note to find
2803 * out the SDT events and populates the 'sdt_notes'.
2804 */
construct_sdt_notes_list(Elf * elf,struct list_head * sdt_notes)2805 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2806 {
2807 GElf_Ehdr ehdr;
2808 Elf_Scn *scn = NULL;
2809 Elf_Data *data;
2810 GElf_Shdr shdr;
2811 size_t shstrndx, next;
2812 GElf_Nhdr nhdr;
2813 size_t name_off, desc_off, offset;
2814 int ret = 0;
2815
2816 if (gelf_getehdr(elf, &ehdr) == NULL) {
2817 ret = -EBADF;
2818 goto out_ret;
2819 }
2820 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2821 ret = -EBADF;
2822 goto out_ret;
2823 }
2824
2825 /* Look for the required section */
2826 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2827 if (!scn) {
2828 ret = -ENOENT;
2829 goto out_ret;
2830 }
2831
2832 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2833 ret = -ENOENT;
2834 goto out_ret;
2835 }
2836
2837 data = elf_getdata(scn, NULL);
2838
2839 /* Get the SDT notes */
2840 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2841 &desc_off)) > 0; offset = next) {
2842 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2843 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2844 sizeof(SDT_NOTE_NAME))) {
2845 /* Check the type of the note */
2846 if (nhdr.n_type != SDT_NOTE_TYPE)
2847 goto out_ret;
2848
2849 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2850 nhdr.n_descsz, sdt_notes);
2851 if (ret < 0)
2852 goto out_ret;
2853 }
2854 }
2855 if (list_empty(sdt_notes))
2856 ret = -ENOENT;
2857
2858 out_ret:
2859 return ret;
2860 }
2861
2862 /**
2863 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2864 * @head : empty list_head
2865 * @target : file to find SDT notes from
2866 *
2867 * This opens the file, initializes
2868 * the ELF and then calls construct_sdt_notes_list.
2869 */
get_sdt_note_list(struct list_head * head,const char * target)2870 int get_sdt_note_list(struct list_head *head, const char *target)
2871 {
2872 Elf *elf;
2873 int fd, ret;
2874
2875 fd = open(target, O_RDONLY);
2876 if (fd < 0)
2877 return -EBADF;
2878
2879 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2880 if (!elf) {
2881 ret = -EBADF;
2882 goto out_close;
2883 }
2884 ret = construct_sdt_notes_list(elf, head);
2885 elf_end(elf);
2886 out_close:
2887 close(fd);
2888 return ret;
2889 }
2890
2891 /**
2892 * cleanup_sdt_note_list : free the sdt notes' list
2893 * @sdt_notes: sdt notes' list
2894 *
2895 * Free up the SDT notes in @sdt_notes.
2896 * Returns the number of SDT notes free'd.
2897 */
cleanup_sdt_note_list(struct list_head * sdt_notes)2898 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2899 {
2900 struct sdt_note *tmp, *pos;
2901 int nr_free = 0;
2902
2903 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2904 list_del_init(&pos->note_list);
2905 zfree(&pos->args);
2906 zfree(&pos->name);
2907 zfree(&pos->provider);
2908 free(pos);
2909 nr_free++;
2910 }
2911 return nr_free;
2912 }
2913
2914 /**
2915 * sdt_notes__get_count: Counts the number of sdt events
2916 * @start: list_head to sdt_notes list
2917 *
2918 * Returns the number of SDT notes in a list
2919 */
sdt_notes__get_count(struct list_head * start)2920 int sdt_notes__get_count(struct list_head *start)
2921 {
2922 struct sdt_note *sdt_ptr;
2923 int count = 0;
2924
2925 list_for_each_entry(sdt_ptr, start, note_list)
2926 count++;
2927 return count;
2928 }
2929 #endif
2930
symbol__elf_init(void)2931 void symbol__elf_init(void)
2932 {
2933 elf_version(EV_CURRENT);
2934 }
2935