1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9
10 #include "compress.h"
11 #include "dso.h"
12 #include "libbfd.h"
13 #include "map.h"
14 #include "maps.h"
15 #include "symbol.h"
16 #include "symsrc.h"
17 #include "machine.h"
18 #include "vdso.h"
19 #include "debug.h"
20 #include "util/copyfile.h"
21 #include <linux/ctype.h>
22 #include <linux/kernel.h>
23 #include <linux/zalloc.h>
24 #include <linux/string.h>
25 #include <symbol/kallsyms.h>
26 #include <internal/lib.h>
27
28 #ifndef EM_AARCH64
29 #define EM_AARCH64 183 /* ARM 64 bit */
30 #endif
31
32 #ifndef EM_LOONGARCH
33 #define EM_LOONGARCH 258
34 #endif
35
36 #ifndef ELF32_ST_VISIBILITY
37 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
38 #endif
39
40 /* For ELF64 the definitions are the same. */
41 #ifndef ELF64_ST_VISIBILITY
42 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
43 #endif
44
45 /* How to extract information held in the st_other field. */
46 #ifndef GELF_ST_VISIBILITY
47 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
48 #endif
49
50 typedef Elf64_Nhdr GElf_Nhdr;
51
52
53 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
elf_getphdrnum(Elf * elf,size_t * dst)54 static int elf_getphdrnum(Elf *elf, size_t *dst)
55 {
56 GElf_Ehdr gehdr;
57 GElf_Ehdr *ehdr;
58
59 ehdr = gelf_getehdr(elf, &gehdr);
60 if (!ehdr)
61 return -1;
62
63 *dst = ehdr->e_phnum;
64
65 return 0;
66 }
67 #endif
68
69 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
elf_getshdrstrndx(Elf * elf __maybe_unused,size_t * dst __maybe_unused)70 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
71 {
72 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
73 return -1;
74 }
75 #endif
76
77 #ifndef NT_GNU_BUILD_ID
78 #define NT_GNU_BUILD_ID 3
79 #endif
80
81 /**
82 * elf_symtab__for_each_symbol - iterate thru all the symbols
83 *
84 * @syms: struct elf_symtab instance to iterate
85 * @idx: uint32_t idx
86 * @sym: GElf_Sym iterator
87 */
88 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
89 for (idx = 0, gelf_getsym(syms, idx, &sym);\
90 idx < nr_syms; \
91 idx++, gelf_getsym(syms, idx, &sym))
92
elf_sym__type(const GElf_Sym * sym)93 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
94 {
95 return GELF_ST_TYPE(sym->st_info);
96 }
97
elf_sym__visibility(const GElf_Sym * sym)98 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
99 {
100 return GELF_ST_VISIBILITY(sym->st_other);
101 }
102
103 #ifndef STT_GNU_IFUNC
104 #define STT_GNU_IFUNC 10
105 #endif
106
elf_sym__is_function(const GElf_Sym * sym)107 static inline int elf_sym__is_function(const GElf_Sym *sym)
108 {
109 return (elf_sym__type(sym) == STT_FUNC ||
110 elf_sym__type(sym) == STT_GNU_IFUNC) &&
111 sym->st_name != 0 &&
112 sym->st_shndx != SHN_UNDEF;
113 }
114
elf_sym__is_object(const GElf_Sym * sym)115 static inline bool elf_sym__is_object(const GElf_Sym *sym)
116 {
117 return elf_sym__type(sym) == STT_OBJECT &&
118 sym->st_name != 0 &&
119 sym->st_shndx != SHN_UNDEF;
120 }
121
elf_sym__is_label(const GElf_Sym * sym)122 static inline int elf_sym__is_label(const GElf_Sym *sym)
123 {
124 return elf_sym__type(sym) == STT_NOTYPE &&
125 sym->st_name != 0 &&
126 sym->st_shndx != SHN_UNDEF &&
127 sym->st_shndx != SHN_ABS &&
128 elf_sym__visibility(sym) != STV_HIDDEN &&
129 elf_sym__visibility(sym) != STV_INTERNAL;
130 }
131
elf_sym__filter(GElf_Sym * sym)132 static bool elf_sym__filter(GElf_Sym *sym)
133 {
134 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
135 }
136
elf_sym__name(const GElf_Sym * sym,const Elf_Data * symstrs)137 static inline const char *elf_sym__name(const GElf_Sym *sym,
138 const Elf_Data *symstrs)
139 {
140 return symstrs->d_buf + sym->st_name;
141 }
142
elf_sec__name(const GElf_Shdr * shdr,const Elf_Data * secstrs)143 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
144 const Elf_Data *secstrs)
145 {
146 return secstrs->d_buf + shdr->sh_name;
147 }
148
elf_sec__is_text(const GElf_Shdr * shdr,const Elf_Data * secstrs)149 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
150 const Elf_Data *secstrs)
151 {
152 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
153 }
154
elf_sec__is_data(const GElf_Shdr * shdr,const Elf_Data * secstrs)155 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
156 const Elf_Data *secstrs)
157 {
158 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
159 }
160
elf_sec__filter(GElf_Shdr * shdr,Elf_Data * secstrs)161 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
162 {
163 return elf_sec__is_text(shdr, secstrs) ||
164 elf_sec__is_data(shdr, secstrs);
165 }
166
elf_addr_to_index(Elf * elf,GElf_Addr addr)167 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
168 {
169 Elf_Scn *sec = NULL;
170 GElf_Shdr shdr;
171 size_t cnt = 1;
172
173 while ((sec = elf_nextscn(elf, sec)) != NULL) {
174 gelf_getshdr(sec, &shdr);
175
176 if ((addr >= shdr.sh_addr) &&
177 (addr < (shdr.sh_addr + shdr.sh_size)))
178 return cnt;
179
180 ++cnt;
181 }
182
183 return -1;
184 }
185
elf_section_by_name(Elf * elf,GElf_Ehdr * ep,GElf_Shdr * shp,const char * name,size_t * idx)186 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
187 GElf_Shdr *shp, const char *name, size_t *idx)
188 {
189 Elf_Scn *sec = NULL;
190 size_t cnt = 1;
191
192 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
193 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
194 return NULL;
195
196 while ((sec = elf_nextscn(elf, sec)) != NULL) {
197 char *str;
198
199 gelf_getshdr(sec, shp);
200 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
201 if (str && !strcmp(name, str)) {
202 if (idx)
203 *idx = cnt;
204 return sec;
205 }
206 ++cnt;
207 }
208
209 return NULL;
210 }
211
filename__has_section(const char * filename,const char * sec)212 bool filename__has_section(const char *filename, const char *sec)
213 {
214 int fd;
215 Elf *elf;
216 GElf_Ehdr ehdr;
217 GElf_Shdr shdr;
218 bool found = false;
219
220 fd = open(filename, O_RDONLY);
221 if (fd < 0)
222 return false;
223
224 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
225 if (elf == NULL)
226 goto out;
227
228 if (gelf_getehdr(elf, &ehdr) == NULL)
229 goto elf_out;
230
231 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
232
233 elf_out:
234 elf_end(elf);
235 out:
236 close(fd);
237 return found;
238 }
239
elf_read_program_header(Elf * elf,u64 vaddr,GElf_Phdr * phdr)240 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
241 {
242 size_t i, phdrnum;
243 u64 sz;
244
245 if (elf_getphdrnum(elf, &phdrnum))
246 return -1;
247
248 for (i = 0; i < phdrnum; i++) {
249 if (gelf_getphdr(elf, i, phdr) == NULL)
250 return -1;
251
252 if (phdr->p_type != PT_LOAD)
253 continue;
254
255 sz = max(phdr->p_memsz, phdr->p_filesz);
256 if (!sz)
257 continue;
258
259 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
260 return 0;
261 }
262
263 /* Not found any valid program header */
264 return -1;
265 }
266
267 struct rel_info {
268 u32 nr_entries;
269 u32 *sorted;
270 bool is_rela;
271 Elf_Data *reldata;
272 GElf_Rela rela;
273 GElf_Rel rel;
274 };
275
get_rel_symidx(struct rel_info * ri,u32 idx)276 static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
277 {
278 idx = ri->sorted ? ri->sorted[idx] : idx;
279 if (ri->is_rela) {
280 gelf_getrela(ri->reldata, idx, &ri->rela);
281 return GELF_R_SYM(ri->rela.r_info);
282 }
283 gelf_getrel(ri->reldata, idx, &ri->rel);
284 return GELF_R_SYM(ri->rel.r_info);
285 }
286
get_rel_offset(struct rel_info * ri,u32 x)287 static u64 get_rel_offset(struct rel_info *ri, u32 x)
288 {
289 if (ri->is_rela) {
290 GElf_Rela rela;
291
292 gelf_getrela(ri->reldata, x, &rela);
293 return rela.r_offset;
294 } else {
295 GElf_Rel rel;
296
297 gelf_getrel(ri->reldata, x, &rel);
298 return rel.r_offset;
299 }
300 }
301
rel_cmp(const void * a,const void * b,void * r)302 static int rel_cmp(const void *a, const void *b, void *r)
303 {
304 struct rel_info *ri = r;
305 u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
306 u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
307
308 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
309 }
310
sort_rel(struct rel_info * ri)311 static int sort_rel(struct rel_info *ri)
312 {
313 size_t sz = sizeof(ri->sorted[0]);
314 u32 i;
315
316 ri->sorted = calloc(ri->nr_entries, sz);
317 if (!ri->sorted)
318 return -1;
319 for (i = 0; i < ri->nr_entries; i++)
320 ri->sorted[i] = i;
321 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
322 return 0;
323 }
324
325 /*
326 * For x86_64, the GNU linker is putting IFUNC information in the relocation
327 * addend.
328 */
addend_may_be_ifunc(GElf_Ehdr * ehdr,struct rel_info * ri)329 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
330 {
331 return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
332 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
333 }
334
get_ifunc_name(Elf * elf,struct dso * dso,GElf_Ehdr * ehdr,struct rel_info * ri,char * buf,size_t buf_sz)335 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
336 struct rel_info *ri, char *buf, size_t buf_sz)
337 {
338 u64 addr = ri->rela.r_addend;
339 struct symbol *sym;
340 GElf_Phdr phdr;
341
342 if (!addend_may_be_ifunc(ehdr, ri))
343 return false;
344
345 if (elf_read_program_header(elf, addr, &phdr))
346 return false;
347
348 addr -= phdr.p_vaddr - phdr.p_offset;
349
350 sym = dso__find_symbol_nocache(dso, addr);
351
352 /* Expecting the address to be an IFUNC or IFUNC alias */
353 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
354 return false;
355
356 snprintf(buf, buf_sz, "%s@plt", sym->name);
357
358 return true;
359 }
360
exit_rel(struct rel_info * ri)361 static void exit_rel(struct rel_info *ri)
362 {
363 zfree(&ri->sorted);
364 }
365
get_plt_sizes(struct dso * dso,GElf_Ehdr * ehdr,GElf_Shdr * shdr_plt,u64 * plt_header_size,u64 * plt_entry_size)366 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
367 u64 *plt_header_size, u64 *plt_entry_size)
368 {
369 switch (ehdr->e_machine) {
370 case EM_ARM:
371 *plt_header_size = 20;
372 *plt_entry_size = 12;
373 return true;
374 case EM_AARCH64:
375 *plt_header_size = 32;
376 *plt_entry_size = 16;
377 return true;
378 case EM_LOONGARCH:
379 *plt_header_size = 32;
380 *plt_entry_size = 16;
381 return true;
382 case EM_SPARC:
383 *plt_header_size = 48;
384 *plt_entry_size = 12;
385 return true;
386 case EM_SPARCV9:
387 *plt_header_size = 128;
388 *plt_entry_size = 32;
389 return true;
390 case EM_386:
391 case EM_X86_64:
392 *plt_entry_size = shdr_plt->sh_entsize;
393 /* Size is 8 or 16, if not, assume alignment indicates size */
394 if (*plt_entry_size != 8 && *plt_entry_size != 16)
395 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
396 *plt_header_size = *plt_entry_size;
397 break;
398 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
399 *plt_header_size = shdr_plt->sh_entsize;
400 *plt_entry_size = shdr_plt->sh_entsize;
401 break;
402 }
403 if (*plt_entry_size)
404 return true;
405 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso));
406 return false;
407 }
408
machine_is_x86(GElf_Half e_machine)409 static bool machine_is_x86(GElf_Half e_machine)
410 {
411 return e_machine == EM_386 || e_machine == EM_X86_64;
412 }
413
414 struct rela_dyn {
415 GElf_Addr offset;
416 u32 sym_idx;
417 };
418
419 struct rela_dyn_info {
420 struct dso *dso;
421 Elf_Data *plt_got_data;
422 u32 nr_entries;
423 struct rela_dyn *sorted;
424 Elf_Data *dynsym_data;
425 Elf_Data *dynstr_data;
426 Elf_Data *rela_dyn_data;
427 };
428
exit_rela_dyn(struct rela_dyn_info * di)429 static void exit_rela_dyn(struct rela_dyn_info *di)
430 {
431 zfree(&di->sorted);
432 }
433
cmp_offset(const void * a,const void * b)434 static int cmp_offset(const void *a, const void *b)
435 {
436 const struct rela_dyn *va = a;
437 const struct rela_dyn *vb = b;
438
439 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
440 }
441
sort_rela_dyn(struct rela_dyn_info * di)442 static int sort_rela_dyn(struct rela_dyn_info *di)
443 {
444 u32 i, n;
445
446 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
447 if (!di->sorted)
448 return -1;
449
450 /* Get data for sorting: the offset and symbol index */
451 for (i = 0, n = 0; i < di->nr_entries; i++) {
452 GElf_Rela rela;
453 u32 sym_idx;
454
455 gelf_getrela(di->rela_dyn_data, i, &rela);
456 sym_idx = GELF_R_SYM(rela.r_info);
457 if (sym_idx) {
458 di->sorted[n].sym_idx = sym_idx;
459 di->sorted[n].offset = rela.r_offset;
460 n += 1;
461 }
462 }
463
464 /* Sort by offset */
465 di->nr_entries = n;
466 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
467
468 return 0;
469 }
470
get_rela_dyn_info(Elf * elf,GElf_Ehdr * ehdr,struct rela_dyn_info * di,Elf_Scn * scn)471 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
472 {
473 GElf_Shdr rela_dyn_shdr;
474 GElf_Shdr shdr;
475
476 di->plt_got_data = elf_getdata(scn, NULL);
477
478 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
479 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
480 return;
481
482 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
483 di->rela_dyn_data = elf_getdata(scn, NULL);
484
485 scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
486 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
487 return;
488
489 di->dynsym_data = elf_getdata(scn, NULL);
490 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
491
492 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
493 return;
494
495 /* Sort into offset order */
496 sort_rela_dyn(di);
497 }
498
499 /* Get instruction displacement from a plt entry for x86_64 */
get_x86_64_plt_disp(const u8 * p)500 static u32 get_x86_64_plt_disp(const u8 *p)
501 {
502 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
503 int n = 0;
504
505 /* Skip endbr64 */
506 if (!memcmp(p, endbr64, sizeof(endbr64)))
507 n += sizeof(endbr64);
508 /* Skip bnd prefix */
509 if (p[n] == 0xf2)
510 n += 1;
511 /* jmp with 4-byte displacement */
512 if (p[n] == 0xff && p[n + 1] == 0x25) {
513 u32 disp;
514
515 n += 2;
516 /* Also add offset from start of entry to end of instruction */
517 memcpy(&disp, p + n, sizeof(disp));
518 return n + 4 + le32toh(disp);
519 }
520 return 0;
521 }
522
get_plt_got_name(GElf_Shdr * shdr,size_t i,struct rela_dyn_info * di,char * buf,size_t buf_sz)523 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
524 struct rela_dyn_info *di,
525 char *buf, size_t buf_sz)
526 {
527 struct rela_dyn vi, *vr;
528 const char *sym_name;
529 char *demangled;
530 GElf_Sym sym;
531 bool result;
532 u32 disp;
533
534 if (!di->sorted)
535 return false;
536
537 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
538 if (!disp)
539 return false;
540
541 /* Compute target offset of the .plt.got entry */
542 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
543
544 /* Find that offset in .rela.dyn (sorted by offset) */
545 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
546 if (!vr)
547 return false;
548
549 /* Get the associated symbol */
550 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
551 sym_name = elf_sym__name(&sym, di->dynstr_data);
552 demangled = dso__demangle_sym(di->dso, /*kmodule=*/0, sym_name);
553 if (demangled != NULL)
554 sym_name = demangled;
555
556 snprintf(buf, buf_sz, "%s@plt", sym_name);
557
558 result = *sym_name;
559
560 free(demangled);
561
562 return result;
563 }
564
dso__synthesize_plt_got_symbols(struct dso * dso,Elf * elf,GElf_Ehdr * ehdr,char * buf,size_t buf_sz)565 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
566 GElf_Ehdr *ehdr,
567 char *buf, size_t buf_sz)
568 {
569 struct rela_dyn_info di = { .dso = dso };
570 struct symbol *sym;
571 GElf_Shdr shdr;
572 Elf_Scn *scn;
573 int err = -1;
574 size_t i;
575
576 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
577 if (!scn || !shdr.sh_entsize)
578 return 0;
579
580 if (ehdr->e_machine == EM_X86_64)
581 get_rela_dyn_info(elf, ehdr, &di, scn);
582
583 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
584 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
585 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
586 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
587 if (!sym)
588 goto out;
589 symbols__insert(dso__symbols(dso), sym);
590 }
591 err = 0;
592 out:
593 exit_rela_dyn(&di);
594 return err;
595 }
596
597 /*
598 * We need to check if we have a .dynsym, so that we can handle the
599 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
600 * .dynsym or .symtab).
601 * And always look at the original dso, not at debuginfo packages, that
602 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
603 */
dso__synthesize_plt_symbols(struct dso * dso,struct symsrc * ss)604 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
605 {
606 uint32_t idx;
607 GElf_Sym sym;
608 u64 plt_offset, plt_header_size, plt_entry_size;
609 GElf_Shdr shdr_plt, plt_sec_shdr;
610 struct symbol *f, *plt_sym;
611 GElf_Shdr shdr_rel_plt, shdr_dynsym;
612 Elf_Data *syms, *symstrs;
613 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
614 GElf_Ehdr ehdr;
615 char sympltname[1024];
616 Elf *elf;
617 int nr = 0, err = -1;
618 struct rel_info ri = { .is_rela = false };
619 bool lazy_plt;
620
621 elf = ss->elf;
622 ehdr = ss->ehdr;
623
624 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
625 return 0;
626
627 /*
628 * A symbol from a previous section (e.g. .init) can have been expanded
629 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
630 * a symbol for .plt header.
631 */
632 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
633 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
634 f->end = shdr_plt.sh_offset;
635
636 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
637 return 0;
638
639 /* Add a symbol for .plt header */
640 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
641 if (!plt_sym)
642 goto out_elf_end;
643 symbols__insert(dso__symbols(dso), plt_sym);
644
645 /* Only x86 has .plt.got */
646 if (machine_is_x86(ehdr.e_machine) &&
647 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
648 goto out_elf_end;
649
650 /* Only x86 has .plt.sec */
651 if (machine_is_x86(ehdr.e_machine) &&
652 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
653 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
654 return 0;
655 /* Extend .plt symbol to entire .plt */
656 plt_sym->end = plt_sym->start + shdr_plt.sh_size;
657 /* Use .plt.sec offset */
658 plt_offset = plt_sec_shdr.sh_offset;
659 lazy_plt = false;
660 } else {
661 plt_offset = shdr_plt.sh_offset;
662 lazy_plt = true;
663 }
664
665 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
666 ".rela.plt", NULL);
667 if (scn_plt_rel == NULL) {
668 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
669 ".rel.plt", NULL);
670 if (scn_plt_rel == NULL)
671 return 0;
672 }
673
674 if (shdr_rel_plt.sh_type != SHT_RELA &&
675 shdr_rel_plt.sh_type != SHT_REL)
676 return 0;
677
678 if (!shdr_rel_plt.sh_link)
679 return 0;
680
681 if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
682 scn_dynsym = ss->dynsym;
683 shdr_dynsym = ss->dynshdr;
684 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
685 /*
686 * A static executable can have a .plt due to IFUNCs, in which
687 * case .symtab is used not .dynsym.
688 */
689 scn_dynsym = ss->symtab;
690 shdr_dynsym = ss->symshdr;
691 } else {
692 goto out_elf_end;
693 }
694
695 if (!scn_dynsym)
696 return 0;
697
698 /*
699 * Fetch the relocation section to find the idxes to the GOT
700 * and the symbols in the .dynsym they refer to.
701 */
702 ri.reldata = elf_getdata(scn_plt_rel, NULL);
703 if (!ri.reldata)
704 goto out_elf_end;
705
706 syms = elf_getdata(scn_dynsym, NULL);
707 if (syms == NULL)
708 goto out_elf_end;
709
710 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
711 if (scn_symstrs == NULL)
712 goto out_elf_end;
713
714 symstrs = elf_getdata(scn_symstrs, NULL);
715 if (symstrs == NULL)
716 goto out_elf_end;
717
718 if (symstrs->d_size == 0)
719 goto out_elf_end;
720
721 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
722
723 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
724
725 if (lazy_plt) {
726 /*
727 * Assume a .plt with the same number of entries as the number
728 * of relocation entries is not lazy and does not have a header.
729 */
730 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
731 dso__delete_symbol(dso, plt_sym);
732 else
733 plt_offset += plt_header_size;
734 }
735
736 /*
737 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
738 * back in order.
739 */
740 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
741 goto out_elf_end;
742
743 for (idx = 0; idx < ri.nr_entries; idx++) {
744 const char *elf_name = NULL;
745 char *demangled = NULL;
746
747 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
748
749 elf_name = elf_sym__name(&sym, symstrs);
750 demangled = dso__demangle_sym(dso, /*kmodule=*/0, elf_name);
751 if (demangled)
752 elf_name = demangled;
753 if (*elf_name)
754 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
755 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
756 snprintf(sympltname, sizeof(sympltname),
757 "offset_%#" PRIx64 "@plt", plt_offset);
758 free(demangled);
759
760 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
761 if (!f)
762 goto out_elf_end;
763
764 plt_offset += plt_entry_size;
765 symbols__insert(dso__symbols(dso), f);
766 ++nr;
767 }
768
769 err = 0;
770 out_elf_end:
771 exit_rel(&ri);
772 if (err == 0)
773 return nr;
774 pr_debug("%s: problems reading %s PLT info.\n",
775 __func__, dso__long_name(dso));
776 return 0;
777 }
778
779 /*
780 * Align offset to 4 bytes as needed for note name and descriptor data.
781 */
782 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
783
elf_read_build_id(Elf * elf,void * bf,size_t size)784 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
785 {
786 int err = -1;
787 GElf_Ehdr ehdr;
788 GElf_Shdr shdr;
789 Elf_Data *data;
790 Elf_Scn *sec;
791 Elf_Kind ek;
792 void *ptr;
793
794 if (size < BUILD_ID_SIZE)
795 goto out;
796
797 ek = elf_kind(elf);
798 if (ek != ELF_K_ELF)
799 goto out;
800
801 if (gelf_getehdr(elf, &ehdr) == NULL) {
802 pr_err("%s: cannot get elf header.\n", __func__);
803 goto out;
804 }
805
806 /*
807 * Check following sections for notes:
808 * '.note.gnu.build-id'
809 * '.notes'
810 * '.note' (VDSO specific)
811 */
812 do {
813 sec = elf_section_by_name(elf, &ehdr, &shdr,
814 ".note.gnu.build-id", NULL);
815 if (sec)
816 break;
817
818 sec = elf_section_by_name(elf, &ehdr, &shdr,
819 ".notes", NULL);
820 if (sec)
821 break;
822
823 sec = elf_section_by_name(elf, &ehdr, &shdr,
824 ".note", NULL);
825 if (sec)
826 break;
827
828 return err;
829
830 } while (0);
831
832 data = elf_getdata(sec, NULL);
833 if (data == NULL)
834 goto out;
835
836 ptr = data->d_buf;
837 while (ptr < (data->d_buf + data->d_size)) {
838 GElf_Nhdr *nhdr = ptr;
839 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
840 descsz = NOTE_ALIGN(nhdr->n_descsz);
841 const char *name;
842
843 ptr += sizeof(*nhdr);
844 name = ptr;
845 ptr += namesz;
846 if (nhdr->n_type == NT_GNU_BUILD_ID &&
847 nhdr->n_namesz == sizeof("GNU")) {
848 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
849 size_t sz = min(size, descsz);
850 memcpy(bf, ptr, sz);
851 memset(bf + sz, 0, size - sz);
852 err = sz;
853 break;
854 }
855 }
856 ptr += descsz;
857 }
858
859 out:
860 return err;
861 }
862
read_build_id(const char * filename,struct build_id * bid,bool block)863 static int read_build_id(const char *filename, struct build_id *bid, bool block)
864 {
865 size_t size = sizeof(bid->data);
866 int fd, err;
867 Elf *elf;
868
869 err = libbfd__read_build_id(filename, bid, block);
870 if (err >= 0)
871 goto out;
872
873 if (size < BUILD_ID_SIZE)
874 goto out;
875
876 fd = open(filename, block ? O_RDONLY : (O_RDONLY | O_NONBLOCK));
877 if (fd < 0)
878 goto out;
879
880 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
881 if (elf == NULL) {
882 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
883 goto out_close;
884 }
885
886 err = elf_read_build_id(elf, bid->data, size);
887 if (err > 0)
888 bid->size = err;
889
890 elf_end(elf);
891 out_close:
892 close(fd);
893 out:
894 return err;
895 }
896
filename__read_build_id(const char * filename,struct build_id * bid,bool block)897 int filename__read_build_id(const char *filename, struct build_id *bid, bool block)
898 {
899 struct kmod_path m = { .name = NULL, };
900 char path[PATH_MAX];
901 int err;
902
903 if (!filename)
904 return -EFAULT;
905
906 err = kmod_path__parse(&m, filename);
907 if (err)
908 return -1;
909
910 if (m.comp) {
911 int error = 0, fd;
912
913 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
914 if (fd < 0) {
915 pr_debug("Failed to decompress (error %d) %s\n",
916 error, filename);
917 return -1;
918 }
919 close(fd);
920 filename = path;
921 block = true;
922 }
923
924 err = read_build_id(filename, bid, block);
925
926 if (m.comp)
927 unlink(filename);
928 return err;
929 }
930
sysfs__read_build_id(const char * filename,struct build_id * bid)931 int sysfs__read_build_id(const char *filename, struct build_id *bid)
932 {
933 size_t size = sizeof(bid->data);
934 int fd, err = -1;
935
936 fd = open(filename, O_RDONLY);
937 if (fd < 0)
938 goto out;
939
940 while (1) {
941 char bf[BUFSIZ];
942 GElf_Nhdr nhdr;
943 size_t namesz, descsz;
944
945 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
946 break;
947
948 namesz = NOTE_ALIGN(nhdr.n_namesz);
949 descsz = NOTE_ALIGN(nhdr.n_descsz);
950 if (nhdr.n_type == NT_GNU_BUILD_ID &&
951 nhdr.n_namesz == sizeof("GNU")) {
952 if (read(fd, bf, namesz) != (ssize_t)namesz)
953 break;
954 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
955 size_t sz = min(descsz, size);
956 if (read(fd, bid->data, sz) == (ssize_t)sz) {
957 memset(bid->data + sz, 0, size - sz);
958 bid->size = sz;
959 err = 0;
960 break;
961 }
962 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
963 break;
964 } else {
965 int n = namesz + descsz;
966
967 if (n > (int)sizeof(bf)) {
968 n = sizeof(bf);
969 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
970 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
971 }
972 if (read(fd, bf, n) != n)
973 break;
974 }
975 }
976 close(fd);
977 out:
978 return err;
979 }
980
filename__read_debuglink(const char * filename,char * debuglink,size_t size)981 int filename__read_debuglink(const char *filename, char *debuglink,
982 size_t size)
983 {
984 int fd, err = -1;
985 Elf *elf;
986 GElf_Ehdr ehdr;
987 GElf_Shdr shdr;
988 Elf_Data *data;
989 Elf_Scn *sec;
990 Elf_Kind ek;
991
992 err = libbfd_filename__read_debuglink(filename, debuglink, size);
993 if (err >= 0)
994 goto out;
995
996 fd = open(filename, O_RDONLY);
997 if (fd < 0)
998 goto out;
999
1000 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1001 if (elf == NULL) {
1002 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1003 goto out_close;
1004 }
1005
1006 ek = elf_kind(elf);
1007 if (ek != ELF_K_ELF)
1008 goto out_elf_end;
1009
1010 if (gelf_getehdr(elf, &ehdr) == NULL) {
1011 pr_err("%s: cannot get elf header.\n", __func__);
1012 goto out_elf_end;
1013 }
1014
1015 sec = elf_section_by_name(elf, &ehdr, &shdr,
1016 ".gnu_debuglink", NULL);
1017 if (sec == NULL)
1018 goto out_elf_end;
1019
1020 data = elf_getdata(sec, NULL);
1021 if (data == NULL)
1022 goto out_elf_end;
1023
1024 /* the start of this section is a zero-terminated string */
1025 strncpy(debuglink, data->d_buf, size);
1026
1027 err = 0;
1028
1029 out_elf_end:
1030 elf_end(elf);
1031 out_close:
1032 close(fd);
1033 out:
1034 return err;
1035 }
1036
symsrc__possibly_runtime(struct symsrc * ss)1037 bool symsrc__possibly_runtime(struct symsrc *ss)
1038 {
1039 return ss->dynsym || ss->opdsec;
1040 }
1041
symsrc__has_symtab(struct symsrc * ss)1042 bool symsrc__has_symtab(struct symsrc *ss)
1043 {
1044 return ss->symtab != NULL;
1045 }
1046
symsrc__destroy(struct symsrc * ss)1047 void symsrc__destroy(struct symsrc *ss)
1048 {
1049 zfree(&ss->name);
1050 elf_end(ss->elf);
1051 close(ss->fd);
1052 }
1053
elf__needs_adjust_symbols(GElf_Ehdr ehdr)1054 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1055 {
1056 /*
1057 * Usually vmlinux is an ELF file with type ET_EXEC for most
1058 * architectures; except Arm64 kernel is linked with option
1059 * '-share', so need to check type ET_DYN.
1060 */
1061 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1062 ehdr.e_type == ET_DYN;
1063 }
1064
read_gnu_debugdata(struct dso * dso,Elf * elf,const char * name,int * fd_ret)1065 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret)
1066 {
1067 Elf *elf_embedded;
1068 GElf_Ehdr ehdr;
1069 GElf_Shdr shdr;
1070 Elf_Scn *scn;
1071 Elf_Data *scn_data;
1072 FILE *wrapped;
1073 size_t shndx;
1074 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX";
1075 int ret, temp_fd;
1076
1077 if (gelf_getehdr(elf, &ehdr) == NULL) {
1078 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1079 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1080 return NULL;
1081 }
1082
1083 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx);
1084 if (!scn) {
1085 *dso__load_errno(dso) = -ENOENT;
1086 return NULL;
1087 }
1088
1089 if (shdr.sh_type == SHT_NOBITS) {
1090 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name);
1091 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1092 return NULL;
1093 }
1094
1095 scn_data = elf_rawdata(scn, NULL);
1096 if (!scn_data) {
1097 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1098 name, elf_errmsg(-1));
1099 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1100 return NULL;
1101 }
1102
1103 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r");
1104 if (!wrapped) {
1105 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno));
1106 *dso__load_errno(dso) = -errno;
1107 return NULL;
1108 }
1109
1110 temp_fd = mkstemp(temp_filename);
1111 if (temp_fd < 0) {
1112 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno));
1113 *dso__load_errno(dso) = -errno;
1114 fclose(wrapped);
1115 return NULL;
1116 }
1117 unlink(temp_filename);
1118
1119 ret = lzma_decompress_stream_to_file(wrapped, temp_fd);
1120 fclose(wrapped);
1121 if (ret < 0) {
1122 *dso__load_errno(dso) = -errno;
1123 close(temp_fd);
1124 return NULL;
1125 }
1126
1127 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL);
1128 if (!elf_embedded) {
1129 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1130 name, elf_errmsg(-1));
1131 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1132 close(temp_fd);
1133 return NULL;
1134 }
1135 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name);
1136 *fd_ret = temp_fd;
1137 return elf_embedded;
1138 }
1139
symsrc__init(struct symsrc * ss,struct dso * dso,const char * name,enum dso_binary_type type)1140 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1141 enum dso_binary_type type)
1142 {
1143 GElf_Ehdr ehdr;
1144 Elf *elf;
1145 int fd;
1146
1147 if (dso__needs_decompress(dso)) {
1148 fd = dso__decompress_kmodule_fd(dso, name);
1149 if (fd < 0)
1150 return -1;
1151
1152 type = dso__symtab_type(dso);
1153 } else {
1154 fd = open(name, O_RDONLY);
1155 if (fd < 0) {
1156 *dso__load_errno(dso) = errno;
1157 return -1;
1158 }
1159 }
1160
1161 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1162 if (elf == NULL) {
1163 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1164 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1165 goto out_close;
1166 }
1167
1168 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) {
1169 int new_fd;
1170 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd);
1171
1172 if (!embedded)
1173 goto out_close;
1174
1175 elf_end(elf);
1176 close(fd);
1177 fd = new_fd;
1178 elf = embedded;
1179 }
1180
1181 if (gelf_getehdr(elf, &ehdr) == NULL) {
1182 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1183 pr_debug("%s: cannot get elf header.\n", __func__);
1184 goto out_elf_end;
1185 }
1186
1187 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1188 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1189 goto out_elf_end;
1190 }
1191
1192 /* Always reject images with a mismatched build-id: */
1193 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) {
1194 u8 build_id[BUILD_ID_SIZE];
1195 struct build_id bid;
1196 int size;
1197
1198 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1199 if (size <= 0) {
1200 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1201 goto out_elf_end;
1202 }
1203
1204 build_id__init(&bid, build_id, size);
1205 if (!dso__build_id_equal(dso, &bid)) {
1206 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1207 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1208 goto out_elf_end;
1209 }
1210 }
1211
1212 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1213
1214 ss->symtab_idx = 0;
1215 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1216 &ss->symtab_idx);
1217 if (ss->symshdr.sh_type != SHT_SYMTAB)
1218 ss->symtab = NULL;
1219
1220 ss->dynsym_idx = 0;
1221 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1222 &ss->dynsym_idx);
1223 if (ss->dynshdr.sh_type != SHT_DYNSYM)
1224 ss->dynsym = NULL;
1225
1226 ss->opdidx = 0;
1227 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1228 &ss->opdidx);
1229 if (ss->opdshdr.sh_type != SHT_PROGBITS)
1230 ss->opdsec = NULL;
1231
1232 if (dso__kernel(dso) == DSO_SPACE__USER)
1233 ss->adjust_symbols = true;
1234 else
1235 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1236
1237 ss->name = strdup(name);
1238 if (!ss->name) {
1239 *dso__load_errno(dso) = errno;
1240 goto out_elf_end;
1241 }
1242
1243 ss->elf = elf;
1244 ss->fd = fd;
1245 ss->ehdr = ehdr;
1246 ss->type = type;
1247
1248 return 0;
1249
1250 out_elf_end:
1251 elf_end(elf);
1252 out_close:
1253 close(fd);
1254 return -1;
1255 }
1256
is_exe_text(int flags)1257 static bool is_exe_text(int flags)
1258 {
1259 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR);
1260 }
1261
1262 /*
1263 * Some executable module sections like .noinstr.text might be laid out with
1264 * .text so they can use the same mapping (memory address to file offset).
1265 * Check if that is the case. Refer to kernel layout_sections(). Return the
1266 * maximum offset.
1267 */
max_text_section(Elf * elf,GElf_Ehdr * ehdr)1268 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr)
1269 {
1270 Elf_Scn *sec = NULL;
1271 GElf_Shdr shdr;
1272 u64 offs = 0;
1273
1274 /* Doesn't work for some arch */
1275 if (ehdr->e_machine == EM_PARISC ||
1276 ehdr->e_machine == EM_ALPHA)
1277 return 0;
1278
1279 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1280 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL))
1281 return 0;
1282
1283 while ((sec = elf_nextscn(elf, sec)) != NULL) {
1284 char *sec_name;
1285
1286 if (!gelf_getshdr(sec, &shdr))
1287 break;
1288
1289 if (!is_exe_text(shdr.sh_flags))
1290 continue;
1291
1292 /* .init and .exit sections are not placed with .text */
1293 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name);
1294 if (!sec_name ||
1295 strstarts(sec_name, ".init") ||
1296 strstarts(sec_name, ".exit"))
1297 break;
1298
1299 /* Must be next to previous, assumes .text is first */
1300 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset)
1301 break;
1302
1303 offs = shdr.sh_offset + shdr.sh_size;
1304 }
1305
1306 return offs;
1307 }
1308
1309 /**
1310 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1311 * @kmap: kernel maps and relocation reference symbol
1312 *
1313 * This function returns %true if we are dealing with the kernel maps and the
1314 * relocation reference symbol has not yet been found. Otherwise %false is
1315 * returned.
1316 */
ref_reloc_sym_not_found(struct kmap * kmap)1317 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1318 {
1319 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1320 !kmap->ref_reloc_sym->unrelocated_addr;
1321 }
1322
1323 /**
1324 * ref_reloc - kernel relocation offset.
1325 * @kmap: kernel maps and relocation reference symbol
1326 *
1327 * This function returns the offset of kernel addresses as determined by using
1328 * the relocation reference symbol i.e. if the kernel has not been relocated
1329 * then the return value is zero.
1330 */
ref_reloc(struct kmap * kmap)1331 static u64 ref_reloc(struct kmap *kmap)
1332 {
1333 if (kmap && kmap->ref_reloc_sym &&
1334 kmap->ref_reloc_sym->unrelocated_addr)
1335 return kmap->ref_reloc_sym->addr -
1336 kmap->ref_reloc_sym->unrelocated_addr;
1337 return 0;
1338 }
1339
arch__sym_update(struct symbol * s __maybe_unused,GElf_Sym * sym __maybe_unused)1340 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1341 GElf_Sym *sym __maybe_unused) { }
1342
dso__process_kernel_symbol(struct dso * dso,struct map * map,GElf_Sym * sym,GElf_Shdr * shdr,struct maps * kmaps,struct kmap * kmap,struct dso ** curr_dsop,const char * section_name,bool adjust_kernel_syms,bool kmodule,bool * remap_kernel,u64 max_text_sh_offset)1343 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1344 GElf_Sym *sym, GElf_Shdr *shdr,
1345 struct maps *kmaps, struct kmap *kmap,
1346 struct dso **curr_dsop,
1347 const char *section_name,
1348 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel,
1349 u64 max_text_sh_offset)
1350 {
1351 struct dso *curr_dso = *curr_dsop;
1352 struct map *curr_map;
1353 char dso_name[PATH_MAX];
1354
1355 /* Adjust symbol to map to file offset */
1356 if (adjust_kernel_syms)
1357 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1358
1359 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0)
1360 return 0;
1361
1362 if (strcmp(section_name, ".text") == 0) {
1363 /*
1364 * The initial kernel mapping is based on
1365 * kallsyms and identity maps. Overwrite it to
1366 * map to the kernel dso.
1367 */
1368 if (*remap_kernel && dso__kernel(dso) && !kmodule) {
1369 *remap_kernel = false;
1370 map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1371 map__set_end(map, map__start(map) + shdr->sh_size);
1372 map__set_pgoff(map, shdr->sh_offset);
1373 map__set_mapping_type(map, MAPPING_TYPE__DSO);
1374 /* Ensure maps are correctly ordered */
1375 if (kmaps) {
1376 int err;
1377 struct map *tmp = map__get(map);
1378
1379 maps__remove(kmaps, map);
1380 err = maps__insert(kmaps, map);
1381 map__put(tmp);
1382 if (err)
1383 return err;
1384 }
1385 }
1386
1387 /*
1388 * The initial module mapping is based on
1389 * /proc/modules mapped to offset zero.
1390 * Overwrite it to map to the module dso.
1391 */
1392 if (*remap_kernel && kmodule) {
1393 *remap_kernel = false;
1394 map__set_pgoff(map, shdr->sh_offset);
1395 }
1396
1397 dso__put(*curr_dsop);
1398 *curr_dsop = dso__get(dso);
1399 return 0;
1400 }
1401
1402 if (!kmap)
1403 return 0;
1404
1405 /*
1406 * perf does not record module section addresses except for .text, but
1407 * some sections can use the same mapping as .text.
1408 */
1409 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) &&
1410 shdr->sh_offset <= max_text_sh_offset) {
1411 dso__put(*curr_dsop);
1412 *curr_dsop = dso__get(dso);
1413 return 0;
1414 }
1415
1416 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name);
1417
1418 curr_map = maps__find_by_name(kmaps, dso_name);
1419 if (curr_map == NULL) {
1420 u64 start = sym->st_value;
1421
1422 if (kmodule)
1423 start += map__start(map) + shdr->sh_offset;
1424
1425 curr_dso = dso__new(dso_name);
1426 if (curr_dso == NULL)
1427 return -1;
1428 dso__set_kernel(curr_dso, dso__kernel(dso));
1429 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso);
1430 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso);
1431 dso__set_binary_type(curr_dso, dso__binary_type(dso));
1432 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso));
1433 curr_map = map__new2(start, curr_dso);
1434 if (curr_map == NULL) {
1435 dso__put(curr_dso);
1436 return -1;
1437 }
1438 if (dso__kernel(curr_dso))
1439 map__kmap(curr_map)->kmaps = kmaps;
1440
1441 if (adjust_kernel_syms) {
1442 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1443 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1444 map__set_pgoff(curr_map, shdr->sh_offset);
1445 } else {
1446 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1447 }
1448 dso__set_symtab_type(curr_dso, dso__symtab_type(dso));
1449 if (maps__insert(kmaps, curr_map))
1450 return -1;
1451 dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1452 dso__set_loaded(curr_dso);
1453 dso__put(*curr_dsop);
1454 *curr_dsop = curr_dso;
1455 } else {
1456 dso__put(*curr_dsop);
1457 *curr_dsop = dso__get(map__dso(curr_map));
1458 }
1459 map__put(curr_map);
1460
1461 return 0;
1462 }
1463
1464 static int
dso__load_sym_internal(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule,int dynsym)1465 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1466 struct symsrc *runtime_ss, int kmodule, int dynsym)
1467 {
1468 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL;
1469 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1470 struct dso *curr_dso = NULL;
1471 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1472 uint32_t nr_syms;
1473 uint32_t idx;
1474 GElf_Ehdr ehdr;
1475 GElf_Shdr shdr;
1476 GElf_Shdr tshdr;
1477 Elf_Data *syms, *opddata = NULL;
1478 GElf_Sym sym;
1479 Elf_Scn *sec, *sec_strndx;
1480 Elf *elf;
1481 int nr = 0;
1482 bool remap_kernel = false, adjust_kernel_syms = false;
1483 u64 max_text_sh_offset = 0;
1484
1485 if (kmap && !kmaps)
1486 return -1;
1487
1488 elf = syms_ss->elf;
1489 ehdr = syms_ss->ehdr;
1490 if (dynsym) {
1491 sec = syms_ss->dynsym;
1492 shdr = syms_ss->dynshdr;
1493 } else {
1494 sec = syms_ss->symtab;
1495 shdr = syms_ss->symshdr;
1496 }
1497
1498 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1499 ".text", NULL)) {
1500 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset);
1501 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size);
1502 }
1503
1504 if (runtime_ss->opdsec)
1505 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1506
1507 syms = elf_getdata(sec, NULL);
1508 if (syms == NULL)
1509 goto out_elf_end;
1510
1511 sec = elf_getscn(elf, shdr.sh_link);
1512 if (sec == NULL)
1513 goto out_elf_end;
1514
1515 symstrs = elf_getdata(sec, NULL);
1516 if (symstrs == NULL)
1517 goto out_elf_end;
1518
1519 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1520 if (sec_strndx == NULL)
1521 goto out_elf_end;
1522
1523 secstrs_run = elf_getdata(sec_strndx, NULL);
1524 if (secstrs_run == NULL)
1525 goto out_elf_end;
1526
1527 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1528 if (sec_strndx == NULL)
1529 goto out_elf_end;
1530
1531 secstrs_sym = elf_getdata(sec_strndx, NULL);
1532 if (secstrs_sym == NULL)
1533 goto out_elf_end;
1534
1535 nr_syms = shdr.sh_size / shdr.sh_entsize;
1536
1537 memset(&sym, 0, sizeof(sym));
1538
1539 /*
1540 * The kernel relocation symbol is needed in advance in order to adjust
1541 * kernel maps correctly.
1542 */
1543 if (ref_reloc_sym_not_found(kmap)) {
1544 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1545 const char *elf_name = elf_sym__name(&sym, symstrs);
1546
1547 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1548 continue;
1549 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1550 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1551 break;
1552 }
1553 }
1554
1555 /*
1556 * Handle any relocation of vdso necessary because older kernels
1557 * attempted to prelink vdso to its virtual address.
1558 */
1559 if (dso__is_vdso(dso))
1560 map__set_reloc(map, map__start(map) - dso__text_offset(dso));
1561
1562 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap));
1563 /*
1564 * Initial kernel and module mappings do not map to the dso.
1565 * Flag the fixups.
1566 */
1567 if (dso__kernel(dso)) {
1568 remap_kernel = true;
1569 adjust_kernel_syms = dso__adjust_symbols(dso);
1570 }
1571
1572 if (kmodule && adjust_kernel_syms)
1573 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr);
1574
1575 curr_dso = dso__get(dso);
1576 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1577 struct symbol *f;
1578 const char *elf_name = elf_sym__name(&sym, symstrs);
1579 char *demangled = NULL;
1580 int is_label = elf_sym__is_label(&sym);
1581 const char *section_name;
1582 bool used_opd = false;
1583
1584 if (!is_label && !elf_sym__filter(&sym))
1585 continue;
1586
1587 /* Reject ARM ELF "mapping symbols": these aren't unique and
1588 * don't identify functions, so will confuse the profile
1589 * output: */
1590 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1591 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1592 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1593 continue;
1594 }
1595
1596 /* Reject RISCV ELF "mapping symbols" */
1597 if (ehdr.e_machine == EM_RISCV) {
1598 if (elf_name[0] == '$' && strchr("dx", elf_name[1]))
1599 continue;
1600 }
1601
1602 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1603 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1604 u64 *opd = opddata->d_buf + offset;
1605 sym.st_value = DSO__SWAP(dso, u64, *opd);
1606 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1607 sym.st_value);
1608 used_opd = true;
1609 }
1610
1611 /*
1612 * When loading symbols in a data mapping, ABS symbols (which
1613 * has a value of SHN_ABS in its st_shndx) failed at
1614 * elf_getscn(). And it marks the loading as a failure so
1615 * already loaded symbols cannot be fixed up.
1616 *
1617 * I'm not sure what should be done. Just ignore them for now.
1618 * - Namhyung Kim
1619 */
1620 if (sym.st_shndx == SHN_ABS)
1621 continue;
1622
1623 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1624 if (!sec)
1625 goto out_elf_end;
1626
1627 gelf_getshdr(sec, &shdr);
1628
1629 /*
1630 * If the attribute bit SHF_ALLOC is not set, the section
1631 * doesn't occupy memory during process execution.
1632 * E.g. ".gnu.warning.*" section is used by linker to generate
1633 * warnings when calling deprecated functions, the symbols in
1634 * the section aren't loaded to memory during process execution,
1635 * so skip them.
1636 */
1637 if (!(shdr.sh_flags & SHF_ALLOC))
1638 continue;
1639
1640 secstrs = secstrs_sym;
1641
1642 /*
1643 * We have to fallback to runtime when syms' section header has
1644 * NOBITS set. NOBITS results in file offset (sh_offset) not
1645 * being incremented. So sh_offset used below has different
1646 * values for syms (invalid) and runtime (valid).
1647 */
1648 if (shdr.sh_type == SHT_NOBITS) {
1649 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1650 if (!sec)
1651 goto out_elf_end;
1652
1653 gelf_getshdr(sec, &shdr);
1654 secstrs = secstrs_run;
1655 }
1656
1657 if (is_label && !elf_sec__filter(&shdr, secstrs))
1658 continue;
1659
1660 section_name = elf_sec__name(&shdr, secstrs);
1661
1662 /* On ARM, symbols for thumb functions have 1 added to
1663 * the symbol address as a flag - remove it */
1664 if ((ehdr.e_machine == EM_ARM) &&
1665 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1666 (sym.st_value & 1))
1667 --sym.st_value;
1668
1669 if (dso__kernel(dso)) {
1670 if (dso__process_kernel_symbol(dso, map, &sym, &shdr,
1671 kmaps, kmap, &curr_dso,
1672 section_name,
1673 adjust_kernel_syms,
1674 kmodule,
1675 &remap_kernel,
1676 max_text_sh_offset))
1677 goto out_elf_end;
1678 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1679 (!used_opd && syms_ss->adjust_symbols)) {
1680 GElf_Phdr phdr;
1681
1682 if (elf_read_program_header(runtime_ss->elf,
1683 (u64)sym.st_value, &phdr)) {
1684 pr_debug4("%s: failed to find program header for "
1685 "symbol: %s st_value: %#" PRIx64 "\n",
1686 __func__, elf_name, (u64)sym.st_value);
1687 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1688 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1689 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1690 (u64)shdr.sh_offset);
1691 /*
1692 * Fail to find program header, let's rollback
1693 * to use shdr.sh_addr and shdr.sh_offset to
1694 * calibrate symbol's file address, though this
1695 * is not necessary for normal C ELF file, we
1696 * still need to handle java JIT symbols in this
1697 * case.
1698 */
1699 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1700 } else {
1701 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1702 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1703 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1704 (u64)phdr.p_offset);
1705 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1706 }
1707 }
1708
1709 demangled = dso__demangle_sym(dso, kmodule, elf_name);
1710 if (demangled != NULL)
1711 elf_name = demangled;
1712
1713 f = symbol__new(sym.st_value, sym.st_size,
1714 GELF_ST_BIND(sym.st_info),
1715 GELF_ST_TYPE(sym.st_info), elf_name);
1716 free(demangled);
1717 if (!f)
1718 goto out_elf_end;
1719
1720 arch__sym_update(f, &sym);
1721
1722 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso));
1723 nr++;
1724 }
1725 dso__put(curr_dso);
1726
1727 /*
1728 * For misannotated, zeroed, ASM function sizes.
1729 */
1730 if (nr > 0) {
1731 symbols__fixup_end(dso__symbols(dso), false);
1732 symbols__fixup_duplicate(dso__symbols(dso));
1733 if (kmap) {
1734 /*
1735 * We need to fixup this here too because we create new
1736 * maps here, for things like vsyscall sections.
1737 */
1738 maps__fixup_end(kmaps);
1739 }
1740 }
1741 return nr;
1742 out_elf_end:
1743 dso__put(curr_dso);
1744 return -1;
1745 }
1746
dso__load_sym(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule)1747 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1748 struct symsrc *runtime_ss, int kmodule)
1749 {
1750 int nr = 0;
1751 int err = -1;
1752
1753 dso__set_symtab_type(dso, syms_ss->type);
1754 dso__set_is_64_bit(dso, syms_ss->is_64_bit);
1755 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL);
1756
1757 /*
1758 * Modules may already have symbols from kallsyms, but those symbols
1759 * have the wrong values for the dso maps, so remove them.
1760 */
1761 if (kmodule && syms_ss->symtab)
1762 symbols__delete(dso__symbols(dso));
1763
1764 if (!syms_ss->symtab) {
1765 /*
1766 * If the vmlinux is stripped, fail so we will fall back
1767 * to using kallsyms. The vmlinux runtime symbols aren't
1768 * of much use.
1769 */
1770 if (dso__kernel(dso))
1771 return err;
1772 } else {
1773 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1774 kmodule, 0);
1775 if (err < 0)
1776 return err;
1777 nr = err;
1778 }
1779
1780 if (syms_ss->dynsym) {
1781 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1782 kmodule, 1);
1783 if (err < 0)
1784 return err;
1785 nr += err;
1786 }
1787
1788 /*
1789 * The .gnu_debugdata is a special situation: it contains a symbol
1790 * table, but the runtime file may also contain dynsym entries which are
1791 * not present there. We need to load both.
1792 */
1793 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) {
1794 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss,
1795 kmodule, 1);
1796 if (err < 0)
1797 return err;
1798 nr += err;
1799 }
1800
1801 return nr;
1802 }
1803
elf_read_maps(Elf * elf,bool exe,mapfn_t mapfn,void * data)1804 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1805 {
1806 GElf_Phdr phdr;
1807 size_t i, phdrnum;
1808 int err;
1809 u64 sz;
1810
1811 if (elf_getphdrnum(elf, &phdrnum))
1812 return -1;
1813
1814 for (i = 0; i < phdrnum; i++) {
1815 if (gelf_getphdr(elf, i, &phdr) == NULL)
1816 return -1;
1817 if (phdr.p_type != PT_LOAD)
1818 continue;
1819 if (exe) {
1820 if (!(phdr.p_flags & PF_X))
1821 continue;
1822 } else {
1823 if (!(phdr.p_flags & PF_R))
1824 continue;
1825 }
1826 sz = min(phdr.p_memsz, phdr.p_filesz);
1827 if (!sz)
1828 continue;
1829 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1830 if (err)
1831 return err;
1832 }
1833 return 0;
1834 }
1835
file__read_maps(int fd,bool exe,mapfn_t mapfn,void * data,bool * is_64_bit)1836 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1837 bool *is_64_bit)
1838 {
1839 int err;
1840 Elf *elf;
1841
1842 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1843 if (elf == NULL)
1844 return -1;
1845
1846 if (is_64_bit)
1847 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1848
1849 err = elf_read_maps(elf, exe, mapfn, data);
1850
1851 elf_end(elf);
1852 return err;
1853 }
1854
dso__type_fd(int fd)1855 enum dso_type dso__type_fd(int fd)
1856 {
1857 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1858 GElf_Ehdr ehdr;
1859 Elf_Kind ek;
1860 Elf *elf;
1861
1862 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1863 if (elf == NULL)
1864 goto out;
1865
1866 ek = elf_kind(elf);
1867 if (ek != ELF_K_ELF)
1868 goto out_end;
1869
1870 if (gelf_getclass(elf) == ELFCLASS64) {
1871 dso_type = DSO__TYPE_64BIT;
1872 goto out_end;
1873 }
1874
1875 if (gelf_getehdr(elf, &ehdr) == NULL)
1876 goto out_end;
1877
1878 if (ehdr.e_machine == EM_X86_64)
1879 dso_type = DSO__TYPE_X32BIT;
1880 else
1881 dso_type = DSO__TYPE_32BIT;
1882 out_end:
1883 elf_end(elf);
1884 out:
1885 return dso_type;
1886 }
1887
copy_bytes(int from,off_t from_offs,int to,off_t to_offs,u64 len)1888 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1889 {
1890 ssize_t r;
1891 size_t n;
1892 int err = -1;
1893 char *buf = malloc(page_size);
1894
1895 if (buf == NULL)
1896 return -1;
1897
1898 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1899 goto out;
1900
1901 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1902 goto out;
1903
1904 while (len) {
1905 n = page_size;
1906 if (len < n)
1907 n = len;
1908 /* Use read because mmap won't work on proc files */
1909 r = read(from, buf, n);
1910 if (r < 0)
1911 goto out;
1912 if (!r)
1913 break;
1914 n = r;
1915 r = write(to, buf, n);
1916 if (r < 0)
1917 goto out;
1918 if ((size_t)r != n)
1919 goto out;
1920 len -= n;
1921 }
1922
1923 err = 0;
1924 out:
1925 free(buf);
1926 return err;
1927 }
1928
1929 struct kcore {
1930 int fd;
1931 int elfclass;
1932 Elf *elf;
1933 GElf_Ehdr ehdr;
1934 };
1935
kcore__open(struct kcore * kcore,const char * filename)1936 static int kcore__open(struct kcore *kcore, const char *filename)
1937 {
1938 GElf_Ehdr *ehdr;
1939
1940 kcore->fd = open(filename, O_RDONLY);
1941 if (kcore->fd == -1)
1942 return -1;
1943
1944 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1945 if (!kcore->elf)
1946 goto out_close;
1947
1948 kcore->elfclass = gelf_getclass(kcore->elf);
1949 if (kcore->elfclass == ELFCLASSNONE)
1950 goto out_end;
1951
1952 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1953 if (!ehdr)
1954 goto out_end;
1955
1956 return 0;
1957
1958 out_end:
1959 elf_end(kcore->elf);
1960 out_close:
1961 close(kcore->fd);
1962 return -1;
1963 }
1964
kcore__init(struct kcore * kcore,char * filename,int elfclass,bool temp)1965 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1966 bool temp)
1967 {
1968 kcore->elfclass = elfclass;
1969
1970 if (temp)
1971 kcore->fd = mkstemp(filename);
1972 else
1973 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1974 if (kcore->fd == -1)
1975 return -1;
1976
1977 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1978 if (!kcore->elf)
1979 goto out_close;
1980
1981 if (!gelf_newehdr(kcore->elf, elfclass))
1982 goto out_end;
1983
1984 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1985
1986 return 0;
1987
1988 out_end:
1989 elf_end(kcore->elf);
1990 out_close:
1991 close(kcore->fd);
1992 unlink(filename);
1993 return -1;
1994 }
1995
kcore__close(struct kcore * kcore)1996 static void kcore__close(struct kcore *kcore)
1997 {
1998 elf_end(kcore->elf);
1999 close(kcore->fd);
2000 }
2001
kcore__copy_hdr(struct kcore * from,struct kcore * to,size_t count)2002 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
2003 {
2004 GElf_Ehdr *ehdr = &to->ehdr;
2005 GElf_Ehdr *kehdr = &from->ehdr;
2006
2007 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
2008 ehdr->e_type = kehdr->e_type;
2009 ehdr->e_machine = kehdr->e_machine;
2010 ehdr->e_version = kehdr->e_version;
2011 ehdr->e_entry = 0;
2012 ehdr->e_shoff = 0;
2013 ehdr->e_flags = kehdr->e_flags;
2014 ehdr->e_phnum = count;
2015 ehdr->e_shentsize = 0;
2016 ehdr->e_shnum = 0;
2017 ehdr->e_shstrndx = 0;
2018
2019 if (from->elfclass == ELFCLASS32) {
2020 ehdr->e_phoff = sizeof(Elf32_Ehdr);
2021 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
2022 ehdr->e_phentsize = sizeof(Elf32_Phdr);
2023 } else {
2024 ehdr->e_phoff = sizeof(Elf64_Ehdr);
2025 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
2026 ehdr->e_phentsize = sizeof(Elf64_Phdr);
2027 }
2028
2029 if (!gelf_update_ehdr(to->elf, ehdr))
2030 return -1;
2031
2032 if (!gelf_newphdr(to->elf, count))
2033 return -1;
2034
2035 return 0;
2036 }
2037
kcore__add_phdr(struct kcore * kcore,int idx,off_t offset,u64 addr,u64 len)2038 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2039 u64 addr, u64 len)
2040 {
2041 GElf_Phdr phdr = {
2042 .p_type = PT_LOAD,
2043 .p_flags = PF_R | PF_W | PF_X,
2044 .p_offset = offset,
2045 .p_vaddr = addr,
2046 .p_paddr = 0,
2047 .p_filesz = len,
2048 .p_memsz = len,
2049 .p_align = page_size,
2050 };
2051
2052 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2053 return -1;
2054
2055 return 0;
2056 }
2057
kcore__write(struct kcore * kcore)2058 static off_t kcore__write(struct kcore *kcore)
2059 {
2060 return elf_update(kcore->elf, ELF_C_WRITE);
2061 }
2062
2063 struct phdr_data {
2064 off_t offset;
2065 off_t rel;
2066 u64 addr;
2067 u64 len;
2068 struct list_head node;
2069 struct phdr_data *remaps;
2070 };
2071
2072 struct sym_data {
2073 u64 addr;
2074 struct list_head node;
2075 };
2076
2077 struct kcore_copy_info {
2078 u64 stext;
2079 u64 etext;
2080 u64 first_symbol;
2081 u64 last_symbol;
2082 u64 first_module;
2083 u64 first_module_symbol;
2084 u64 last_module_symbol;
2085 size_t phnum;
2086 struct list_head phdrs;
2087 struct list_head syms;
2088 };
2089
2090 #define kcore_copy__for_each_phdr(k, p) \
2091 list_for_each_entry((p), &(k)->phdrs, node)
2092
phdr_data__new(u64 addr,u64 len,off_t offset)2093 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2094 {
2095 struct phdr_data *p = zalloc(sizeof(*p));
2096
2097 if (p) {
2098 p->addr = addr;
2099 p->len = len;
2100 p->offset = offset;
2101 }
2102
2103 return p;
2104 }
2105
kcore_copy_info__addnew(struct kcore_copy_info * kci,u64 addr,u64 len,off_t offset)2106 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2107 u64 addr, u64 len,
2108 off_t offset)
2109 {
2110 struct phdr_data *p = phdr_data__new(addr, len, offset);
2111
2112 if (p)
2113 list_add_tail(&p->node, &kci->phdrs);
2114
2115 return p;
2116 }
2117
kcore_copy__free_phdrs(struct kcore_copy_info * kci)2118 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2119 {
2120 struct phdr_data *p, *tmp;
2121
2122 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2123 list_del_init(&p->node);
2124 free(p);
2125 }
2126 }
2127
kcore_copy__new_sym(struct kcore_copy_info * kci,u64 addr)2128 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2129 u64 addr)
2130 {
2131 struct sym_data *s = zalloc(sizeof(*s));
2132
2133 if (s) {
2134 s->addr = addr;
2135 list_add_tail(&s->node, &kci->syms);
2136 }
2137
2138 return s;
2139 }
2140
kcore_copy__free_syms(struct kcore_copy_info * kci)2141 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2142 {
2143 struct sym_data *s, *tmp;
2144
2145 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2146 list_del_init(&s->node);
2147 free(s);
2148 }
2149 }
2150
kcore_copy__process_kallsyms(void * arg,const char * name,char type,u64 start)2151 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2152 u64 start)
2153 {
2154 struct kcore_copy_info *kci = arg;
2155
2156 if (!kallsyms__is_function(type))
2157 return 0;
2158
2159 if (strchr(name, '[')) {
2160 if (!kci->first_module_symbol || start < kci->first_module_symbol)
2161 kci->first_module_symbol = start;
2162 if (start > kci->last_module_symbol)
2163 kci->last_module_symbol = start;
2164 return 0;
2165 }
2166
2167 if (!kci->first_symbol || start < kci->first_symbol)
2168 kci->first_symbol = start;
2169
2170 if (!kci->last_symbol || start > kci->last_symbol)
2171 kci->last_symbol = start;
2172
2173 if (!strcmp(name, "_stext")) {
2174 kci->stext = start;
2175 return 0;
2176 }
2177
2178 if (!strcmp(name, "_etext")) {
2179 kci->etext = start;
2180 return 0;
2181 }
2182
2183 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2184 return -1;
2185
2186 return 0;
2187 }
2188
kcore_copy__parse_kallsyms(struct kcore_copy_info * kci,const char * dir)2189 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2190 const char *dir)
2191 {
2192 char kallsyms_filename[PATH_MAX];
2193
2194 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2195
2196 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2197 return -1;
2198
2199 if (kallsyms__parse(kallsyms_filename, kci,
2200 kcore_copy__process_kallsyms) < 0)
2201 return -1;
2202
2203 return 0;
2204 }
2205
kcore_copy__process_modules(void * arg,const char * name __maybe_unused,u64 start,u64 size __maybe_unused)2206 static int kcore_copy__process_modules(void *arg,
2207 const char *name __maybe_unused,
2208 u64 start, u64 size __maybe_unused)
2209 {
2210 struct kcore_copy_info *kci = arg;
2211
2212 if (!kci->first_module || start < kci->first_module)
2213 kci->first_module = start;
2214
2215 return 0;
2216 }
2217
kcore_copy__parse_modules(struct kcore_copy_info * kci,const char * dir)2218 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2219 const char *dir)
2220 {
2221 char modules_filename[PATH_MAX];
2222
2223 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2224
2225 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2226 return -1;
2227
2228 if (modules__parse(modules_filename, kci,
2229 kcore_copy__process_modules) < 0)
2230 return -1;
2231
2232 return 0;
2233 }
2234
kcore_copy__map(struct kcore_copy_info * kci,u64 start,u64 end,u64 pgoff,u64 s,u64 e)2235 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2236 u64 pgoff, u64 s, u64 e)
2237 {
2238 u64 len, offset;
2239
2240 if (s < start || s >= end)
2241 return 0;
2242
2243 offset = (s - start) + pgoff;
2244 len = e < end ? e - s : end - s;
2245
2246 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2247 }
2248
kcore_copy__read_map(u64 start,u64 len,u64 pgoff,void * data)2249 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2250 {
2251 struct kcore_copy_info *kci = data;
2252 u64 end = start + len;
2253 struct sym_data *sdat;
2254
2255 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2256 return -1;
2257
2258 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2259 kci->last_module_symbol))
2260 return -1;
2261
2262 list_for_each_entry(sdat, &kci->syms, node) {
2263 u64 s = round_down(sdat->addr, page_size);
2264
2265 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2266 return -1;
2267 }
2268
2269 return 0;
2270 }
2271
kcore_copy__read_maps(struct kcore_copy_info * kci,Elf * elf)2272 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2273 {
2274 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2275 return -1;
2276
2277 return 0;
2278 }
2279
kcore_copy__find_remaps(struct kcore_copy_info * kci)2280 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2281 {
2282 struct phdr_data *p, *k = NULL;
2283 u64 kend;
2284
2285 if (!kci->stext)
2286 return;
2287
2288 /* Find phdr that corresponds to the kernel map (contains stext) */
2289 kcore_copy__for_each_phdr(kci, p) {
2290 u64 pend = p->addr + p->len - 1;
2291
2292 if (p->addr <= kci->stext && pend >= kci->stext) {
2293 k = p;
2294 break;
2295 }
2296 }
2297
2298 if (!k)
2299 return;
2300
2301 kend = k->offset + k->len;
2302
2303 /* Find phdrs that remap the kernel */
2304 kcore_copy__for_each_phdr(kci, p) {
2305 u64 pend = p->offset + p->len;
2306
2307 if (p == k)
2308 continue;
2309
2310 if (p->offset >= k->offset && pend <= kend)
2311 p->remaps = k;
2312 }
2313 }
2314
kcore_copy__layout(struct kcore_copy_info * kci)2315 static void kcore_copy__layout(struct kcore_copy_info *kci)
2316 {
2317 struct phdr_data *p;
2318 off_t rel = 0;
2319
2320 kcore_copy__find_remaps(kci);
2321
2322 kcore_copy__for_each_phdr(kci, p) {
2323 if (!p->remaps) {
2324 p->rel = rel;
2325 rel += p->len;
2326 }
2327 kci->phnum += 1;
2328 }
2329
2330 kcore_copy__for_each_phdr(kci, p) {
2331 struct phdr_data *k = p->remaps;
2332
2333 if (k)
2334 p->rel = p->offset - k->offset + k->rel;
2335 }
2336 }
2337
kcore_copy__calc_maps(struct kcore_copy_info * kci,const char * dir,Elf * elf)2338 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2339 Elf *elf)
2340 {
2341 if (kcore_copy__parse_kallsyms(kci, dir))
2342 return -1;
2343
2344 if (kcore_copy__parse_modules(kci, dir))
2345 return -1;
2346
2347 if (kci->stext)
2348 kci->stext = round_down(kci->stext, page_size);
2349 else
2350 kci->stext = round_down(kci->first_symbol, page_size);
2351
2352 if (kci->etext) {
2353 kci->etext = round_up(kci->etext, page_size);
2354 } else if (kci->last_symbol) {
2355 kci->etext = round_up(kci->last_symbol, page_size);
2356 kci->etext += page_size;
2357 }
2358
2359 if (kci->first_module_symbol &&
2360 (!kci->first_module || kci->first_module_symbol < kci->first_module))
2361 kci->first_module = kci->first_module_symbol;
2362
2363 kci->first_module = round_down(kci->first_module, page_size);
2364
2365 if (kci->last_module_symbol) {
2366 kci->last_module_symbol = round_up(kci->last_module_symbol,
2367 page_size);
2368 kci->last_module_symbol += page_size;
2369 }
2370
2371 if (!kci->stext || !kci->etext)
2372 return -1;
2373
2374 if (kci->first_module && !kci->last_module_symbol)
2375 return -1;
2376
2377 if (kcore_copy__read_maps(kci, elf))
2378 return -1;
2379
2380 kcore_copy__layout(kci);
2381
2382 return 0;
2383 }
2384
kcore_copy__copy_file(const char * from_dir,const char * to_dir,const char * name)2385 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2386 const char *name)
2387 {
2388 char from_filename[PATH_MAX];
2389 char to_filename[PATH_MAX];
2390
2391 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2392 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2393
2394 return copyfile_mode(from_filename, to_filename, 0400);
2395 }
2396
kcore_copy__unlink(const char * dir,const char * name)2397 static int kcore_copy__unlink(const char *dir, const char *name)
2398 {
2399 char filename[PATH_MAX];
2400
2401 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2402
2403 return unlink(filename);
2404 }
2405
kcore_copy__compare_fds(int from,int to)2406 static int kcore_copy__compare_fds(int from, int to)
2407 {
2408 char *buf_from;
2409 char *buf_to;
2410 ssize_t ret;
2411 size_t len;
2412 int err = -1;
2413
2414 buf_from = malloc(page_size);
2415 buf_to = malloc(page_size);
2416 if (!buf_from || !buf_to)
2417 goto out;
2418
2419 while (1) {
2420 /* Use read because mmap won't work on proc files */
2421 ret = read(from, buf_from, page_size);
2422 if (ret < 0)
2423 goto out;
2424
2425 if (!ret)
2426 break;
2427
2428 len = ret;
2429
2430 if (readn(to, buf_to, len) != (int)len)
2431 goto out;
2432
2433 if (memcmp(buf_from, buf_to, len))
2434 goto out;
2435 }
2436
2437 err = 0;
2438 out:
2439 free(buf_to);
2440 free(buf_from);
2441 return err;
2442 }
2443
kcore_copy__compare_files(const char * from_filename,const char * to_filename)2444 static int kcore_copy__compare_files(const char *from_filename,
2445 const char *to_filename)
2446 {
2447 int from, to, err = -1;
2448
2449 from = open(from_filename, O_RDONLY);
2450 if (from < 0)
2451 return -1;
2452
2453 to = open(to_filename, O_RDONLY);
2454 if (to < 0)
2455 goto out_close_from;
2456
2457 err = kcore_copy__compare_fds(from, to);
2458
2459 close(to);
2460 out_close_from:
2461 close(from);
2462 return err;
2463 }
2464
kcore_copy__compare_file(const char * from_dir,const char * to_dir,const char * name)2465 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2466 const char *name)
2467 {
2468 char from_filename[PATH_MAX];
2469 char to_filename[PATH_MAX];
2470
2471 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2472 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2473
2474 return kcore_copy__compare_files(from_filename, to_filename);
2475 }
2476
2477 /**
2478 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2479 * @from_dir: from directory
2480 * @to_dir: to directory
2481 *
2482 * This function copies kallsyms, modules and kcore files from one directory to
2483 * another. kallsyms and modules are copied entirely. Only code segments are
2484 * copied from kcore. It is assumed that two segments suffice: one for the
2485 * kernel proper and one for all the modules. The code segments are determined
2486 * from kallsyms and modules files. The kernel map starts at _stext or the
2487 * lowest function symbol, and ends at _etext or the highest function symbol.
2488 * The module map starts at the lowest module address and ends at the highest
2489 * module symbol. Start addresses are rounded down to the nearest page. End
2490 * addresses are rounded up to the nearest page. An extra page is added to the
2491 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2492 * symbol too. Because it contains only code sections, the resulting kcore is
2493 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2494 * is not the same for the kernel map and the modules map. That happens because
2495 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2496 * kallsyms file is compared with its copy to check that modules have not been
2497 * loaded or unloaded while the copies were taking place.
2498 *
2499 * Return: %0 on success, %-1 on failure.
2500 */
kcore_copy(const char * from_dir,const char * to_dir)2501 int kcore_copy(const char *from_dir, const char *to_dir)
2502 {
2503 struct kcore kcore;
2504 struct kcore extract;
2505 int idx = 0, err = -1;
2506 off_t offset, sz;
2507 struct kcore_copy_info kci = { .stext = 0, };
2508 char kcore_filename[PATH_MAX];
2509 char extract_filename[PATH_MAX];
2510 struct phdr_data *p;
2511
2512 INIT_LIST_HEAD(&kci.phdrs);
2513 INIT_LIST_HEAD(&kci.syms);
2514
2515 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2516 return -1;
2517
2518 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2519 goto out_unlink_kallsyms;
2520
2521 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2522 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2523
2524 if (kcore__open(&kcore, kcore_filename))
2525 goto out_unlink_modules;
2526
2527 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2528 goto out_kcore_close;
2529
2530 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2531 goto out_kcore_close;
2532
2533 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2534 goto out_extract_close;
2535
2536 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2537 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2538 offset = round_up(offset, page_size);
2539
2540 kcore_copy__for_each_phdr(&kci, p) {
2541 off_t offs = p->rel + offset;
2542
2543 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2544 goto out_extract_close;
2545 }
2546
2547 sz = kcore__write(&extract);
2548 if (sz < 0 || sz > offset)
2549 goto out_extract_close;
2550
2551 kcore_copy__for_each_phdr(&kci, p) {
2552 off_t offs = p->rel + offset;
2553
2554 if (p->remaps)
2555 continue;
2556 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2557 goto out_extract_close;
2558 }
2559
2560 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2561 goto out_extract_close;
2562
2563 err = 0;
2564
2565 out_extract_close:
2566 kcore__close(&extract);
2567 if (err)
2568 unlink(extract_filename);
2569 out_kcore_close:
2570 kcore__close(&kcore);
2571 out_unlink_modules:
2572 if (err)
2573 kcore_copy__unlink(to_dir, "modules");
2574 out_unlink_kallsyms:
2575 if (err)
2576 kcore_copy__unlink(to_dir, "kallsyms");
2577
2578 kcore_copy__free_phdrs(&kci);
2579 kcore_copy__free_syms(&kci);
2580
2581 return err;
2582 }
2583
kcore_extract__create(struct kcore_extract * kce)2584 int kcore_extract__create(struct kcore_extract *kce)
2585 {
2586 struct kcore kcore;
2587 struct kcore extract;
2588 size_t count = 1;
2589 int idx = 0, err = -1;
2590 off_t offset = page_size, sz;
2591
2592 if (kcore__open(&kcore, kce->kcore_filename))
2593 return -1;
2594
2595 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2596 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2597 goto out_kcore_close;
2598
2599 if (kcore__copy_hdr(&kcore, &extract, count))
2600 goto out_extract_close;
2601
2602 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2603 goto out_extract_close;
2604
2605 sz = kcore__write(&extract);
2606 if (sz < 0 || sz > offset)
2607 goto out_extract_close;
2608
2609 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2610 goto out_extract_close;
2611
2612 err = 0;
2613
2614 out_extract_close:
2615 kcore__close(&extract);
2616 if (err)
2617 unlink(kce->extract_filename);
2618 out_kcore_close:
2619 kcore__close(&kcore);
2620
2621 return err;
2622 }
2623
kcore_extract__delete(struct kcore_extract * kce)2624 void kcore_extract__delete(struct kcore_extract *kce)
2625 {
2626 unlink(kce->extract_filename);
2627 }
2628
2629 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2630
sdt_adjust_loc(struct sdt_note * tmp,GElf_Addr base_off)2631 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2632 {
2633 if (!base_off)
2634 return;
2635
2636 if (tmp->bit32)
2637 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2638 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2639 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2640 else
2641 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2642 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2643 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2644 }
2645
sdt_adjust_refctr(struct sdt_note * tmp,GElf_Addr base_addr,GElf_Addr base_off)2646 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2647 GElf_Addr base_off)
2648 {
2649 if (!base_off)
2650 return;
2651
2652 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2653 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2654 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2655 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2656 }
2657
2658 /**
2659 * populate_sdt_note : Parse raw data and identify SDT note
2660 * @elf: elf of the opened file
2661 * @data: raw data of a section with description offset applied
2662 * @len: note description size
2663 * @type: type of the note
2664 * @sdt_notes: List to add the SDT note
2665 *
2666 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2667 * if its an SDT note, it appends to @sdt_notes list.
2668 */
populate_sdt_note(Elf ** elf,const char * data,size_t len,struct list_head * sdt_notes)2669 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2670 struct list_head *sdt_notes)
2671 {
2672 const char *provider, *name, *args;
2673 struct sdt_note *tmp = NULL;
2674 GElf_Ehdr ehdr;
2675 GElf_Shdr shdr;
2676 int ret = -EINVAL;
2677
2678 union {
2679 Elf64_Addr a64[NR_ADDR];
2680 Elf32_Addr a32[NR_ADDR];
2681 } buf;
2682
2683 Elf_Data dst = {
2684 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2685 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2686 .d_off = 0, .d_align = 0
2687 };
2688 Elf_Data src = {
2689 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2690 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2691 .d_align = 0
2692 };
2693
2694 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2695 if (!tmp) {
2696 ret = -ENOMEM;
2697 goto out_err;
2698 }
2699
2700 INIT_LIST_HEAD(&tmp->note_list);
2701
2702 if (len < dst.d_size + 3)
2703 goto out_free_note;
2704
2705 /* Translation from file representation to memory representation */
2706 if (gelf_xlatetom(*elf, &dst, &src,
2707 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2708 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2709 goto out_free_note;
2710 }
2711
2712 /* Populate the fields of sdt_note */
2713 provider = data + dst.d_size;
2714
2715 name = (const char *)memchr(provider, '\0', data + len - provider);
2716 if (name++ == NULL)
2717 goto out_free_note;
2718
2719 tmp->provider = strdup(provider);
2720 if (!tmp->provider) {
2721 ret = -ENOMEM;
2722 goto out_free_note;
2723 }
2724 tmp->name = strdup(name);
2725 if (!tmp->name) {
2726 ret = -ENOMEM;
2727 goto out_free_prov;
2728 }
2729
2730 args = memchr(name, '\0', data + len - name);
2731
2732 /*
2733 * There is no argument if:
2734 * - We reached the end of the note;
2735 * - There is not enough room to hold a potential string;
2736 * - The argument string is empty or just contains ':'.
2737 */
2738 if (args == NULL || data + len - args < 2 ||
2739 args[1] == ':' || args[1] == '\0')
2740 tmp->args = NULL;
2741 else {
2742 tmp->args = strdup(++args);
2743 if (!tmp->args) {
2744 ret = -ENOMEM;
2745 goto out_free_name;
2746 }
2747 }
2748
2749 if (gelf_getclass(*elf) == ELFCLASS32) {
2750 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2751 tmp->bit32 = true;
2752 } else {
2753 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2754 tmp->bit32 = false;
2755 }
2756
2757 if (!gelf_getehdr(*elf, &ehdr)) {
2758 pr_debug("%s : cannot get elf header.\n", __func__);
2759 ret = -EBADF;
2760 goto out_free_args;
2761 }
2762
2763 /* Adjust the prelink effect :
2764 * Find out the .stapsdt.base section.
2765 * This scn will help us to handle prelinking (if present).
2766 * Compare the retrieved file offset of the base section with the
2767 * base address in the description of the SDT note. If its different,
2768 * then accordingly, adjust the note location.
2769 */
2770 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2771 sdt_adjust_loc(tmp, shdr.sh_offset);
2772
2773 /* Adjust reference counter offset */
2774 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2775 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2776
2777 list_add_tail(&tmp->note_list, sdt_notes);
2778 return 0;
2779
2780 out_free_args:
2781 zfree(&tmp->args);
2782 out_free_name:
2783 zfree(&tmp->name);
2784 out_free_prov:
2785 zfree(&tmp->provider);
2786 out_free_note:
2787 free(tmp);
2788 out_err:
2789 return ret;
2790 }
2791
2792 /**
2793 * construct_sdt_notes_list : constructs a list of SDT notes
2794 * @elf : elf to look into
2795 * @sdt_notes : empty list_head
2796 *
2797 * Scans the sections in 'elf' for the section
2798 * .note.stapsdt. It, then calls populate_sdt_note to find
2799 * out the SDT events and populates the 'sdt_notes'.
2800 */
construct_sdt_notes_list(Elf * elf,struct list_head * sdt_notes)2801 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2802 {
2803 GElf_Ehdr ehdr;
2804 Elf_Scn *scn = NULL;
2805 Elf_Data *data;
2806 GElf_Shdr shdr;
2807 size_t shstrndx, next;
2808 GElf_Nhdr nhdr;
2809 size_t name_off, desc_off, offset;
2810 int ret = 0;
2811
2812 if (gelf_getehdr(elf, &ehdr) == NULL) {
2813 ret = -EBADF;
2814 goto out_ret;
2815 }
2816 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2817 ret = -EBADF;
2818 goto out_ret;
2819 }
2820
2821 /* Look for the required section */
2822 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2823 if (!scn) {
2824 ret = -ENOENT;
2825 goto out_ret;
2826 }
2827
2828 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2829 ret = -ENOENT;
2830 goto out_ret;
2831 }
2832
2833 data = elf_getdata(scn, NULL);
2834
2835 /* Get the SDT notes */
2836 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2837 &desc_off)) > 0; offset = next) {
2838 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2839 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2840 sizeof(SDT_NOTE_NAME))) {
2841 /* Check the type of the note */
2842 if (nhdr.n_type != SDT_NOTE_TYPE)
2843 goto out_ret;
2844
2845 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2846 nhdr.n_descsz, sdt_notes);
2847 if (ret < 0)
2848 goto out_ret;
2849 }
2850 }
2851 if (list_empty(sdt_notes))
2852 ret = -ENOENT;
2853
2854 out_ret:
2855 return ret;
2856 }
2857
2858 /**
2859 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2860 * @head : empty list_head
2861 * @target : file to find SDT notes from
2862 *
2863 * This opens the file, initializes
2864 * the ELF and then calls construct_sdt_notes_list.
2865 */
get_sdt_note_list(struct list_head * head,const char * target)2866 int get_sdt_note_list(struct list_head *head, const char *target)
2867 {
2868 Elf *elf;
2869 int fd, ret;
2870
2871 fd = open(target, O_RDONLY);
2872 if (fd < 0)
2873 return -EBADF;
2874
2875 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2876 if (!elf) {
2877 ret = -EBADF;
2878 goto out_close;
2879 }
2880 ret = construct_sdt_notes_list(elf, head);
2881 elf_end(elf);
2882 out_close:
2883 close(fd);
2884 return ret;
2885 }
2886
2887 /**
2888 * cleanup_sdt_note_list : free the sdt notes' list
2889 * @sdt_notes: sdt notes' list
2890 *
2891 * Free up the SDT notes in @sdt_notes.
2892 * Returns the number of SDT notes free'd.
2893 */
cleanup_sdt_note_list(struct list_head * sdt_notes)2894 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2895 {
2896 struct sdt_note *tmp, *pos;
2897 int nr_free = 0;
2898
2899 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2900 list_del_init(&pos->note_list);
2901 zfree(&pos->args);
2902 zfree(&pos->name);
2903 zfree(&pos->provider);
2904 free(pos);
2905 nr_free++;
2906 }
2907 return nr_free;
2908 }
2909
2910 /**
2911 * sdt_notes__get_count: Counts the number of sdt events
2912 * @start: list_head to sdt_notes list
2913 *
2914 * Returns the number of SDT notes in a list
2915 */
sdt_notes__get_count(struct list_head * start)2916 int sdt_notes__get_count(struct list_head *start)
2917 {
2918 struct sdt_note *sdt_ptr;
2919 int count = 0;
2920
2921 list_for_each_entry(sdt_ptr, start, note_list)
2922 count++;
2923 return count;
2924 }
2925 #endif
2926
symbol__elf_init(void)2927 void symbol__elf_init(void)
2928 {
2929 elf_version(EV_CURRENT);
2930 }
2931