1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 */
11
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stackdepot.h>
27 #include <linux/stacktrace.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/bug.h>
31 #include <linux/vmalloc.h>
32
33 #include "kasan.h"
34 #include "../slab.h"
35
36 #if defined(CONFIG_ARCH_DEFER_KASAN) || defined(CONFIG_KASAN_HW_TAGS)
37 /*
38 * Definition of the unified static key declared in kasan-enabled.h.
39 * This provides consistent runtime enable/disable across KASAN modes.
40 */
41 DEFINE_STATIC_KEY_FALSE(kasan_flag_enabled);
42 EXPORT_SYMBOL_GPL(kasan_flag_enabled);
43 #endif
44
kasan_addr_to_slab(const void * addr)45 struct slab *kasan_addr_to_slab(const void *addr)
46 {
47 if (virt_addr_valid(addr))
48 return virt_to_slab(addr);
49 return NULL;
50 }
51
kasan_save_stack(gfp_t flags,depot_flags_t depot_flags)52 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
53 {
54 unsigned long entries[KASAN_STACK_DEPTH];
55 unsigned int nr_entries;
56
57 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
58 return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
59 }
60
kasan_set_track(struct kasan_track * track,depot_stack_handle_t stack)61 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
62 {
63 #ifdef CONFIG_KASAN_EXTRA_INFO
64 u32 cpu = raw_smp_processor_id();
65 u64 ts_nsec = local_clock();
66
67 track->cpu = cpu;
68 track->timestamp = ts_nsec >> 9;
69 #endif /* CONFIG_KASAN_EXTRA_INFO */
70 track->pid = current->pid;
71 track->stack = stack;
72 }
73
kasan_save_track(struct kasan_track * track,gfp_t flags)74 void kasan_save_track(struct kasan_track *track, gfp_t flags)
75 {
76 depot_stack_handle_t stack;
77
78 stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
79 kasan_set_track(track, stack);
80 }
81
82 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)83 void kasan_enable_current(void)
84 {
85 current->kasan_depth++;
86 }
87 EXPORT_SYMBOL(kasan_enable_current);
88
kasan_disable_current(void)89 void kasan_disable_current(void)
90 {
91 current->kasan_depth--;
92 }
93 EXPORT_SYMBOL(kasan_disable_current);
94
95 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
96
__kasan_unpoison_range(const void * address,size_t size)97 void __kasan_unpoison_range(const void *address, size_t size)
98 {
99 if (is_kfence_address(address))
100 return;
101
102 kasan_unpoison(address, size, false);
103 }
104
105 #ifdef CONFIG_KASAN_STACK
106 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)107 void kasan_unpoison_task_stack(struct task_struct *task)
108 {
109 void *base = task_stack_page(task);
110
111 kasan_unpoison(base, THREAD_SIZE, false);
112 }
113
114 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)115 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
116 {
117 /*
118 * Calculate the task stack base address. Avoid using 'current'
119 * because this function is called by early resume code which hasn't
120 * yet set up the percpu register (%gs).
121 */
122 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
123
124 kasan_unpoison(base, watermark - base, false);
125 }
126 #endif /* CONFIG_KASAN_STACK */
127
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)128 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
129 {
130 u8 tag;
131 unsigned long i;
132
133 if (unlikely(PageHighMem(page)))
134 return false;
135
136 if (!kasan_sample_page_alloc(order))
137 return false;
138
139 tag = kasan_random_tag();
140 kasan_unpoison(set_tag(page_address(page), tag),
141 PAGE_SIZE << order, init);
142 for (i = 0; i < (1 << order); i++)
143 page_kasan_tag_set(page + i, tag);
144
145 return true;
146 }
147
__kasan_poison_pages(struct page * page,unsigned int order,bool init)148 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
149 {
150 if (likely(!PageHighMem(page)))
151 kasan_poison(page_address(page), PAGE_SIZE << order,
152 KASAN_PAGE_FREE, init);
153 }
154
__kasan_poison_slab(struct slab * slab)155 void __kasan_poison_slab(struct slab *slab)
156 {
157 struct page *page = slab_page(slab);
158 unsigned long i;
159
160 for (i = 0; i < compound_nr(page); i++)
161 page_kasan_tag_reset(page + i);
162 kasan_poison(page_address(page), page_size(page),
163 KASAN_SLAB_REDZONE, false);
164 }
165
__kasan_unpoison_new_object(struct kmem_cache * cache,void * object)166 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
167 {
168 kasan_unpoison(object, cache->object_size, false);
169 }
170
__kasan_poison_new_object(struct kmem_cache * cache,void * object)171 void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
172 {
173 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
174 KASAN_SLAB_REDZONE, false);
175 }
176
177 /*
178 * This function assigns a tag to an object considering the following:
179 * 1. A cache might have a constructor, which might save a pointer to a slab
180 * object somewhere (e.g. in the object itself). We preassign a tag for
181 * each object in caches with constructors during slab creation and reuse
182 * the same tag each time a particular object is allocated.
183 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
184 * accessed after being freed. We preassign tags for objects in these
185 * caches as well.
186 */
assign_tag(struct kmem_cache * cache,const void * object,bool init)187 static inline u8 assign_tag(struct kmem_cache *cache,
188 const void *object, bool init)
189 {
190 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
191 return 0xff;
192
193 /*
194 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
195 * set, assign a tag when the object is being allocated (init == false).
196 */
197 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
198 return init ? KASAN_TAG_KERNEL : kasan_random_tag();
199
200 /*
201 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
202 * assign a random tag during slab creation, otherwise reuse
203 * the already assigned tag.
204 */
205 return init ? kasan_random_tag() : get_tag(object);
206 }
207
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)208 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
209 const void *object)
210 {
211 /* Initialize per-object metadata if it is present. */
212 if (kasan_requires_meta())
213 kasan_init_object_meta(cache, object);
214
215 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
216 object = set_tag(object, assign_tag(cache, object, true));
217
218 return (void *)object;
219 }
220
221 /* Returns true when freeing the object is not safe. */
check_slab_allocation(struct kmem_cache * cache,void * object,unsigned long ip)222 static bool check_slab_allocation(struct kmem_cache *cache, void *object,
223 unsigned long ip)
224 {
225 void *tagged_object = object;
226
227 object = kasan_reset_tag(object);
228
229 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
230 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
231 return true;
232 }
233
234 if (!kasan_byte_accessible(tagged_object)) {
235 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
236 return true;
237 }
238
239 return false;
240 }
241
poison_slab_object(struct kmem_cache * cache,void * object,bool init)242 static inline void poison_slab_object(struct kmem_cache *cache, void *object,
243 bool init)
244 {
245 void *tagged_object = object;
246
247 object = kasan_reset_tag(object);
248
249 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
250 KASAN_SLAB_FREE, init);
251
252 if (kasan_stack_collection_enabled())
253 kasan_save_free_info(cache, tagged_object);
254 }
255
__kasan_slab_pre_free(struct kmem_cache * cache,void * object,unsigned long ip)256 bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
257 unsigned long ip)
258 {
259 if (is_kfence_address(object))
260 return false;
261 return check_slab_allocation(cache, object, ip);
262 }
263
__kasan_slab_free(struct kmem_cache * cache,void * object,bool init,bool still_accessible,bool no_quarantine)264 bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
265 bool still_accessible, bool no_quarantine)
266 {
267 if (is_kfence_address(object))
268 return false;
269
270 /*
271 * If this point is reached with an object that must still be
272 * accessible under RCU, we can't poison it; in that case, also skip the
273 * quarantine. This should mostly only happen when CONFIG_SLUB_RCU_DEBUG
274 * has been disabled manually.
275 *
276 * Putting the object on the quarantine wouldn't help catch UAFs (since
277 * we can't poison it here), and it would mask bugs caused by
278 * SLAB_TYPESAFE_BY_RCU users not being careful enough about object
279 * reuse; so overall, putting the object into the quarantine here would
280 * be counterproductive.
281 */
282 if (still_accessible)
283 return false;
284
285 poison_slab_object(cache, object, init);
286
287 if (no_quarantine)
288 return false;
289
290 /*
291 * If the object is put into quarantine, do not let slab put the object
292 * onto the freelist for now. The object's metadata is kept until the
293 * object gets evicted from quarantine.
294 */
295 if (kasan_quarantine_put(cache, object))
296 return true;
297
298 /*
299 * Note: Keep per-object metadata to allow KASAN print stack traces for
300 * use-after-free-before-realloc bugs.
301 */
302
303 /* Let slab put the object onto the freelist. */
304 return false;
305 }
306
check_page_allocation(void * ptr,unsigned long ip)307 static inline bool check_page_allocation(void *ptr, unsigned long ip)
308 {
309 if (ptr != page_address(virt_to_head_page(ptr))) {
310 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
311 return true;
312 }
313
314 if (!kasan_byte_accessible(ptr)) {
315 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
316 return true;
317 }
318
319 return false;
320 }
321
__kasan_kfree_large(void * ptr,unsigned long ip)322 void __kasan_kfree_large(void *ptr, unsigned long ip)
323 {
324 check_page_allocation(ptr, ip);
325
326 /* The object will be poisoned by kasan_poison_pages(). */
327 }
328
unpoison_slab_object(struct kmem_cache * cache,void * object,gfp_t flags,bool init)329 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
330 gfp_t flags, bool init)
331 {
332 /*
333 * Unpoison the whole object. For kmalloc() allocations,
334 * poison_kmalloc_redzone() will do precise poisoning.
335 */
336 kasan_unpoison(object, cache->object_size, init);
337
338 /* Save alloc info (if possible) for non-kmalloc() allocations. */
339 if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
340 kasan_save_alloc_info(cache, object, flags);
341 }
342
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)343 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
344 void *object, gfp_t flags, bool init)
345 {
346 u8 tag;
347 void *tagged_object;
348
349 if (gfpflags_allow_blocking(flags))
350 kasan_quarantine_reduce();
351
352 if (unlikely(object == NULL))
353 return NULL;
354
355 if (is_kfence_address(object))
356 return (void *)object;
357
358 /*
359 * Generate and assign random tag for tag-based modes.
360 * Tag is ignored in set_tag() for the generic mode.
361 */
362 tag = assign_tag(cache, object, false);
363 tagged_object = set_tag(object, tag);
364
365 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */
366 unpoison_slab_object(cache, tagged_object, flags, init);
367
368 return tagged_object;
369 }
370
poison_kmalloc_redzone(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)371 static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
372 const void *object, size_t size, gfp_t flags)
373 {
374 unsigned long redzone_start;
375 unsigned long redzone_end;
376
377 /*
378 * The redzone has byte-level precision for the generic mode.
379 * Partially poison the last object granule to cover the unaligned
380 * part of the redzone.
381 */
382 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
383 kasan_poison_last_granule((void *)object, size);
384
385 /* Poison the aligned part of the redzone. */
386 redzone_start = round_up((unsigned long)(object + size),
387 KASAN_GRANULE_SIZE);
388 redzone_end = round_up((unsigned long)(object + cache->object_size),
389 KASAN_GRANULE_SIZE);
390 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
391 KASAN_SLAB_REDZONE, false);
392
393 /*
394 * Save alloc info (if possible) for kmalloc() allocations.
395 * This also rewrites the alloc info when called from kasan_krealloc().
396 */
397 if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
398 kasan_save_alloc_info(cache, (void *)object, flags);
399
400 }
401
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)402 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
403 size_t size, gfp_t flags)
404 {
405 if (gfpflags_allow_blocking(flags))
406 kasan_quarantine_reduce();
407
408 if (unlikely(object == NULL))
409 return NULL;
410
411 if (is_kfence_address(object))
412 return (void *)object;
413
414 /* The object has already been unpoisoned by kasan_slab_alloc(). */
415 poison_kmalloc_redzone(cache, object, size, flags);
416
417 /* Keep the tag that was set by kasan_slab_alloc(). */
418 return (void *)object;
419 }
420 EXPORT_SYMBOL(__kasan_kmalloc);
421
poison_kmalloc_large_redzone(const void * ptr,size_t size,gfp_t flags)422 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
423 gfp_t flags)
424 {
425 unsigned long redzone_start;
426 unsigned long redzone_end;
427
428 /*
429 * The redzone has byte-level precision for the generic mode.
430 * Partially poison the last object granule to cover the unaligned
431 * part of the redzone.
432 */
433 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
434 kasan_poison_last_granule(ptr, size);
435
436 /* Poison the aligned part of the redzone. */
437 redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
438 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
439 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
440 KASAN_PAGE_REDZONE, false);
441 }
442
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)443 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
444 gfp_t flags)
445 {
446 if (gfpflags_allow_blocking(flags))
447 kasan_quarantine_reduce();
448
449 if (unlikely(ptr == NULL))
450 return NULL;
451
452 /* The object has already been unpoisoned by kasan_unpoison_pages(). */
453 poison_kmalloc_large_redzone(ptr, size, flags);
454
455 /* Keep the tag that was set by alloc_pages(). */
456 return (void *)ptr;
457 }
458
__kasan_krealloc(const void * object,size_t size,gfp_t flags)459 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
460 {
461 struct slab *slab;
462
463 if (gfpflags_allow_blocking(flags))
464 kasan_quarantine_reduce();
465
466 if (unlikely(object == ZERO_SIZE_PTR))
467 return (void *)object;
468
469 if (is_kfence_address(object))
470 return (void *)object;
471
472 /*
473 * Unpoison the object's data.
474 * Part of it might already have been unpoisoned, but it's unknown
475 * how big that part is.
476 */
477 kasan_unpoison(object, size, false);
478
479 slab = virt_to_slab(object);
480
481 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
482 if (unlikely(!slab))
483 poison_kmalloc_large_redzone(object, size, flags);
484 else
485 poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
486
487 return (void *)object;
488 }
489
__kasan_mempool_poison_pages(struct page * page,unsigned int order,unsigned long ip)490 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
491 unsigned long ip)
492 {
493 unsigned long *ptr;
494
495 if (unlikely(PageHighMem(page)))
496 return true;
497
498 /* Bail out if allocation was excluded due to sampling. */
499 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
500 page_kasan_tag(page) == KASAN_TAG_KERNEL)
501 return true;
502
503 ptr = page_address(page);
504
505 if (check_page_allocation(ptr, ip))
506 return false;
507
508 kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
509
510 return true;
511 }
512
__kasan_mempool_unpoison_pages(struct page * page,unsigned int order,unsigned long ip)513 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
514 unsigned long ip)
515 {
516 __kasan_unpoison_pages(page, order, false);
517 }
518
__kasan_mempool_poison_object(void * ptr,unsigned long ip)519 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
520 {
521 struct page *page = virt_to_page(ptr);
522 struct slab *slab;
523
524 if (unlikely(PageLargeKmalloc(page))) {
525 if (check_page_allocation(ptr, ip))
526 return false;
527 kasan_poison(ptr, page_size(page), KASAN_PAGE_FREE, false);
528 return true;
529 }
530
531 if (is_kfence_address(ptr))
532 return true;
533
534 slab = page_slab(page);
535
536 if (check_slab_allocation(slab->slab_cache, ptr, ip))
537 return false;
538
539 poison_slab_object(slab->slab_cache, ptr, false);
540 return true;
541 }
542
__kasan_mempool_unpoison_object(void * ptr,size_t size,unsigned long ip)543 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
544 {
545 struct slab *slab;
546 gfp_t flags = 0; /* Might be executing under a lock. */
547
548 slab = virt_to_slab(ptr);
549
550 /*
551 * This function can be called for large kmalloc allocation that get
552 * their memory from page_alloc.
553 */
554 if (unlikely(!slab)) {
555 kasan_unpoison(ptr, size, false);
556 poison_kmalloc_large_redzone(ptr, size, flags);
557 return;
558 }
559
560 if (is_kfence_address(ptr))
561 return;
562
563 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */
564 unpoison_slab_object(slab->slab_cache, ptr, flags, false);
565
566 /* Poison the redzone and save alloc info for kmalloc() allocations. */
567 if (is_kmalloc_cache(slab->slab_cache))
568 poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
569 }
570
__kasan_check_byte(const void * address,unsigned long ip)571 bool __kasan_check_byte(const void *address, unsigned long ip)
572 {
573 if (!kasan_byte_accessible(address)) {
574 kasan_report(address, 1, false, ip);
575 return false;
576 }
577 return true;
578 }
579
580 #ifdef CONFIG_KASAN_VMALLOC
__kasan_unpoison_vmap_areas(struct vm_struct ** vms,int nr_vms,kasan_vmalloc_flags_t flags)581 void __kasan_unpoison_vmap_areas(struct vm_struct **vms, int nr_vms,
582 kasan_vmalloc_flags_t flags)
583 {
584 unsigned long size;
585 void *addr;
586 int area;
587 u8 tag;
588
589 /*
590 * If KASAN_VMALLOC_KEEP_TAG was set at this point, all vms[] pointers
591 * would be unpoisoned with the KASAN_TAG_KERNEL which would disable
592 * KASAN checks down the line.
593 */
594 if (WARN_ON_ONCE(flags & KASAN_VMALLOC_KEEP_TAG))
595 return;
596
597 size = vms[0]->size;
598 addr = vms[0]->addr;
599 vms[0]->addr = __kasan_unpoison_vmalloc(addr, size, flags);
600 tag = get_tag(vms[0]->addr);
601
602 for (area = 1 ; area < nr_vms ; area++) {
603 size = vms[area]->size;
604 addr = set_tag(vms[area]->addr, tag);
605 vms[area]->addr =
606 __kasan_unpoison_vmalloc(addr, size, flags | KASAN_VMALLOC_KEEP_TAG);
607 }
608 }
609 #endif
610