1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 //
3 // This file is provided under a dual BSD/GPLv2 license. When using or
4 // redistributing this file, you may do so under either license.
5 //
6 // Copyright(c) 2018 Intel Corporation
7 //
8 // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com>
9 // Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
10 // Rander Wang <rander.wang@intel.com>
11 // Keyon Jie <yang.jie@linux.intel.com>
12 //
13
14 /*
15 * Hardware interface for audio DSP on Cannonlake.
16 */
17
18 #include <sound/sof/ext_manifest4.h>
19 #include <sound/sof/ipc4/header.h>
20 #include <trace/events/sof_intel.h>
21 #include "../ipc4-priv.h"
22 #include "../ops.h"
23 #include "hda.h"
24 #include "hda-ipc.h"
25 #include "../sof-audio.h"
26
27 static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = {
28 {"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS},
29 {"pp", HDA_DSP_PP_BAR, 0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS},
30 {"dsp", HDA_DSP_BAR, 0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS},
31 };
32
33 static void cnl_ipc_host_done(struct snd_sof_dev *sdev);
34 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev);
35
cnl_ipc4_irq_thread(int irq,void * context)36 irqreturn_t cnl_ipc4_irq_thread(int irq, void *context)
37 {
38 struct sof_ipc4_msg notification_data = {{ 0 }};
39 struct snd_sof_dev *sdev = context;
40 bool ack_received = false;
41 bool ipc_irq = false;
42 u32 hipcida, hipctdr;
43
44 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
45 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
46 if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
47 /* DSP received the message */
48 snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
49 CNL_DSP_REG_HIPCCTL,
50 CNL_DSP_REG_HIPCCTL_DONE, 0);
51 cnl_ipc_dsp_done(sdev);
52
53 ipc_irq = true;
54 ack_received = true;
55 }
56
57 if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
58 /* Message from DSP (reply or notification) */
59 u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
60 CNL_DSP_REG_HIPCTDD);
61 u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
62 u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
63
64 if (primary & SOF_IPC4_MSG_DIR_MASK) {
65 /* Reply received */
66 if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
67 struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data;
68
69 data->primary = primary;
70 data->extension = extension;
71
72 spin_lock_irq(&sdev->ipc_lock);
73
74 snd_sof_ipc_get_reply(sdev);
75 cnl_ipc_host_done(sdev);
76 snd_sof_ipc_reply(sdev, data->primary);
77
78 spin_unlock_irq(&sdev->ipc_lock);
79 } else {
80 dev_dbg_ratelimited(sdev->dev,
81 "IPC reply before FW_READY: %#x|%#x\n",
82 primary, extension);
83 }
84 } else {
85 /* Notification received */
86 notification_data.primary = primary;
87 notification_data.extension = extension;
88
89 sdev->ipc->msg.rx_data = ¬ification_data;
90 snd_sof_ipc_msgs_rx(sdev);
91 sdev->ipc->msg.rx_data = NULL;
92
93 /* Let DSP know that we have finished processing the message */
94 cnl_ipc_host_done(sdev);
95 }
96
97 ipc_irq = true;
98 }
99
100 if (!ipc_irq)
101 /* This interrupt is not shared so no need to return IRQ_NONE. */
102 dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n");
103
104 if (ack_received) {
105 struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
106
107 if (hdev->delayed_ipc_tx_msg)
108 cnl_ipc4_send_msg(sdev, hdev->delayed_ipc_tx_msg);
109 }
110
111 return IRQ_HANDLED;
112 }
113 EXPORT_SYMBOL_NS(cnl_ipc4_irq_thread, SND_SOC_SOF_INTEL_CNL);
114
cnl_ipc_irq_thread(int irq,void * context)115 irqreturn_t cnl_ipc_irq_thread(int irq, void *context)
116 {
117 struct snd_sof_dev *sdev = context;
118 u32 hipci;
119 u32 hipcida;
120 u32 hipctdr;
121 u32 hipctdd;
122 u32 msg;
123 u32 msg_ext;
124 bool ipc_irq = false;
125
126 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
127 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
128 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
129 hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
130
131 /* reply message from DSP */
132 if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
133 msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK;
134 msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK;
135
136 trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext);
137
138 /* mask Done interrupt */
139 snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
140 CNL_DSP_REG_HIPCCTL,
141 CNL_DSP_REG_HIPCCTL_DONE, 0);
142
143 if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
144 spin_lock_irq(&sdev->ipc_lock);
145
146 /* handle immediate reply from DSP core */
147 hda_dsp_ipc_get_reply(sdev);
148 snd_sof_ipc_reply(sdev, msg);
149
150 cnl_ipc_dsp_done(sdev);
151
152 spin_unlock_irq(&sdev->ipc_lock);
153 } else {
154 dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n",
155 msg);
156 }
157
158 ipc_irq = true;
159 }
160
161 /* new message from DSP */
162 if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
163 msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
164 msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
165
166 trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext);
167
168 /* handle messages from DSP */
169 if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) {
170 struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
171 bool non_recoverable = true;
172
173 /*
174 * This is a PANIC message!
175 *
176 * If it is arriving during firmware boot and it is not
177 * the last boot attempt then change the non_recoverable
178 * to false as the DSP might be able to boot in the next
179 * iteration(s)
180 */
181 if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS &&
182 hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS)
183 non_recoverable = false;
184
185 snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext),
186 non_recoverable);
187 } else {
188 snd_sof_ipc_msgs_rx(sdev);
189 }
190
191 cnl_ipc_host_done(sdev);
192
193 ipc_irq = true;
194 }
195
196 if (!ipc_irq) {
197 /*
198 * This interrupt is not shared so no need to return IRQ_NONE.
199 */
200 dev_dbg_ratelimited(sdev->dev,
201 "nothing to do in IPC IRQ thread\n");
202 }
203
204 return IRQ_HANDLED;
205 }
206 EXPORT_SYMBOL_NS(cnl_ipc_irq_thread, SND_SOC_SOF_INTEL_CNL);
207
cnl_ipc_host_done(struct snd_sof_dev * sdev)208 static void cnl_ipc_host_done(struct snd_sof_dev *sdev)
209 {
210 /*
211 * clear busy interrupt to tell dsp controller this
212 * interrupt has been accepted, not trigger it again
213 */
214 snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
215 CNL_DSP_REG_HIPCTDR,
216 CNL_DSP_REG_HIPCTDR_BUSY,
217 CNL_DSP_REG_HIPCTDR_BUSY);
218 /*
219 * set done bit to ack dsp the msg has been
220 * processed and send reply msg to dsp
221 */
222 snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
223 CNL_DSP_REG_HIPCTDA,
224 CNL_DSP_REG_HIPCTDA_DONE,
225 CNL_DSP_REG_HIPCTDA_DONE);
226 }
227
cnl_ipc_dsp_done(struct snd_sof_dev * sdev)228 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev)
229 {
230 /*
231 * set DONE bit - tell DSP we have received the reply msg
232 * from DSP, and processed it, don't send more reply to host
233 */
234 snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
235 CNL_DSP_REG_HIPCIDA,
236 CNL_DSP_REG_HIPCIDA_DONE,
237 CNL_DSP_REG_HIPCIDA_DONE);
238
239 /* unmask Done interrupt */
240 snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
241 CNL_DSP_REG_HIPCCTL,
242 CNL_DSP_REG_HIPCCTL_DONE,
243 CNL_DSP_REG_HIPCCTL_DONE);
244 }
245
cnl_compact_ipc_compress(struct snd_sof_ipc_msg * msg,u32 * dr,u32 * dd)246 static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg,
247 u32 *dr, u32 *dd)
248 {
249 struct sof_ipc_pm_gate *pm_gate = msg->msg_data;
250
251 if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) {
252 /* send the compact message via the primary register */
253 *dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE;
254
255 /* send payload via the extended data register */
256 *dd = pm_gate->flags;
257
258 return true;
259 }
260
261 return false;
262 }
263
cnl_ipc4_send_msg(struct snd_sof_dev * sdev,struct snd_sof_ipc_msg * msg)264 int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
265 {
266 struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
267 struct sof_ipc4_msg *msg_data = msg->msg_data;
268
269 if (hda_ipc4_tx_is_busy(sdev)) {
270 hdev->delayed_ipc_tx_msg = msg;
271 return 0;
272 }
273
274 hdev->delayed_ipc_tx_msg = NULL;
275
276 /* send the message via mailbox */
277 if (msg_data->data_size)
278 sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr,
279 msg_data->data_size);
280
281 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension);
282 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
283 msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY);
284
285 hda_dsp_ipc4_schedule_d0i3_work(hdev, msg);
286
287 return 0;
288 }
289 EXPORT_SYMBOL_NS(cnl_ipc4_send_msg, SND_SOC_SOF_INTEL_CNL);
290
cnl_ipc_send_msg(struct snd_sof_dev * sdev,struct snd_sof_ipc_msg * msg)291 int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
292 {
293 struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
294 struct sof_ipc_cmd_hdr *hdr;
295 u32 dr = 0;
296 u32 dd = 0;
297
298 /*
299 * Currently the only compact IPC supported is the PM_GATE
300 * IPC which is used for transitioning the DSP between the
301 * D0I0 and D0I3 states. And these are sent only during the
302 * set_power_state() op. Therefore, there will never be a case
303 * that a compact IPC results in the DSP exiting D0I3 without
304 * the host and FW being in sync.
305 */
306 if (cnl_compact_ipc_compress(msg, &dr, &dd)) {
307 /* send the message via IPC registers */
308 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD,
309 dd);
310 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
311 CNL_DSP_REG_HIPCIDR_BUSY | dr);
312 return 0;
313 }
314
315 /* send the message via mailbox */
316 sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data,
317 msg->msg_size);
318 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
319 CNL_DSP_REG_HIPCIDR_BUSY);
320
321 hdr = msg->msg_data;
322
323 /*
324 * Use mod_delayed_work() to schedule the delayed work
325 * to avoid scheduling multiple workqueue items when
326 * IPCs are sent at a high-rate. mod_delayed_work()
327 * modifies the timer if the work is pending.
328 * Also, a new delayed work should not be queued after the
329 * CTX_SAVE IPC, which is sent before the DSP enters D3.
330 */
331 if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE))
332 mod_delayed_work(system_wq, &hdev->d0i3_work,
333 msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS));
334
335 return 0;
336 }
337 EXPORT_SYMBOL_NS(cnl_ipc_send_msg, SND_SOC_SOF_INTEL_CNL);
338
cnl_ipc_dump(struct snd_sof_dev * sdev)339 void cnl_ipc_dump(struct snd_sof_dev *sdev)
340 {
341 u32 hipcctl;
342 u32 hipcida;
343 u32 hipctdr;
344
345 hda_ipc_irq_dump(sdev);
346
347 /* read IPC status */
348 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
349 hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
350 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
351
352 /* dump the IPC regs */
353 /* TODO: parse the raw msg */
354 dev_err(sdev->dev,
355 "error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n",
356 hipcida, hipctdr, hipcctl);
357 }
358 EXPORT_SYMBOL_NS(cnl_ipc_dump, SND_SOC_SOF_INTEL_CNL);
359
cnl_ipc4_dump(struct snd_sof_dev * sdev)360 void cnl_ipc4_dump(struct snd_sof_dev *sdev)
361 {
362 u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl;
363
364 hda_ipc_irq_dump(sdev);
365
366 hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
367 hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD);
368 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
369 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
370 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
371 hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA);
372 hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
373
374 /* dump the IPC regs */
375 /* TODO: parse the raw msg */
376 dev_err(sdev->dev,
377 "Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n",
378 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl);
379 }
380 EXPORT_SYMBOL_NS(cnl_ipc4_dump, SND_SOC_SOF_INTEL_CNL);
381
382 /* cannonlake ops */
383 struct snd_sof_dsp_ops sof_cnl_ops;
384 EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_CNL);
385
sof_cnl_ops_init(struct snd_sof_dev * sdev)386 int sof_cnl_ops_init(struct snd_sof_dev *sdev)
387 {
388 /* common defaults */
389 memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops));
390
391 /* probe/remove/shutdown */
392 sof_cnl_ops.shutdown = hda_dsp_shutdown;
393
394 /* ipc */
395 if (sdev->pdata->ipc_type == SOF_IPC_TYPE_3) {
396 /* doorbell */
397 sof_cnl_ops.irq_thread = cnl_ipc_irq_thread;
398
399 /* ipc */
400 sof_cnl_ops.send_msg = cnl_ipc_send_msg;
401
402 /* debug */
403 sof_cnl_ops.ipc_dump = cnl_ipc_dump;
404
405 sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc3;
406 }
407
408 if (sdev->pdata->ipc_type == SOF_IPC_TYPE_4) {
409 struct sof_ipc4_fw_data *ipc4_data;
410
411 sdev->private = kzalloc(sizeof(*ipc4_data), GFP_KERNEL);
412 if (!sdev->private)
413 return -ENOMEM;
414
415 ipc4_data = sdev->private;
416 ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET;
417
418 ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8;
419
420 /* External library loading support */
421 ipc4_data->load_library = hda_dsp_ipc4_load_library;
422
423 /* doorbell */
424 sof_cnl_ops.irq_thread = cnl_ipc4_irq_thread;
425
426 /* ipc */
427 sof_cnl_ops.send_msg = cnl_ipc4_send_msg;
428
429 /* debug */
430 sof_cnl_ops.ipc_dump = cnl_ipc4_dump;
431
432 sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc4;
433 }
434
435 /* set DAI driver ops */
436 hda_set_dai_drv_ops(sdev, &sof_cnl_ops);
437
438 /* debug */
439 sof_cnl_ops.debug_map = cnl_dsp_debugfs;
440 sof_cnl_ops.debug_map_count = ARRAY_SIZE(cnl_dsp_debugfs);
441
442 /* pre/post fw run */
443 sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run;
444
445 /* firmware run */
446 sof_cnl_ops.run = hda_dsp_cl_boot_firmware;
447
448 /* dsp core get/put */
449 sof_cnl_ops.core_get = hda_dsp_core_get;
450
451 return 0;
452 };
453 EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_CNL);
454
455 const struct sof_intel_dsp_desc cnl_chip_info = {
456 /* Cannonlake */
457 .cores_num = 4,
458 .init_core_mask = 1,
459 .host_managed_cores_mask = GENMASK(3, 0),
460 .ipc_req = CNL_DSP_REG_HIPCIDR,
461 .ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
462 .ipc_ack = CNL_DSP_REG_HIPCIDA,
463 .ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
464 .ipc_ctl = CNL_DSP_REG_HIPCCTL,
465 .rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
466 .rom_init_timeout = 300,
467 .ssp_count = CNL_SSP_COUNT,
468 .ssp_base_offset = CNL_SSP_BASE_OFFSET,
469 .sdw_shim_base = SDW_SHIM_BASE,
470 .sdw_alh_base = SDW_ALH_BASE,
471 .d0i3_offset = SOF_HDA_VS_D0I3C,
472 .read_sdw_lcount = hda_sdw_check_lcount_common,
473 .enable_sdw_irq = hda_common_enable_sdw_irq,
474 .check_sdw_irq = hda_common_check_sdw_irq,
475 .check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common,
476 .sdw_process_wakeen = hda_sdw_process_wakeen_common,
477 .check_ipc_irq = hda_dsp_check_ipc_irq,
478 .cl_init = cl_dsp_init,
479 .power_down_dsp = hda_power_down_dsp,
480 .disable_interrupts = hda_dsp_disable_interrupts,
481 .hw_ip_version = SOF_INTEL_CAVS_1_8,
482 };
483
484 /*
485 * JasperLake is technically derived from IceLake, and should be in
486 * described in icl.c. However since JasperLake was designed with
487 * two cores, it cannot support the IceLake-specific power-up sequences
488 * which rely on core3. To simplify, JasperLake uses the CannonLake ops and
489 * is described in cnl.c
490 */
491 const struct sof_intel_dsp_desc jsl_chip_info = {
492 /* Jasperlake */
493 .cores_num = 2,
494 .init_core_mask = 1,
495 .host_managed_cores_mask = GENMASK(1, 0),
496 .ipc_req = CNL_DSP_REG_HIPCIDR,
497 .ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
498 .ipc_ack = CNL_DSP_REG_HIPCIDA,
499 .ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
500 .ipc_ctl = CNL_DSP_REG_HIPCCTL,
501 .rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
502 .rom_init_timeout = 300,
503 .ssp_count = ICL_SSP_COUNT,
504 .ssp_base_offset = CNL_SSP_BASE_OFFSET,
505 .sdw_shim_base = SDW_SHIM_BASE,
506 .sdw_alh_base = SDW_ALH_BASE,
507 .d0i3_offset = SOF_HDA_VS_D0I3C,
508 .read_sdw_lcount = hda_sdw_check_lcount_common,
509 .enable_sdw_irq = hda_common_enable_sdw_irq,
510 .check_sdw_irq = hda_common_check_sdw_irq,
511 .check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common,
512 .sdw_process_wakeen = hda_sdw_process_wakeen_common,
513 .check_ipc_irq = hda_dsp_check_ipc_irq,
514 .cl_init = cl_dsp_init,
515 .power_down_dsp = hda_power_down_dsp,
516 .disable_interrupts = hda_dsp_disable_interrupts,
517 .hw_ip_version = SOF_INTEL_CAVS_2_0,
518 };
519 EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_CNL);
520