xref: /linux/fs/jbd2/transaction.c (revision fbeea4db51a6eaf62b4784f718844726dd2199b9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static void jbd2_get_transaction(journal_t *journal,
81 				transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	atomic_set(&transaction->t_updates, 0);
89 	atomic_set(&transaction->t_outstanding_credits,
90 		   journal->j_transaction_overhead_buffers +
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_outstanding_revokes, 0);
93 	atomic_set(&transaction->t_handle_count, 0);
94 	INIT_LIST_HEAD(&transaction->t_inode_list);
95 
96 	/* Set up the commit timer for the new transaction. */
97 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 	add_timer(&journal->j_commit_timer);
99 
100 	J_ASSERT(journal->j_running_transaction == NULL);
101 	journal->j_running_transaction = transaction;
102 	transaction->t_max_wait = 0;
103 	transaction->t_start = jiffies;
104 	transaction->t_requested = 0;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * t_max_wait is carefully updated here with use of atomic compare exchange.
117  * Note that there could be multiplre threads trying to do this simultaneously
118  * hence using cmpxchg to avoid any use of locks in this case.
119  */
120 static inline void update_t_max_wait(transaction_t *transaction,
121 				     unsigned long ts)
122 {
123 	unsigned long oldts, newts;
124 
125 	if (time_after(transaction->t_start, ts)) {
126 		newts = jbd2_time_diff(ts, transaction->t_start);
127 		oldts = READ_ONCE(transaction->t_max_wait);
128 		while (oldts < newts)
129 			oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
130 	}
131 }
132 
133 /*
134  * Wait until running transaction passes to T_FLUSH state and new transaction
135  * can thus be started. Also starts the commit if needed. The function expects
136  * running transaction to exist and releases j_state_lock.
137  */
138 static void wait_transaction_locked(journal_t *journal)
139 	__releases(journal->j_state_lock)
140 {
141 	DEFINE_WAIT(wait);
142 	int need_to_start;
143 	tid_t tid = journal->j_running_transaction->t_tid;
144 
145 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
146 			TASK_UNINTERRUPTIBLE);
147 	need_to_start = !tid_geq(journal->j_commit_request, tid);
148 	read_unlock(&journal->j_state_lock);
149 	if (need_to_start)
150 		jbd2_log_start_commit(journal, tid);
151 	jbd2_might_wait_for_commit(journal);
152 	schedule();
153 	finish_wait(&journal->j_wait_transaction_locked, &wait);
154 }
155 
156 /*
157  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
158  * state and new transaction can thus be started. The function releases
159  * j_state_lock.
160  */
161 static void wait_transaction_switching(journal_t *journal)
162 	__releases(journal->j_state_lock)
163 {
164 	DEFINE_WAIT(wait);
165 
166 	if (WARN_ON(!journal->j_running_transaction ||
167 		    journal->j_running_transaction->t_state != T_SWITCH)) {
168 		read_unlock(&journal->j_state_lock);
169 		return;
170 	}
171 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
172 			TASK_UNINTERRUPTIBLE);
173 	read_unlock(&journal->j_state_lock);
174 	/*
175 	 * We don't call jbd2_might_wait_for_commit() here as there's no
176 	 * waiting for outstanding handles happening anymore in T_SWITCH state
177 	 * and handling of reserved handles actually relies on that for
178 	 * correctness.
179 	 */
180 	schedule();
181 	finish_wait(&journal->j_wait_transaction_locked, &wait);
182 }
183 
184 static void sub_reserved_credits(journal_t *journal, int blocks)
185 {
186 	atomic_sub(blocks, &journal->j_reserved_credits);
187 	wake_up(&journal->j_wait_reserved);
188 }
189 
190 /* Maximum number of blocks for user transaction payload */
191 static int jbd2_max_user_trans_buffers(journal_t *journal)
192 {
193 	return journal->j_max_transaction_buffers -
194 				journal->j_transaction_overhead_buffers;
195 }
196 
197 /*
198  * Wait until we can add credits for handle to the running transaction.  Called
199  * with j_state_lock held for reading. Returns 0 if handle joined the running
200  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
201  * caller must retry.
202  *
203  * Note: because j_state_lock may be dropped depending on the return
204  * value, we need to fake out sparse so ti doesn't complain about a
205  * locking imbalance.  Callers of add_transaction_credits will need to
206  * make a similar accomodation.
207  */
208 static int add_transaction_credits(journal_t *journal, int blocks,
209 				   int rsv_blocks)
210 __must_hold(&journal->j_state_lock)
211 {
212 	transaction_t *t = journal->j_running_transaction;
213 	int needed;
214 	int total = blocks + rsv_blocks;
215 
216 	/*
217 	 * If the current transaction is locked down for commit, wait
218 	 * for the lock to be released.
219 	 */
220 	if (t->t_state != T_RUNNING) {
221 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
222 		wait_transaction_locked(journal);
223 		__acquire(&journal->j_state_lock); /* fake out sparse */
224 		return 1;
225 	}
226 
227 	/*
228 	 * If there is not enough space left in the log to write all
229 	 * potential buffers requested by this operation, we need to
230 	 * stall pending a log checkpoint to free some more log space.
231 	 */
232 	needed = atomic_add_return(total, &t->t_outstanding_credits);
233 	if (needed > journal->j_max_transaction_buffers) {
234 		/*
235 		 * If the current transaction is already too large,
236 		 * then start to commit it: we can then go back and
237 		 * attach this handle to a new transaction.
238 		 */
239 		atomic_sub(total, &t->t_outstanding_credits);
240 
241 		/*
242 		 * Is the number of reserved credits in the current transaction too
243 		 * big to fit this handle? Wait until reserved credits are freed.
244 		 */
245 		if (atomic_read(&journal->j_reserved_credits) + total >
246 		    jbd2_max_user_trans_buffers(journal)) {
247 			read_unlock(&journal->j_state_lock);
248 			jbd2_might_wait_for_commit(journal);
249 			wait_event(journal->j_wait_reserved,
250 				   atomic_read(&journal->j_reserved_credits) + total <=
251 				   jbd2_max_user_trans_buffers(journal));
252 			__acquire(&journal->j_state_lock); /* fake out sparse */
253 			return 1;
254 		}
255 
256 		wait_transaction_locked(journal);
257 		__acquire(&journal->j_state_lock); /* fake out sparse */
258 		return 1;
259 	}
260 
261 	/*
262 	 * The commit code assumes that it can get enough log space
263 	 * without forcing a checkpoint.  This is *critical* for
264 	 * correctness: a checkpoint of a buffer which is also
265 	 * associated with a committing transaction creates a deadlock,
266 	 * so commit simply cannot force through checkpoints.
267 	 *
268 	 * We must therefore ensure the necessary space in the journal
269 	 * *before* starting to dirty potentially checkpointed buffers
270 	 * in the new transaction.
271 	 */
272 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
273 		atomic_sub(total, &t->t_outstanding_credits);
274 		read_unlock(&journal->j_state_lock);
275 		jbd2_might_wait_for_commit(journal);
276 		write_lock(&journal->j_state_lock);
277 		if (jbd2_log_space_left(journal) <
278 					journal->j_max_transaction_buffers)
279 			__jbd2_log_wait_for_space(journal);
280 		write_unlock(&journal->j_state_lock);
281 		__acquire(&journal->j_state_lock); /* fake out sparse */
282 		return 1;
283 	}
284 
285 	/* No reservation? We are done... */
286 	if (!rsv_blocks)
287 		return 0;
288 
289 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
290 	/* We allow at most half of a transaction to be reserved */
291 	if (needed > jbd2_max_user_trans_buffers(journal) / 2) {
292 		sub_reserved_credits(journal, rsv_blocks);
293 		atomic_sub(total, &t->t_outstanding_credits);
294 		read_unlock(&journal->j_state_lock);
295 		jbd2_might_wait_for_commit(journal);
296 		wait_event(journal->j_wait_reserved,
297 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
298 			 <= jbd2_max_user_trans_buffers(journal) / 2);
299 		__acquire(&journal->j_state_lock); /* fake out sparse */
300 		return 1;
301 	}
302 	return 0;
303 }
304 
305 /*
306  * start_this_handle: Given a handle, deal with any locking or stalling
307  * needed to make sure that there is enough journal space for the handle
308  * to begin.  Attach the handle to a transaction and set up the
309  * transaction's buffer credits.
310  */
311 
312 static int start_this_handle(journal_t *journal, handle_t *handle,
313 			     gfp_t gfp_mask)
314 {
315 	transaction_t	*transaction, *new_transaction = NULL;
316 	int		blocks = handle->h_total_credits;
317 	int		rsv_blocks = 0;
318 	unsigned long ts = jiffies;
319 
320 	if (handle->h_rsv_handle)
321 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
322 
323 	/*
324 	 * Limit the number of reserved credits to 1/2 of maximum transaction
325 	 * size and limit the number of total credits to not exceed maximum
326 	 * transaction size per operation.
327 	 */
328 	if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 ||
329 	    rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) {
330 		printk(KERN_ERR "JBD2: %s wants too many credits "
331 		       "credits:%d rsv_credits:%d max:%d\n",
332 		       current->comm, blocks, rsv_blocks,
333 		       jbd2_max_user_trans_buffers(journal));
334 		WARN_ON(1);
335 		return -ENOSPC;
336 	}
337 
338 alloc_transaction:
339 	/*
340 	 * This check is racy but it is just an optimization of allocating new
341 	 * transaction early if there are high chances we'll need it. If we
342 	 * guess wrong, we'll retry or free unused transaction.
343 	 */
344 	if (!data_race(journal->j_running_transaction)) {
345 		/*
346 		 * If __GFP_FS is not present, then we may be being called from
347 		 * inside the fs writeback layer, so we MUST NOT fail.
348 		 */
349 		if ((gfp_mask & __GFP_FS) == 0)
350 			gfp_mask |= __GFP_NOFAIL;
351 		new_transaction = kmem_cache_zalloc(transaction_cache,
352 						    gfp_mask);
353 		if (!new_transaction)
354 			return -ENOMEM;
355 	}
356 
357 	jbd2_debug(3, "New handle %p going live.\n", handle);
358 
359 	/*
360 	 * We need to hold j_state_lock until t_updates has been incremented,
361 	 * for proper journal barrier handling
362 	 */
363 repeat:
364 	read_lock(&journal->j_state_lock);
365 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
366 	if (is_journal_aborted(journal) ||
367 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
368 		read_unlock(&journal->j_state_lock);
369 		jbd2_journal_free_transaction(new_transaction);
370 		return -EROFS;
371 	}
372 
373 	/*
374 	 * Wait on the journal's transaction barrier if necessary. Specifically
375 	 * we allow reserved handles to proceed because otherwise commit could
376 	 * deadlock on page writeback not being able to complete.
377 	 */
378 	if (!handle->h_reserved && journal->j_barrier_count) {
379 		read_unlock(&journal->j_state_lock);
380 		wait_event(journal->j_wait_transaction_locked,
381 				journal->j_barrier_count == 0);
382 		goto repeat;
383 	}
384 
385 	if (!journal->j_running_transaction) {
386 		read_unlock(&journal->j_state_lock);
387 		if (!new_transaction)
388 			goto alloc_transaction;
389 		write_lock(&journal->j_state_lock);
390 		if (!journal->j_running_transaction &&
391 		    (handle->h_reserved || !journal->j_barrier_count)) {
392 			jbd2_get_transaction(journal, new_transaction);
393 			new_transaction = NULL;
394 		}
395 		write_unlock(&journal->j_state_lock);
396 		goto repeat;
397 	}
398 
399 	transaction = journal->j_running_transaction;
400 
401 	if (!handle->h_reserved) {
402 		/* We may have dropped j_state_lock - restart in that case */
403 		if (add_transaction_credits(journal, blocks, rsv_blocks)) {
404 			/*
405 			 * add_transaction_credits releases
406 			 * j_state_lock on a non-zero return
407 			 */
408 			__release(&journal->j_state_lock);
409 			goto repeat;
410 		}
411 	} else {
412 		/*
413 		 * We have handle reserved so we are allowed to join T_LOCKED
414 		 * transaction and we don't have to check for transaction size
415 		 * and journal space. But we still have to wait while running
416 		 * transaction is being switched to a committing one as it
417 		 * won't wait for any handles anymore.
418 		 */
419 		if (transaction->t_state == T_SWITCH) {
420 			wait_transaction_switching(journal);
421 			goto repeat;
422 		}
423 		sub_reserved_credits(journal, blocks);
424 		handle->h_reserved = 0;
425 	}
426 
427 	/* OK, account for the buffers that this operation expects to
428 	 * use and add the handle to the running transaction.
429 	 */
430 	update_t_max_wait(transaction, ts);
431 	handle->h_transaction = transaction;
432 	handle->h_requested_credits = blocks;
433 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
434 	handle->h_start_jiffies = jiffies;
435 	atomic_inc(&transaction->t_updates);
436 	atomic_inc(&transaction->t_handle_count);
437 	jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
438 		  handle, blocks,
439 		  atomic_read(&transaction->t_outstanding_credits),
440 		  jbd2_log_space_left(journal));
441 	read_unlock(&journal->j_state_lock);
442 	current->journal_info = handle;
443 
444 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 1, _THIS_IP_);
445 	jbd2_journal_free_transaction(new_transaction);
446 	/*
447 	 * Ensure that no allocations done while the transaction is open are
448 	 * going to recurse back to the fs layer.
449 	 */
450 	handle->saved_alloc_context = memalloc_nofs_save();
451 	return 0;
452 }
453 
454 /* Allocate a new handle.  This should probably be in a slab... */
455 static handle_t *new_handle(int nblocks)
456 {
457 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
458 	if (!handle)
459 		return NULL;
460 	handle->h_total_credits = nblocks;
461 	handle->h_ref = 1;
462 
463 	return handle;
464 }
465 
466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
467 			      int revoke_records, gfp_t gfp_mask,
468 			      unsigned int type, unsigned int line_no)
469 {
470 	handle_t *handle = journal_current_handle();
471 	int err;
472 
473 	if (!journal)
474 		return ERR_PTR(-EROFS);
475 
476 	if (handle) {
477 		J_ASSERT(handle->h_transaction->t_journal == journal);
478 		handle->h_ref++;
479 		return handle;
480 	}
481 
482 	nblocks += DIV_ROUND_UP(revoke_records,
483 				journal->j_revoke_records_per_block);
484 	handle = new_handle(nblocks);
485 	if (!handle)
486 		return ERR_PTR(-ENOMEM);
487 	if (rsv_blocks) {
488 		handle_t *rsv_handle;
489 
490 		rsv_handle = new_handle(rsv_blocks);
491 		if (!rsv_handle) {
492 			jbd2_free_handle(handle);
493 			return ERR_PTR(-ENOMEM);
494 		}
495 		rsv_handle->h_reserved = 1;
496 		rsv_handle->h_journal = journal;
497 		handle->h_rsv_handle = rsv_handle;
498 	}
499 	handle->h_revoke_credits = revoke_records;
500 
501 	err = start_this_handle(journal, handle, gfp_mask);
502 	if (err < 0) {
503 		if (handle->h_rsv_handle)
504 			jbd2_free_handle(handle->h_rsv_handle);
505 		jbd2_free_handle(handle);
506 		return ERR_PTR(err);
507 	}
508 	handle->h_type = type;
509 	handle->h_line_no = line_no;
510 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
511 				handle->h_transaction->t_tid, type,
512 				line_no, nblocks);
513 
514 	return handle;
515 }
516 EXPORT_SYMBOL(jbd2__journal_start);
517 
518 
519 /**
520  * jbd2_journal_start() - Obtain a new handle.
521  * @journal: Journal to start transaction on.
522  * @nblocks: number of block buffer we might modify
523  *
524  * We make sure that the transaction can guarantee at least nblocks of
525  * modified buffers in the log.  We block until the log can guarantee
526  * that much space. Additionally, if rsv_blocks > 0, we also create another
527  * handle with rsv_blocks reserved blocks in the journal. This handle is
528  * stored in h_rsv_handle. It is not attached to any particular transaction
529  * and thus doesn't block transaction commit. If the caller uses this reserved
530  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
531  * on the parent handle will dispose the reserved one. Reserved handle has to
532  * be converted to a normal handle using jbd2_journal_start_reserved() before
533  * it can be used.
534  *
535  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
536  * on failure.
537  */
538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
539 {
540 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
541 }
542 EXPORT_SYMBOL(jbd2_journal_start);
543 
544 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
545 {
546 	journal_t *journal = handle->h_journal;
547 
548 	WARN_ON(!handle->h_reserved);
549 	sub_reserved_credits(journal, handle->h_total_credits);
550 	if (t)
551 		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
552 }
553 
554 void jbd2_journal_free_reserved(handle_t *handle)
555 {
556 	journal_t *journal = handle->h_journal;
557 
558 	/* Get j_state_lock to pin running transaction if it exists */
559 	read_lock(&journal->j_state_lock);
560 	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
561 	read_unlock(&journal->j_state_lock);
562 	jbd2_free_handle(handle);
563 }
564 EXPORT_SYMBOL(jbd2_journal_free_reserved);
565 
566 /**
567  * jbd2_journal_start_reserved() - start reserved handle
568  * @handle: handle to start
569  * @type: for handle statistics
570  * @line_no: for handle statistics
571  *
572  * Start handle that has been previously reserved with jbd2_journal_reserve().
573  * This attaches @handle to the running transaction (or creates one if there's
574  * not transaction running). Unlike jbd2_journal_start() this function cannot
575  * block on journal commit, checkpointing, or similar stuff. It can block on
576  * memory allocation or frozen journal though.
577  *
578  * Return 0 on success, non-zero on error - handle is freed in that case.
579  */
580 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
581 				unsigned int line_no)
582 {
583 	journal_t *journal = handle->h_journal;
584 	int ret = -EIO;
585 
586 	if (WARN_ON(!handle->h_reserved)) {
587 		/* Someone passed in normal handle? Just stop it. */
588 		jbd2_journal_stop(handle);
589 		return ret;
590 	}
591 	/*
592 	 * Usefulness of mixing of reserved and unreserved handles is
593 	 * questionable. So far nobody seems to need it so just error out.
594 	 */
595 	if (WARN_ON(current->journal_info)) {
596 		jbd2_journal_free_reserved(handle);
597 		return ret;
598 	}
599 
600 	handle->h_journal = NULL;
601 	/*
602 	 * GFP_NOFS is here because callers are likely from writeback or
603 	 * similarly constrained call sites
604 	 */
605 	ret = start_this_handle(journal, handle, GFP_NOFS);
606 	if (ret < 0) {
607 		handle->h_journal = journal;
608 		jbd2_journal_free_reserved(handle);
609 		return ret;
610 	}
611 	handle->h_type = type;
612 	handle->h_line_no = line_no;
613 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
614 				handle->h_transaction->t_tid, type,
615 				line_no, handle->h_total_credits);
616 	return 0;
617 }
618 EXPORT_SYMBOL(jbd2_journal_start_reserved);
619 
620 /**
621  * jbd2_journal_extend() - extend buffer credits.
622  * @handle:  handle to 'extend'
623  * @nblocks: nr blocks to try to extend by.
624  * @revoke_records: number of revoke records to try to extend by.
625  *
626  * Some transactions, such as large extends and truncates, can be done
627  * atomically all at once or in several stages.  The operation requests
628  * a credit for a number of buffer modifications in advance, but can
629  * extend its credit if it needs more.
630  *
631  * jbd2_journal_extend tries to give the running handle more buffer credits.
632  * It does not guarantee that allocation - this is a best-effort only.
633  * The calling process MUST be able to deal cleanly with a failure to
634  * extend here.
635  *
636  * Return 0 on success, non-zero on failure.
637  *
638  * return code < 0 implies an error
639  * return code > 0 implies normal transaction-full status.
640  */
641 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
642 {
643 	transaction_t *transaction = handle->h_transaction;
644 	journal_t *journal;
645 	int result;
646 	int wanted;
647 
648 	if (is_handle_aborted(handle))
649 		return -EROFS;
650 	journal = transaction->t_journal;
651 
652 	result = 1;
653 
654 	read_lock(&journal->j_state_lock);
655 
656 	/* Don't extend a locked-down transaction! */
657 	if (transaction->t_state != T_RUNNING) {
658 		jbd2_debug(3, "denied handle %p %d blocks: "
659 			  "transaction not running\n", handle, nblocks);
660 		goto error_out;
661 	}
662 
663 	nblocks += DIV_ROUND_UP(
664 			handle->h_revoke_credits_requested + revoke_records,
665 			journal->j_revoke_records_per_block) -
666 		DIV_ROUND_UP(
667 			handle->h_revoke_credits_requested,
668 			journal->j_revoke_records_per_block);
669 	wanted = atomic_add_return(nblocks,
670 				   &transaction->t_outstanding_credits);
671 
672 	if (wanted > journal->j_max_transaction_buffers) {
673 		jbd2_debug(3, "denied handle %p %d blocks: "
674 			  "transaction too large\n", handle, nblocks);
675 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
676 		goto error_out;
677 	}
678 
679 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
680 				 transaction->t_tid,
681 				 handle->h_type, handle->h_line_no,
682 				 handle->h_total_credits,
683 				 nblocks);
684 
685 	handle->h_total_credits += nblocks;
686 	handle->h_requested_credits += nblocks;
687 	handle->h_revoke_credits += revoke_records;
688 	handle->h_revoke_credits_requested += revoke_records;
689 	result = 0;
690 
691 	jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
692 error_out:
693 	read_unlock(&journal->j_state_lock);
694 	return result;
695 }
696 
697 static void stop_this_handle(handle_t *handle)
698 {
699 	transaction_t *transaction = handle->h_transaction;
700 	journal_t *journal = transaction->t_journal;
701 	int revokes;
702 
703 	J_ASSERT(journal_current_handle() == handle);
704 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
705 	current->journal_info = NULL;
706 	/*
707 	 * Subtract necessary revoke descriptor blocks from handle credits. We
708 	 * take care to account only for revoke descriptor blocks the
709 	 * transaction will really need as large sequences of transactions with
710 	 * small numbers of revokes are relatively common.
711 	 */
712 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
713 	if (revokes) {
714 		int t_revokes, revoke_descriptors;
715 		int rr_per_blk = journal->j_revoke_records_per_block;
716 
717 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
718 				> handle->h_total_credits);
719 		t_revokes = atomic_add_return(revokes,
720 				&transaction->t_outstanding_revokes);
721 		revoke_descriptors =
722 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
723 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
724 		handle->h_total_credits -= revoke_descriptors;
725 	}
726 	atomic_sub(handle->h_total_credits,
727 		   &transaction->t_outstanding_credits);
728 	if (handle->h_rsv_handle)
729 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
730 						transaction);
731 	if (atomic_dec_and_test(&transaction->t_updates))
732 		wake_up(&journal->j_wait_updates);
733 
734 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
735 	/*
736 	 * Scope of the GFP_NOFS context is over here and so we can restore the
737 	 * original alloc context.
738 	 */
739 	memalloc_nofs_restore(handle->saved_alloc_context);
740 }
741 
742 /**
743  * jbd2__journal_restart() - restart a handle .
744  * @handle:  handle to restart
745  * @nblocks: nr credits requested
746  * @revoke_records: number of revoke record credits requested
747  * @gfp_mask: memory allocation flags (for start_this_handle)
748  *
749  * Restart a handle for a multi-transaction filesystem
750  * operation.
751  *
752  * If the jbd2_journal_extend() call above fails to grant new buffer credits
753  * to a running handle, a call to jbd2_journal_restart will commit the
754  * handle's transaction so far and reattach the handle to a new
755  * transaction capable of guaranteeing the requested number of
756  * credits. We preserve reserved handle if there's any attached to the
757  * passed in handle.
758  */
759 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
760 			  gfp_t gfp_mask)
761 {
762 	transaction_t *transaction = handle->h_transaction;
763 	journal_t *journal;
764 	tid_t		tid;
765 	int		need_to_start;
766 	int		ret;
767 
768 	/* If we've had an abort of any type, don't even think about
769 	 * actually doing the restart! */
770 	if (is_handle_aborted(handle))
771 		return 0;
772 	journal = transaction->t_journal;
773 	tid = transaction->t_tid;
774 
775 	/*
776 	 * First unlink the handle from its current transaction, and start the
777 	 * commit on that.
778 	 */
779 	jbd2_debug(2, "restarting handle %p\n", handle);
780 	stop_this_handle(handle);
781 	handle->h_transaction = NULL;
782 
783 	/*
784 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
785  	 * get rid of pointless j_state_lock traffic like this.
786 	 */
787 	read_lock(&journal->j_state_lock);
788 	need_to_start = !tid_geq(journal->j_commit_request, tid);
789 	read_unlock(&journal->j_state_lock);
790 	if (need_to_start)
791 		jbd2_log_start_commit(journal, tid);
792 	handle->h_total_credits = nblocks +
793 		DIV_ROUND_UP(revoke_records,
794 			     journal->j_revoke_records_per_block);
795 	handle->h_revoke_credits = revoke_records;
796 	ret = start_this_handle(journal, handle, gfp_mask);
797 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
798 				 ret ? 0 : handle->h_transaction->t_tid,
799 				 handle->h_type, handle->h_line_no,
800 				 handle->h_total_credits);
801 	return ret;
802 }
803 EXPORT_SYMBOL(jbd2__journal_restart);
804 
805 
806 int jbd2_journal_restart(handle_t *handle, int nblocks)
807 {
808 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
809 }
810 EXPORT_SYMBOL(jbd2_journal_restart);
811 
812 /*
813  * Waits for any outstanding t_updates to finish.
814  * This is called with write j_state_lock held.
815  */
816 void jbd2_journal_wait_updates(journal_t *journal)
817 {
818 	DEFINE_WAIT(wait);
819 
820 	while (1) {
821 		/*
822 		 * Note that the running transaction can get freed under us if
823 		 * this transaction is getting committed in
824 		 * jbd2_journal_commit_transaction() ->
825 		 * jbd2_journal_free_transaction(). This can only happen when we
826 		 * release j_state_lock -> schedule() -> acquire j_state_lock.
827 		 * Hence we should everytime retrieve new j_running_transaction
828 		 * value (after j_state_lock release acquire cycle), else it may
829 		 * lead to use-after-free of old freed transaction.
830 		 */
831 		transaction_t *transaction = journal->j_running_transaction;
832 
833 		if (!transaction)
834 			break;
835 
836 		prepare_to_wait(&journal->j_wait_updates, &wait,
837 				TASK_UNINTERRUPTIBLE);
838 		if (!atomic_read(&transaction->t_updates)) {
839 			finish_wait(&journal->j_wait_updates, &wait);
840 			break;
841 		}
842 		write_unlock(&journal->j_state_lock);
843 		schedule();
844 		finish_wait(&journal->j_wait_updates, &wait);
845 		write_lock(&journal->j_state_lock);
846 	}
847 }
848 
849 /**
850  * jbd2_journal_lock_updates () - establish a transaction barrier.
851  * @journal:  Journal to establish a barrier on.
852  *
853  * This locks out any further updates from being started, and blocks
854  * until all existing updates have completed, returning only once the
855  * journal is in a quiescent state with no updates running.
856  *
857  * The journal lock should not be held on entry.
858  */
859 void jbd2_journal_lock_updates(journal_t *journal)
860 {
861 	jbd2_might_wait_for_commit(journal);
862 
863 	write_lock(&journal->j_state_lock);
864 	++journal->j_barrier_count;
865 
866 	/* Wait until there are no reserved handles */
867 	if (atomic_read(&journal->j_reserved_credits)) {
868 		write_unlock(&journal->j_state_lock);
869 		wait_event(journal->j_wait_reserved,
870 			   atomic_read(&journal->j_reserved_credits) == 0);
871 		write_lock(&journal->j_state_lock);
872 	}
873 
874 	/* Wait until there are no running t_updates */
875 	jbd2_journal_wait_updates(journal);
876 
877 	write_unlock(&journal->j_state_lock);
878 
879 	/*
880 	 * We have now established a barrier against other normal updates, but
881 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
882 	 * to make sure that we serialise special journal-locked operations
883 	 * too.
884 	 */
885 	mutex_lock(&journal->j_barrier);
886 }
887 
888 /**
889  * jbd2_journal_unlock_updates () - release barrier
890  * @journal:  Journal to release the barrier on.
891  *
892  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
893  *
894  * Should be called without the journal lock held.
895  */
896 void jbd2_journal_unlock_updates (journal_t *journal)
897 {
898 	J_ASSERT(journal->j_barrier_count != 0);
899 
900 	mutex_unlock(&journal->j_barrier);
901 	write_lock(&journal->j_state_lock);
902 	--journal->j_barrier_count;
903 	write_unlock(&journal->j_state_lock);
904 	wake_up_all(&journal->j_wait_transaction_locked);
905 }
906 
907 static void warn_dirty_buffer(struct buffer_head *bh)
908 {
909 	printk(KERN_WARNING
910 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
911 	       "There's a risk of filesystem corruption in case of system "
912 	       "crash.\n",
913 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
914 }
915 
916 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
917 static void jbd2_freeze_jh_data(struct journal_head *jh)
918 {
919 	char *source;
920 	struct buffer_head *bh = jh2bh(jh);
921 
922 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
923 	source = kmap_local_folio(bh->b_folio, bh_offset(bh));
924 	/* Fire data frozen trigger just before we copy the data */
925 	jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
926 	memcpy(jh->b_frozen_data, source, bh->b_size);
927 	kunmap_local(source);
928 
929 	/*
930 	 * Now that the frozen data is saved off, we need to store any matching
931 	 * triggers.
932 	 */
933 	jh->b_frozen_triggers = jh->b_triggers;
934 }
935 
936 /*
937  * If the buffer is already part of the current transaction, then there
938  * is nothing we need to do.  If it is already part of a prior
939  * transaction which we are still committing to disk, then we need to
940  * make sure that we do not overwrite the old copy: we do copy-out to
941  * preserve the copy going to disk.  We also account the buffer against
942  * the handle's metadata buffer credits (unless the buffer is already
943  * part of the transaction, that is).
944  *
945  */
946 static int
947 do_get_write_access(handle_t *handle, struct journal_head *jh,
948 			int force_copy)
949 {
950 	struct buffer_head *bh;
951 	transaction_t *transaction = handle->h_transaction;
952 	journal_t *journal;
953 	int error;
954 	char *frozen_buffer = NULL;
955 	unsigned long start_lock, time_lock;
956 
957 	journal = transaction->t_journal;
958 
959 	jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
960 
961 	JBUFFER_TRACE(jh, "entry");
962 repeat:
963 	bh = jh2bh(jh);
964 
965 	/* @@@ Need to check for errors here at some point. */
966 
967  	start_lock = jiffies;
968 	lock_buffer(bh);
969 	spin_lock(&jh->b_state_lock);
970 
971 	/* If it takes too long to lock the buffer, trace it */
972 	time_lock = jbd2_time_diff(start_lock, jiffies);
973 	if (time_lock > HZ/10)
974 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
975 			jiffies_to_msecs(time_lock));
976 
977 	/* We now hold the buffer lock so it is safe to query the buffer
978 	 * state.  Is the buffer dirty?
979 	 *
980 	 * If so, there are two possibilities.  The buffer may be
981 	 * non-journaled, and undergoing a quite legitimate writeback.
982 	 * Otherwise, it is journaled, and we don't expect dirty buffers
983 	 * in that state (the buffers should be marked JBD_Dirty
984 	 * instead.)  So either the IO is being done under our own
985 	 * control and this is a bug, or it's a third party IO such as
986 	 * dump(8) (which may leave the buffer scheduled for read ---
987 	 * ie. locked but not dirty) or tune2fs (which may actually have
988 	 * the buffer dirtied, ugh.)  */
989 
990 	if (buffer_dirty(bh) && jh->b_transaction) {
991 		warn_dirty_buffer(bh);
992 		/*
993 		 * We need to clean the dirty flag and we must do it under the
994 		 * buffer lock to be sure we don't race with running write-out.
995 		 */
996 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
997 		clear_buffer_dirty(bh);
998 		/*
999 		 * The buffer is going to be added to BJ_Reserved list now and
1000 		 * nothing guarantees jbd2_journal_dirty_metadata() will be
1001 		 * ever called for it. So we need to set jbddirty bit here to
1002 		 * make sure the buffer is dirtied and written out when the
1003 		 * journaling machinery is done with it.
1004 		 */
1005 		set_buffer_jbddirty(bh);
1006 	}
1007 
1008 	error = -EROFS;
1009 	if (is_handle_aborted(handle)) {
1010 		spin_unlock(&jh->b_state_lock);
1011 		unlock_buffer(bh);
1012 		goto out;
1013 	}
1014 	error = 0;
1015 
1016 	/*
1017 	 * The buffer is already part of this transaction if b_transaction or
1018 	 * b_next_transaction points to it
1019 	 */
1020 	if (jh->b_transaction == transaction ||
1021 	    jh->b_next_transaction == transaction) {
1022 		unlock_buffer(bh);
1023 		goto done;
1024 	}
1025 
1026 	/*
1027 	 * this is the first time this transaction is touching this buffer,
1028 	 * reset the modified flag
1029 	 */
1030 	jh->b_modified = 0;
1031 
1032 	/*
1033 	 * If the buffer is not journaled right now, we need to make sure it
1034 	 * doesn't get written to disk before the caller actually commits the
1035 	 * new data
1036 	 */
1037 	if (!jh->b_transaction) {
1038 		JBUFFER_TRACE(jh, "no transaction");
1039 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1040 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1041 		/*
1042 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1043 		 * visible before attaching it to the running transaction.
1044 		 * Paired with barrier in jbd2_write_access_granted()
1045 		 */
1046 		smp_wmb();
1047 		spin_lock(&journal->j_list_lock);
1048 		if (test_clear_buffer_dirty(bh)) {
1049 			/*
1050 			 * Execute buffer dirty clearing and jh->b_transaction
1051 			 * assignment under journal->j_list_lock locked to
1052 			 * prevent bh being removed from checkpoint list if
1053 			 * the buffer is in an intermediate state (not dirty
1054 			 * and jh->b_transaction is NULL).
1055 			 */
1056 			JBUFFER_TRACE(jh, "Journalling dirty buffer");
1057 			set_buffer_jbddirty(bh);
1058 		}
1059 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1060 		spin_unlock(&journal->j_list_lock);
1061 		unlock_buffer(bh);
1062 		goto done;
1063 	}
1064 	unlock_buffer(bh);
1065 
1066 	/*
1067 	 * If there is already a copy-out version of this buffer, then we don't
1068 	 * need to make another one
1069 	 */
1070 	if (jh->b_frozen_data) {
1071 		JBUFFER_TRACE(jh, "has frozen data");
1072 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1073 		goto attach_next;
1074 	}
1075 
1076 	JBUFFER_TRACE(jh, "owned by older transaction");
1077 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1078 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1079 
1080 	/*
1081 	 * There is one case we have to be very careful about.  If the
1082 	 * committing transaction is currently writing this buffer out to disk
1083 	 * and has NOT made a copy-out, then we cannot modify the buffer
1084 	 * contents at all right now.  The essence of copy-out is that it is
1085 	 * the extra copy, not the primary copy, which gets journaled.  If the
1086 	 * primary copy is already going to disk then we cannot do copy-out
1087 	 * here.
1088 	 */
1089 	if (buffer_shadow(bh)) {
1090 		JBUFFER_TRACE(jh, "on shadow: sleep");
1091 		spin_unlock(&jh->b_state_lock);
1092 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1093 		goto repeat;
1094 	}
1095 
1096 	/*
1097 	 * Only do the copy if the currently-owning transaction still needs it.
1098 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1099 	 * past that stage (here we use the fact that BH_Shadow is set under
1100 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1101 	 * point we know the buffer doesn't have BH_Shadow set).
1102 	 *
1103 	 * Subtle point, though: if this is a get_undo_access, then we will be
1104 	 * relying on the frozen_data to contain the new value of the
1105 	 * committed_data record after the transaction, so we HAVE to force the
1106 	 * frozen_data copy in that case.
1107 	 */
1108 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1109 		JBUFFER_TRACE(jh, "generate frozen data");
1110 		if (!frozen_buffer) {
1111 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1112 			spin_unlock(&jh->b_state_lock);
1113 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1114 						   GFP_NOFS | __GFP_NOFAIL);
1115 			goto repeat;
1116 		}
1117 		jh->b_frozen_data = frozen_buffer;
1118 		frozen_buffer = NULL;
1119 		jbd2_freeze_jh_data(jh);
1120 	}
1121 attach_next:
1122 	/*
1123 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1124 	 * before attaching it to the running transaction. Paired with barrier
1125 	 * in jbd2_write_access_granted()
1126 	 */
1127 	smp_wmb();
1128 	jh->b_next_transaction = transaction;
1129 
1130 done:
1131 	spin_unlock(&jh->b_state_lock);
1132 
1133 	/*
1134 	 * If we are about to journal a buffer, then any revoke pending on it is
1135 	 * no longer valid
1136 	 */
1137 	jbd2_journal_cancel_revoke(handle, jh);
1138 
1139 out:
1140 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1141 		jbd2_free(frozen_buffer, bh->b_size);
1142 
1143 	JBUFFER_TRACE(jh, "exit");
1144 	return error;
1145 }
1146 
1147 /* Fast check whether buffer is already attached to the required transaction */
1148 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1149 							bool undo)
1150 {
1151 	struct journal_head *jh;
1152 	bool ret = false;
1153 
1154 	/* Dirty buffers require special handling... */
1155 	if (buffer_dirty(bh))
1156 		return false;
1157 
1158 	/*
1159 	 * RCU protects us from dereferencing freed pages. So the checks we do
1160 	 * are guaranteed not to oops. However the jh slab object can get freed
1161 	 * & reallocated while we work with it. So we have to be careful. When
1162 	 * we see jh attached to the running transaction, we know it must stay
1163 	 * so until the transaction is committed. Thus jh won't be freed and
1164 	 * will be attached to the same bh while we run.  However it can
1165 	 * happen jh gets freed, reallocated, and attached to the transaction
1166 	 * just after we get pointer to it from bh. So we have to be careful
1167 	 * and recheck jh still belongs to our bh before we return success.
1168 	 */
1169 	rcu_read_lock();
1170 	if (!buffer_jbd(bh))
1171 		goto out;
1172 	/* This should be bh2jh() but that doesn't work with inline functions */
1173 	jh = READ_ONCE(bh->b_private);
1174 	if (!jh)
1175 		goto out;
1176 	/* For undo access buffer must have data copied */
1177 	if (undo && !jh->b_committed_data)
1178 		goto out;
1179 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1180 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1181 		goto out;
1182 	/*
1183 	 * There are two reasons for the barrier here:
1184 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1185 	 * detect when jh went through free, realloc, attach to transaction
1186 	 * while we were checking. Paired with implicit barrier in that path.
1187 	 * 2) So that access to bh done after jbd2_write_access_granted()
1188 	 * doesn't get reordered and see inconsistent state of concurrent
1189 	 * do_get_write_access().
1190 	 */
1191 	smp_mb();
1192 	if (unlikely(jh->b_bh != bh))
1193 		goto out;
1194 	ret = true;
1195 out:
1196 	rcu_read_unlock();
1197 	return ret;
1198 }
1199 
1200 /**
1201  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1202  *				     for metadata (not data) update.
1203  * @handle: transaction to add buffer modifications to
1204  * @bh:     bh to be used for metadata writes
1205  *
1206  * Returns: error code or 0 on success.
1207  *
1208  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1209  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1210  */
1211 
1212 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1213 {
1214 	struct journal_head *jh;
1215 	journal_t *journal;
1216 	int rc;
1217 
1218 	if (is_handle_aborted(handle))
1219 		return -EROFS;
1220 
1221 	journal = handle->h_transaction->t_journal;
1222 	rc = jbd2_check_fs_dev_write_error(journal);
1223 	if (rc) {
1224 		/*
1225 		 * If the fs dev has writeback errors, it may have failed
1226 		 * to async write out metadata buffers in the background.
1227 		 * In this case, we could read old data from disk and write
1228 		 * it out again, which may lead to on-disk filesystem
1229 		 * inconsistency. Aborting journal can avoid it happen.
1230 		 */
1231 		jbd2_journal_abort(journal, rc);
1232 		return -EIO;
1233 	}
1234 
1235 	if (jbd2_write_access_granted(handle, bh, false))
1236 		return 0;
1237 
1238 	jh = jbd2_journal_add_journal_head(bh);
1239 	/* We do not want to get caught playing with fields which the
1240 	 * log thread also manipulates.  Make sure that the buffer
1241 	 * completes any outstanding IO before proceeding. */
1242 	rc = do_get_write_access(handle, jh, 0);
1243 	jbd2_journal_put_journal_head(jh);
1244 	return rc;
1245 }
1246 
1247 
1248 /*
1249  * When the user wants to journal a newly created buffer_head
1250  * (ie. getblk() returned a new buffer and we are going to populate it
1251  * manually rather than reading off disk), then we need to keep the
1252  * buffer_head locked until it has been completely filled with new
1253  * data.  In this case, we should be able to make the assertion that
1254  * the bh is not already part of an existing transaction.
1255  *
1256  * The buffer should already be locked by the caller by this point.
1257  * There is no lock ranking violation: it was a newly created,
1258  * unlocked buffer beforehand. */
1259 
1260 /**
1261  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1262  * @handle: transaction to new buffer to
1263  * @bh: new buffer.
1264  *
1265  * Call this if you create a new bh.
1266  */
1267 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1268 {
1269 	transaction_t *transaction = handle->h_transaction;
1270 	journal_t *journal;
1271 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1272 	int err;
1273 
1274 	jbd2_debug(5, "journal_head %p\n", jh);
1275 	err = -EROFS;
1276 	if (is_handle_aborted(handle))
1277 		goto out;
1278 	journal = transaction->t_journal;
1279 	err = 0;
1280 
1281 	JBUFFER_TRACE(jh, "entry");
1282 	/*
1283 	 * The buffer may already belong to this transaction due to pre-zeroing
1284 	 * in the filesystem's new_block code.  It may also be on the previous,
1285 	 * committing transaction's lists, but it HAS to be in Forget state in
1286 	 * that case: the transaction must have deleted the buffer for it to be
1287 	 * reused here.
1288 	 * In the case of file system data inconsistency, for example, if the
1289 	 * block bitmap of a referenced block is not set, it can lead to the
1290 	 * situation where a block being committed is allocated and used again.
1291 	 * As a result, the following condition will not be satisfied, so here
1292 	 * we directly trigger a JBD abort instead of immediately invoking
1293 	 * bugon.
1294 	 */
1295 	spin_lock(&jh->b_state_lock);
1296 	if (!(jh->b_transaction == transaction || jh->b_transaction == NULL ||
1297 	      (jh->b_transaction == journal->j_committing_transaction &&
1298 	       jh->b_jlist == BJ_Forget)) || jh->b_next_transaction != NULL) {
1299 		err = -EROFS;
1300 		spin_unlock(&jh->b_state_lock);
1301 		jbd2_journal_abort(journal, err);
1302 		goto out;
1303 	}
1304 
1305 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1306 
1307 	if (jh->b_transaction == NULL) {
1308 		/*
1309 		 * Previous jbd2_journal_forget() could have left the buffer
1310 		 * with jbddirty bit set because it was being committed. When
1311 		 * the commit finished, we've filed the buffer for
1312 		 * checkpointing and marked it dirty. Now we are reallocating
1313 		 * the buffer so the transaction freeing it must have
1314 		 * committed and so it's safe to clear the dirty bit.
1315 		 */
1316 		clear_buffer_dirty(jh2bh(jh));
1317 		/* first access by this transaction */
1318 		jh->b_modified = 0;
1319 
1320 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1321 		spin_lock(&journal->j_list_lock);
1322 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1323 		spin_unlock(&journal->j_list_lock);
1324 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1325 		/* first access by this transaction */
1326 		jh->b_modified = 0;
1327 
1328 		JBUFFER_TRACE(jh, "set next transaction");
1329 		spin_lock(&journal->j_list_lock);
1330 		jh->b_next_transaction = transaction;
1331 		spin_unlock(&journal->j_list_lock);
1332 	}
1333 	spin_unlock(&jh->b_state_lock);
1334 
1335 	/*
1336 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1337 	 * blocks which contain freed but then revoked metadata.  We need
1338 	 * to cancel the revoke in case we end up freeing it yet again
1339 	 * and the reallocating as data - this would cause a second revoke,
1340 	 * which hits an assertion error.
1341 	 */
1342 	JBUFFER_TRACE(jh, "cancelling revoke");
1343 	jbd2_journal_cancel_revoke(handle, jh);
1344 out:
1345 	jbd2_journal_put_journal_head(jh);
1346 	return err;
1347 }
1348 
1349 /**
1350  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1351  *     non-rewindable consequences
1352  * @handle: transaction
1353  * @bh: buffer to undo
1354  *
1355  * Sometimes there is a need to distinguish between metadata which has
1356  * been committed to disk and that which has not.  The ext3fs code uses
1357  * this for freeing and allocating space, we have to make sure that we
1358  * do not reuse freed space until the deallocation has been committed,
1359  * since if we overwrote that space we would make the delete
1360  * un-rewindable in case of a crash.
1361  *
1362  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1363  * buffer for parts of non-rewindable operations such as delete
1364  * operations on the bitmaps.  The journaling code must keep a copy of
1365  * the buffer's contents prior to the undo_access call until such time
1366  * as we know that the buffer has definitely been committed to disk.
1367  *
1368  * We never need to know which transaction the committed data is part
1369  * of, buffers touched here are guaranteed to be dirtied later and so
1370  * will be committed to a new transaction in due course, at which point
1371  * we can discard the old committed data pointer.
1372  *
1373  * Returns error number or 0 on success.
1374  */
1375 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1376 {
1377 	int err;
1378 	struct journal_head *jh;
1379 	char *committed_data = NULL;
1380 
1381 	if (is_handle_aborted(handle))
1382 		return -EROFS;
1383 
1384 	if (jbd2_write_access_granted(handle, bh, true))
1385 		return 0;
1386 
1387 	jh = jbd2_journal_add_journal_head(bh);
1388 	JBUFFER_TRACE(jh, "entry");
1389 
1390 	/*
1391 	 * Do this first --- it can drop the journal lock, so we want to
1392 	 * make sure that obtaining the committed_data is done
1393 	 * atomically wrt. completion of any outstanding commits.
1394 	 */
1395 	err = do_get_write_access(handle, jh, 1);
1396 	if (err)
1397 		goto out;
1398 
1399 repeat:
1400 	if (!jh->b_committed_data)
1401 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1402 					    GFP_NOFS|__GFP_NOFAIL);
1403 
1404 	spin_lock(&jh->b_state_lock);
1405 	if (!jh->b_committed_data) {
1406 		/* Copy out the current buffer contents into the
1407 		 * preserved, committed copy. */
1408 		JBUFFER_TRACE(jh, "generate b_committed data");
1409 		if (!committed_data) {
1410 			spin_unlock(&jh->b_state_lock);
1411 			goto repeat;
1412 		}
1413 
1414 		jh->b_committed_data = committed_data;
1415 		committed_data = NULL;
1416 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1417 	}
1418 	spin_unlock(&jh->b_state_lock);
1419 out:
1420 	jbd2_journal_put_journal_head(jh);
1421 	if (unlikely(committed_data))
1422 		jbd2_free(committed_data, bh->b_size);
1423 	return err;
1424 }
1425 
1426 /**
1427  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1428  * @bh: buffer to trigger on
1429  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1430  *
1431  * Set any triggers on this journal_head.  This is always safe, because
1432  * triggers for a committing buffer will be saved off, and triggers for
1433  * a running transaction will match the buffer in that transaction.
1434  *
1435  * Call with NULL to clear the triggers.
1436  */
1437 void jbd2_journal_set_triggers(struct buffer_head *bh,
1438 			       struct jbd2_buffer_trigger_type *type)
1439 {
1440 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1441 
1442 	if (WARN_ON_ONCE(!jh))
1443 		return;
1444 	jh->b_triggers = type;
1445 	jbd2_journal_put_journal_head(jh);
1446 }
1447 
1448 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1449 				struct jbd2_buffer_trigger_type *triggers)
1450 {
1451 	struct buffer_head *bh = jh2bh(jh);
1452 
1453 	if (!triggers || !triggers->t_frozen)
1454 		return;
1455 
1456 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1457 }
1458 
1459 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1460 			       struct jbd2_buffer_trigger_type *triggers)
1461 {
1462 	if (!triggers || !triggers->t_abort)
1463 		return;
1464 
1465 	triggers->t_abort(triggers, jh2bh(jh));
1466 }
1467 
1468 /**
1469  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1470  * @handle: transaction to add buffer to.
1471  * @bh: buffer to mark
1472  *
1473  * mark dirty metadata which needs to be journaled as part of the current
1474  * transaction.
1475  *
1476  * The buffer must have previously had jbd2_journal_get_write_access()
1477  * called so that it has a valid journal_head attached to the buffer
1478  * head.
1479  *
1480  * The buffer is placed on the transaction's metadata list and is marked
1481  * as belonging to the transaction.
1482  *
1483  * Returns error number or 0 on success.
1484  *
1485  * Special care needs to be taken if the buffer already belongs to the
1486  * current committing transaction (in which case we should have frozen
1487  * data present for that commit).  In that case, we don't relink the
1488  * buffer: that only gets done when the old transaction finally
1489  * completes its commit.
1490  */
1491 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1492 {
1493 	transaction_t *transaction = handle->h_transaction;
1494 	journal_t *journal;
1495 	struct journal_head *jh;
1496 	int ret = 0;
1497 
1498 	if (!buffer_jbd(bh))
1499 		return -EUCLEAN;
1500 
1501 	/*
1502 	 * We don't grab jh reference here since the buffer must be part
1503 	 * of the running transaction.
1504 	 */
1505 	jh = bh2jh(bh);
1506 	jbd2_debug(5, "journal_head %p\n", jh);
1507 	JBUFFER_TRACE(jh, "entry");
1508 
1509 	/*
1510 	 * This and the following assertions are unreliable since we may see jh
1511 	 * in inconsistent state unless we grab bh_state lock. But this is
1512 	 * crucial to catch bugs so let's do a reliable check until the
1513 	 * lockless handling is fully proven.
1514 	 */
1515 	if (data_race(jh->b_transaction != transaction &&
1516 	    jh->b_next_transaction != transaction)) {
1517 		spin_lock(&jh->b_state_lock);
1518 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1519 				jh->b_next_transaction == transaction);
1520 		spin_unlock(&jh->b_state_lock);
1521 	}
1522 	if (data_race(jh->b_modified == 1)) {
1523 		/* If it's in our transaction it must be in BJ_Metadata list. */
1524 		if (data_race(jh->b_transaction == transaction &&
1525 		    jh->b_jlist != BJ_Metadata)) {
1526 			spin_lock(&jh->b_state_lock);
1527 			if (jh->b_transaction == transaction &&
1528 			    jh->b_jlist != BJ_Metadata)
1529 				pr_err("JBD2: assertion failure: h_type=%u "
1530 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1531 				       handle->h_type, handle->h_line_no,
1532 				       (unsigned long long) bh->b_blocknr,
1533 				       jh->b_jlist);
1534 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1535 					jh->b_jlist == BJ_Metadata);
1536 			spin_unlock(&jh->b_state_lock);
1537 		}
1538 		goto out;
1539 	}
1540 
1541 	spin_lock(&jh->b_state_lock);
1542 
1543 	if (is_handle_aborted(handle)) {
1544 		/*
1545 		 * Check journal aborting with @jh->b_state_lock locked,
1546 		 * since 'jh->b_transaction' could be replaced with
1547 		 * 'jh->b_next_transaction' during old transaction
1548 		 * committing if journal aborted, which may fail
1549 		 * assertion on 'jh->b_frozen_data == NULL'.
1550 		 */
1551 		ret = -EROFS;
1552 		goto out_unlock_bh;
1553 	}
1554 
1555 	journal = transaction->t_journal;
1556 
1557 	if (jh->b_modified == 0) {
1558 		/*
1559 		 * This buffer's got modified and becoming part
1560 		 * of the transaction. This needs to be done
1561 		 * once a transaction -bzzz
1562 		 */
1563 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1564 			ret = -ENOSPC;
1565 			goto out_unlock_bh;
1566 		}
1567 		jh->b_modified = 1;
1568 		handle->h_total_credits--;
1569 	}
1570 
1571 	/*
1572 	 * fastpath, to avoid expensive locking.  If this buffer is already
1573 	 * on the running transaction's metadata list there is nothing to do.
1574 	 * Nobody can take it off again because there is a handle open.
1575 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1576 	 * result in this test being false, so we go in and take the locks.
1577 	 */
1578 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1579 		JBUFFER_TRACE(jh, "fastpath");
1580 		if (unlikely(jh->b_transaction !=
1581 			     journal->j_running_transaction)) {
1582 			printk(KERN_ERR "JBD2: %s: "
1583 			       "jh->b_transaction (%llu, %p, %u) != "
1584 			       "journal->j_running_transaction (%p, %u)\n",
1585 			       journal->j_devname,
1586 			       (unsigned long long) bh->b_blocknr,
1587 			       jh->b_transaction,
1588 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1589 			       journal->j_running_transaction,
1590 			       journal->j_running_transaction ?
1591 			       journal->j_running_transaction->t_tid : 0);
1592 			ret = -EINVAL;
1593 		}
1594 		goto out_unlock_bh;
1595 	}
1596 
1597 	set_buffer_jbddirty(bh);
1598 
1599 	/*
1600 	 * Metadata already on the current transaction list doesn't
1601 	 * need to be filed.  Metadata on another transaction's list must
1602 	 * be committing, and will be refiled once the commit completes:
1603 	 * leave it alone for now.
1604 	 */
1605 	if (jh->b_transaction != transaction) {
1606 		JBUFFER_TRACE(jh, "already on other transaction");
1607 		if (unlikely(((jh->b_transaction !=
1608 			       journal->j_committing_transaction)) ||
1609 			     (jh->b_next_transaction != transaction))) {
1610 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1611 			       "bad jh for block %llu: "
1612 			       "transaction (%p, %u), "
1613 			       "jh->b_transaction (%p, %u), "
1614 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1615 			       journal->j_devname,
1616 			       (unsigned long long) bh->b_blocknr,
1617 			       transaction, transaction->t_tid,
1618 			       jh->b_transaction,
1619 			       jh->b_transaction ?
1620 			       jh->b_transaction->t_tid : 0,
1621 			       jh->b_next_transaction,
1622 			       jh->b_next_transaction ?
1623 			       jh->b_next_transaction->t_tid : 0,
1624 			       jh->b_jlist);
1625 			WARN_ON(1);
1626 			ret = -EINVAL;
1627 		}
1628 		/* And this case is illegal: we can't reuse another
1629 		 * transaction's data buffer, ever. */
1630 		goto out_unlock_bh;
1631 	}
1632 
1633 	/* That test should have eliminated the following case: */
1634 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1635 
1636 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1637 	spin_lock(&journal->j_list_lock);
1638 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1639 	spin_unlock(&journal->j_list_lock);
1640 out_unlock_bh:
1641 	spin_unlock(&jh->b_state_lock);
1642 out:
1643 	JBUFFER_TRACE(jh, "exit");
1644 	return ret;
1645 }
1646 
1647 /**
1648  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1649  * @handle: transaction handle
1650  * @bh:     bh to 'forget'
1651  *
1652  * We can only do the bforget if there are no commits pending against the
1653  * buffer.  If the buffer is dirty in the current running transaction we
1654  * can safely unlink it.
1655  *
1656  * bh may not be a journalled buffer at all - it may be a non-JBD
1657  * buffer which came off the hashtable.  Check for this.
1658  *
1659  * Decrements bh->b_count by one.
1660  *
1661  * Allow this call even if the handle has aborted --- it may be part of
1662  * the caller's cleanup after an abort.
1663  */
1664 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1665 {
1666 	transaction_t *transaction = handle->h_transaction;
1667 	journal_t *journal;
1668 	struct journal_head *jh;
1669 	int drop_reserve = 0;
1670 	int err = 0;
1671 	int was_modified = 0;
1672 	int wait_for_writeback = 0;
1673 
1674 	if (is_handle_aborted(handle))
1675 		return -EROFS;
1676 	journal = transaction->t_journal;
1677 
1678 	BUFFER_TRACE(bh, "entry");
1679 
1680 	jh = jbd2_journal_grab_journal_head(bh);
1681 	if (!jh) {
1682 		__bforget(bh);
1683 		return 0;
1684 	}
1685 
1686 	spin_lock(&jh->b_state_lock);
1687 
1688 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1689 	 * Don't do any jbd operations, and return an error. */
1690 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1691 			 "inconsistent data on disk")) {
1692 		err = -EIO;
1693 		goto drop;
1694 	}
1695 
1696 	/* keep track of whether or not this transaction modified us */
1697 	was_modified = jh->b_modified;
1698 
1699 	/*
1700 	 * The buffer's going from the transaction, we must drop
1701 	 * all references -bzzz
1702 	 */
1703 	jh->b_modified = 0;
1704 
1705 	if (jh->b_transaction == transaction) {
1706 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1707 
1708 		/* If we are forgetting a buffer which is already part
1709 		 * of this transaction, then we can just drop it from
1710 		 * the transaction immediately. */
1711 		clear_buffer_dirty(bh);
1712 		clear_buffer_jbddirty(bh);
1713 
1714 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1715 
1716 		/*
1717 		 * we only want to drop a reference if this transaction
1718 		 * modified the buffer
1719 		 */
1720 		if (was_modified)
1721 			drop_reserve = 1;
1722 
1723 		/*
1724 		 * We are no longer going to journal this buffer.
1725 		 * However, the commit of this transaction is still
1726 		 * important to the buffer: the delete that we are now
1727 		 * processing might obsolete an old log entry, so by
1728 		 * committing, we can satisfy the buffer's checkpoint.
1729 		 *
1730 		 * So, if we have a checkpoint on the buffer, we should
1731 		 * now refile the buffer on our BJ_Forget list so that
1732 		 * we know to remove the checkpoint after we commit.
1733 		 */
1734 
1735 		spin_lock(&journal->j_list_lock);
1736 		if (jh->b_cp_transaction) {
1737 			__jbd2_journal_temp_unlink_buffer(jh);
1738 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1739 		} else {
1740 			__jbd2_journal_unfile_buffer(jh);
1741 			jbd2_journal_put_journal_head(jh);
1742 		}
1743 		spin_unlock(&journal->j_list_lock);
1744 	} else if (jh->b_transaction) {
1745 		J_ASSERT_JH(jh, (jh->b_transaction ==
1746 				 journal->j_committing_transaction));
1747 		/* However, if the buffer is still owned by a prior
1748 		 * (committing) transaction, we can't drop it yet... */
1749 		JBUFFER_TRACE(jh, "belongs to older transaction");
1750 		/* ... but we CAN drop it from the new transaction through
1751 		 * marking the buffer as freed and set j_next_transaction to
1752 		 * the new transaction, so that not only the commit code
1753 		 * knows it should clear dirty bits when it is done with the
1754 		 * buffer, but also the buffer can be checkpointed only
1755 		 * after the new transaction commits. */
1756 
1757 		set_buffer_freed(bh);
1758 
1759 		if (!jh->b_next_transaction) {
1760 			spin_lock(&journal->j_list_lock);
1761 			jh->b_next_transaction = transaction;
1762 			spin_unlock(&journal->j_list_lock);
1763 		} else {
1764 			J_ASSERT(jh->b_next_transaction == transaction);
1765 
1766 			/*
1767 			 * only drop a reference if this transaction modified
1768 			 * the buffer
1769 			 */
1770 			if (was_modified)
1771 				drop_reserve = 1;
1772 		}
1773 	} else {
1774 		/*
1775 		 * Finally, if the buffer is not belongs to any
1776 		 * transaction, we can just drop it now if it has no
1777 		 * checkpoint.
1778 		 */
1779 		spin_lock(&journal->j_list_lock);
1780 		if (!jh->b_cp_transaction) {
1781 			JBUFFER_TRACE(jh, "belongs to none transaction");
1782 			spin_unlock(&journal->j_list_lock);
1783 			goto drop;
1784 		}
1785 
1786 		/*
1787 		 * Otherwise, if the buffer has been written to disk,
1788 		 * it is safe to remove the checkpoint and drop it.
1789 		 */
1790 		if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1791 			spin_unlock(&journal->j_list_lock);
1792 			goto drop;
1793 		}
1794 
1795 		/*
1796 		 * The buffer has not yet been written to disk. We should
1797 		 * either clear the buffer or ensure that the ongoing I/O
1798 		 * is completed, and attach this buffer to current
1799 		 * transaction so that the buffer can be checkpointed only
1800 		 * after the current transaction commits.
1801 		 */
1802 		clear_buffer_dirty(bh);
1803 		wait_for_writeback = 1;
1804 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1805 		spin_unlock(&journal->j_list_lock);
1806 	}
1807 drop:
1808 	__brelse(bh);
1809 	spin_unlock(&jh->b_state_lock);
1810 	if (wait_for_writeback)
1811 		wait_on_buffer(bh);
1812 	jbd2_journal_put_journal_head(jh);
1813 	if (drop_reserve) {
1814 		/* no need to reserve log space for this block -bzzz */
1815 		handle->h_total_credits++;
1816 	}
1817 	return err;
1818 }
1819 
1820 /**
1821  * jbd2_journal_stop() - complete a transaction
1822  * @handle: transaction to complete.
1823  *
1824  * All done for a particular handle.
1825  *
1826  * There is not much action needed here.  We just return any remaining
1827  * buffer credits to the transaction and remove the handle.  The only
1828  * complication is that we need to start a commit operation if the
1829  * filesystem is marked for synchronous update.
1830  *
1831  * jbd2_journal_stop itself will not usually return an error, but it may
1832  * do so in unusual circumstances.  In particular, expect it to
1833  * return -EIO if a jbd2_journal_abort has been executed since the
1834  * transaction began.
1835  */
1836 int jbd2_journal_stop(handle_t *handle)
1837 {
1838 	transaction_t *transaction = handle->h_transaction;
1839 	journal_t *journal;
1840 	int err = 0, wait_for_commit = 0;
1841 	tid_t tid;
1842 	pid_t pid;
1843 
1844 	if (--handle->h_ref > 0) {
1845 		jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1846 						 handle->h_ref);
1847 		if (is_handle_aborted(handle))
1848 			return -EIO;
1849 		return 0;
1850 	}
1851 	if (!transaction) {
1852 		/*
1853 		 * Handle is already detached from the transaction so there is
1854 		 * nothing to do other than free the handle.
1855 		 */
1856 		memalloc_nofs_restore(handle->saved_alloc_context);
1857 		goto free_and_exit;
1858 	}
1859 	journal = transaction->t_journal;
1860 	tid = transaction->t_tid;
1861 
1862 	if (is_handle_aborted(handle))
1863 		err = -EIO;
1864 
1865 	jbd2_debug(4, "Handle %p going down\n", handle);
1866 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1867 				tid, handle->h_type, handle->h_line_no,
1868 				jiffies - handle->h_start_jiffies,
1869 				handle->h_sync, handle->h_requested_credits,
1870 				(handle->h_requested_credits -
1871 				 handle->h_total_credits));
1872 
1873 	/*
1874 	 * Implement synchronous transaction batching.  If the handle
1875 	 * was synchronous, don't force a commit immediately.  Let's
1876 	 * yield and let another thread piggyback onto this
1877 	 * transaction.  Keep doing that while new threads continue to
1878 	 * arrive.  It doesn't cost much - we're about to run a commit
1879 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1880 	 * operations by 30x or more...
1881 	 *
1882 	 * We try and optimize the sleep time against what the
1883 	 * underlying disk can do, instead of having a static sleep
1884 	 * time.  This is useful for the case where our storage is so
1885 	 * fast that it is more optimal to go ahead and force a flush
1886 	 * and wait for the transaction to be committed than it is to
1887 	 * wait for an arbitrary amount of time for new writers to
1888 	 * join the transaction.  We achieve this by measuring how
1889 	 * long it takes to commit a transaction, and compare it with
1890 	 * how long this transaction has been running, and if run time
1891 	 * < commit time then we sleep for the delta and commit.  This
1892 	 * greatly helps super fast disks that would see slowdowns as
1893 	 * more threads started doing fsyncs.
1894 	 *
1895 	 * But don't do this if this process was the most recent one
1896 	 * to perform a synchronous write.  We do this to detect the
1897 	 * case where a single process is doing a stream of sync
1898 	 * writes.  No point in waiting for joiners in that case.
1899 	 *
1900 	 * Setting max_batch_time to 0 disables this completely.
1901 	 */
1902 	pid = current->pid;
1903 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1904 	    journal->j_max_batch_time) {
1905 		u64 commit_time, trans_time;
1906 
1907 		journal->j_last_sync_writer = pid;
1908 
1909 		read_lock(&journal->j_state_lock);
1910 		commit_time = journal->j_average_commit_time;
1911 		read_unlock(&journal->j_state_lock);
1912 
1913 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1914 						   transaction->t_start_time));
1915 
1916 		commit_time = max_t(u64, commit_time,
1917 				    1000*journal->j_min_batch_time);
1918 		commit_time = min_t(u64, commit_time,
1919 				    1000*journal->j_max_batch_time);
1920 
1921 		if (trans_time < commit_time) {
1922 			ktime_t expires = ktime_add_ns(ktime_get(),
1923 						       commit_time);
1924 			set_current_state(TASK_UNINTERRUPTIBLE);
1925 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1926 		}
1927 	}
1928 
1929 	if (handle->h_sync)
1930 		transaction->t_synchronous_commit = 1;
1931 
1932 	/*
1933 	 * If the handle is marked SYNC, we need to set another commit
1934 	 * going!  We also want to force a commit if the transaction is too
1935 	 * old now.
1936 	 */
1937 	if (handle->h_sync ||
1938 	    time_after_eq(jiffies, transaction->t_expires)) {
1939 		/* Do this even for aborted journals: an abort still
1940 		 * completes the commit thread, it just doesn't write
1941 		 * anything to disk. */
1942 
1943 		jbd2_debug(2, "transaction too old, requesting commit for "
1944 					"handle %p\n", handle);
1945 		/* This is non-blocking */
1946 		jbd2_log_start_commit(journal, tid);
1947 
1948 		/*
1949 		 * Special case: JBD2_SYNC synchronous updates require us
1950 		 * to wait for the commit to complete.
1951 		 */
1952 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1953 			wait_for_commit = 1;
1954 	}
1955 
1956 	/*
1957 	 * Once stop_this_handle() drops t_updates, the transaction could start
1958 	 * committing on us and eventually disappear.  So we must not
1959 	 * dereference transaction pointer again after calling
1960 	 * stop_this_handle().
1961 	 */
1962 	stop_this_handle(handle);
1963 
1964 	if (wait_for_commit)
1965 		err = jbd2_log_wait_commit(journal, tid);
1966 
1967 free_and_exit:
1968 	if (handle->h_rsv_handle)
1969 		jbd2_free_handle(handle->h_rsv_handle);
1970 	jbd2_free_handle(handle);
1971 	return err;
1972 }
1973 
1974 /*
1975  *
1976  * List management code snippets: various functions for manipulating the
1977  * transaction buffer lists.
1978  *
1979  */
1980 
1981 /*
1982  * Append a buffer to a transaction list, given the transaction's list head
1983  * pointer.
1984  *
1985  * j_list_lock is held.
1986  *
1987  * jh->b_state_lock is held.
1988  */
1989 
1990 static inline void
1991 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1992 {
1993 	if (!*list) {
1994 		jh->b_tnext = jh->b_tprev = jh;
1995 		*list = jh;
1996 	} else {
1997 		/* Insert at the tail of the list to preserve order */
1998 		struct journal_head *first = *list, *last = first->b_tprev;
1999 		jh->b_tprev = last;
2000 		jh->b_tnext = first;
2001 		last->b_tnext = first->b_tprev = jh;
2002 	}
2003 }
2004 
2005 /*
2006  * Remove a buffer from a transaction list, given the transaction's list
2007  * head pointer.
2008  *
2009  * Called with j_list_lock held, and the journal may not be locked.
2010  *
2011  * jh->b_state_lock is held.
2012  */
2013 
2014 static inline void
2015 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2016 {
2017 	if (*list == jh) {
2018 		*list = jh->b_tnext;
2019 		if (*list == jh)
2020 			*list = NULL;
2021 	}
2022 	jh->b_tprev->b_tnext = jh->b_tnext;
2023 	jh->b_tnext->b_tprev = jh->b_tprev;
2024 }
2025 
2026 /*
2027  * Remove a buffer from the appropriate transaction list.
2028  *
2029  * Note that this function can *change* the value of
2030  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2031  * t_reserved_list.  If the caller is holding onto a copy of one of these
2032  * pointers, it could go bad.  Generally the caller needs to re-read the
2033  * pointer from the transaction_t.
2034  *
2035  * Called under j_list_lock.
2036  */
2037 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2038 {
2039 	struct journal_head **list = NULL;
2040 	transaction_t *transaction;
2041 	struct buffer_head *bh = jh2bh(jh);
2042 
2043 	lockdep_assert_held(&jh->b_state_lock);
2044 	transaction = jh->b_transaction;
2045 	if (transaction)
2046 		assert_spin_locked(&transaction->t_journal->j_list_lock);
2047 
2048 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2049 	if (jh->b_jlist != BJ_None)
2050 		J_ASSERT_JH(jh, transaction != NULL);
2051 
2052 	switch (jh->b_jlist) {
2053 	case BJ_None:
2054 		return;
2055 	case BJ_Metadata:
2056 		transaction->t_nr_buffers--;
2057 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2058 		list = &transaction->t_buffers;
2059 		break;
2060 	case BJ_Forget:
2061 		list = &transaction->t_forget;
2062 		break;
2063 	case BJ_Shadow:
2064 		list = &transaction->t_shadow_list;
2065 		break;
2066 	case BJ_Reserved:
2067 		list = &transaction->t_reserved_list;
2068 		break;
2069 	}
2070 
2071 	__blist_del_buffer(list, jh);
2072 	jh->b_jlist = BJ_None;
2073 	if (transaction && is_journal_aborted(transaction->t_journal))
2074 		clear_buffer_jbddirty(bh);
2075 	else if (test_clear_buffer_jbddirty(bh))
2076 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2077 }
2078 
2079 /*
2080  * Remove buffer from all transactions. The caller is responsible for dropping
2081  * the jh reference that belonged to the transaction.
2082  *
2083  * Called with bh_state lock and j_list_lock
2084  */
2085 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2086 {
2087 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2088 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2089 
2090 	__jbd2_journal_temp_unlink_buffer(jh);
2091 	jh->b_transaction = NULL;
2092 }
2093 
2094 /**
2095  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2096  * @journal: journal for operation
2097  * @folio: Folio to detach data from.
2098  *
2099  * For all the buffers on this page,
2100  * if they are fully written out ordered data, move them onto BUF_CLEAN
2101  * so try_to_free_buffers() can reap them.
2102  *
2103  * This function returns non-zero if we wish try_to_free_buffers()
2104  * to be called. We do this if the page is releasable by try_to_free_buffers().
2105  * We also do it if the page has locked or dirty buffers and the caller wants
2106  * us to perform sync or async writeout.
2107  *
2108  * This complicates JBD locking somewhat.  We aren't protected by the
2109  * BKL here.  We wish to remove the buffer from its committing or
2110  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2111  *
2112  * This may *change* the value of transaction_t->t_datalist, so anyone
2113  * who looks at t_datalist needs to lock against this function.
2114  *
2115  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2116  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2117  * will come out of the lock with the buffer dirty, which makes it
2118  * ineligible for release here.
2119  *
2120  * Who else is affected by this?  hmm...  Really the only contender
2121  * is do_get_write_access() - it could be looking at the buffer while
2122  * journal_try_to_free_buffer() is changing its state.  But that
2123  * cannot happen because we never reallocate freed data as metadata
2124  * while the data is part of a transaction.  Yes?
2125  *
2126  * Return false on failure, true on success
2127  */
2128 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2129 {
2130 	struct buffer_head *head;
2131 	struct buffer_head *bh;
2132 	bool ret = false;
2133 
2134 	J_ASSERT(folio_test_locked(folio));
2135 
2136 	head = folio_buffers(folio);
2137 	bh = head;
2138 	do {
2139 		struct journal_head *jh;
2140 
2141 		/*
2142 		 * We take our own ref against the journal_head here to avoid
2143 		 * having to add tons of locking around each instance of
2144 		 * jbd2_journal_put_journal_head().
2145 		 */
2146 		jh = jbd2_journal_grab_journal_head(bh);
2147 		if (!jh)
2148 			continue;
2149 
2150 		spin_lock(&jh->b_state_lock);
2151 		if (!jh->b_transaction && !jh->b_next_transaction) {
2152 			spin_lock(&journal->j_list_lock);
2153 			/* Remove written-back checkpointed metadata buffer */
2154 			if (jh->b_cp_transaction != NULL)
2155 				jbd2_journal_try_remove_checkpoint(jh);
2156 			spin_unlock(&journal->j_list_lock);
2157 		}
2158 		spin_unlock(&jh->b_state_lock);
2159 		jbd2_journal_put_journal_head(jh);
2160 		if (buffer_jbd(bh))
2161 			goto busy;
2162 	} while ((bh = bh->b_this_page) != head);
2163 
2164 	ret = try_to_free_buffers(folio);
2165 busy:
2166 	return ret;
2167 }
2168 
2169 /*
2170  * This buffer is no longer needed.  If it is on an older transaction's
2171  * checkpoint list we need to record it on this transaction's forget list
2172  * to pin this buffer (and hence its checkpointing transaction) down until
2173  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2174  * release it.
2175  * Returns non-zero if JBD no longer has an interest in the buffer.
2176  *
2177  * Called under j_list_lock.
2178  *
2179  * Called under jh->b_state_lock.
2180  */
2181 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2182 {
2183 	int may_free = 1;
2184 	struct buffer_head *bh = jh2bh(jh);
2185 
2186 	if (jh->b_cp_transaction) {
2187 		JBUFFER_TRACE(jh, "on running+cp transaction");
2188 		__jbd2_journal_temp_unlink_buffer(jh);
2189 		/*
2190 		 * We don't want to write the buffer anymore, clear the
2191 		 * bit so that we don't confuse checks in
2192 		 * __jbd2_journal_file_buffer
2193 		 */
2194 		clear_buffer_dirty(bh);
2195 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2196 		may_free = 0;
2197 	} else {
2198 		JBUFFER_TRACE(jh, "on running transaction");
2199 		__jbd2_journal_unfile_buffer(jh);
2200 		jbd2_journal_put_journal_head(jh);
2201 	}
2202 	return may_free;
2203 }
2204 
2205 /*
2206  * jbd2_journal_invalidate_folio
2207  *
2208  * This code is tricky.  It has a number of cases to deal with.
2209  *
2210  * There are two invariants which this code relies on:
2211  *
2212  * i_size must be updated on disk before we start calling invalidate_folio
2213  * on the data.
2214  *
2215  *  This is done in ext3 by defining an ext3_setattr method which
2216  *  updates i_size before truncate gets going.  By maintaining this
2217  *  invariant, we can be sure that it is safe to throw away any buffers
2218  *  attached to the current transaction: once the transaction commits,
2219  *  we know that the data will not be needed.
2220  *
2221  *  Note however that we can *not* throw away data belonging to the
2222  *  previous, committing transaction!
2223  *
2224  * Any disk blocks which *are* part of the previous, committing
2225  * transaction (and which therefore cannot be discarded immediately) are
2226  * not going to be reused in the new running transaction
2227  *
2228  *  The bitmap committed_data images guarantee this: any block which is
2229  *  allocated in one transaction and removed in the next will be marked
2230  *  as in-use in the committed_data bitmap, so cannot be reused until
2231  *  the next transaction to delete the block commits.  This means that
2232  *  leaving committing buffers dirty is quite safe: the disk blocks
2233  *  cannot be reallocated to a different file and so buffer aliasing is
2234  *  not possible.
2235  *
2236  *
2237  * The above applies mainly to ordered data mode.  In writeback mode we
2238  * don't make guarantees about the order in which data hits disk --- in
2239  * particular we don't guarantee that new dirty data is flushed before
2240  * transaction commit --- so it is always safe just to discard data
2241  * immediately in that mode.  --sct
2242  */
2243 
2244 /*
2245  * The journal_unmap_buffer helper function returns zero if the buffer
2246  * concerned remains pinned as an anonymous buffer belonging to an older
2247  * transaction.
2248  *
2249  * We're outside-transaction here.  Either or both of j_running_transaction
2250  * and j_committing_transaction may be NULL.
2251  */
2252 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2253 				int partial_page)
2254 {
2255 	transaction_t *transaction;
2256 	struct journal_head *jh;
2257 	int may_free = 1;
2258 
2259 	BUFFER_TRACE(bh, "entry");
2260 
2261 	/*
2262 	 * It is safe to proceed here without the j_list_lock because the
2263 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2264 	 * holding the page lock. --sct
2265 	 */
2266 
2267 	jh = jbd2_journal_grab_journal_head(bh);
2268 	if (!jh)
2269 		goto zap_buffer_unlocked;
2270 
2271 	/* OK, we have data buffer in journaled mode */
2272 	write_lock(&journal->j_state_lock);
2273 	spin_lock(&jh->b_state_lock);
2274 	spin_lock(&journal->j_list_lock);
2275 
2276 	/*
2277 	 * We cannot remove the buffer from checkpoint lists until the
2278 	 * transaction adding inode to orphan list (let's call it T)
2279 	 * is committed.  Otherwise if the transaction changing the
2280 	 * buffer would be cleaned from the journal before T is
2281 	 * committed, a crash will cause that the correct contents of
2282 	 * the buffer will be lost.  On the other hand we have to
2283 	 * clear the buffer dirty bit at latest at the moment when the
2284 	 * transaction marking the buffer as freed in the filesystem
2285 	 * structures is committed because from that moment on the
2286 	 * block can be reallocated and used by a different page.
2287 	 * Since the block hasn't been freed yet but the inode has
2288 	 * already been added to orphan list, it is safe for us to add
2289 	 * the buffer to BJ_Forget list of the newest transaction.
2290 	 *
2291 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2292 	 * because the buffer_head may be attached to the page straddling
2293 	 * i_size (can happen only when blocksize < pagesize) and thus the
2294 	 * buffer_head can be reused when the file is extended again. So we end
2295 	 * up keeping around invalidated buffers attached to transactions'
2296 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2297 	 * the transaction this buffer was modified in.
2298 	 */
2299 	transaction = jh->b_transaction;
2300 	if (transaction == NULL) {
2301 		/* First case: not on any transaction.  If it
2302 		 * has no checkpoint link, then we can zap it:
2303 		 * it's a writeback-mode buffer so we don't care
2304 		 * if it hits disk safely. */
2305 		if (!jh->b_cp_transaction) {
2306 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2307 			goto zap_buffer;
2308 		}
2309 
2310 		if (!buffer_dirty(bh)) {
2311 			/* bdflush has written it.  We can drop it now */
2312 			__jbd2_journal_remove_checkpoint(jh);
2313 			goto zap_buffer;
2314 		}
2315 
2316 		/* OK, it must be in the journal but still not
2317 		 * written fully to disk: it's metadata or
2318 		 * journaled data... */
2319 
2320 		if (journal->j_running_transaction) {
2321 			/* ... and once the current transaction has
2322 			 * committed, the buffer won't be needed any
2323 			 * longer. */
2324 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2325 			may_free = __dispose_buffer(jh,
2326 					journal->j_running_transaction);
2327 			goto zap_buffer;
2328 		} else {
2329 			/* There is no currently-running transaction. So the
2330 			 * orphan record which we wrote for this file must have
2331 			 * passed into commit.  We must attach this buffer to
2332 			 * the committing transaction, if it exists. */
2333 			if (journal->j_committing_transaction) {
2334 				JBUFFER_TRACE(jh, "give to committing trans");
2335 				may_free = __dispose_buffer(jh,
2336 					journal->j_committing_transaction);
2337 				goto zap_buffer;
2338 			} else {
2339 				/* The orphan record's transaction has
2340 				 * committed.  We can cleanse this buffer */
2341 				clear_buffer_jbddirty(bh);
2342 				__jbd2_journal_remove_checkpoint(jh);
2343 				goto zap_buffer;
2344 			}
2345 		}
2346 	} else if (transaction == journal->j_committing_transaction) {
2347 		JBUFFER_TRACE(jh, "on committing transaction");
2348 		/*
2349 		 * The buffer is committing, we simply cannot touch
2350 		 * it. If the page is straddling i_size we have to wait
2351 		 * for commit and try again.
2352 		 */
2353 		if (partial_page) {
2354 			spin_unlock(&journal->j_list_lock);
2355 			spin_unlock(&jh->b_state_lock);
2356 			write_unlock(&journal->j_state_lock);
2357 			jbd2_journal_put_journal_head(jh);
2358 			/* Already zapped buffer? Nothing to do... */
2359 			if (!bh->b_bdev)
2360 				return 0;
2361 			return -EBUSY;
2362 		}
2363 		/*
2364 		 * OK, buffer won't be reachable after truncate. We just clear
2365 		 * b_modified to not confuse transaction credit accounting, and
2366 		 * set j_next_transaction to the running transaction (if there
2367 		 * is one) and mark buffer as freed so that commit code knows
2368 		 * it should clear dirty bits when it is done with the buffer.
2369 		 */
2370 		set_buffer_freed(bh);
2371 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2372 			jh->b_next_transaction = journal->j_running_transaction;
2373 		jh->b_modified = 0;
2374 		spin_unlock(&journal->j_list_lock);
2375 		spin_unlock(&jh->b_state_lock);
2376 		write_unlock(&journal->j_state_lock);
2377 		jbd2_journal_put_journal_head(jh);
2378 		return 0;
2379 	} else {
2380 		/* Good, the buffer belongs to the running transaction.
2381 		 * We are writing our own transaction's data, not any
2382 		 * previous one's, so it is safe to throw it away
2383 		 * (remember that we expect the filesystem to have set
2384 		 * i_size already for this truncate so recovery will not
2385 		 * expose the disk blocks we are discarding here.) */
2386 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2387 		JBUFFER_TRACE(jh, "on running transaction");
2388 		may_free = __dispose_buffer(jh, transaction);
2389 	}
2390 
2391 zap_buffer:
2392 	/*
2393 	 * This is tricky. Although the buffer is truncated, it may be reused
2394 	 * if blocksize < pagesize and it is attached to the page straddling
2395 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2396 	 * running transaction, journal_get_write_access() won't clear
2397 	 * b_modified and credit accounting gets confused. So clear b_modified
2398 	 * here.
2399 	 */
2400 	jh->b_modified = 0;
2401 	spin_unlock(&journal->j_list_lock);
2402 	spin_unlock(&jh->b_state_lock);
2403 	write_unlock(&journal->j_state_lock);
2404 	jbd2_journal_put_journal_head(jh);
2405 zap_buffer_unlocked:
2406 	clear_buffer_dirty(bh);
2407 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2408 	clear_buffer_mapped(bh);
2409 	clear_buffer_req(bh);
2410 	clear_buffer_new(bh);
2411 	clear_buffer_delay(bh);
2412 	clear_buffer_unwritten(bh);
2413 	bh->b_bdev = NULL;
2414 	return may_free;
2415 }
2416 
2417 /**
2418  * jbd2_journal_invalidate_folio()
2419  * @journal: journal to use for flush...
2420  * @folio:    folio to flush
2421  * @offset:  start of the range to invalidate
2422  * @length:  length of the range to invalidate
2423  *
2424  * Reap page buffers containing data after in the specified range in page.
2425  * Can return -EBUSY if buffers are part of the committing transaction and
2426  * the page is straddling i_size. Caller then has to wait for current commit
2427  * and try again.
2428  */
2429 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2430 				size_t offset, size_t length)
2431 {
2432 	struct buffer_head *head, *bh, *next;
2433 	unsigned int stop = offset + length;
2434 	unsigned int curr_off = 0;
2435 	int partial_page = (offset || length < folio_size(folio));
2436 	int may_free = 1;
2437 	int ret = 0;
2438 
2439 	if (!folio_test_locked(folio))
2440 		BUG();
2441 	head = folio_buffers(folio);
2442 	if (!head)
2443 		return 0;
2444 
2445 	BUG_ON(stop > folio_size(folio) || stop < length);
2446 
2447 	/* We will potentially be playing with lists other than just the
2448 	 * data lists (especially for journaled data mode), so be
2449 	 * cautious in our locking. */
2450 
2451 	bh = head;
2452 	do {
2453 		unsigned int next_off = curr_off + bh->b_size;
2454 		next = bh->b_this_page;
2455 
2456 		if (next_off > stop)
2457 			return 0;
2458 
2459 		if (offset <= curr_off) {
2460 			/* This block is wholly outside the truncation point */
2461 			lock_buffer(bh);
2462 			ret = journal_unmap_buffer(journal, bh, partial_page);
2463 			unlock_buffer(bh);
2464 			if (ret < 0)
2465 				return ret;
2466 			may_free &= ret;
2467 		}
2468 		curr_off = next_off;
2469 		bh = next;
2470 
2471 	} while (bh != head);
2472 
2473 	if (!partial_page) {
2474 		if (may_free && try_to_free_buffers(folio))
2475 			J_ASSERT(!folio_buffers(folio));
2476 	}
2477 	return 0;
2478 }
2479 
2480 /*
2481  * File a buffer on the given transaction list.
2482  */
2483 void __jbd2_journal_file_buffer(struct journal_head *jh,
2484 			transaction_t *transaction, int jlist)
2485 {
2486 	struct journal_head **list = NULL;
2487 	int was_dirty = 0;
2488 	struct buffer_head *bh = jh2bh(jh);
2489 
2490 	lockdep_assert_held(&jh->b_state_lock);
2491 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2492 
2493 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2494 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2495 				jh->b_transaction == NULL);
2496 
2497 	if (jh->b_transaction && jh->b_jlist == jlist)
2498 		return;
2499 
2500 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2501 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2502 		/*
2503 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2504 		 * instead of buffer_dirty. We should not see a dirty bit set
2505 		 * here because we clear it in do_get_write_access but e.g.
2506 		 * tune2fs can modify the sb and set the dirty bit at any time
2507 		 * so we try to gracefully handle that.
2508 		 */
2509 		if (buffer_dirty(bh))
2510 			warn_dirty_buffer(bh);
2511 		if (test_clear_buffer_dirty(bh) ||
2512 		    test_clear_buffer_jbddirty(bh))
2513 			was_dirty = 1;
2514 	}
2515 
2516 	if (jh->b_transaction)
2517 		__jbd2_journal_temp_unlink_buffer(jh);
2518 	else
2519 		jbd2_journal_grab_journal_head(bh);
2520 	jh->b_transaction = transaction;
2521 
2522 	switch (jlist) {
2523 	case BJ_None:
2524 		J_ASSERT_JH(jh, !jh->b_committed_data);
2525 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2526 		return;
2527 	case BJ_Metadata:
2528 		transaction->t_nr_buffers++;
2529 		list = &transaction->t_buffers;
2530 		break;
2531 	case BJ_Forget:
2532 		list = &transaction->t_forget;
2533 		break;
2534 	case BJ_Shadow:
2535 		list = &transaction->t_shadow_list;
2536 		break;
2537 	case BJ_Reserved:
2538 		list = &transaction->t_reserved_list;
2539 		break;
2540 	}
2541 
2542 	__blist_add_buffer(list, jh);
2543 	jh->b_jlist = jlist;
2544 
2545 	if (was_dirty)
2546 		set_buffer_jbddirty(bh);
2547 }
2548 
2549 void jbd2_journal_file_buffer(struct journal_head *jh,
2550 				transaction_t *transaction, int jlist)
2551 {
2552 	spin_lock(&jh->b_state_lock);
2553 	spin_lock(&transaction->t_journal->j_list_lock);
2554 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2555 	spin_unlock(&transaction->t_journal->j_list_lock);
2556 	spin_unlock(&jh->b_state_lock);
2557 }
2558 
2559 /*
2560  * Remove a buffer from its current buffer list in preparation for
2561  * dropping it from its current transaction entirely.  If the buffer has
2562  * already started to be used by a subsequent transaction, refile the
2563  * buffer on that transaction's metadata list.
2564  *
2565  * Called under j_list_lock
2566  * Called under jh->b_state_lock
2567  *
2568  * When this function returns true, there's no next transaction to refile to
2569  * and the caller has to drop jh reference through
2570  * jbd2_journal_put_journal_head().
2571  */
2572 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2573 {
2574 	int was_dirty, jlist;
2575 	struct buffer_head *bh = jh2bh(jh);
2576 
2577 	lockdep_assert_held(&jh->b_state_lock);
2578 	if (jh->b_transaction)
2579 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2580 
2581 	/* If the buffer is now unused, just drop it. */
2582 	if (jh->b_next_transaction == NULL) {
2583 		__jbd2_journal_unfile_buffer(jh);
2584 		return true;
2585 	}
2586 
2587 	/*
2588 	 * It has been modified by a later transaction: add it to the new
2589 	 * transaction's metadata list.
2590 	 */
2591 
2592 	was_dirty = test_clear_buffer_jbddirty(bh);
2593 	__jbd2_journal_temp_unlink_buffer(jh);
2594 
2595 	/*
2596 	 * b_transaction must be set, otherwise the new b_transaction won't
2597 	 * be holding jh reference
2598 	 */
2599 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2600 
2601 	/*
2602 	 * We set b_transaction here because b_next_transaction will inherit
2603 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2604 	 * take a new one.
2605 	 */
2606 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2607 	WRITE_ONCE(jh->b_next_transaction, NULL);
2608 	if (buffer_freed(bh))
2609 		jlist = BJ_Forget;
2610 	else if (jh->b_modified)
2611 		jlist = BJ_Metadata;
2612 	else
2613 		jlist = BJ_Reserved;
2614 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2615 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2616 
2617 	if (was_dirty)
2618 		set_buffer_jbddirty(bh);
2619 	return false;
2620 }
2621 
2622 /*
2623  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2624  * bh reference so that we can safely unlock bh.
2625  *
2626  * The jh and bh may be freed by this call.
2627  */
2628 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2629 {
2630 	bool drop;
2631 
2632 	spin_lock(&jh->b_state_lock);
2633 	spin_lock(&journal->j_list_lock);
2634 	drop = __jbd2_journal_refile_buffer(jh);
2635 	spin_unlock(&jh->b_state_lock);
2636 	spin_unlock(&journal->j_list_lock);
2637 	if (drop)
2638 		jbd2_journal_put_journal_head(jh);
2639 }
2640 
2641 /*
2642  * File inode in the inode list of the handle's transaction
2643  */
2644 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2645 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2646 {
2647 	transaction_t *transaction = handle->h_transaction;
2648 	journal_t *journal;
2649 
2650 	if (is_handle_aborted(handle))
2651 		return -EROFS;
2652 	journal = transaction->t_journal;
2653 
2654 	jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2655 			transaction->t_tid);
2656 
2657 	spin_lock(&journal->j_list_lock);
2658 	jinode->i_flags |= flags;
2659 
2660 	if (jinode->i_dirty_end) {
2661 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2662 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2663 	} else {
2664 		jinode->i_dirty_start = start_byte;
2665 		jinode->i_dirty_end = end_byte;
2666 	}
2667 
2668 	/* Is inode already attached where we need it? */
2669 	if (jinode->i_transaction == transaction ||
2670 	    jinode->i_next_transaction == transaction)
2671 		goto done;
2672 
2673 	/*
2674 	 * We only ever set this variable to 1 so the test is safe. Since
2675 	 * t_need_data_flush is likely to be set, we do the test to save some
2676 	 * cacheline bouncing
2677 	 */
2678 	if (!transaction->t_need_data_flush)
2679 		transaction->t_need_data_flush = 1;
2680 	/* On some different transaction's list - should be
2681 	 * the committing one */
2682 	if (jinode->i_transaction) {
2683 		J_ASSERT(jinode->i_next_transaction == NULL);
2684 		J_ASSERT(jinode->i_transaction ==
2685 					journal->j_committing_transaction);
2686 		jinode->i_next_transaction = transaction;
2687 		goto done;
2688 	}
2689 	/* Not on any transaction list... */
2690 	J_ASSERT(!jinode->i_next_transaction);
2691 	jinode->i_transaction = transaction;
2692 	list_add(&jinode->i_list, &transaction->t_inode_list);
2693 done:
2694 	spin_unlock(&journal->j_list_lock);
2695 
2696 	return 0;
2697 }
2698 
2699 int jbd2_journal_inode_ranged_write(handle_t *handle,
2700 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2701 {
2702 	return jbd2_journal_file_inode(handle, jinode,
2703 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2704 			start_byte + length - 1);
2705 }
2706 
2707 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2708 		loff_t start_byte, loff_t length)
2709 {
2710 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2711 			start_byte, start_byte + length - 1);
2712 }
2713 
2714 /*
2715  * File truncate and transaction commit interact with each other in a
2716  * non-trivial way.  If a transaction writing data block A is
2717  * committing, we cannot discard the data by truncate until we have
2718  * written them.  Otherwise if we crashed after the transaction with
2719  * write has committed but before the transaction with truncate has
2720  * committed, we could see stale data in block A.  This function is a
2721  * helper to solve this problem.  It starts writeout of the truncated
2722  * part in case it is in the committing transaction.
2723  *
2724  * Filesystem code must call this function when inode is journaled in
2725  * ordered mode before truncation happens and after the inode has been
2726  * placed on orphan list with the new inode size. The second condition
2727  * avoids the race that someone writes new data and we start
2728  * committing the transaction after this function has been called but
2729  * before a transaction for truncate is started (and furthermore it
2730  * allows us to optimize the case where the addition to orphan list
2731  * happens in the same transaction as write --- we don't have to write
2732  * any data in such case).
2733  */
2734 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2735 					struct jbd2_inode *jinode,
2736 					loff_t new_size)
2737 {
2738 	transaction_t *inode_trans, *commit_trans;
2739 	int ret = 0;
2740 
2741 	/* This is a quick check to avoid locking if not necessary */
2742 	if (!jinode->i_transaction)
2743 		goto out;
2744 	/* Locks are here just to force reading of recent values, it is
2745 	 * enough that the transaction was not committing before we started
2746 	 * a transaction adding the inode to orphan list */
2747 	read_lock(&journal->j_state_lock);
2748 	commit_trans = journal->j_committing_transaction;
2749 	read_unlock(&journal->j_state_lock);
2750 	spin_lock(&journal->j_list_lock);
2751 	inode_trans = jinode->i_transaction;
2752 	spin_unlock(&journal->j_list_lock);
2753 	if (inode_trans == commit_trans) {
2754 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2755 			new_size, LLONG_MAX);
2756 		if (ret)
2757 			jbd2_journal_abort(journal, ret);
2758 	}
2759 out:
2760 	return ret;
2761 }
2762