xref: /linux/crypto/jitterentropy-kcapi.c (revision 621cde16e49b3ecf7d59a8106a20aaebfb4a59a9)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Linux Kernel Crypto API specific code
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, and the entire permission notice in its entirety,
12  *    including the disclaimer of warranties.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior
18  *    written permission.
19  *
20  * ALTERNATIVELY, this product may be distributed under the terms of
21  * the GNU General Public License, in which case the provisions of the GPL2 are
22  * required INSTEAD OF the above restrictions.  (This clause is
23  * necessary due to a potential bad interaction between the GPL and
24  * the restrictions contained in a BSD-style copyright.)
25  *
26  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
27  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
29  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
30  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
32  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
33  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
37  * DAMAGE.
38  */
39 
40 #include <crypto/hash.h>
41 #include <crypto/sha3.h>
42 #include <linux/fips.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 #include <linux/time.h>
47 #include <crypto/internal/rng.h>
48 
49 #include "jitterentropy.h"
50 
51 #define JENT_CONDITIONING_HASH	"sha3-256-generic"
52 
53 /***************************************************************************
54  * Helper function
55  ***************************************************************************/
56 
jent_kvzalloc(unsigned int len)57 void *jent_kvzalloc(unsigned int len)
58 {
59 	return kvzalloc(len, GFP_KERNEL);
60 }
61 
jent_kvzfree(void * ptr,unsigned int len)62 void jent_kvzfree(void *ptr, unsigned int len)
63 {
64 	kvfree_sensitive(ptr, len);
65 }
66 
jent_zalloc(unsigned int len)67 void *jent_zalloc(unsigned int len)
68 {
69 	return kzalloc(len, GFP_KERNEL);
70 }
71 
jent_zfree(void * ptr)72 void jent_zfree(void *ptr)
73 {
74 	kfree_sensitive(ptr);
75 }
76 
77 /*
78  * Obtain a high-resolution time stamp value. The time stamp is used to measure
79  * the execution time of a given code path and its variations. Hence, the time
80  * stamp must have a sufficiently high resolution.
81  *
82  * Note, if the function returns zero because a given architecture does not
83  * implement a high-resolution time stamp, the RNG code's runtime test
84  * will detect it and will not produce output.
85  */
jent_get_nstime(__u64 * out)86 void jent_get_nstime(__u64 *out)
87 {
88 	__u64 tmp = 0;
89 
90 	tmp = random_get_entropy();
91 
92 	/*
93 	 * If random_get_entropy does not return a value, i.e. it is not
94 	 * implemented for a given architecture, use a clock source.
95 	 * hoping that there are timers we can work with.
96 	 */
97 	if (tmp == 0)
98 		tmp = ktime_get_ns();
99 
100 	*out = tmp;
101 	jent_raw_hires_entropy_store(tmp);
102 }
103 
jent_hash_time(void * hash_state,__u64 time,u8 * addtl,unsigned int addtl_len,__u64 hash_loop_cnt,unsigned int stuck)104 int jent_hash_time(void *hash_state, __u64 time, u8 *addtl,
105 		   unsigned int addtl_len, __u64 hash_loop_cnt,
106 		   unsigned int stuck)
107 {
108 	struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
109 	SHASH_DESC_ON_STACK(desc, hash_state_desc->tfm);
110 	u8 intermediary[SHA3_256_DIGEST_SIZE];
111 	__u64 j = 0;
112 	int ret;
113 
114 	desc->tfm = hash_state_desc->tfm;
115 
116 	if (sizeof(intermediary) != crypto_shash_digestsize(desc->tfm)) {
117 		pr_warn_ratelimited("Unexpected digest size\n");
118 		return -EINVAL;
119 	}
120 
121 	/*
122 	 * This loop fills a buffer which is injected into the entropy pool.
123 	 * The main reason for this loop is to execute something over which we
124 	 * can perform a timing measurement. The injection of the resulting
125 	 * data into the pool is performed to ensure the result is used and
126 	 * the compiler cannot optimize the loop away in case the result is not
127 	 * used at all. Yet that data is considered "additional information"
128 	 * considering the terminology from SP800-90A without any entropy.
129 	 *
130 	 * Note, it does not matter which or how much data you inject, we are
131 	 * interested in one Keccack1600 compression operation performed with
132 	 * the crypto_shash_final.
133 	 */
134 	for (j = 0; j < hash_loop_cnt; j++) {
135 		ret = crypto_shash_init(desc) ?:
136 		      crypto_shash_update(desc, intermediary,
137 					  sizeof(intermediary)) ?:
138 		      crypto_shash_finup(desc, addtl, addtl_len, intermediary);
139 		if (ret)
140 			goto err;
141 	}
142 
143 	/*
144 	 * Inject the data from the previous loop into the pool. This data is
145 	 * not considered to contain any entropy, but it stirs the pool a bit.
146 	 */
147 	ret = crypto_shash_update(desc, intermediary, sizeof(intermediary));
148 	if (ret)
149 		goto err;
150 
151 	/*
152 	 * Insert the time stamp into the hash context representing the pool.
153 	 *
154 	 * If the time stamp is stuck, do not finally insert the value into the
155 	 * entropy pool. Although this operation should not do any harm even
156 	 * when the time stamp has no entropy, SP800-90B requires that any
157 	 * conditioning operation to have an identical amount of input data
158 	 * according to section 3.1.5.
159 	 */
160 	if (!stuck) {
161 		ret = crypto_shash_update(hash_state_desc, (u8 *)&time,
162 					  sizeof(__u64));
163 	}
164 
165 err:
166 	shash_desc_zero(desc);
167 	memzero_explicit(intermediary, sizeof(intermediary));
168 
169 	return ret;
170 }
171 
jent_read_random_block(void * hash_state,char * dst,unsigned int dst_len)172 int jent_read_random_block(void *hash_state, char *dst, unsigned int dst_len)
173 {
174 	struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
175 	u8 jent_block[SHA3_256_DIGEST_SIZE];
176 	/* Obtain data from entropy pool and re-initialize it */
177 	int ret = crypto_shash_final(hash_state_desc, jent_block) ?:
178 		  crypto_shash_init(hash_state_desc) ?:
179 		  crypto_shash_update(hash_state_desc, jent_block,
180 				      sizeof(jent_block));
181 
182 	if (!ret && dst_len)
183 		memcpy(dst, jent_block, dst_len);
184 
185 	memzero_explicit(jent_block, sizeof(jent_block));
186 	return ret;
187 }
188 
189 /***************************************************************************
190  * Kernel crypto API interface
191  ***************************************************************************/
192 
193 struct jitterentropy {
194 	spinlock_t jent_lock;
195 	struct rand_data *entropy_collector;
196 	struct crypto_shash *tfm;
197 	struct shash_desc *sdesc;
198 };
199 
jent_kcapi_cleanup(struct crypto_tfm * tfm)200 static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
201 {
202 	struct jitterentropy *rng = crypto_tfm_ctx(tfm);
203 
204 	spin_lock(&rng->jent_lock);
205 
206 	if (rng->sdesc) {
207 		shash_desc_zero(rng->sdesc);
208 		kfree(rng->sdesc);
209 	}
210 	rng->sdesc = NULL;
211 
212 	if (rng->tfm)
213 		crypto_free_shash(rng->tfm);
214 	rng->tfm = NULL;
215 
216 	if (rng->entropy_collector)
217 		jent_entropy_collector_free(rng->entropy_collector);
218 	rng->entropy_collector = NULL;
219 	spin_unlock(&rng->jent_lock);
220 }
221 
jent_kcapi_init(struct crypto_tfm * tfm)222 static int jent_kcapi_init(struct crypto_tfm *tfm)
223 {
224 	struct jitterentropy *rng = crypto_tfm_ctx(tfm);
225 	struct crypto_shash *hash;
226 	struct shash_desc *sdesc;
227 	int size, ret = 0;
228 
229 	spin_lock_init(&rng->jent_lock);
230 
231 	/*
232 	 * Use SHA3-256 as conditioner. We allocate only the generic
233 	 * implementation as we are not interested in high-performance. The
234 	 * execution time of the SHA3 operation is measured and adds to the
235 	 * Jitter RNG's unpredictable behavior. If we have a slower hash
236 	 * implementation, the execution timing variations are larger. When
237 	 * using a fast implementation, we would need to call it more often
238 	 * as its variations are lower.
239 	 */
240 	hash = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
241 	if (IS_ERR(hash)) {
242 		pr_err("Cannot allocate conditioning digest\n");
243 		return PTR_ERR(hash);
244 	}
245 	rng->tfm = hash;
246 
247 	size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
248 	sdesc = kmalloc(size, GFP_KERNEL);
249 	if (!sdesc) {
250 		ret = -ENOMEM;
251 		goto err;
252 	}
253 
254 	sdesc->tfm = hash;
255 	crypto_shash_init(sdesc);
256 	rng->sdesc = sdesc;
257 
258 	rng->entropy_collector =
259 		jent_entropy_collector_alloc(CONFIG_CRYPTO_JITTERENTROPY_OSR, 0,
260 					     sdesc);
261 	if (!rng->entropy_collector) {
262 		ret = -ENOMEM;
263 		goto err;
264 	}
265 
266 	spin_lock_init(&rng->jent_lock);
267 	return 0;
268 
269 err:
270 	jent_kcapi_cleanup(tfm);
271 	return ret;
272 }
273 
jent_kcapi_random(struct crypto_rng * tfm,const u8 * src,unsigned int slen,u8 * rdata,unsigned int dlen)274 static int jent_kcapi_random(struct crypto_rng *tfm,
275 			     const u8 *src, unsigned int slen,
276 			     u8 *rdata, unsigned int dlen)
277 {
278 	struct jitterentropy *rng = crypto_rng_ctx(tfm);
279 	int ret = 0;
280 
281 	spin_lock(&rng->jent_lock);
282 
283 	ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
284 
285 	if (ret == -3) {
286 		/* Handle permanent health test error */
287 		/*
288 		 * If the kernel was booted with fips=1, it implies that
289 		 * the entire kernel acts as a FIPS 140 module. In this case
290 		 * an SP800-90B permanent health test error is treated as
291 		 * a FIPS module error.
292 		 */
293 		if (fips_enabled)
294 			panic("Jitter RNG permanent health test failure\n");
295 
296 		pr_err("Jitter RNG permanent health test failure\n");
297 		ret = -EFAULT;
298 	} else if (ret == -2) {
299 		/* Handle intermittent health test error */
300 		pr_warn_ratelimited("Reset Jitter RNG due to intermittent health test failure\n");
301 		ret = -EAGAIN;
302 	} else if (ret == -1) {
303 		/* Handle other errors */
304 		ret = -EINVAL;
305 	}
306 
307 	spin_unlock(&rng->jent_lock);
308 
309 	return ret;
310 }
311 
jent_kcapi_reset(struct crypto_rng * tfm,const u8 * seed,unsigned int slen)312 static int jent_kcapi_reset(struct crypto_rng *tfm,
313 			    const u8 *seed, unsigned int slen)
314 {
315 	return 0;
316 }
317 
318 static struct rng_alg jent_alg = {
319 	.generate		= jent_kcapi_random,
320 	.seed			= jent_kcapi_reset,
321 	.seedsize		= 0,
322 	.base			= {
323 		.cra_name               = "jitterentropy_rng",
324 		.cra_driver_name        = "jitterentropy_rng",
325 		.cra_priority           = 100,
326 		.cra_ctxsize            = sizeof(struct jitterentropy),
327 		.cra_module             = THIS_MODULE,
328 		.cra_init               = jent_kcapi_init,
329 		.cra_exit               = jent_kcapi_cleanup,
330 	}
331 };
332 
jent_mod_init(void)333 static int __init jent_mod_init(void)
334 {
335 	SHASH_DESC_ON_STACK(desc, tfm);
336 	struct crypto_shash *tfm;
337 	int ret = 0;
338 
339 	jent_testing_init();
340 
341 	tfm = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
342 	if (IS_ERR(tfm)) {
343 		jent_testing_exit();
344 		return PTR_ERR(tfm);
345 	}
346 
347 	desc->tfm = tfm;
348 	crypto_shash_init(desc);
349 	ret = jent_entropy_init(CONFIG_CRYPTO_JITTERENTROPY_OSR, 0, desc, NULL);
350 	shash_desc_zero(desc);
351 	crypto_free_shash(tfm);
352 	if (ret) {
353 		/* Handle permanent health test error */
354 		if (fips_enabled)
355 			panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
356 
357 		jent_testing_exit();
358 		pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
359 		return -EFAULT;
360 	}
361 	return crypto_register_rng(&jent_alg);
362 }
363 
jent_mod_exit(void)364 static void __exit jent_mod_exit(void)
365 {
366 	jent_testing_exit();
367 	crypto_unregister_rng(&jent_alg);
368 }
369 
370 module_init(jent_mod_init);
371 module_exit(jent_mod_exit);
372 
373 MODULE_LICENSE("Dual BSD/GPL");
374 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
375 MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
376 MODULE_ALIAS_CRYPTO("jitterentropy_rng");
377