1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
42
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
47
48 #define RD_LOCAL_LPI_ENABLED BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
51
52 static u32 lpi_id_bits;
53
54 /*
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58 */
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62
63 static u8 __ro_after_init lpi_prop_prio;
64
65 /*
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
68 * CPU.
69 */
70 struct its_collection {
71 u64 target_address;
72 u16 col_id;
73 };
74
75 /*
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
78 */
79 struct its_baser {
80 void *base;
81 u64 val;
82 u32 order;
83 u32 psz;
84 };
85
86 struct its_device;
87
88 /*
89 * The ITS structure - contains most of the infrastructure, with the
90 * top-level MSI domain, the command queue, the collections, and the
91 * list of devices writing to it.
92 *
93 * dev_alloc_lock has to be taken for device allocations, while the
94 * spinlock must be taken to parse data structures such as the device
95 * list.
96 */
97 struct its_node {
98 raw_spinlock_t lock;
99 struct mutex dev_alloc_lock;
100 struct list_head entry;
101 void __iomem *base;
102 void __iomem *sgir_base;
103 phys_addr_t phys_base;
104 struct its_cmd_block *cmd_base;
105 struct its_cmd_block *cmd_write;
106 struct its_baser tables[GITS_BASER_NR_REGS];
107 struct its_collection *collections;
108 struct fwnode_handle *fwnode_handle;
109 u64 (*get_msi_base)(struct its_device *its_dev);
110 u64 typer;
111 u64 cbaser_save;
112 u32 ctlr_save;
113 u32 mpidr;
114 struct list_head its_device_list;
115 u64 flags;
116 unsigned long list_nr;
117 int numa_node;
118 unsigned int msi_domain_flags;
119 u32 pre_its_base; /* for Socionext Synquacer */
120 int vlpi_redist_offset;
121 };
122
123 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
126
127 #define ITS_ITT_ALIGN SZ_256
128
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS \
131 ({ \
132 int nvpeid = 16; \
133 if (gic_rdists->has_rvpeid && \
134 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
135 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
136 GICD_TYPER2_VID); \
137 \
138 nvpeid; \
139 })
140 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
141
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
144
145 struct event_lpi_map {
146 unsigned long *lpi_map;
147 u16 *col_map;
148 irq_hw_number_t lpi_base;
149 int nr_lpis;
150 raw_spinlock_t vlpi_lock;
151 struct its_vm *vm;
152 struct its_vlpi_map *vlpi_maps;
153 int nr_vlpis;
154 };
155
156 /*
157 * The ITS view of a device - belongs to an ITS, owns an interrupt
158 * translation table, and a list of interrupts. If it some of its
159 * LPIs are injected into a guest (GICv4), the event_map.vm field
160 * indicates which one.
161 */
162 struct its_device {
163 struct list_head entry;
164 struct its_node *its;
165 struct event_lpi_map event_map;
166 void *itt;
167 u32 nr_ites;
168 u32 device_id;
169 bool shared;
170 };
171
172 static struct {
173 raw_spinlock_t lock;
174 struct its_device *dev;
175 struct its_vpe **vpes;
176 int next_victim;
177 } vpe_proxy;
178
179 struct cpu_lpi_count {
180 atomic_t managed;
181 atomic_t unmanaged;
182 };
183
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
185
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
190
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
194
195 static DEFINE_IDA(its_vpeid_ida);
196
197 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
201
202 /*
203 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204 * always have vSGIs mapped.
205 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
207 {
208 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
209 }
210
rdists_support_shareable(void)211 static bool rdists_support_shareable(void)
212 {
213 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
214 }
215
get_its_list(struct its_vm * vm)216 static u16 get_its_list(struct its_vm *vm)
217 {
218 struct its_node *its;
219 unsigned long its_list = 0;
220
221 list_for_each_entry(its, &its_nodes, entry) {
222 if (!is_v4(its))
223 continue;
224
225 if (require_its_list_vmovp(vm, its))
226 __set_bit(its->list_nr, &its_list);
227 }
228
229 return (u16)its_list;
230 }
231
its_get_event_id(struct irq_data * d)232 static inline u32 its_get_event_id(struct irq_data *d)
233 {
234 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235 return d->hwirq - its_dev->event_map.lpi_base;
236 }
237
dev_event_to_col(struct its_device * its_dev,u32 event)238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
239 u32 event)
240 {
241 struct its_node *its = its_dev->its;
242
243 return its->collections + its_dev->event_map.col_map[event];
244 }
245
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
247 u32 event)
248 {
249 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
250 return NULL;
251
252 return &its_dev->event_map.vlpi_maps[event];
253 }
254
get_vlpi_map(struct irq_data * d)255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
256 {
257 if (irqd_is_forwarded_to_vcpu(d)) {
258 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259 u32 event = its_get_event_id(d);
260
261 return dev_event_to_vlpi_map(its_dev, event);
262 }
263
264 return NULL;
265 }
266
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
268 {
269 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
270 return vpe->col_idx;
271 }
272
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
274 {
275 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
276 }
277
278 static struct irq_chip its_vpe_irq_chip;
279
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
281 {
282 struct its_vpe *vpe = NULL;
283 int cpu;
284
285 if (d->chip == &its_vpe_irq_chip) {
286 vpe = irq_data_get_irq_chip_data(d);
287 } else {
288 struct its_vlpi_map *map = get_vlpi_map(d);
289 if (map)
290 vpe = map->vpe;
291 }
292
293 if (vpe) {
294 cpu = vpe_to_cpuid_lock(vpe, flags);
295 } else {
296 /* Physical LPIs are already locked via the irq_desc lock */
297 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299 /* Keep GCC quiet... */
300 *flags = 0;
301 }
302
303 return cpu;
304 }
305
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
307 {
308 struct its_vpe *vpe = NULL;
309
310 if (d->chip == &its_vpe_irq_chip) {
311 vpe = irq_data_get_irq_chip_data(d);
312 } else {
313 struct its_vlpi_map *map = get_vlpi_map(d);
314 if (map)
315 vpe = map->vpe;
316 }
317
318 if (vpe)
319 vpe_to_cpuid_unlock(vpe, flags);
320 }
321
valid_col(struct its_collection * col)322 static struct its_collection *valid_col(struct its_collection *col)
323 {
324 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
325 return NULL;
326
327 return col;
328 }
329
valid_vpe(struct its_node * its,struct its_vpe * vpe)330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
331 {
332 if (valid_col(its->collections + vpe->col_idx))
333 return vpe;
334
335 return NULL;
336 }
337
338 /*
339 * ITS command descriptors - parameters to be encoded in a command
340 * block.
341 */
342 struct its_cmd_desc {
343 union {
344 struct {
345 struct its_device *dev;
346 u32 event_id;
347 } its_inv_cmd;
348
349 struct {
350 struct its_device *dev;
351 u32 event_id;
352 } its_clear_cmd;
353
354 struct {
355 struct its_device *dev;
356 u32 event_id;
357 } its_int_cmd;
358
359 struct {
360 struct its_device *dev;
361 int valid;
362 } its_mapd_cmd;
363
364 struct {
365 struct its_collection *col;
366 int valid;
367 } its_mapc_cmd;
368
369 struct {
370 struct its_device *dev;
371 u32 phys_id;
372 u32 event_id;
373 } its_mapti_cmd;
374
375 struct {
376 struct its_device *dev;
377 struct its_collection *col;
378 u32 event_id;
379 } its_movi_cmd;
380
381 struct {
382 struct its_device *dev;
383 u32 event_id;
384 } its_discard_cmd;
385
386 struct {
387 struct its_collection *col;
388 } its_invall_cmd;
389
390 struct {
391 struct its_vpe *vpe;
392 } its_vinvall_cmd;
393
394 struct {
395 struct its_vpe *vpe;
396 struct its_collection *col;
397 bool valid;
398 } its_vmapp_cmd;
399
400 struct {
401 struct its_vpe *vpe;
402 struct its_device *dev;
403 u32 virt_id;
404 u32 event_id;
405 bool db_enabled;
406 } its_vmapti_cmd;
407
408 struct {
409 struct its_vpe *vpe;
410 struct its_device *dev;
411 u32 event_id;
412 bool db_enabled;
413 } its_vmovi_cmd;
414
415 struct {
416 struct its_vpe *vpe;
417 struct its_collection *col;
418 u16 seq_num;
419 u16 its_list;
420 } its_vmovp_cmd;
421
422 struct {
423 struct its_vpe *vpe;
424 } its_invdb_cmd;
425
426 struct {
427 struct its_vpe *vpe;
428 u8 sgi;
429 u8 priority;
430 bool enable;
431 bool group;
432 bool clear;
433 } its_vsgi_cmd;
434 };
435 };
436
437 /*
438 * The ITS command block, which is what the ITS actually parses.
439 */
440 struct its_cmd_block {
441 union {
442 u64 raw_cmd[4];
443 __le64 raw_cmd_le[4];
444 };
445 };
446
447 #define ITS_CMD_QUEUE_SZ SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
449
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451 struct its_cmd_block *,
452 struct its_cmd_desc *);
453
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455 struct its_cmd_block *,
456 struct its_cmd_desc *);
457
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
459 {
460 u64 mask = GENMASK_ULL(h, l);
461 *raw_cmd &= ~mask;
462 *raw_cmd |= (val << l) & mask;
463 }
464
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
466 {
467 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
468 }
469
its_encode_devid(struct its_cmd_block * cmd,u32 devid)470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
471 {
472 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
473 }
474
its_encode_event_id(struct its_cmd_block * cmd,u32 id)475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
476 {
477 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
478 }
479
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
481 {
482 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
483 }
484
its_encode_size(struct its_cmd_block * cmd,u8 size)485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
486 {
487 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
488 }
489
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
491 {
492 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
493 }
494
its_encode_valid(struct its_cmd_block * cmd,int valid)495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
496 {
497 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
498 }
499
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
501 {
502 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
503 }
504
its_encode_collection(struct its_cmd_block * cmd,u16 col)505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
506 {
507 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
508 }
509
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
511 {
512 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
513 }
514
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
516 {
517 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
518 }
519
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
521 {
522 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
523 }
524
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
526 {
527 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
528 }
529
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
531 {
532 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
533 }
534
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
536 {
537 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
538 }
539
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
541 {
542 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
543 }
544
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
546 {
547 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
548 }
549
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
551 {
552 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
553 }
554
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
556 {
557 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
558 }
559
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
561 {
562 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
563 }
564
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
566 u32 vpe_db_lpi)
567 {
568 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
569 }
570
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
572 u32 vpe_db_lpi)
573 {
574 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
575 }
576
its_encode_db(struct its_cmd_block * cmd,bool db)577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
578 {
579 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
580 }
581
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
583 {
584 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
585 }
586
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
588 {
589 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
590 }
591
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
593 {
594 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
595 }
596
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
598 {
599 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
600 }
601
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
603 {
604 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
605 }
606
its_fixup_cmd(struct its_cmd_block * cmd)607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
608 {
609 /* Let's fixup BE commands */
610 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
614 }
615
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617 struct its_cmd_block *cmd,
618 struct its_cmd_desc *desc)
619 {
620 unsigned long itt_addr;
621 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
622
623 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
625
626 its_encode_cmd(cmd, GITS_CMD_MAPD);
627 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628 its_encode_size(cmd, size - 1);
629 its_encode_itt(cmd, itt_addr);
630 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
631
632 its_fixup_cmd(cmd);
633
634 return NULL;
635 }
636
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638 struct its_cmd_block *cmd,
639 struct its_cmd_desc *desc)
640 {
641 its_encode_cmd(cmd, GITS_CMD_MAPC);
642 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
645
646 its_fixup_cmd(cmd);
647
648 return desc->its_mapc_cmd.col;
649 }
650
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652 struct its_cmd_block *cmd,
653 struct its_cmd_desc *desc)
654 {
655 struct its_collection *col;
656
657 col = dev_event_to_col(desc->its_mapti_cmd.dev,
658 desc->its_mapti_cmd.event_id);
659
660 its_encode_cmd(cmd, GITS_CMD_MAPTI);
661 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664 its_encode_collection(cmd, col->col_id);
665
666 its_fixup_cmd(cmd);
667
668 return valid_col(col);
669 }
670
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672 struct its_cmd_block *cmd,
673 struct its_cmd_desc *desc)
674 {
675 struct its_collection *col;
676
677 col = dev_event_to_col(desc->its_movi_cmd.dev,
678 desc->its_movi_cmd.event_id);
679
680 its_encode_cmd(cmd, GITS_CMD_MOVI);
681 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
684
685 its_fixup_cmd(cmd);
686
687 return valid_col(col);
688 }
689
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691 struct its_cmd_block *cmd,
692 struct its_cmd_desc *desc)
693 {
694 struct its_collection *col;
695
696 col = dev_event_to_col(desc->its_discard_cmd.dev,
697 desc->its_discard_cmd.event_id);
698
699 its_encode_cmd(cmd, GITS_CMD_DISCARD);
700 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
702
703 its_fixup_cmd(cmd);
704
705 return valid_col(col);
706 }
707
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709 struct its_cmd_block *cmd,
710 struct its_cmd_desc *desc)
711 {
712 struct its_collection *col;
713
714 col = dev_event_to_col(desc->its_inv_cmd.dev,
715 desc->its_inv_cmd.event_id);
716
717 its_encode_cmd(cmd, GITS_CMD_INV);
718 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
720
721 its_fixup_cmd(cmd);
722
723 return valid_col(col);
724 }
725
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727 struct its_cmd_block *cmd,
728 struct its_cmd_desc *desc)
729 {
730 struct its_collection *col;
731
732 col = dev_event_to_col(desc->its_int_cmd.dev,
733 desc->its_int_cmd.event_id);
734
735 its_encode_cmd(cmd, GITS_CMD_INT);
736 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
738
739 its_fixup_cmd(cmd);
740
741 return valid_col(col);
742 }
743
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745 struct its_cmd_block *cmd,
746 struct its_cmd_desc *desc)
747 {
748 struct its_collection *col;
749
750 col = dev_event_to_col(desc->its_clear_cmd.dev,
751 desc->its_clear_cmd.event_id);
752
753 its_encode_cmd(cmd, GITS_CMD_CLEAR);
754 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
756
757 its_fixup_cmd(cmd);
758
759 return valid_col(col);
760 }
761
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763 struct its_cmd_block *cmd,
764 struct its_cmd_desc *desc)
765 {
766 its_encode_cmd(cmd, GITS_CMD_INVALL);
767 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
768
769 its_fixup_cmd(cmd);
770
771 return desc->its_invall_cmd.col;
772 }
773
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775 struct its_cmd_block *cmd,
776 struct its_cmd_desc *desc)
777 {
778 its_encode_cmd(cmd, GITS_CMD_VINVALL);
779 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
780
781 its_fixup_cmd(cmd);
782
783 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
784 }
785
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787 struct its_cmd_block *cmd,
788 struct its_cmd_desc *desc)
789 {
790 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791 unsigned long vpt_addr, vconf_addr;
792 u64 target;
793 bool alloc;
794
795 its_encode_cmd(cmd, GITS_CMD_VMAPP);
796 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
798
799 if (!desc->its_vmapp_cmd.valid) {
800 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
801 if (is_v4_1(its)) {
802 its_encode_alloc(cmd, alloc);
803 /*
804 * Unmapping a VPE is self-synchronizing on GICv4.1,
805 * no need to issue a VSYNC.
806 */
807 vpe = NULL;
808 }
809
810 goto out;
811 }
812
813 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
815
816 its_encode_target(cmd, target);
817 its_encode_vpt_addr(cmd, vpt_addr);
818 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
819
820 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
821
822 if (!is_v4_1(its))
823 goto out;
824
825 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
826
827 its_encode_alloc(cmd, alloc);
828
829 /*
830 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831 * to be unmapped first, and in this case, we may remap the vPE
832 * back while the VPT is not empty. So we can't assume that the
833 * VPT is empty on map. This is why we never advertise PTZ.
834 */
835 its_encode_ptz(cmd, false);
836 its_encode_vconf_addr(cmd, vconf_addr);
837 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
838
839 out:
840 its_fixup_cmd(cmd);
841
842 return vpe;
843 }
844
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846 struct its_cmd_block *cmd,
847 struct its_cmd_desc *desc)
848 {
849 u32 db;
850
851 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
853 else
854 db = 1023;
855
856 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860 its_encode_db_phys_id(cmd, db);
861 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
862
863 its_fixup_cmd(cmd);
864
865 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
866 }
867
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869 struct its_cmd_block *cmd,
870 struct its_cmd_desc *desc)
871 {
872 u32 db;
873
874 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
876 else
877 db = 1023;
878
879 its_encode_cmd(cmd, GITS_CMD_VMOVI);
880 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883 its_encode_db_phys_id(cmd, db);
884 its_encode_db_valid(cmd, true);
885
886 its_fixup_cmd(cmd);
887
888 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
889 }
890
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892 struct its_cmd_block *cmd,
893 struct its_cmd_desc *desc)
894 {
895 u64 target;
896
897 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898 its_encode_cmd(cmd, GITS_CMD_VMOVP);
899 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902 its_encode_target(cmd, target);
903
904 if (is_v4_1(its)) {
905 its_encode_db(cmd, true);
906 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
907 }
908
909 its_fixup_cmd(cmd);
910
911 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
912 }
913
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915 struct its_cmd_block *cmd,
916 struct its_cmd_desc *desc)
917 {
918 struct its_vlpi_map *map;
919
920 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921 desc->its_inv_cmd.event_id);
922
923 its_encode_cmd(cmd, GITS_CMD_INV);
924 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
926
927 its_fixup_cmd(cmd);
928
929 return valid_vpe(its, map->vpe);
930 }
931
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933 struct its_cmd_block *cmd,
934 struct its_cmd_desc *desc)
935 {
936 struct its_vlpi_map *map;
937
938 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939 desc->its_int_cmd.event_id);
940
941 its_encode_cmd(cmd, GITS_CMD_INT);
942 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
944
945 its_fixup_cmd(cmd);
946
947 return valid_vpe(its, map->vpe);
948 }
949
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951 struct its_cmd_block *cmd,
952 struct its_cmd_desc *desc)
953 {
954 struct its_vlpi_map *map;
955
956 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957 desc->its_clear_cmd.event_id);
958
959 its_encode_cmd(cmd, GITS_CMD_CLEAR);
960 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
962
963 its_fixup_cmd(cmd);
964
965 return valid_vpe(its, map->vpe);
966 }
967
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969 struct its_cmd_block *cmd,
970 struct its_cmd_desc *desc)
971 {
972 if (WARN_ON(!is_v4_1(its)))
973 return NULL;
974
975 its_encode_cmd(cmd, GITS_CMD_INVDB);
976 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
977
978 its_fixup_cmd(cmd);
979
980 return valid_vpe(its, desc->its_invdb_cmd.vpe);
981 }
982
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984 struct its_cmd_block *cmd,
985 struct its_cmd_desc *desc)
986 {
987 if (WARN_ON(!is_v4_1(its)))
988 return NULL;
989
990 its_encode_cmd(cmd, GITS_CMD_VSGI);
991 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
997
998 its_fixup_cmd(cmd);
999
1000 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1001 }
1002
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004 struct its_cmd_block *ptr)
1005 {
1006 return (ptr - its->cmd_base) * sizeof(*ptr);
1007 }
1008
its_queue_full(struct its_node * its)1009 static int its_queue_full(struct its_node *its)
1010 {
1011 int widx;
1012 int ridx;
1013
1014 widx = its->cmd_write - its->cmd_base;
1015 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1016
1017 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1018 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1019 return 1;
1020
1021 return 0;
1022 }
1023
its_allocate_entry(struct its_node * its)1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1025 {
1026 struct its_cmd_block *cmd;
1027 u32 count = 1000000; /* 1s! */
1028
1029 while (its_queue_full(its)) {
1030 count--;
1031 if (!count) {
1032 pr_err_ratelimited("ITS queue not draining\n");
1033 return NULL;
1034 }
1035 cpu_relax();
1036 udelay(1);
1037 }
1038
1039 cmd = its->cmd_write++;
1040
1041 /* Handle queue wrapping */
1042 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043 its->cmd_write = its->cmd_base;
1044
1045 /* Clear command */
1046 cmd->raw_cmd[0] = 0;
1047 cmd->raw_cmd[1] = 0;
1048 cmd->raw_cmd[2] = 0;
1049 cmd->raw_cmd[3] = 0;
1050
1051 return cmd;
1052 }
1053
its_post_commands(struct its_node * its)1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1055 {
1056 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1057
1058 writel_relaxed(wr, its->base + GITS_CWRITER);
1059
1060 return its->cmd_write;
1061 }
1062
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1064 {
1065 /*
1066 * Make sure the commands written to memory are observable by
1067 * the ITS.
1068 */
1069 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1071 else
1072 dsb(ishst);
1073 }
1074
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1075 static int its_wait_for_range_completion(struct its_node *its,
1076 u64 prev_idx,
1077 struct its_cmd_block *to)
1078 {
1079 u64 rd_idx, to_idx, linear_idx;
1080 u32 count = 1000000; /* 1s! */
1081
1082 /* Linearize to_idx if the command set has wrapped around */
1083 to_idx = its_cmd_ptr_to_offset(its, to);
1084 if (to_idx < prev_idx)
1085 to_idx += ITS_CMD_QUEUE_SZ;
1086
1087 linear_idx = prev_idx;
1088
1089 while (1) {
1090 s64 delta;
1091
1092 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1093
1094 /*
1095 * Compute the read pointer progress, taking the
1096 * potential wrap-around into account.
1097 */
1098 delta = rd_idx - prev_idx;
1099 if (rd_idx < prev_idx)
1100 delta += ITS_CMD_QUEUE_SZ;
1101
1102 linear_idx += delta;
1103 if (linear_idx >= to_idx)
1104 break;
1105
1106 count--;
1107 if (!count) {
1108 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109 to_idx, linear_idx);
1110 return -1;
1111 }
1112 prev_idx = rd_idx;
1113 cpu_relax();
1114 udelay(1);
1115 }
1116
1117 return 0;
1118 }
1119
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1122 void name(struct its_node *its, \
1123 buildtype builder, \
1124 struct its_cmd_desc *desc) \
1125 { \
1126 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1127 synctype *sync_obj; \
1128 unsigned long flags; \
1129 u64 rd_idx; \
1130 \
1131 raw_spin_lock_irqsave(&its->lock, flags); \
1132 \
1133 cmd = its_allocate_entry(its); \
1134 if (!cmd) { /* We're soooooo screewed... */ \
1135 raw_spin_unlock_irqrestore(&its->lock, flags); \
1136 return; \
1137 } \
1138 sync_obj = builder(its, cmd, desc); \
1139 its_flush_cmd(its, cmd); \
1140 \
1141 if (sync_obj) { \
1142 sync_cmd = its_allocate_entry(its); \
1143 if (!sync_cmd) \
1144 goto post; \
1145 \
1146 buildfn(its, sync_cmd, sync_obj); \
1147 its_flush_cmd(its, sync_cmd); \
1148 } \
1149 \
1150 post: \
1151 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1152 next_cmd = its_post_commands(its); \
1153 raw_spin_unlock_irqrestore(&its->lock, flags); \
1154 \
1155 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1156 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1157 }
1158
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1159 static void its_build_sync_cmd(struct its_node *its,
1160 struct its_cmd_block *sync_cmd,
1161 struct its_collection *sync_col)
1162 {
1163 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164 its_encode_target(sync_cmd, sync_col->target_address);
1165
1166 its_fixup_cmd(sync_cmd);
1167 }
1168
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170 struct its_collection, its_build_sync_cmd)
1171
1172 static void its_build_vsync_cmd(struct its_node *its,
1173 struct its_cmd_block *sync_cmd,
1174 struct its_vpe *sync_vpe)
1175 {
1176 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1178
1179 its_fixup_cmd(sync_cmd);
1180 }
1181
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183 struct its_vpe, its_build_vsync_cmd)
1184
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1186 {
1187 struct its_cmd_desc desc;
1188
1189 desc.its_int_cmd.dev = dev;
1190 desc.its_int_cmd.event_id = event_id;
1191
1192 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1193 }
1194
its_send_clear(struct its_device * dev,u32 event_id)1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1196 {
1197 struct its_cmd_desc desc;
1198
1199 desc.its_clear_cmd.dev = dev;
1200 desc.its_clear_cmd.event_id = event_id;
1201
1202 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1203 }
1204
its_send_inv(struct its_device * dev,u32 event_id)1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1206 {
1207 struct its_cmd_desc desc;
1208
1209 desc.its_inv_cmd.dev = dev;
1210 desc.its_inv_cmd.event_id = event_id;
1211
1212 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1213 }
1214
its_send_mapd(struct its_device * dev,int valid)1215 static void its_send_mapd(struct its_device *dev, int valid)
1216 {
1217 struct its_cmd_desc desc;
1218
1219 desc.its_mapd_cmd.dev = dev;
1220 desc.its_mapd_cmd.valid = !!valid;
1221
1222 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1223 }
1224
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1226 int valid)
1227 {
1228 struct its_cmd_desc desc;
1229
1230 desc.its_mapc_cmd.col = col;
1231 desc.its_mapc_cmd.valid = !!valid;
1232
1233 its_send_single_command(its, its_build_mapc_cmd, &desc);
1234 }
1235
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1237 {
1238 struct its_cmd_desc desc;
1239
1240 desc.its_mapti_cmd.dev = dev;
1241 desc.its_mapti_cmd.phys_id = irq_id;
1242 desc.its_mapti_cmd.event_id = id;
1243
1244 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1245 }
1246
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1247 static void its_send_movi(struct its_device *dev,
1248 struct its_collection *col, u32 id)
1249 {
1250 struct its_cmd_desc desc;
1251
1252 desc.its_movi_cmd.dev = dev;
1253 desc.its_movi_cmd.col = col;
1254 desc.its_movi_cmd.event_id = id;
1255
1256 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1257 }
1258
its_send_discard(struct its_device * dev,u32 id)1259 static void its_send_discard(struct its_device *dev, u32 id)
1260 {
1261 struct its_cmd_desc desc;
1262
1263 desc.its_discard_cmd.dev = dev;
1264 desc.its_discard_cmd.event_id = id;
1265
1266 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1267 }
1268
its_send_invall(struct its_node * its,struct its_collection * col)1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1270 {
1271 struct its_cmd_desc desc;
1272
1273 desc.its_invall_cmd.col = col;
1274
1275 its_send_single_command(its, its_build_invall_cmd, &desc);
1276 }
1277
its_send_vmapti(struct its_device * dev,u32 id)1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1279 {
1280 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281 struct its_cmd_desc desc;
1282
1283 desc.its_vmapti_cmd.vpe = map->vpe;
1284 desc.its_vmapti_cmd.dev = dev;
1285 desc.its_vmapti_cmd.virt_id = map->vintid;
1286 desc.its_vmapti_cmd.event_id = id;
1287 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1288
1289 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1290 }
1291
its_send_vmovi(struct its_device * dev,u32 id)1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1293 {
1294 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295 struct its_cmd_desc desc;
1296
1297 desc.its_vmovi_cmd.vpe = map->vpe;
1298 desc.its_vmovi_cmd.dev = dev;
1299 desc.its_vmovi_cmd.event_id = id;
1300 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1301
1302 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1303 }
1304
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1305 static void its_send_vmapp(struct its_node *its,
1306 struct its_vpe *vpe, bool valid)
1307 {
1308 struct its_cmd_desc desc;
1309
1310 desc.its_vmapp_cmd.vpe = vpe;
1311 desc.its_vmapp_cmd.valid = valid;
1312 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1313
1314 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1315 }
1316
its_send_vmovp(struct its_vpe * vpe)1317 static void its_send_vmovp(struct its_vpe *vpe)
1318 {
1319 struct its_cmd_desc desc = {};
1320 struct its_node *its;
1321 int col_id = vpe->col_idx;
1322
1323 desc.its_vmovp_cmd.vpe = vpe;
1324
1325 if (!its_list_map) {
1326 its = list_first_entry(&its_nodes, struct its_node, entry);
1327 desc.its_vmovp_cmd.col = &its->collections[col_id];
1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329 return;
1330 }
1331
1332 /*
1333 * Yet another marvel of the architecture. If using the
1334 * its_list "feature", we need to make sure that all ITSs
1335 * receive all VMOVP commands in the same order. The only way
1336 * to guarantee this is to make vmovp a serialization point.
1337 *
1338 * Wall <-- Head.
1339 */
1340 guard(raw_spinlock)(&vmovp_lock);
1341 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1342 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1343
1344 /* Emit VMOVPs */
1345 list_for_each_entry(its, &its_nodes, entry) {
1346 if (!is_v4(its))
1347 continue;
1348
1349 if (!require_its_list_vmovp(vpe->its_vm, its))
1350 continue;
1351
1352 desc.its_vmovp_cmd.col = &its->collections[col_id];
1353 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1354 }
1355 }
1356
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1357 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1358 {
1359 struct its_cmd_desc desc;
1360
1361 desc.its_vinvall_cmd.vpe = vpe;
1362 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1363 }
1364
its_send_vinv(struct its_device * dev,u32 event_id)1365 static void its_send_vinv(struct its_device *dev, u32 event_id)
1366 {
1367 struct its_cmd_desc desc;
1368
1369 /*
1370 * There is no real VINV command. This is just a normal INV,
1371 * with a VSYNC instead of a SYNC.
1372 */
1373 desc.its_inv_cmd.dev = dev;
1374 desc.its_inv_cmd.event_id = event_id;
1375
1376 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1377 }
1378
its_send_vint(struct its_device * dev,u32 event_id)1379 static void its_send_vint(struct its_device *dev, u32 event_id)
1380 {
1381 struct its_cmd_desc desc;
1382
1383 /*
1384 * There is no real VINT command. This is just a normal INT,
1385 * with a VSYNC instead of a SYNC.
1386 */
1387 desc.its_int_cmd.dev = dev;
1388 desc.its_int_cmd.event_id = event_id;
1389
1390 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1391 }
1392
its_send_vclear(struct its_device * dev,u32 event_id)1393 static void its_send_vclear(struct its_device *dev, u32 event_id)
1394 {
1395 struct its_cmd_desc desc;
1396
1397 /*
1398 * There is no real VCLEAR command. This is just a normal CLEAR,
1399 * with a VSYNC instead of a SYNC.
1400 */
1401 desc.its_clear_cmd.dev = dev;
1402 desc.its_clear_cmd.event_id = event_id;
1403
1404 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1405 }
1406
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1407 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1408 {
1409 struct its_cmd_desc desc;
1410
1411 desc.its_invdb_cmd.vpe = vpe;
1412 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1413 }
1414
1415 /*
1416 * irqchip functions - assumes MSI, mostly.
1417 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1418 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1419 {
1420 struct its_vlpi_map *map = get_vlpi_map(d);
1421 irq_hw_number_t hwirq;
1422 void *va;
1423 u8 *cfg;
1424
1425 if (map) {
1426 va = page_address(map->vm->vprop_page);
1427 hwirq = map->vintid;
1428
1429 /* Remember the updated property */
1430 map->properties &= ~clr;
1431 map->properties |= set | LPI_PROP_GROUP1;
1432 } else {
1433 va = gic_rdists->prop_table_va;
1434 hwirq = d->hwirq;
1435 }
1436
1437 cfg = va + hwirq - 8192;
1438 *cfg &= ~clr;
1439 *cfg |= set | LPI_PROP_GROUP1;
1440
1441 /*
1442 * Make the above write visible to the redistributors.
1443 * And yes, we're flushing exactly: One. Single. Byte.
1444 * Humpf...
1445 */
1446 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1447 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1448 else
1449 dsb(ishst);
1450 }
1451
wait_for_syncr(void __iomem * rdbase)1452 static void wait_for_syncr(void __iomem *rdbase)
1453 {
1454 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1455 cpu_relax();
1456 }
1457
__direct_lpi_inv(struct irq_data * d,u64 val)1458 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1459 {
1460 void __iomem *rdbase;
1461 unsigned long flags;
1462 int cpu;
1463
1464 /* Target the redistributor this LPI is currently routed to */
1465 cpu = irq_to_cpuid_lock(d, &flags);
1466 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1467
1468 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1469 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1470 wait_for_syncr(rdbase);
1471
1472 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1473 irq_to_cpuid_unlock(d, flags);
1474 }
1475
direct_lpi_inv(struct irq_data * d)1476 static void direct_lpi_inv(struct irq_data *d)
1477 {
1478 struct its_vlpi_map *map = get_vlpi_map(d);
1479 u64 val;
1480
1481 if (map) {
1482 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1483
1484 WARN_ON(!is_v4_1(its_dev->its));
1485
1486 val = GICR_INVLPIR_V;
1487 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1488 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1489 } else {
1490 val = d->hwirq;
1491 }
1492
1493 __direct_lpi_inv(d, val);
1494 }
1495
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1496 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1497 {
1498 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1499
1500 lpi_write_config(d, clr, set);
1501 if (gic_rdists->has_direct_lpi &&
1502 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1503 direct_lpi_inv(d);
1504 else if (!irqd_is_forwarded_to_vcpu(d))
1505 its_send_inv(its_dev, its_get_event_id(d));
1506 else
1507 its_send_vinv(its_dev, its_get_event_id(d));
1508 }
1509
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1510 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1511 {
1512 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1513 u32 event = its_get_event_id(d);
1514 struct its_vlpi_map *map;
1515
1516 /*
1517 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1518 * here.
1519 */
1520 if (is_v4_1(its_dev->its))
1521 return;
1522
1523 map = dev_event_to_vlpi_map(its_dev, event);
1524
1525 if (map->db_enabled == enable)
1526 return;
1527
1528 map->db_enabled = enable;
1529
1530 /*
1531 * More fun with the architecture:
1532 *
1533 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1534 * value or to 1023, depending on the enable bit. But that
1535 * would be issuing a mapping for an /existing/ DevID+EventID
1536 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1537 * to the /same/ vPE, using this opportunity to adjust the
1538 * doorbell. Mouahahahaha. We loves it, Precious.
1539 */
1540 its_send_vmovi(its_dev, event);
1541 }
1542
its_mask_irq(struct irq_data * d)1543 static void its_mask_irq(struct irq_data *d)
1544 {
1545 if (irqd_is_forwarded_to_vcpu(d))
1546 its_vlpi_set_doorbell(d, false);
1547
1548 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1549 }
1550
its_unmask_irq(struct irq_data * d)1551 static void its_unmask_irq(struct irq_data *d)
1552 {
1553 if (irqd_is_forwarded_to_vcpu(d))
1554 its_vlpi_set_doorbell(d, true);
1555
1556 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1557 }
1558
its_read_lpi_count(struct irq_data * d,int cpu)1559 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 if (irqd_affinity_is_managed(d))
1562 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563
1564 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566
its_inc_lpi_count(struct irq_data * d,int cpu)1567 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 if (irqd_affinity_is_managed(d))
1570 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 else
1572 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574
its_dec_lpi_count(struct irq_data * d,int cpu)1575 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1576 {
1577 if (irqd_affinity_is_managed(d))
1578 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1579 else
1580 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1581 }
1582
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1583 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1584 const struct cpumask *cpu_mask)
1585 {
1586 unsigned int cpu = nr_cpu_ids, tmp;
1587 int count = S32_MAX;
1588
1589 for_each_cpu(tmp, cpu_mask) {
1590 int this_count = its_read_lpi_count(d, tmp);
1591 if (this_count < count) {
1592 cpu = tmp;
1593 count = this_count;
1594 }
1595 }
1596
1597 return cpu;
1598 }
1599
1600 /*
1601 * As suggested by Thomas Gleixner in:
1602 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1603 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1604 static int its_select_cpu(struct irq_data *d,
1605 const struct cpumask *aff_mask)
1606 {
1607 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1608 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1609 static struct cpumask __tmpmask;
1610 struct cpumask *tmpmask;
1611 unsigned long flags;
1612 int cpu, node;
1613 node = its_dev->its->numa_node;
1614 tmpmask = &__tmpmask;
1615
1616 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1617
1618 if (!irqd_affinity_is_managed(d)) {
1619 /* First try the NUMA node */
1620 if (node != NUMA_NO_NODE) {
1621 /*
1622 * Try the intersection of the affinity mask and the
1623 * node mask (and the online mask, just to be safe).
1624 */
1625 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1626 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1627
1628 /*
1629 * Ideally, we would check if the mask is empty, and
1630 * try again on the full node here.
1631 *
1632 * But it turns out that the way ACPI describes the
1633 * affinity for ITSs only deals about memory, and
1634 * not target CPUs, so it cannot describe a single
1635 * ITS placed next to two NUMA nodes.
1636 *
1637 * Instead, just fallback on the online mask. This
1638 * diverges from Thomas' suggestion above.
1639 */
1640 cpu = cpumask_pick_least_loaded(d, tmpmask);
1641 if (cpu < nr_cpu_ids)
1642 goto out;
1643
1644 /* If we can't cross sockets, give up */
1645 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1646 goto out;
1647
1648 /* If the above failed, expand the search */
1649 }
1650
1651 /* Try the intersection of the affinity and online masks */
1652 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1653
1654 /* If that doesn't fly, the online mask is the last resort */
1655 if (cpumask_empty(tmpmask))
1656 cpumask_copy(tmpmask, cpu_online_mask);
1657
1658 cpu = cpumask_pick_least_loaded(d, tmpmask);
1659 } else {
1660 cpumask_copy(tmpmask, aff_mask);
1661
1662 /* If we cannot cross sockets, limit the search to that node */
1663 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1664 node != NUMA_NO_NODE)
1665 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1666
1667 cpu = cpumask_pick_least_loaded(d, tmpmask);
1668 }
1669 out:
1670 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1671
1672 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1673 return cpu;
1674 }
1675
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1676 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1677 bool force)
1678 {
1679 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1680 struct its_collection *target_col;
1681 u32 id = its_get_event_id(d);
1682 int cpu, prev_cpu;
1683
1684 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1685 if (irqd_is_forwarded_to_vcpu(d))
1686 return -EINVAL;
1687
1688 prev_cpu = its_dev->event_map.col_map[id];
1689 its_dec_lpi_count(d, prev_cpu);
1690
1691 if (!force)
1692 cpu = its_select_cpu(d, mask_val);
1693 else
1694 cpu = cpumask_pick_least_loaded(d, mask_val);
1695
1696 if (cpu < 0 || cpu >= nr_cpu_ids)
1697 goto err;
1698
1699 /* don't set the affinity when the target cpu is same as current one */
1700 if (cpu != prev_cpu) {
1701 target_col = &its_dev->its->collections[cpu];
1702 its_send_movi(its_dev, target_col, id);
1703 its_dev->event_map.col_map[id] = cpu;
1704 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1705 }
1706
1707 its_inc_lpi_count(d, cpu);
1708
1709 return IRQ_SET_MASK_OK_DONE;
1710
1711 err:
1712 its_inc_lpi_count(d, prev_cpu);
1713 return -EINVAL;
1714 }
1715
its_irq_get_msi_base(struct its_device * its_dev)1716 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1717 {
1718 struct its_node *its = its_dev->its;
1719
1720 return its->phys_base + GITS_TRANSLATER;
1721 }
1722
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1723 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1724 {
1725 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1726 struct its_node *its;
1727 u64 addr;
1728
1729 its = its_dev->its;
1730 addr = its->get_msi_base(its_dev);
1731
1732 msg->address_lo = lower_32_bits(addr);
1733 msg->address_hi = upper_32_bits(addr);
1734 msg->data = its_get_event_id(d);
1735
1736 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1737 }
1738
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1739 static int its_irq_set_irqchip_state(struct irq_data *d,
1740 enum irqchip_irq_state which,
1741 bool state)
1742 {
1743 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1744 u32 event = its_get_event_id(d);
1745
1746 if (which != IRQCHIP_STATE_PENDING)
1747 return -EINVAL;
1748
1749 if (irqd_is_forwarded_to_vcpu(d)) {
1750 if (state)
1751 its_send_vint(its_dev, event);
1752 else
1753 its_send_vclear(its_dev, event);
1754 } else {
1755 if (state)
1756 its_send_int(its_dev, event);
1757 else
1758 its_send_clear(its_dev, event);
1759 }
1760
1761 return 0;
1762 }
1763
its_irq_retrigger(struct irq_data * d)1764 static int its_irq_retrigger(struct irq_data *d)
1765 {
1766 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1767 }
1768
1769 /*
1770 * Two favourable cases:
1771 *
1772 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1773 * for vSGI delivery
1774 *
1775 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1776 * and we're better off mapping all VPEs always
1777 *
1778 * If neither (a) nor (b) is true, then we map vPEs on demand.
1779 *
1780 */
gic_requires_eager_mapping(void)1781 static bool gic_requires_eager_mapping(void)
1782 {
1783 if (!its_list_map || gic_rdists->has_rvpeid)
1784 return true;
1785
1786 return false;
1787 }
1788
its_map_vm(struct its_node * its,struct its_vm * vm)1789 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1790 {
1791 if (gic_requires_eager_mapping())
1792 return;
1793
1794 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1795
1796 /*
1797 * If the VM wasn't mapped yet, iterate over the vpes and get
1798 * them mapped now.
1799 */
1800 vm->vlpi_count[its->list_nr]++;
1801
1802 if (vm->vlpi_count[its->list_nr] == 1) {
1803 int i;
1804
1805 for (i = 0; i < vm->nr_vpes; i++) {
1806 struct its_vpe *vpe = vm->vpes[i];
1807
1808 scoped_guard(raw_spinlock, &vpe->vpe_lock)
1809 its_send_vmapp(its, vpe, true);
1810
1811 its_send_vinvall(its, vpe);
1812 }
1813 }
1814 }
1815
its_unmap_vm(struct its_node * its,struct its_vm * vm)1816 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1817 {
1818 /* Not using the ITS list? Everything is always mapped. */
1819 if (gic_requires_eager_mapping())
1820 return;
1821
1822 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1823
1824 if (!--vm->vlpi_count[its->list_nr]) {
1825 int i;
1826
1827 for (i = 0; i < vm->nr_vpes; i++) {
1828 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1829 its_send_vmapp(its, vm->vpes[i], false);
1830 }
1831 }
1832 }
1833
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1835 {
1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837 u32 event = its_get_event_id(d);
1838
1839 if (!info->map)
1840 return -EINVAL;
1841
1842 if (!its_dev->event_map.vm) {
1843 struct its_vlpi_map *maps;
1844
1845 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1846 GFP_ATOMIC);
1847 if (!maps)
1848 return -ENOMEM;
1849
1850 its_dev->event_map.vm = info->map->vm;
1851 its_dev->event_map.vlpi_maps = maps;
1852 } else if (its_dev->event_map.vm != info->map->vm) {
1853 return -EINVAL;
1854 }
1855
1856 /* Get our private copy of the mapping information */
1857 its_dev->event_map.vlpi_maps[event] = *info->map;
1858
1859 if (irqd_is_forwarded_to_vcpu(d)) {
1860 /* Already mapped, move it around */
1861 its_send_vmovi(its_dev, event);
1862 } else {
1863 /* Ensure all the VPEs are mapped on this ITS */
1864 its_map_vm(its_dev->its, info->map->vm);
1865
1866 /*
1867 * Flag the interrupt as forwarded so that we can
1868 * start poking the virtual property table.
1869 */
1870 irqd_set_forwarded_to_vcpu(d);
1871
1872 /* Write out the property to the prop table */
1873 lpi_write_config(d, 0xff, info->map->properties);
1874
1875 /* Drop the physical mapping */
1876 its_send_discard(its_dev, event);
1877
1878 /* and install the virtual one */
1879 its_send_vmapti(its_dev, event);
1880
1881 /* Increment the number of VLPIs */
1882 its_dev->event_map.nr_vlpis++;
1883 }
1884
1885 return 0;
1886 }
1887
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1888 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1889 {
1890 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1891 struct its_vlpi_map *map;
1892
1893 map = get_vlpi_map(d);
1894
1895 if (!its_dev->event_map.vm || !map)
1896 return -EINVAL;
1897
1898 /* Copy our mapping information to the incoming request */
1899 *info->map = *map;
1900
1901 return 0;
1902 }
1903
its_vlpi_unmap(struct irq_data * d)1904 static int its_vlpi_unmap(struct irq_data *d)
1905 {
1906 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1907 u32 event = its_get_event_id(d);
1908
1909 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1910 return -EINVAL;
1911
1912 /* Drop the virtual mapping */
1913 its_send_discard(its_dev, event);
1914
1915 /* and restore the physical one */
1916 irqd_clr_forwarded_to_vcpu(d);
1917 its_send_mapti(its_dev, d->hwirq, event);
1918 lpi_update_config(d, 0xff, (lpi_prop_prio |
1919 LPI_PROP_ENABLED |
1920 LPI_PROP_GROUP1));
1921
1922 /* Potentially unmap the VM from this ITS */
1923 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1924
1925 /*
1926 * Drop the refcount and make the device available again if
1927 * this was the last VLPI.
1928 */
1929 if (!--its_dev->event_map.nr_vlpis) {
1930 its_dev->event_map.vm = NULL;
1931 kfree(its_dev->event_map.vlpi_maps);
1932 }
1933
1934 return 0;
1935 }
1936
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1937 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1938 {
1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940
1941 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1942 return -EINVAL;
1943
1944 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1945 lpi_update_config(d, 0xff, info->config);
1946 else
1947 lpi_write_config(d, 0xff, info->config);
1948 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1949
1950 return 0;
1951 }
1952
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1953 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1954 {
1955 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1956 struct its_cmd_info *info = vcpu_info;
1957
1958 /* Need a v4 ITS */
1959 if (!is_v4(its_dev->its))
1960 return -EINVAL;
1961
1962 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1963
1964 /* Unmap request? */
1965 if (!info)
1966 return its_vlpi_unmap(d);
1967
1968 switch (info->cmd_type) {
1969 case MAP_VLPI:
1970 return its_vlpi_map(d, info);
1971
1972 case GET_VLPI:
1973 return its_vlpi_get(d, info);
1974
1975 case PROP_UPDATE_VLPI:
1976 case PROP_UPDATE_AND_INV_VLPI:
1977 return its_vlpi_prop_update(d, info);
1978
1979 default:
1980 return -EINVAL;
1981 }
1982 }
1983
1984 static struct irq_chip its_irq_chip = {
1985 .name = "ITS",
1986 .irq_mask = its_mask_irq,
1987 .irq_unmask = its_unmask_irq,
1988 .irq_eoi = irq_chip_eoi_parent,
1989 .irq_set_affinity = its_set_affinity,
1990 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1991 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1992 .irq_retrigger = its_irq_retrigger,
1993 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1994 };
1995
1996
1997 /*
1998 * How we allocate LPIs:
1999 *
2000 * lpi_range_list contains ranges of LPIs that are to available to
2001 * allocate from. To allocate LPIs, just pick the first range that
2002 * fits the required allocation, and reduce it by the required
2003 * amount. Once empty, remove the range from the list.
2004 *
2005 * To free a range of LPIs, add a free range to the list, sort it and
2006 * merge the result if the new range happens to be adjacent to an
2007 * already free block.
2008 *
2009 * The consequence of the above is that allocation is cost is low, but
2010 * freeing is expensive. We assumes that freeing rarely occurs.
2011 */
2012 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2013
2014 static DEFINE_MUTEX(lpi_range_lock);
2015 static LIST_HEAD(lpi_range_list);
2016
2017 struct lpi_range {
2018 struct list_head entry;
2019 u32 base_id;
2020 u32 span;
2021 };
2022
mk_lpi_range(u32 base,u32 span)2023 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2024 {
2025 struct lpi_range *range;
2026
2027 range = kmalloc(sizeof(*range), GFP_KERNEL);
2028 if (range) {
2029 range->base_id = base;
2030 range->span = span;
2031 }
2032
2033 return range;
2034 }
2035
alloc_lpi_range(u32 nr_lpis,u32 * base)2036 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2037 {
2038 struct lpi_range *range, *tmp;
2039 int err = -ENOSPC;
2040
2041 mutex_lock(&lpi_range_lock);
2042
2043 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2044 if (range->span >= nr_lpis) {
2045 *base = range->base_id;
2046 range->base_id += nr_lpis;
2047 range->span -= nr_lpis;
2048
2049 if (range->span == 0) {
2050 list_del(&range->entry);
2051 kfree(range);
2052 }
2053
2054 err = 0;
2055 break;
2056 }
2057 }
2058
2059 mutex_unlock(&lpi_range_lock);
2060
2061 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2062 return err;
2063 }
2064
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2065 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2066 {
2067 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2068 return;
2069 if (a->base_id + a->span != b->base_id)
2070 return;
2071 b->base_id = a->base_id;
2072 b->span += a->span;
2073 list_del(&a->entry);
2074 kfree(a);
2075 }
2076
free_lpi_range(u32 base,u32 nr_lpis)2077 static int free_lpi_range(u32 base, u32 nr_lpis)
2078 {
2079 struct lpi_range *new, *old;
2080
2081 new = mk_lpi_range(base, nr_lpis);
2082 if (!new)
2083 return -ENOMEM;
2084
2085 mutex_lock(&lpi_range_lock);
2086
2087 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2088 if (old->base_id < base)
2089 break;
2090 }
2091 /*
2092 * old is the last element with ->base_id smaller than base,
2093 * so new goes right after it. If there are no elements with
2094 * ->base_id smaller than base, &old->entry ends up pointing
2095 * at the head of the list, and inserting new it the start of
2096 * the list is the right thing to do in that case as well.
2097 */
2098 list_add(&new->entry, &old->entry);
2099 /*
2100 * Now check if we can merge with the preceding and/or
2101 * following ranges.
2102 */
2103 merge_lpi_ranges(old, new);
2104 merge_lpi_ranges(new, list_next_entry(new, entry));
2105
2106 mutex_unlock(&lpi_range_lock);
2107 return 0;
2108 }
2109
its_lpi_init(u32 id_bits)2110 static int __init its_lpi_init(u32 id_bits)
2111 {
2112 u32 lpis = (1UL << id_bits) - 8192;
2113 u32 numlpis;
2114 int err;
2115
2116 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2117
2118 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2119 lpis = numlpis;
2120 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2121 lpis);
2122 }
2123
2124 /*
2125 * Initializing the allocator is just the same as freeing the
2126 * full range of LPIs.
2127 */
2128 err = free_lpi_range(8192, lpis);
2129 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2130 return err;
2131 }
2132
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2133 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2134 {
2135 unsigned long *bitmap = NULL;
2136 int err = 0;
2137
2138 do {
2139 err = alloc_lpi_range(nr_irqs, base);
2140 if (!err)
2141 break;
2142
2143 nr_irqs /= 2;
2144 } while (nr_irqs > 0);
2145
2146 if (!nr_irqs)
2147 err = -ENOSPC;
2148
2149 if (err)
2150 goto out;
2151
2152 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2153 if (!bitmap)
2154 goto out;
2155
2156 *nr_ids = nr_irqs;
2157
2158 out:
2159 if (!bitmap)
2160 *base = *nr_ids = 0;
2161
2162 return bitmap;
2163 }
2164
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2165 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2166 {
2167 WARN_ON(free_lpi_range(base, nr_ids));
2168 bitmap_free(bitmap);
2169 }
2170
gic_reset_prop_table(void * va)2171 static void gic_reset_prop_table(void *va)
2172 {
2173 /* Regular IRQ priority, Group-1, disabled */
2174 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2175
2176 /* Make sure the GIC will observe the written configuration */
2177 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2178 }
2179
its_allocate_prop_table(gfp_t gfp_flags)2180 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2181 {
2182 struct page *prop_page;
2183
2184 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2185 if (!prop_page)
2186 return NULL;
2187
2188 gic_reset_prop_table(page_address(prop_page));
2189
2190 return prop_page;
2191 }
2192
its_free_prop_table(struct page * prop_page)2193 static void its_free_prop_table(struct page *prop_page)
2194 {
2195 free_pages((unsigned long)page_address(prop_page),
2196 get_order(LPI_PROPBASE_SZ));
2197 }
2198
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2199 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2200 {
2201 phys_addr_t start, end, addr_end;
2202 u64 i;
2203
2204 /*
2205 * We don't bother checking for a kdump kernel as by
2206 * construction, the LPI tables are out of this kernel's
2207 * memory map.
2208 */
2209 if (is_kdump_kernel())
2210 return true;
2211
2212 addr_end = addr + size - 1;
2213
2214 for_each_reserved_mem_range(i, &start, &end) {
2215 if (addr >= start && addr_end <= end)
2216 return true;
2217 }
2218
2219 /* Not found, not a good sign... */
2220 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2221 &addr, &addr_end);
2222 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2223 return false;
2224 }
2225
gic_reserve_range(phys_addr_t addr,unsigned long size)2226 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2227 {
2228 if (efi_enabled(EFI_CONFIG_TABLES))
2229 return efi_mem_reserve_persistent(addr, size);
2230
2231 return 0;
2232 }
2233
its_setup_lpi_prop_table(void)2234 static int __init its_setup_lpi_prop_table(void)
2235 {
2236 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2237 u64 val;
2238
2239 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2240 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2241
2242 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2243 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2244 LPI_PROPBASE_SZ,
2245 MEMREMAP_WB);
2246 gic_reset_prop_table(gic_rdists->prop_table_va);
2247 } else {
2248 struct page *page;
2249
2250 lpi_id_bits = min_t(u32,
2251 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2252 ITS_MAX_LPI_NRBITS);
2253 page = its_allocate_prop_table(GFP_NOWAIT);
2254 if (!page) {
2255 pr_err("Failed to allocate PROPBASE\n");
2256 return -ENOMEM;
2257 }
2258
2259 gic_rdists->prop_table_pa = page_to_phys(page);
2260 gic_rdists->prop_table_va = page_address(page);
2261 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2262 LPI_PROPBASE_SZ));
2263 }
2264
2265 pr_info("GICv3: using LPI property table @%pa\n",
2266 &gic_rdists->prop_table_pa);
2267
2268 return its_lpi_init(lpi_id_bits);
2269 }
2270
2271 static const char *its_base_type_string[] = {
2272 [GITS_BASER_TYPE_DEVICE] = "Devices",
2273 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2274 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2275 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2276 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2277 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2278 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2279 };
2280
its_read_baser(struct its_node * its,struct its_baser * baser)2281 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2282 {
2283 u32 idx = baser - its->tables;
2284
2285 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2286 }
2287
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2288 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2289 u64 val)
2290 {
2291 u32 idx = baser - its->tables;
2292
2293 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2294 baser->val = its_read_baser(its, baser);
2295 }
2296
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2297 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2298 u64 cache, u64 shr, u32 order, bool indirect)
2299 {
2300 u64 val = its_read_baser(its, baser);
2301 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2302 u64 type = GITS_BASER_TYPE(val);
2303 u64 baser_phys, tmp;
2304 u32 alloc_pages, psz;
2305 struct page *page;
2306 void *base;
2307
2308 psz = baser->psz;
2309 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2310 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2311 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2312 &its->phys_base, its_base_type_string[type],
2313 alloc_pages, GITS_BASER_PAGES_MAX);
2314 alloc_pages = GITS_BASER_PAGES_MAX;
2315 order = get_order(GITS_BASER_PAGES_MAX * psz);
2316 }
2317
2318 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2319 if (!page)
2320 return -ENOMEM;
2321
2322 base = (void *)page_address(page);
2323 baser_phys = virt_to_phys(base);
2324
2325 /* Check if the physical address of the memory is above 48bits */
2326 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2327
2328 /* 52bit PA is supported only when PageSize=64K */
2329 if (psz != SZ_64K) {
2330 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2331 free_pages((unsigned long)base, order);
2332 return -ENXIO;
2333 }
2334
2335 /* Convert 52bit PA to 48bit field */
2336 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2337 }
2338
2339 retry_baser:
2340 val = (baser_phys |
2341 (type << GITS_BASER_TYPE_SHIFT) |
2342 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2343 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2344 cache |
2345 shr |
2346 GITS_BASER_VALID);
2347
2348 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2349
2350 switch (psz) {
2351 case SZ_4K:
2352 val |= GITS_BASER_PAGE_SIZE_4K;
2353 break;
2354 case SZ_16K:
2355 val |= GITS_BASER_PAGE_SIZE_16K;
2356 break;
2357 case SZ_64K:
2358 val |= GITS_BASER_PAGE_SIZE_64K;
2359 break;
2360 }
2361
2362 if (!shr)
2363 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2364
2365 its_write_baser(its, baser, val);
2366 tmp = baser->val;
2367
2368 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2369 /*
2370 * Shareability didn't stick. Just use
2371 * whatever the read reported, which is likely
2372 * to be the only thing this redistributor
2373 * supports. If that's zero, make it
2374 * non-cacheable as well.
2375 */
2376 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2377 if (!shr)
2378 cache = GITS_BASER_nC;
2379
2380 goto retry_baser;
2381 }
2382
2383 if (val != tmp) {
2384 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385 &its->phys_base, its_base_type_string[type],
2386 val, tmp);
2387 free_pages((unsigned long)base, order);
2388 return -ENXIO;
2389 }
2390
2391 baser->order = order;
2392 baser->base = base;
2393 baser->psz = psz;
2394 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2395
2396 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398 its_base_type_string[type],
2399 (unsigned long)virt_to_phys(base),
2400 indirect ? "indirect" : "flat", (int)esz,
2401 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2402
2403 return 0;
2404 }
2405
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2406 static bool its_parse_indirect_baser(struct its_node *its,
2407 struct its_baser *baser,
2408 u32 *order, u32 ids)
2409 {
2410 u64 tmp = its_read_baser(its, baser);
2411 u64 type = GITS_BASER_TYPE(tmp);
2412 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414 u32 new_order = *order;
2415 u32 psz = baser->psz;
2416 bool indirect = false;
2417
2418 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419 if ((esz << ids) > (psz * 2)) {
2420 /*
2421 * Find out whether hw supports a single or two-level table by
2422 * table by reading bit at offset '62' after writing '1' to it.
2423 */
2424 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2426
2427 if (indirect) {
2428 /*
2429 * The size of the lvl2 table is equal to ITS page size
2430 * which is 'psz'. For computing lvl1 table size,
2431 * subtract ID bits that sparse lvl2 table from 'ids'
2432 * which is reported by ITS hardware times lvl1 table
2433 * entry size.
2434 */
2435 ids -= ilog2(psz / (int)esz);
2436 esz = GITS_LVL1_ENTRY_SIZE;
2437 }
2438 }
2439
2440 /*
2441 * Allocate as many entries as required to fit the
2442 * range of device IDs that the ITS can grok... The ID
2443 * space being incredibly sparse, this results in a
2444 * massive waste of memory if two-level device table
2445 * feature is not supported by hardware.
2446 */
2447 new_order = max_t(u32, get_order(esz << ids), new_order);
2448 if (new_order > MAX_PAGE_ORDER) {
2449 new_order = MAX_PAGE_ORDER;
2450 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452 &its->phys_base, its_base_type_string[type],
2453 device_ids(its), ids);
2454 }
2455
2456 *order = new_order;
2457
2458 return indirect;
2459 }
2460
compute_common_aff(u64 val)2461 static u32 compute_common_aff(u64 val)
2462 {
2463 u32 aff, clpiaff;
2464
2465 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2467
2468 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2469 }
2470
compute_its_aff(struct its_node * its)2471 static u32 compute_its_aff(struct its_node *its)
2472 {
2473 u64 val;
2474 u32 svpet;
2475
2476 /*
2477 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478 * the resulting affinity. We then use that to see if this match
2479 * our own affinity.
2480 */
2481 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484 return compute_common_aff(val);
2485 }
2486
find_sibling_its(struct its_node * cur_its)2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2488 {
2489 struct its_node *its;
2490 u32 aff;
2491
2492 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2493 return NULL;
2494
2495 aff = compute_its_aff(cur_its);
2496
2497 list_for_each_entry(its, &its_nodes, entry) {
2498 u64 baser;
2499
2500 if (!is_v4_1(its) || its == cur_its)
2501 continue;
2502
2503 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2504 continue;
2505
2506 if (aff != compute_its_aff(its))
2507 continue;
2508
2509 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510 baser = its->tables[2].val;
2511 if (!(baser & GITS_BASER_VALID))
2512 continue;
2513
2514 return its;
2515 }
2516
2517 return NULL;
2518 }
2519
its_free_tables(struct its_node * its)2520 static void its_free_tables(struct its_node *its)
2521 {
2522 int i;
2523
2524 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525 if (its->tables[i].base) {
2526 free_pages((unsigned long)its->tables[i].base,
2527 its->tables[i].order);
2528 its->tables[i].base = NULL;
2529 }
2530 }
2531 }
2532
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2534 {
2535 u64 psz = SZ_64K;
2536
2537 while (psz) {
2538 u64 val, gpsz;
2539
2540 val = its_read_baser(its, baser);
2541 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2542
2543 switch (psz) {
2544 case SZ_64K:
2545 gpsz = GITS_BASER_PAGE_SIZE_64K;
2546 break;
2547 case SZ_16K:
2548 gpsz = GITS_BASER_PAGE_SIZE_16K;
2549 break;
2550 case SZ_4K:
2551 default:
2552 gpsz = GITS_BASER_PAGE_SIZE_4K;
2553 break;
2554 }
2555
2556 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2557
2558 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559 its_write_baser(its, baser, val);
2560
2561 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2562 break;
2563
2564 switch (psz) {
2565 case SZ_64K:
2566 psz = SZ_16K;
2567 break;
2568 case SZ_16K:
2569 psz = SZ_4K;
2570 break;
2571 case SZ_4K:
2572 default:
2573 return -1;
2574 }
2575 }
2576
2577 baser->psz = psz;
2578 return 0;
2579 }
2580
its_alloc_tables(struct its_node * its)2581 static int its_alloc_tables(struct its_node *its)
2582 {
2583 u64 shr = GITS_BASER_InnerShareable;
2584 u64 cache = GITS_BASER_RaWaWb;
2585 int err, i;
2586
2587 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588 /* erratum 24313: ignore memory access type */
2589 cache = GITS_BASER_nCnB;
2590
2591 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2592 cache = GITS_BASER_nC;
2593 shr = 0;
2594 }
2595
2596 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2597 struct its_baser *baser = its->tables + i;
2598 u64 val = its_read_baser(its, baser);
2599 u64 type = GITS_BASER_TYPE(val);
2600 bool indirect = false;
2601 u32 order;
2602
2603 if (type == GITS_BASER_TYPE_NONE)
2604 continue;
2605
2606 if (its_probe_baser_psz(its, baser)) {
2607 its_free_tables(its);
2608 return -ENXIO;
2609 }
2610
2611 order = get_order(baser->psz);
2612
2613 switch (type) {
2614 case GITS_BASER_TYPE_DEVICE:
2615 indirect = its_parse_indirect_baser(its, baser, &order,
2616 device_ids(its));
2617 break;
2618
2619 case GITS_BASER_TYPE_VCPU:
2620 if (is_v4_1(its)) {
2621 struct its_node *sibling;
2622
2623 WARN_ON(i != 2);
2624 if ((sibling = find_sibling_its(its))) {
2625 *baser = sibling->tables[2];
2626 its_write_baser(its, baser, baser->val);
2627 continue;
2628 }
2629 }
2630
2631 indirect = its_parse_indirect_baser(its, baser, &order,
2632 ITS_MAX_VPEID_BITS);
2633 break;
2634 }
2635
2636 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2637 if (err < 0) {
2638 its_free_tables(its);
2639 return err;
2640 }
2641
2642 /* Update settings which will be used for next BASERn */
2643 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2644 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2645 }
2646
2647 return 0;
2648 }
2649
inherit_vpe_l1_table_from_its(void)2650 static u64 inherit_vpe_l1_table_from_its(void)
2651 {
2652 struct its_node *its;
2653 u64 val;
2654 u32 aff;
2655
2656 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2657 aff = compute_common_aff(val);
2658
2659 list_for_each_entry(its, &its_nodes, entry) {
2660 u64 baser, addr;
2661
2662 if (!is_v4_1(its))
2663 continue;
2664
2665 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2666 continue;
2667
2668 if (aff != compute_its_aff(its))
2669 continue;
2670
2671 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2672 baser = its->tables[2].val;
2673 if (!(baser & GITS_BASER_VALID))
2674 continue;
2675
2676 /* We have a winner! */
2677 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2678
2679 val = GICR_VPROPBASER_4_1_VALID;
2680 if (baser & GITS_BASER_INDIRECT)
2681 val |= GICR_VPROPBASER_4_1_INDIRECT;
2682 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2683 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2684 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2685 case GIC_PAGE_SIZE_64K:
2686 addr = GITS_BASER_ADDR_48_to_52(baser);
2687 break;
2688 default:
2689 addr = baser & GENMASK_ULL(47, 12);
2690 break;
2691 }
2692 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2693 if (rdists_support_shareable()) {
2694 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2695 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2696 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2697 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2698 }
2699 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2700
2701 return val;
2702 }
2703
2704 return 0;
2705 }
2706
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2707 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2708 {
2709 u32 aff;
2710 u64 val;
2711 int cpu;
2712
2713 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2714 aff = compute_common_aff(val);
2715
2716 for_each_possible_cpu(cpu) {
2717 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2718
2719 if (!base || cpu == smp_processor_id())
2720 continue;
2721
2722 val = gic_read_typer(base + GICR_TYPER);
2723 if (aff != compute_common_aff(val))
2724 continue;
2725
2726 /*
2727 * At this point, we have a victim. This particular CPU
2728 * has already booted, and has an affinity that matches
2729 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2730 * Make sure we don't write the Z bit in that case.
2731 */
2732 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2733 val &= ~GICR_VPROPBASER_4_1_Z;
2734
2735 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2736 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2737
2738 return val;
2739 }
2740
2741 return 0;
2742 }
2743
allocate_vpe_l2_table(int cpu,u32 id)2744 static bool allocate_vpe_l2_table(int cpu, u32 id)
2745 {
2746 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2747 unsigned int psz, esz, idx, npg, gpsz;
2748 u64 val;
2749 struct page *page;
2750 __le64 *table;
2751
2752 if (!gic_rdists->has_rvpeid)
2753 return true;
2754
2755 /* Skip non-present CPUs */
2756 if (!base)
2757 return true;
2758
2759 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2760
2761 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2762 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2763 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2764
2765 switch (gpsz) {
2766 default:
2767 WARN_ON(1);
2768 fallthrough;
2769 case GIC_PAGE_SIZE_4K:
2770 psz = SZ_4K;
2771 break;
2772 case GIC_PAGE_SIZE_16K:
2773 psz = SZ_16K;
2774 break;
2775 case GIC_PAGE_SIZE_64K:
2776 psz = SZ_64K;
2777 break;
2778 }
2779
2780 /* Don't allow vpe_id that exceeds single, flat table limit */
2781 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2782 return (id < (npg * psz / (esz * SZ_8)));
2783
2784 /* Compute 1st level table index & check if that exceeds table limit */
2785 idx = id >> ilog2(psz / (esz * SZ_8));
2786 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2787 return false;
2788
2789 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2790
2791 /* Allocate memory for 2nd level table */
2792 if (!table[idx]) {
2793 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2794 if (!page)
2795 return false;
2796
2797 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2798 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2799 gic_flush_dcache_to_poc(page_address(page), psz);
2800
2801 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2802
2803 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2804 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2806
2807 /* Ensure updated table contents are visible to RD hardware */
2808 dsb(sy);
2809 }
2810
2811 return true;
2812 }
2813
allocate_vpe_l1_table(void)2814 static int allocate_vpe_l1_table(void)
2815 {
2816 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2817 u64 val, gpsz, npg, pa;
2818 unsigned int psz = SZ_64K;
2819 unsigned int np, epp, esz;
2820 struct page *page;
2821
2822 if (!gic_rdists->has_rvpeid)
2823 return 0;
2824
2825 /*
2826 * if VPENDBASER.Valid is set, disable any previously programmed
2827 * VPE by setting PendingLast while clearing Valid. This has the
2828 * effect of making sure no doorbell will be generated and we can
2829 * then safely clear VPROPBASER.Valid.
2830 */
2831 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2832 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2833 vlpi_base + GICR_VPENDBASER);
2834
2835 /*
2836 * If we can inherit the configuration from another RD, let's do
2837 * so. Otherwise, we have to go through the allocation process. We
2838 * assume that all RDs have the exact same requirements, as
2839 * nothing will work otherwise.
2840 */
2841 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2842 if (val & GICR_VPROPBASER_4_1_VALID)
2843 goto out;
2844
2845 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2846 if (!gic_data_rdist()->vpe_table_mask)
2847 return -ENOMEM;
2848
2849 val = inherit_vpe_l1_table_from_its();
2850 if (val & GICR_VPROPBASER_4_1_VALID)
2851 goto out;
2852
2853 /* First probe the page size */
2854 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2855 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2856 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2857 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2858 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2859
2860 switch (gpsz) {
2861 default:
2862 gpsz = GIC_PAGE_SIZE_4K;
2863 fallthrough;
2864 case GIC_PAGE_SIZE_4K:
2865 psz = SZ_4K;
2866 break;
2867 case GIC_PAGE_SIZE_16K:
2868 psz = SZ_16K;
2869 break;
2870 case GIC_PAGE_SIZE_64K:
2871 psz = SZ_64K;
2872 break;
2873 }
2874
2875 /*
2876 * Start populating the register from scratch, including RO fields
2877 * (which we want to print in debug cases...)
2878 */
2879 val = 0;
2880 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2881 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2882
2883 /* How many entries per GIC page? */
2884 esz++;
2885 epp = psz / (esz * SZ_8);
2886
2887 /*
2888 * If we need more than just a single L1 page, flag the table
2889 * as indirect and compute the number of required L1 pages.
2890 */
2891 if (epp < ITS_MAX_VPEID) {
2892 int nl2;
2893
2894 val |= GICR_VPROPBASER_4_1_INDIRECT;
2895
2896 /* Number of L2 pages required to cover the VPEID space */
2897 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2898
2899 /* Number of L1 pages to point to the L2 pages */
2900 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2901 } else {
2902 npg = 1;
2903 }
2904
2905 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2906
2907 /* Right, that's the number of CPU pages we need for L1 */
2908 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2909
2910 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2911 np, npg, psz, epp, esz);
2912 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2913 if (!page)
2914 return -ENOMEM;
2915
2916 gic_data_rdist()->vpe_l1_base = page_address(page);
2917 pa = virt_to_phys(page_address(page));
2918 WARN_ON(!IS_ALIGNED(pa, psz));
2919
2920 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2921 if (rdists_support_shareable()) {
2922 val |= GICR_VPROPBASER_RaWb;
2923 val |= GICR_VPROPBASER_InnerShareable;
2924 }
2925 val |= GICR_VPROPBASER_4_1_Z;
2926 val |= GICR_VPROPBASER_4_1_VALID;
2927
2928 out:
2929 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2930 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2931
2932 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2933 smp_processor_id(), val,
2934 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2935
2936 return 0;
2937 }
2938
its_alloc_collections(struct its_node * its)2939 static int its_alloc_collections(struct its_node *its)
2940 {
2941 int i;
2942
2943 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2944 GFP_KERNEL);
2945 if (!its->collections)
2946 return -ENOMEM;
2947
2948 for (i = 0; i < nr_cpu_ids; i++)
2949 its->collections[i].target_address = ~0ULL;
2950
2951 return 0;
2952 }
2953
its_allocate_pending_table(gfp_t gfp_flags)2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2955 {
2956 struct page *pend_page;
2957
2958 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2959 get_order(LPI_PENDBASE_SZ));
2960 if (!pend_page)
2961 return NULL;
2962
2963 /* Make sure the GIC will observe the zero-ed page */
2964 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2965
2966 return pend_page;
2967 }
2968
its_free_pending_table(struct page * pt)2969 static void its_free_pending_table(struct page *pt)
2970 {
2971 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2972 }
2973
2974 /*
2975 * Booting with kdump and LPIs enabled is generally fine. Any other
2976 * case is wrong in the absence of firmware/EFI support.
2977 */
enabled_lpis_allowed(void)2978 static bool enabled_lpis_allowed(void)
2979 {
2980 phys_addr_t addr;
2981 u64 val;
2982
2983 /* Check whether the property table is in a reserved region */
2984 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2985 addr = val & GENMASK_ULL(51, 12);
2986
2987 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2988 }
2989
allocate_lpi_tables(void)2990 static int __init allocate_lpi_tables(void)
2991 {
2992 u64 val;
2993 int err, cpu;
2994
2995 /*
2996 * If LPIs are enabled while we run this from the boot CPU,
2997 * flag the RD tables as pre-allocated if the stars do align.
2998 */
2999 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3000 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3001 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3002 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3003 pr_info("GICv3: Using preallocated redistributor tables\n");
3004 }
3005
3006 err = its_setup_lpi_prop_table();
3007 if (err)
3008 return err;
3009
3010 /*
3011 * We allocate all the pending tables anyway, as we may have a
3012 * mix of RDs that have had LPIs enabled, and some that
3013 * don't. We'll free the unused ones as each CPU comes online.
3014 */
3015 for_each_possible_cpu(cpu) {
3016 struct page *pend_page;
3017
3018 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3019 if (!pend_page) {
3020 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3021 return -ENOMEM;
3022 }
3023
3024 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3025 }
3026
3027 return 0;
3028 }
3029
read_vpend_dirty_clear(void __iomem * vlpi_base)3030 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3031 {
3032 u32 count = 1000000; /* 1s! */
3033 bool clean;
3034 u64 val;
3035
3036 do {
3037 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3038 clean = !(val & GICR_VPENDBASER_Dirty);
3039 if (!clean) {
3040 count--;
3041 cpu_relax();
3042 udelay(1);
3043 }
3044 } while (!clean && count);
3045
3046 if (unlikely(!clean))
3047 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3048
3049 return val;
3050 }
3051
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3052 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3053 {
3054 u64 val;
3055
3056 /* Make sure we wait until the RD is done with the initial scan */
3057 val = read_vpend_dirty_clear(vlpi_base);
3058 val &= ~GICR_VPENDBASER_Valid;
3059 val &= ~clr;
3060 val |= set;
3061 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3062
3063 val = read_vpend_dirty_clear(vlpi_base);
3064 if (unlikely(val & GICR_VPENDBASER_Dirty))
3065 val |= GICR_VPENDBASER_PendingLast;
3066
3067 return val;
3068 }
3069
its_cpu_init_lpis(void)3070 static void its_cpu_init_lpis(void)
3071 {
3072 void __iomem *rbase = gic_data_rdist_rd_base();
3073 struct page *pend_page;
3074 phys_addr_t paddr;
3075 u64 val, tmp;
3076
3077 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3078 return;
3079
3080 val = readl_relaxed(rbase + GICR_CTLR);
3081 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3082 (val & GICR_CTLR_ENABLE_LPIS)) {
3083 /*
3084 * Check that we get the same property table on all
3085 * RDs. If we don't, this is hopeless.
3086 */
3087 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3088 paddr &= GENMASK_ULL(51, 12);
3089 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3090 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3091
3092 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3093 paddr &= GENMASK_ULL(51, 16);
3094
3095 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3096 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3097
3098 goto out;
3099 }
3100
3101 pend_page = gic_data_rdist()->pend_page;
3102 paddr = page_to_phys(pend_page);
3103
3104 /* set PROPBASE */
3105 val = (gic_rdists->prop_table_pa |
3106 GICR_PROPBASER_InnerShareable |
3107 GICR_PROPBASER_RaWaWb |
3108 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3109
3110 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3111 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3112
3113 if (!rdists_support_shareable())
3114 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3115
3116 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3117 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3118 /*
3119 * The HW reports non-shareable, we must
3120 * remove the cacheability attributes as
3121 * well.
3122 */
3123 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3124 GICR_PROPBASER_CACHEABILITY_MASK);
3125 val |= GICR_PROPBASER_nC;
3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 }
3128 pr_info_once("GIC: using cache flushing for LPI property table\n");
3129 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3130 }
3131
3132 /* set PENDBASE */
3133 val = (page_to_phys(pend_page) |
3134 GICR_PENDBASER_InnerShareable |
3135 GICR_PENDBASER_RaWaWb);
3136
3137 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3138 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3139
3140 if (!rdists_support_shareable())
3141 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3142
3143 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3144 /*
3145 * The HW reports non-shareable, we must remove the
3146 * cacheability attributes as well.
3147 */
3148 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3149 GICR_PENDBASER_CACHEABILITY_MASK);
3150 val |= GICR_PENDBASER_nC;
3151 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3152 }
3153
3154 /* Enable LPIs */
3155 val = readl_relaxed(rbase + GICR_CTLR);
3156 val |= GICR_CTLR_ENABLE_LPIS;
3157 writel_relaxed(val, rbase + GICR_CTLR);
3158
3159 out:
3160 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3161 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3162
3163 /*
3164 * It's possible for CPU to receive VLPIs before it is
3165 * scheduled as a vPE, especially for the first CPU, and the
3166 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3167 * as out of range and dropped by GIC.
3168 * So we initialize IDbits to known value to avoid VLPI drop.
3169 */
3170 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3171 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3172 smp_processor_id(), val);
3173 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3174
3175 /*
3176 * Also clear Valid bit of GICR_VPENDBASER, in case some
3177 * ancient programming gets left in and has possibility of
3178 * corrupting memory.
3179 */
3180 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3181 }
3182
3183 if (allocate_vpe_l1_table()) {
3184 /*
3185 * If the allocation has failed, we're in massive trouble.
3186 * Disable direct injection, and pray that no VM was
3187 * already running...
3188 */
3189 gic_rdists->has_rvpeid = false;
3190 gic_rdists->has_vlpis = false;
3191 }
3192
3193 /* Make sure the GIC has seen the above */
3194 dsb(sy);
3195 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3196 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3197 smp_processor_id(),
3198 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3199 "reserved" : "allocated",
3200 &paddr);
3201 }
3202
its_cpu_init_collection(struct its_node * its)3203 static void its_cpu_init_collection(struct its_node *its)
3204 {
3205 int cpu = smp_processor_id();
3206 u64 target;
3207
3208 /* avoid cross node collections and its mapping */
3209 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3210 struct device_node *cpu_node;
3211
3212 cpu_node = of_get_cpu_node(cpu, NULL);
3213 if (its->numa_node != NUMA_NO_NODE &&
3214 its->numa_node != of_node_to_nid(cpu_node))
3215 return;
3216 }
3217
3218 /*
3219 * We now have to bind each collection to its target
3220 * redistributor.
3221 */
3222 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3223 /*
3224 * This ITS wants the physical address of the
3225 * redistributor.
3226 */
3227 target = gic_data_rdist()->phys_base;
3228 } else {
3229 /* This ITS wants a linear CPU number. */
3230 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3231 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3232 }
3233
3234 /* Perform collection mapping */
3235 its->collections[cpu].target_address = target;
3236 its->collections[cpu].col_id = cpu;
3237
3238 its_send_mapc(its, &its->collections[cpu], 1);
3239 its_send_invall(its, &its->collections[cpu]);
3240 }
3241
its_cpu_init_collections(void)3242 static void its_cpu_init_collections(void)
3243 {
3244 struct its_node *its;
3245
3246 raw_spin_lock(&its_lock);
3247
3248 list_for_each_entry(its, &its_nodes, entry)
3249 its_cpu_init_collection(its);
3250
3251 raw_spin_unlock(&its_lock);
3252 }
3253
its_find_device(struct its_node * its,u32 dev_id)3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3255 {
3256 struct its_device *its_dev = NULL, *tmp;
3257 unsigned long flags;
3258
3259 raw_spin_lock_irqsave(&its->lock, flags);
3260
3261 list_for_each_entry(tmp, &its->its_device_list, entry) {
3262 if (tmp->device_id == dev_id) {
3263 its_dev = tmp;
3264 break;
3265 }
3266 }
3267
3268 raw_spin_unlock_irqrestore(&its->lock, flags);
3269
3270 return its_dev;
3271 }
3272
its_get_baser(struct its_node * its,u32 type)3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3274 {
3275 int i;
3276
3277 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3278 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3279 return &its->tables[i];
3280 }
3281
3282 return NULL;
3283 }
3284
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3285 static bool its_alloc_table_entry(struct its_node *its,
3286 struct its_baser *baser, u32 id)
3287 {
3288 struct page *page;
3289 u32 esz, idx;
3290 __le64 *table;
3291
3292 /* Don't allow device id that exceeds single, flat table limit */
3293 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3294 if (!(baser->val & GITS_BASER_INDIRECT))
3295 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3296
3297 /* Compute 1st level table index & check if that exceeds table limit */
3298 idx = id >> ilog2(baser->psz / esz);
3299 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3300 return false;
3301
3302 table = baser->base;
3303
3304 /* Allocate memory for 2nd level table */
3305 if (!table[idx]) {
3306 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3307 get_order(baser->psz));
3308 if (!page)
3309 return false;
3310
3311 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3312 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3313 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3314
3315 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3316
3317 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3318 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3320
3321 /* Ensure updated table contents are visible to ITS hardware */
3322 dsb(sy);
3323 }
3324
3325 return true;
3326 }
3327
its_alloc_device_table(struct its_node * its,u32 dev_id)3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3329 {
3330 struct its_baser *baser;
3331
3332 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3333
3334 /* Don't allow device id that exceeds ITS hardware limit */
3335 if (!baser)
3336 return (ilog2(dev_id) < device_ids(its));
3337
3338 return its_alloc_table_entry(its, baser, dev_id);
3339 }
3340
its_alloc_vpe_table(u32 vpe_id)3341 static bool its_alloc_vpe_table(u32 vpe_id)
3342 {
3343 struct its_node *its;
3344 int cpu;
3345
3346 /*
3347 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3348 * could try and only do it on ITSs corresponding to devices
3349 * that have interrupts targeted at this VPE, but the
3350 * complexity becomes crazy (and you have tons of memory
3351 * anyway, right?).
3352 */
3353 list_for_each_entry(its, &its_nodes, entry) {
3354 struct its_baser *baser;
3355
3356 if (!is_v4(its))
3357 continue;
3358
3359 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3360 if (!baser)
3361 return false;
3362
3363 if (!its_alloc_table_entry(its, baser, vpe_id))
3364 return false;
3365 }
3366
3367 /* Non v4.1? No need to iterate RDs and go back early. */
3368 if (!gic_rdists->has_rvpeid)
3369 return true;
3370
3371 /*
3372 * Make sure the L2 tables are allocated for all copies of
3373 * the L1 table on *all* v4.1 RDs.
3374 */
3375 for_each_possible_cpu(cpu) {
3376 if (!allocate_vpe_l2_table(cpu, vpe_id))
3377 return false;
3378 }
3379
3380 return true;
3381 }
3382
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3384 int nvecs, bool alloc_lpis)
3385 {
3386 struct its_device *dev;
3387 unsigned long *lpi_map = NULL;
3388 unsigned long flags;
3389 u16 *col_map = NULL;
3390 void *itt;
3391 int lpi_base;
3392 int nr_lpis;
3393 int nr_ites;
3394 int sz;
3395
3396 if (!its_alloc_device_table(its, dev_id))
3397 return NULL;
3398
3399 if (WARN_ON(!is_power_of_2(nvecs)))
3400 nvecs = roundup_pow_of_two(nvecs);
3401
3402 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3403 /*
3404 * Even if the device wants a single LPI, the ITT must be
3405 * sized as a power of two (and you need at least one bit...).
3406 */
3407 nr_ites = max(2, nvecs);
3408 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3409 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3410 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3411 if (alloc_lpis) {
3412 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3413 if (lpi_map)
3414 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3415 GFP_KERNEL);
3416 } else {
3417 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3418 nr_lpis = 0;
3419 lpi_base = 0;
3420 }
3421
3422 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3423 kfree(dev);
3424 kfree(itt);
3425 bitmap_free(lpi_map);
3426 kfree(col_map);
3427 return NULL;
3428 }
3429
3430 gic_flush_dcache_to_poc(itt, sz);
3431
3432 dev->its = its;
3433 dev->itt = itt;
3434 dev->nr_ites = nr_ites;
3435 dev->event_map.lpi_map = lpi_map;
3436 dev->event_map.col_map = col_map;
3437 dev->event_map.lpi_base = lpi_base;
3438 dev->event_map.nr_lpis = nr_lpis;
3439 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3440 dev->device_id = dev_id;
3441 INIT_LIST_HEAD(&dev->entry);
3442
3443 raw_spin_lock_irqsave(&its->lock, flags);
3444 list_add(&dev->entry, &its->its_device_list);
3445 raw_spin_unlock_irqrestore(&its->lock, flags);
3446
3447 /* Map device to its ITT */
3448 its_send_mapd(dev, 1);
3449
3450 return dev;
3451 }
3452
its_free_device(struct its_device * its_dev)3453 static void its_free_device(struct its_device *its_dev)
3454 {
3455 unsigned long flags;
3456
3457 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3458 list_del(&its_dev->entry);
3459 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3460 kfree(its_dev->event_map.col_map);
3461 kfree(its_dev->itt);
3462 kfree(its_dev);
3463 }
3464
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3466 {
3467 int idx;
3468
3469 /* Find a free LPI region in lpi_map and allocate them. */
3470 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3471 dev->event_map.nr_lpis,
3472 get_count_order(nvecs));
3473 if (idx < 0)
3474 return -ENOSPC;
3475
3476 *hwirq = dev->event_map.lpi_base + idx;
3477
3478 return 0;
3479 }
3480
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3482 int nvec, msi_alloc_info_t *info)
3483 {
3484 struct its_node *its;
3485 struct its_device *its_dev;
3486 struct msi_domain_info *msi_info;
3487 u32 dev_id;
3488 int err = 0;
3489
3490 /*
3491 * We ignore "dev" entirely, and rely on the dev_id that has
3492 * been passed via the scratchpad. This limits this domain's
3493 * usefulness to upper layers that definitely know that they
3494 * are built on top of the ITS.
3495 */
3496 dev_id = info->scratchpad[0].ul;
3497
3498 msi_info = msi_get_domain_info(domain);
3499 its = msi_info->data;
3500
3501 if (!gic_rdists->has_direct_lpi &&
3502 vpe_proxy.dev &&
3503 vpe_proxy.dev->its == its &&
3504 dev_id == vpe_proxy.dev->device_id) {
3505 /* Bad luck. Get yourself a better implementation */
3506 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3507 dev_id);
3508 return -EINVAL;
3509 }
3510
3511 mutex_lock(&its->dev_alloc_lock);
3512 its_dev = its_find_device(its, dev_id);
3513 if (its_dev) {
3514 /*
3515 * We already have seen this ID, probably through
3516 * another alias (PCI bridge of some sort). No need to
3517 * create the device.
3518 */
3519 its_dev->shared = true;
3520 pr_debug("Reusing ITT for devID %x\n", dev_id);
3521 goto out;
3522 }
3523
3524 its_dev = its_create_device(its, dev_id, nvec, true);
3525 if (!its_dev) {
3526 err = -ENOMEM;
3527 goto out;
3528 }
3529
3530 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3531 its_dev->shared = true;
3532
3533 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3534 out:
3535 mutex_unlock(&its->dev_alloc_lock);
3536 info->scratchpad[0].ptr = its_dev;
3537 return err;
3538 }
3539
3540 static struct msi_domain_ops its_msi_domain_ops = {
3541 .msi_prepare = its_msi_prepare,
3542 };
3543
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3545 unsigned int virq,
3546 irq_hw_number_t hwirq)
3547 {
3548 struct irq_fwspec fwspec;
3549
3550 if (irq_domain_get_of_node(domain->parent)) {
3551 fwspec.fwnode = domain->parent->fwnode;
3552 fwspec.param_count = 3;
3553 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3554 fwspec.param[1] = hwirq;
3555 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3556 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3557 fwspec.fwnode = domain->parent->fwnode;
3558 fwspec.param_count = 2;
3559 fwspec.param[0] = hwirq;
3560 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3561 } else {
3562 return -EINVAL;
3563 }
3564
3565 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3566 }
3567
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3569 unsigned int nr_irqs, void *args)
3570 {
3571 msi_alloc_info_t *info = args;
3572 struct its_device *its_dev = info->scratchpad[0].ptr;
3573 struct its_node *its = its_dev->its;
3574 struct irq_data *irqd;
3575 irq_hw_number_t hwirq;
3576 int err;
3577 int i;
3578
3579 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3580 if (err)
3581 return err;
3582
3583 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3584 if (err)
3585 return err;
3586
3587 for (i = 0; i < nr_irqs; i++) {
3588 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3589 if (err)
3590 return err;
3591
3592 irq_domain_set_hwirq_and_chip(domain, virq + i,
3593 hwirq + i, &its_irq_chip, its_dev);
3594 irqd = irq_get_irq_data(virq + i);
3595 irqd_set_single_target(irqd);
3596 irqd_set_affinity_on_activate(irqd);
3597 irqd_set_resend_when_in_progress(irqd);
3598 pr_debug("ID:%d pID:%d vID:%d\n",
3599 (int)(hwirq + i - its_dev->event_map.lpi_base),
3600 (int)(hwirq + i), virq + i);
3601 }
3602
3603 return 0;
3604 }
3605
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3606 static int its_irq_domain_activate(struct irq_domain *domain,
3607 struct irq_data *d, bool reserve)
3608 {
3609 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3610 u32 event = its_get_event_id(d);
3611 int cpu;
3612
3613 cpu = its_select_cpu(d, cpu_online_mask);
3614 if (cpu < 0 || cpu >= nr_cpu_ids)
3615 return -EINVAL;
3616
3617 its_inc_lpi_count(d, cpu);
3618 its_dev->event_map.col_map[event] = cpu;
3619 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3620
3621 /* Map the GIC IRQ and event to the device */
3622 its_send_mapti(its_dev, d->hwirq, event);
3623 return 0;
3624 }
3625
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3626 static void its_irq_domain_deactivate(struct irq_domain *domain,
3627 struct irq_data *d)
3628 {
3629 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3630 u32 event = its_get_event_id(d);
3631
3632 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3633 /* Stop the delivery of interrupts */
3634 its_send_discard(its_dev, event);
3635 }
3636
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3637 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3638 unsigned int nr_irqs)
3639 {
3640 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3641 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3642 struct its_node *its = its_dev->its;
3643 int i;
3644
3645 bitmap_release_region(its_dev->event_map.lpi_map,
3646 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3647 get_count_order(nr_irqs));
3648
3649 for (i = 0; i < nr_irqs; i++) {
3650 struct irq_data *data = irq_domain_get_irq_data(domain,
3651 virq + i);
3652 /* Nuke the entry in the domain */
3653 irq_domain_reset_irq_data(data);
3654 }
3655
3656 mutex_lock(&its->dev_alloc_lock);
3657
3658 /*
3659 * If all interrupts have been freed, start mopping the
3660 * floor. This is conditioned on the device not being shared.
3661 */
3662 if (!its_dev->shared &&
3663 bitmap_empty(its_dev->event_map.lpi_map,
3664 its_dev->event_map.nr_lpis)) {
3665 its_lpi_free(its_dev->event_map.lpi_map,
3666 its_dev->event_map.lpi_base,
3667 its_dev->event_map.nr_lpis);
3668
3669 /* Unmap device/itt */
3670 its_send_mapd(its_dev, 0);
3671 its_free_device(its_dev);
3672 }
3673
3674 mutex_unlock(&its->dev_alloc_lock);
3675
3676 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3677 }
3678
3679 static const struct irq_domain_ops its_domain_ops = {
3680 .select = msi_lib_irq_domain_select,
3681 .alloc = its_irq_domain_alloc,
3682 .free = its_irq_domain_free,
3683 .activate = its_irq_domain_activate,
3684 .deactivate = its_irq_domain_deactivate,
3685 };
3686
3687 /*
3688 * This is insane.
3689 *
3690 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3691 * likely), the only way to perform an invalidate is to use a fake
3692 * device to issue an INV command, implying that the LPI has first
3693 * been mapped to some event on that device. Since this is not exactly
3694 * cheap, we try to keep that mapping around as long as possible, and
3695 * only issue an UNMAP if we're short on available slots.
3696 *
3697 * Broken by design(tm).
3698 *
3699 * GICv4.1, on the other hand, mandates that we're able to invalidate
3700 * by writing to a MMIO register. It doesn't implement the whole of
3701 * DirectLPI, but that's good enough. And most of the time, we don't
3702 * even have to invalidate anything, as the redistributor can be told
3703 * whether to generate a doorbell or not (we thus leave it enabled,
3704 * always).
3705 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3706 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3707 {
3708 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3709 if (gic_rdists->has_rvpeid)
3710 return;
3711
3712 /* Already unmapped? */
3713 if (vpe->vpe_proxy_event == -1)
3714 return;
3715
3716 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3717 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3718
3719 /*
3720 * We don't track empty slots at all, so let's move the
3721 * next_victim pointer if we can quickly reuse that slot
3722 * instead of nuking an existing entry. Not clear that this is
3723 * always a win though, and this might just generate a ripple
3724 * effect... Let's just hope VPEs don't migrate too often.
3725 */
3726 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3727 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3728
3729 vpe->vpe_proxy_event = -1;
3730 }
3731
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3732 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3733 {
3734 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3735 if (gic_rdists->has_rvpeid)
3736 return;
3737
3738 if (!gic_rdists->has_direct_lpi) {
3739 unsigned long flags;
3740
3741 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3742 its_vpe_db_proxy_unmap_locked(vpe);
3743 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3744 }
3745 }
3746
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3747 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3748 {
3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 if (gic_rdists->has_rvpeid)
3751 return;
3752
3753 /* Already mapped? */
3754 if (vpe->vpe_proxy_event != -1)
3755 return;
3756
3757 /* This slot was already allocated. Kick the other VPE out. */
3758 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3759 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3760
3761 /* Map the new VPE instead */
3762 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3763 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3764 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3765
3766 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3767 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3768 }
3769
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3770 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3771 {
3772 unsigned long flags;
3773 struct its_collection *target_col;
3774
3775 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3776 if (gic_rdists->has_rvpeid)
3777 return;
3778
3779 if (gic_rdists->has_direct_lpi) {
3780 void __iomem *rdbase;
3781
3782 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3783 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3784 wait_for_syncr(rdbase);
3785
3786 return;
3787 }
3788
3789 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3790
3791 its_vpe_db_proxy_map_locked(vpe);
3792
3793 target_col = &vpe_proxy.dev->its->collections[to];
3794 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3795 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3796
3797 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3798 }
3799
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3800 static int its_vpe_set_affinity(struct irq_data *d,
3801 const struct cpumask *mask_val,
3802 bool force)
3803 {
3804 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3805 unsigned int from, cpu = nr_cpu_ids;
3806 struct cpumask *table_mask;
3807 unsigned long flags;
3808
3809 /*
3810 * Check if we're racing against a VPE being destroyed, for
3811 * which we don't want to allow a VMOVP.
3812 */
3813 if (!atomic_read(&vpe->vmapp_count)) {
3814 if (gic_requires_eager_mapping())
3815 return -EINVAL;
3816
3817 /*
3818 * If we lazily map the VPEs, this isn't an error and
3819 * we can exit cleanly.
3820 */
3821 cpu = cpumask_first(mask_val);
3822 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3823 return IRQ_SET_MASK_OK_DONE;
3824 }
3825
3826 /*
3827 * Changing affinity is mega expensive, so let's be as lazy as
3828 * we can and only do it if we really have to. Also, if mapped
3829 * into the proxy device, we need to move the doorbell
3830 * interrupt to its new location.
3831 *
3832 * Another thing is that changing the affinity of a vPE affects
3833 * *other interrupts* such as all the vLPIs that are routed to
3834 * this vPE. This means that the irq_desc lock is not enough to
3835 * protect us, and that we must ensure nobody samples vpe->col_idx
3836 * during the update, hence the lock below which must also be
3837 * taken on any vLPI handling path that evaluates vpe->col_idx.
3838 *
3839 * Finally, we must protect ourselves against concurrent updates of
3840 * the mapping state on this VM should the ITS list be in use (see
3841 * the shortcut in its_send_vmovp() otherewise).
3842 */
3843 if (its_list_map)
3844 raw_spin_lock(&vpe->its_vm->vmapp_lock);
3845
3846 from = vpe_to_cpuid_lock(vpe, &flags);
3847 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3848
3849 /*
3850 * If we are offered another CPU in the same GICv4.1 ITS
3851 * affinity, pick this one. Otherwise, any CPU will do.
3852 */
3853 if (table_mask)
3854 cpu = cpumask_any_and(mask_val, table_mask);
3855 if (cpu < nr_cpu_ids) {
3856 if (cpumask_test_cpu(from, mask_val) &&
3857 cpumask_test_cpu(from, table_mask))
3858 cpu = from;
3859 } else {
3860 cpu = cpumask_first(mask_val);
3861 }
3862
3863 if (from == cpu)
3864 goto out;
3865
3866 vpe->col_idx = cpu;
3867
3868 its_send_vmovp(vpe);
3869 its_vpe_db_proxy_move(vpe, from, cpu);
3870
3871 out:
3872 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3873 vpe_to_cpuid_unlock(vpe, flags);
3874
3875 if (its_list_map)
3876 raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3877
3878 return IRQ_SET_MASK_OK_DONE;
3879 }
3880
its_wait_vpt_parse_complete(void)3881 static void its_wait_vpt_parse_complete(void)
3882 {
3883 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3884 u64 val;
3885
3886 if (!gic_rdists->has_vpend_valid_dirty)
3887 return;
3888
3889 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3890 val,
3891 !(val & GICR_VPENDBASER_Dirty),
3892 1, 500));
3893 }
3894
its_vpe_schedule(struct its_vpe * vpe)3895 static void its_vpe_schedule(struct its_vpe *vpe)
3896 {
3897 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3898 u64 val;
3899
3900 /* Schedule the VPE */
3901 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3902 GENMASK_ULL(51, 12);
3903 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3904 if (rdists_support_shareable()) {
3905 val |= GICR_VPROPBASER_RaWb;
3906 val |= GICR_VPROPBASER_InnerShareable;
3907 }
3908 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3909
3910 val = virt_to_phys(page_address(vpe->vpt_page)) &
3911 GENMASK_ULL(51, 16);
3912 if (rdists_support_shareable()) {
3913 val |= GICR_VPENDBASER_RaWaWb;
3914 val |= GICR_VPENDBASER_InnerShareable;
3915 }
3916 /*
3917 * There is no good way of finding out if the pending table is
3918 * empty as we can race against the doorbell interrupt very
3919 * easily. So in the end, vpe->pending_last is only an
3920 * indication that the vcpu has something pending, not one
3921 * that the pending table is empty. A good implementation
3922 * would be able to read its coarse map pretty quickly anyway,
3923 * making this a tolerable issue.
3924 */
3925 val |= GICR_VPENDBASER_PendingLast;
3926 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3927 val |= GICR_VPENDBASER_Valid;
3928 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3929 }
3930
its_vpe_deschedule(struct its_vpe * vpe)3931 static void its_vpe_deschedule(struct its_vpe *vpe)
3932 {
3933 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3934 u64 val;
3935
3936 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3937
3938 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3939 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3940 }
3941
its_vpe_invall(struct its_vpe * vpe)3942 static void its_vpe_invall(struct its_vpe *vpe)
3943 {
3944 struct its_node *its;
3945
3946 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3947
3948 list_for_each_entry(its, &its_nodes, entry) {
3949 if (!is_v4(its))
3950 continue;
3951
3952 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3953 continue;
3954
3955 /*
3956 * Sending a VINVALL to a single ITS is enough, as all
3957 * we need is to reach the redistributors.
3958 */
3959 its_send_vinvall(its, vpe);
3960 return;
3961 }
3962 }
3963
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3964 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3965 {
3966 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3967 struct its_cmd_info *info = vcpu_info;
3968
3969 switch (info->cmd_type) {
3970 case SCHEDULE_VPE:
3971 its_vpe_schedule(vpe);
3972 return 0;
3973
3974 case DESCHEDULE_VPE:
3975 its_vpe_deschedule(vpe);
3976 return 0;
3977
3978 case COMMIT_VPE:
3979 its_wait_vpt_parse_complete();
3980 return 0;
3981
3982 case INVALL_VPE:
3983 its_vpe_invall(vpe);
3984 return 0;
3985
3986 default:
3987 return -EINVAL;
3988 }
3989 }
3990
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3991 static void its_vpe_send_cmd(struct its_vpe *vpe,
3992 void (*cmd)(struct its_device *, u32))
3993 {
3994 unsigned long flags;
3995
3996 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3997
3998 its_vpe_db_proxy_map_locked(vpe);
3999 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4000
4001 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4002 }
4003
its_vpe_send_inv(struct irq_data * d)4004 static void its_vpe_send_inv(struct irq_data *d)
4005 {
4006 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4007
4008 if (gic_rdists->has_direct_lpi)
4009 __direct_lpi_inv(d, d->parent_data->hwirq);
4010 else
4011 its_vpe_send_cmd(vpe, its_send_inv);
4012 }
4013
its_vpe_mask_irq(struct irq_data * d)4014 static void its_vpe_mask_irq(struct irq_data *d)
4015 {
4016 /*
4017 * We need to unmask the LPI, which is described by the parent
4018 * irq_data. Instead of calling into the parent (which won't
4019 * exactly do the right thing, let's simply use the
4020 * parent_data pointer. Yes, I'm naughty.
4021 */
4022 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4023 its_vpe_send_inv(d);
4024 }
4025
its_vpe_unmask_irq(struct irq_data * d)4026 static void its_vpe_unmask_irq(struct irq_data *d)
4027 {
4028 /* Same hack as above... */
4029 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4030 its_vpe_send_inv(d);
4031 }
4032
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4033 static int its_vpe_set_irqchip_state(struct irq_data *d,
4034 enum irqchip_irq_state which,
4035 bool state)
4036 {
4037 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4038
4039 if (which != IRQCHIP_STATE_PENDING)
4040 return -EINVAL;
4041
4042 if (gic_rdists->has_direct_lpi) {
4043 void __iomem *rdbase;
4044
4045 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4046 if (state) {
4047 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4048 } else {
4049 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4050 wait_for_syncr(rdbase);
4051 }
4052 } else {
4053 if (state)
4054 its_vpe_send_cmd(vpe, its_send_int);
4055 else
4056 its_vpe_send_cmd(vpe, its_send_clear);
4057 }
4058
4059 return 0;
4060 }
4061
its_vpe_retrigger(struct irq_data * d)4062 static int its_vpe_retrigger(struct irq_data *d)
4063 {
4064 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4065 }
4066
4067 static struct irq_chip its_vpe_irq_chip = {
4068 .name = "GICv4-vpe",
4069 .irq_mask = its_vpe_mask_irq,
4070 .irq_unmask = its_vpe_unmask_irq,
4071 .irq_eoi = irq_chip_eoi_parent,
4072 .irq_set_affinity = its_vpe_set_affinity,
4073 .irq_retrigger = its_vpe_retrigger,
4074 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4075 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4076 };
4077
find_4_1_its(void)4078 static struct its_node *find_4_1_its(void)
4079 {
4080 static struct its_node *its = NULL;
4081
4082 if (!its) {
4083 list_for_each_entry(its, &its_nodes, entry) {
4084 if (is_v4_1(its))
4085 return its;
4086 }
4087
4088 /* Oops? */
4089 its = NULL;
4090 }
4091
4092 return its;
4093 }
4094
its_vpe_4_1_send_inv(struct irq_data * d)4095 static void its_vpe_4_1_send_inv(struct irq_data *d)
4096 {
4097 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4098 struct its_node *its;
4099
4100 /*
4101 * GICv4.1 wants doorbells to be invalidated using the
4102 * INVDB command in order to be broadcast to all RDs. Send
4103 * it to the first valid ITS, and let the HW do its magic.
4104 */
4105 its = find_4_1_its();
4106 if (its)
4107 its_send_invdb(its, vpe);
4108 }
4109
its_vpe_4_1_mask_irq(struct irq_data * d)4110 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4111 {
4112 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4113 its_vpe_4_1_send_inv(d);
4114 }
4115
its_vpe_4_1_unmask_irq(struct irq_data * d)4116 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4117 {
4118 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4119 its_vpe_4_1_send_inv(d);
4120 }
4121
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4122 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4123 struct its_cmd_info *info)
4124 {
4125 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4126 u64 val = 0;
4127
4128 /* Schedule the VPE */
4129 val |= GICR_VPENDBASER_Valid;
4130 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4131 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4132 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4133
4134 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4135 }
4136
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4137 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4138 struct its_cmd_info *info)
4139 {
4140 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4141 u64 val;
4142
4143 if (info->req_db) {
4144 unsigned long flags;
4145
4146 /*
4147 * vPE is going to block: make the vPE non-resident with
4148 * PendingLast clear and DB set. The GIC guarantees that if
4149 * we read-back PendingLast clear, then a doorbell will be
4150 * delivered when an interrupt comes.
4151 *
4152 * Note the locking to deal with the concurrent update of
4153 * pending_last from the doorbell interrupt handler that can
4154 * run concurrently.
4155 */
4156 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4157 val = its_clear_vpend_valid(vlpi_base,
4158 GICR_VPENDBASER_PendingLast,
4159 GICR_VPENDBASER_4_1_DB);
4160 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4161 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4162 } else {
4163 /*
4164 * We're not blocking, so just make the vPE non-resident
4165 * with PendingLast set, indicating that we'll be back.
4166 */
4167 val = its_clear_vpend_valid(vlpi_base,
4168 0,
4169 GICR_VPENDBASER_PendingLast);
4170 vpe->pending_last = true;
4171 }
4172 }
4173
its_vpe_4_1_invall(struct its_vpe * vpe)4174 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4175 {
4176 void __iomem *rdbase;
4177 unsigned long flags;
4178 u64 val;
4179 int cpu;
4180
4181 val = GICR_INVALLR_V;
4182 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4183
4184 /* Target the redistributor this vPE is currently known on */
4185 cpu = vpe_to_cpuid_lock(vpe, &flags);
4186 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4187 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4188 gic_write_lpir(val, rdbase + GICR_INVALLR);
4189
4190 wait_for_syncr(rdbase);
4191 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4192 vpe_to_cpuid_unlock(vpe, flags);
4193 }
4194
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4195 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4196 {
4197 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4198 struct its_cmd_info *info = vcpu_info;
4199
4200 switch (info->cmd_type) {
4201 case SCHEDULE_VPE:
4202 its_vpe_4_1_schedule(vpe, info);
4203 return 0;
4204
4205 case DESCHEDULE_VPE:
4206 its_vpe_4_1_deschedule(vpe, info);
4207 return 0;
4208
4209 case COMMIT_VPE:
4210 its_wait_vpt_parse_complete();
4211 return 0;
4212
4213 case INVALL_VPE:
4214 its_vpe_4_1_invall(vpe);
4215 return 0;
4216
4217 default:
4218 return -EINVAL;
4219 }
4220 }
4221
4222 static struct irq_chip its_vpe_4_1_irq_chip = {
4223 .name = "GICv4.1-vpe",
4224 .irq_mask = its_vpe_4_1_mask_irq,
4225 .irq_unmask = its_vpe_4_1_unmask_irq,
4226 .irq_eoi = irq_chip_eoi_parent,
4227 .irq_set_affinity = its_vpe_set_affinity,
4228 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4229 };
4230
its_configure_sgi(struct irq_data * d,bool clear)4231 static void its_configure_sgi(struct irq_data *d, bool clear)
4232 {
4233 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4234 struct its_cmd_desc desc;
4235
4236 desc.its_vsgi_cmd.vpe = vpe;
4237 desc.its_vsgi_cmd.sgi = d->hwirq;
4238 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4239 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4240 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4241 desc.its_vsgi_cmd.clear = clear;
4242
4243 /*
4244 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4245 * destination VPE is mapped there. Since we map them eagerly at
4246 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4247 */
4248 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4249 }
4250
its_sgi_mask_irq(struct irq_data * d)4251 static void its_sgi_mask_irq(struct irq_data *d)
4252 {
4253 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4254
4255 vpe->sgi_config[d->hwirq].enabled = false;
4256 its_configure_sgi(d, false);
4257 }
4258
its_sgi_unmask_irq(struct irq_data * d)4259 static void its_sgi_unmask_irq(struct irq_data *d)
4260 {
4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262
4263 vpe->sgi_config[d->hwirq].enabled = true;
4264 its_configure_sgi(d, false);
4265 }
4266
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4267 static int its_sgi_set_affinity(struct irq_data *d,
4268 const struct cpumask *mask_val,
4269 bool force)
4270 {
4271 /*
4272 * There is no notion of affinity for virtual SGIs, at least
4273 * not on the host (since they can only be targeting a vPE).
4274 * Tell the kernel we've done whatever it asked for.
4275 */
4276 irq_data_update_effective_affinity(d, mask_val);
4277 return IRQ_SET_MASK_OK;
4278 }
4279
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4280 static int its_sgi_set_irqchip_state(struct irq_data *d,
4281 enum irqchip_irq_state which,
4282 bool state)
4283 {
4284 if (which != IRQCHIP_STATE_PENDING)
4285 return -EINVAL;
4286
4287 if (state) {
4288 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4289 struct its_node *its = find_4_1_its();
4290 u64 val;
4291
4292 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4293 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4294 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4295 } else {
4296 its_configure_sgi(d, true);
4297 }
4298
4299 return 0;
4300 }
4301
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4302 static int its_sgi_get_irqchip_state(struct irq_data *d,
4303 enum irqchip_irq_state which, bool *val)
4304 {
4305 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4306 void __iomem *base;
4307 unsigned long flags;
4308 u32 count = 1000000; /* 1s! */
4309 u32 status;
4310 int cpu;
4311
4312 if (which != IRQCHIP_STATE_PENDING)
4313 return -EINVAL;
4314
4315 /*
4316 * Locking galore! We can race against two different events:
4317 *
4318 * - Concurrent vPE affinity change: we must make sure it cannot
4319 * happen, or we'll talk to the wrong redistributor. This is
4320 * identical to what happens with vLPIs.
4321 *
4322 * - Concurrent VSGIPENDR access: As it involves accessing two
4323 * MMIO registers, this must be made atomic one way or another.
4324 */
4325 cpu = vpe_to_cpuid_lock(vpe, &flags);
4326 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4327 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4328 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4329 do {
4330 status = readl_relaxed(base + GICR_VSGIPENDR);
4331 if (!(status & GICR_VSGIPENDR_BUSY))
4332 goto out;
4333
4334 count--;
4335 if (!count) {
4336 pr_err_ratelimited("Unable to get SGI status\n");
4337 goto out;
4338 }
4339 cpu_relax();
4340 udelay(1);
4341 } while (count);
4342
4343 out:
4344 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4345 vpe_to_cpuid_unlock(vpe, flags);
4346
4347 if (!count)
4348 return -ENXIO;
4349
4350 *val = !!(status & (1 << d->hwirq));
4351
4352 return 0;
4353 }
4354
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4355 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4356 {
4357 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4358 struct its_cmd_info *info = vcpu_info;
4359
4360 switch (info->cmd_type) {
4361 case PROP_UPDATE_VSGI:
4362 vpe->sgi_config[d->hwirq].priority = info->priority;
4363 vpe->sgi_config[d->hwirq].group = info->group;
4364 its_configure_sgi(d, false);
4365 return 0;
4366
4367 default:
4368 return -EINVAL;
4369 }
4370 }
4371
4372 static struct irq_chip its_sgi_irq_chip = {
4373 .name = "GICv4.1-sgi",
4374 .irq_mask = its_sgi_mask_irq,
4375 .irq_unmask = its_sgi_unmask_irq,
4376 .irq_set_affinity = its_sgi_set_affinity,
4377 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4378 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4379 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4380 };
4381
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4382 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4383 unsigned int virq, unsigned int nr_irqs,
4384 void *args)
4385 {
4386 struct its_vpe *vpe = args;
4387 int i;
4388
4389 /* Yes, we do want 16 SGIs */
4390 WARN_ON(nr_irqs != 16);
4391
4392 for (i = 0; i < 16; i++) {
4393 vpe->sgi_config[i].priority = 0;
4394 vpe->sgi_config[i].enabled = false;
4395 vpe->sgi_config[i].group = false;
4396
4397 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4398 &its_sgi_irq_chip, vpe);
4399 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4400 }
4401
4402 return 0;
4403 }
4404
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4405 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4406 unsigned int virq,
4407 unsigned int nr_irqs)
4408 {
4409 /* Nothing to do */
4410 }
4411
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4412 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4413 struct irq_data *d, bool reserve)
4414 {
4415 /* Write out the initial SGI configuration */
4416 its_configure_sgi(d, false);
4417 return 0;
4418 }
4419
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4420 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4421 struct irq_data *d)
4422 {
4423 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4424
4425 /*
4426 * The VSGI command is awkward:
4427 *
4428 * - To change the configuration, CLEAR must be set to false,
4429 * leaving the pending bit unchanged.
4430 * - To clear the pending bit, CLEAR must be set to true, leaving
4431 * the configuration unchanged.
4432 *
4433 * You just can't do both at once, hence the two commands below.
4434 */
4435 vpe->sgi_config[d->hwirq].enabled = false;
4436 its_configure_sgi(d, false);
4437 its_configure_sgi(d, true);
4438 }
4439
4440 static const struct irq_domain_ops its_sgi_domain_ops = {
4441 .alloc = its_sgi_irq_domain_alloc,
4442 .free = its_sgi_irq_domain_free,
4443 .activate = its_sgi_irq_domain_activate,
4444 .deactivate = its_sgi_irq_domain_deactivate,
4445 };
4446
its_vpe_id_alloc(void)4447 static int its_vpe_id_alloc(void)
4448 {
4449 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4450 }
4451
its_vpe_id_free(u16 id)4452 static void its_vpe_id_free(u16 id)
4453 {
4454 ida_free(&its_vpeid_ida, id);
4455 }
4456
its_vpe_init(struct its_vpe * vpe)4457 static int its_vpe_init(struct its_vpe *vpe)
4458 {
4459 struct page *vpt_page;
4460 int vpe_id;
4461
4462 /* Allocate vpe_id */
4463 vpe_id = its_vpe_id_alloc();
4464 if (vpe_id < 0)
4465 return vpe_id;
4466
4467 /* Allocate VPT */
4468 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4469 if (!vpt_page) {
4470 its_vpe_id_free(vpe_id);
4471 return -ENOMEM;
4472 }
4473
4474 if (!its_alloc_vpe_table(vpe_id)) {
4475 its_vpe_id_free(vpe_id);
4476 its_free_pending_table(vpt_page);
4477 return -ENOMEM;
4478 }
4479
4480 raw_spin_lock_init(&vpe->vpe_lock);
4481 vpe->vpe_id = vpe_id;
4482 vpe->vpt_page = vpt_page;
4483 atomic_set(&vpe->vmapp_count, 0);
4484 if (!gic_rdists->has_rvpeid)
4485 vpe->vpe_proxy_event = -1;
4486
4487 return 0;
4488 }
4489
its_vpe_teardown(struct its_vpe * vpe)4490 static void its_vpe_teardown(struct its_vpe *vpe)
4491 {
4492 its_vpe_db_proxy_unmap(vpe);
4493 its_vpe_id_free(vpe->vpe_id);
4494 its_free_pending_table(vpe->vpt_page);
4495 }
4496
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4497 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4498 unsigned int virq,
4499 unsigned int nr_irqs)
4500 {
4501 struct its_vm *vm = domain->host_data;
4502 int i;
4503
4504 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4505
4506 for (i = 0; i < nr_irqs; i++) {
4507 struct irq_data *data = irq_domain_get_irq_data(domain,
4508 virq + i);
4509 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4510
4511 BUG_ON(vm != vpe->its_vm);
4512
4513 clear_bit(data->hwirq, vm->db_bitmap);
4514 its_vpe_teardown(vpe);
4515 irq_domain_reset_irq_data(data);
4516 }
4517
4518 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4519 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4520 its_free_prop_table(vm->vprop_page);
4521 }
4522 }
4523
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4524 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4525 unsigned int nr_irqs, void *args)
4526 {
4527 struct irq_chip *irqchip = &its_vpe_irq_chip;
4528 struct its_vm *vm = args;
4529 unsigned long *bitmap;
4530 struct page *vprop_page;
4531 int base, nr_ids, i, err = 0;
4532
4533 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4534 if (!bitmap)
4535 return -ENOMEM;
4536
4537 if (nr_ids < nr_irqs) {
4538 its_lpi_free(bitmap, base, nr_ids);
4539 return -ENOMEM;
4540 }
4541
4542 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4543 if (!vprop_page) {
4544 its_lpi_free(bitmap, base, nr_ids);
4545 return -ENOMEM;
4546 }
4547
4548 vm->db_bitmap = bitmap;
4549 vm->db_lpi_base = base;
4550 vm->nr_db_lpis = nr_ids;
4551 vm->vprop_page = vprop_page;
4552 raw_spin_lock_init(&vm->vmapp_lock);
4553
4554 if (gic_rdists->has_rvpeid)
4555 irqchip = &its_vpe_4_1_irq_chip;
4556
4557 for (i = 0; i < nr_irqs; i++) {
4558 vm->vpes[i]->vpe_db_lpi = base + i;
4559 err = its_vpe_init(vm->vpes[i]);
4560 if (err)
4561 break;
4562 err = its_irq_gic_domain_alloc(domain, virq + i,
4563 vm->vpes[i]->vpe_db_lpi);
4564 if (err)
4565 break;
4566 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4567 irqchip, vm->vpes[i]);
4568 set_bit(i, bitmap);
4569 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4570 }
4571
4572 if (err)
4573 its_vpe_irq_domain_free(domain, virq, i);
4574
4575 return err;
4576 }
4577
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4578 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4579 struct irq_data *d, bool reserve)
4580 {
4581 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4582 struct its_node *its;
4583
4584 /* Map the VPE to the first possible CPU */
4585 vpe->col_idx = cpumask_first(cpu_online_mask);
4586 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4587
4588 /*
4589 * If we use the list map, we issue VMAPP on demand... Unless
4590 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4591 * so that VSGIs can work.
4592 */
4593 if (!gic_requires_eager_mapping())
4594 return 0;
4595
4596 list_for_each_entry(its, &its_nodes, entry) {
4597 if (!is_v4(its))
4598 continue;
4599
4600 its_send_vmapp(its, vpe, true);
4601 its_send_vinvall(its, vpe);
4602 }
4603
4604 return 0;
4605 }
4606
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4607 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4608 struct irq_data *d)
4609 {
4610 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4611 struct its_node *its;
4612
4613 /*
4614 * If we use the list map on GICv4.0, we unmap the VPE once no
4615 * VLPIs are associated with the VM.
4616 */
4617 if (!gic_requires_eager_mapping())
4618 return;
4619
4620 list_for_each_entry(its, &its_nodes, entry) {
4621 if (!is_v4(its))
4622 continue;
4623
4624 its_send_vmapp(its, vpe, false);
4625 }
4626
4627 /*
4628 * There may be a direct read to the VPT after unmapping the
4629 * vPE, to guarantee the validity of this, we make the VPT
4630 * memory coherent with the CPU caches here.
4631 */
4632 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4633 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4634 LPI_PENDBASE_SZ);
4635 }
4636
4637 static const struct irq_domain_ops its_vpe_domain_ops = {
4638 .alloc = its_vpe_irq_domain_alloc,
4639 .free = its_vpe_irq_domain_free,
4640 .activate = its_vpe_irq_domain_activate,
4641 .deactivate = its_vpe_irq_domain_deactivate,
4642 };
4643
its_force_quiescent(void __iomem * base)4644 static int its_force_quiescent(void __iomem *base)
4645 {
4646 u32 count = 1000000; /* 1s */
4647 u32 val;
4648
4649 val = readl_relaxed(base + GITS_CTLR);
4650 /*
4651 * GIC architecture specification requires the ITS to be both
4652 * disabled and quiescent for writes to GITS_BASER<n> or
4653 * GITS_CBASER to not have UNPREDICTABLE results.
4654 */
4655 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4656 return 0;
4657
4658 /* Disable the generation of all interrupts to this ITS */
4659 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4660 writel_relaxed(val, base + GITS_CTLR);
4661
4662 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4663 while (1) {
4664 val = readl_relaxed(base + GITS_CTLR);
4665 if (val & GITS_CTLR_QUIESCENT)
4666 return 0;
4667
4668 count--;
4669 if (!count)
4670 return -EBUSY;
4671
4672 cpu_relax();
4673 udelay(1);
4674 }
4675 }
4676
its_enable_quirk_cavium_22375(void * data)4677 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4678 {
4679 struct its_node *its = data;
4680
4681 /* erratum 22375: only alloc 8MB table size (20 bits) */
4682 its->typer &= ~GITS_TYPER_DEVBITS;
4683 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4684 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4685
4686 return true;
4687 }
4688
its_enable_quirk_cavium_23144(void * data)4689 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4690 {
4691 struct its_node *its = data;
4692
4693 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4694
4695 return true;
4696 }
4697
its_enable_quirk_qdf2400_e0065(void * data)4698 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4699 {
4700 struct its_node *its = data;
4701
4702 /* On QDF2400, the size of the ITE is 16Bytes */
4703 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4704 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4705
4706 return true;
4707 }
4708
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4709 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4710 {
4711 struct its_node *its = its_dev->its;
4712
4713 /*
4714 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4715 * which maps 32-bit writes targeted at a separate window of
4716 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4717 * with device ID taken from bits [device_id_bits + 1:2] of
4718 * the window offset.
4719 */
4720 return its->pre_its_base + (its_dev->device_id << 2);
4721 }
4722
its_enable_quirk_socionext_synquacer(void * data)4723 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4724 {
4725 struct its_node *its = data;
4726 u32 pre_its_window[2];
4727 u32 ids;
4728
4729 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4730 "socionext,synquacer-pre-its",
4731 pre_its_window,
4732 ARRAY_SIZE(pre_its_window))) {
4733
4734 its->pre_its_base = pre_its_window[0];
4735 its->get_msi_base = its_irq_get_msi_base_pre_its;
4736
4737 ids = ilog2(pre_its_window[1]) - 2;
4738 if (device_ids(its) > ids) {
4739 its->typer &= ~GITS_TYPER_DEVBITS;
4740 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4741 }
4742
4743 /* the pre-ITS breaks isolation, so disable MSI remapping */
4744 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4745 return true;
4746 }
4747 return false;
4748 }
4749
its_enable_quirk_hip07_161600802(void * data)4750 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4751 {
4752 struct its_node *its = data;
4753
4754 /*
4755 * Hip07 insists on using the wrong address for the VLPI
4756 * page. Trick it into doing the right thing...
4757 */
4758 its->vlpi_redist_offset = SZ_128K;
4759 return true;
4760 }
4761
its_enable_rk3588001(void * data)4762 static bool __maybe_unused its_enable_rk3588001(void *data)
4763 {
4764 struct its_node *its = data;
4765
4766 if (!of_machine_is_compatible("rockchip,rk3588") &&
4767 !of_machine_is_compatible("rockchip,rk3588s"))
4768 return false;
4769
4770 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4771 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4772
4773 return true;
4774 }
4775
its_set_non_coherent(void * data)4776 static bool its_set_non_coherent(void *data)
4777 {
4778 struct its_node *its = data;
4779
4780 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4781 return true;
4782 }
4783
4784 static const struct gic_quirk its_quirks[] = {
4785 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4786 {
4787 .desc = "ITS: Cavium errata 22375, 24313",
4788 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4789 .mask = 0xffff0fff,
4790 .init = its_enable_quirk_cavium_22375,
4791 },
4792 #endif
4793 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4794 {
4795 .desc = "ITS: Cavium erratum 23144",
4796 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4797 .mask = 0xffff0fff,
4798 .init = its_enable_quirk_cavium_23144,
4799 },
4800 #endif
4801 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4802 {
4803 .desc = "ITS: QDF2400 erratum 0065",
4804 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4805 .mask = 0xffffffff,
4806 .init = its_enable_quirk_qdf2400_e0065,
4807 },
4808 #endif
4809 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4810 {
4811 /*
4812 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4813 * implementation, but with a 'pre-ITS' added that requires
4814 * special handling in software.
4815 */
4816 .desc = "ITS: Socionext Synquacer pre-ITS",
4817 .iidr = 0x0001143b,
4818 .mask = 0xffffffff,
4819 .init = its_enable_quirk_socionext_synquacer,
4820 },
4821 #endif
4822 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4823 {
4824 .desc = "ITS: Hip07 erratum 161600802",
4825 .iidr = 0x00000004,
4826 .mask = 0xffffffff,
4827 .init = its_enable_quirk_hip07_161600802,
4828 },
4829 #endif
4830 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4831 {
4832 .desc = "ITS: Rockchip erratum RK3588001",
4833 .iidr = 0x0201743b,
4834 .mask = 0xffffffff,
4835 .init = its_enable_rk3588001,
4836 },
4837 #endif
4838 {
4839 .desc = "ITS: non-coherent attribute",
4840 .property = "dma-noncoherent",
4841 .init = its_set_non_coherent,
4842 },
4843 {
4844 }
4845 };
4846
its_enable_quirks(struct its_node * its)4847 static void its_enable_quirks(struct its_node *its)
4848 {
4849 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4850
4851 gic_enable_quirks(iidr, its_quirks, its);
4852
4853 if (is_of_node(its->fwnode_handle))
4854 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4855 its_quirks, its);
4856 }
4857
its_save_disable(void)4858 static int its_save_disable(void)
4859 {
4860 struct its_node *its;
4861 int err = 0;
4862
4863 raw_spin_lock(&its_lock);
4864 list_for_each_entry(its, &its_nodes, entry) {
4865 void __iomem *base;
4866
4867 base = its->base;
4868 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4869 err = its_force_quiescent(base);
4870 if (err) {
4871 pr_err("ITS@%pa: failed to quiesce: %d\n",
4872 &its->phys_base, err);
4873 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4874 goto err;
4875 }
4876
4877 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4878 }
4879
4880 err:
4881 if (err) {
4882 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4883 void __iomem *base;
4884
4885 base = its->base;
4886 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4887 }
4888 }
4889 raw_spin_unlock(&its_lock);
4890
4891 return err;
4892 }
4893
its_restore_enable(void)4894 static void its_restore_enable(void)
4895 {
4896 struct its_node *its;
4897 int ret;
4898
4899 raw_spin_lock(&its_lock);
4900 list_for_each_entry(its, &its_nodes, entry) {
4901 void __iomem *base;
4902 int i;
4903
4904 base = its->base;
4905
4906 /*
4907 * Make sure that the ITS is disabled. If it fails to quiesce,
4908 * don't restore it since writing to CBASER or BASER<n>
4909 * registers is undefined according to the GIC v3 ITS
4910 * Specification.
4911 *
4912 * Firmware resuming with the ITS enabled is terminally broken.
4913 */
4914 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4915 ret = its_force_quiescent(base);
4916 if (ret) {
4917 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4918 &its->phys_base, ret);
4919 continue;
4920 }
4921
4922 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4923
4924 /*
4925 * Writing CBASER resets CREADR to 0, so make CWRITER and
4926 * cmd_write line up with it.
4927 */
4928 its->cmd_write = its->cmd_base;
4929 gits_write_cwriter(0, base + GITS_CWRITER);
4930
4931 /* Restore GITS_BASER from the value cache. */
4932 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4933 struct its_baser *baser = &its->tables[i];
4934
4935 if (!(baser->val & GITS_BASER_VALID))
4936 continue;
4937
4938 its_write_baser(its, baser, baser->val);
4939 }
4940 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4941
4942 /*
4943 * Reinit the collection if it's stored in the ITS. This is
4944 * indicated by the col_id being less than the HCC field.
4945 * CID < HCC as specified in the GIC v3 Documentation.
4946 */
4947 if (its->collections[smp_processor_id()].col_id <
4948 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4949 its_cpu_init_collection(its);
4950 }
4951 raw_spin_unlock(&its_lock);
4952 }
4953
4954 static struct syscore_ops its_syscore_ops = {
4955 .suspend = its_save_disable,
4956 .resume = its_restore_enable,
4957 };
4958
its_map_one(struct resource * res,int * err)4959 static void __init __iomem *its_map_one(struct resource *res, int *err)
4960 {
4961 void __iomem *its_base;
4962 u32 val;
4963
4964 its_base = ioremap(res->start, SZ_64K);
4965 if (!its_base) {
4966 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4967 *err = -ENOMEM;
4968 return NULL;
4969 }
4970
4971 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4972 if (val != 0x30 && val != 0x40) {
4973 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4974 *err = -ENODEV;
4975 goto out_unmap;
4976 }
4977
4978 *err = its_force_quiescent(its_base);
4979 if (*err) {
4980 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4981 goto out_unmap;
4982 }
4983
4984 return its_base;
4985
4986 out_unmap:
4987 iounmap(its_base);
4988 return NULL;
4989 }
4990
its_init_domain(struct its_node * its)4991 static int its_init_domain(struct its_node *its)
4992 {
4993 struct irq_domain *inner_domain;
4994 struct msi_domain_info *info;
4995
4996 info = kzalloc(sizeof(*info), GFP_KERNEL);
4997 if (!info)
4998 return -ENOMEM;
4999
5000 info->ops = &its_msi_domain_ops;
5001 info->data = its;
5002
5003 inner_domain = irq_domain_create_hierarchy(its_parent,
5004 its->msi_domain_flags, 0,
5005 its->fwnode_handle, &its_domain_ops,
5006 info);
5007 if (!inner_domain) {
5008 kfree(info);
5009 return -ENOMEM;
5010 }
5011
5012 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5013
5014 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5015 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5016
5017 return 0;
5018 }
5019
its_init_vpe_domain(void)5020 static int its_init_vpe_domain(void)
5021 {
5022 struct its_node *its;
5023 u32 devid;
5024 int entries;
5025
5026 if (gic_rdists->has_direct_lpi) {
5027 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5028 return 0;
5029 }
5030
5031 /* Any ITS will do, even if not v4 */
5032 its = list_first_entry(&its_nodes, struct its_node, entry);
5033
5034 entries = roundup_pow_of_two(nr_cpu_ids);
5035 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5036 GFP_KERNEL);
5037 if (!vpe_proxy.vpes)
5038 return -ENOMEM;
5039
5040 /* Use the last possible DevID */
5041 devid = GENMASK(device_ids(its) - 1, 0);
5042 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5043 if (!vpe_proxy.dev) {
5044 kfree(vpe_proxy.vpes);
5045 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5046 return -ENOMEM;
5047 }
5048
5049 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5050
5051 raw_spin_lock_init(&vpe_proxy.lock);
5052 vpe_proxy.next_victim = 0;
5053 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5054 devid, vpe_proxy.dev->nr_ites);
5055
5056 return 0;
5057 }
5058
its_compute_its_list_map(struct its_node * its)5059 static int __init its_compute_its_list_map(struct its_node *its)
5060 {
5061 int its_number;
5062 u32 ctlr;
5063
5064 /*
5065 * This is assumed to be done early enough that we're
5066 * guaranteed to be single-threaded, hence no
5067 * locking. Should this change, we should address
5068 * this.
5069 */
5070 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5071 if (its_number >= GICv4_ITS_LIST_MAX) {
5072 pr_err("ITS@%pa: No ITSList entry available!\n",
5073 &its->phys_base);
5074 return -EINVAL;
5075 }
5076
5077 ctlr = readl_relaxed(its->base + GITS_CTLR);
5078 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5079 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5080 writel_relaxed(ctlr, its->base + GITS_CTLR);
5081 ctlr = readl_relaxed(its->base + GITS_CTLR);
5082 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5083 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5084 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5085 }
5086
5087 if (test_and_set_bit(its_number, &its_list_map)) {
5088 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5089 &its->phys_base, its_number);
5090 return -EINVAL;
5091 }
5092
5093 return its_number;
5094 }
5095
its_probe_one(struct its_node * its)5096 static int __init its_probe_one(struct its_node *its)
5097 {
5098 u64 baser, tmp;
5099 struct page *page;
5100 u32 ctlr;
5101 int err;
5102
5103 its_enable_quirks(its);
5104
5105 if (is_v4(its)) {
5106 if (!(its->typer & GITS_TYPER_VMOVP)) {
5107 err = its_compute_its_list_map(its);
5108 if (err < 0)
5109 goto out;
5110
5111 its->list_nr = err;
5112
5113 pr_info("ITS@%pa: Using ITS number %d\n",
5114 &its->phys_base, err);
5115 } else {
5116 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5117 }
5118
5119 if (is_v4_1(its)) {
5120 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5121
5122 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5123 if (!its->sgir_base) {
5124 err = -ENOMEM;
5125 goto out;
5126 }
5127
5128 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5129
5130 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5131 &its->phys_base, its->mpidr, svpet);
5132 }
5133 }
5134
5135 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5136 get_order(ITS_CMD_QUEUE_SZ));
5137 if (!page) {
5138 err = -ENOMEM;
5139 goto out_unmap_sgir;
5140 }
5141 its->cmd_base = (void *)page_address(page);
5142 its->cmd_write = its->cmd_base;
5143
5144 err = its_alloc_tables(its);
5145 if (err)
5146 goto out_free_cmd;
5147
5148 err = its_alloc_collections(its);
5149 if (err)
5150 goto out_free_tables;
5151
5152 baser = (virt_to_phys(its->cmd_base) |
5153 GITS_CBASER_RaWaWb |
5154 GITS_CBASER_InnerShareable |
5155 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5156 GITS_CBASER_VALID);
5157
5158 gits_write_cbaser(baser, its->base + GITS_CBASER);
5159 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5160
5161 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5162 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5163
5164 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5165 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5166 /*
5167 * The HW reports non-shareable, we must
5168 * remove the cacheability attributes as
5169 * well.
5170 */
5171 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5172 GITS_CBASER_CACHEABILITY_MASK);
5173 baser |= GITS_CBASER_nC;
5174 gits_write_cbaser(baser, its->base + GITS_CBASER);
5175 }
5176 pr_info("ITS: using cache flushing for cmd queue\n");
5177 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5178 }
5179
5180 gits_write_cwriter(0, its->base + GITS_CWRITER);
5181 ctlr = readl_relaxed(its->base + GITS_CTLR);
5182 ctlr |= GITS_CTLR_ENABLE;
5183 if (is_v4(its))
5184 ctlr |= GITS_CTLR_ImDe;
5185 writel_relaxed(ctlr, its->base + GITS_CTLR);
5186
5187 err = its_init_domain(its);
5188 if (err)
5189 goto out_free_tables;
5190
5191 raw_spin_lock(&its_lock);
5192 list_add(&its->entry, &its_nodes);
5193 raw_spin_unlock(&its_lock);
5194
5195 return 0;
5196
5197 out_free_tables:
5198 its_free_tables(its);
5199 out_free_cmd:
5200 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5201 out_unmap_sgir:
5202 if (its->sgir_base)
5203 iounmap(its->sgir_base);
5204 out:
5205 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5206 return err;
5207 }
5208
gic_rdists_supports_plpis(void)5209 static bool gic_rdists_supports_plpis(void)
5210 {
5211 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5212 }
5213
redist_disable_lpis(void)5214 static int redist_disable_lpis(void)
5215 {
5216 void __iomem *rbase = gic_data_rdist_rd_base();
5217 u64 timeout = USEC_PER_SEC;
5218 u64 val;
5219
5220 if (!gic_rdists_supports_plpis()) {
5221 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5222 return -ENXIO;
5223 }
5224
5225 val = readl_relaxed(rbase + GICR_CTLR);
5226 if (!(val & GICR_CTLR_ENABLE_LPIS))
5227 return 0;
5228
5229 /*
5230 * If coming via a CPU hotplug event, we don't need to disable
5231 * LPIs before trying to re-enable them. They are already
5232 * configured and all is well in the world.
5233 *
5234 * If running with preallocated tables, there is nothing to do.
5235 */
5236 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5237 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5238 return 0;
5239
5240 /*
5241 * From that point on, we only try to do some damage control.
5242 */
5243 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5244 smp_processor_id());
5245 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5246
5247 /* Disable LPIs */
5248 val &= ~GICR_CTLR_ENABLE_LPIS;
5249 writel_relaxed(val, rbase + GICR_CTLR);
5250
5251 /* Make sure any change to GICR_CTLR is observable by the GIC */
5252 dsb(sy);
5253
5254 /*
5255 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5256 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5257 * Error out if we time out waiting for RWP to clear.
5258 */
5259 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5260 if (!timeout) {
5261 pr_err("CPU%d: Timeout while disabling LPIs\n",
5262 smp_processor_id());
5263 return -ETIMEDOUT;
5264 }
5265 udelay(1);
5266 timeout--;
5267 }
5268
5269 /*
5270 * After it has been written to 1, it is IMPLEMENTATION
5271 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5272 * cleared to 0. Error out if clearing the bit failed.
5273 */
5274 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5275 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5276 return -EBUSY;
5277 }
5278
5279 return 0;
5280 }
5281
its_cpu_init(void)5282 int its_cpu_init(void)
5283 {
5284 if (!list_empty(&its_nodes)) {
5285 int ret;
5286
5287 ret = redist_disable_lpis();
5288 if (ret)
5289 return ret;
5290
5291 its_cpu_init_lpis();
5292 its_cpu_init_collections();
5293 }
5294
5295 return 0;
5296 }
5297
rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct * work)5298 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5299 {
5300 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5301 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5302 }
5303
5304 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5305 rdist_memreserve_cpuhp_cleanup_workfn);
5306
its_cpu_memreserve_lpi(unsigned int cpu)5307 static int its_cpu_memreserve_lpi(unsigned int cpu)
5308 {
5309 struct page *pend_page;
5310 int ret = 0;
5311
5312 /* This gets to run exactly once per CPU */
5313 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5314 return 0;
5315
5316 pend_page = gic_data_rdist()->pend_page;
5317 if (WARN_ON(!pend_page)) {
5318 ret = -ENOMEM;
5319 goto out;
5320 }
5321 /*
5322 * If the pending table was pre-programmed, free the memory we
5323 * preemptively allocated. Otherwise, reserve that memory for
5324 * later kexecs.
5325 */
5326 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5327 its_free_pending_table(pend_page);
5328 gic_data_rdist()->pend_page = NULL;
5329 } else {
5330 phys_addr_t paddr = page_to_phys(pend_page);
5331 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5332 }
5333
5334 out:
5335 /* Last CPU being brought up gets to issue the cleanup */
5336 if (!IS_ENABLED(CONFIG_SMP) ||
5337 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5338 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5339
5340 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5341 return ret;
5342 }
5343
5344 /* Mark all the BASER registers as invalid before they get reprogrammed */
its_reset_one(struct resource * res)5345 static int __init its_reset_one(struct resource *res)
5346 {
5347 void __iomem *its_base;
5348 int err, i;
5349
5350 its_base = its_map_one(res, &err);
5351 if (!its_base)
5352 return err;
5353
5354 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5355 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5356
5357 iounmap(its_base);
5358 return 0;
5359 }
5360
5361 static const struct of_device_id its_device_id[] = {
5362 { .compatible = "arm,gic-v3-its", },
5363 {},
5364 };
5365
its_node_init(struct resource * res,struct fwnode_handle * handle,int numa_node)5366 static struct its_node __init *its_node_init(struct resource *res,
5367 struct fwnode_handle *handle, int numa_node)
5368 {
5369 void __iomem *its_base;
5370 struct its_node *its;
5371 int err;
5372
5373 its_base = its_map_one(res, &err);
5374 if (!its_base)
5375 return NULL;
5376
5377 pr_info("ITS %pR\n", res);
5378
5379 its = kzalloc(sizeof(*its), GFP_KERNEL);
5380 if (!its)
5381 goto out_unmap;
5382
5383 raw_spin_lock_init(&its->lock);
5384 mutex_init(&its->dev_alloc_lock);
5385 INIT_LIST_HEAD(&its->entry);
5386 INIT_LIST_HEAD(&its->its_device_list);
5387
5388 its->typer = gic_read_typer(its_base + GITS_TYPER);
5389 its->base = its_base;
5390 its->phys_base = res->start;
5391 its->get_msi_base = its_irq_get_msi_base;
5392 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5393
5394 its->numa_node = numa_node;
5395 its->fwnode_handle = handle;
5396
5397 return its;
5398
5399 out_unmap:
5400 iounmap(its_base);
5401 return NULL;
5402 }
5403
its_node_destroy(struct its_node * its)5404 static void its_node_destroy(struct its_node *its)
5405 {
5406 iounmap(its->base);
5407 kfree(its);
5408 }
5409
its_of_probe(struct device_node * node)5410 static int __init its_of_probe(struct device_node *node)
5411 {
5412 struct device_node *np;
5413 struct resource res;
5414 int err;
5415
5416 /*
5417 * Make sure *all* the ITS are reset before we probe any, as
5418 * they may be sharing memory. If any of the ITS fails to
5419 * reset, don't even try to go any further, as this could
5420 * result in something even worse.
5421 */
5422 for (np = of_find_matching_node(node, its_device_id); np;
5423 np = of_find_matching_node(np, its_device_id)) {
5424 if (!of_device_is_available(np) ||
5425 !of_property_read_bool(np, "msi-controller") ||
5426 of_address_to_resource(np, 0, &res))
5427 continue;
5428
5429 err = its_reset_one(&res);
5430 if (err)
5431 return err;
5432 }
5433
5434 for (np = of_find_matching_node(node, its_device_id); np;
5435 np = of_find_matching_node(np, its_device_id)) {
5436 struct its_node *its;
5437
5438 if (!of_device_is_available(np))
5439 continue;
5440 if (!of_property_read_bool(np, "msi-controller")) {
5441 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5442 np);
5443 continue;
5444 }
5445
5446 if (of_address_to_resource(np, 0, &res)) {
5447 pr_warn("%pOF: no regs?\n", np);
5448 continue;
5449 }
5450
5451
5452 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5453 if (!its)
5454 return -ENOMEM;
5455
5456 err = its_probe_one(its);
5457 if (err) {
5458 its_node_destroy(its);
5459 return err;
5460 }
5461 }
5462 return 0;
5463 }
5464
5465 #ifdef CONFIG_ACPI
5466
5467 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5468
5469 #ifdef CONFIG_ACPI_NUMA
5470 struct its_srat_map {
5471 /* numa node id */
5472 u32 numa_node;
5473 /* GIC ITS ID */
5474 u32 its_id;
5475 };
5476
5477 static struct its_srat_map *its_srat_maps __initdata;
5478 static int its_in_srat __initdata;
5479
acpi_get_its_numa_node(u32 its_id)5480 static int __init acpi_get_its_numa_node(u32 its_id)
5481 {
5482 int i;
5483
5484 for (i = 0; i < its_in_srat; i++) {
5485 if (its_id == its_srat_maps[i].its_id)
5486 return its_srat_maps[i].numa_node;
5487 }
5488 return NUMA_NO_NODE;
5489 }
5490
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5491 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5492 const unsigned long end)
5493 {
5494 return 0;
5495 }
5496
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5497 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5498 const unsigned long end)
5499 {
5500 int node;
5501 struct acpi_srat_gic_its_affinity *its_affinity;
5502
5503 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5504 if (!its_affinity)
5505 return -EINVAL;
5506
5507 if (its_affinity->header.length < sizeof(*its_affinity)) {
5508 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5509 its_affinity->header.length);
5510 return -EINVAL;
5511 }
5512
5513 /*
5514 * Note that in theory a new proximity node could be created by this
5515 * entry as it is an SRAT resource allocation structure.
5516 * We do not currently support doing so.
5517 */
5518 node = pxm_to_node(its_affinity->proximity_domain);
5519
5520 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5521 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5522 return 0;
5523 }
5524
5525 its_srat_maps[its_in_srat].numa_node = node;
5526 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5527 its_in_srat++;
5528 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5529 its_affinity->proximity_domain, its_affinity->its_id, node);
5530
5531 return 0;
5532 }
5533
acpi_table_parse_srat_its(void)5534 static void __init acpi_table_parse_srat_its(void)
5535 {
5536 int count;
5537
5538 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5539 sizeof(struct acpi_table_srat),
5540 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5541 gic_acpi_match_srat_its, 0);
5542 if (count <= 0)
5543 return;
5544
5545 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5546 GFP_KERNEL);
5547 if (!its_srat_maps)
5548 return;
5549
5550 acpi_table_parse_entries(ACPI_SIG_SRAT,
5551 sizeof(struct acpi_table_srat),
5552 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5553 gic_acpi_parse_srat_its, 0);
5554 }
5555
5556 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5557 static void __init acpi_its_srat_maps_free(void)
5558 {
5559 kfree(its_srat_maps);
5560 }
5561 #else
acpi_table_parse_srat_its(void)5562 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5563 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5564 static void __init acpi_its_srat_maps_free(void) { }
5565 #endif
5566
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5567 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5568 const unsigned long end)
5569 {
5570 struct acpi_madt_generic_translator *its_entry;
5571 struct fwnode_handle *dom_handle;
5572 struct its_node *its;
5573 struct resource res;
5574 int err;
5575
5576 its_entry = (struct acpi_madt_generic_translator *)header;
5577 memset(&res, 0, sizeof(res));
5578 res.start = its_entry->base_address;
5579 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5580 res.flags = IORESOURCE_MEM;
5581
5582 dom_handle = irq_domain_alloc_fwnode(&res.start);
5583 if (!dom_handle) {
5584 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5585 &res.start);
5586 return -ENOMEM;
5587 }
5588
5589 err = iort_register_domain_token(its_entry->translation_id, res.start,
5590 dom_handle);
5591 if (err) {
5592 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5593 &res.start, its_entry->translation_id);
5594 goto dom_err;
5595 }
5596
5597 its = its_node_init(&res, dom_handle,
5598 acpi_get_its_numa_node(its_entry->translation_id));
5599 if (!its) {
5600 err = -ENOMEM;
5601 goto node_err;
5602 }
5603
5604 if (acpi_get_madt_revision() >= 7 &&
5605 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5606 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5607
5608 err = its_probe_one(its);
5609 if (!err)
5610 return 0;
5611
5612 node_err:
5613 iort_deregister_domain_token(its_entry->translation_id);
5614 dom_err:
5615 irq_domain_free_fwnode(dom_handle);
5616 return err;
5617 }
5618
its_acpi_reset(union acpi_subtable_headers * header,const unsigned long end)5619 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5620 const unsigned long end)
5621 {
5622 struct acpi_madt_generic_translator *its_entry;
5623 struct resource res;
5624
5625 its_entry = (struct acpi_madt_generic_translator *)header;
5626 res = (struct resource) {
5627 .start = its_entry->base_address,
5628 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5629 .flags = IORESOURCE_MEM,
5630 };
5631
5632 return its_reset_one(&res);
5633 }
5634
its_acpi_probe(void)5635 static void __init its_acpi_probe(void)
5636 {
5637 acpi_table_parse_srat_its();
5638 /*
5639 * Make sure *all* the ITS are reset before we probe any, as
5640 * they may be sharing memory. If any of the ITS fails to
5641 * reset, don't even try to go any further, as this could
5642 * result in something even worse.
5643 */
5644 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5645 its_acpi_reset, 0) > 0)
5646 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5647 gic_acpi_parse_madt_its, 0);
5648 acpi_its_srat_maps_free();
5649 }
5650 #else
its_acpi_probe(void)5651 static void __init its_acpi_probe(void) { }
5652 #endif
5653
its_lpi_memreserve_init(void)5654 int __init its_lpi_memreserve_init(void)
5655 {
5656 int state;
5657
5658 if (!efi_enabled(EFI_CONFIG_TABLES))
5659 return 0;
5660
5661 if (list_empty(&its_nodes))
5662 return 0;
5663
5664 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5665 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5666 "irqchip/arm/gicv3/memreserve:online",
5667 its_cpu_memreserve_lpi,
5668 NULL);
5669 if (state < 0)
5670 return state;
5671
5672 gic_rdists->cpuhp_memreserve_state = state;
5673
5674 return 0;
5675 }
5676
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain,u8 irq_prio)5677 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5678 struct irq_domain *parent_domain, u8 irq_prio)
5679 {
5680 struct device_node *of_node;
5681 struct its_node *its;
5682 bool has_v4 = false;
5683 bool has_v4_1 = false;
5684 int err;
5685
5686 gic_rdists = rdists;
5687
5688 lpi_prop_prio = irq_prio;
5689 its_parent = parent_domain;
5690 of_node = to_of_node(handle);
5691 if (of_node)
5692 its_of_probe(of_node);
5693 else
5694 its_acpi_probe();
5695
5696 if (list_empty(&its_nodes)) {
5697 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5698 return -ENXIO;
5699 }
5700
5701 err = allocate_lpi_tables();
5702 if (err)
5703 return err;
5704
5705 list_for_each_entry(its, &its_nodes, entry) {
5706 has_v4 |= is_v4(its);
5707 has_v4_1 |= is_v4_1(its);
5708 }
5709
5710 /* Don't bother with inconsistent systems */
5711 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5712 rdists->has_rvpeid = false;
5713
5714 if (has_v4 & rdists->has_vlpis) {
5715 const struct irq_domain_ops *sgi_ops;
5716
5717 if (has_v4_1)
5718 sgi_ops = &its_sgi_domain_ops;
5719 else
5720 sgi_ops = NULL;
5721
5722 if (its_init_vpe_domain() ||
5723 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5724 rdists->has_vlpis = false;
5725 pr_err("ITS: Disabling GICv4 support\n");
5726 }
5727 }
5728
5729 register_syscore_ops(&its_syscore_ops);
5730
5731 return 0;
5732 }
5733