1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 121 t->num_allocated = num; 122 t->highs = n_highs; 123 t->targets = n_targets; 124 125 return 0; 126 } 127 128 int dm_table_create(struct dm_table **result, blk_mode_t mode, 129 unsigned int num_targets, struct mapped_device *md) 130 { 131 struct dm_table *t; 132 133 if (num_targets > DM_MAX_TARGETS) 134 return -EOVERFLOW; 135 136 t = kzalloc(sizeof(*t), GFP_KERNEL); 137 138 if (!t) 139 return -ENOMEM; 140 141 INIT_LIST_HEAD(&t->devices); 142 143 if (!num_targets) 144 num_targets = KEYS_PER_NODE; 145 146 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 147 148 if (!num_targets) { 149 kfree(t); 150 return -EOVERFLOW; 151 } 152 153 if (alloc_targets(t, num_targets)) { 154 kfree(t); 155 return -ENOMEM; 156 } 157 158 t->type = DM_TYPE_NONE; 159 t->mode = mode; 160 t->md = md; 161 t->flush_bypasses_map = true; 162 *result = t; 163 return 0; 164 } 165 166 static void free_devices(struct list_head *devices, struct mapped_device *md) 167 { 168 struct list_head *tmp, *next; 169 170 list_for_each_safe(tmp, next, devices) { 171 struct dm_dev_internal *dd = 172 list_entry(tmp, struct dm_dev_internal, list); 173 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 174 dm_device_name(md), dd->dm_dev->name); 175 dm_put_table_device(md, dd->dm_dev); 176 kfree(dd); 177 } 178 } 179 180 static void dm_table_destroy_crypto_profile(struct dm_table *t); 181 182 void dm_table_destroy(struct dm_table *t) 183 { 184 if (!t) 185 return; 186 187 /* free the indexes */ 188 if (t->depth >= 2) 189 kvfree(t->index[t->depth - 2]); 190 191 /* free the targets */ 192 for (unsigned int i = 0; i < t->num_targets; i++) { 193 struct dm_target *ti = dm_table_get_target(t, i); 194 195 if (ti->type->dtr) 196 ti->type->dtr(ti); 197 198 dm_put_target_type(ti->type); 199 } 200 201 kvfree(t->highs); 202 203 /* free the device list */ 204 free_devices(&t->devices, t->md); 205 206 dm_free_md_mempools(t->mempools); 207 208 dm_table_destroy_crypto_profile(t); 209 210 kfree(t); 211 } 212 213 /* 214 * See if we've already got a device in the list. 215 */ 216 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 217 { 218 struct dm_dev_internal *dd; 219 220 list_for_each_entry(dd, l, list) 221 if (dd->dm_dev->bdev->bd_dev == dev) 222 return dd; 223 224 return NULL; 225 } 226 227 /* 228 * If possible, this checks an area of a destination device is invalid. 229 */ 230 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 231 sector_t start, sector_t len, void *data) 232 { 233 struct queue_limits *limits = data; 234 struct block_device *bdev = dev->bdev; 235 sector_t dev_size = bdev_nr_sectors(bdev); 236 unsigned short logical_block_size_sectors = 237 limits->logical_block_size >> SECTOR_SHIFT; 238 239 if (!dev_size) 240 return 0; 241 242 if ((start >= dev_size) || (start + len > dev_size)) { 243 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 244 dm_device_name(ti->table->md), bdev, 245 (unsigned long long)start, 246 (unsigned long long)len, 247 (unsigned long long)dev_size); 248 return 1; 249 } 250 251 /* 252 * If the target is mapped to zoned block device(s), check 253 * that the zones are not partially mapped. 254 */ 255 if (bdev_is_zoned(bdev)) { 256 unsigned int zone_sectors = bdev_zone_sectors(bdev); 257 258 if (!bdev_is_zone_aligned(bdev, start)) { 259 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 260 dm_device_name(ti->table->md), 261 (unsigned long long)start, 262 zone_sectors, bdev); 263 return 1; 264 } 265 266 /* 267 * Note: The last zone of a zoned block device may be smaller 268 * than other zones. So for a target mapping the end of a 269 * zoned block device with such a zone, len would not be zone 270 * aligned. We do not allow such last smaller zone to be part 271 * of the mapping here to ensure that mappings with multiple 272 * devices do not end up with a smaller zone in the middle of 273 * the sector range. 274 */ 275 if (!bdev_is_zone_aligned(bdev, len)) { 276 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 277 dm_device_name(ti->table->md), 278 (unsigned long long)len, 279 zone_sectors, bdev); 280 return 1; 281 } 282 } 283 284 if (logical_block_size_sectors <= 1) 285 return 0; 286 287 if (start & (logical_block_size_sectors - 1)) { 288 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 289 dm_device_name(ti->table->md), 290 (unsigned long long)start, 291 limits->logical_block_size, bdev); 292 return 1; 293 } 294 295 if (len & (logical_block_size_sectors - 1)) { 296 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 297 dm_device_name(ti->table->md), 298 (unsigned long long)len, 299 limits->logical_block_size, bdev); 300 return 1; 301 } 302 303 return 0; 304 } 305 306 /* 307 * This upgrades the mode on an already open dm_dev, being 308 * careful to leave things as they were if we fail to reopen the 309 * device and not to touch the existing bdev field in case 310 * it is accessed concurrently. 311 */ 312 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 313 struct mapped_device *md) 314 { 315 int r; 316 struct dm_dev *old_dev, *new_dev; 317 318 old_dev = dd->dm_dev; 319 320 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 321 dd->dm_dev->mode | new_mode, &new_dev); 322 if (r) 323 return r; 324 325 dd->dm_dev = new_dev; 326 dm_put_table_device(md, old_dev); 327 328 return 0; 329 } 330 331 /* 332 * Note: the __ref annotation is because this function can call the __init 333 * marked early_lookup_bdev when called during early boot code from dm-init.c. 334 */ 335 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 336 { 337 int r; 338 dev_t dev; 339 unsigned int major, minor; 340 char dummy; 341 342 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 343 /* Extract the major/minor numbers */ 344 dev = MKDEV(major, minor); 345 if (MAJOR(dev) != major || MINOR(dev) != minor) 346 return -EOVERFLOW; 347 } else { 348 r = lookup_bdev(path, &dev); 349 #ifndef MODULE 350 if (r && system_state < SYSTEM_RUNNING) 351 r = early_lookup_bdev(path, &dev); 352 #endif 353 if (r) 354 return r; 355 } 356 *dev_p = dev; 357 return 0; 358 } 359 EXPORT_SYMBOL(dm_devt_from_path); 360 361 /* 362 * Add a device to the list, or just increment the usage count if 363 * it's already present. 364 */ 365 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 366 struct dm_dev **result) 367 { 368 int r; 369 dev_t dev; 370 struct dm_dev_internal *dd; 371 struct dm_table *t = ti->table; 372 373 BUG_ON(!t); 374 375 r = dm_devt_from_path(path, &dev); 376 if (r) 377 return r; 378 379 if (dev == disk_devt(t->md->disk)) 380 return -EINVAL; 381 382 dd = find_device(&t->devices, dev); 383 if (!dd) { 384 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 385 if (!dd) 386 return -ENOMEM; 387 388 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 389 if (r) { 390 kfree(dd); 391 return r; 392 } 393 394 refcount_set(&dd->count, 1); 395 list_add(&dd->list, &t->devices); 396 goto out; 397 398 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 399 r = upgrade_mode(dd, mode, t->md); 400 if (r) 401 return r; 402 } 403 refcount_inc(&dd->count); 404 out: 405 *result = dd->dm_dev; 406 return 0; 407 } 408 EXPORT_SYMBOL(dm_get_device); 409 410 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 411 sector_t start, sector_t len, void *data) 412 { 413 struct queue_limits *limits = data; 414 struct block_device *bdev = dev->bdev; 415 struct request_queue *q = bdev_get_queue(bdev); 416 417 if (unlikely(!q)) { 418 DMWARN("%s: Cannot set limits for nonexistent device %pg", 419 dm_device_name(ti->table->md), bdev); 420 return 0; 421 } 422 423 mutex_lock(&q->limits_lock); 424 /* 425 * BLK_FEAT_ATOMIC_WRITES is not inherited from the bottom device in 426 * blk_stack_limits(), so do it manually. 427 */ 428 limits->features |= (q->limits.features & BLK_FEAT_ATOMIC_WRITES); 429 430 if (blk_stack_limits(limits, &q->limits, 431 get_start_sect(bdev) + start) < 0) 432 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 433 "physical_block_size=%u, logical_block_size=%u, " 434 "alignment_offset=%u, start=%llu", 435 dm_device_name(ti->table->md), bdev, 436 q->limits.physical_block_size, 437 q->limits.logical_block_size, 438 q->limits.alignment_offset, 439 (unsigned long long) start << SECTOR_SHIFT); 440 441 /* 442 * Only stack the integrity profile if the target doesn't have native 443 * integrity support. 444 */ 445 if (!dm_target_has_integrity(ti->type)) 446 queue_limits_stack_integrity_bdev(limits, bdev); 447 mutex_unlock(&q->limits_lock); 448 return 0; 449 } 450 451 /* 452 * Decrement a device's use count and remove it if necessary. 453 */ 454 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 455 { 456 int found = 0; 457 struct list_head *devices = &ti->table->devices; 458 struct dm_dev_internal *dd; 459 460 list_for_each_entry(dd, devices, list) { 461 if (dd->dm_dev == d) { 462 found = 1; 463 break; 464 } 465 } 466 if (!found) { 467 DMERR("%s: device %s not in table devices list", 468 dm_device_name(ti->table->md), d->name); 469 return; 470 } 471 if (refcount_dec_and_test(&dd->count)) { 472 dm_put_table_device(ti->table->md, d); 473 list_del(&dd->list); 474 kfree(dd); 475 } 476 } 477 EXPORT_SYMBOL(dm_put_device); 478 479 /* 480 * Checks to see if the target joins onto the end of the table. 481 */ 482 static int adjoin(struct dm_table *t, struct dm_target *ti) 483 { 484 struct dm_target *prev; 485 486 if (!t->num_targets) 487 return !ti->begin; 488 489 prev = &t->targets[t->num_targets - 1]; 490 return (ti->begin == (prev->begin + prev->len)); 491 } 492 493 /* 494 * Used to dynamically allocate the arg array. 495 * 496 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 497 * process messages even if some device is suspended. These messages have a 498 * small fixed number of arguments. 499 * 500 * On the other hand, dm-switch needs to process bulk data using messages and 501 * excessive use of GFP_NOIO could cause trouble. 502 */ 503 static char **realloc_argv(unsigned int *size, char **old_argv) 504 { 505 char **argv; 506 unsigned int new_size; 507 gfp_t gfp; 508 509 if (*size) { 510 new_size = *size * 2; 511 gfp = GFP_KERNEL; 512 } else { 513 new_size = 8; 514 gfp = GFP_NOIO; 515 } 516 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 517 if (argv) { 518 if (old_argv) 519 memcpy(argv, old_argv, *size * sizeof(*argv)); 520 *size = new_size; 521 } 522 523 kfree(old_argv); 524 return argv; 525 } 526 527 /* 528 * Destructively splits up the argument list to pass to ctr. 529 */ 530 int dm_split_args(int *argc, char ***argvp, char *input) 531 { 532 char *start, *end = input, *out, **argv = NULL; 533 unsigned int array_size = 0; 534 535 *argc = 0; 536 537 if (!input) { 538 *argvp = NULL; 539 return 0; 540 } 541 542 argv = realloc_argv(&array_size, argv); 543 if (!argv) 544 return -ENOMEM; 545 546 while (1) { 547 /* Skip whitespace */ 548 start = skip_spaces(end); 549 550 if (!*start) 551 break; /* success, we hit the end */ 552 553 /* 'out' is used to remove any back-quotes */ 554 end = out = start; 555 while (*end) { 556 /* Everything apart from '\0' can be quoted */ 557 if (*end == '\\' && *(end + 1)) { 558 *out++ = *(end + 1); 559 end += 2; 560 continue; 561 } 562 563 if (isspace(*end)) 564 break; /* end of token */ 565 566 *out++ = *end++; 567 } 568 569 /* have we already filled the array ? */ 570 if ((*argc + 1) > array_size) { 571 argv = realloc_argv(&array_size, argv); 572 if (!argv) 573 return -ENOMEM; 574 } 575 576 /* we know this is whitespace */ 577 if (*end) 578 end++; 579 580 /* terminate the string and put it in the array */ 581 *out = '\0'; 582 argv[*argc] = start; 583 (*argc)++; 584 } 585 586 *argvp = argv; 587 return 0; 588 } 589 590 static void dm_set_stacking_limits(struct queue_limits *limits) 591 { 592 blk_set_stacking_limits(limits); 593 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 594 } 595 596 /* 597 * Impose necessary and sufficient conditions on a devices's table such 598 * that any incoming bio which respects its logical_block_size can be 599 * processed successfully. If it falls across the boundary between 600 * two or more targets, the size of each piece it gets split into must 601 * be compatible with the logical_block_size of the target processing it. 602 */ 603 static int validate_hardware_logical_block_alignment(struct dm_table *t, 604 struct queue_limits *limits) 605 { 606 /* 607 * This function uses arithmetic modulo the logical_block_size 608 * (in units of 512-byte sectors). 609 */ 610 unsigned short device_logical_block_size_sects = 611 limits->logical_block_size >> SECTOR_SHIFT; 612 613 /* 614 * Offset of the start of the next table entry, mod logical_block_size. 615 */ 616 unsigned short next_target_start = 0; 617 618 /* 619 * Given an aligned bio that extends beyond the end of a 620 * target, how many sectors must the next target handle? 621 */ 622 unsigned short remaining = 0; 623 624 struct dm_target *ti; 625 struct queue_limits ti_limits; 626 unsigned int i; 627 628 /* 629 * Check each entry in the table in turn. 630 */ 631 for (i = 0; i < t->num_targets; i++) { 632 ti = dm_table_get_target(t, i); 633 634 dm_set_stacking_limits(&ti_limits); 635 636 /* combine all target devices' limits */ 637 if (ti->type->iterate_devices) 638 ti->type->iterate_devices(ti, dm_set_device_limits, 639 &ti_limits); 640 641 /* 642 * If the remaining sectors fall entirely within this 643 * table entry are they compatible with its logical_block_size? 644 */ 645 if (remaining < ti->len && 646 remaining & ((ti_limits.logical_block_size >> 647 SECTOR_SHIFT) - 1)) 648 break; /* Error */ 649 650 next_target_start = 651 (unsigned short) ((next_target_start + ti->len) & 652 (device_logical_block_size_sects - 1)); 653 remaining = next_target_start ? 654 device_logical_block_size_sects - next_target_start : 0; 655 } 656 657 if (remaining) { 658 DMERR("%s: table line %u (start sect %llu len %llu) " 659 "not aligned to h/w logical block size %u", 660 dm_device_name(t->md), i, 661 (unsigned long long) ti->begin, 662 (unsigned long long) ti->len, 663 limits->logical_block_size); 664 return -EINVAL; 665 } 666 667 return 0; 668 } 669 670 int dm_table_add_target(struct dm_table *t, const char *type, 671 sector_t start, sector_t len, char *params) 672 { 673 int r = -EINVAL, argc; 674 char **argv; 675 struct dm_target *ti; 676 677 if (t->singleton) { 678 DMERR("%s: target type %s must appear alone in table", 679 dm_device_name(t->md), t->targets->type->name); 680 return -EINVAL; 681 } 682 683 BUG_ON(t->num_targets >= t->num_allocated); 684 685 ti = t->targets + t->num_targets; 686 memset(ti, 0, sizeof(*ti)); 687 688 if (!len) { 689 DMERR("%s: zero-length target", dm_device_name(t->md)); 690 return -EINVAL; 691 } 692 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) { 693 DMERR("%s: too large device", dm_device_name(t->md)); 694 return -EINVAL; 695 } 696 697 ti->type = dm_get_target_type(type); 698 if (!ti->type) { 699 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 700 return -EINVAL; 701 } 702 703 if (dm_target_needs_singleton(ti->type)) { 704 if (t->num_targets) { 705 ti->error = "singleton target type must appear alone in table"; 706 goto bad; 707 } 708 t->singleton = true; 709 } 710 711 if (dm_target_always_writeable(ti->type) && 712 !(t->mode & BLK_OPEN_WRITE)) { 713 ti->error = "target type may not be included in a read-only table"; 714 goto bad; 715 } 716 717 if (t->immutable_target_type) { 718 if (t->immutable_target_type != ti->type) { 719 ti->error = "immutable target type cannot be mixed with other target types"; 720 goto bad; 721 } 722 } else if (dm_target_is_immutable(ti->type)) { 723 if (t->num_targets) { 724 ti->error = "immutable target type cannot be mixed with other target types"; 725 goto bad; 726 } 727 t->immutable_target_type = ti->type; 728 } 729 730 ti->table = t; 731 ti->begin = start; 732 ti->len = len; 733 ti->error = "Unknown error"; 734 735 /* 736 * Does this target adjoin the previous one ? 737 */ 738 if (!adjoin(t, ti)) { 739 ti->error = "Gap in table"; 740 goto bad; 741 } 742 743 r = dm_split_args(&argc, &argv, params); 744 if (r) { 745 ti->error = "couldn't split parameters"; 746 goto bad; 747 } 748 749 r = ti->type->ctr(ti, argc, argv); 750 kfree(argv); 751 if (r) 752 goto bad; 753 754 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 755 756 if (!ti->num_discard_bios && ti->discards_supported) 757 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 758 dm_device_name(t->md), type); 759 760 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 761 static_branch_enable(&swap_bios_enabled); 762 763 if (!ti->flush_bypasses_map) 764 t->flush_bypasses_map = false; 765 766 return 0; 767 768 bad: 769 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 770 dm_put_target_type(ti->type); 771 return r; 772 } 773 774 /* 775 * Target argument parsing helpers. 776 */ 777 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 778 unsigned int *value, char **error, unsigned int grouped) 779 { 780 const char *arg_str = dm_shift_arg(arg_set); 781 char dummy; 782 783 if (!arg_str || 784 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 785 (*value < arg->min) || 786 (*value > arg->max) || 787 (grouped && arg_set->argc < *value)) { 788 *error = arg->error; 789 return -EINVAL; 790 } 791 792 return 0; 793 } 794 795 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 796 unsigned int *value, char **error) 797 { 798 return validate_next_arg(arg, arg_set, value, error, 0); 799 } 800 EXPORT_SYMBOL(dm_read_arg); 801 802 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 803 unsigned int *value, char **error) 804 { 805 return validate_next_arg(arg, arg_set, value, error, 1); 806 } 807 EXPORT_SYMBOL(dm_read_arg_group); 808 809 const char *dm_shift_arg(struct dm_arg_set *as) 810 { 811 char *r; 812 813 if (as->argc) { 814 as->argc--; 815 r = *as->argv; 816 as->argv++; 817 return r; 818 } 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(dm_shift_arg); 823 824 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 825 { 826 BUG_ON(as->argc < num_args); 827 as->argc -= num_args; 828 as->argv += num_args; 829 } 830 EXPORT_SYMBOL(dm_consume_args); 831 832 static bool __table_type_bio_based(enum dm_queue_mode table_type) 833 { 834 return (table_type == DM_TYPE_BIO_BASED || 835 table_type == DM_TYPE_DAX_BIO_BASED); 836 } 837 838 static bool __table_type_request_based(enum dm_queue_mode table_type) 839 { 840 return table_type == DM_TYPE_REQUEST_BASED; 841 } 842 843 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 844 { 845 t->type = type; 846 } 847 EXPORT_SYMBOL_GPL(dm_table_set_type); 848 849 /* validate the dax capability of the target device span */ 850 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 851 sector_t start, sector_t len, void *data) 852 { 853 if (dev->dax_dev) 854 return false; 855 856 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 857 return true; 858 } 859 860 /* Check devices support synchronous DAX */ 861 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 862 sector_t start, sector_t len, void *data) 863 { 864 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 865 } 866 867 static bool dm_table_supports_dax(struct dm_table *t, 868 iterate_devices_callout_fn iterate_fn) 869 { 870 /* Ensure that all targets support DAX. */ 871 for (unsigned int i = 0; i < t->num_targets; i++) { 872 struct dm_target *ti = dm_table_get_target(t, i); 873 874 if (!ti->type->direct_access) 875 return false; 876 877 if (dm_target_is_wildcard(ti->type) || 878 !ti->type->iterate_devices || 879 ti->type->iterate_devices(ti, iterate_fn, NULL)) 880 return false; 881 } 882 883 return true; 884 } 885 886 static int device_is_not_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 887 sector_t start, sector_t len, void *data) 888 { 889 struct block_device *bdev = dev->bdev; 890 struct request_queue *q = bdev_get_queue(bdev); 891 892 /* request-based cannot stack on partitions! */ 893 if (bdev_is_partition(bdev)) 894 return true; 895 896 return !queue_is_mq(q); 897 } 898 899 static int dm_table_determine_type(struct dm_table *t) 900 { 901 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 902 struct dm_target *ti; 903 struct list_head *devices = dm_table_get_devices(t); 904 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 905 906 if (t->type != DM_TYPE_NONE) { 907 /* target already set the table's type */ 908 if (t->type == DM_TYPE_BIO_BASED) { 909 /* possibly upgrade to a variant of bio-based */ 910 goto verify_bio_based; 911 } 912 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 913 goto verify_rq_based; 914 } 915 916 for (unsigned int i = 0; i < t->num_targets; i++) { 917 ti = dm_table_get_target(t, i); 918 if (dm_target_hybrid(ti)) 919 hybrid = 1; 920 else if (dm_target_request_based(ti)) 921 request_based = 1; 922 else 923 bio_based = 1; 924 925 if (bio_based && request_based) { 926 DMERR("Inconsistent table: different target types can't be mixed up"); 927 return -EINVAL; 928 } 929 } 930 931 if (hybrid && !bio_based && !request_based) { 932 /* 933 * The targets can work either way. 934 * Determine the type from the live device. 935 * Default to bio-based if device is new. 936 */ 937 if (__table_type_request_based(live_md_type)) 938 request_based = 1; 939 else 940 bio_based = 1; 941 } 942 943 if (bio_based) { 944 verify_bio_based: 945 /* We must use this table as bio-based */ 946 t->type = DM_TYPE_BIO_BASED; 947 if (dm_table_supports_dax(t, device_not_dax_capable) || 948 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 949 t->type = DM_TYPE_DAX_BIO_BASED; 950 } 951 return 0; 952 } 953 954 BUG_ON(!request_based); /* No targets in this table */ 955 956 t->type = DM_TYPE_REQUEST_BASED; 957 958 verify_rq_based: 959 /* 960 * Request-based dm supports only tables that have a single target now. 961 * To support multiple targets, request splitting support is needed, 962 * and that needs lots of changes in the block-layer. 963 * (e.g. request completion process for partial completion.) 964 */ 965 if (t->num_targets > 1) { 966 DMERR("request-based DM doesn't support multiple targets"); 967 return -EINVAL; 968 } 969 970 if (list_empty(devices)) { 971 int srcu_idx; 972 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 973 974 /* inherit live table's type */ 975 if (live_table) 976 t->type = live_table->type; 977 dm_put_live_table(t->md, srcu_idx); 978 return 0; 979 } 980 981 ti = dm_table_get_immutable_target(t); 982 if (!ti) { 983 DMERR("table load rejected: immutable target is required"); 984 return -EINVAL; 985 } else if (ti->max_io_len) { 986 DMERR("table load rejected: immutable target that splits IO is not supported"); 987 return -EINVAL; 988 } 989 990 /* Non-request-stackable devices can't be used for request-based dm */ 991 if (!ti->type->iterate_devices || 992 ti->type->iterate_devices(ti, device_is_not_rq_stackable, NULL)) { 993 DMERR("table load rejected: including non-request-stackable devices"); 994 return -EINVAL; 995 } 996 997 return 0; 998 } 999 1000 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1001 { 1002 return t->type; 1003 } 1004 1005 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1006 { 1007 return t->immutable_target_type; 1008 } 1009 1010 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1011 { 1012 /* Immutable target is implicitly a singleton */ 1013 if (t->num_targets > 1 || 1014 !dm_target_is_immutable(t->targets[0].type)) 1015 return NULL; 1016 1017 return t->targets; 1018 } 1019 1020 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1021 { 1022 for (unsigned int i = 0; i < t->num_targets; i++) { 1023 struct dm_target *ti = dm_table_get_target(t, i); 1024 1025 if (dm_target_is_wildcard(ti->type)) 1026 return ti; 1027 } 1028 1029 return NULL; 1030 } 1031 1032 bool dm_table_request_based(struct dm_table *t) 1033 { 1034 return __table_type_request_based(dm_table_get_type(t)); 1035 } 1036 1037 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1038 { 1039 enum dm_queue_mode type = dm_table_get_type(t); 1040 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1041 unsigned int min_pool_size = 0, pool_size; 1042 struct dm_md_mempools *pools; 1043 unsigned int bioset_flags = 0; 1044 1045 if (unlikely(type == DM_TYPE_NONE)) { 1046 DMERR("no table type is set, can't allocate mempools"); 1047 return -EINVAL; 1048 } 1049 1050 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1051 if (!pools) 1052 return -ENOMEM; 1053 1054 if (type == DM_TYPE_REQUEST_BASED) { 1055 pool_size = dm_get_reserved_rq_based_ios(); 1056 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1057 goto init_bs; 1058 } 1059 1060 if (md->queue->limits.features & BLK_FEAT_POLL) 1061 bioset_flags |= BIOSET_PERCPU_CACHE; 1062 1063 for (unsigned int i = 0; i < t->num_targets; i++) { 1064 struct dm_target *ti = dm_table_get_target(t, i); 1065 1066 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1067 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1068 } 1069 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1070 front_pad = roundup(per_io_data_size, 1071 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1072 1073 io_front_pad = roundup(per_io_data_size, 1074 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1075 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1076 goto out_free_pools; 1077 init_bs: 1078 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1079 goto out_free_pools; 1080 1081 t->mempools = pools; 1082 return 0; 1083 1084 out_free_pools: 1085 dm_free_md_mempools(pools); 1086 return -ENOMEM; 1087 } 1088 1089 static int setup_indexes(struct dm_table *t) 1090 { 1091 int i; 1092 unsigned int total = 0; 1093 sector_t *indexes; 1094 1095 /* allocate the space for *all* the indexes */ 1096 for (i = t->depth - 2; i >= 0; i--) { 1097 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1098 total += t->counts[i]; 1099 } 1100 1101 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1102 if (!indexes) 1103 return -ENOMEM; 1104 1105 /* set up internal nodes, bottom-up */ 1106 for (i = t->depth - 2; i >= 0; i--) { 1107 t->index[i] = indexes; 1108 indexes += (KEYS_PER_NODE * t->counts[i]); 1109 setup_btree_index(i, t); 1110 } 1111 1112 return 0; 1113 } 1114 1115 /* 1116 * Builds the btree to index the map. 1117 */ 1118 static int dm_table_build_index(struct dm_table *t) 1119 { 1120 int r = 0; 1121 unsigned int leaf_nodes; 1122 1123 /* how many indexes will the btree have ? */ 1124 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1125 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1126 1127 /* leaf layer has already been set up */ 1128 t->counts[t->depth - 1] = leaf_nodes; 1129 t->index[t->depth - 1] = t->highs; 1130 1131 if (t->depth >= 2) 1132 r = setup_indexes(t); 1133 1134 return r; 1135 } 1136 1137 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1138 1139 struct dm_crypto_profile { 1140 struct blk_crypto_profile profile; 1141 struct mapped_device *md; 1142 }; 1143 1144 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1145 sector_t start, sector_t len, void *data) 1146 { 1147 const struct blk_crypto_key *key = data; 1148 1149 blk_crypto_evict_key(dev->bdev, key); 1150 return 0; 1151 } 1152 1153 /* 1154 * When an inline encryption key is evicted from a device-mapper device, evict 1155 * it from all the underlying devices. 1156 */ 1157 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1158 const struct blk_crypto_key *key, unsigned int slot) 1159 { 1160 struct mapped_device *md = 1161 container_of(profile, struct dm_crypto_profile, profile)->md; 1162 struct dm_table *t; 1163 int srcu_idx; 1164 1165 t = dm_get_live_table(md, &srcu_idx); 1166 if (!t) 1167 goto put_live_table; 1168 1169 for (unsigned int i = 0; i < t->num_targets; i++) { 1170 struct dm_target *ti = dm_table_get_target(t, i); 1171 1172 if (!ti->type->iterate_devices) 1173 continue; 1174 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1175 (void *)key); 1176 } 1177 1178 put_live_table: 1179 dm_put_live_table(md, srcu_idx); 1180 return 0; 1181 } 1182 1183 enum dm_wrappedkey_op { 1184 DERIVE_SW_SECRET, 1185 IMPORT_KEY, 1186 GENERATE_KEY, 1187 PREPARE_KEY, 1188 }; 1189 1190 struct dm_wrappedkey_op_args { 1191 enum dm_wrappedkey_op op; 1192 int err; 1193 union { 1194 struct { 1195 const u8 *eph_key; 1196 size_t eph_key_size; 1197 u8 *sw_secret; 1198 } derive_sw_secret; 1199 struct { 1200 const u8 *raw_key; 1201 size_t raw_key_size; 1202 u8 *lt_key; 1203 } import_key; 1204 struct { 1205 u8 *lt_key; 1206 } generate_key; 1207 struct { 1208 const u8 *lt_key; 1209 size_t lt_key_size; 1210 u8 *eph_key; 1211 } prepare_key; 1212 }; 1213 }; 1214 1215 static int dm_wrappedkey_op_callback(struct dm_target *ti, struct dm_dev *dev, 1216 sector_t start, sector_t len, void *data) 1217 { 1218 struct dm_wrappedkey_op_args *args = data; 1219 struct block_device *bdev = dev->bdev; 1220 struct blk_crypto_profile *profile = 1221 bdev_get_queue(bdev)->crypto_profile; 1222 int err = -EOPNOTSUPP; 1223 1224 switch (args->op) { 1225 case DERIVE_SW_SECRET: 1226 err = blk_crypto_derive_sw_secret( 1227 bdev, 1228 args->derive_sw_secret.eph_key, 1229 args->derive_sw_secret.eph_key_size, 1230 args->derive_sw_secret.sw_secret); 1231 break; 1232 case IMPORT_KEY: 1233 err = blk_crypto_import_key(profile, 1234 args->import_key.raw_key, 1235 args->import_key.raw_key_size, 1236 args->import_key.lt_key); 1237 break; 1238 case GENERATE_KEY: 1239 err = blk_crypto_generate_key(profile, 1240 args->generate_key.lt_key); 1241 break; 1242 case PREPARE_KEY: 1243 err = blk_crypto_prepare_key(profile, 1244 args->prepare_key.lt_key, 1245 args->prepare_key.lt_key_size, 1246 args->prepare_key.eph_key); 1247 break; 1248 } 1249 args->err = err; 1250 return 1; /* No need to continue the iteration. */ 1251 } 1252 1253 static int dm_exec_wrappedkey_op(struct blk_crypto_profile *profile, 1254 struct dm_wrappedkey_op_args *args) 1255 { 1256 struct mapped_device *md = 1257 container_of(profile, struct dm_crypto_profile, profile)->md; 1258 struct dm_target *ti; 1259 struct dm_table *t; 1260 int srcu_idx; 1261 int i; 1262 1263 args->err = -EOPNOTSUPP; 1264 1265 t = dm_get_live_table(md, &srcu_idx); 1266 if (!t) 1267 goto out; 1268 1269 /* 1270 * blk-crypto currently has no support for multiple incompatible 1271 * implementations of wrapped inline crypto keys on a single system. 1272 * It was already checked earlier that support for wrapped keys was 1273 * declared on all underlying devices. Thus, all the underlying devices 1274 * should support all wrapped key operations and they should behave 1275 * identically, i.e. work with the same keys. So, just executing the 1276 * operation on the first device suffices for now. 1277 */ 1278 for (i = 0; i < t->num_targets; i++) { 1279 ti = dm_table_get_target(t, i); 1280 if (!ti->type->iterate_devices) 1281 continue; 1282 if (ti->type->iterate_devices(ti, dm_wrappedkey_op_callback, args) != 0) 1283 break; 1284 } 1285 out: 1286 dm_put_live_table(md, srcu_idx); 1287 return args->err; 1288 } 1289 1290 static int dm_derive_sw_secret(struct blk_crypto_profile *profile, 1291 const u8 *eph_key, size_t eph_key_size, 1292 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]) 1293 { 1294 struct dm_wrappedkey_op_args args = { 1295 .op = DERIVE_SW_SECRET, 1296 .derive_sw_secret = { 1297 .eph_key = eph_key, 1298 .eph_key_size = eph_key_size, 1299 .sw_secret = sw_secret, 1300 }, 1301 }; 1302 return dm_exec_wrappedkey_op(profile, &args); 1303 } 1304 1305 static int dm_import_key(struct blk_crypto_profile *profile, 1306 const u8 *raw_key, size_t raw_key_size, 1307 u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 1308 { 1309 struct dm_wrappedkey_op_args args = { 1310 .op = IMPORT_KEY, 1311 .import_key = { 1312 .raw_key = raw_key, 1313 .raw_key_size = raw_key_size, 1314 .lt_key = lt_key, 1315 }, 1316 }; 1317 return dm_exec_wrappedkey_op(profile, &args); 1318 } 1319 1320 static int dm_generate_key(struct blk_crypto_profile *profile, 1321 u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 1322 { 1323 struct dm_wrappedkey_op_args args = { 1324 .op = GENERATE_KEY, 1325 .generate_key = { 1326 .lt_key = lt_key, 1327 }, 1328 }; 1329 return dm_exec_wrappedkey_op(profile, &args); 1330 } 1331 1332 static int dm_prepare_key(struct blk_crypto_profile *profile, 1333 const u8 *lt_key, size_t lt_key_size, 1334 u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 1335 { 1336 struct dm_wrappedkey_op_args args = { 1337 .op = PREPARE_KEY, 1338 .prepare_key = { 1339 .lt_key = lt_key, 1340 .lt_key_size = lt_key_size, 1341 .eph_key = eph_key, 1342 }, 1343 }; 1344 return dm_exec_wrappedkey_op(profile, &args); 1345 } 1346 1347 static int 1348 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1349 sector_t start, sector_t len, void *data) 1350 { 1351 struct blk_crypto_profile *parent = data; 1352 struct blk_crypto_profile *child = 1353 bdev_get_queue(dev->bdev)->crypto_profile; 1354 1355 blk_crypto_intersect_capabilities(parent, child); 1356 return 0; 1357 } 1358 1359 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1360 { 1361 struct dm_crypto_profile *dmcp = container_of(profile, 1362 struct dm_crypto_profile, 1363 profile); 1364 1365 if (!profile) 1366 return; 1367 1368 blk_crypto_profile_destroy(profile); 1369 kfree(dmcp); 1370 } 1371 1372 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1373 { 1374 dm_destroy_crypto_profile(t->crypto_profile); 1375 t->crypto_profile = NULL; 1376 } 1377 1378 /* 1379 * Constructs and initializes t->crypto_profile with a crypto profile that 1380 * represents the common set of crypto capabilities of the devices described by 1381 * the dm_table. However, if the constructed crypto profile doesn't support all 1382 * crypto capabilities that are supported by the current mapped_device, it 1383 * returns an error instead, since we don't support removing crypto capabilities 1384 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1385 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1386 */ 1387 static int dm_table_construct_crypto_profile(struct dm_table *t) 1388 { 1389 struct dm_crypto_profile *dmcp; 1390 struct blk_crypto_profile *profile; 1391 unsigned int i; 1392 bool empty_profile = true; 1393 1394 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1395 if (!dmcp) 1396 return -ENOMEM; 1397 dmcp->md = t->md; 1398 1399 profile = &dmcp->profile; 1400 blk_crypto_profile_init(profile, 0); 1401 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1402 profile->max_dun_bytes_supported = UINT_MAX; 1403 memset(profile->modes_supported, 0xFF, 1404 sizeof(profile->modes_supported)); 1405 profile->key_types_supported = ~0; 1406 1407 for (i = 0; i < t->num_targets; i++) { 1408 struct dm_target *ti = dm_table_get_target(t, i); 1409 1410 if (!dm_target_passes_crypto(ti->type)) { 1411 blk_crypto_intersect_capabilities(profile, NULL); 1412 break; 1413 } 1414 if (!ti->type->iterate_devices) 1415 continue; 1416 ti->type->iterate_devices(ti, 1417 device_intersect_crypto_capabilities, 1418 profile); 1419 } 1420 1421 if (profile->key_types_supported & BLK_CRYPTO_KEY_TYPE_HW_WRAPPED) { 1422 profile->ll_ops.derive_sw_secret = dm_derive_sw_secret; 1423 profile->ll_ops.import_key = dm_import_key; 1424 profile->ll_ops.generate_key = dm_generate_key; 1425 profile->ll_ops.prepare_key = dm_prepare_key; 1426 } 1427 1428 if (t->md->queue && 1429 !blk_crypto_has_capabilities(profile, 1430 t->md->queue->crypto_profile)) { 1431 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1432 dm_destroy_crypto_profile(profile); 1433 return -EINVAL; 1434 } 1435 1436 /* 1437 * If the new profile doesn't actually support any crypto capabilities, 1438 * we may as well represent it with a NULL profile. 1439 */ 1440 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1441 if (profile->modes_supported[i]) { 1442 empty_profile = false; 1443 break; 1444 } 1445 } 1446 1447 if (empty_profile) { 1448 dm_destroy_crypto_profile(profile); 1449 profile = NULL; 1450 } 1451 1452 /* 1453 * t->crypto_profile is only set temporarily while the table is being 1454 * set up, and it gets set to NULL after the profile has been 1455 * transferred to the request_queue. 1456 */ 1457 t->crypto_profile = profile; 1458 1459 return 0; 1460 } 1461 1462 static void dm_update_crypto_profile(struct request_queue *q, 1463 struct dm_table *t) 1464 { 1465 if (!t->crypto_profile) 1466 return; 1467 1468 /* Make the crypto profile less restrictive. */ 1469 if (!q->crypto_profile) { 1470 blk_crypto_register(t->crypto_profile, q); 1471 } else { 1472 blk_crypto_update_capabilities(q->crypto_profile, 1473 t->crypto_profile); 1474 dm_destroy_crypto_profile(t->crypto_profile); 1475 } 1476 t->crypto_profile = NULL; 1477 } 1478 1479 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1480 1481 static int dm_table_construct_crypto_profile(struct dm_table *t) 1482 { 1483 return 0; 1484 } 1485 1486 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1487 { 1488 } 1489 1490 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1491 { 1492 } 1493 1494 static void dm_update_crypto_profile(struct request_queue *q, 1495 struct dm_table *t) 1496 { 1497 } 1498 1499 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1500 1501 /* 1502 * Prepares the table for use by building the indices, 1503 * setting the type, and allocating mempools. 1504 */ 1505 int dm_table_complete(struct dm_table *t) 1506 { 1507 int r; 1508 1509 r = dm_table_determine_type(t); 1510 if (r) { 1511 DMERR("unable to determine table type"); 1512 return r; 1513 } 1514 1515 r = dm_table_build_index(t); 1516 if (r) { 1517 DMERR("unable to build btrees"); 1518 return r; 1519 } 1520 1521 r = dm_table_construct_crypto_profile(t); 1522 if (r) { 1523 DMERR("could not construct crypto profile."); 1524 return r; 1525 } 1526 1527 r = dm_table_alloc_md_mempools(t, t->md); 1528 if (r) 1529 DMERR("unable to allocate mempools"); 1530 1531 return r; 1532 } 1533 1534 static DEFINE_MUTEX(_event_lock); 1535 void dm_table_event_callback(struct dm_table *t, 1536 void (*fn)(void *), void *context) 1537 { 1538 mutex_lock(&_event_lock); 1539 t->event_fn = fn; 1540 t->event_context = context; 1541 mutex_unlock(&_event_lock); 1542 } 1543 1544 void dm_table_event(struct dm_table *t) 1545 { 1546 mutex_lock(&_event_lock); 1547 if (t->event_fn) 1548 t->event_fn(t->event_context); 1549 mutex_unlock(&_event_lock); 1550 } 1551 EXPORT_SYMBOL(dm_table_event); 1552 1553 inline sector_t dm_table_get_size(struct dm_table *t) 1554 { 1555 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1556 } 1557 EXPORT_SYMBOL(dm_table_get_size); 1558 1559 /* 1560 * Search the btree for the correct target. 1561 * 1562 * Caller should check returned pointer for NULL 1563 * to trap I/O beyond end of device. 1564 */ 1565 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1566 { 1567 unsigned int l, n = 0, k = 0; 1568 sector_t *node; 1569 1570 if (unlikely(sector >= dm_table_get_size(t))) 1571 return NULL; 1572 1573 for (l = 0; l < t->depth; l++) { 1574 n = get_child(n, k); 1575 node = get_node(t, l, n); 1576 1577 for (k = 0; k < KEYS_PER_NODE; k++) 1578 if (node[k] >= sector) 1579 break; 1580 } 1581 1582 return &t->targets[(KEYS_PER_NODE * n) + k]; 1583 } 1584 1585 /* 1586 * type->iterate_devices() should be called when the sanity check needs to 1587 * iterate and check all underlying data devices. iterate_devices() will 1588 * iterate all underlying data devices until it encounters a non-zero return 1589 * code, returned by whether the input iterate_devices_callout_fn, or 1590 * iterate_devices() itself internally. 1591 * 1592 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1593 * iterate multiple underlying devices internally, in which case a non-zero 1594 * return code returned by iterate_devices_callout_fn will stop the iteration 1595 * in advance. 1596 * 1597 * Cases requiring _any_ underlying device supporting some kind of attribute, 1598 * should use the iteration structure like dm_table_any_dev_attr(), or call 1599 * it directly. @func should handle semantics of positive examples, e.g. 1600 * capable of something. 1601 * 1602 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1603 * should use the iteration structure like dm_table_supports_nowait() or 1604 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1605 * uses an @anti_func that handle semantics of counter examples, e.g. not 1606 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1607 */ 1608 static bool dm_table_any_dev_attr(struct dm_table *t, 1609 iterate_devices_callout_fn func, void *data) 1610 { 1611 for (unsigned int i = 0; i < t->num_targets; i++) { 1612 struct dm_target *ti = dm_table_get_target(t, i); 1613 1614 if (ti->type->iterate_devices && 1615 ti->type->iterate_devices(ti, func, data)) 1616 return true; 1617 } 1618 1619 return false; 1620 } 1621 1622 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1623 sector_t start, sector_t len, void *data) 1624 { 1625 unsigned int *num_devices = data; 1626 1627 (*num_devices)++; 1628 1629 return 0; 1630 } 1631 1632 /* 1633 * Check whether a table has no data devices attached using each 1634 * target's iterate_devices method. 1635 * Returns false if the result is unknown because a target doesn't 1636 * support iterate_devices. 1637 */ 1638 bool dm_table_has_no_data_devices(struct dm_table *t) 1639 { 1640 for (unsigned int i = 0; i < t->num_targets; i++) { 1641 struct dm_target *ti = dm_table_get_target(t, i); 1642 unsigned int num_devices = 0; 1643 1644 if (!ti->type->iterate_devices) 1645 return false; 1646 1647 ti->type->iterate_devices(ti, count_device, &num_devices); 1648 if (num_devices) 1649 return false; 1650 } 1651 1652 return true; 1653 } 1654 1655 bool dm_table_is_wildcard(struct dm_table *t) 1656 { 1657 for (unsigned int i = 0; i < t->num_targets; i++) { 1658 struct dm_target *ti = dm_table_get_target(t, i); 1659 1660 if (!dm_target_is_wildcard(ti->type)) 1661 return false; 1662 } 1663 1664 return true; 1665 } 1666 1667 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1668 sector_t start, sector_t len, void *data) 1669 { 1670 bool *zoned = data; 1671 1672 return bdev_is_zoned(dev->bdev) != *zoned; 1673 } 1674 1675 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1676 sector_t start, sector_t len, void *data) 1677 { 1678 return bdev_is_zoned(dev->bdev); 1679 } 1680 1681 /* 1682 * Check the device zoned model based on the target feature flag. If the target 1683 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1684 * also accepted but all devices must have the same zoned model. If the target 1685 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1686 * zoned model with all zoned devices having the same zone size. 1687 */ 1688 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1689 { 1690 for (unsigned int i = 0; i < t->num_targets; i++) { 1691 struct dm_target *ti = dm_table_get_target(t, i); 1692 1693 /* 1694 * For the wildcard target (dm-error), if we do not have a 1695 * backing device, we must always return false. If we have a 1696 * backing device, the result must depend on checking zoned 1697 * model, like for any other target. So for this, check directly 1698 * if the target backing device is zoned as we get "false" when 1699 * dm-error was set without a backing device. 1700 */ 1701 if (dm_target_is_wildcard(ti->type) && 1702 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1703 return false; 1704 1705 if (dm_target_supports_zoned_hm(ti->type)) { 1706 if (!ti->type->iterate_devices || 1707 ti->type->iterate_devices(ti, device_not_zoned, 1708 &zoned)) 1709 return false; 1710 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1711 if (zoned) 1712 return false; 1713 } 1714 } 1715 1716 return true; 1717 } 1718 1719 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1720 sector_t start, sector_t len, void *data) 1721 { 1722 unsigned int *zone_sectors = data; 1723 1724 if (!bdev_is_zoned(dev->bdev)) 1725 return 0; 1726 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1727 } 1728 1729 /* 1730 * Check consistency of zoned model and zone sectors across all targets. For 1731 * zone sectors, if the destination device is a zoned block device, it shall 1732 * have the specified zone_sectors. 1733 */ 1734 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1735 unsigned int zone_sectors) 1736 { 1737 if (!zoned) 1738 return 0; 1739 1740 if (!dm_table_supports_zoned(t, zoned)) { 1741 DMERR("%s: zoned model is not consistent across all devices", 1742 dm_device_name(t->md)); 1743 return -EINVAL; 1744 } 1745 1746 /* Check zone size validity and compatibility */ 1747 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1748 return -EINVAL; 1749 1750 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1751 DMERR("%s: zone sectors is not consistent across all zoned devices", 1752 dm_device_name(t->md)); 1753 return -EINVAL; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /* 1760 * Establish the new table's queue_limits and validate them. 1761 */ 1762 int dm_calculate_queue_limits(struct dm_table *t, 1763 struct queue_limits *limits) 1764 { 1765 struct queue_limits ti_limits; 1766 unsigned int zone_sectors = 0; 1767 bool zoned = false; 1768 1769 dm_set_stacking_limits(limits); 1770 1771 t->integrity_supported = true; 1772 for (unsigned int i = 0; i < t->num_targets; i++) { 1773 struct dm_target *ti = dm_table_get_target(t, i); 1774 1775 if (!dm_target_passes_integrity(ti->type)) 1776 t->integrity_supported = false; 1777 } 1778 1779 for (unsigned int i = 0; i < t->num_targets; i++) { 1780 struct dm_target *ti = dm_table_get_target(t, i); 1781 1782 dm_set_stacking_limits(&ti_limits); 1783 1784 if (!ti->type->iterate_devices) { 1785 /* Set I/O hints portion of queue limits */ 1786 if (ti->type->io_hints) 1787 ti->type->io_hints(ti, &ti_limits); 1788 goto combine_limits; 1789 } 1790 1791 /* 1792 * Combine queue limits of all the devices this target uses. 1793 */ 1794 ti->type->iterate_devices(ti, dm_set_device_limits, 1795 &ti_limits); 1796 1797 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1798 /* 1799 * After stacking all limits, validate all devices 1800 * in table support this zoned model and zone sectors. 1801 */ 1802 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1803 zone_sectors = ti_limits.chunk_sectors; 1804 } 1805 1806 /* Set I/O hints portion of queue limits */ 1807 if (ti->type->io_hints) 1808 ti->type->io_hints(ti, &ti_limits); 1809 1810 /* 1811 * Check each device area is consistent with the target's 1812 * overall queue limits. 1813 */ 1814 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1815 &ti_limits)) 1816 return -EINVAL; 1817 1818 combine_limits: 1819 /* 1820 * Merge this target's queue limits into the overall limits 1821 * for the table. 1822 */ 1823 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1824 DMWARN("%s: adding target device (start sect %llu len %llu) " 1825 "caused an alignment inconsistency", 1826 dm_device_name(t->md), 1827 (unsigned long long) ti->begin, 1828 (unsigned long long) ti->len); 1829 1830 if (t->integrity_supported || 1831 dm_target_has_integrity(ti->type)) { 1832 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1833 DMWARN("%s: adding target device (start sect %llu len %llu) " 1834 "disabled integrity support due to incompatibility", 1835 dm_device_name(t->md), 1836 (unsigned long long) ti->begin, 1837 (unsigned long long) ti->len); 1838 t->integrity_supported = false; 1839 } 1840 } 1841 } 1842 1843 /* 1844 * Verify that the zoned model and zone sectors, as determined before 1845 * any .io_hints override, are the same across all devices in the table. 1846 * - this is especially relevant if .io_hints is emulating a disk-managed 1847 * zoned model on host-managed zoned block devices. 1848 * BUT... 1849 */ 1850 if (limits->features & BLK_FEAT_ZONED) { 1851 /* 1852 * ...IF the above limits stacking determined a zoned model 1853 * validate that all of the table's devices conform to it. 1854 */ 1855 zoned = limits->features & BLK_FEAT_ZONED; 1856 zone_sectors = limits->chunk_sectors; 1857 } 1858 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1859 return -EINVAL; 1860 1861 return validate_hardware_logical_block_alignment(t, limits); 1862 } 1863 1864 /* 1865 * Check if a target requires flush support even if none of the underlying 1866 * devices need it (e.g. to persist target-specific metadata). 1867 */ 1868 static bool dm_table_supports_flush(struct dm_table *t) 1869 { 1870 for (unsigned int i = 0; i < t->num_targets; i++) { 1871 struct dm_target *ti = dm_table_get_target(t, i); 1872 1873 if (ti->num_flush_bios && ti->flush_supported) 1874 return true; 1875 } 1876 1877 return false; 1878 } 1879 1880 static int device_dax_write_cache_enabled(struct dm_target *ti, 1881 struct dm_dev *dev, sector_t start, 1882 sector_t len, void *data) 1883 { 1884 struct dax_device *dax_dev = dev->dax_dev; 1885 1886 if (!dax_dev) 1887 return false; 1888 1889 if (dax_write_cache_enabled(dax_dev)) 1890 return true; 1891 return false; 1892 } 1893 1894 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1895 sector_t start, sector_t len, void *data) 1896 { 1897 struct request_queue *q = bdev_get_queue(dev->bdev); 1898 int b; 1899 1900 mutex_lock(&q->limits_lock); 1901 b = !q->limits.max_write_zeroes_sectors; 1902 mutex_unlock(&q->limits_lock); 1903 return b; 1904 } 1905 1906 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1907 { 1908 for (unsigned int i = 0; i < t->num_targets; i++) { 1909 struct dm_target *ti = dm_table_get_target(t, i); 1910 1911 if (!ti->num_write_zeroes_bios) 1912 return false; 1913 1914 if (!ti->type->iterate_devices || 1915 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1916 return false; 1917 } 1918 1919 return true; 1920 } 1921 1922 static bool dm_table_supports_nowait(struct dm_table *t) 1923 { 1924 for (unsigned int i = 0; i < t->num_targets; i++) { 1925 struct dm_target *ti = dm_table_get_target(t, i); 1926 1927 if (!dm_target_supports_nowait(ti->type)) 1928 return false; 1929 } 1930 1931 return true; 1932 } 1933 1934 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1935 sector_t start, sector_t len, void *data) 1936 { 1937 return !bdev_max_discard_sectors(dev->bdev); 1938 } 1939 1940 static bool dm_table_supports_discards(struct dm_table *t) 1941 { 1942 for (unsigned int i = 0; i < t->num_targets; i++) { 1943 struct dm_target *ti = dm_table_get_target(t, i); 1944 1945 if (!ti->num_discard_bios) 1946 return false; 1947 1948 /* 1949 * Either the target provides discard support (as implied by setting 1950 * 'discards_supported') or it relies on _all_ data devices having 1951 * discard support. 1952 */ 1953 if (!ti->discards_supported && 1954 (!ti->type->iterate_devices || 1955 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1956 return false; 1957 } 1958 1959 return true; 1960 } 1961 1962 static int device_not_secure_erase_capable(struct dm_target *ti, 1963 struct dm_dev *dev, sector_t start, 1964 sector_t len, void *data) 1965 { 1966 return !bdev_max_secure_erase_sectors(dev->bdev); 1967 } 1968 1969 static bool dm_table_supports_secure_erase(struct dm_table *t) 1970 { 1971 for (unsigned int i = 0; i < t->num_targets; i++) { 1972 struct dm_target *ti = dm_table_get_target(t, i); 1973 1974 if (!ti->num_secure_erase_bios) 1975 return false; 1976 1977 if (!ti->type->iterate_devices || 1978 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1979 return false; 1980 } 1981 1982 return true; 1983 } 1984 1985 static int device_not_atomic_write_capable(struct dm_target *ti, 1986 struct dm_dev *dev, sector_t start, 1987 sector_t len, void *data) 1988 { 1989 return !bdev_can_atomic_write(dev->bdev); 1990 } 1991 1992 static bool dm_table_supports_atomic_writes(struct dm_table *t) 1993 { 1994 for (unsigned int i = 0; i < t->num_targets; i++) { 1995 struct dm_target *ti = dm_table_get_target(t, i); 1996 1997 if (!dm_target_supports_atomic_writes(ti->type)) 1998 return false; 1999 2000 if (!ti->type->iterate_devices) 2001 return false; 2002 2003 if (ti->type->iterate_devices(ti, 2004 device_not_atomic_write_capable, NULL)) { 2005 return false; 2006 } 2007 } 2008 return true; 2009 } 2010 2011 bool dm_table_supports_size_change(struct dm_table *t, sector_t old_size, 2012 sector_t new_size) 2013 { 2014 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && dm_has_zone_plugs(t->md) && 2015 old_size != new_size) { 2016 DMWARN("%s: device has zone write plug resources. " 2017 "Cannot change size", 2018 dm_device_name(t->md)); 2019 return false; 2020 } 2021 return true; 2022 } 2023 2024 /* 2025 * This function will be skipped by noflush reloads of immutable request 2026 * based devices (dm-mpath). 2027 */ 2028 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 2029 struct queue_limits *limits) 2030 { 2031 int r; 2032 struct queue_limits old_limits; 2033 2034 if (!dm_table_supports_nowait(t)) 2035 limits->features &= ~BLK_FEAT_NOWAIT; 2036 2037 /* 2038 * The current polling impementation does not support request based 2039 * stacking. 2040 */ 2041 if (!__table_type_bio_based(t->type)) 2042 limits->features &= ~BLK_FEAT_POLL; 2043 2044 if (!dm_table_supports_discards(t)) { 2045 limits->max_hw_discard_sectors = 0; 2046 limits->discard_granularity = 0; 2047 limits->discard_alignment = 0; 2048 } 2049 2050 if (!dm_table_supports_write_zeroes(t)) { 2051 limits->max_write_zeroes_sectors = 0; 2052 limits->max_hw_wzeroes_unmap_sectors = 0; 2053 } 2054 2055 if (!dm_table_supports_secure_erase(t)) 2056 limits->max_secure_erase_sectors = 0; 2057 2058 if (dm_table_supports_flush(t)) 2059 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2060 2061 if (dm_table_supports_dax(t, device_not_dax_capable)) 2062 limits->features |= BLK_FEAT_DAX; 2063 else 2064 limits->features &= ~BLK_FEAT_DAX; 2065 2066 /* For a zoned table, setup the zone related queue attributes. */ 2067 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2068 if (limits->features & BLK_FEAT_ZONED) { 2069 r = dm_set_zones_restrictions(t, q, limits); 2070 if (r) 2071 return r; 2072 } else if (dm_has_zone_plugs(t->md)) { 2073 DMWARN("%s: device has zone write plug resources. " 2074 "Cannot switch to non-zoned table.", 2075 dm_device_name(t->md)); 2076 return -EINVAL; 2077 } 2078 } 2079 2080 if (dm_table_supports_atomic_writes(t)) 2081 limits->features |= BLK_FEAT_ATOMIC_WRITES; 2082 2083 old_limits = queue_limits_start_update(q); 2084 r = queue_limits_commit_update(q, limits); 2085 if (r) 2086 return r; 2087 2088 /* 2089 * Now that the limits are set, check the zones mapped by the table 2090 * and setup the resources for zone append emulation if necessary. 2091 */ 2092 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2093 (limits->features & BLK_FEAT_ZONED)) { 2094 r = dm_revalidate_zones(t, q); 2095 if (r) { 2096 queue_limits_set(q, &old_limits); 2097 return r; 2098 } 2099 } 2100 2101 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 2102 dm_finalize_zone_settings(t, limits); 2103 2104 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 2105 set_dax_synchronous(t->md->dax_dev); 2106 2107 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2108 dax_write_cache(t->md->dax_dev, true); 2109 2110 dm_update_crypto_profile(q, t); 2111 return 0; 2112 } 2113 2114 struct list_head *dm_table_get_devices(struct dm_table *t) 2115 { 2116 return &t->devices; 2117 } 2118 2119 blk_mode_t dm_table_get_mode(struct dm_table *t) 2120 { 2121 return t->mode; 2122 } 2123 EXPORT_SYMBOL(dm_table_get_mode); 2124 2125 enum suspend_mode { 2126 PRESUSPEND, 2127 PRESUSPEND_UNDO, 2128 POSTSUSPEND, 2129 }; 2130 2131 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2132 { 2133 lockdep_assert_held(&t->md->suspend_lock); 2134 2135 for (unsigned int i = 0; i < t->num_targets; i++) { 2136 struct dm_target *ti = dm_table_get_target(t, i); 2137 2138 switch (mode) { 2139 case PRESUSPEND: 2140 if (ti->type->presuspend) 2141 ti->type->presuspend(ti); 2142 break; 2143 case PRESUSPEND_UNDO: 2144 if (ti->type->presuspend_undo) 2145 ti->type->presuspend_undo(ti); 2146 break; 2147 case POSTSUSPEND: 2148 if (ti->type->postsuspend) 2149 ti->type->postsuspend(ti); 2150 break; 2151 } 2152 } 2153 } 2154 2155 void dm_table_presuspend_targets(struct dm_table *t) 2156 { 2157 if (!t) 2158 return; 2159 2160 suspend_targets(t, PRESUSPEND); 2161 } 2162 2163 void dm_table_presuspend_undo_targets(struct dm_table *t) 2164 { 2165 if (!t) 2166 return; 2167 2168 suspend_targets(t, PRESUSPEND_UNDO); 2169 } 2170 2171 void dm_table_postsuspend_targets(struct dm_table *t) 2172 { 2173 if (!t) 2174 return; 2175 2176 suspend_targets(t, POSTSUSPEND); 2177 } 2178 2179 int dm_table_resume_targets(struct dm_table *t) 2180 { 2181 unsigned int i; 2182 int r = 0; 2183 2184 lockdep_assert_held(&t->md->suspend_lock); 2185 2186 for (i = 0; i < t->num_targets; i++) { 2187 struct dm_target *ti = dm_table_get_target(t, i); 2188 2189 if (!ti->type->preresume) 2190 continue; 2191 2192 r = ti->type->preresume(ti); 2193 if (r) { 2194 DMERR("%s: %s: preresume failed, error = %d", 2195 dm_device_name(t->md), ti->type->name, r); 2196 return r; 2197 } 2198 } 2199 2200 for (i = 0; i < t->num_targets; i++) { 2201 struct dm_target *ti = dm_table_get_target(t, i); 2202 2203 if (ti->type->resume) 2204 ti->type->resume(ti); 2205 } 2206 2207 return 0; 2208 } 2209 2210 struct mapped_device *dm_table_get_md(struct dm_table *t) 2211 { 2212 return t->md; 2213 } 2214 EXPORT_SYMBOL(dm_table_get_md); 2215 2216 const char *dm_table_device_name(struct dm_table *t) 2217 { 2218 return dm_device_name(t->md); 2219 } 2220 EXPORT_SYMBOL_GPL(dm_table_device_name); 2221 2222 void dm_table_run_md_queue_async(struct dm_table *t) 2223 { 2224 if (!dm_table_request_based(t)) 2225 return; 2226 2227 if (t->md->queue) 2228 blk_mq_run_hw_queues(t->md->queue, true); 2229 } 2230 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2231 2232