1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/file.c
4 *
5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 *
7 * Manage the dynamic fd arrays in the process files_struct.
8 */
9
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <linux/file_ref.h>
24 #include <net/sock.h>
25
26 #include "internal.h"
27
28 /**
29 * __file_ref_put - Slowpath of file_ref_put()
30 * @ref: Pointer to the reference count
31 * @cnt: Current reference count
32 *
33 * Invoked when the reference count is outside of the valid zone.
34 *
35 * Return:
36 * True if this was the last reference with no future references
37 * possible. This signals the caller that it can safely schedule the
38 * object, which is protected by the reference counter, for
39 * deconstruction.
40 *
41 * False if there are still active references or the put() raced
42 * with a concurrent get()/put() pair. Caller is not allowed to
43 * deconstruct the protected object.
44 */
__file_ref_put(file_ref_t * ref,unsigned long cnt)45 bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
46 {
47 /* Did this drop the last reference? */
48 if (likely(cnt == FILE_REF_NOREF)) {
49 /*
50 * Carefully try to set the reference count to FILE_REF_DEAD.
51 *
52 * This can fail if a concurrent get() operation has
53 * elevated it again or the corresponding put() even marked
54 * it dead already. Both are valid situations and do not
55 * require a retry. If this fails the caller is not
56 * allowed to deconstruct the object.
57 */
58 if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
59 return false;
60
61 /*
62 * The caller can safely schedule the object for
63 * deconstruction. Provide acquire ordering.
64 */
65 smp_acquire__after_ctrl_dep();
66 return true;
67 }
68
69 /*
70 * If the reference count was already in the dead zone, then this
71 * put() operation is imbalanced. Warn, put the reference count back to
72 * DEAD and tell the caller to not deconstruct the object.
73 */
74 if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
75 atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
76 return false;
77 }
78
79 /*
80 * This is a put() operation on a saturated refcount. Restore the
81 * mean saturation value and tell the caller to not deconstruct the
82 * object.
83 */
84 if (cnt > FILE_REF_MAXREF)
85 atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
86 return false;
87 }
88 EXPORT_SYMBOL_GPL(__file_ref_put);
89
90 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
91 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
92 /* our min() is unusable in constant expressions ;-/ */
93 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
94 unsigned int sysctl_nr_open_max =
95 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
96
__free_fdtable(struct fdtable * fdt)97 static void __free_fdtable(struct fdtable *fdt)
98 {
99 kvfree(fdt->fd);
100 kvfree(fdt->open_fds);
101 kfree(fdt);
102 }
103
free_fdtable_rcu(struct rcu_head * rcu)104 static void free_fdtable_rcu(struct rcu_head *rcu)
105 {
106 __free_fdtable(container_of(rcu, struct fdtable, rcu));
107 }
108
109 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
110 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
111
112 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
113 /*
114 * Copy 'count' fd bits from the old table to the new table and clear the extra
115 * space if any. This does not copy the file pointers. Called with the files
116 * spinlock held for write.
117 */
copy_fd_bitmaps(struct fdtable * nfdt,struct fdtable * ofdt,unsigned int copy_words)118 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
119 unsigned int copy_words)
120 {
121 unsigned int nwords = fdt_words(nfdt);
122
123 bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
124 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
125 bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
126 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
127 bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
128 copy_words, nwords);
129 }
130
131 /*
132 * Copy all file descriptors from the old table to the new, expanded table and
133 * clear the extra space. Called with the files spinlock held for write.
134 */
copy_fdtable(struct fdtable * nfdt,struct fdtable * ofdt)135 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
136 {
137 size_t cpy, set;
138
139 BUG_ON(nfdt->max_fds < ofdt->max_fds);
140
141 cpy = ofdt->max_fds * sizeof(struct file *);
142 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
143 memcpy(nfdt->fd, ofdt->fd, cpy);
144 memset((char *)nfdt->fd + cpy, 0, set);
145
146 copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
147 }
148
149 /*
150 * Note how the fdtable bitmap allocations very much have to be a multiple of
151 * BITS_PER_LONG. This is not only because we walk those things in chunks of
152 * 'unsigned long' in some places, but simply because that is how the Linux
153 * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
154 * they are very much "bits in an array of unsigned long".
155 */
alloc_fdtable(unsigned int slots_wanted)156 static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
157 {
158 struct fdtable *fdt;
159 unsigned int nr;
160 void *data;
161
162 /*
163 * Figure out how many fds we actually want to support in this fdtable.
164 * Allocation steps are keyed to the size of the fdarray, since it
165 * grows far faster than any of the other dynamic data. We try to fit
166 * the fdarray into comfortable page-tuned chunks: starting at 1024B
167 * and growing in powers of two from there on. Since we called only
168 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
169 * already gives BITS_PER_LONG slots), the above boils down to
170 * 1. use the smallest power of two large enough to give us that many
171 * slots.
172 * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is
173 * 256 slots (i.e. 1Kb fd array).
174 * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there
175 * and we are never going to be asked for 64 or less.
176 */
177 if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
178 nr = 256;
179 else
180 nr = roundup_pow_of_two(slots_wanted);
181 /*
182 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
183 * had been set lower between the check in expand_files() and here.
184 *
185 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
186 * bitmaps handling below becomes unpleasant, to put it mildly...
187 */
188 if (unlikely(nr > sysctl_nr_open)) {
189 nr = round_down(sysctl_nr_open, BITS_PER_LONG);
190 if (nr < slots_wanted)
191 return ERR_PTR(-EMFILE);
192 }
193
194 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
195 if (!fdt)
196 goto out;
197 fdt->max_fds = nr;
198 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
199 if (!data)
200 goto out_fdt;
201 fdt->fd = data;
202
203 data = kvmalloc(max_t(size_t,
204 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
205 GFP_KERNEL_ACCOUNT);
206 if (!data)
207 goto out_arr;
208 fdt->open_fds = data;
209 data += nr / BITS_PER_BYTE;
210 fdt->close_on_exec = data;
211 data += nr / BITS_PER_BYTE;
212 fdt->full_fds_bits = data;
213
214 return fdt;
215
216 out_arr:
217 kvfree(fdt->fd);
218 out_fdt:
219 kfree(fdt);
220 out:
221 return ERR_PTR(-ENOMEM);
222 }
223
224 /*
225 * Expand the file descriptor table.
226 * This function will allocate a new fdtable and both fd array and fdset, of
227 * the given size.
228 * Return <0 error code on error; 0 on successful completion.
229 * The files->file_lock should be held on entry, and will be held on exit.
230 */
expand_fdtable(struct files_struct * files,unsigned int nr)231 static int expand_fdtable(struct files_struct *files, unsigned int nr)
232 __releases(files->file_lock)
233 __acquires(files->file_lock)
234 {
235 struct fdtable *new_fdt, *cur_fdt;
236
237 spin_unlock(&files->file_lock);
238 new_fdt = alloc_fdtable(nr + 1);
239
240 /* make sure all fd_install() have seen resize_in_progress
241 * or have finished their rcu_read_lock_sched() section.
242 */
243 if (atomic_read(&files->count) > 1)
244 synchronize_rcu();
245
246 spin_lock(&files->file_lock);
247 if (IS_ERR(new_fdt))
248 return PTR_ERR(new_fdt);
249 cur_fdt = files_fdtable(files);
250 BUG_ON(nr < cur_fdt->max_fds);
251 copy_fdtable(new_fdt, cur_fdt);
252 rcu_assign_pointer(files->fdt, new_fdt);
253 if (cur_fdt != &files->fdtab)
254 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
255 /* coupled with smp_rmb() in fd_install() */
256 smp_wmb();
257 return 0;
258 }
259
260 /*
261 * Expand files.
262 * This function will expand the file structures, if the requested size exceeds
263 * the current capacity and there is room for expansion.
264 * Return <0 error code on error; 0 on success.
265 * The files->file_lock should be held on entry, and will be held on exit.
266 */
expand_files(struct files_struct * files,unsigned int nr)267 static int expand_files(struct files_struct *files, unsigned int nr)
268 __releases(files->file_lock)
269 __acquires(files->file_lock)
270 {
271 struct fdtable *fdt;
272 int error;
273
274 repeat:
275 fdt = files_fdtable(files);
276
277 /* Do we need to expand? */
278 if (nr < fdt->max_fds)
279 return 0;
280
281 /* Can we expand? */
282 if (nr >= sysctl_nr_open)
283 return -EMFILE;
284
285 if (unlikely(files->resize_in_progress)) {
286 spin_unlock(&files->file_lock);
287 wait_event(files->resize_wait, !files->resize_in_progress);
288 spin_lock(&files->file_lock);
289 goto repeat;
290 }
291
292 /* All good, so we try */
293 files->resize_in_progress = true;
294 error = expand_fdtable(files, nr);
295 files->resize_in_progress = false;
296
297 wake_up_all(&files->resize_wait);
298 return error;
299 }
300
__set_close_on_exec(unsigned int fd,struct fdtable * fdt,bool set)301 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
302 bool set)
303 {
304 if (set) {
305 __set_bit(fd, fdt->close_on_exec);
306 } else {
307 if (test_bit(fd, fdt->close_on_exec))
308 __clear_bit(fd, fdt->close_on_exec);
309 }
310 }
311
__set_open_fd(unsigned int fd,struct fdtable * fdt,bool set)312 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
313 {
314 __set_bit(fd, fdt->open_fds);
315 __set_close_on_exec(fd, fdt, set);
316 fd /= BITS_PER_LONG;
317 if (!~fdt->open_fds[fd])
318 __set_bit(fd, fdt->full_fds_bits);
319 }
320
__clear_open_fd(unsigned int fd,struct fdtable * fdt)321 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
322 {
323 __clear_bit(fd, fdt->open_fds);
324 fd /= BITS_PER_LONG;
325 if (test_bit(fd, fdt->full_fds_bits))
326 __clear_bit(fd, fdt->full_fds_bits);
327 }
328
fd_is_open(unsigned int fd,const struct fdtable * fdt)329 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
330 {
331 return test_bit(fd, fdt->open_fds);
332 }
333
334 /*
335 * Note that a sane fdtable size always has to be a multiple of
336 * BITS_PER_LONG, since we have bitmaps that are sized by this.
337 *
338 * punch_hole is optional - when close_range() is asked to unshare
339 * and close, we don't need to copy descriptors in that range, so
340 * a smaller cloned descriptor table might suffice if the last
341 * currently opened descriptor falls into that range.
342 */
sane_fdtable_size(struct fdtable * fdt,struct fd_range * punch_hole)343 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
344 {
345 unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
346
347 if (last == fdt->max_fds)
348 return NR_OPEN_DEFAULT;
349 if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
350 last = find_last_bit(fdt->open_fds, punch_hole->from);
351 if (last == punch_hole->from)
352 return NR_OPEN_DEFAULT;
353 }
354 return ALIGN(last + 1, BITS_PER_LONG);
355 }
356
357 /*
358 * Allocate a new descriptor table and copy contents from the passed in
359 * instance. Returns a pointer to cloned table on success, ERR_PTR()
360 * on failure. For 'punch_hole' see sane_fdtable_size().
361 */
dup_fd(struct files_struct * oldf,struct fd_range * punch_hole)362 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
363 {
364 struct files_struct *newf;
365 struct file **old_fds, **new_fds;
366 unsigned int open_files, i;
367 struct fdtable *old_fdt, *new_fdt;
368
369 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
370 if (!newf)
371 return ERR_PTR(-ENOMEM);
372
373 atomic_set(&newf->count, 1);
374
375 spin_lock_init(&newf->file_lock);
376 newf->resize_in_progress = false;
377 init_waitqueue_head(&newf->resize_wait);
378 newf->next_fd = 0;
379 new_fdt = &newf->fdtab;
380 new_fdt->max_fds = NR_OPEN_DEFAULT;
381 new_fdt->close_on_exec = newf->close_on_exec_init;
382 new_fdt->open_fds = newf->open_fds_init;
383 new_fdt->full_fds_bits = newf->full_fds_bits_init;
384 new_fdt->fd = &newf->fd_array[0];
385
386 spin_lock(&oldf->file_lock);
387 old_fdt = files_fdtable(oldf);
388 open_files = sane_fdtable_size(old_fdt, punch_hole);
389
390 /*
391 * Check whether we need to allocate a larger fd array and fd set.
392 */
393 while (unlikely(open_files > new_fdt->max_fds)) {
394 spin_unlock(&oldf->file_lock);
395
396 if (new_fdt != &newf->fdtab)
397 __free_fdtable(new_fdt);
398
399 new_fdt = alloc_fdtable(open_files);
400 if (IS_ERR(new_fdt)) {
401 kmem_cache_free(files_cachep, newf);
402 return ERR_CAST(new_fdt);
403 }
404
405 /*
406 * Reacquire the oldf lock and a pointer to its fd table
407 * who knows it may have a new bigger fd table. We need
408 * the latest pointer.
409 */
410 spin_lock(&oldf->file_lock);
411 old_fdt = files_fdtable(oldf);
412 open_files = sane_fdtable_size(old_fdt, punch_hole);
413 }
414
415 copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
416
417 old_fds = old_fdt->fd;
418 new_fds = new_fdt->fd;
419
420 for (i = open_files; i != 0; i--) {
421 struct file *f = *old_fds++;
422 if (f) {
423 get_file(f);
424 } else {
425 /*
426 * The fd may be claimed in the fd bitmap but not yet
427 * instantiated in the files array if a sibling thread
428 * is partway through open(). So make sure that this
429 * fd is available to the new process.
430 */
431 __clear_open_fd(open_files - i, new_fdt);
432 }
433 rcu_assign_pointer(*new_fds++, f);
434 }
435 spin_unlock(&oldf->file_lock);
436
437 /* clear the remainder */
438 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
439
440 rcu_assign_pointer(newf->fdt, new_fdt);
441
442 return newf;
443 }
444
close_files(struct files_struct * files)445 static struct fdtable *close_files(struct files_struct * files)
446 {
447 /*
448 * It is safe to dereference the fd table without RCU or
449 * ->file_lock because this is the last reference to the
450 * files structure.
451 */
452 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
453 unsigned int i, j = 0;
454
455 for (;;) {
456 unsigned long set;
457 i = j * BITS_PER_LONG;
458 if (i >= fdt->max_fds)
459 break;
460 set = fdt->open_fds[j++];
461 while (set) {
462 if (set & 1) {
463 struct file *file = fdt->fd[i];
464 if (file) {
465 filp_close(file, files);
466 cond_resched();
467 }
468 }
469 i++;
470 set >>= 1;
471 }
472 }
473
474 return fdt;
475 }
476
put_files_struct(struct files_struct * files)477 void put_files_struct(struct files_struct *files)
478 {
479 if (atomic_dec_and_test(&files->count)) {
480 struct fdtable *fdt = close_files(files);
481
482 /* free the arrays if they are not embedded */
483 if (fdt != &files->fdtab)
484 __free_fdtable(fdt);
485 kmem_cache_free(files_cachep, files);
486 }
487 }
488
exit_files(struct task_struct * tsk)489 void exit_files(struct task_struct *tsk)
490 {
491 struct files_struct * files = tsk->files;
492
493 if (files) {
494 task_lock(tsk);
495 tsk->files = NULL;
496 task_unlock(tsk);
497 put_files_struct(files);
498 }
499 }
500
501 struct files_struct init_files = {
502 .count = ATOMIC_INIT(1),
503 .fdt = &init_files.fdtab,
504 .fdtab = {
505 .max_fds = NR_OPEN_DEFAULT,
506 .fd = &init_files.fd_array[0],
507 .close_on_exec = init_files.close_on_exec_init,
508 .open_fds = init_files.open_fds_init,
509 .full_fds_bits = init_files.full_fds_bits_init,
510 },
511 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
512 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
513 };
514
find_next_fd(struct fdtable * fdt,unsigned int start)515 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
516 {
517 unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
518 unsigned int maxbit = maxfd / BITS_PER_LONG;
519 unsigned int bitbit = start / BITS_PER_LONG;
520 unsigned int bit;
521
522 /*
523 * Try to avoid looking at the second level bitmap
524 */
525 bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
526 start & (BITS_PER_LONG - 1));
527 if (bit < BITS_PER_LONG)
528 return bit + bitbit * BITS_PER_LONG;
529
530 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
531 if (bitbit >= maxfd)
532 return maxfd;
533 if (bitbit > start)
534 start = bitbit;
535 return find_next_zero_bit(fdt->open_fds, maxfd, start);
536 }
537
538 /*
539 * allocate a file descriptor, mark it busy.
540 */
alloc_fd(unsigned start,unsigned end,unsigned flags)541 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
542 {
543 struct files_struct *files = current->files;
544 unsigned int fd;
545 int error;
546 struct fdtable *fdt;
547
548 spin_lock(&files->file_lock);
549 repeat:
550 fdt = files_fdtable(files);
551 fd = start;
552 if (fd < files->next_fd)
553 fd = files->next_fd;
554
555 if (likely(fd < fdt->max_fds))
556 fd = find_next_fd(fdt, fd);
557
558 /*
559 * N.B. For clone tasks sharing a files structure, this test
560 * will limit the total number of files that can be opened.
561 */
562 error = -EMFILE;
563 if (unlikely(fd >= end))
564 goto out;
565
566 if (unlikely(fd >= fdt->max_fds)) {
567 error = expand_files(files, fd);
568 if (error < 0)
569 goto out;
570
571 goto repeat;
572 }
573
574 if (start <= files->next_fd)
575 files->next_fd = fd + 1;
576
577 __set_open_fd(fd, fdt, flags & O_CLOEXEC);
578 error = fd;
579
580 out:
581 spin_unlock(&files->file_lock);
582 return error;
583 }
584
__get_unused_fd_flags(unsigned flags,unsigned long nofile)585 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
586 {
587 return alloc_fd(0, nofile, flags);
588 }
589
get_unused_fd_flags(unsigned flags)590 int get_unused_fd_flags(unsigned flags)
591 {
592 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
593 }
594 EXPORT_SYMBOL(get_unused_fd_flags);
595
__put_unused_fd(struct files_struct * files,unsigned int fd)596 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
597 {
598 struct fdtable *fdt = files_fdtable(files);
599 __clear_open_fd(fd, fdt);
600 if (fd < files->next_fd)
601 files->next_fd = fd;
602 }
603
put_unused_fd(unsigned int fd)604 void put_unused_fd(unsigned int fd)
605 {
606 struct files_struct *files = current->files;
607 spin_lock(&files->file_lock);
608 __put_unused_fd(files, fd);
609 spin_unlock(&files->file_lock);
610 }
611
612 EXPORT_SYMBOL(put_unused_fd);
613
614 /*
615 * Install a file pointer in the fd array.
616 *
617 * The VFS is full of places where we drop the files lock between
618 * setting the open_fds bitmap and installing the file in the file
619 * array. At any such point, we are vulnerable to a dup2() race
620 * installing a file in the array before us. We need to detect this and
621 * fput() the struct file we are about to overwrite in this case.
622 *
623 * It should never happen - if we allow dup2() do it, _really_ bad things
624 * will follow.
625 *
626 * This consumes the "file" refcount, so callers should treat it
627 * as if they had called fput(file).
628 */
629
fd_install(unsigned int fd,struct file * file)630 void fd_install(unsigned int fd, struct file *file)
631 {
632 struct files_struct *files = current->files;
633 struct fdtable *fdt;
634
635 if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
636 return;
637
638 rcu_read_lock_sched();
639
640 if (unlikely(files->resize_in_progress)) {
641 rcu_read_unlock_sched();
642 spin_lock(&files->file_lock);
643 fdt = files_fdtable(files);
644 WARN_ON(fdt->fd[fd] != NULL);
645 rcu_assign_pointer(fdt->fd[fd], file);
646 spin_unlock(&files->file_lock);
647 return;
648 }
649 /* coupled with smp_wmb() in expand_fdtable() */
650 smp_rmb();
651 fdt = rcu_dereference_sched(files->fdt);
652 BUG_ON(fdt->fd[fd] != NULL);
653 rcu_assign_pointer(fdt->fd[fd], file);
654 rcu_read_unlock_sched();
655 }
656
657 EXPORT_SYMBOL(fd_install);
658
659 /**
660 * file_close_fd_locked - return file associated with fd
661 * @files: file struct to retrieve file from
662 * @fd: file descriptor to retrieve file for
663 *
664 * Doesn't take a separate reference count.
665 *
666 * Context: files_lock must be held.
667 *
668 * Returns: The file associated with @fd (NULL if @fd is not open)
669 */
file_close_fd_locked(struct files_struct * files,unsigned fd)670 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
671 {
672 struct fdtable *fdt = files_fdtable(files);
673 struct file *file;
674
675 lockdep_assert_held(&files->file_lock);
676
677 if (fd >= fdt->max_fds)
678 return NULL;
679
680 fd = array_index_nospec(fd, fdt->max_fds);
681 file = fdt->fd[fd];
682 if (file) {
683 rcu_assign_pointer(fdt->fd[fd], NULL);
684 __put_unused_fd(files, fd);
685 }
686 return file;
687 }
688
close_fd(unsigned fd)689 int close_fd(unsigned fd)
690 {
691 struct files_struct *files = current->files;
692 struct file *file;
693
694 spin_lock(&files->file_lock);
695 file = file_close_fd_locked(files, fd);
696 spin_unlock(&files->file_lock);
697 if (!file)
698 return -EBADF;
699
700 return filp_close(file, files);
701 }
702 EXPORT_SYMBOL(close_fd);
703
704 /**
705 * last_fd - return last valid index into fd table
706 * @fdt: File descriptor table.
707 *
708 * Context: Either rcu read lock or files_lock must be held.
709 *
710 * Returns: Last valid index into fdtable.
711 */
last_fd(struct fdtable * fdt)712 static inline unsigned last_fd(struct fdtable *fdt)
713 {
714 return fdt->max_fds - 1;
715 }
716
__range_cloexec(struct files_struct * cur_fds,unsigned int fd,unsigned int max_fd)717 static inline void __range_cloexec(struct files_struct *cur_fds,
718 unsigned int fd, unsigned int max_fd)
719 {
720 struct fdtable *fdt;
721
722 /* make sure we're using the correct maximum value */
723 spin_lock(&cur_fds->file_lock);
724 fdt = files_fdtable(cur_fds);
725 max_fd = min(last_fd(fdt), max_fd);
726 if (fd <= max_fd)
727 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
728 spin_unlock(&cur_fds->file_lock);
729 }
730
__range_close(struct files_struct * files,unsigned int fd,unsigned int max_fd)731 static inline void __range_close(struct files_struct *files, unsigned int fd,
732 unsigned int max_fd)
733 {
734 struct file *file;
735 unsigned n;
736
737 spin_lock(&files->file_lock);
738 n = last_fd(files_fdtable(files));
739 max_fd = min(max_fd, n);
740
741 for (; fd <= max_fd; fd++) {
742 file = file_close_fd_locked(files, fd);
743 if (file) {
744 spin_unlock(&files->file_lock);
745 filp_close(file, files);
746 cond_resched();
747 spin_lock(&files->file_lock);
748 } else if (need_resched()) {
749 spin_unlock(&files->file_lock);
750 cond_resched();
751 spin_lock(&files->file_lock);
752 }
753 }
754 spin_unlock(&files->file_lock);
755 }
756
757 /**
758 * sys_close_range() - Close all file descriptors in a given range.
759 *
760 * @fd: starting file descriptor to close
761 * @max_fd: last file descriptor to close
762 * @flags: CLOSE_RANGE flags.
763 *
764 * This closes a range of file descriptors. All file descriptors
765 * from @fd up to and including @max_fd are closed.
766 * Currently, errors to close a given file descriptor are ignored.
767 */
SYSCALL_DEFINE3(close_range,unsigned int,fd,unsigned int,max_fd,unsigned int,flags)768 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
769 unsigned int, flags)
770 {
771 struct task_struct *me = current;
772 struct files_struct *cur_fds = me->files, *fds = NULL;
773
774 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
775 return -EINVAL;
776
777 if (fd > max_fd)
778 return -EINVAL;
779
780 if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
781 struct fd_range range = {fd, max_fd}, *punch_hole = ⦥
782
783 /*
784 * If the caller requested all fds to be made cloexec we always
785 * copy all of the file descriptors since they still want to
786 * use them.
787 */
788 if (flags & CLOSE_RANGE_CLOEXEC)
789 punch_hole = NULL;
790
791 fds = dup_fd(cur_fds, punch_hole);
792 if (IS_ERR(fds))
793 return PTR_ERR(fds);
794 /*
795 * We used to share our file descriptor table, and have now
796 * created a private one, make sure we're using it below.
797 */
798 swap(cur_fds, fds);
799 }
800
801 if (flags & CLOSE_RANGE_CLOEXEC)
802 __range_cloexec(cur_fds, fd, max_fd);
803 else
804 __range_close(cur_fds, fd, max_fd);
805
806 if (fds) {
807 /*
808 * We're done closing the files we were supposed to. Time to install
809 * the new file descriptor table and drop the old one.
810 */
811 task_lock(me);
812 me->files = cur_fds;
813 task_unlock(me);
814 put_files_struct(fds);
815 }
816
817 return 0;
818 }
819
820 /**
821 * file_close_fd - return file associated with fd
822 * @fd: file descriptor to retrieve file for
823 *
824 * Doesn't take a separate reference count.
825 *
826 * Returns: The file associated with @fd (NULL if @fd is not open)
827 */
file_close_fd(unsigned int fd)828 struct file *file_close_fd(unsigned int fd)
829 {
830 struct files_struct *files = current->files;
831 struct file *file;
832
833 spin_lock(&files->file_lock);
834 file = file_close_fd_locked(files, fd);
835 spin_unlock(&files->file_lock);
836
837 return file;
838 }
839
do_close_on_exec(struct files_struct * files)840 void do_close_on_exec(struct files_struct *files)
841 {
842 unsigned i;
843 struct fdtable *fdt;
844
845 /* exec unshares first */
846 spin_lock(&files->file_lock);
847 for (i = 0; ; i++) {
848 unsigned long set;
849 unsigned fd = i * BITS_PER_LONG;
850 fdt = files_fdtable(files);
851 if (fd >= fdt->max_fds)
852 break;
853 set = fdt->close_on_exec[i];
854 if (!set)
855 continue;
856 fdt->close_on_exec[i] = 0;
857 for ( ; set ; fd++, set >>= 1) {
858 struct file *file;
859 if (!(set & 1))
860 continue;
861 file = fdt->fd[fd];
862 if (!file)
863 continue;
864 rcu_assign_pointer(fdt->fd[fd], NULL);
865 __put_unused_fd(files, fd);
866 spin_unlock(&files->file_lock);
867 filp_close(file, files);
868 cond_resched();
869 spin_lock(&files->file_lock);
870 }
871
872 }
873 spin_unlock(&files->file_lock);
874 }
875
__get_file_rcu(struct file __rcu ** f)876 static struct file *__get_file_rcu(struct file __rcu **f)
877 {
878 struct file __rcu *file;
879 struct file __rcu *file_reloaded;
880 struct file __rcu *file_reloaded_cmp;
881
882 file = rcu_dereference_raw(*f);
883 if (!file)
884 return NULL;
885
886 if (unlikely(!file_ref_get(&file->f_ref)))
887 return ERR_PTR(-EAGAIN);
888
889 file_reloaded = rcu_dereference_raw(*f);
890
891 /*
892 * Ensure that all accesses have a dependency on the load from
893 * rcu_dereference_raw() above so we get correct ordering
894 * between reuse/allocation and the pointer check below.
895 */
896 file_reloaded_cmp = file_reloaded;
897 OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
898
899 /*
900 * file_ref_get() above provided a full memory barrier when we
901 * acquired a reference.
902 *
903 * This is paired with the write barrier from assigning to the
904 * __rcu protected file pointer so that if that pointer still
905 * matches the current file, we know we have successfully
906 * acquired a reference to the right file.
907 *
908 * If the pointers don't match the file has been reallocated by
909 * SLAB_TYPESAFE_BY_RCU.
910 */
911 if (file == file_reloaded_cmp)
912 return file_reloaded;
913
914 fput(file);
915 return ERR_PTR(-EAGAIN);
916 }
917
918 /**
919 * get_file_rcu - try go get a reference to a file under rcu
920 * @f: the file to get a reference on
921 *
922 * This function tries to get a reference on @f carefully verifying that
923 * @f hasn't been reused.
924 *
925 * This function should rarely have to be used and only by users who
926 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
927 *
928 * Return: Returns @f with the reference count increased or NULL.
929 */
get_file_rcu(struct file __rcu ** f)930 struct file *get_file_rcu(struct file __rcu **f)
931 {
932 for (;;) {
933 struct file __rcu *file;
934
935 file = __get_file_rcu(f);
936 if (!IS_ERR(file))
937 return file;
938 }
939 }
940 EXPORT_SYMBOL_GPL(get_file_rcu);
941
942 /**
943 * get_file_active - try go get a reference to a file
944 * @f: the file to get a reference on
945 *
946 * In contast to get_file_rcu() the pointer itself isn't part of the
947 * reference counting.
948 *
949 * This function should rarely have to be used and only by users who
950 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
951 *
952 * Return: Returns @f with the reference count increased or NULL.
953 */
get_file_active(struct file ** f)954 struct file *get_file_active(struct file **f)
955 {
956 struct file __rcu *file;
957
958 rcu_read_lock();
959 file = __get_file_rcu(f);
960 rcu_read_unlock();
961 if (IS_ERR(file))
962 file = NULL;
963 return file;
964 }
965 EXPORT_SYMBOL_GPL(get_file_active);
966
__fget_files_rcu(struct files_struct * files,unsigned int fd,fmode_t mask)967 static inline struct file *__fget_files_rcu(struct files_struct *files,
968 unsigned int fd, fmode_t mask)
969 {
970 for (;;) {
971 struct file *file;
972 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
973 struct file __rcu **fdentry;
974 unsigned long nospec_mask;
975
976 /* Mask is a 0 for invalid fd's, ~0 for valid ones */
977 nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
978
979 /*
980 * fdentry points to the 'fd' offset, or fdt->fd[0].
981 * Loading from fdt->fd[0] is always safe, because the
982 * array always exists.
983 */
984 fdentry = fdt->fd + (fd & nospec_mask);
985
986 /* Do the load, then mask any invalid result */
987 file = rcu_dereference_raw(*fdentry);
988 file = (void *)(nospec_mask & (unsigned long)file);
989 if (unlikely(!file))
990 return NULL;
991
992 /*
993 * Ok, we have a file pointer that was valid at
994 * some point, but it might have become stale since.
995 *
996 * We need to confirm it by incrementing the refcount
997 * and then check the lookup again.
998 *
999 * file_ref_get() gives us a full memory barrier. We
1000 * only really need an 'acquire' one to protect the
1001 * loads below, but we don't have that.
1002 */
1003 if (unlikely(!file_ref_get(&file->f_ref)))
1004 continue;
1005
1006 /*
1007 * Such a race can take two forms:
1008 *
1009 * (a) the file ref already went down to zero and the
1010 * file hasn't been reused yet or the file count
1011 * isn't zero but the file has already been reused.
1012 *
1013 * (b) the file table entry has changed under us.
1014 * Note that we don't need to re-check the 'fdt->fd'
1015 * pointer having changed, because it always goes
1016 * hand-in-hand with 'fdt'.
1017 *
1018 * If so, we need to put our ref and try again.
1019 */
1020 if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
1021 unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
1022 fput(file);
1023 continue;
1024 }
1025
1026 /*
1027 * This isn't the file we're looking for or we're not
1028 * allowed to get a reference to it.
1029 */
1030 if (unlikely(file->f_mode & mask)) {
1031 fput(file);
1032 return NULL;
1033 }
1034
1035 /*
1036 * Ok, we have a ref to the file, and checked that it
1037 * still exists.
1038 */
1039 return file;
1040 }
1041 }
1042
__fget_files(struct files_struct * files,unsigned int fd,fmode_t mask)1043 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1044 fmode_t mask)
1045 {
1046 struct file *file;
1047
1048 rcu_read_lock();
1049 file = __fget_files_rcu(files, fd, mask);
1050 rcu_read_unlock();
1051
1052 return file;
1053 }
1054
__fget(unsigned int fd,fmode_t mask)1055 static inline struct file *__fget(unsigned int fd, fmode_t mask)
1056 {
1057 return __fget_files(current->files, fd, mask);
1058 }
1059
fget(unsigned int fd)1060 struct file *fget(unsigned int fd)
1061 {
1062 return __fget(fd, FMODE_PATH);
1063 }
1064 EXPORT_SYMBOL(fget);
1065
fget_raw(unsigned int fd)1066 struct file *fget_raw(unsigned int fd)
1067 {
1068 return __fget(fd, 0);
1069 }
1070 EXPORT_SYMBOL(fget_raw);
1071
fget_task(struct task_struct * task,unsigned int fd)1072 struct file *fget_task(struct task_struct *task, unsigned int fd)
1073 {
1074 struct file *file = NULL;
1075
1076 task_lock(task);
1077 if (task->files)
1078 file = __fget_files(task->files, fd, 0);
1079 task_unlock(task);
1080
1081 return file;
1082 }
1083
fget_task_next(struct task_struct * task,unsigned int * ret_fd)1084 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
1085 {
1086 /* Must be called with rcu_read_lock held */
1087 struct files_struct *files;
1088 unsigned int fd = *ret_fd;
1089 struct file *file = NULL;
1090
1091 task_lock(task);
1092 files = task->files;
1093 if (files) {
1094 rcu_read_lock();
1095 for (; fd < files_fdtable(files)->max_fds; fd++) {
1096 file = __fget_files_rcu(files, fd, 0);
1097 if (file)
1098 break;
1099 }
1100 rcu_read_unlock();
1101 }
1102 task_unlock(task);
1103 *ret_fd = fd;
1104 return file;
1105 }
1106 EXPORT_SYMBOL(fget_task_next);
1107
1108 /*
1109 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1110 *
1111 * You can use this instead of fget if you satisfy all of the following
1112 * conditions:
1113 * 1) You must call fput_light before exiting the syscall and returning control
1114 * to userspace (i.e. you cannot remember the returned struct file * after
1115 * returning to userspace).
1116 * 2) You must not call filp_close on the returned struct file * in between
1117 * calls to fget_light and fput_light.
1118 * 3) You must not clone the current task in between the calls to fget_light
1119 * and fput_light.
1120 *
1121 * The fput_needed flag returned by fget_light should be passed to the
1122 * corresponding fput_light.
1123 *
1124 * (As an exception to rule 2, you can call filp_close between fget_light and
1125 * fput_light provided that you capture a real refcount with get_file before
1126 * the call to filp_close, and ensure that this real refcount is fput *after*
1127 * the fput_light call.)
1128 *
1129 * See also the documentation in rust/kernel/file.rs.
1130 */
__fget_light(unsigned int fd,fmode_t mask)1131 static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1132 {
1133 struct files_struct *files = current->files;
1134 struct file *file;
1135
1136 /*
1137 * If another thread is concurrently calling close_fd() followed
1138 * by put_files_struct(), we must not observe the old table
1139 * entry combined with the new refcount - otherwise we could
1140 * return a file that is concurrently being freed.
1141 *
1142 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1143 * put_files_struct().
1144 */
1145 if (likely(atomic_read_acquire(&files->count) == 1)) {
1146 file = files_lookup_fd_raw(files, fd);
1147 if (!file || unlikely(file->f_mode & mask))
1148 return EMPTY_FD;
1149 return BORROWED_FD(file);
1150 } else {
1151 file = __fget_files(files, fd, mask);
1152 if (!file)
1153 return EMPTY_FD;
1154 return CLONED_FD(file);
1155 }
1156 }
fdget(unsigned int fd)1157 struct fd fdget(unsigned int fd)
1158 {
1159 return __fget_light(fd, FMODE_PATH);
1160 }
1161 EXPORT_SYMBOL(fdget);
1162
fdget_raw(unsigned int fd)1163 struct fd fdget_raw(unsigned int fd)
1164 {
1165 return __fget_light(fd, 0);
1166 }
1167
1168 /*
1169 * Try to avoid f_pos locking. We only need it if the
1170 * file is marked for FMODE_ATOMIC_POS, and it can be
1171 * accessed multiple ways.
1172 *
1173 * Always do it for directories, because pidfd_getfd()
1174 * can make a file accessible even if it otherwise would
1175 * not be, and for directories this is a correctness
1176 * issue, not a "POSIX requirement".
1177 */
file_needs_f_pos_lock(struct file * file)1178 static inline bool file_needs_f_pos_lock(struct file *file)
1179 {
1180 return (file->f_mode & FMODE_ATOMIC_POS) &&
1181 (file_count(file) > 1 || file->f_op->iterate_shared);
1182 }
1183
fdget_pos(unsigned int fd)1184 struct fd fdget_pos(unsigned int fd)
1185 {
1186 struct fd f = fdget(fd);
1187 struct file *file = fd_file(f);
1188
1189 if (file && file_needs_f_pos_lock(file)) {
1190 f.word |= FDPUT_POS_UNLOCK;
1191 mutex_lock(&file->f_pos_lock);
1192 }
1193 return f;
1194 }
1195
__f_unlock_pos(struct file * f)1196 void __f_unlock_pos(struct file *f)
1197 {
1198 mutex_unlock(&f->f_pos_lock);
1199 }
1200
1201 /*
1202 * We only lock f_pos if we have threads or if the file might be
1203 * shared with another process. In both cases we'll have an elevated
1204 * file count (done either by fdget() or by fork()).
1205 */
1206
set_close_on_exec(unsigned int fd,int flag)1207 void set_close_on_exec(unsigned int fd, int flag)
1208 {
1209 struct files_struct *files = current->files;
1210 spin_lock(&files->file_lock);
1211 __set_close_on_exec(fd, files_fdtable(files), flag);
1212 spin_unlock(&files->file_lock);
1213 }
1214
get_close_on_exec(unsigned int fd)1215 bool get_close_on_exec(unsigned int fd)
1216 {
1217 bool res;
1218 rcu_read_lock();
1219 res = close_on_exec(fd, current->files);
1220 rcu_read_unlock();
1221 return res;
1222 }
1223
do_dup2(struct files_struct * files,struct file * file,unsigned fd,unsigned flags)1224 static int do_dup2(struct files_struct *files,
1225 struct file *file, unsigned fd, unsigned flags)
1226 __releases(&files->file_lock)
1227 {
1228 struct file *tofree;
1229 struct fdtable *fdt;
1230
1231 /*
1232 * We need to detect attempts to do dup2() over allocated but still
1233 * not finished descriptor. NB: OpenBSD avoids that at the price of
1234 * extra work in their equivalent of fget() - they insert struct
1235 * file immediately after grabbing descriptor, mark it larval if
1236 * more work (e.g. actual opening) is needed and make sure that
1237 * fget() treats larval files as absent. Potentially interesting,
1238 * but while extra work in fget() is trivial, locking implications
1239 * and amount of surgery on open()-related paths in VFS are not.
1240 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1241 * deadlocks in rather amusing ways, AFAICS. All of that is out of
1242 * scope of POSIX or SUS, since neither considers shared descriptor
1243 * tables and this condition does not arise without those.
1244 */
1245 fdt = files_fdtable(files);
1246 fd = array_index_nospec(fd, fdt->max_fds);
1247 tofree = fdt->fd[fd];
1248 if (!tofree && fd_is_open(fd, fdt))
1249 goto Ebusy;
1250 get_file(file);
1251 rcu_assign_pointer(fdt->fd[fd], file);
1252 __set_open_fd(fd, fdt, flags & O_CLOEXEC);
1253 spin_unlock(&files->file_lock);
1254
1255 if (tofree)
1256 filp_close(tofree, files);
1257
1258 return fd;
1259
1260 Ebusy:
1261 spin_unlock(&files->file_lock);
1262 return -EBUSY;
1263 }
1264
replace_fd(unsigned fd,struct file * file,unsigned flags)1265 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1266 {
1267 int err;
1268 struct files_struct *files = current->files;
1269
1270 if (!file)
1271 return close_fd(fd);
1272
1273 if (fd >= rlimit(RLIMIT_NOFILE))
1274 return -EBADF;
1275
1276 spin_lock(&files->file_lock);
1277 err = expand_files(files, fd);
1278 if (unlikely(err < 0))
1279 goto out_unlock;
1280 return do_dup2(files, file, fd, flags);
1281
1282 out_unlock:
1283 spin_unlock(&files->file_lock);
1284 return err;
1285 }
1286
1287 /**
1288 * receive_fd() - Install received file into file descriptor table
1289 * @file: struct file that was received from another process
1290 * @ufd: __user pointer to write new fd number to
1291 * @o_flags: the O_* flags to apply to the new fd entry
1292 *
1293 * Installs a received file into the file descriptor table, with appropriate
1294 * checks and count updates. Optionally writes the fd number to userspace, if
1295 * @ufd is non-NULL.
1296 *
1297 * This helper handles its own reference counting of the incoming
1298 * struct file.
1299 *
1300 * Returns newly install fd or -ve on error.
1301 */
receive_fd(struct file * file,int __user * ufd,unsigned int o_flags)1302 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1303 {
1304 int new_fd;
1305 int error;
1306
1307 error = security_file_receive(file);
1308 if (error)
1309 return error;
1310
1311 new_fd = get_unused_fd_flags(o_flags);
1312 if (new_fd < 0)
1313 return new_fd;
1314
1315 if (ufd) {
1316 error = put_user(new_fd, ufd);
1317 if (error) {
1318 put_unused_fd(new_fd);
1319 return error;
1320 }
1321 }
1322
1323 fd_install(new_fd, get_file(file));
1324 __receive_sock(file);
1325 return new_fd;
1326 }
1327 EXPORT_SYMBOL_GPL(receive_fd);
1328
receive_fd_replace(int new_fd,struct file * file,unsigned int o_flags)1329 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1330 {
1331 int error;
1332
1333 error = security_file_receive(file);
1334 if (error)
1335 return error;
1336 error = replace_fd(new_fd, file, o_flags);
1337 if (error)
1338 return error;
1339 __receive_sock(file);
1340 return new_fd;
1341 }
1342
ksys_dup3(unsigned int oldfd,unsigned int newfd,int flags)1343 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1344 {
1345 int err = -EBADF;
1346 struct file *file;
1347 struct files_struct *files = current->files;
1348
1349 if ((flags & ~O_CLOEXEC) != 0)
1350 return -EINVAL;
1351
1352 if (unlikely(oldfd == newfd))
1353 return -EINVAL;
1354
1355 if (newfd >= rlimit(RLIMIT_NOFILE))
1356 return -EBADF;
1357
1358 spin_lock(&files->file_lock);
1359 err = expand_files(files, newfd);
1360 file = files_lookup_fd_locked(files, oldfd);
1361 if (unlikely(!file))
1362 goto Ebadf;
1363 if (unlikely(err < 0)) {
1364 if (err == -EMFILE)
1365 goto Ebadf;
1366 goto out_unlock;
1367 }
1368 return do_dup2(files, file, newfd, flags);
1369
1370 Ebadf:
1371 err = -EBADF;
1372 out_unlock:
1373 spin_unlock(&files->file_lock);
1374 return err;
1375 }
1376
SYSCALL_DEFINE3(dup3,unsigned int,oldfd,unsigned int,newfd,int,flags)1377 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1378 {
1379 return ksys_dup3(oldfd, newfd, flags);
1380 }
1381
SYSCALL_DEFINE2(dup2,unsigned int,oldfd,unsigned int,newfd)1382 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1383 {
1384 if (unlikely(newfd == oldfd)) { /* corner case */
1385 struct files_struct *files = current->files;
1386 struct file *f;
1387 int retval = oldfd;
1388
1389 rcu_read_lock();
1390 f = __fget_files_rcu(files, oldfd, 0);
1391 if (!f)
1392 retval = -EBADF;
1393 rcu_read_unlock();
1394 if (f)
1395 fput(f);
1396 return retval;
1397 }
1398 return ksys_dup3(oldfd, newfd, 0);
1399 }
1400
SYSCALL_DEFINE1(dup,unsigned int,fildes)1401 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1402 {
1403 int ret = -EBADF;
1404 struct file *file = fget_raw(fildes);
1405
1406 if (file) {
1407 ret = get_unused_fd_flags(0);
1408 if (ret >= 0)
1409 fd_install(ret, file);
1410 else
1411 fput(file);
1412 }
1413 return ret;
1414 }
1415
f_dupfd(unsigned int from,struct file * file,unsigned flags)1416 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1417 {
1418 unsigned long nofile = rlimit(RLIMIT_NOFILE);
1419 int err;
1420 if (from >= nofile)
1421 return -EINVAL;
1422 err = alloc_fd(from, nofile, flags);
1423 if (err >= 0) {
1424 get_file(file);
1425 fd_install(err, file);
1426 }
1427 return err;
1428 }
1429
iterate_fd(struct files_struct * files,unsigned n,int (* f)(const void *,struct file *,unsigned),const void * p)1430 int iterate_fd(struct files_struct *files, unsigned n,
1431 int (*f)(const void *, struct file *, unsigned),
1432 const void *p)
1433 {
1434 struct fdtable *fdt;
1435 int res = 0;
1436 if (!files)
1437 return 0;
1438 spin_lock(&files->file_lock);
1439 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1440 struct file *file;
1441 file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1442 if (!file)
1443 continue;
1444 res = f(p, file, n);
1445 if (res)
1446 break;
1447 }
1448 spin_unlock(&files->file_lock);
1449 return res;
1450 }
1451 EXPORT_SYMBOL(iterate_fd);
1452