1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6 /*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "messages.h"
22 #include "ctree.h"
23 #include "tree-checker.h"
24 #include "compression.h"
25 #include "volumes.h"
26 #include "misc.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "inode-item.h"
31 #include "dir-item.h"
32 #include "extent-tree.h"
33
34 /*
35 * Error message should follow the following format:
36 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
37 *
38 * @type: leaf or node
39 * @identifier: the necessary info to locate the leaf/node.
40 * It's recommended to decode key.objecitd/offset if it's
41 * meaningful.
42 * @reason: describe the error
43 * @bad_value: optional, it's recommended to output bad value and its
44 * expected value (range).
45 *
46 * Since comma is used to separate the components, only space is allowed
47 * inside each component.
48 */
49
50 /*
51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
52 * Allows callers to customize the output.
53 */
54 __printf(3, 4)
55 __cold
generic_err(const struct extent_buffer * eb,int slot,const char * fmt,...)56 static void generic_err(const struct extent_buffer *eb, int slot,
57 const char *fmt, ...)
58 {
59 const struct btrfs_fs_info *fs_info = eb->fs_info;
60 struct va_format vaf;
61 va_list args;
62
63 va_start(args, fmt);
64
65 vaf.fmt = fmt;
66 vaf.va = &args;
67
68 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
69 btrfs_crit(fs_info,
70 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
71 btrfs_header_level(eb) == 0 ? "leaf" : "node",
72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73 va_end(args);
74 }
75
76 /*
77 * Customized reporter for extent data item, since its key objectid and
78 * offset has its own meaning.
79 */
80 __printf(3, 4)
81 __cold
file_extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)82 static void file_extent_err(const struct extent_buffer *eb, int slot,
83 const char *fmt, ...)
84 {
85 const struct btrfs_fs_info *fs_info = eb->fs_info;
86 struct btrfs_key key;
87 struct va_format vaf;
88 va_list args;
89
90 btrfs_item_key_to_cpu(eb, &key, slot);
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
97 btrfs_crit(fs_info,
98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99 btrfs_header_level(eb) == 0 ? "leaf" : "node",
100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101 key.objectid, key.offset, &vaf);
102 va_end(args);
103 }
104
105 /*
106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107 * Else return 1
108 */
109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
110 ({ \
111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
112 (alignment)))) \
113 file_extent_err((leaf), (slot), \
114 "invalid %s for file extent, have %llu, should be aligned to %u", \
115 (#name), btrfs_file_extent_##name((leaf), (fi)), \
116 (alignment)); \
117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
118 })
119
file_extent_end(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_file_extent_item * extent)120 static u64 file_extent_end(struct extent_buffer *leaf,
121 struct btrfs_key *key,
122 struct btrfs_file_extent_item *extent)
123 {
124 u64 end;
125 u64 len;
126
127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
128 len = btrfs_file_extent_ram_bytes(leaf, extent);
129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130 } else {
131 len = btrfs_file_extent_num_bytes(leaf, extent);
132 end = key->offset + len;
133 }
134 return end;
135 }
136
137 /*
138 * Customized report for dir_item, the only new important information is
139 * key->objectid, which represents inode number
140 */
141 __printf(3, 4)
142 __cold
dir_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)143 static void dir_item_err(const struct extent_buffer *eb, int slot,
144 const char *fmt, ...)
145 {
146 const struct btrfs_fs_info *fs_info = eb->fs_info;
147 struct btrfs_key key;
148 struct va_format vaf;
149 va_list args;
150
151 btrfs_item_key_to_cpu(eb, &key, slot);
152 va_start(args, fmt);
153
154 vaf.fmt = fmt;
155 vaf.va = &args;
156
157 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
158 btrfs_crit(fs_info,
159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
160 btrfs_header_level(eb) == 0 ? "leaf" : "node",
161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
162 key.objectid, &vaf);
163 va_end(args);
164 }
165
166 /*
167 * This functions checks prev_key->objectid, to ensure current key and prev_key
168 * share the same objectid as inode number.
169 *
170 * This is to detect missing INODE_ITEM in subvolume trees.
171 *
172 * Return true if everything is OK or we don't need to check.
173 * Return false if anything is wrong.
174 */
check_prev_ino(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)175 static bool check_prev_ino(struct extent_buffer *leaf,
176 struct btrfs_key *key, int slot,
177 struct btrfs_key *prev_key)
178 {
179 /* No prev key, skip check */
180 if (slot == 0)
181 return true;
182
183 /* Only these key->types needs to be checked */
184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
185 key->type == BTRFS_INODE_REF_KEY ||
186 key->type == BTRFS_INODE_EXTREF_KEY ||
187 key->type == BTRFS_DIR_INDEX_KEY ||
188 key->type == BTRFS_DIR_ITEM_KEY ||
189 key->type == BTRFS_EXTENT_DATA_KEY);
190
191 /*
192 * Only subvolume trees along with their reloc trees need this check.
193 * Things like log tree doesn't follow this ino requirement.
194 */
195 if (!btrfs_is_fstree(btrfs_header_owner(leaf)))
196 return true;
197
198 if (key->objectid == prev_key->objectid)
199 return true;
200
201 /* Error found */
202 dir_item_err(leaf, slot,
203 "invalid previous key objectid, have %llu expect %llu",
204 prev_key->objectid, key->objectid);
205 return false;
206 }
check_extent_data_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)207 static int check_extent_data_item(struct extent_buffer *leaf,
208 struct btrfs_key *key, int slot,
209 struct btrfs_key *prev_key)
210 {
211 struct btrfs_fs_info *fs_info = leaf->fs_info;
212 struct btrfs_file_extent_item *fi;
213 u32 sectorsize = fs_info->sectorsize;
214 u32 item_size = btrfs_item_size(leaf, slot);
215 u64 extent_end;
216
217 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
218 file_extent_err(leaf, slot,
219 "unaligned file_offset for file extent, have %llu should be aligned to %u",
220 key->offset, sectorsize);
221 return -EUCLEAN;
222 }
223
224 /*
225 * Previous key must have the same key->objectid (ino).
226 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
227 * But if objectids mismatch, it means we have a missing
228 * INODE_ITEM.
229 */
230 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
231 return -EUCLEAN;
232
233 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
234
235 /*
236 * Make sure the item contains at least inline header, so the file
237 * extent type is not some garbage.
238 */
239 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
240 file_extent_err(leaf, slot,
241 "invalid item size, have %u expect [%zu, %u)",
242 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
243 SZ_4K);
244 return -EUCLEAN;
245 }
246 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
247 BTRFS_NR_FILE_EXTENT_TYPES)) {
248 file_extent_err(leaf, slot,
249 "invalid type for file extent, have %u expect range [0, %u]",
250 btrfs_file_extent_type(leaf, fi),
251 BTRFS_NR_FILE_EXTENT_TYPES - 1);
252 return -EUCLEAN;
253 }
254
255 /*
256 * Support for new compression/encryption must introduce incompat flag,
257 * and must be caught in open_ctree().
258 */
259 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
260 BTRFS_NR_COMPRESS_TYPES)) {
261 file_extent_err(leaf, slot,
262 "invalid compression for file extent, have %u expect range [0, %u]",
263 btrfs_file_extent_compression(leaf, fi),
264 BTRFS_NR_COMPRESS_TYPES - 1);
265 return -EUCLEAN;
266 }
267 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
268 file_extent_err(leaf, slot,
269 "invalid encryption for file extent, have %u expect 0",
270 btrfs_file_extent_encryption(leaf, fi));
271 return -EUCLEAN;
272 }
273 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
274 /* Inline extent must have 0 as key offset */
275 if (unlikely(key->offset)) {
276 file_extent_err(leaf, slot,
277 "invalid file_offset for inline file extent, have %llu expect 0",
278 key->offset);
279 return -EUCLEAN;
280 }
281
282 /* Compressed inline extent has no on-disk size, skip it */
283 if (btrfs_file_extent_compression(leaf, fi) !=
284 BTRFS_COMPRESS_NONE)
285 return 0;
286
287 /* Uncompressed inline extent size must match item size */
288 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
289 btrfs_file_extent_ram_bytes(leaf, fi))) {
290 file_extent_err(leaf, slot,
291 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
292 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
293 btrfs_file_extent_ram_bytes(leaf, fi));
294 return -EUCLEAN;
295 }
296 return 0;
297 }
298
299 /* Regular or preallocated extent has fixed item size */
300 if (unlikely(item_size != sizeof(*fi))) {
301 file_extent_err(leaf, slot,
302 "invalid item size for reg/prealloc file extent, have %u expect %zu",
303 item_size, sizeof(*fi));
304 return -EUCLEAN;
305 }
306 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
308 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
309 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
310 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
311 return -EUCLEAN;
312
313 /* Catch extent end overflow */
314 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
315 key->offset, &extent_end))) {
316 file_extent_err(leaf, slot,
317 "extent end overflow, have file offset %llu extent num bytes %llu",
318 key->offset,
319 btrfs_file_extent_num_bytes(leaf, fi));
320 return -EUCLEAN;
321 }
322
323 /*
324 * Check that no two consecutive file extent items, in the same leaf,
325 * present ranges that overlap each other.
326 */
327 if (slot > 0 &&
328 prev_key->objectid == key->objectid &&
329 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
330 struct btrfs_file_extent_item *prev_fi;
331 u64 prev_end;
332
333 prev_fi = btrfs_item_ptr(leaf, slot - 1,
334 struct btrfs_file_extent_item);
335 prev_end = file_extent_end(leaf, prev_key, prev_fi);
336 if (unlikely(prev_end > key->offset)) {
337 file_extent_err(leaf, slot - 1,
338 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
339 prev_end, key->offset);
340 return -EUCLEAN;
341 }
342 }
343
344 /*
345 * For non-compressed data extents, ram_bytes should match its
346 * disk_num_bytes.
347 * However we do not really utilize ram_bytes in this case, so this check
348 * is only optional for DEBUG builds for developers to catch the
349 * unexpected behaviors.
350 */
351 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) &&
352 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE &&
353 btrfs_file_extent_disk_bytenr(leaf, fi)) {
354 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) !=
355 btrfs_file_extent_disk_num_bytes(leaf, fi)))
356 file_extent_err(leaf, slot,
357 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent",
358 btrfs_file_extent_ram_bytes(leaf, fi),
359 btrfs_file_extent_disk_num_bytes(leaf, fi));
360 }
361
362 return 0;
363 }
364
check_csum_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)365 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
366 int slot, struct btrfs_key *prev_key)
367 {
368 struct btrfs_fs_info *fs_info = leaf->fs_info;
369 u32 sectorsize = fs_info->sectorsize;
370 const u32 csumsize = fs_info->csum_size;
371
372 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
373 generic_err(leaf, slot,
374 "invalid key objectid for csum item, have %llu expect %llu",
375 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
376 return -EUCLEAN;
377 }
378 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
379 generic_err(leaf, slot,
380 "unaligned key offset for csum item, have %llu should be aligned to %u",
381 key->offset, sectorsize);
382 return -EUCLEAN;
383 }
384 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
385 generic_err(leaf, slot,
386 "unaligned item size for csum item, have %u should be aligned to %u",
387 btrfs_item_size(leaf, slot), csumsize);
388 return -EUCLEAN;
389 }
390 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
391 u64 prev_csum_end;
392 u32 prev_item_size;
393
394 prev_item_size = btrfs_item_size(leaf, slot - 1);
395 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
396 prev_csum_end += prev_key->offset;
397 if (unlikely(prev_csum_end > key->offset)) {
398 generic_err(leaf, slot - 1,
399 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
400 prev_csum_end, key->offset);
401 return -EUCLEAN;
402 }
403 }
404 return 0;
405 }
406
407 /* Inode item error output has the same format as dir_item_err() */
408 #define inode_item_err(eb, slot, fmt, ...) \
409 dir_item_err(eb, slot, fmt, __VA_ARGS__)
410
check_inode_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)411 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
412 int slot)
413 {
414 struct btrfs_key item_key;
415 bool is_inode_item;
416
417 btrfs_item_key_to_cpu(leaf, &item_key, slot);
418 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
419
420 /* For XATTR_ITEM, location key should be all 0 */
421 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
422 if (unlikely(key->objectid != 0 || key->type != 0 ||
423 key->offset != 0))
424 return -EUCLEAN;
425 return 0;
426 }
427
428 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
429 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
430 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
431 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
432 if (is_inode_item) {
433 generic_err(leaf, slot,
434 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
435 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
436 BTRFS_FIRST_FREE_OBJECTID,
437 BTRFS_LAST_FREE_OBJECTID,
438 BTRFS_FREE_INO_OBJECTID);
439 } else {
440 dir_item_err(leaf, slot,
441 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
442 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
443 BTRFS_FIRST_FREE_OBJECTID,
444 BTRFS_LAST_FREE_OBJECTID,
445 BTRFS_FREE_INO_OBJECTID);
446 }
447 return -EUCLEAN;
448 }
449 if (unlikely(key->offset != 0)) {
450 if (is_inode_item)
451 inode_item_err(leaf, slot,
452 "invalid key offset: has %llu expect 0",
453 key->offset);
454 else
455 dir_item_err(leaf, slot,
456 "invalid location key offset:has %llu expect 0",
457 key->offset);
458 return -EUCLEAN;
459 }
460 return 0;
461 }
462
check_root_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)463 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
464 int slot)
465 {
466 struct btrfs_key item_key;
467 bool is_root_item;
468
469 btrfs_item_key_to_cpu(leaf, &item_key, slot);
470 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
471
472 /*
473 * Bad rootid for reloc trees.
474 *
475 * Reloc trees are only for subvolume trees, other trees only need
476 * to be COWed to be relocated.
477 */
478 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
479 !btrfs_is_fstree(key->offset))) {
480 generic_err(leaf, slot,
481 "invalid reloc tree for root %lld, root id is not a subvolume tree",
482 key->offset);
483 return -EUCLEAN;
484 }
485
486 /* No such tree id */
487 if (unlikely(key->objectid == 0)) {
488 if (is_root_item)
489 generic_err(leaf, slot, "invalid root id 0");
490 else
491 dir_item_err(leaf, slot,
492 "invalid location key root id 0");
493 return -EUCLEAN;
494 }
495
496 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
497 if (unlikely(!btrfs_is_fstree(key->objectid) && !is_root_item)) {
498 dir_item_err(leaf, slot,
499 "invalid location key objectid, have %llu expect [%llu, %llu]",
500 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
501 BTRFS_LAST_FREE_OBJECTID);
502 return -EUCLEAN;
503 }
504
505 /*
506 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
507 * @offset transid.
508 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
509 *
510 * So here we only check offset for reloc tree whose key->offset must
511 * be a valid tree.
512 */
513 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
514 key->offset == 0)) {
515 generic_err(leaf, slot, "invalid root id 0 for reloc tree");
516 return -EUCLEAN;
517 }
518 return 0;
519 }
520
check_dir_item(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)521 static int check_dir_item(struct extent_buffer *leaf,
522 struct btrfs_key *key, struct btrfs_key *prev_key,
523 int slot)
524 {
525 struct btrfs_fs_info *fs_info = leaf->fs_info;
526 struct btrfs_dir_item *di;
527 u32 item_size = btrfs_item_size(leaf, slot);
528 u32 cur = 0;
529
530 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
531 return -EUCLEAN;
532
533 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
534 while (cur < item_size) {
535 struct btrfs_key location_key;
536 u32 name_len;
537 u32 data_len;
538 u32 max_name_len;
539 u32 total_size;
540 u32 name_hash;
541 u8 dir_type;
542 int ret;
543
544 /* header itself should not cross item boundary */
545 if (unlikely(cur + sizeof(*di) > item_size)) {
546 dir_item_err(leaf, slot,
547 "dir item header crosses item boundary, have %zu boundary %u",
548 cur + sizeof(*di), item_size);
549 return -EUCLEAN;
550 }
551
552 /* Location key check */
553 btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
554 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
555 ret = check_root_key(leaf, &location_key, slot);
556 if (unlikely(ret < 0))
557 return ret;
558 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
559 location_key.type == 0) {
560 ret = check_inode_key(leaf, &location_key, slot);
561 if (unlikely(ret < 0))
562 return ret;
563 } else {
564 dir_item_err(leaf, slot,
565 "invalid location key type, have %u, expect %u or %u",
566 location_key.type, BTRFS_ROOT_ITEM_KEY,
567 BTRFS_INODE_ITEM_KEY);
568 return -EUCLEAN;
569 }
570
571 /* dir type check */
572 dir_type = btrfs_dir_ftype(leaf, di);
573 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN ||
574 dir_type >= BTRFS_FT_MAX)) {
575 dir_item_err(leaf, slot,
576 "invalid dir item type, have %u expect (0, %u)",
577 dir_type, BTRFS_FT_MAX);
578 return -EUCLEAN;
579 }
580
581 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
582 dir_type != BTRFS_FT_XATTR)) {
583 dir_item_err(leaf, slot,
584 "invalid dir item type for XATTR key, have %u expect %u",
585 dir_type, BTRFS_FT_XATTR);
586 return -EUCLEAN;
587 }
588 if (unlikely(dir_type == BTRFS_FT_XATTR &&
589 key->type != BTRFS_XATTR_ITEM_KEY)) {
590 dir_item_err(leaf, slot,
591 "xattr dir type found for non-XATTR key");
592 return -EUCLEAN;
593 }
594 if (dir_type == BTRFS_FT_XATTR)
595 max_name_len = XATTR_NAME_MAX;
596 else
597 max_name_len = BTRFS_NAME_LEN;
598
599 /* Name/data length check */
600 name_len = btrfs_dir_name_len(leaf, di);
601 data_len = btrfs_dir_data_len(leaf, di);
602 if (unlikely(name_len > max_name_len)) {
603 dir_item_err(leaf, slot,
604 "dir item name len too long, have %u max %u",
605 name_len, max_name_len);
606 return -EUCLEAN;
607 }
608 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
609 dir_item_err(leaf, slot,
610 "dir item name and data len too long, have %u max %u",
611 name_len + data_len,
612 BTRFS_MAX_XATTR_SIZE(fs_info));
613 return -EUCLEAN;
614 }
615
616 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
617 dir_item_err(leaf, slot,
618 "dir item with invalid data len, have %u expect 0",
619 data_len);
620 return -EUCLEAN;
621 }
622
623 total_size = sizeof(*di) + name_len + data_len;
624
625 /* header and name/data should not cross item boundary */
626 if (unlikely(cur + total_size > item_size)) {
627 dir_item_err(leaf, slot,
628 "dir item data crosses item boundary, have %u boundary %u",
629 cur + total_size, item_size);
630 return -EUCLEAN;
631 }
632
633 /*
634 * Special check for XATTR/DIR_ITEM, as key->offset is name
635 * hash, should match its name
636 */
637 if (key->type == BTRFS_DIR_ITEM_KEY ||
638 key->type == BTRFS_XATTR_ITEM_KEY) {
639 char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
640
641 read_extent_buffer(leaf, namebuf,
642 (unsigned long)(di + 1), name_len);
643 name_hash = btrfs_name_hash(namebuf, name_len);
644 if (unlikely(key->offset != name_hash)) {
645 dir_item_err(leaf, slot,
646 "name hash mismatch with key, have 0x%016x expect 0x%016llx",
647 name_hash, key->offset);
648 return -EUCLEAN;
649 }
650 }
651 cur += total_size;
652 di = (struct btrfs_dir_item *)((void *)di + total_size);
653 }
654 return 0;
655 }
656
657 __printf(3, 4)
658 __cold
block_group_err(const struct extent_buffer * eb,int slot,const char * fmt,...)659 static void block_group_err(const struct extent_buffer *eb, int slot,
660 const char *fmt, ...)
661 {
662 const struct btrfs_fs_info *fs_info = eb->fs_info;
663 struct btrfs_key key;
664 struct va_format vaf;
665 va_list args;
666
667 btrfs_item_key_to_cpu(eb, &key, slot);
668 va_start(args, fmt);
669
670 vaf.fmt = fmt;
671 vaf.va = &args;
672
673 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
674 btrfs_crit(fs_info,
675 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
676 btrfs_header_level(eb) == 0 ? "leaf" : "node",
677 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
678 key.objectid, key.offset, &vaf);
679 va_end(args);
680 }
681
check_block_group_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)682 static int check_block_group_item(struct extent_buffer *leaf,
683 struct btrfs_key *key, int slot)
684 {
685 struct btrfs_fs_info *fs_info = leaf->fs_info;
686 struct btrfs_block_group_item bgi;
687 u32 item_size = btrfs_item_size(leaf, slot);
688 u64 chunk_objectid;
689 u64 flags;
690 u64 type;
691
692 /*
693 * Here we don't really care about alignment since extent allocator can
694 * handle it. We care more about the size.
695 */
696 if (unlikely(key->offset == 0)) {
697 block_group_err(leaf, slot,
698 "invalid block group size 0");
699 return -EUCLEAN;
700 }
701
702 if (unlikely(item_size != sizeof(bgi))) {
703 block_group_err(leaf, slot,
704 "invalid item size, have %u expect %zu",
705 item_size, sizeof(bgi));
706 return -EUCLEAN;
707 }
708
709 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
710 sizeof(bgi));
711 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
712 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
713 /*
714 * We don't init the nr_global_roots until we load the global
715 * roots, so this could be 0 at mount time. If it's 0 we'll
716 * just assume we're fine, and later we'll check against our
717 * actual value.
718 */
719 if (unlikely(fs_info->nr_global_roots &&
720 chunk_objectid >= fs_info->nr_global_roots)) {
721 block_group_err(leaf, slot,
722 "invalid block group global root id, have %llu, needs to be <= %llu",
723 chunk_objectid,
724 fs_info->nr_global_roots);
725 return -EUCLEAN;
726 }
727 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
728 block_group_err(leaf, slot,
729 "invalid block group chunk objectid, have %llu expect %llu",
730 btrfs_stack_block_group_chunk_objectid(&bgi),
731 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
732 return -EUCLEAN;
733 }
734
735 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
736 block_group_err(leaf, slot,
737 "invalid block group used, have %llu expect [0, %llu)",
738 btrfs_stack_block_group_used(&bgi), key->offset);
739 return -EUCLEAN;
740 }
741
742 flags = btrfs_stack_block_group_flags(&bgi);
743 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
744 block_group_err(leaf, slot,
745 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
746 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
747 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
748 return -EUCLEAN;
749 }
750
751 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
752 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
753 type != BTRFS_BLOCK_GROUP_METADATA &&
754 type != BTRFS_BLOCK_GROUP_SYSTEM &&
755 type != (BTRFS_BLOCK_GROUP_METADATA |
756 BTRFS_BLOCK_GROUP_DATA))) {
757 block_group_err(leaf, slot,
758 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
759 type, hweight64(type),
760 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
761 BTRFS_BLOCK_GROUP_SYSTEM,
762 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
763 return -EUCLEAN;
764 }
765 return 0;
766 }
767
768 __printf(5, 6)
769 __cold
chunk_err(const struct btrfs_fs_info * fs_info,const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,const char * fmt,...)770 static void chunk_err(const struct btrfs_fs_info *fs_info,
771 const struct extent_buffer *leaf,
772 const struct btrfs_chunk *chunk, u64 logical,
773 const char *fmt, ...)
774 {
775 bool is_sb = !leaf;
776 struct va_format vaf;
777 va_list args;
778 int i;
779 int slot = -1;
780
781 if (!is_sb) {
782 /*
783 * Get the slot number by iterating through all slots, this
784 * would provide better readability.
785 */
786 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
787 if (btrfs_item_ptr_offset(leaf, i) ==
788 (unsigned long)chunk) {
789 slot = i;
790 break;
791 }
792 }
793 }
794 va_start(args, fmt);
795 vaf.fmt = fmt;
796 vaf.va = &args;
797
798 if (is_sb)
799 btrfs_crit(fs_info,
800 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
801 logical, &vaf);
802 else
803 btrfs_crit(fs_info,
804 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
805 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
806 logical, &vaf);
807 va_end(args);
808 }
809
810 /*
811 * The common chunk check which could also work on super block sys chunk array.
812 *
813 * If @leaf is NULL, then @chunk must be an on-stack chunk item.
814 * (For superblock sys_chunk array, and fs_info->sectorsize is unreliable)
815 *
816 * Return -EUCLEAN if anything is corrupted.
817 * Return 0 if everything is OK.
818 */
btrfs_check_chunk_valid(const struct btrfs_fs_info * fs_info,const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,u32 sectorsize)819 int btrfs_check_chunk_valid(const struct btrfs_fs_info *fs_info,
820 const struct extent_buffer *leaf,
821 const struct btrfs_chunk *chunk, u64 logical,
822 u32 sectorsize)
823 {
824 u64 length;
825 u64 chunk_end;
826 u64 stripe_len;
827 u16 num_stripes;
828 u16 sub_stripes;
829 u64 type;
830 u64 features;
831 u32 chunk_sector_size;
832 bool mixed = false;
833 int raid_index;
834 int nparity;
835 int ncopies;
836
837 if (leaf) {
838 length = btrfs_chunk_length(leaf, chunk);
839 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
840 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
841 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
842 type = btrfs_chunk_type(leaf, chunk);
843 chunk_sector_size = btrfs_chunk_sector_size(leaf, chunk);
844 } else {
845 length = btrfs_stack_chunk_length(chunk);
846 stripe_len = btrfs_stack_chunk_stripe_len(chunk);
847 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
848 sub_stripes = btrfs_stack_chunk_sub_stripes(chunk);
849 type = btrfs_stack_chunk_type(chunk);
850 chunk_sector_size = btrfs_stack_chunk_sector_size(chunk);
851 }
852 raid_index = btrfs_bg_flags_to_raid_index(type);
853 ncopies = btrfs_raid_array[raid_index].ncopies;
854 nparity = btrfs_raid_array[raid_index].nparity;
855
856 if (unlikely(!num_stripes)) {
857 chunk_err(fs_info, leaf, chunk, logical,
858 "invalid chunk num_stripes, have %u", num_stripes);
859 return -EUCLEAN;
860 }
861 if (unlikely(num_stripes < ncopies)) {
862 chunk_err(fs_info, leaf, chunk, logical,
863 "invalid chunk num_stripes < ncopies, have %u < %d",
864 num_stripes, ncopies);
865 return -EUCLEAN;
866 }
867 if (unlikely(nparity && num_stripes == nparity)) {
868 chunk_err(fs_info, leaf, chunk, logical,
869 "invalid chunk num_stripes == nparity, have %u == %d",
870 num_stripes, nparity);
871 return -EUCLEAN;
872 }
873 if (unlikely(!IS_ALIGNED(logical, sectorsize))) {
874 chunk_err(fs_info, leaf, chunk, logical,
875 "invalid chunk logical, have %llu should aligned to %u",
876 logical, sectorsize);
877 return -EUCLEAN;
878 }
879 if (unlikely(chunk_sector_size != sectorsize)) {
880 chunk_err(fs_info, leaf, chunk, logical,
881 "invalid chunk sectorsize, have %u expect %u",
882 chunk_sector_size, sectorsize);
883 return -EUCLEAN;
884 }
885 if (unlikely(!length || !IS_ALIGNED(length, sectorsize))) {
886 chunk_err(fs_info, leaf, chunk, logical,
887 "invalid chunk length, have %llu", length);
888 return -EUCLEAN;
889 }
890 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
891 chunk_err(fs_info, leaf, chunk, logical,
892 "invalid chunk logical start and length, have logical start %llu length %llu",
893 logical, length);
894 return -EUCLEAN;
895 }
896 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
897 chunk_err(fs_info, leaf, chunk, logical,
898 "invalid chunk stripe length: %llu",
899 stripe_len);
900 return -EUCLEAN;
901 }
902 /*
903 * We artificially limit the chunk size, so that the number of stripes
904 * inside a chunk can be fit into a U32. The current limit (256G) is
905 * way too large for real world usage anyway, and it's also much larger
906 * than our existing limit (10G).
907 *
908 * Thus it should be a good way to catch obvious bitflips.
909 */
910 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
911 chunk_err(fs_info, leaf, chunk, logical,
912 "chunk length too large: have %llu limit %llu",
913 length, btrfs_stripe_nr_to_offset(U32_MAX));
914 return -EUCLEAN;
915 }
916 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
917 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
918 chunk_err(fs_info, leaf, chunk, logical,
919 "unrecognized chunk type: 0x%llx",
920 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
921 BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
922 return -EUCLEAN;
923 }
924
925 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
926 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
927 chunk_err(fs_info, leaf, chunk, logical,
928 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
929 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
930 return -EUCLEAN;
931 }
932 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
933 chunk_err(fs_info, leaf, chunk, logical,
934 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
935 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
936 return -EUCLEAN;
937 }
938
939 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
940 (type & (BTRFS_BLOCK_GROUP_METADATA |
941 BTRFS_BLOCK_GROUP_DATA)))) {
942 chunk_err(fs_info, leaf, chunk, logical,
943 "system chunk with data or metadata type: 0x%llx",
944 type);
945 return -EUCLEAN;
946 }
947
948 features = btrfs_super_incompat_flags(fs_info->super_copy);
949 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
950 mixed = true;
951
952 if (!mixed) {
953 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
954 (type & BTRFS_BLOCK_GROUP_DATA))) {
955 chunk_err(fs_info, leaf, chunk, logical,
956 "mixed chunk type in non-mixed mode: 0x%llx", type);
957 return -EUCLEAN;
958 }
959 }
960
961 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
962 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
963 (type & BTRFS_BLOCK_GROUP_RAID1 &&
964 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
965 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
966 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
967 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
968 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
969 (type & BTRFS_BLOCK_GROUP_RAID5 &&
970 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
971 (type & BTRFS_BLOCK_GROUP_RAID6 &&
972 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
973 (type & BTRFS_BLOCK_GROUP_DUP &&
974 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
975 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
976 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
977 chunk_err(fs_info, leaf, chunk, logical,
978 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
979 num_stripes, sub_stripes,
980 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
981 return -EUCLEAN;
982 }
983
984 return 0;
985 }
986
987 /*
988 * Enhanced version of chunk item checker.
989 *
990 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
991 * to work on super block sys_chunk_array which doesn't have full item ptr.
992 */
check_leaf_chunk_item(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_key * key,int slot)993 static int check_leaf_chunk_item(struct extent_buffer *leaf,
994 struct btrfs_chunk *chunk,
995 struct btrfs_key *key, int slot)
996 {
997 struct btrfs_fs_info *fs_info = leaf->fs_info;
998 int num_stripes;
999
1000 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
1001 chunk_err(fs_info, leaf, chunk, key->offset,
1002 "invalid chunk item size: have %u expect [%zu, %u)",
1003 btrfs_item_size(leaf, slot),
1004 sizeof(struct btrfs_chunk),
1005 BTRFS_LEAF_DATA_SIZE(fs_info));
1006 return -EUCLEAN;
1007 }
1008
1009 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1010 /* Let btrfs_check_chunk_valid() handle this error type */
1011 if (num_stripes == 0)
1012 goto out;
1013
1014 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
1015 btrfs_item_size(leaf, slot))) {
1016 chunk_err(fs_info, leaf, chunk, key->offset,
1017 "invalid chunk item size: have %u expect %lu",
1018 btrfs_item_size(leaf, slot),
1019 btrfs_chunk_item_size(num_stripes));
1020 return -EUCLEAN;
1021 }
1022 out:
1023 return btrfs_check_chunk_valid(fs_info, leaf, chunk, key->offset,
1024 fs_info->sectorsize);
1025 }
1026
1027 __printf(3, 4)
1028 __cold
dev_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1029 static void dev_item_err(const struct extent_buffer *eb, int slot,
1030 const char *fmt, ...)
1031 {
1032 struct btrfs_key key;
1033 struct va_format vaf;
1034 va_list args;
1035
1036 btrfs_item_key_to_cpu(eb, &key, slot);
1037 va_start(args, fmt);
1038
1039 vaf.fmt = fmt;
1040 vaf.va = &args;
1041
1042 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1043 btrfs_crit(eb->fs_info,
1044 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1045 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1046 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1047 key.objectid, &vaf);
1048 va_end(args);
1049 }
1050
check_dev_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1051 static int check_dev_item(struct extent_buffer *leaf,
1052 struct btrfs_key *key, int slot)
1053 {
1054 struct btrfs_dev_item *ditem;
1055 const u32 item_size = btrfs_item_size(leaf, slot);
1056
1057 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1058 dev_item_err(leaf, slot,
1059 "invalid objectid: has=%llu expect=%llu",
1060 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1061 return -EUCLEAN;
1062 }
1063
1064 if (unlikely(item_size != sizeof(*ditem))) {
1065 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1066 item_size, sizeof(*ditem));
1067 return -EUCLEAN;
1068 }
1069
1070 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1071 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1072 dev_item_err(leaf, slot,
1073 "devid mismatch: key has=%llu item has=%llu",
1074 key->offset, btrfs_device_id(leaf, ditem));
1075 return -EUCLEAN;
1076 }
1077
1078 /*
1079 * For device total_bytes, we don't have reliable way to check it, as
1080 * it can be 0 for device removal. Device size check can only be done
1081 * by dev extents check.
1082 */
1083 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1084 btrfs_device_total_bytes(leaf, ditem))) {
1085 dev_item_err(leaf, slot,
1086 "invalid bytes used: have %llu expect [0, %llu]",
1087 btrfs_device_bytes_used(leaf, ditem),
1088 btrfs_device_total_bytes(leaf, ditem));
1089 return -EUCLEAN;
1090 }
1091 /*
1092 * Remaining members like io_align/type/gen/dev_group aren't really
1093 * utilized. Skip them to make later usage of them easier.
1094 */
1095 return 0;
1096 }
1097
check_inode_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1098 static int check_inode_item(struct extent_buffer *leaf,
1099 struct btrfs_key *key, int slot)
1100 {
1101 struct btrfs_fs_info *fs_info = leaf->fs_info;
1102 struct btrfs_inode_item *iitem;
1103 u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1104 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1105 const u32 item_size = btrfs_item_size(leaf, slot);
1106 u32 mode;
1107 int ret;
1108 u32 flags;
1109 u32 ro_flags;
1110
1111 ret = check_inode_key(leaf, key, slot);
1112 if (unlikely(ret < 0))
1113 return ret;
1114
1115 if (unlikely(item_size != sizeof(*iitem))) {
1116 generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1117 item_size, sizeof(*iitem));
1118 return -EUCLEAN;
1119 }
1120
1121 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1122
1123 /* Here we use super block generation + 1 to handle log tree */
1124 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1125 inode_item_err(leaf, slot,
1126 "invalid inode generation: has %llu expect (0, %llu]",
1127 btrfs_inode_generation(leaf, iitem),
1128 super_gen + 1);
1129 return -EUCLEAN;
1130 }
1131 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1132 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1133 inode_item_err(leaf, slot,
1134 "invalid inode transid: has %llu expect [0, %llu]",
1135 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1136 return -EUCLEAN;
1137 }
1138
1139 /*
1140 * For size and nbytes it's better not to be too strict, as for dir
1141 * item its size/nbytes can easily get wrong, but doesn't affect
1142 * anything in the fs. So here we skip the check.
1143 */
1144 mode = btrfs_inode_mode(leaf, iitem);
1145 if (unlikely(mode & ~valid_mask)) {
1146 inode_item_err(leaf, slot,
1147 "unknown mode bit detected: 0x%x",
1148 mode & ~valid_mask);
1149 return -EUCLEAN;
1150 }
1151
1152 /*
1153 * S_IFMT is not bit mapped so we can't completely rely on
1154 * is_power_of_2/has_single_bit_set, but it can save us from checking
1155 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1156 */
1157 if (!has_single_bit_set(mode & S_IFMT)) {
1158 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1159 inode_item_err(leaf, slot,
1160 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1161 mode & S_IFMT);
1162 return -EUCLEAN;
1163 }
1164 }
1165 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1166 inode_item_err(leaf, slot,
1167 "invalid nlink: has %u expect no more than 1 for dir",
1168 btrfs_inode_nlink(leaf, iitem));
1169 return -EUCLEAN;
1170 }
1171 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1172 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1173 inode_item_err(leaf, slot,
1174 "unknown incompat flags detected: 0x%x", flags);
1175 return -EUCLEAN;
1176 }
1177 if (unlikely(!sb_rdonly(fs_info->sb) &&
1178 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1179 inode_item_err(leaf, slot,
1180 "unknown ro-compat flags detected on writeable mount: 0x%x",
1181 ro_flags);
1182 return -EUCLEAN;
1183 }
1184 return 0;
1185 }
1186
check_root_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1187 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1188 int slot)
1189 {
1190 struct btrfs_fs_info *fs_info = leaf->fs_info;
1191 struct btrfs_root_item ri = { 0 };
1192 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1193 BTRFS_ROOT_SUBVOL_DEAD;
1194 int ret;
1195
1196 ret = check_root_key(leaf, key, slot);
1197 if (unlikely(ret < 0))
1198 return ret;
1199
1200 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1201 btrfs_item_size(leaf, slot) !=
1202 btrfs_legacy_root_item_size())) {
1203 generic_err(leaf, slot,
1204 "invalid root item size, have %u expect %zu or %u",
1205 btrfs_item_size(leaf, slot), sizeof(ri),
1206 btrfs_legacy_root_item_size());
1207 return -EUCLEAN;
1208 }
1209
1210 /*
1211 * For legacy root item, the members starting at generation_v2 will be
1212 * all filled with 0.
1213 * And since we allow generation_v2 as 0, it will still pass the check.
1214 */
1215 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1216 btrfs_item_size(leaf, slot));
1217
1218 /* Generation related */
1219 if (unlikely(btrfs_root_generation(&ri) >
1220 btrfs_super_generation(fs_info->super_copy) + 1)) {
1221 generic_err(leaf, slot,
1222 "invalid root generation, have %llu expect (0, %llu]",
1223 btrfs_root_generation(&ri),
1224 btrfs_super_generation(fs_info->super_copy) + 1);
1225 return -EUCLEAN;
1226 }
1227 if (unlikely(btrfs_root_generation_v2(&ri) >
1228 btrfs_super_generation(fs_info->super_copy) + 1)) {
1229 generic_err(leaf, slot,
1230 "invalid root v2 generation, have %llu expect (0, %llu]",
1231 btrfs_root_generation_v2(&ri),
1232 btrfs_super_generation(fs_info->super_copy) + 1);
1233 return -EUCLEAN;
1234 }
1235 if (unlikely(btrfs_root_last_snapshot(&ri) >
1236 btrfs_super_generation(fs_info->super_copy) + 1)) {
1237 generic_err(leaf, slot,
1238 "invalid root last_snapshot, have %llu expect (0, %llu]",
1239 btrfs_root_last_snapshot(&ri),
1240 btrfs_super_generation(fs_info->super_copy) + 1);
1241 return -EUCLEAN;
1242 }
1243
1244 /* Alignment and level check */
1245 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1246 generic_err(leaf, slot,
1247 "invalid root bytenr, have %llu expect to be aligned to %u",
1248 btrfs_root_bytenr(&ri), fs_info->sectorsize);
1249 return -EUCLEAN;
1250 }
1251 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1252 generic_err(leaf, slot,
1253 "invalid root level, have %u expect [0, %u]",
1254 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1255 return -EUCLEAN;
1256 }
1257 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1258 generic_err(leaf, slot,
1259 "invalid root level, have %u expect [0, %u]",
1260 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1261 return -EUCLEAN;
1262 }
1263
1264 /* Flags check */
1265 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1266 generic_err(leaf, slot,
1267 "invalid root flags, have 0x%llx expect mask 0x%llx",
1268 btrfs_root_flags(&ri), valid_root_flags);
1269 return -EUCLEAN;
1270 }
1271 return 0;
1272 }
1273
1274 __printf(3,4)
1275 __cold
extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1276 static void extent_err(const struct extent_buffer *eb, int slot,
1277 const char *fmt, ...)
1278 {
1279 struct btrfs_key key;
1280 struct va_format vaf;
1281 va_list args;
1282 u64 bytenr;
1283 u64 len;
1284
1285 btrfs_item_key_to_cpu(eb, &key, slot);
1286 bytenr = key.objectid;
1287 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1288 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1289 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1290 len = eb->fs_info->nodesize;
1291 else
1292 len = key.offset;
1293 va_start(args, fmt);
1294
1295 vaf.fmt = fmt;
1296 vaf.va = &args;
1297
1298 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1299 btrfs_crit(eb->fs_info,
1300 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1301 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1302 eb->start, slot, bytenr, len, &vaf);
1303 va_end(args);
1304 }
1305
is_valid_dref_root(u64 rootid)1306 static bool is_valid_dref_root(u64 rootid)
1307 {
1308 /*
1309 * The following tree root objectids are allowed to have a data backref:
1310 * - subvolume trees
1311 * - data reloc tree
1312 * - tree root
1313 * For v1 space cache
1314 */
1315 return btrfs_is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID ||
1316 rootid == BTRFS_ROOT_TREE_OBJECTID;
1317 }
1318
check_extent_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1319 static int check_extent_item(struct extent_buffer *leaf,
1320 struct btrfs_key *key, int slot,
1321 struct btrfs_key *prev_key)
1322 {
1323 struct btrfs_fs_info *fs_info = leaf->fs_info;
1324 struct btrfs_extent_item *ei;
1325 bool is_tree_block = false;
1326 unsigned long ptr; /* Current pointer inside inline refs */
1327 unsigned long end; /* Extent item end */
1328 const u32 item_size = btrfs_item_size(leaf, slot);
1329 u8 last_type = 0;
1330 u64 last_seq = U64_MAX;
1331 u64 flags;
1332 u64 generation;
1333 u64 total_refs; /* Total refs in btrfs_extent_item */
1334 u64 inline_refs = 0; /* found total inline refs */
1335
1336 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1337 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1338 generic_err(leaf, slot,
1339 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1340 return -EUCLEAN;
1341 }
1342 /* key->objectid is the bytenr for both key types */
1343 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1344 generic_err(leaf, slot,
1345 "invalid key objectid, have %llu expect to be aligned to %u",
1346 key->objectid, fs_info->sectorsize);
1347 return -EUCLEAN;
1348 }
1349
1350 /* key->offset is tree level for METADATA_ITEM_KEY */
1351 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1352 key->offset >= BTRFS_MAX_LEVEL)) {
1353 extent_err(leaf, slot,
1354 "invalid tree level, have %llu expect [0, %u]",
1355 key->offset, BTRFS_MAX_LEVEL - 1);
1356 return -EUCLEAN;
1357 }
1358
1359 /*
1360 * EXTENT/METADATA_ITEM consists of:
1361 * 1) One btrfs_extent_item
1362 * Records the total refs, type and generation of the extent.
1363 *
1364 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1365 * Records the first key and level of the tree block.
1366 *
1367 * 2) Zero or more btrfs_extent_inline_ref(s)
1368 * Each inline ref has one btrfs_extent_inline_ref shows:
1369 * 2.1) The ref type, one of the 4
1370 * TREE_BLOCK_REF Tree block only
1371 * SHARED_BLOCK_REF Tree block only
1372 * EXTENT_DATA_REF Data only
1373 * SHARED_DATA_REF Data only
1374 * 2.2) Ref type specific data
1375 * Either using btrfs_extent_inline_ref::offset, or specific
1376 * data structure.
1377 *
1378 * All above inline items should follow the order:
1379 *
1380 * - All btrfs_extent_inline_ref::type should be in an ascending
1381 * order
1382 *
1383 * - Within the same type, the items should follow a descending
1384 * order by their sequence number. The sequence number is
1385 * determined by:
1386 * * btrfs_extent_inline_ref::offset for all types other than
1387 * EXTENT_DATA_REF
1388 * * hash_extent_data_ref() for EXTENT_DATA_REF
1389 */
1390 if (unlikely(item_size < sizeof(*ei))) {
1391 extent_err(leaf, slot,
1392 "invalid item size, have %u expect [%zu, %u)",
1393 item_size, sizeof(*ei),
1394 BTRFS_LEAF_DATA_SIZE(fs_info));
1395 return -EUCLEAN;
1396 }
1397 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1398
1399 /* Checks against extent_item */
1400 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1401 flags = btrfs_extent_flags(leaf, ei);
1402 total_refs = btrfs_extent_refs(leaf, ei);
1403 generation = btrfs_extent_generation(leaf, ei);
1404 if (unlikely(generation >
1405 btrfs_super_generation(fs_info->super_copy) + 1)) {
1406 extent_err(leaf, slot,
1407 "invalid generation, have %llu expect (0, %llu]",
1408 generation,
1409 btrfs_super_generation(fs_info->super_copy) + 1);
1410 return -EUCLEAN;
1411 }
1412 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1413 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1414 extent_err(leaf, slot,
1415 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1416 flags, BTRFS_EXTENT_FLAG_DATA |
1417 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1418 return -EUCLEAN;
1419 }
1420 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1421 if (is_tree_block) {
1422 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1423 key->offset != fs_info->nodesize)) {
1424 extent_err(leaf, slot,
1425 "invalid extent length, have %llu expect %u",
1426 key->offset, fs_info->nodesize);
1427 return -EUCLEAN;
1428 }
1429 } else {
1430 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1431 extent_err(leaf, slot,
1432 "invalid key type, have %u expect %u for data backref",
1433 key->type, BTRFS_EXTENT_ITEM_KEY);
1434 return -EUCLEAN;
1435 }
1436 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1437 extent_err(leaf, slot,
1438 "invalid extent length, have %llu expect aligned to %u",
1439 key->offset, fs_info->sectorsize);
1440 return -EUCLEAN;
1441 }
1442 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1443 extent_err(leaf, slot,
1444 "invalid extent flag, data has full backref set");
1445 return -EUCLEAN;
1446 }
1447 }
1448 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1449
1450 /* Check the special case of btrfs_tree_block_info */
1451 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1452 struct btrfs_tree_block_info *info;
1453
1454 info = (struct btrfs_tree_block_info *)ptr;
1455 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1456 extent_err(leaf, slot,
1457 "invalid tree block info level, have %u expect [0, %u]",
1458 btrfs_tree_block_level(leaf, info),
1459 BTRFS_MAX_LEVEL - 1);
1460 return -EUCLEAN;
1461 }
1462 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1463 }
1464
1465 /* Check inline refs */
1466 while (ptr < end) {
1467 struct btrfs_extent_inline_ref *iref;
1468 struct btrfs_extent_data_ref *dref;
1469 struct btrfs_shared_data_ref *sref;
1470 u64 seq;
1471 u64 dref_root;
1472 u64 dref_objectid;
1473 u64 dref_offset;
1474 u64 inline_offset;
1475 u8 inline_type;
1476
1477 if (unlikely(ptr + sizeof(*iref) > end)) {
1478 extent_err(leaf, slot,
1479 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1480 ptr, sizeof(*iref), end);
1481 return -EUCLEAN;
1482 }
1483 iref = (struct btrfs_extent_inline_ref *)ptr;
1484 inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1485 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1486 seq = inline_offset;
1487 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1488 extent_err(leaf, slot,
1489 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1490 ptr, btrfs_extent_inline_ref_size(inline_type), end);
1491 return -EUCLEAN;
1492 }
1493
1494 switch (inline_type) {
1495 /* inline_offset is subvolid of the owner, no need to check */
1496 case BTRFS_TREE_BLOCK_REF_KEY:
1497 inline_refs++;
1498 break;
1499 /* Contains parent bytenr */
1500 case BTRFS_SHARED_BLOCK_REF_KEY:
1501 if (unlikely(!IS_ALIGNED(inline_offset,
1502 fs_info->sectorsize))) {
1503 extent_err(leaf, slot,
1504 "invalid tree parent bytenr, have %llu expect aligned to %u",
1505 inline_offset, fs_info->sectorsize);
1506 return -EUCLEAN;
1507 }
1508 inline_refs++;
1509 break;
1510 /*
1511 * Contains owner subvolid, owner key objectid, adjusted offset.
1512 * The only obvious corruption can happen in that offset.
1513 */
1514 case BTRFS_EXTENT_DATA_REF_KEY:
1515 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1516 dref_root = btrfs_extent_data_ref_root(leaf, dref);
1517 dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1518 dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1519 seq = hash_extent_data_ref(
1520 btrfs_extent_data_ref_root(leaf, dref),
1521 btrfs_extent_data_ref_objectid(leaf, dref),
1522 btrfs_extent_data_ref_offset(leaf, dref));
1523 if (unlikely(!is_valid_dref_root(dref_root))) {
1524 extent_err(leaf, slot,
1525 "invalid data ref root value %llu",
1526 dref_root);
1527 return -EUCLEAN;
1528 }
1529 if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID ||
1530 dref_objectid > BTRFS_LAST_FREE_OBJECTID)) {
1531 extent_err(leaf, slot,
1532 "invalid data ref objectid value %llu",
1533 dref_objectid);
1534 return -EUCLEAN;
1535 }
1536 if (unlikely(!IS_ALIGNED(dref_offset,
1537 fs_info->sectorsize))) {
1538 extent_err(leaf, slot,
1539 "invalid data ref offset, have %llu expect aligned to %u",
1540 dref_offset, fs_info->sectorsize);
1541 return -EUCLEAN;
1542 }
1543 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1544 extent_err(leaf, slot,
1545 "invalid data ref count, should have non-zero value");
1546 return -EUCLEAN;
1547 }
1548 inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1549 break;
1550 /* Contains parent bytenr and ref count */
1551 case BTRFS_SHARED_DATA_REF_KEY:
1552 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1553 if (unlikely(!IS_ALIGNED(inline_offset,
1554 fs_info->sectorsize))) {
1555 extent_err(leaf, slot,
1556 "invalid data parent bytenr, have %llu expect aligned to %u",
1557 inline_offset, fs_info->sectorsize);
1558 return -EUCLEAN;
1559 }
1560 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1561 extent_err(leaf, slot,
1562 "invalid shared data ref count, should have non-zero value");
1563 return -EUCLEAN;
1564 }
1565 inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1566 break;
1567 case BTRFS_EXTENT_OWNER_REF_KEY:
1568 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1569 break;
1570 default:
1571 extent_err(leaf, slot, "unknown inline ref type: %u",
1572 inline_type);
1573 return -EUCLEAN;
1574 }
1575 if (unlikely(inline_type < last_type)) {
1576 extent_err(leaf, slot,
1577 "inline ref out-of-order: has type %u, prev type %u",
1578 inline_type, last_type);
1579 return -EUCLEAN;
1580 }
1581 /* Type changed, allow the sequence starts from U64_MAX again. */
1582 if (inline_type > last_type)
1583 last_seq = U64_MAX;
1584 if (unlikely(seq > last_seq)) {
1585 extent_err(leaf, slot,
1586 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1587 inline_type, inline_offset, seq,
1588 last_type, last_seq);
1589 return -EUCLEAN;
1590 }
1591 last_type = inline_type;
1592 last_seq = seq;
1593 ptr += btrfs_extent_inline_ref_size(inline_type);
1594 }
1595 /* No padding is allowed */
1596 if (unlikely(ptr != end)) {
1597 extent_err(leaf, slot,
1598 "invalid extent item size, padding bytes found");
1599 return -EUCLEAN;
1600 }
1601
1602 /* Finally, check the inline refs against total refs */
1603 if (unlikely(inline_refs > total_refs)) {
1604 extent_err(leaf, slot,
1605 "invalid extent refs, have %llu expect >= inline %llu",
1606 total_refs, inline_refs);
1607 return -EUCLEAN;
1608 }
1609
1610 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1611 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1612 u64 prev_end = prev_key->objectid;
1613
1614 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1615 prev_end += fs_info->nodesize;
1616 else
1617 prev_end += prev_key->offset;
1618
1619 if (unlikely(prev_end > key->objectid)) {
1620 extent_err(leaf, slot,
1621 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1622 prev_key->objectid, prev_key->type,
1623 prev_key->offset, key->objectid, key->type,
1624 key->offset);
1625 return -EUCLEAN;
1626 }
1627 }
1628
1629 return 0;
1630 }
1631
check_simple_keyed_refs(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1632 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1633 struct btrfs_key *key, int slot)
1634 {
1635 u32 expect_item_size = 0;
1636
1637 if (key->type == BTRFS_SHARED_DATA_REF_KEY) {
1638 struct btrfs_shared_data_ref *sref;
1639
1640 sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref);
1641 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1642 extent_err(leaf, slot,
1643 "invalid shared data backref count, should have non-zero value");
1644 return -EUCLEAN;
1645 }
1646
1647 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1648 }
1649
1650 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1651 generic_err(leaf, slot,
1652 "invalid item size, have %u expect %u for key type %u",
1653 btrfs_item_size(leaf, slot),
1654 expect_item_size, key->type);
1655 return -EUCLEAN;
1656 }
1657 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1658 generic_err(leaf, slot,
1659 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1660 key->objectid, leaf->fs_info->sectorsize);
1661 return -EUCLEAN;
1662 }
1663 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1664 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1665 extent_err(leaf, slot,
1666 "invalid tree parent bytenr, have %llu expect aligned to %u",
1667 key->offset, leaf->fs_info->sectorsize);
1668 return -EUCLEAN;
1669 }
1670 return 0;
1671 }
1672
check_extent_data_ref(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1673 static int check_extent_data_ref(struct extent_buffer *leaf,
1674 struct btrfs_key *key, int slot)
1675 {
1676 struct btrfs_extent_data_ref *dref;
1677 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1678 const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1679
1680 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1681 generic_err(leaf, slot,
1682 "invalid item size, have %u expect aligned to %zu for key type %u",
1683 btrfs_item_size(leaf, slot),
1684 sizeof(*dref), key->type);
1685 return -EUCLEAN;
1686 }
1687 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1688 generic_err(leaf, slot,
1689 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1690 key->objectid, leaf->fs_info->sectorsize);
1691 return -EUCLEAN;
1692 }
1693 for (; ptr < end; ptr += sizeof(*dref)) {
1694 u64 root;
1695 u64 objectid;
1696 u64 offset;
1697
1698 /*
1699 * We cannot check the extent_data_ref hash due to possible
1700 * overflow from the leaf due to hash collisions.
1701 */
1702 dref = (struct btrfs_extent_data_ref *)ptr;
1703 root = btrfs_extent_data_ref_root(leaf, dref);
1704 objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1705 offset = btrfs_extent_data_ref_offset(leaf, dref);
1706 if (unlikely(!is_valid_dref_root(root))) {
1707 extent_err(leaf, slot,
1708 "invalid extent data backref root value %llu",
1709 root);
1710 return -EUCLEAN;
1711 }
1712 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID ||
1713 objectid > BTRFS_LAST_FREE_OBJECTID)) {
1714 extent_err(leaf, slot,
1715 "invalid extent data backref objectid value %llu",
1716 root);
1717 return -EUCLEAN;
1718 }
1719 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1720 extent_err(leaf, slot,
1721 "invalid extent data backref offset, have %llu expect aligned to %u",
1722 offset, leaf->fs_info->sectorsize);
1723 return -EUCLEAN;
1724 }
1725 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1726 extent_err(leaf, slot,
1727 "invalid extent data backref count, should have non-zero value");
1728 return -EUCLEAN;
1729 }
1730 }
1731 return 0;
1732 }
1733
1734 #define inode_ref_err(eb, slot, fmt, args...) \
1735 inode_item_err(eb, slot, fmt, ##args)
check_inode_ref(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)1736 static int check_inode_ref(struct extent_buffer *leaf,
1737 struct btrfs_key *key, struct btrfs_key *prev_key,
1738 int slot)
1739 {
1740 struct btrfs_inode_ref *iref;
1741 unsigned long ptr;
1742 unsigned long end;
1743
1744 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1745 return -EUCLEAN;
1746 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1747 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1748 inode_ref_err(leaf, slot,
1749 "invalid item size, have %u expect (%zu, %u)",
1750 btrfs_item_size(leaf, slot),
1751 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1752 return -EUCLEAN;
1753 }
1754
1755 ptr = btrfs_item_ptr_offset(leaf, slot);
1756 end = ptr + btrfs_item_size(leaf, slot);
1757 while (ptr < end) {
1758 u16 namelen;
1759
1760 if (unlikely(ptr + sizeof(*iref) > end)) {
1761 inode_ref_err(leaf, slot,
1762 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1763 ptr, end, sizeof(*iref));
1764 return -EUCLEAN;
1765 }
1766
1767 iref = (struct btrfs_inode_ref *)ptr;
1768 namelen = btrfs_inode_ref_name_len(leaf, iref);
1769 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1770 inode_ref_err(leaf, slot,
1771 "inode ref overflow, ptr %lu end %lu namelen %u",
1772 ptr, end, namelen);
1773 return -EUCLEAN;
1774 }
1775
1776 /*
1777 * NOTE: In theory we should record all found index numbers
1778 * to find any duplicated indexes, but that will be too time
1779 * consuming for inodes with too many hard links.
1780 */
1781 ptr += sizeof(*iref) + namelen;
1782 }
1783 return 0;
1784 }
1785
check_inode_extref(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)1786 static int check_inode_extref(struct extent_buffer *leaf,
1787 struct btrfs_key *key, struct btrfs_key *prev_key,
1788 int slot)
1789 {
1790 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1791 unsigned long end = ptr + btrfs_item_size(leaf, slot);
1792
1793 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1794 return -EUCLEAN;
1795
1796 while (ptr < end) {
1797 struct btrfs_inode_extref *extref = (struct btrfs_inode_extref *)ptr;
1798 u16 namelen;
1799
1800 if (unlikely(ptr + sizeof(*extref)) > end) {
1801 inode_ref_err(leaf, slot,
1802 "inode extref overflow, ptr %lu end %lu inode_extref size %zu",
1803 ptr, end, sizeof(*extref));
1804 return -EUCLEAN;
1805 }
1806
1807 namelen = btrfs_inode_extref_name_len(leaf, extref);
1808 if (unlikely(ptr + sizeof(*extref) + namelen > end)) {
1809 inode_ref_err(leaf, slot,
1810 "inode extref overflow, ptr %lu end %lu namelen %u",
1811 ptr, end, namelen);
1812 return -EUCLEAN;
1813 }
1814 ptr += sizeof(*extref) + namelen;
1815 }
1816 return 0;
1817 }
1818
check_raid_stripe_extent(const struct extent_buffer * leaf,const struct btrfs_key * key,int slot)1819 static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1820 const struct btrfs_key *key, int slot)
1821 {
1822 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1823 generic_err(leaf, slot,
1824 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1825 key->objectid, leaf->fs_info->sectorsize);
1826 return -EUCLEAN;
1827 }
1828
1829 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1830 generic_err(leaf, slot,
1831 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1832 return -EUCLEAN;
1833 }
1834
1835 return 0;
1836 }
1837
check_dev_extent_item(const struct extent_buffer * leaf,const struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1838 static int check_dev_extent_item(const struct extent_buffer *leaf,
1839 const struct btrfs_key *key,
1840 int slot,
1841 struct btrfs_key *prev_key)
1842 {
1843 struct btrfs_dev_extent *de;
1844 const u32 sectorsize = leaf->fs_info->sectorsize;
1845
1846 de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
1847 /* Basic fixed member checks. */
1848 if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) !=
1849 BTRFS_CHUNK_TREE_OBJECTID)) {
1850 generic_err(leaf, slot,
1851 "invalid dev extent chunk tree id, has %llu expect %llu",
1852 btrfs_dev_extent_chunk_tree(leaf, de),
1853 BTRFS_CHUNK_TREE_OBJECTID);
1854 return -EUCLEAN;
1855 }
1856 if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) !=
1857 BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
1858 generic_err(leaf, slot,
1859 "invalid dev extent chunk objectid, has %llu expect %llu",
1860 btrfs_dev_extent_chunk_objectid(leaf, de),
1861 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1862 return -EUCLEAN;
1863 }
1864 /* Alignment check. */
1865 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
1866 generic_err(leaf, slot,
1867 "invalid dev extent key.offset, has %llu not aligned to %u",
1868 key->offset, sectorsize);
1869 return -EUCLEAN;
1870 }
1871 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de),
1872 sectorsize))) {
1873 generic_err(leaf, slot,
1874 "invalid dev extent chunk offset, has %llu not aligned to %u",
1875 btrfs_dev_extent_chunk_objectid(leaf, de),
1876 sectorsize);
1877 return -EUCLEAN;
1878 }
1879 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de),
1880 sectorsize))) {
1881 generic_err(leaf, slot,
1882 "invalid dev extent length, has %llu not aligned to %u",
1883 btrfs_dev_extent_length(leaf, de), sectorsize);
1884 return -EUCLEAN;
1885 }
1886 /* Overlap check with previous dev extent. */
1887 if (slot && prev_key->objectid == key->objectid &&
1888 prev_key->type == key->type) {
1889 struct btrfs_dev_extent *prev_de;
1890 u64 prev_len;
1891
1892 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent);
1893 prev_len = btrfs_dev_extent_length(leaf, prev_de);
1894 if (unlikely(prev_key->offset + prev_len > key->offset)) {
1895 generic_err(leaf, slot,
1896 "dev extent overlap, prev offset %llu len %llu current offset %llu",
1897 prev_key->objectid, prev_len, key->offset);
1898 return -EUCLEAN;
1899 }
1900 }
1901 return 0;
1902 }
1903
1904 /*
1905 * Common point to switch the item-specific validation.
1906 */
check_leaf_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1907 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1908 struct btrfs_key *key,
1909 int slot,
1910 struct btrfs_key *prev_key)
1911 {
1912 int ret = 0;
1913 struct btrfs_chunk *chunk;
1914
1915 switch (key->type) {
1916 case BTRFS_EXTENT_DATA_KEY:
1917 ret = check_extent_data_item(leaf, key, slot, prev_key);
1918 break;
1919 case BTRFS_EXTENT_CSUM_KEY:
1920 ret = check_csum_item(leaf, key, slot, prev_key);
1921 break;
1922 case BTRFS_DIR_ITEM_KEY:
1923 case BTRFS_DIR_INDEX_KEY:
1924 case BTRFS_XATTR_ITEM_KEY:
1925 ret = check_dir_item(leaf, key, prev_key, slot);
1926 break;
1927 case BTRFS_INODE_REF_KEY:
1928 ret = check_inode_ref(leaf, key, prev_key, slot);
1929 break;
1930 case BTRFS_INODE_EXTREF_KEY:
1931 ret = check_inode_extref(leaf, key, prev_key, slot);
1932 break;
1933 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1934 ret = check_block_group_item(leaf, key, slot);
1935 break;
1936 case BTRFS_CHUNK_ITEM_KEY:
1937 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1938 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1939 break;
1940 case BTRFS_DEV_ITEM_KEY:
1941 ret = check_dev_item(leaf, key, slot);
1942 break;
1943 case BTRFS_DEV_EXTENT_KEY:
1944 ret = check_dev_extent_item(leaf, key, slot, prev_key);
1945 break;
1946 case BTRFS_INODE_ITEM_KEY:
1947 ret = check_inode_item(leaf, key, slot);
1948 break;
1949 case BTRFS_ROOT_ITEM_KEY:
1950 ret = check_root_item(leaf, key, slot);
1951 break;
1952 case BTRFS_EXTENT_ITEM_KEY:
1953 case BTRFS_METADATA_ITEM_KEY:
1954 ret = check_extent_item(leaf, key, slot, prev_key);
1955 break;
1956 case BTRFS_TREE_BLOCK_REF_KEY:
1957 case BTRFS_SHARED_DATA_REF_KEY:
1958 case BTRFS_SHARED_BLOCK_REF_KEY:
1959 ret = check_simple_keyed_refs(leaf, key, slot);
1960 break;
1961 case BTRFS_EXTENT_DATA_REF_KEY:
1962 ret = check_extent_data_ref(leaf, key, slot);
1963 break;
1964 case BTRFS_RAID_STRIPE_KEY:
1965 ret = check_raid_stripe_extent(leaf, key, slot);
1966 break;
1967 }
1968
1969 if (unlikely(ret))
1970 return BTRFS_TREE_BLOCK_INVALID_ITEM;
1971 return BTRFS_TREE_BLOCK_CLEAN;
1972 }
1973
__btrfs_check_leaf(struct extent_buffer * leaf)1974 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1975 {
1976 struct btrfs_fs_info *fs_info = leaf->fs_info;
1977 /* No valid key type is 0, so all key should be larger than this key */
1978 struct btrfs_key prev_key = {0, 0, 0};
1979 struct btrfs_key key;
1980 u32 nritems = btrfs_header_nritems(leaf);
1981 int slot;
1982
1983 if (unlikely(btrfs_header_level(leaf) != 0)) {
1984 generic_err(leaf, 0,
1985 "invalid level for leaf, have %d expect 0",
1986 btrfs_header_level(leaf));
1987 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1988 }
1989
1990 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) {
1991 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set");
1992 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
1993 }
1994
1995 /*
1996 * Extent buffers from a relocation tree have a owner field that
1997 * corresponds to the subvolume tree they are based on. So just from an
1998 * extent buffer alone we can not find out what is the id of the
1999 * corresponding subvolume tree, so we can not figure out if the extent
2000 * buffer corresponds to the root of the relocation tree or not. So
2001 * skip this check for relocation trees.
2002 */
2003 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
2004 u64 owner = btrfs_header_owner(leaf);
2005
2006 /* These trees must never be empty */
2007 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
2008 owner == BTRFS_CHUNK_TREE_OBJECTID ||
2009 owner == BTRFS_DEV_TREE_OBJECTID ||
2010 owner == BTRFS_FS_TREE_OBJECTID ||
2011 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2012 generic_err(leaf, 0,
2013 "invalid root, root %llu must never be empty",
2014 owner);
2015 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2016 }
2017
2018 /* Unknown tree */
2019 if (unlikely(owner == 0)) {
2020 generic_err(leaf, 0,
2021 "invalid owner, root 0 is not defined");
2022 return BTRFS_TREE_BLOCK_INVALID_OWNER;
2023 }
2024
2025 /* EXTENT_TREE_V2 can have empty extent trees. */
2026 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2027 return BTRFS_TREE_BLOCK_CLEAN;
2028
2029 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
2030 generic_err(leaf, 0,
2031 "invalid root, root %llu must never be empty",
2032 owner);
2033 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2034 }
2035
2036 return BTRFS_TREE_BLOCK_CLEAN;
2037 }
2038
2039 if (unlikely(nritems == 0))
2040 return BTRFS_TREE_BLOCK_CLEAN;
2041
2042 /*
2043 * Check the following things to make sure this is a good leaf, and
2044 * leaf users won't need to bother with similar sanity checks:
2045 *
2046 * 1) key ordering
2047 * 2) item offset and size
2048 * No overlap, no hole, all inside the leaf.
2049 * 3) item content
2050 * If possible, do comprehensive sanity check.
2051 * NOTE: All checks must only rely on the item data itself.
2052 */
2053 for (slot = 0; slot < nritems; slot++) {
2054 u32 item_end_expected;
2055 u64 item_data_end;
2056 enum btrfs_tree_block_status ret;
2057
2058 btrfs_item_key_to_cpu(leaf, &key, slot);
2059
2060 /* Make sure the keys are in the right order */
2061 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
2062 generic_err(leaf, slot,
2063 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
2064 prev_key.objectid, prev_key.type,
2065 prev_key.offset, key.objectid, key.type,
2066 key.offset);
2067 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2068 }
2069
2070 item_data_end = (u64)btrfs_item_offset(leaf, slot) +
2071 btrfs_item_size(leaf, slot);
2072 /*
2073 * Make sure the offset and ends are right, remember that the
2074 * item data starts at the end of the leaf and grows towards the
2075 * front.
2076 */
2077 if (slot == 0)
2078 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
2079 else
2080 item_end_expected = btrfs_item_offset(leaf,
2081 slot - 1);
2082 if (unlikely(item_data_end != item_end_expected)) {
2083 generic_err(leaf, slot,
2084 "unexpected item end, have %llu expect %u",
2085 item_data_end, item_end_expected);
2086 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2087 }
2088
2089 /*
2090 * Check to make sure that we don't point outside of the leaf,
2091 * just in case all the items are consistent to each other, but
2092 * all point outside of the leaf.
2093 */
2094 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
2095 generic_err(leaf, slot,
2096 "slot end outside of leaf, have %llu expect range [0, %u]",
2097 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
2098 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2099 }
2100
2101 /* Also check if the item pointer overlaps with btrfs item. */
2102 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
2103 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
2104 generic_err(leaf, slot,
2105 "slot overlaps with its data, item end %lu data start %lu",
2106 btrfs_item_nr_offset(leaf, slot) +
2107 sizeof(struct btrfs_item),
2108 btrfs_item_ptr_offset(leaf, slot));
2109 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2110 }
2111
2112 /* Check if the item size and content meet other criteria. */
2113 ret = check_leaf_item(leaf, &key, slot, &prev_key);
2114 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2115 return ret;
2116
2117 prev_key.objectid = key.objectid;
2118 prev_key.type = key.type;
2119 prev_key.offset = key.offset;
2120 }
2121
2122 return BTRFS_TREE_BLOCK_CLEAN;
2123 }
2124
btrfs_check_leaf(struct extent_buffer * leaf)2125 int btrfs_check_leaf(struct extent_buffer *leaf)
2126 {
2127 enum btrfs_tree_block_status ret;
2128
2129 ret = __btrfs_check_leaf(leaf);
2130 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2131 return -EUCLEAN;
2132 return 0;
2133 }
2134 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
2135
__btrfs_check_node(struct extent_buffer * node)2136 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
2137 {
2138 struct btrfs_fs_info *fs_info = node->fs_info;
2139 unsigned long nr = btrfs_header_nritems(node);
2140 struct btrfs_key key, next_key;
2141 int slot;
2142 int level = btrfs_header_level(node);
2143 u64 bytenr;
2144
2145 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) {
2146 generic_err(node, 0, "invalid flag for node, WRITTEN not set");
2147 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2148 }
2149
2150 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
2151 generic_err(node, 0,
2152 "invalid level for node, have %d expect [1, %d]",
2153 level, BTRFS_MAX_LEVEL - 1);
2154 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2155 }
2156 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
2157 btrfs_crit(fs_info,
2158 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
2159 btrfs_header_owner(node), node->start,
2160 nr == 0 ? "small" : "large", nr,
2161 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
2162 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2163 }
2164
2165 for (slot = 0; slot < nr - 1; slot++) {
2166 bytenr = btrfs_node_blockptr(node, slot);
2167 btrfs_node_key_to_cpu(node, &key, slot);
2168 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
2169
2170 if (unlikely(!bytenr)) {
2171 generic_err(node, slot,
2172 "invalid NULL node pointer");
2173 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2174 }
2175 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
2176 generic_err(node, slot,
2177 "unaligned pointer, have %llu should be aligned to %u",
2178 bytenr, fs_info->sectorsize);
2179 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2180 }
2181
2182 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
2183 generic_err(node, slot,
2184 "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
2185 key.objectid, key.type, key.offset,
2186 next_key.objectid, next_key.type,
2187 next_key.offset);
2188 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2189 }
2190 }
2191 return BTRFS_TREE_BLOCK_CLEAN;
2192 }
2193
btrfs_check_node(struct extent_buffer * node)2194 int btrfs_check_node(struct extent_buffer *node)
2195 {
2196 enum btrfs_tree_block_status ret;
2197
2198 ret = __btrfs_check_node(node);
2199 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2200 return -EUCLEAN;
2201 return 0;
2202 }
2203 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2204
btrfs_check_eb_owner(const struct extent_buffer * eb,u64 root_owner)2205 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2206 {
2207 const bool is_subvol = btrfs_is_fstree(root_owner);
2208 const u64 eb_owner = btrfs_header_owner(eb);
2209
2210 /*
2211 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2212 * root.
2213 */
2214 if (btrfs_is_testing(eb->fs_info))
2215 return 0;
2216 /*
2217 * There are several call sites (backref walking, qgroup, and data
2218 * reloc) passing 0 as @root_owner, as they are not holding the
2219 * tree root. In that case, we can not do a reliable ownership check,
2220 * so just exit.
2221 */
2222 if (root_owner == 0)
2223 return 0;
2224 /*
2225 * These trees use key.offset as their owner, our callers don't have
2226 * the extra capacity to pass key.offset here. So we just skip them.
2227 */
2228 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2229 root_owner == BTRFS_TREE_RELOC_OBJECTID)
2230 return 0;
2231
2232 if (!is_subvol) {
2233 /* For non-subvolume trees, the eb owner should match root owner */
2234 if (unlikely(root_owner != eb_owner)) {
2235 btrfs_crit(eb->fs_info,
2236 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2237 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2238 root_owner, btrfs_header_bytenr(eb), eb_owner,
2239 root_owner);
2240 return -EUCLEAN;
2241 }
2242 return 0;
2243 }
2244
2245 /*
2246 * For subvolume trees, owners can mismatch, but they should all belong
2247 * to subvolume trees.
2248 */
2249 if (unlikely(is_subvol != btrfs_is_fstree(eb_owner))) {
2250 btrfs_crit(eb->fs_info,
2251 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2252 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2253 root_owner, btrfs_header_bytenr(eb), eb_owner,
2254 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2255 return -EUCLEAN;
2256 }
2257 return 0;
2258 }
2259
btrfs_verify_level_key(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)2260 int btrfs_verify_level_key(struct extent_buffer *eb,
2261 const struct btrfs_tree_parent_check *check)
2262 {
2263 struct btrfs_fs_info *fs_info = eb->fs_info;
2264 int found_level;
2265 struct btrfs_key found_key;
2266 int ret;
2267
2268 found_level = btrfs_header_level(eb);
2269 if (unlikely(found_level != check->level)) {
2270 DEBUG_WARN();
2271 btrfs_err(fs_info,
2272 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2273 eb->start, check->level, found_level);
2274 return -EUCLEAN;
2275 }
2276
2277 if (!check->has_first_key)
2278 return 0;
2279
2280 /*
2281 * For live tree block (new tree blocks in current transaction),
2282 * we need proper lock context to avoid race, which is impossible here.
2283 * So we only checks tree blocks which is read from disk, whose
2284 * generation <= fs_info->last_trans_committed.
2285 */
2286 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2287 return 0;
2288
2289 /* We have @first_key, so this @eb must have at least one item */
2290 if (unlikely(btrfs_header_nritems(eb) == 0)) {
2291 btrfs_err(fs_info,
2292 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2293 eb->start);
2294 DEBUG_WARN();
2295 return -EUCLEAN;
2296 }
2297
2298 if (found_level)
2299 btrfs_node_key_to_cpu(eb, &found_key, 0);
2300 else
2301 btrfs_item_key_to_cpu(eb, &found_key, 0);
2302
2303 ret = btrfs_comp_cpu_keys(&check->first_key, &found_key);
2304 if (unlikely(ret)) {
2305 DEBUG_WARN();
2306 btrfs_err(fs_info,
2307 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2308 eb->start, check->transid, check->first_key.objectid,
2309 check->first_key.type, check->first_key.offset,
2310 found_key.objectid, found_key.type,
2311 found_key.offset);
2312 }
2313 return ret;
2314 }
2315