1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
95
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99 "irq poll weight (default= one fourth of HBA queue depth)");
100
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 " enable detection of firmware fault and halt firmware - (default=0)");
104
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 "0 - balanced: high iops mode is enabled &\n\t\t"
110 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 "1 - iops: high iops mode is disabled &\n\t\t"
112 "interrupt coalescing is enabled on all queues,\n\t\t"
113 "2 - latency: high iops mode is disabled &\n\t\t"
114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 "\t\tdefault - default perf_mode is 'balanced'"
116 );
117
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 "when poll_queues are enabled then &\n\t\t"
123 "perf_mode is set to latency mode. &\n\t\t"
124 );
125
126 enum mpt3sas_perf_mode {
127 MPT_PERF_MODE_DEFAULT = -1,
128 MPT_PERF_MODE_BALANCED = 0,
129 MPT_PERF_MODE_IOPS = 1,
130 MPT_PERF_MODE_LATENCY = 2,
131 };
132
133 static int
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 u32 ioc_state, int timeout);
136 static int
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138 static void
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140
141 static u32
142 _base_readl_ext_retry(const void __iomem *addr);
143
144 /**
145 * mpt3sas_base_check_cmd_timeout - Function
146 * to check timeout and command termination due
147 * to Host reset.
148 *
149 * @ioc: per adapter object.
150 * @status: Status of issued command.
151 * @mpi_request:mf request pointer.
152 * @sz: size of buffer.
153 *
154 * Return: 1/0 Reset to be done or Not
155 */
156 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158 u8 status, void *mpi_request, int sz)
159 {
160 u8 issue_reset = 0;
161
162 if (!(status & MPT3_CMD_RESET))
163 issue_reset = 1;
164
165 ioc_err(ioc, "Command %s\n",
166 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167 _debug_dump_mf(mpi_request, sz);
168
169 return issue_reset;
170 }
171
172 /**
173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174 * @val: ?
175 * @kp: ?
176 *
177 * Return: ?
178 */
179 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181 {
182 int ret = param_set_int(val, kp);
183 struct MPT3SAS_ADAPTER *ioc;
184
185 if (ret)
186 return ret;
187
188 /* global ioc spinlock to protect controller list on list operations */
189 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190 spin_lock(&gioc_lock);
191 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192 ioc->fwfault_debug = mpt3sas_fwfault_debug;
193 spin_unlock(&gioc_lock);
194 return 0;
195 }
196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197 param_get_int, &mpt3sas_fwfault_debug, 0644);
198
199 /**
200 * _base_readl_aero - retry readl for max three times.
201 * @addr: MPT Fusion system interface register address
202 *
203 * Retry the readl() for max three times if it gets zero value
204 * while reading the system interface register.
205 */
206 static inline u32
_base_readl_aero(const void __iomem * addr)207 _base_readl_aero(const void __iomem *addr)
208 {
209 u32 i = 0, ret_val;
210
211 do {
212 ret_val = readl(addr);
213 i++;
214 } while (ret_val == 0 && i < 3);
215
216 return ret_val;
217 }
218
219 static u32
_base_readl_ext_retry(const void __iomem * addr)220 _base_readl_ext_retry(const void __iomem *addr)
221 {
222 u32 i, ret_val;
223
224 for (i = 0 ; i < 30 ; i++) {
225 ret_val = readl(addr);
226 if (ret_val != 0)
227 break;
228 }
229
230 return ret_val;
231 }
232
233 static inline u32
_base_readl(const void __iomem * addr)234 _base_readl(const void __iomem *addr)
235 {
236 return readl(addr);
237 }
238
239 /**
240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241 * in BAR0 space.
242 *
243 * @ioc: per adapter object
244 * @reply: reply message frame(lower 32bit addr)
245 * @index: System request message index.
246 */
247 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249 u32 index)
250 {
251 /*
252 * 256 is offset within sys register.
253 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255 */
256 u16 cmd_credit = ioc->facts.RequestCredit + 1;
257 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258 MPI_FRAME_START_OFFSET +
259 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260
261 writel(reply, reply_free_iomem);
262 }
263
264 /**
265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266 * to system/BAR0 region.
267 *
268 * @dst_iomem: Pointer to the destination location in BAR0 space.
269 * @src: Pointer to the Source data.
270 * @size: Size of data to be copied.
271 */
272 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274 {
275 int i;
276 u32 *src_virt_mem = (u32 *)src;
277
278 for (i = 0; i < size/4; i++)
279 writel((u32)src_virt_mem[i],
280 (void __iomem *)dst_iomem + (i * 4));
281 }
282
283 /**
284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285 *
286 * @dst_iomem: Pointer to the destination location in BAR0 space.
287 * @src: Pointer to the Source data.
288 * @size: Size of data to be copied.
289 */
290 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292 {
293 int i;
294 u32 *src_virt_mem = (u32 *)(src);
295
296 for (i = 0; i < size/4; i++)
297 writel((u32)src_virt_mem[i],
298 (void __iomem *)dst_iomem + (i * 4));
299 }
300
301 /**
302 * _base_get_chain - Calculates and Returns virtual chain address
303 * for the provided smid in BAR0 space.
304 *
305 * @ioc: per adapter object
306 * @smid: system request message index
307 * @sge_chain_count: Scatter gather chain count.
308 *
309 * Return: the chain address.
310 */
311 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313 u8 sge_chain_count)
314 {
315 void __iomem *base_chain, *chain_virt;
316 u16 cmd_credit = ioc->facts.RequestCredit + 1;
317
318 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319 (cmd_credit * ioc->request_sz) +
320 REPLY_FREE_POOL_SIZE;
321 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323 return chain_virt;
324 }
325
326 /**
327 * _base_get_chain_phys - Calculates and Returns physical address
328 * in BAR0 for scatter gather chains, for
329 * the provided smid.
330 *
331 * @ioc: per adapter object
332 * @smid: system request message index
333 * @sge_chain_count: Scatter gather chain count.
334 *
335 * Return: Physical chain address.
336 */
337 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339 u8 sge_chain_count)
340 {
341 phys_addr_t base_chain_phys, chain_phys;
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343
344 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345 (cmd_credit * ioc->request_sz) +
346 REPLY_FREE_POOL_SIZE;
347 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349 return chain_phys;
350 }
351
352 /**
353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354 * buffer address for the provided smid.
355 * (Each smid can have 64K starts from 17024)
356 *
357 * @ioc: per adapter object
358 * @smid: system request message index
359 *
360 * Return: Pointer to buffer location in BAR0.
361 */
362
363 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 {
366 u16 cmd_credit = ioc->facts.RequestCredit + 1;
367 // Added extra 1 to reach end of chain.
368 void __iomem *chain_end = _base_get_chain(ioc,
369 cmd_credit + 1,
370 ioc->facts.MaxChainDepth);
371 return chain_end + (smid * 64 * 1024);
372 }
373
374 /**
375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376 * Host buffer Physical address for the provided smid.
377 * (Each smid can have 64K starts from 17024)
378 *
379 * @ioc: per adapter object
380 * @smid: system request message index
381 *
382 * Return: Pointer to buffer location in BAR0.
383 */
384 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386 {
387 u16 cmd_credit = ioc->facts.RequestCredit + 1;
388 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389 cmd_credit + 1,
390 ioc->facts.MaxChainDepth);
391 return chain_end_phys + (smid * 64 * 1024);
392 }
393
394 /**
395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396 * lookup list and Provides chain_buffer
397 * address for the matching dma address.
398 * (Each smid can have 64K starts from 17024)
399 *
400 * @ioc: per adapter object
401 * @chain_buffer_dma: Chain buffer dma address.
402 *
403 * Return: Pointer to chain buffer. Or Null on Failure.
404 */
405 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407 dma_addr_t chain_buffer_dma)
408 {
409 u16 index, j;
410 struct chain_tracker *ct;
411
412 for (index = 0; index < ioc->scsiio_depth; index++) {
413 for (j = 0; j < ioc->chains_needed_per_io; j++) {
414 ct = &ioc->chain_lookup[index].chains_per_smid[j];
415 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416 return ct->chain_buffer;
417 }
418 }
419 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420 return NULL;
421 }
422
423 /**
424 * _clone_sg_entries - MPI EP's scsiio and config requests
425 * are handled here. Base function for
426 * double buffering, before submitting
427 * the requests.
428 *
429 * @ioc: per adapter object.
430 * @mpi_request: mf request pointer.
431 * @smid: system request message index.
432 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434 void *mpi_request, u16 smid)
435 {
436 Mpi2SGESimple32_t *sgel, *sgel_next;
437 u32 sgl_flags, sge_chain_count = 0;
438 bool is_write = false;
439 u16 i = 0;
440 void __iomem *buffer_iomem;
441 phys_addr_t buffer_iomem_phys;
442 void __iomem *buff_ptr;
443 phys_addr_t buff_ptr_phys;
444 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 phys_addr_t dst_addr_phys;
447 MPI2RequestHeader_t *request_hdr;
448 struct scsi_cmnd *scmd;
449 struct scatterlist *sg_scmd = NULL;
450 int is_scsiio_req = 0;
451
452 request_hdr = (MPI2RequestHeader_t *) mpi_request;
453
454 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455 Mpi25SCSIIORequest_t *scsiio_request =
456 (Mpi25SCSIIORequest_t *)mpi_request;
457 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458 is_scsiio_req = 1;
459 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460 Mpi2ConfigRequest_t *config_req =
461 (Mpi2ConfigRequest_t *)mpi_request;
462 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463 } else
464 return;
465
466 /* From smid we can get scsi_cmd, once we have sg_scmd,
467 * we just need to get sg_virt and sg_next to get virtual
468 * address associated with sgel->Address.
469 */
470
471 if (is_scsiio_req) {
472 /* Get scsi_cmd using smid */
473 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474 if (scmd == NULL) {
475 ioc_err(ioc, "scmd is NULL\n");
476 return;
477 }
478
479 /* Get sg_scmd from scmd provided */
480 sg_scmd = scsi_sglist(scmd);
481 }
482
483 /*
484 * 0 - 255 System register
485 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
486 * 4352 - 4864 Reply_free pool (512 byte is reserved
487 * considering maxCredit 32. Reply need extra
488 * room, for mCPU case kept four times of
489 * maxCredit).
490 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
491 * 128 byte size = 12288)
492 * 17152 - x Host buffer mapped with smid.
493 * (Each smid can have 64K Max IO.)
494 * BAR0+Last 1K MSIX Addr and Data
495 * Total size in use 2113664 bytes of 4MB BAR0
496 */
497
498 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500
501 buff_ptr = buffer_iomem;
502 buff_ptr_phys = buffer_iomem_phys;
503 WARN_ON(buff_ptr_phys > U32_MAX);
504
505 if (le32_to_cpu(sgel->FlagsLength) &
506 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507 is_write = true;
508
509 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510
511 sgl_flags =
512 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513
514 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516 /*
517 * Helper function which on passing
518 * chain_buffer_dma returns chain_buffer. Get
519 * the virtual address for sgel->Address
520 */
521 sgel_next =
522 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
523 le32_to_cpu(sgel->Address));
524 if (sgel_next == NULL)
525 return;
526 /*
527 * This is coping 128 byte chain
528 * frame (not a host buffer)
529 */
530 dst_chain_addr[sge_chain_count] =
531 _base_get_chain(ioc,
532 smid, sge_chain_count);
533 src_chain_addr[sge_chain_count] =
534 (void *) sgel_next;
535 dst_addr_phys = _base_get_chain_phys(ioc,
536 smid, sge_chain_count);
537 WARN_ON(dst_addr_phys > U32_MAX);
538 sgel->Address =
539 cpu_to_le32(lower_32_bits(dst_addr_phys));
540 sgel = sgel_next;
541 sge_chain_count++;
542 break;
543 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544 if (is_write) {
545 if (is_scsiio_req) {
546 _base_clone_to_sys_mem(buff_ptr,
547 sg_virt(sg_scmd),
548 (le32_to_cpu(sgel->FlagsLength) &
549 0x00ffffff));
550 /*
551 * FIXME: this relies on a a zero
552 * PCI mem_offset.
553 */
554 sgel->Address =
555 cpu_to_le32((u32)buff_ptr_phys);
556 } else {
557 _base_clone_to_sys_mem(buff_ptr,
558 ioc->config_vaddr,
559 (le32_to_cpu(sgel->FlagsLength) &
560 0x00ffffff));
561 sgel->Address =
562 cpu_to_le32((u32)buff_ptr_phys);
563 }
564 }
565 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566 0x00ffffff);
567 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568 0x00ffffff);
569 if ((le32_to_cpu(sgel->FlagsLength) &
570 (MPI2_SGE_FLAGS_END_OF_BUFFER
571 << MPI2_SGE_FLAGS_SHIFT)))
572 goto eob_clone_chain;
573 else {
574 /*
575 * Every single element in MPT will have
576 * associated sg_next. Better to sanity that
577 * sg_next is not NULL, but it will be a bug
578 * if it is null.
579 */
580 if (is_scsiio_req) {
581 sg_scmd = sg_next(sg_scmd);
582 if (sg_scmd)
583 sgel++;
584 else
585 goto eob_clone_chain;
586 }
587 }
588 break;
589 }
590 }
591
592 eob_clone_chain:
593 for (i = 0; i < sge_chain_count; i++) {
594 if (is_scsiio_req)
595 _base_clone_to_sys_mem(dst_chain_addr[i],
596 src_chain_addr[i], ioc->request_sz);
597 }
598 }
599
600 /**
601 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602 * @arg: input argument, used to derive ioc
603 *
604 * Return:
605 * 0 if controller is removed from pci subsystem.
606 * -1 for other case.
607 */
mpt3sas_remove_dead_ioc_func(void * arg)608 static int mpt3sas_remove_dead_ioc_func(void *arg)
609 {
610 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611 struct pci_dev *pdev;
612
613 if (!ioc)
614 return -1;
615
616 pdev = ioc->pdev;
617 if (!pdev)
618 return -1;
619 pci_stop_and_remove_bus_device_locked(pdev);
620 return 0;
621 }
622
623 /**
624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625 * @ioc: Per Adapter Object
626 *
627 * Return: nothing.
628 */
_base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER * ioc)629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630 {
631 Mpi26IoUnitControlRequest_t *mpi_request;
632 Mpi26IoUnitControlReply_t *mpi_reply;
633 u16 smid;
634 ktime_t current_time;
635 u64 TimeStamp = 0;
636 u8 issue_reset = 0;
637
638 mutex_lock(&ioc->scsih_cmds.mutex);
639 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641 goto out;
642 }
643 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645 if (!smid) {
646 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648 goto out;
649 }
650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651 ioc->scsih_cmds.smid = smid;
652 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656 current_time = ktime_get_real();
657 TimeStamp = ktime_to_ms(current_time);
658 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660 init_completion(&ioc->scsih_cmds.done);
661 ioc->put_smid_default(ioc, smid);
662 dinitprintk(ioc, ioc_info(ioc,
663 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664 TimeStamp));
665 wait_for_completion_timeout(&ioc->scsih_cmds.done,
666 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668 mpt3sas_check_cmd_timeout(ioc,
669 ioc->scsih_cmds.status, mpi_request,
670 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671 goto issue_host_reset;
672 }
673 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674 mpi_reply = ioc->scsih_cmds.reply;
675 dinitprintk(ioc, ioc_info(ioc,
676 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677 le16_to_cpu(mpi_reply->IOCStatus),
678 le32_to_cpu(mpi_reply->IOCLogInfo)));
679 }
680 issue_host_reset:
681 if (issue_reset)
682 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684 out:
685 mutex_unlock(&ioc->scsih_cmds.mutex);
686 }
687
688 /**
689 * _base_fault_reset_work - workq handling ioc fault conditions
690 * @work: input argument, used to derive ioc
691 *
692 * Context: sleep.
693 */
694 static void
_base_fault_reset_work(struct work_struct * work)695 _base_fault_reset_work(struct work_struct *work)
696 {
697 struct MPT3SAS_ADAPTER *ioc =
698 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699 unsigned long flags;
700 u32 doorbell;
701 int rc;
702 struct task_struct *p;
703
704
705 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707 ioc->pci_error_recovery)
708 goto rearm_timer;
709 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710
711 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713 ioc_err(ioc, "SAS host is non-operational !!!!\n");
714
715 /* It may be possible that EEH recovery can resolve some of
716 * pci bus failure issues rather removing the dead ioc function
717 * by considering controller is in a non-operational state. So
718 * here priority is given to the EEH recovery. If it doesn't
719 * not resolve this issue, mpt3sas driver will consider this
720 * controller to non-operational state and remove the dead ioc
721 * function.
722 */
723 if (ioc->non_operational_loop++ < 5) {
724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725 flags);
726 goto rearm_timer;
727 }
728
729 /*
730 * Call _scsih_flush_pending_cmds callback so that we flush all
731 * pending commands back to OS. This call is required to avoid
732 * deadlock at block layer. Dead IOC will fail to do diag reset,
733 * and this call is safe since dead ioc will never return any
734 * command back from HW.
735 */
736 mpt3sas_base_pause_mq_polling(ioc);
737 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738 /*
739 * Set remove_host flag early since kernel thread will
740 * take some time to execute.
741 */
742 ioc->remove_host = 1;
743 /*Remove the Dead Host */
744 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746 if (IS_ERR(p))
747 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748 __func__);
749 else
750 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751 __func__);
752 return; /* don't rearm timer */
753 }
754
755 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757 ioc->manu_pg11.CoreDumpTOSec :
758 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759
760 timeout /= (FAULT_POLLING_INTERVAL/1000);
761
762 if (ioc->ioc_coredump_loop == 0) {
763 mpt3sas_print_coredump_info(ioc,
764 doorbell & MPI2_DOORBELL_DATA_MASK);
765 /* do not accept any IOs and disable the interrupts */
766 spin_lock_irqsave(
767 &ioc->ioc_reset_in_progress_lock, flags);
768 ioc->shost_recovery = 1;
769 spin_unlock_irqrestore(
770 &ioc->ioc_reset_in_progress_lock, flags);
771 mpt3sas_base_mask_interrupts(ioc);
772 mpt3sas_base_pause_mq_polling(ioc);
773 _base_clear_outstanding_commands(ioc);
774 }
775
776 ioc_info(ioc, "%s: CoreDump loop %d.",
777 __func__, ioc->ioc_coredump_loop);
778
779 /* Wait until CoreDump completes or times out */
780 if (ioc->ioc_coredump_loop++ < timeout) {
781 spin_lock_irqsave(
782 &ioc->ioc_reset_in_progress_lock, flags);
783 goto rearm_timer;
784 }
785 }
786
787 if (ioc->ioc_coredump_loop) {
788 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790 __func__, ioc->ioc_coredump_loop);
791 else
792 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793 __func__, ioc->ioc_coredump_loop);
794 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795 }
796 ioc->non_operational_loop = 0;
797 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799 ioc_warn(ioc, "%s: hard reset: %s\n",
800 __func__, rc == 0 ? "success" : "failed");
801 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803 mpt3sas_print_fault_code(ioc, doorbell &
804 MPI2_DOORBELL_DATA_MASK);
805 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806 MPI2_IOC_STATE_COREDUMP)
807 mpt3sas_print_coredump_info(ioc, doorbell &
808 MPI2_DOORBELL_DATA_MASK);
809 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810 MPI2_IOC_STATE_OPERATIONAL)
811 return; /* don't rearm timer */
812 }
813 ioc->ioc_coredump_loop = 0;
814 if (ioc->time_sync_interval &&
815 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816 ioc->timestamp_update_count = 0;
817 _base_sync_drv_fw_timestamp(ioc);
818 }
819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820 rearm_timer:
821 if (ioc->fault_reset_work_q)
822 queue_delayed_work(ioc->fault_reset_work_q,
823 &ioc->fault_reset_work,
824 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826 }
827
828 /**
829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830 * @ioc: per adapter object
831 *
832 * Context: sleep.
833 */
834 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836 {
837 unsigned long flags;
838
839 if (ioc->fault_reset_work_q)
840 return;
841
842 ioc->timestamp_update_count = 0;
843 /* initialize fault polling */
844
845 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846 snprintf(ioc->fault_reset_work_q_name,
847 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848 ioc->driver_name, ioc->id);
849 ioc->fault_reset_work_q = alloc_ordered_workqueue(
850 "%s", WQ_MEM_RECLAIM, ioc->fault_reset_work_q_name);
851 if (!ioc->fault_reset_work_q) {
852 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853 return;
854 }
855 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856 if (ioc->fault_reset_work_q)
857 queue_delayed_work(ioc->fault_reset_work_q,
858 &ioc->fault_reset_work,
859 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861 }
862
863 /**
864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865 * @ioc: per adapter object
866 *
867 * Context: sleep.
868 */
869 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871 {
872 unsigned long flags;
873 struct workqueue_struct *wq;
874
875 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876 wq = ioc->fault_reset_work_q;
877 ioc->fault_reset_work_q = NULL;
878 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879 if (wq) {
880 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881 flush_workqueue(wq);
882 destroy_workqueue(wq);
883 }
884 }
885
886 /**
887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888 * @ioc: per adapter object
889 * @fault_code: fault code
890 */
891 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893 {
894 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895 }
896
897 /**
898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899 * @ioc: per adapter object
900 * @fault_code: fault code
901 *
902 * Return: nothing.
903 */
904 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906 {
907 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908 }
909
910 /**
911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912 * completes or times out
913 * @ioc: per adapter object
914 * @caller: caller function name
915 *
916 * Return: 0 for success, non-zero for failure.
917 */
918 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920 const char *caller)
921 {
922 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923 ioc->manu_pg11.CoreDumpTOSec :
924 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925
926 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927 timeout);
928
929 if (ioc_state)
930 ioc_err(ioc,
931 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932 caller, ioc_state);
933 else
934 ioc_info(ioc,
935 "%s: CoreDump completed. (ioc_state=0x%x)\n",
936 caller, ioc_state);
937
938 return ioc_state;
939 }
940
941 /**
942 * mpt3sas_halt_firmware - halt's mpt controller firmware
943 * @ioc: per adapter object
944 *
945 * For debugging timeout related issues. Writing 0xCOFFEE00
946 * to the doorbell register will halt controller firmware. With
947 * the purpose to stop both driver and firmware, the enduser can
948 * obtain a ring buffer from controller UART.
949 */
950 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952 {
953 u32 doorbell;
954
955 if (!ioc->fwfault_debug)
956 return;
957
958 dump_stack();
959
960 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962 mpt3sas_print_fault_code(ioc, doorbell &
963 MPI2_DOORBELL_DATA_MASK);
964 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965 MPI2_IOC_STATE_COREDUMP) {
966 mpt3sas_print_coredump_info(ioc, doorbell &
967 MPI2_DOORBELL_DATA_MASK);
968 } else {
969 writel(0xC0FFEE00, &ioc->chip->Doorbell);
970 ioc_err(ioc, "Firmware is halted due to command timeout\n");
971 }
972
973 if (ioc->fwfault_debug == 2)
974 for (;;)
975 ;
976 else
977 panic("panic in %s\n", __func__);
978 }
979
980 /**
981 * _base_sas_ioc_info - verbose translation of the ioc status
982 * @ioc: per adapter object
983 * @mpi_reply: reply mf payload returned from firmware
984 * @request_hdr: request mf
985 */
986 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988 MPI2RequestHeader_t *request_hdr)
989 {
990 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991 MPI2_IOCSTATUS_MASK;
992 char *desc = NULL;
993 u16 frame_sz;
994 char *func_str = NULL;
995
996 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000 return;
1001
1002 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003 return;
1004 /*
1005 * Older Firmware version doesn't support driver trigger pages.
1006 * So, skip displaying 'config invalid type' type
1007 * of error message.
1008 */
1009 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011
1012 if ((rqst->ExtPageType ==
1013 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015 return;
1016 }
1017 }
1018
1019 switch (ioc_status) {
1020
1021 /****************************************************************************
1022 * Common IOCStatus values for all replies
1023 ****************************************************************************/
1024
1025 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026 desc = "invalid function";
1027 break;
1028 case MPI2_IOCSTATUS_BUSY:
1029 desc = "busy";
1030 break;
1031 case MPI2_IOCSTATUS_INVALID_SGL:
1032 desc = "invalid sgl";
1033 break;
1034 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035 desc = "internal error";
1036 break;
1037 case MPI2_IOCSTATUS_INVALID_VPID:
1038 desc = "invalid vpid";
1039 break;
1040 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041 desc = "insufficient resources";
1042 break;
1043 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044 desc = "insufficient power";
1045 break;
1046 case MPI2_IOCSTATUS_INVALID_FIELD:
1047 desc = "invalid field";
1048 break;
1049 case MPI2_IOCSTATUS_INVALID_STATE:
1050 desc = "invalid state";
1051 break;
1052 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053 desc = "op state not supported";
1054 break;
1055
1056 /****************************************************************************
1057 * Config IOCStatus values
1058 ****************************************************************************/
1059
1060 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061 desc = "config invalid action";
1062 break;
1063 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064 desc = "config invalid type";
1065 break;
1066 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067 desc = "config invalid page";
1068 break;
1069 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070 desc = "config invalid data";
1071 break;
1072 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073 desc = "config no defaults";
1074 break;
1075 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076 desc = "config can't commit";
1077 break;
1078
1079 /****************************************************************************
1080 * SCSI IO Reply
1081 ****************************************************************************/
1082
1083 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095 break;
1096
1097 /****************************************************************************
1098 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1099 ****************************************************************************/
1100
1101 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102 desc = "eedp guard error";
1103 break;
1104 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105 desc = "eedp ref tag error";
1106 break;
1107 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108 desc = "eedp app tag error";
1109 break;
1110
1111 /****************************************************************************
1112 * SCSI Target values
1113 ****************************************************************************/
1114
1115 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116 desc = "target invalid io index";
1117 break;
1118 case MPI2_IOCSTATUS_TARGET_ABORTED:
1119 desc = "target aborted";
1120 break;
1121 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122 desc = "target no conn retryable";
1123 break;
1124 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125 desc = "target no connection";
1126 break;
1127 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128 desc = "target xfer count mismatch";
1129 break;
1130 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131 desc = "target data offset error";
1132 break;
1133 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134 desc = "target too much write data";
1135 break;
1136 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137 desc = "target iu too short";
1138 break;
1139 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140 desc = "target ack nak timeout";
1141 break;
1142 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143 desc = "target nak received";
1144 break;
1145
1146 /****************************************************************************
1147 * Serial Attached SCSI values
1148 ****************************************************************************/
1149
1150 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151 desc = "smp request failed";
1152 break;
1153 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154 desc = "smp data overrun";
1155 break;
1156
1157 /****************************************************************************
1158 * Diagnostic Buffer Post / Diagnostic Release values
1159 ****************************************************************************/
1160
1161 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162 desc = "diagnostic released";
1163 break;
1164 default:
1165 break;
1166 }
1167
1168 if (!desc)
1169 return;
1170
1171 switch (request_hdr->Function) {
1172 case MPI2_FUNCTION_CONFIG:
1173 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174 func_str = "config_page";
1175 break;
1176 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178 func_str = "task_mgmt";
1179 break;
1180 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182 func_str = "sas_iounit_ctl";
1183 break;
1184 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185 frame_sz = sizeof(Mpi2SepRequest_t);
1186 func_str = "enclosure";
1187 break;
1188 case MPI2_FUNCTION_IOC_INIT:
1189 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190 func_str = "ioc_init";
1191 break;
1192 case MPI2_FUNCTION_PORT_ENABLE:
1193 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194 func_str = "port_enable";
1195 break;
1196 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198 func_str = "smp_passthru";
1199 break;
1200 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202 ioc->sge_size;
1203 func_str = "nvme_encapsulated";
1204 break;
1205 default:
1206 frame_sz = 32;
1207 func_str = "unknown";
1208 break;
1209 }
1210
1211 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212 desc, ioc_status, request_hdr, func_str);
1213
1214 _debug_dump_mf(request_hdr, frame_sz/4);
1215 }
1216
1217 /**
1218 * _base_display_event_data - verbose translation of firmware asyn events
1219 * @ioc: per adapter object
1220 * @mpi_reply: reply mf payload returned from firmware
1221 */
1222 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224 Mpi2EventNotificationReply_t *mpi_reply)
1225 {
1226 char *desc = NULL;
1227 u16 event;
1228
1229 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230 return;
1231
1232 event = le16_to_cpu(mpi_reply->Event);
1233
1234 switch (event) {
1235 case MPI2_EVENT_LOG_DATA:
1236 desc = "Log Data";
1237 break;
1238 case MPI2_EVENT_STATE_CHANGE:
1239 desc = "Status Change";
1240 break;
1241 case MPI2_EVENT_HARD_RESET_RECEIVED:
1242 desc = "Hard Reset Received";
1243 break;
1244 case MPI2_EVENT_EVENT_CHANGE:
1245 desc = "Event Change";
1246 break;
1247 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248 desc = "Device Status Change";
1249 break;
1250 case MPI2_EVENT_IR_OPERATION_STATUS:
1251 if (!ioc->hide_ir_msg)
1252 desc = "IR Operation Status";
1253 break;
1254 case MPI2_EVENT_SAS_DISCOVERY:
1255 {
1256 Mpi2EventDataSasDiscovery_t *event_data =
1257 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258 ioc_info(ioc, "Discovery: (%s)",
1259 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260 "start" : "stop");
1261 if (event_data->DiscoveryStatus)
1262 pr_cont(" discovery_status(0x%08x)",
1263 le32_to_cpu(event_data->DiscoveryStatus));
1264 pr_cont("\n");
1265 return;
1266 }
1267 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268 desc = "SAS Broadcast Primitive";
1269 break;
1270 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271 desc = "SAS Init Device Status Change";
1272 break;
1273 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274 desc = "SAS Init Table Overflow";
1275 break;
1276 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277 desc = "SAS Topology Change List";
1278 break;
1279 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280 desc = "SAS Enclosure Device Status Change";
1281 break;
1282 case MPI2_EVENT_IR_VOLUME:
1283 if (!ioc->hide_ir_msg)
1284 desc = "IR Volume";
1285 break;
1286 case MPI2_EVENT_IR_PHYSICAL_DISK:
1287 if (!ioc->hide_ir_msg)
1288 desc = "IR Physical Disk";
1289 break;
1290 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291 if (!ioc->hide_ir_msg)
1292 desc = "IR Configuration Change List";
1293 break;
1294 case MPI2_EVENT_LOG_ENTRY_ADDED:
1295 if (!ioc->hide_ir_msg)
1296 desc = "Log Entry Added";
1297 break;
1298 case MPI2_EVENT_TEMP_THRESHOLD:
1299 desc = "Temperature Threshold";
1300 break;
1301 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302 desc = "Cable Event";
1303 break;
1304 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305 desc = "SAS Device Discovery Error";
1306 break;
1307 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308 desc = "PCIE Device Status Change";
1309 break;
1310 case MPI2_EVENT_PCIE_ENUMERATION:
1311 {
1312 Mpi26EventDataPCIeEnumeration_t *event_data =
1313 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314 ioc_info(ioc, "PCIE Enumeration: (%s)",
1315 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316 "start" : "stop");
1317 if (event_data->EnumerationStatus)
1318 pr_cont("enumeration_status(0x%08x)",
1319 le32_to_cpu(event_data->EnumerationStatus));
1320 pr_cont("\n");
1321 return;
1322 }
1323 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324 desc = "PCIE Topology Change List";
1325 break;
1326 }
1327
1328 if (!desc)
1329 return;
1330
1331 ioc_info(ioc, "%s\n", desc);
1332 }
1333
1334 /**
1335 * _base_sas_log_info - verbose translation of firmware log info
1336 * @ioc: per adapter object
1337 * @log_info: log info
1338 */
1339 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341 {
1342 union loginfo_type {
1343 u32 loginfo;
1344 struct {
1345 u32 subcode:16;
1346 u32 code:8;
1347 u32 originator:4;
1348 u32 bus_type:4;
1349 } dw;
1350 };
1351 union loginfo_type sas_loginfo;
1352 char *originator_str = NULL;
1353
1354 sas_loginfo.loginfo = log_info;
1355 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356 return;
1357
1358 /* each nexus loss loginfo */
1359 if (log_info == 0x31170000)
1360 return;
1361
1362 /* eat the loginfos associated with task aborts */
1363 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364 0x31140000 || log_info == 0x31130000))
1365 return;
1366
1367 switch (sas_loginfo.dw.originator) {
1368 case 0:
1369 originator_str = "IOP";
1370 break;
1371 case 1:
1372 originator_str = "PL";
1373 break;
1374 case 2:
1375 if (!ioc->hide_ir_msg)
1376 originator_str = "IR";
1377 else
1378 originator_str = "WarpDrive";
1379 break;
1380 }
1381
1382 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383 log_info,
1384 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385 }
1386
1387 /**
1388 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389 * @ioc: per adapter object
1390 * @smid: system request message index
1391 * @msix_index: MSIX table index supplied by the OS
1392 * @reply: reply message frame (lower 32bit addr)
1393 */
1394 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396 u32 reply)
1397 {
1398 MPI2DefaultReply_t *mpi_reply;
1399 u16 ioc_status;
1400 u32 loginfo = 0;
1401
1402 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1403 if (unlikely(!mpi_reply)) {
1404 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405 __FILE__, __LINE__, __func__);
1406 return;
1407 }
1408 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409
1410 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412 _base_sas_ioc_info(ioc, mpi_reply,
1413 mpt3sas_base_get_msg_frame(ioc, smid));
1414 }
1415
1416 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418 _base_sas_log_info(ioc, loginfo);
1419 }
1420
1421 if (ioc_status || loginfo) {
1422 ioc_status &= MPI2_IOCSTATUS_MASK;
1423 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424 }
1425 }
1426
1427 /**
1428 * mpt3sas_base_done - base internal command completion routine
1429 * @ioc: per adapter object
1430 * @smid: system request message index
1431 * @msix_index: MSIX table index supplied by the OS
1432 * @reply: reply message frame(lower 32bit addr)
1433 *
1434 * Return:
1435 * 1 meaning mf should be freed from _base_interrupt
1436 * 0 means the mf is freed from this function.
1437 */
1438 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440 u32 reply)
1441 {
1442 MPI2DefaultReply_t *mpi_reply;
1443
1444 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1445 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447
1448 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449 return 1;
1450
1451 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452 if (mpi_reply) {
1453 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455 }
1456 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457
1458 complete(&ioc->base_cmds.done);
1459 return 1;
1460 }
1461
1462 /**
1463 * _base_async_event - main callback handler for firmware asyn events
1464 * @ioc: per adapter object
1465 * @msix_index: MSIX table index supplied by the OS
1466 * @reply: reply message frame(lower 32bit addr)
1467 *
1468 * Return:
1469 * 1 meaning mf should be freed from _base_interrupt
1470 * 0 means the mf is freed from this function.
1471 */
1472 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474 {
1475 Mpi2EventNotificationReply_t *mpi_reply;
1476 Mpi2EventAckRequest_t *ack_request;
1477 u16 smid;
1478 struct _event_ack_list *delayed_event_ack;
1479
1480 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1481 if (!mpi_reply)
1482 return 1;
1483 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484 return 1;
1485
1486 _base_display_event_data(ioc, mpi_reply);
1487
1488 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489 goto out;
1490 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1491 if (!smid) {
1492 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1493 GFP_ATOMIC);
1494 if (!delayed_event_ack)
1495 goto out;
1496 INIT_LIST_HEAD(&delayed_event_ack->list);
1497 delayed_event_ack->Event = mpi_reply->Event;
1498 delayed_event_ack->EventContext = mpi_reply->EventContext;
1499 list_add_tail(&delayed_event_ack->list,
1500 &ioc->delayed_event_ack_list);
1501 dewtprintk(ioc,
1502 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503 le16_to_cpu(mpi_reply->Event)));
1504 goto out;
1505 }
1506
1507 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510 ack_request->Event = mpi_reply->Event;
1511 ack_request->EventContext = mpi_reply->EventContext;
1512 ack_request->VF_ID = 0; /* TODO */
1513 ack_request->VP_ID = 0;
1514 ioc->put_smid_default(ioc, smid);
1515
1516 out:
1517
1518 /* scsih callback handler */
1519 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520
1521 /* ctl callback handler */
1522 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523
1524 return 1;
1525 }
1526
1527 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529 {
1530 struct scsi_cmnd *cmd;
1531
1532 if (WARN_ON(!smid) ||
1533 WARN_ON(smid >= ioc->hi_priority_smid))
1534 return NULL;
1535
1536 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537 if (cmd)
1538 return scsi_cmd_priv(cmd);
1539
1540 return NULL;
1541 }
1542
1543 /**
1544 * _base_get_cb_idx - obtain the callback index
1545 * @ioc: per adapter object
1546 * @smid: system request message index
1547 *
1548 * Return: callback index.
1549 */
1550 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552 {
1553 int i;
1554 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555 u8 cb_idx = 0xFF;
1556
1557 if (smid < ioc->hi_priority_smid) {
1558 struct scsiio_tracker *st;
1559
1560 if (smid < ctl_smid) {
1561 st = _get_st_from_smid(ioc, smid);
1562 if (st)
1563 cb_idx = st->cb_idx;
1564 } else if (smid == ctl_smid)
1565 cb_idx = ioc->ctl_cb_idx;
1566 } else if (smid < ioc->internal_smid) {
1567 i = smid - ioc->hi_priority_smid;
1568 cb_idx = ioc->hpr_lookup[i].cb_idx;
1569 } else if (smid <= ioc->hba_queue_depth) {
1570 i = smid - ioc->internal_smid;
1571 cb_idx = ioc->internal_lookup[i].cb_idx;
1572 }
1573 return cb_idx;
1574 }
1575
1576 /**
1577 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578 * when driver is flushing out the IOs.
1579 * @ioc: per adapter object
1580 *
1581 * Pause polling on the mq poll (io uring) queues when driver is flushing
1582 * out the IOs. Otherwise we may see the race condition of completing the same
1583 * IO from two paths.
1584 *
1585 * Returns nothing.
1586 */
1587 void
mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER * ioc)1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589 {
1590 int iopoll_q_count =
1591 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592 int qid;
1593
1594 for (qid = 0; qid < iopoll_q_count; qid++)
1595 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1596
1597 /*
1598 * wait for current poll to complete.
1599 */
1600 for (qid = 0; qid < iopoll_q_count; qid++) {
1601 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1602 cpu_relax();
1603 udelay(500);
1604 }
1605 }
1606 }
1607
1608 /**
1609 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610 * @ioc: per adapter object
1611 *
1612 * Returns nothing.
1613 */
1614 void
mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER * ioc)1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616 {
1617 int iopoll_q_count =
1618 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619 int qid;
1620
1621 for (qid = 0; qid < iopoll_q_count; qid++)
1622 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1623 }
1624
1625 /**
1626 * mpt3sas_base_mask_interrupts - disable interrupts
1627 * @ioc: per adapter object
1628 *
1629 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630 */
1631 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634 u32 him_register;
1635
1636 ioc->mask_interrupts = 1;
1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639 writel(him_register, &ioc->chip->HostInterruptMask);
1640 ioc->base_readl(&ioc->chip->HostInterruptMask);
1641 }
1642
1643 /**
1644 * mpt3sas_base_unmask_interrupts - enable interrupts
1645 * @ioc: per adapter object
1646 *
1647 * Enabling only Reply Interrupts
1648 */
1649 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651 {
1652 u32 him_register;
1653
1654 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655 him_register &= ~MPI2_HIM_RIM;
1656 writel(him_register, &ioc->chip->HostInterruptMask);
1657 ioc->mask_interrupts = 0;
1658 }
1659
1660 union reply_descriptor {
1661 u64 word;
1662 struct {
1663 u32 low;
1664 u32 high;
1665 } u;
1666 };
1667
base_mod64(u64 dividend,u32 divisor)1668 static u32 base_mod64(u64 dividend, u32 divisor)
1669 {
1670 u32 remainder;
1671
1672 if (!divisor)
1673 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674 remainder = do_div(dividend, divisor);
1675 return remainder;
1676 }
1677
1678 /**
1679 * _base_process_reply_queue - Process reply descriptors from reply
1680 * descriptor post queue.
1681 * @reply_q: per IRQ's reply queue object.
1682 *
1683 * Return: number of reply descriptors processed from reply
1684 * descriptor queue.
1685 */
1686 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688 {
1689 union reply_descriptor rd;
1690 u64 completed_cmds;
1691 u8 request_descript_type;
1692 u16 smid;
1693 u8 cb_idx;
1694 u32 reply;
1695 u8 msix_index = reply_q->msix_index;
1696 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697 Mpi2ReplyDescriptorsUnion_t *rpf;
1698 u8 rc;
1699
1700 completed_cmds = 0;
1701 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1702 return completed_cmds;
1703
1704 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705 request_descript_type = rpf->Default.ReplyFlags
1706 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708 atomic_dec(&reply_q->busy);
1709 return completed_cmds;
1710 }
1711
1712 cb_idx = 0xFF;
1713 do {
1714 rd.word = le64_to_cpu(rpf->Words);
1715 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716 goto out;
1717 reply = 0;
1718 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719 if (request_descript_type ==
1720 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721 request_descript_type ==
1722 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723 request_descript_type ==
1724 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725 cb_idx = _base_get_cb_idx(ioc, smid);
1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 rc = mpt_callbacks[cb_idx](ioc, smid,
1729 msix_index, 0);
1730 if (rc)
1731 mpt3sas_base_free_smid(ioc, smid);
1732 }
1733 } else if (request_descript_type ==
1734 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735 reply = le32_to_cpu(
1736 rpf->AddressReply.ReplyFrameAddress);
1737 if (reply > ioc->reply_dma_max_address ||
1738 reply < ioc->reply_dma_min_address)
1739 reply = 0;
1740 if (smid) {
1741 cb_idx = _base_get_cb_idx(ioc, smid);
1742 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743 (likely(mpt_callbacks[cb_idx] != NULL))) {
1744 rc = mpt_callbacks[cb_idx](ioc, smid,
1745 msix_index, reply);
1746 if (reply)
1747 _base_display_reply_info(ioc,
1748 smid, msix_index, reply);
1749 if (rc)
1750 mpt3sas_base_free_smid(ioc,
1751 smid);
1752 }
1753 } else {
1754 _base_async_event(ioc, msix_index, reply);
1755 }
1756
1757 /* reply free queue handling */
1758 if (reply) {
1759 ioc->reply_free_host_index =
1760 (ioc->reply_free_host_index ==
1761 (ioc->reply_free_queue_depth - 1)) ?
1762 0 : ioc->reply_free_host_index + 1;
1763 ioc->reply_free[ioc->reply_free_host_index] =
1764 cpu_to_le32(reply);
1765 if (ioc->is_mcpu_endpoint)
1766 _base_clone_reply_to_sys_mem(ioc,
1767 reply,
1768 ioc->reply_free_host_index);
1769 writel(ioc->reply_free_host_index,
1770 &ioc->chip->ReplyFreeHostIndex);
1771 }
1772 }
1773
1774 rpf->Words = cpu_to_le64(ULLONG_MAX);
1775 reply_q->reply_post_host_index =
1776 (reply_q->reply_post_host_index ==
1777 (ioc->reply_post_queue_depth - 1)) ? 0 :
1778 reply_q->reply_post_host_index + 1;
1779 request_descript_type =
1780 reply_q->reply_post_free[reply_q->reply_post_host_index].
1781 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782 completed_cmds++;
1783 /* Update the reply post host index after continuously
1784 * processing the threshold number of Reply Descriptors.
1785 * So that FW can find enough entries to post the Reply
1786 * Descriptors in the reply descriptor post queue.
1787 */
1788 if (completed_cmds >= ioc->thresh_hold) {
1789 if (ioc->combined_reply_queue) {
1790 writel(reply_q->reply_post_host_index |
1791 ((msix_index & 7) <<
1792 MPI2_RPHI_MSIX_INDEX_SHIFT),
1793 ioc->replyPostRegisterIndex[msix_index/8]);
1794 } else {
1795 writel(reply_q->reply_post_host_index |
1796 (msix_index <<
1797 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798 &ioc->chip->ReplyPostHostIndex);
1799 }
1800 if (!reply_q->is_iouring_poll_q &&
1801 !reply_q->irq_poll_scheduled) {
1802 reply_q->irq_poll_scheduled = true;
1803 irq_poll_sched(&reply_q->irqpoll);
1804 }
1805 atomic_dec(&reply_q->busy);
1806 return completed_cmds;
1807 }
1808 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809 goto out;
1810 if (!reply_q->reply_post_host_index)
1811 rpf = reply_q->reply_post_free;
1812 else
1813 rpf++;
1814 } while (1);
1815
1816 out:
1817
1818 if (!completed_cmds) {
1819 atomic_dec(&reply_q->busy);
1820 return completed_cmds;
1821 }
1822
1823 if (ioc->is_warpdrive) {
1824 writel(reply_q->reply_post_host_index,
1825 ioc->reply_post_host_index[msix_index]);
1826 atomic_dec(&reply_q->busy);
1827 return completed_cmds;
1828 }
1829
1830 /* Update Reply Post Host Index.
1831 * For those HBA's which support combined reply queue feature
1832 * 1. Get the correct Supplemental Reply Post Host Index Register.
1833 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834 * Index Register address bank i.e replyPostRegisterIndex[],
1835 * 2. Then update this register with new reply host index value
1836 * in ReplyPostIndex field and the MSIxIndex field with
1837 * msix_index value reduced to a value between 0 and 7,
1838 * using a modulo 8 operation. Since each Supplemental Reply Post
1839 * Host Index Register supports 8 MSI-X vectors.
1840 *
1841 * For other HBA's just update the Reply Post Host Index register with
1842 * new reply host index value in ReplyPostIndex Field and msix_index
1843 * value in MSIxIndex field.
1844 */
1845 if (ioc->combined_reply_queue)
1846 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1847 MPI2_RPHI_MSIX_INDEX_SHIFT),
1848 ioc->replyPostRegisterIndex[msix_index/8]);
1849 else
1850 writel(reply_q->reply_post_host_index | (msix_index <<
1851 MPI2_RPHI_MSIX_INDEX_SHIFT),
1852 &ioc->chip->ReplyPostHostIndex);
1853 atomic_dec(&reply_q->busy);
1854 return completed_cmds;
1855 }
1856
1857 /**
1858 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859 * @shost: Scsi_Host object
1860 * @queue_num: hw ctx queue number
1861 *
1862 * Return number of entries that has been processed from poll queue.
1863 */
mpt3sas_blk_mq_poll(struct Scsi_Host * shost,unsigned int queue_num)1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865 {
1866 struct MPT3SAS_ADAPTER *ioc =
1867 (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868 struct adapter_reply_queue *reply_q;
1869 int num_entries = 0;
1870 int qid = queue_num - ioc->iopoll_q_start_index;
1871
1872 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1873 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1874 return 0;
1875
1876 reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877
1878 num_entries = _base_process_reply_queue(reply_q);
1879 atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1880
1881 return num_entries;
1882 }
1883
1884 /**
1885 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886 * @irq: irq number (not used)
1887 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888 *
1889 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890 */
1891 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1892 _base_interrupt(int irq, void *bus_id)
1893 {
1894 struct adapter_reply_queue *reply_q = bus_id;
1895 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896
1897 if (ioc->mask_interrupts)
1898 return IRQ_NONE;
1899 if (reply_q->irq_poll_scheduled)
1900 return IRQ_HANDLED;
1901 return ((_base_process_reply_queue(reply_q) > 0) ?
1902 IRQ_HANDLED : IRQ_NONE);
1903 }
1904
1905 /**
1906 * _base_irqpoll - IRQ poll callback handler
1907 * @irqpoll: irq_poll object
1908 * @budget: irq poll weight
1909 *
1910 * Return: number of reply descriptors processed
1911 */
1912 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1913 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1914 {
1915 struct adapter_reply_queue *reply_q;
1916 int num_entries = 0;
1917
1918 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919 irqpoll);
1920 if (reply_q->irq_line_enable) {
1921 disable_irq_nosync(reply_q->os_irq);
1922 reply_q->irq_line_enable = false;
1923 }
1924 num_entries = _base_process_reply_queue(reply_q);
1925 if (num_entries < budget) {
1926 irq_poll_complete(irqpoll);
1927 reply_q->irq_poll_scheduled = false;
1928 reply_q->irq_line_enable = true;
1929 enable_irq(reply_q->os_irq);
1930 /*
1931 * Go for one more round of processing the
1932 * reply descriptor post queue in case the HBA
1933 * Firmware has posted some reply descriptors
1934 * while reenabling the IRQ.
1935 */
1936 _base_process_reply_queue(reply_q);
1937 }
1938
1939 return num_entries;
1940 }
1941
1942 /**
1943 * _base_init_irqpolls - initliaze IRQ polls
1944 * @ioc: per adapter object
1945 *
1946 * Return: nothing
1947 */
1948 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950 {
1951 struct adapter_reply_queue *reply_q, *next;
1952
1953 if (list_empty(&ioc->reply_queue_list))
1954 return;
1955
1956 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957 if (reply_q->is_iouring_poll_q)
1958 continue;
1959 irq_poll_init(&reply_q->irqpoll,
1960 ioc->hba_queue_depth/4, _base_irqpoll);
1961 reply_q->irq_poll_scheduled = false;
1962 reply_q->irq_line_enable = true;
1963 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1964 reply_q->msix_index);
1965 }
1966 }
1967
1968 /**
1969 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970 * @ioc: per adapter object
1971 *
1972 * Return: Whether or not MSI/X is enabled.
1973 */
1974 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976 {
1977 return (ioc->facts.IOCCapabilities &
1978 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979 }
1980
1981 /**
1982 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983 * @ioc: per adapter object
1984 * @poll: poll over reply descriptor pools incase interrupt for
1985 * timed-out SCSI command got delayed
1986 * Context: non-ISR context
1987 *
1988 * Called when a Task Management request has completed.
1989 */
1990 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992 {
1993 struct adapter_reply_queue *reply_q;
1994
1995 /* If MSIX capability is turned off
1996 * then multi-queues are not enabled
1997 */
1998 if (!_base_is_controller_msix_enabled(ioc))
1999 return;
2000
2001 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002 if (ioc->shost_recovery || ioc->remove_host ||
2003 ioc->pci_error_recovery)
2004 return;
2005 /* TMs are on msix_index == 0 */
2006 if (reply_q->msix_index == 0)
2007 continue;
2008
2009 if (reply_q->is_iouring_poll_q) {
2010 _base_process_reply_queue(reply_q);
2011 continue;
2012 }
2013
2014 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2015 if (reply_q->irq_poll_scheduled) {
2016 /* Calling irq_poll_disable will wait for any pending
2017 * callbacks to have completed.
2018 */
2019 irq_poll_disable(&reply_q->irqpoll);
2020 irq_poll_enable(&reply_q->irqpoll);
2021 /* check how the scheduled poll has ended,
2022 * clean up only if necessary
2023 */
2024 if (reply_q->irq_poll_scheduled) {
2025 reply_q->irq_poll_scheduled = false;
2026 reply_q->irq_line_enable = true;
2027 enable_irq(reply_q->os_irq);
2028 }
2029 }
2030
2031 if (poll)
2032 _base_process_reply_queue(reply_q);
2033 }
2034 }
2035
2036 /**
2037 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038 * @cb_idx: callback index
2039 */
2040 void
mpt3sas_base_release_callback_handler(u8 cb_idx)2041 mpt3sas_base_release_callback_handler(u8 cb_idx)
2042 {
2043 mpt_callbacks[cb_idx] = NULL;
2044 }
2045
2046 /**
2047 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048 * @cb_func: callback function
2049 *
2050 * Return: Index of @cb_func.
2051 */
2052 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054 {
2055 u8 cb_idx;
2056
2057 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058 if (mpt_callbacks[cb_idx] == NULL)
2059 break;
2060
2061 mpt_callbacks[cb_idx] = cb_func;
2062 return cb_idx;
2063 }
2064
2065 /**
2066 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067 */
2068 void
mpt3sas_base_initialize_callback_handler(void)2069 mpt3sas_base_initialize_callback_handler(void)
2070 {
2071 u8 cb_idx;
2072
2073 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074 mpt3sas_base_release_callback_handler(cb_idx);
2075 }
2076
2077
2078 /**
2079 * _base_build_zero_len_sge - build zero length sg entry
2080 * @ioc: per adapter object
2081 * @paddr: virtual address for SGE
2082 *
2083 * Create a zero length scatter gather entry to insure the IOCs hardware has
2084 * something to use if the target device goes brain dead and tries
2085 * to send data even when none is asked for.
2086 */
2087 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089 {
2090 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093 MPI2_SGE_FLAGS_SHIFT);
2094 ioc->base_add_sg_single(paddr, flags_length, -1);
2095 }
2096
2097 /**
2098 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099 * @paddr: virtual address for SGE
2100 * @flags_length: SGE flags and data transfer length
2101 * @dma_addr: Physical address
2102 */
2103 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105 {
2106 Mpi2SGESimple32_t *sgel = paddr;
2107
2108 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110 sgel->FlagsLength = cpu_to_le32(flags_length);
2111 sgel->Address = cpu_to_le32(dma_addr);
2112 }
2113
2114
2115 /**
2116 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117 * @paddr: virtual address for SGE
2118 * @flags_length: SGE flags and data transfer length
2119 * @dma_addr: Physical address
2120 */
2121 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123 {
2124 Mpi2SGESimple64_t *sgel = paddr;
2125
2126 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128 sgel->FlagsLength = cpu_to_le32(flags_length);
2129 sgel->Address = cpu_to_le64(dma_addr);
2130 }
2131
2132 /**
2133 * _base_get_chain_buffer_tracker - obtain chain tracker
2134 * @ioc: per adapter object
2135 * @scmd: SCSI commands of the IO request
2136 *
2137 * Return: chain tracker from chain_lookup table using key as
2138 * smid and smid's chain_offset.
2139 */
2140 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142 struct scsi_cmnd *scmd)
2143 {
2144 struct chain_tracker *chain_req;
2145 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2146 u16 smid = st->smid;
2147 u8 chain_offset =
2148 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2149
2150 if (chain_offset == ioc->chains_needed_per_io)
2151 return NULL;
2152
2153 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2155 return chain_req;
2156 }
2157
2158
2159 /**
2160 * _base_build_sg - build generic sg
2161 * @ioc: per adapter object
2162 * @psge: virtual address for SGE
2163 * @data_out_dma: physical address for WRITES
2164 * @data_out_sz: data xfer size for WRITES
2165 * @data_in_dma: physical address for READS
2166 * @data_in_sz: data xfer size for READS
2167 */
2168 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171 size_t data_in_sz)
2172 {
2173 u32 sgl_flags;
2174
2175 if (!data_out_sz && !data_in_sz) {
2176 _base_build_zero_len_sge(ioc, psge);
2177 return;
2178 }
2179
2180 if (data_out_sz && data_in_sz) {
2181 /* WRITE sgel first */
2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185 ioc->base_add_sg_single(psge, sgl_flags |
2186 data_out_sz, data_out_dma);
2187
2188 /* incr sgel */
2189 psge += ioc->sge_size;
2190
2191 /* READ sgel last */
2192 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194 MPI2_SGE_FLAGS_END_OF_LIST);
2195 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196 ioc->base_add_sg_single(psge, sgl_flags |
2197 data_in_sz, data_in_dma);
2198 } else if (data_out_sz) /* WRITE */ {
2199 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203 ioc->base_add_sg_single(psge, sgl_flags |
2204 data_out_sz, data_out_dma);
2205 } else if (data_in_sz) /* READ */ {
2206 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208 MPI2_SGE_FLAGS_END_OF_LIST);
2209 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210 ioc->base_add_sg_single(psge, sgl_flags |
2211 data_in_sz, data_in_dma);
2212 }
2213 }
2214
2215 /* IEEE format sgls */
2216
2217 /**
2218 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219 * a native SGL (NVMe PRP).
2220 * @ioc: per adapter object
2221 * @smid: system request message index for getting asscociated SGL
2222 * @nvme_encap_request: the NVMe request msg frame pointer
2223 * @data_out_dma: physical address for WRITES
2224 * @data_out_sz: data xfer size for WRITES
2225 * @data_in_dma: physical address for READS
2226 * @data_in_sz: data xfer size for READS
2227 *
2228 * The native SGL is built starting in the first PRP
2229 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2230 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2231 * used to describe a larger data buffer. If the data buffer is too large to
2232 * describe using the two PRP entriess inside the NVMe message, then PRP1
2233 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234 * list located elsewhere in memory to describe the remaining data memory
2235 * segments. The PRP list will be contiguous.
2236 *
2237 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2238 * consists of a list of PRP entries to describe a number of noncontigous
2239 * physical memory segments as a single memory buffer, just as a SGL does. Note
2240 * however, that this function is only used by the IOCTL call, so the memory
2241 * given will be guaranteed to be contiguous. There is no need to translate
2242 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2243 * contiguous space that is one page size each.
2244 *
2245 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2246 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2247 * contains the second PRP element if the memory being described fits within 2
2248 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249 *
2250 * A PRP list pointer contains the address of a PRP list, structured as a linear
2251 * array of PRP entries. Each PRP entry in this list describes a segment of
2252 * physical memory.
2253 *
2254 * Each 64-bit PRP entry comprises an address and an offset field. The address
2255 * always points at the beginning of a 4KB physical memory page, and the offset
2256 * describes where within that 4KB page the memory segment begins. Only the
2257 * first element in a PRP list may contain a non-zero offset, implying that all
2258 * memory segments following the first begin at the start of a 4KB page.
2259 *
2260 * Each PRP element normally describes 4KB of physical memory, with exceptions
2261 * for the first and last elements in the list. If the memory being described
2262 * by the list begins at a non-zero offset within the first 4KB page, then the
2263 * first PRP element will contain a non-zero offset indicating where the region
2264 * begins within the 4KB page. The last memory segment may end before the end
2265 * of the 4KB segment, depending upon the overall size of the memory being
2266 * described by the PRP list.
2267 *
2268 * Since PRP entries lack any indication of size, the overall data buffer length
2269 * is used to determine where the end of the data memory buffer is located, and
2270 * how many PRP entries are required to describe it.
2271 */
2272 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276 size_t data_in_sz)
2277 {
2278 int prp_size = NVME_PRP_SIZE;
2279 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2280 __le64 *prp_page;
2281 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2282 u32 offset, entry_len;
2283 u32 page_mask_result, page_mask;
2284 size_t length;
2285 struct mpt3sas_nvme_cmd *nvme_cmd =
2286 (void *)nvme_encap_request->NVMe_Command;
2287
2288 /*
2289 * Not all commands require a data transfer. If no data, just return
2290 * without constructing any PRP.
2291 */
2292 if (!data_in_sz && !data_out_sz)
2293 return;
2294 prp1_entry = &nvme_cmd->prp1;
2295 prp2_entry = &nvme_cmd->prp2;
2296 prp_entry = prp1_entry;
2297 /*
2298 * For the PRP entries, use the specially allocated buffer of
2299 * contiguous memory.
2300 */
2301 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303
2304 /*
2305 * Check if we are within 1 entry of a page boundary we don't
2306 * want our first entry to be a PRP List entry.
2307 */
2308 page_mask = ioc->page_size - 1;
2309 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310 if (!page_mask_result) {
2311 /* Bump up to next page boundary. */
2312 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313 prp_page_dma = prp_page_dma + prp_size;
2314 }
2315
2316 /*
2317 * Set PRP physical pointer, which initially points to the current PRP
2318 * DMA memory page.
2319 */
2320 prp_entry_dma = prp_page_dma;
2321
2322 /* Get physical address and length of the data buffer. */
2323 if (data_in_sz) {
2324 dma_addr = data_in_dma;
2325 length = data_in_sz;
2326 } else {
2327 dma_addr = data_out_dma;
2328 length = data_out_sz;
2329 }
2330
2331 /* Loop while the length is not zero. */
2332 while (length) {
2333 /*
2334 * Check if we need to put a list pointer here if we are at
2335 * page boundary - prp_size (8 bytes).
2336 */
2337 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338 if (!page_mask_result) {
2339 /*
2340 * This is the last entry in a PRP List, so we need to
2341 * put a PRP list pointer here. What this does is:
2342 * - bump the current memory pointer to the next
2343 * address, which will be the next full page.
2344 * - set the PRP Entry to point to that page. This
2345 * is now the PRP List pointer.
2346 * - bump the PRP Entry pointer the start of the
2347 * next page. Since all of this PRP memory is
2348 * contiguous, no need to get a new page - it's
2349 * just the next address.
2350 */
2351 prp_entry_dma++;
2352 *prp_entry = cpu_to_le64(prp_entry_dma);
2353 prp_entry++;
2354 }
2355
2356 /* Need to handle if entry will be part of a page. */
2357 offset = dma_addr & page_mask;
2358 entry_len = ioc->page_size - offset;
2359
2360 if (prp_entry == prp1_entry) {
2361 /*
2362 * Must fill in the first PRP pointer (PRP1) before
2363 * moving on.
2364 */
2365 *prp1_entry = cpu_to_le64(dma_addr);
2366
2367 /*
2368 * Now point to the second PRP entry within the
2369 * command (PRP2).
2370 */
2371 prp_entry = prp2_entry;
2372 } else if (prp_entry == prp2_entry) {
2373 /*
2374 * Should the PRP2 entry be a PRP List pointer or just
2375 * a regular PRP pointer? If there is more than one
2376 * more page of data, must use a PRP List pointer.
2377 */
2378 if (length > ioc->page_size) {
2379 /*
2380 * PRP2 will contain a PRP List pointer because
2381 * more PRP's are needed with this command. The
2382 * list will start at the beginning of the
2383 * contiguous buffer.
2384 */
2385 *prp2_entry = cpu_to_le64(prp_entry_dma);
2386
2387 /*
2388 * The next PRP Entry will be the start of the
2389 * first PRP List.
2390 */
2391 prp_entry = prp_page;
2392 } else {
2393 /*
2394 * After this, the PRP Entries are complete.
2395 * This command uses 2 PRP's and no PRP list.
2396 */
2397 *prp2_entry = cpu_to_le64(dma_addr);
2398 }
2399 } else {
2400 /*
2401 * Put entry in list and bump the addresses.
2402 *
2403 * After PRP1 and PRP2 are filled in, this will fill in
2404 * all remaining PRP entries in a PRP List, one per
2405 * each time through the loop.
2406 */
2407 *prp_entry = cpu_to_le64(dma_addr);
2408 prp_entry++;
2409 prp_entry_dma++;
2410 }
2411
2412 /*
2413 * Bump the phys address of the command's data buffer by the
2414 * entry_len.
2415 */
2416 dma_addr += entry_len;
2417
2418 /* Decrement length accounting for last partial page. */
2419 if (entry_len > length)
2420 length = 0;
2421 else
2422 length -= entry_len;
2423 }
2424 }
2425
2426 /**
2427 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428 * SGLs specific to NVMe drives only
2429 *
2430 * @ioc: per adapter object
2431 * @scmd: SCSI command from the mid-layer
2432 * @mpi_request: mpi request
2433 * @smid: msg Index
2434 * @sge_count: scatter gather element count.
2435 *
2436 * Return: true: PRPs are built
2437 * false: IEEE SGLs needs to be built
2438 */
2439 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441 struct scsi_cmnd *scmd,
2442 Mpi25SCSIIORequest_t *mpi_request,
2443 u16 smid, int sge_count)
2444 {
2445 int sge_len, num_prp_in_chain = 0;
2446 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447 __le64 *curr_buff;
2448 dma_addr_t msg_dma, sge_addr, offset;
2449 u32 page_mask, page_mask_result;
2450 struct scatterlist *sg_scmd;
2451 u32 first_prp_len;
2452 int data_len = scsi_bufflen(scmd);
2453 u32 nvme_pg_size;
2454
2455 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456 /*
2457 * Nvme has a very convoluted prp format. One prp is required
2458 * for each page or partial page. Driver need to split up OS sg_list
2459 * entries if it is longer than one page or cross a page
2460 * boundary. Driver also have to insert a PRP list pointer entry as
2461 * the last entry in each physical page of the PRP list.
2462 *
2463 * NOTE: The first PRP "entry" is actually placed in the first
2464 * SGL entry in the main message as IEEE 64 format. The 2nd
2465 * entry in the main message is the chain element, and the rest
2466 * of the PRP entries are built in the contiguous pcie buffer.
2467 */
2468 page_mask = nvme_pg_size - 1;
2469
2470 /*
2471 * Native SGL is needed.
2472 * Put a chain element in main message frame that points to the first
2473 * chain buffer.
2474 *
2475 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2476 * a native SGL.
2477 */
2478
2479 /* Set main message chain element pointer */
2480 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481 /*
2482 * For NVMe the chain element needs to be the 2nd SG entry in the main
2483 * message.
2484 */
2485 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487
2488 /*
2489 * For the PRP entries, use the specially allocated buffer of
2490 * contiguous memory. Normal chain buffers can't be used
2491 * because each chain buffer would need to be the size of an OS
2492 * page (4k).
2493 */
2494 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496
2497 main_chain_element->Address = cpu_to_le64(msg_dma);
2498 main_chain_element->NextChainOffset = 0;
2499 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502
2503 /* Build first prp, sge need not to be page aligned*/
2504 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505 sg_scmd = scsi_sglist(scmd);
2506 sge_addr = sg_dma_address(sg_scmd);
2507 sge_len = sg_dma_len(sg_scmd);
2508
2509 offset = sge_addr & page_mask;
2510 first_prp_len = nvme_pg_size - offset;
2511
2512 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514
2515 data_len -= first_prp_len;
2516
2517 if (sge_len > first_prp_len) {
2518 sge_addr += first_prp_len;
2519 sge_len -= first_prp_len;
2520 } else if (data_len && (sge_len == first_prp_len)) {
2521 sg_scmd = sg_next(sg_scmd);
2522 sge_addr = sg_dma_address(sg_scmd);
2523 sge_len = sg_dma_len(sg_scmd);
2524 }
2525
2526 for (;;) {
2527 offset = sge_addr & page_mask;
2528
2529 /* Put PRP pointer due to page boundary*/
2530 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531 if (unlikely(!page_mask_result)) {
2532 scmd_printk(KERN_NOTICE,
2533 scmd, "page boundary curr_buff: 0x%p\n",
2534 curr_buff);
2535 msg_dma += 8;
2536 *curr_buff = cpu_to_le64(msg_dma);
2537 curr_buff++;
2538 num_prp_in_chain++;
2539 }
2540
2541 *curr_buff = cpu_to_le64(sge_addr);
2542 curr_buff++;
2543 msg_dma += 8;
2544 num_prp_in_chain++;
2545
2546 sge_addr += nvme_pg_size;
2547 sge_len -= nvme_pg_size;
2548 data_len -= nvme_pg_size;
2549
2550 if (data_len <= 0)
2551 break;
2552
2553 if (sge_len > 0)
2554 continue;
2555
2556 sg_scmd = sg_next(sg_scmd);
2557 sge_addr = sg_dma_address(sg_scmd);
2558 sge_len = sg_dma_len(sg_scmd);
2559 }
2560
2561 main_chain_element->Length =
2562 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563 return;
2564 }
2565
2566 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569 {
2570 u32 data_length = 0;
2571 bool build_prp = true;
2572
2573 data_length = scsi_bufflen(scmd);
2574 if (pcie_device &&
2575 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2576 build_prp = false;
2577 return build_prp;
2578 }
2579
2580 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2581 * we built IEEE SGL
2582 */
2583 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584 build_prp = false;
2585
2586 return build_prp;
2587 }
2588
2589 /**
2590 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591 * determine if the driver needs to build a native SGL. If so, that native
2592 * SGL is built in the special contiguous buffers allocated especially for
2593 * PCIe SGL creation. If the driver will not build a native SGL, return
2594 * TRUE and a normal IEEE SGL will be built. Currently this routine
2595 * supports NVMe.
2596 * @ioc: per adapter object
2597 * @mpi_request: mf request pointer
2598 * @smid: system request message index
2599 * @scmd: scsi command
2600 * @pcie_device: points to the PCIe device's info
2601 *
2602 * Return: 0 if native SGL was built, 1 if no SGL was built
2603 */
2604 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607 struct _pcie_device *pcie_device)
2608 {
2609 int sges_left;
2610
2611 /* Get the SG list pointer and info. */
2612 sges_left = scsi_dma_map(scmd);
2613 if (sges_left < 0)
2614 return 1;
2615
2616 /* Check if we need to build a native SG list. */
2617 if (!base_is_prp_possible(ioc, pcie_device,
2618 scmd, sges_left)) {
2619 /* We built a native SG list, just return. */
2620 goto out;
2621 }
2622
2623 /*
2624 * Build native NVMe PRP.
2625 */
2626 base_make_prp_nvme(ioc, scmd, mpi_request,
2627 smid, sges_left);
2628
2629 return 0;
2630 out:
2631 scsi_dma_unmap(scmd);
2632 return 1;
2633 }
2634
2635 /**
2636 * _base_add_sg_single_ieee - add sg element for IEEE format
2637 * @paddr: virtual address for SGE
2638 * @flags: SGE flags
2639 * @chain_offset: number of 128 byte elements from start of segment
2640 * @length: data transfer length
2641 * @dma_addr: Physical address
2642 */
2643 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645 dma_addr_t dma_addr)
2646 {
2647 Mpi25IeeeSgeChain64_t *sgel = paddr;
2648
2649 sgel->Flags = flags;
2650 sgel->NextChainOffset = chain_offset;
2651 sgel->Length = cpu_to_le32(length);
2652 sgel->Address = cpu_to_le64(dma_addr);
2653 }
2654
2655 /**
2656 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657 * @ioc: per adapter object
2658 * @paddr: virtual address for SGE
2659 *
2660 * Create a zero length scatter gather entry to insure the IOCs hardware has
2661 * something to use if the target device goes brain dead and tries
2662 * to send data even when none is asked for.
2663 */
2664 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666 {
2667 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670
2671 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2672 }
2673
_base_scsi_dma_map(struct scsi_cmnd * cmd)2674 static inline int _base_scsi_dma_map(struct scsi_cmnd *cmd)
2675 {
2676 /*
2677 * Some firmware versions byte-swap the REPORT ZONES command reply from
2678 * ATA-ZAC devices by directly accessing in the host buffer. This does
2679 * not respect the default command DMA direction and causes IOMMU page
2680 * faults on some architectures with an IOMMU enforcing write mappings
2681 * (e.g. AMD hosts). Avoid such issue by making the report zones buffer
2682 * mapping bi-directional.
2683 */
2684 if (cmd->cmnd[0] == ZBC_IN && cmd->cmnd[1] == ZI_REPORT_ZONES)
2685 cmd->sc_data_direction = DMA_BIDIRECTIONAL;
2686
2687 return scsi_dma_map(cmd);
2688 }
2689
2690 /**
2691 * _base_build_sg_scmd - main sg creation routine
2692 * pcie_device is unused here!
2693 * @ioc: per adapter object
2694 * @scmd: scsi command
2695 * @smid: system request message index
2696 * @unused: unused pcie_device pointer
2697 * Context: none.
2698 *
2699 * The main routine that builds scatter gather table from a given
2700 * scsi request sent via the .queuecommand main handler.
2701 *
2702 * Return: 0 success, anything else error
2703 */
2704 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2705 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2706 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2707 {
2708 Mpi2SCSIIORequest_t *mpi_request;
2709 dma_addr_t chain_dma;
2710 struct scatterlist *sg_scmd;
2711 void *sg_local, *chain;
2712 u32 chain_offset;
2713 u32 chain_length;
2714 u32 chain_flags;
2715 int sges_left;
2716 u32 sges_in_segment;
2717 u32 sgl_flags;
2718 u32 sgl_flags_last_element;
2719 u32 sgl_flags_end_buffer;
2720 struct chain_tracker *chain_req;
2721
2722 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2723
2724 /* init scatter gather flags */
2725 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2726 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2727 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2728 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2729 << MPI2_SGE_FLAGS_SHIFT;
2730 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2731 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2732 << MPI2_SGE_FLAGS_SHIFT;
2733 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2734
2735 sg_scmd = scsi_sglist(scmd);
2736 sges_left = _base_scsi_dma_map(scmd);
2737 if (sges_left < 0)
2738 return -ENOMEM;
2739
2740 sg_local = &mpi_request->SGL;
2741 sges_in_segment = ioc->max_sges_in_main_message;
2742 if (sges_left <= sges_in_segment)
2743 goto fill_in_last_segment;
2744
2745 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2746 (sges_in_segment * ioc->sge_size))/4;
2747
2748 /* fill in main message segment when there is a chain following */
2749 while (sges_in_segment) {
2750 if (sges_in_segment == 1)
2751 ioc->base_add_sg_single(sg_local,
2752 sgl_flags_last_element | sg_dma_len(sg_scmd),
2753 sg_dma_address(sg_scmd));
2754 else
2755 ioc->base_add_sg_single(sg_local, sgl_flags |
2756 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2757 sg_scmd = sg_next(sg_scmd);
2758 sg_local += ioc->sge_size;
2759 sges_left--;
2760 sges_in_segment--;
2761 }
2762
2763 /* initializing the chain flags and pointers */
2764 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2765 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2766 if (!chain_req)
2767 return -1;
2768 chain = chain_req->chain_buffer;
2769 chain_dma = chain_req->chain_buffer_dma;
2770 do {
2771 sges_in_segment = (sges_left <=
2772 ioc->max_sges_in_chain_message) ? sges_left :
2773 ioc->max_sges_in_chain_message;
2774 chain_offset = (sges_left == sges_in_segment) ?
2775 0 : (sges_in_segment * ioc->sge_size)/4;
2776 chain_length = sges_in_segment * ioc->sge_size;
2777 if (chain_offset) {
2778 chain_offset = chain_offset <<
2779 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2780 chain_length += ioc->sge_size;
2781 }
2782 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2783 chain_length, chain_dma);
2784 sg_local = chain;
2785 if (!chain_offset)
2786 goto fill_in_last_segment;
2787
2788 /* fill in chain segments */
2789 while (sges_in_segment) {
2790 if (sges_in_segment == 1)
2791 ioc->base_add_sg_single(sg_local,
2792 sgl_flags_last_element |
2793 sg_dma_len(sg_scmd),
2794 sg_dma_address(sg_scmd));
2795 else
2796 ioc->base_add_sg_single(sg_local, sgl_flags |
2797 sg_dma_len(sg_scmd),
2798 sg_dma_address(sg_scmd));
2799 sg_scmd = sg_next(sg_scmd);
2800 sg_local += ioc->sge_size;
2801 sges_left--;
2802 sges_in_segment--;
2803 }
2804
2805 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2806 if (!chain_req)
2807 return -1;
2808 chain = chain_req->chain_buffer;
2809 chain_dma = chain_req->chain_buffer_dma;
2810 } while (1);
2811
2812
2813 fill_in_last_segment:
2814
2815 /* fill the last segment */
2816 while (sges_left) {
2817 if (sges_left == 1)
2818 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2819 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2820 else
2821 ioc->base_add_sg_single(sg_local, sgl_flags |
2822 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2823 sg_scmd = sg_next(sg_scmd);
2824 sg_local += ioc->sge_size;
2825 sges_left--;
2826 }
2827
2828 return 0;
2829 }
2830
2831 /**
2832 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2833 * @ioc: per adapter object
2834 * @scmd: scsi command
2835 * @smid: system request message index
2836 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2837 * constructed on need.
2838 * Context: none.
2839 *
2840 * The main routine that builds scatter gather table from a given
2841 * scsi request sent via the .queuecommand main handler.
2842 *
2843 * Return: 0 success, anything else error
2844 */
2845 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2846 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2847 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2848 {
2849 Mpi25SCSIIORequest_t *mpi_request;
2850 dma_addr_t chain_dma;
2851 struct scatterlist *sg_scmd;
2852 void *sg_local, *chain;
2853 u32 chain_offset;
2854 u32 chain_length;
2855 int sges_left;
2856 u32 sges_in_segment;
2857 u8 simple_sgl_flags;
2858 u8 simple_sgl_flags_last;
2859 u8 chain_sgl_flags;
2860 struct chain_tracker *chain_req;
2861
2862 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2863
2864 /* init scatter gather flags */
2865 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2866 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2867 simple_sgl_flags_last = simple_sgl_flags |
2868 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2869 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2870 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2871
2872 /* Check if we need to build a native SG list. */
2873 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2874 smid, scmd, pcie_device) == 0)) {
2875 /* We built a native SG list, just return. */
2876 return 0;
2877 }
2878
2879 sg_scmd = scsi_sglist(scmd);
2880 sges_left = _base_scsi_dma_map(scmd);
2881 if (sges_left < 0)
2882 return -ENOMEM;
2883
2884 sg_local = &mpi_request->SGL;
2885 sges_in_segment = (ioc->request_sz -
2886 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2887 if (sges_left <= sges_in_segment)
2888 goto fill_in_last_segment;
2889
2890 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2891 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2892
2893 /* fill in main message segment when there is a chain following */
2894 while (sges_in_segment > 1) {
2895 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897 sg_scmd = sg_next(sg_scmd);
2898 sg_local += ioc->sge_size_ieee;
2899 sges_left--;
2900 sges_in_segment--;
2901 }
2902
2903 /* initializing the pointers */
2904 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2905 if (!chain_req)
2906 return -1;
2907 chain = chain_req->chain_buffer;
2908 chain_dma = chain_req->chain_buffer_dma;
2909 do {
2910 sges_in_segment = (sges_left <=
2911 ioc->max_sges_in_chain_message) ? sges_left :
2912 ioc->max_sges_in_chain_message;
2913 chain_offset = (sges_left == sges_in_segment) ?
2914 0 : sges_in_segment;
2915 chain_length = sges_in_segment * ioc->sge_size_ieee;
2916 if (chain_offset)
2917 chain_length += ioc->sge_size_ieee;
2918 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2919 chain_offset, chain_length, chain_dma);
2920
2921 sg_local = chain;
2922 if (!chain_offset)
2923 goto fill_in_last_segment;
2924
2925 /* fill in chain segments */
2926 while (sges_in_segment) {
2927 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2928 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2929 sg_scmd = sg_next(sg_scmd);
2930 sg_local += ioc->sge_size_ieee;
2931 sges_left--;
2932 sges_in_segment--;
2933 }
2934
2935 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2936 if (!chain_req)
2937 return -1;
2938 chain = chain_req->chain_buffer;
2939 chain_dma = chain_req->chain_buffer_dma;
2940 } while (1);
2941
2942
2943 fill_in_last_segment:
2944
2945 /* fill the last segment */
2946 while (sges_left > 0) {
2947 if (sges_left == 1)
2948 _base_add_sg_single_ieee(sg_local,
2949 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2950 sg_dma_address(sg_scmd));
2951 else
2952 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2953 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2954 sg_scmd = sg_next(sg_scmd);
2955 sg_local += ioc->sge_size_ieee;
2956 sges_left--;
2957 }
2958
2959 return 0;
2960 }
2961
2962 /**
2963 * _base_build_sg_ieee - build generic sg for IEEE format
2964 * @ioc: per adapter object
2965 * @psge: virtual address for SGE
2966 * @data_out_dma: physical address for WRITES
2967 * @data_out_sz: data xfer size for WRITES
2968 * @data_in_dma: physical address for READS
2969 * @data_in_sz: data xfer size for READS
2970 */
2971 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2972 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2973 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2974 size_t data_in_sz)
2975 {
2976 u8 sgl_flags;
2977
2978 if (!data_out_sz && !data_in_sz) {
2979 _base_build_zero_len_sge_ieee(ioc, psge);
2980 return;
2981 }
2982
2983 if (data_out_sz && data_in_sz) {
2984 /* WRITE sgel first */
2985 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2986 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2987 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2988 data_out_dma);
2989
2990 /* incr sgel */
2991 psge += ioc->sge_size_ieee;
2992
2993 /* READ sgel last */
2994 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2995 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2996 data_in_dma);
2997 } else if (data_out_sz) /* WRITE */ {
2998 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2999 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
3000 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
3001 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
3002 data_out_dma);
3003 } else if (data_in_sz) /* READ */ {
3004 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3005 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
3006 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
3007 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
3008 data_in_dma);
3009 }
3010 }
3011
3012 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
3013
3014 /**
3015 * _base_config_dma_addressing - set dma addressing
3016 * @ioc: per adapter object
3017 * @pdev: PCI device struct
3018 *
3019 * Return: 0 for success, non-zero for failure.
3020 */
3021 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)3022 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3023 {
3024 struct sysinfo s;
3025 u64 coherent_dma_mask, dma_mask;
3026
3027 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3028 ioc->dma_mask = 32;
3029 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3030 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3031 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3032 ioc->dma_mask = 63;
3033 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3034 } else {
3035 ioc->dma_mask = 64;
3036 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3037 }
3038
3039 if (ioc->use_32bit_dma)
3040 coherent_dma_mask = DMA_BIT_MASK(32);
3041
3042 if (dma_set_mask(&pdev->dev, dma_mask) ||
3043 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3044 return -ENODEV;
3045
3046 if (ioc->dma_mask > 32) {
3047 ioc->base_add_sg_single = &_base_add_sg_single_64;
3048 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3049 } else {
3050 ioc->base_add_sg_single = &_base_add_sg_single_32;
3051 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3052 }
3053
3054 si_meminfo(&s);
3055 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3056 ioc->dma_mask, convert_to_kb(s.totalram));
3057
3058 return 0;
3059 }
3060
3061 /**
3062 * _base_check_enable_msix - checks MSIX capabable.
3063 * @ioc: per adapter object
3064 *
3065 * Check to see if card is capable of MSIX, and set number
3066 * of available msix vectors
3067 */
3068 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)3069 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3070 {
3071 int base;
3072 u16 message_control;
3073
3074 /* Check whether controller SAS2008 B0 controller,
3075 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3076 */
3077 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3078 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3079 return -EINVAL;
3080 }
3081
3082 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3083 if (!base) {
3084 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3085 return -EINVAL;
3086 }
3087
3088 /* get msix vector count */
3089 /* NUMA_IO not supported for older controllers */
3090 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3091 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3092 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3093 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3094 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3095 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3096 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3097 ioc->msix_vector_count = 1;
3098 else {
3099 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3100 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3101 }
3102 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3103 ioc->msix_vector_count));
3104 return 0;
3105 }
3106
3107 /**
3108 * mpt3sas_base_free_irq - free irq
3109 * @ioc: per adapter object
3110 *
3111 * Freeing respective reply_queue from the list.
3112 */
3113 void
mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER * ioc)3114 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3115 {
3116 unsigned int irq;
3117 struct adapter_reply_queue *reply_q, *next;
3118
3119 if (list_empty(&ioc->reply_queue_list))
3120 return;
3121
3122 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3123 list_del(&reply_q->list);
3124 if (reply_q->is_iouring_poll_q) {
3125 kfree(reply_q);
3126 continue;
3127 }
3128
3129 if (ioc->smp_affinity_enable) {
3130 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3131 irq_update_affinity_hint(irq, NULL);
3132 }
3133 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3134 reply_q);
3135 kfree(reply_q);
3136 }
3137 }
3138
3139 /**
3140 * _base_request_irq - request irq
3141 * @ioc: per adapter object
3142 * @index: msix index into vector table
3143 *
3144 * Inserting respective reply_queue into the list.
3145 */
3146 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)3147 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3148 {
3149 struct pci_dev *pdev = ioc->pdev;
3150 struct adapter_reply_queue *reply_q;
3151 int r, qid;
3152
3153 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3154 if (!reply_q) {
3155 ioc_err(ioc, "unable to allocate memory %zu!\n",
3156 sizeof(struct adapter_reply_queue));
3157 return -ENOMEM;
3158 }
3159 reply_q->ioc = ioc;
3160 reply_q->msix_index = index;
3161
3162 atomic_set(&reply_q->busy, 0);
3163
3164 if (index >= ioc->iopoll_q_start_index) {
3165 qid = index - ioc->iopoll_q_start_index;
3166 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3167 ioc->driver_name, ioc->id, qid);
3168 reply_q->is_iouring_poll_q = 1;
3169 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3170 goto out;
3171 }
3172
3173
3174 if (ioc->msix_enable)
3175 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3176 ioc->driver_name, ioc->id, index);
3177 else
3178 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3179 ioc->driver_name, ioc->id);
3180 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3181 IRQF_SHARED, reply_q->name, reply_q);
3182 if (r) {
3183 pr_err("%s: unable to allocate interrupt %d!\n",
3184 reply_q->name, pci_irq_vector(pdev, index));
3185 kfree(reply_q);
3186 return -EBUSY;
3187 }
3188 out:
3189 INIT_LIST_HEAD(&reply_q->list);
3190 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3191 return 0;
3192 }
3193
3194 /**
3195 * _base_assign_reply_queues - assigning msix index for each cpu
3196 * @ioc: per adapter object
3197 *
3198 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3199 */
3200 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)3201 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3202 {
3203 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3204 struct adapter_reply_queue *reply_q;
3205 int iopoll_q_count = ioc->reply_queue_count -
3206 ioc->iopoll_q_start_index;
3207 const struct cpumask *mask;
3208
3209 if (!_base_is_controller_msix_enabled(ioc))
3210 return;
3211
3212 if (ioc->msix_load_balance)
3213 return;
3214
3215 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3216
3217 nr_cpus = num_online_cpus();
3218 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3219 ioc->facts.MaxMSIxVectors);
3220 if (!nr_msix)
3221 return;
3222
3223 if (ioc->smp_affinity_enable) {
3224
3225 /*
3226 * set irq affinity to local numa node for those irqs
3227 * corresponding to high iops queues.
3228 */
3229 if (ioc->high_iops_queues) {
3230 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3231 for (index = 0; index < ioc->high_iops_queues;
3232 index++) {
3233 irq = pci_irq_vector(ioc->pdev, index);
3234 irq_set_affinity_and_hint(irq, mask);
3235 }
3236 }
3237
3238 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3239 const cpumask_t *mask;
3240
3241 if (reply_q->msix_index < ioc->high_iops_queues ||
3242 reply_q->msix_index >= ioc->iopoll_q_start_index)
3243 continue;
3244
3245 mask = pci_irq_get_affinity(ioc->pdev,
3246 reply_q->msix_index);
3247 if (!mask) {
3248 ioc_warn(ioc, "no affinity for msi %x\n",
3249 reply_q->msix_index);
3250 goto fall_back;
3251 }
3252
3253 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3254 if (cpu >= ioc->cpu_msix_table_sz)
3255 break;
3256 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3257 }
3258 }
3259 return;
3260 }
3261
3262 fall_back:
3263 cpu = cpumask_first(cpu_online_mask);
3264 nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3265 index = 0;
3266
3267 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3268 unsigned int i, group = nr_cpus / nr_msix;
3269
3270 if (reply_q->msix_index < ioc->high_iops_queues ||
3271 reply_q->msix_index >= ioc->iopoll_q_start_index)
3272 continue;
3273
3274 if (cpu >= nr_cpus)
3275 break;
3276
3277 if (index < nr_cpus % nr_msix)
3278 group++;
3279
3280 for (i = 0 ; i < group ; i++) {
3281 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3282 cpu = cpumask_next(cpu, cpu_online_mask);
3283 }
3284 index++;
3285 }
3286 }
3287
3288 /**
3289 * _base_check_and_enable_high_iops_queues - enable high iops mode
3290 * @ioc: per adapter object
3291 * @hba_msix_vector_count: msix vectors supported by HBA
3292 *
3293 * Enable high iops queues only if
3294 * - HBA is a SEA/AERO controller and
3295 * - MSI-Xs vector supported by the HBA is 128 and
3296 * - total CPU count in the system >=16 and
3297 * - loaded driver with default max_msix_vectors module parameter and
3298 * - system booted in non kdump mode
3299 *
3300 * Return: nothing.
3301 */
3302 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3303 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3304 int hba_msix_vector_count)
3305 {
3306 u16 lnksta, speed;
3307
3308 /*
3309 * Disable high iops queues if io uring poll queues are enabled.
3310 */
3311 if (perf_mode == MPT_PERF_MODE_IOPS ||
3312 perf_mode == MPT_PERF_MODE_LATENCY ||
3313 ioc->io_uring_poll_queues) {
3314 ioc->high_iops_queues = 0;
3315 return;
3316 }
3317
3318 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3319
3320 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3321 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3322
3323 if (speed < 0x4) {
3324 ioc->high_iops_queues = 0;
3325 return;
3326 }
3327 }
3328
3329 if (!reset_devices && ioc->is_aero_ioc &&
3330 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3331 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3332 max_msix_vectors == -1)
3333 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3334 else
3335 ioc->high_iops_queues = 0;
3336 }
3337
3338 /**
3339 * mpt3sas_base_disable_msix - disables msix
3340 * @ioc: per adapter object
3341 *
3342 */
3343 void
mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3344 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3345 {
3346 if (!ioc->msix_enable)
3347 return;
3348 pci_free_irq_vectors(ioc->pdev);
3349 ioc->msix_enable = 0;
3350 kfree(ioc->io_uring_poll_queues);
3351 }
3352
3353 /**
3354 * _base_alloc_irq_vectors - allocate msix vectors
3355 * @ioc: per adapter object
3356 *
3357 */
3358 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3359 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3360 {
3361 int i, irq_flags = PCI_IRQ_MSIX;
3362 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3363 struct irq_affinity *descp = &desc;
3364 /*
3365 * Don't allocate msix vectors for poll_queues.
3366 * msix_vectors is always within a range of FW supported reply queue.
3367 */
3368 int nr_msix_vectors = ioc->iopoll_q_start_index;
3369
3370
3371 if (ioc->smp_affinity_enable)
3372 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3373 else
3374 descp = NULL;
3375
3376 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3377 ioc->reply_queue_count, nr_msix_vectors);
3378
3379 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3380 ioc->high_iops_queues,
3381 nr_msix_vectors, irq_flags, descp);
3382
3383 return i;
3384 }
3385
3386 /**
3387 * _base_enable_msix - enables msix, failback to io_apic
3388 * @ioc: per adapter object
3389 *
3390 */
3391 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3392 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3393 {
3394 int r;
3395 int i, local_max_msix_vectors;
3396 u8 try_msix = 0;
3397 int iopoll_q_count = 0;
3398
3399 ioc->msix_load_balance = false;
3400
3401 if (msix_disable == -1 || msix_disable == 0)
3402 try_msix = 1;
3403
3404 if (!try_msix)
3405 goto try_ioapic;
3406
3407 if (_base_check_enable_msix(ioc) != 0)
3408 goto try_ioapic;
3409
3410 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3411 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3412 ioc->cpu_count, max_msix_vectors);
3413
3414 ioc->reply_queue_count =
3415 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3416
3417 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3418 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3419 else
3420 local_max_msix_vectors = max_msix_vectors;
3421
3422 if (local_max_msix_vectors == 0)
3423 goto try_ioapic;
3424
3425 /*
3426 * Enable msix_load_balance only if combined reply queue mode is
3427 * disabled on SAS3 & above generation HBA devices.
3428 */
3429 if (!ioc->combined_reply_queue &&
3430 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3431 ioc_info(ioc,
3432 "combined ReplyQueue is off, Enabling msix load balance\n");
3433 ioc->msix_load_balance = true;
3434 }
3435
3436 /*
3437 * smp affinity setting is not need when msix load balance
3438 * is enabled.
3439 */
3440 if (ioc->msix_load_balance)
3441 ioc->smp_affinity_enable = 0;
3442
3443 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3444 ioc->shost->host_tagset = 0;
3445
3446 /*
3447 * Enable io uring poll queues only if host_tagset is enabled.
3448 */
3449 if (ioc->shost->host_tagset)
3450 iopoll_q_count = poll_queues;
3451
3452 if (iopoll_q_count) {
3453 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3454 sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3455 if (!ioc->io_uring_poll_queues)
3456 iopoll_q_count = 0;
3457 }
3458
3459 if (ioc->is_aero_ioc)
3460 _base_check_and_enable_high_iops_queues(ioc,
3461 ioc->msix_vector_count);
3462
3463 /*
3464 * Add high iops queues count to reply queue count if high iops queues
3465 * are enabled.
3466 */
3467 ioc->reply_queue_count = min_t(int,
3468 ioc->reply_queue_count + ioc->high_iops_queues,
3469 ioc->msix_vector_count);
3470
3471 /*
3472 * Adjust the reply queue count incase reply queue count
3473 * exceeds the user provided MSIx vectors count.
3474 */
3475 if (local_max_msix_vectors > 0)
3476 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3477 ioc->reply_queue_count);
3478 /*
3479 * Add io uring poll queues count to reply queues count
3480 * if io uring is enabled in driver.
3481 */
3482 if (iopoll_q_count) {
3483 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3484 iopoll_q_count = 0;
3485 ioc->reply_queue_count = min_t(int,
3486 ioc->reply_queue_count + iopoll_q_count,
3487 ioc->msix_vector_count);
3488 }
3489
3490 /*
3491 * Starting index of io uring poll queues in reply queue list.
3492 */
3493 ioc->iopoll_q_start_index =
3494 ioc->reply_queue_count - iopoll_q_count;
3495
3496 r = _base_alloc_irq_vectors(ioc);
3497 if (r < 0) {
3498 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3499 goto try_ioapic;
3500 }
3501
3502 /*
3503 * Adjust the reply queue count if the allocated
3504 * MSIx vectors is less then the requested number
3505 * of MSIx vectors.
3506 */
3507 if (r < ioc->iopoll_q_start_index) {
3508 ioc->reply_queue_count = r + iopoll_q_count;
3509 ioc->iopoll_q_start_index =
3510 ioc->reply_queue_count - iopoll_q_count;
3511 }
3512
3513 ioc->msix_enable = 1;
3514 for (i = 0; i < ioc->reply_queue_count; i++) {
3515 r = _base_request_irq(ioc, i);
3516 if (r) {
3517 mpt3sas_base_free_irq(ioc);
3518 mpt3sas_base_disable_msix(ioc);
3519 goto try_ioapic;
3520 }
3521 }
3522
3523 ioc_info(ioc, "High IOPs queues : %s\n",
3524 ioc->high_iops_queues ? "enabled" : "disabled");
3525
3526 return 0;
3527
3528 /* failback to io_apic interrupt routing */
3529 try_ioapic:
3530 ioc->high_iops_queues = 0;
3531 ioc_info(ioc, "High IOPs queues : disabled\n");
3532 ioc->reply_queue_count = 1;
3533 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3534 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_INTX);
3535 if (r < 0) {
3536 dfailprintk(ioc,
3537 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3538 r));
3539 } else
3540 r = _base_request_irq(ioc, 0);
3541
3542 return r;
3543 }
3544
3545 /**
3546 * mpt3sas_base_unmap_resources - free controller resources
3547 * @ioc: per adapter object
3548 */
3549 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3550 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3551 {
3552 struct pci_dev *pdev = ioc->pdev;
3553
3554 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3555
3556 mpt3sas_base_free_irq(ioc);
3557 mpt3sas_base_disable_msix(ioc);
3558
3559 kfree(ioc->replyPostRegisterIndex);
3560 ioc->replyPostRegisterIndex = NULL;
3561
3562
3563 if (ioc->chip_phys) {
3564 iounmap(ioc->chip);
3565 ioc->chip_phys = 0;
3566 }
3567
3568 if (pci_is_enabled(pdev)) {
3569 pci_release_selected_regions(ioc->pdev, ioc->bars);
3570 pci_disable_device(pdev);
3571 }
3572 }
3573
3574 static int
3575 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3576
3577 /**
3578 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3579 * and if it is in fault state then issue diag reset.
3580 * @ioc: per adapter object
3581 *
3582 * Return: 0 for success, non-zero for failure.
3583 */
3584 int
mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3585 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3586 {
3587 u32 ioc_state;
3588 int rc = -EFAULT;
3589
3590 dinitprintk(ioc, pr_info("%s\n", __func__));
3591 if (ioc->pci_error_recovery)
3592 return 0;
3593 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3594 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3595
3596 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3597 mpt3sas_print_fault_code(ioc, ioc_state &
3598 MPI2_DOORBELL_DATA_MASK);
3599 mpt3sas_base_mask_interrupts(ioc);
3600 rc = _base_diag_reset(ioc);
3601 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3602 MPI2_IOC_STATE_COREDUMP) {
3603 mpt3sas_print_coredump_info(ioc, ioc_state &
3604 MPI2_DOORBELL_DATA_MASK);
3605 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3606 mpt3sas_base_mask_interrupts(ioc);
3607 rc = _base_diag_reset(ioc);
3608 }
3609
3610 return rc;
3611 }
3612
3613 /**
3614 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3615 * @ioc: per adapter object
3616 *
3617 * Return: 0 for success, non-zero for failure.
3618 */
3619 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3620 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3621 {
3622 struct pci_dev *pdev = ioc->pdev;
3623 u32 memap_sz;
3624 u32 pio_sz;
3625 int i, r = 0, rc;
3626 u64 pio_chip = 0;
3627 phys_addr_t chip_phys = 0;
3628 struct adapter_reply_queue *reply_q;
3629 int iopoll_q_count = 0;
3630
3631 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3632
3633 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3634 if (pci_enable_device_mem(pdev)) {
3635 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3636 ioc->bars = 0;
3637 return -ENODEV;
3638 }
3639
3640
3641 if (pci_request_selected_regions(pdev, ioc->bars,
3642 ioc->driver_name)) {
3643 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3644 ioc->bars = 0;
3645 r = -ENODEV;
3646 goto out_fail;
3647 }
3648
3649 pci_set_master(pdev);
3650
3651
3652 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3653 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3654 r = -ENODEV;
3655 goto out_fail;
3656 }
3657
3658 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3659 (!memap_sz || !pio_sz); i++) {
3660 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3661 if (pio_sz)
3662 continue;
3663 pio_chip = (u64)pci_resource_start(pdev, i);
3664 pio_sz = pci_resource_len(pdev, i);
3665 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3666 if (memap_sz)
3667 continue;
3668 ioc->chip_phys = pci_resource_start(pdev, i);
3669 chip_phys = ioc->chip_phys;
3670 memap_sz = pci_resource_len(pdev, i);
3671 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3672 }
3673 }
3674
3675 if (ioc->chip == NULL) {
3676 ioc_err(ioc,
3677 "unable to map adapter memory! or resource not found\n");
3678 r = -EINVAL;
3679 goto out_fail;
3680 }
3681
3682 mpt3sas_base_mask_interrupts(ioc);
3683
3684 r = _base_get_ioc_facts(ioc);
3685 if (r) {
3686 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3687 if (rc || (_base_get_ioc_facts(ioc)))
3688 goto out_fail;
3689 }
3690
3691 if (!ioc->rdpq_array_enable_assigned) {
3692 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3693 ioc->rdpq_array_enable_assigned = 1;
3694 }
3695
3696 r = _base_enable_msix(ioc);
3697 if (r)
3698 goto out_fail;
3699
3700 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3701 for (i = 0; i < iopoll_q_count; i++) {
3702 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3703 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3704 }
3705
3706 if (!ioc->is_driver_loading)
3707 _base_init_irqpolls(ioc);
3708 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3709 * revision HBAs and also only when reply queue count is greater than 8
3710 */
3711 if (ioc->combined_reply_queue) {
3712 /* Determine the Supplemental Reply Post Host Index Registers
3713 * Addresse. Supplemental Reply Post Host Index Registers
3714 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3715 * each register is at offset bytes of
3716 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3717 */
3718 ioc->replyPostRegisterIndex = kcalloc(
3719 ioc->combined_reply_index_count,
3720 sizeof(resource_size_t *), GFP_KERNEL);
3721 if (!ioc->replyPostRegisterIndex) {
3722 ioc_err(ioc,
3723 "allocation for replyPostRegisterIndex failed!\n");
3724 r = -ENOMEM;
3725 goto out_fail;
3726 }
3727
3728 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3729 ioc->replyPostRegisterIndex[i] =
3730 (resource_size_t __iomem *)
3731 ((u8 __force *)&ioc->chip->Doorbell +
3732 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3733 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3734 }
3735 }
3736
3737 if (ioc->is_warpdrive) {
3738 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3739 &ioc->chip->ReplyPostHostIndex;
3740
3741 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3742 ioc->reply_post_host_index[i] =
3743 (resource_size_t __iomem *)
3744 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3745 * 4)));
3746 }
3747
3748 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3749 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3750 pr_info("%s: enabled: index: %d\n",
3751 reply_q->name, reply_q->msix_index);
3752 continue;
3753 }
3754
3755 pr_info("%s: %s enabled: IRQ %d\n",
3756 reply_q->name,
3757 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3758 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3759 }
3760
3761 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3762 &chip_phys, ioc->chip, memap_sz);
3763 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3764 (unsigned long long)pio_chip, pio_sz);
3765
3766 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3767 pci_save_state(pdev);
3768 return 0;
3769
3770 out_fail:
3771 mpt3sas_base_unmap_resources(ioc);
3772 return r;
3773 }
3774
3775 /**
3776 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3777 * @ioc: per adapter object
3778 * @smid: system request message index(smid zero is invalid)
3779 *
3780 * Return: virt pointer to message frame.
3781 */
3782 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3783 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3784 {
3785 return (void *)(ioc->request + (smid * ioc->request_sz));
3786 }
3787
3788 /**
3789 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3790 * @ioc: per adapter object
3791 * @smid: system request message index
3792 *
3793 * Return: virt pointer to sense buffer.
3794 */
3795 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3796 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3797 {
3798 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3799 }
3800
3801 /**
3802 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3803 * @ioc: per adapter object
3804 * @smid: system request message index
3805 *
3806 * Return: phys pointer to the low 32bit address of the sense buffer.
3807 */
3808 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3809 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3810 {
3811 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3812 SCSI_SENSE_BUFFERSIZE));
3813 }
3814
3815 /**
3816 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3817 * @ioc: per adapter object
3818 * @smid: system request message index
3819 *
3820 * Return: virt pointer to a PCIe SGL.
3821 */
3822 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3823 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3824 {
3825 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3826 }
3827
3828 /**
3829 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3830 * @ioc: per adapter object
3831 * @smid: system request message index
3832 *
3833 * Return: phys pointer to the address of the PCIe buffer.
3834 */
3835 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3836 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3837 {
3838 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3839 }
3840
3841 /**
3842 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3843 * @ioc: per adapter object
3844 * @phys_addr: lower 32 physical addr of the reply
3845 *
3846 * Converts 32bit lower physical addr into a virt address.
3847 */
3848 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3849 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3850 {
3851 if (!phys_addr)
3852 return NULL;
3853 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3854 }
3855
3856 /**
3857 * _base_get_msix_index - get the msix index
3858 * @ioc: per adapter object
3859 * @scmd: scsi_cmnd object
3860 *
3861 * Return: msix index of general reply queues,
3862 * i.e. reply queue on which IO request's reply
3863 * should be posted by the HBA firmware.
3864 */
3865 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3866 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3867 struct scsi_cmnd *scmd)
3868 {
3869 /* Enables reply_queue load balancing */
3870 if (ioc->msix_load_balance)
3871 return ioc->reply_queue_count ?
3872 base_mod64(atomic64_add_return(1,
3873 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3874
3875 if (scmd && ioc->shost->nr_hw_queues > 1) {
3876 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3877
3878 return blk_mq_unique_tag_to_hwq(tag) +
3879 ioc->high_iops_queues;
3880 }
3881
3882 return ioc->cpu_msix_table[raw_smp_processor_id()];
3883 }
3884
3885 /**
3886 * _base_get_high_iops_msix_index - get the msix index of
3887 * high iops queues
3888 * @ioc: per adapter object
3889 * @scmd: scsi_cmnd object
3890 *
3891 * Return: msix index of high iops reply queues.
3892 * i.e. high iops reply queue on which IO request's
3893 * reply should be posted by the HBA firmware.
3894 */
3895 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3896 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3897 struct scsi_cmnd *scmd)
3898 {
3899 /**
3900 * Round robin the IO interrupts among the high iops
3901 * reply queues in terms of batch count 16 when outstanding
3902 * IOs on the target device is >=8.
3903 */
3904
3905 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3906 return base_mod64((
3907 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3908 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3909 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3910
3911 return _base_get_msix_index(ioc, scmd);
3912 }
3913
3914 /**
3915 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3916 * @ioc: per adapter object
3917 * @cb_idx: callback index
3918 *
3919 * Return: smid (zero is invalid)
3920 */
3921 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3922 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3923 {
3924 unsigned long flags;
3925 struct request_tracker *request;
3926 u16 smid;
3927
3928 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3929 if (list_empty(&ioc->internal_free_list)) {
3930 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3931 ioc_err(ioc, "%s: smid not available\n", __func__);
3932 return 0;
3933 }
3934
3935 request = list_entry(ioc->internal_free_list.next,
3936 struct request_tracker, tracker_list);
3937 request->cb_idx = cb_idx;
3938 smid = request->smid;
3939 list_del(&request->tracker_list);
3940 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3941 return smid;
3942 }
3943
3944 /**
3945 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3946 * @ioc: per adapter object
3947 * @cb_idx: callback index
3948 * @scmd: pointer to scsi command object
3949 *
3950 * Return: smid (zero is invalid)
3951 */
3952 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3953 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3954 struct scsi_cmnd *scmd)
3955 {
3956 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3957 u16 smid;
3958 u32 tag, unique_tag;
3959
3960 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3961 tag = blk_mq_unique_tag_to_tag(unique_tag);
3962
3963 /*
3964 * Store hw queue number corresponding to the tag.
3965 * This hw queue number is used later to determine
3966 * the unique_tag using the logic below. This unique_tag
3967 * is used to retrieve the scmd pointer corresponding
3968 * to tag using scsi_host_find_tag() API.
3969 *
3970 * tag = smid - 1;
3971 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3972 */
3973 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3974
3975 smid = tag + 1;
3976 request->cb_idx = cb_idx;
3977 request->smid = smid;
3978 request->scmd = scmd;
3979 INIT_LIST_HEAD(&request->chain_list);
3980 return smid;
3981 }
3982
3983 /**
3984 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3985 * @ioc: per adapter object
3986 * @cb_idx: callback index
3987 *
3988 * Return: smid (zero is invalid)
3989 */
3990 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3991 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3992 {
3993 unsigned long flags;
3994 struct request_tracker *request;
3995 u16 smid;
3996
3997 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3998 if (list_empty(&ioc->hpr_free_list)) {
3999 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4000 return 0;
4001 }
4002
4003 request = list_entry(ioc->hpr_free_list.next,
4004 struct request_tracker, tracker_list);
4005 request->cb_idx = cb_idx;
4006 smid = request->smid;
4007 list_del(&request->tracker_list);
4008 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4009 return smid;
4010 }
4011
4012 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)4013 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
4014 {
4015 /*
4016 * See _wait_for_commands_to_complete() call with regards to this code.
4017 */
4018 if (ioc->shost_recovery && ioc->pending_io_count) {
4019 ioc->pending_io_count = scsi_host_busy(ioc->shost);
4020 if (ioc->pending_io_count == 0)
4021 wake_up(&ioc->reset_wq);
4022 }
4023 }
4024
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)4025 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4026 struct scsiio_tracker *st)
4027 {
4028 if (WARN_ON(st->smid == 0))
4029 return;
4030 st->cb_idx = 0xFF;
4031 st->direct_io = 0;
4032 st->scmd = NULL;
4033 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4034 st->smid = 0;
4035 }
4036
4037 /**
4038 * mpt3sas_base_free_smid - put smid back on free_list
4039 * @ioc: per adapter object
4040 * @smid: system request message index
4041 */
4042 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)4043 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4044 {
4045 unsigned long flags;
4046 int i;
4047
4048 if (smid < ioc->hi_priority_smid) {
4049 struct scsiio_tracker *st;
4050 void *request;
4051
4052 st = _get_st_from_smid(ioc, smid);
4053 if (!st) {
4054 _base_recovery_check(ioc);
4055 return;
4056 }
4057
4058 /* Clear MPI request frame */
4059 request = mpt3sas_base_get_msg_frame(ioc, smid);
4060 memset(request, 0, ioc->request_sz);
4061
4062 mpt3sas_base_clear_st(ioc, st);
4063 _base_recovery_check(ioc);
4064 ioc->io_queue_num[smid - 1] = 0;
4065 return;
4066 }
4067
4068 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4069 if (smid < ioc->internal_smid) {
4070 /* hi-priority */
4071 i = smid - ioc->hi_priority_smid;
4072 ioc->hpr_lookup[i].cb_idx = 0xFF;
4073 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4074 } else if (smid <= ioc->hba_queue_depth) {
4075 /* internal queue */
4076 i = smid - ioc->internal_smid;
4077 ioc->internal_lookup[i].cb_idx = 0xFF;
4078 list_add(&ioc->internal_lookup[i].tracker_list,
4079 &ioc->internal_free_list);
4080 }
4081 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4082 }
4083
4084 /**
4085 * _base_mpi_ep_writeq - 32 bit write to MMIO
4086 * @b: data payload
4087 * @addr: address in MMIO space
4088 * @writeq_lock: spin lock
4089 *
4090 * This special handling for MPI EP to take care of 32 bit
4091 * environment where its not quarenteed to send the entire word
4092 * in one transfer.
4093 */
4094 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4095 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4096 spinlock_t *writeq_lock)
4097 {
4098 unsigned long flags;
4099
4100 spin_lock_irqsave(writeq_lock, flags);
4101 __raw_writel((u32)(b), addr);
4102 __raw_writel((u32)(b >> 32), (addr + 4));
4103 spin_unlock_irqrestore(writeq_lock, flags);
4104 }
4105
4106 /**
4107 * _base_writeq - 64 bit write to MMIO
4108 * @b: data payload
4109 * @addr: address in MMIO space
4110 * @writeq_lock: spin lock
4111 *
4112 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4113 * care of 32 bit environment where its not quarenteed to send the entire word
4114 * in one transfer.
4115 */
4116 #if defined(writeq) && defined(CONFIG_64BIT)
4117 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4118 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4119 {
4120 wmb();
4121 __raw_writeq(b, addr);
4122 barrier();
4123 }
4124 #else
4125 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4126 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4127 {
4128 _base_mpi_ep_writeq(b, addr, writeq_lock);
4129 }
4130 #endif
4131
4132 /**
4133 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4134 * variable of scsi tracker
4135 * @ioc: per adapter object
4136 * @smid: system request message index
4137 *
4138 * Return: msix index.
4139 */
4140 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)4141 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4142 {
4143 struct scsiio_tracker *st = NULL;
4144
4145 if (smid < ioc->hi_priority_smid)
4146 st = _get_st_from_smid(ioc, smid);
4147
4148 if (st == NULL)
4149 return _base_get_msix_index(ioc, NULL);
4150
4151 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4152 return st->msix_io;
4153 }
4154
4155 /**
4156 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4157 * @ioc: per adapter object
4158 * @smid: system request message index
4159 * @handle: device handle
4160 */
4161 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4162 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4163 u16 smid, u16 handle)
4164 {
4165 Mpi2RequestDescriptorUnion_t descriptor;
4166 u64 *request = (u64 *)&descriptor;
4167 void *mpi_req_iomem;
4168 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4169
4170 _clone_sg_entries(ioc, (void *) mfp, smid);
4171 mpi_req_iomem = (void __force *)ioc->chip +
4172 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4173 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4174 ioc->request_sz);
4175 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4176 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4177 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4178 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4179 descriptor.SCSIIO.LMID = 0;
4180 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4181 &ioc->scsi_lookup_lock);
4182 }
4183
4184 /**
4185 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4186 * @ioc: per adapter object
4187 * @smid: system request message index
4188 * @handle: device handle
4189 */
4190 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4191 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4192 {
4193 Mpi2RequestDescriptorUnion_t descriptor;
4194 u64 *request = (u64 *)&descriptor;
4195
4196
4197 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4198 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4199 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4200 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4201 descriptor.SCSIIO.LMID = 0;
4202 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4203 &ioc->scsi_lookup_lock);
4204 }
4205
4206 /**
4207 * _base_put_smid_fast_path - send fast path request to firmware
4208 * @ioc: per adapter object
4209 * @smid: system request message index
4210 * @handle: device handle
4211 */
4212 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4213 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4214 u16 handle)
4215 {
4216 Mpi2RequestDescriptorUnion_t descriptor;
4217 u64 *request = (u64 *)&descriptor;
4218
4219 descriptor.SCSIIO.RequestFlags =
4220 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4221 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4222 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4223 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4224 descriptor.SCSIIO.LMID = 0;
4225 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4226 &ioc->scsi_lookup_lock);
4227 }
4228
4229 /**
4230 * _base_put_smid_hi_priority - send Task Management request to firmware
4231 * @ioc: per adapter object
4232 * @smid: system request message index
4233 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4234 */
4235 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4236 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4237 u16 msix_task)
4238 {
4239 Mpi2RequestDescriptorUnion_t descriptor;
4240 void *mpi_req_iomem;
4241 u64 *request;
4242
4243 if (ioc->is_mcpu_endpoint) {
4244 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4245
4246 /* TBD 256 is offset within sys register. */
4247 mpi_req_iomem = (void __force *)ioc->chip
4248 + MPI_FRAME_START_OFFSET
4249 + (smid * ioc->request_sz);
4250 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4251 ioc->request_sz);
4252 }
4253
4254 request = (u64 *)&descriptor;
4255
4256 descriptor.HighPriority.RequestFlags =
4257 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4258 descriptor.HighPriority.MSIxIndex = msix_task;
4259 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4260 descriptor.HighPriority.LMID = 0;
4261 descriptor.HighPriority.Reserved1 = 0;
4262 if (ioc->is_mcpu_endpoint)
4263 _base_mpi_ep_writeq(*request,
4264 &ioc->chip->RequestDescriptorPostLow,
4265 &ioc->scsi_lookup_lock);
4266 else
4267 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4268 &ioc->scsi_lookup_lock);
4269 }
4270
4271 /**
4272 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4273 * firmware
4274 * @ioc: per adapter object
4275 * @smid: system request message index
4276 */
4277 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)4278 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4279 {
4280 Mpi2RequestDescriptorUnion_t descriptor;
4281 u64 *request = (u64 *)&descriptor;
4282
4283 descriptor.Default.RequestFlags =
4284 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4285 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4286 descriptor.Default.SMID = cpu_to_le16(smid);
4287 descriptor.Default.LMID = 0;
4288 descriptor.Default.DescriptorTypeDependent = 0;
4289 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4290 &ioc->scsi_lookup_lock);
4291 }
4292
4293 /**
4294 * _base_put_smid_default - Default, primarily used for config pages
4295 * @ioc: per adapter object
4296 * @smid: system request message index
4297 */
4298 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)4299 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4300 {
4301 Mpi2RequestDescriptorUnion_t descriptor;
4302 void *mpi_req_iomem;
4303 u64 *request;
4304
4305 if (ioc->is_mcpu_endpoint) {
4306 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4307
4308 _clone_sg_entries(ioc, (void *) mfp, smid);
4309 /* TBD 256 is offset within sys register */
4310 mpi_req_iomem = (void __force *)ioc->chip +
4311 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4312 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4313 ioc->request_sz);
4314 }
4315 request = (u64 *)&descriptor;
4316 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4317 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4318 descriptor.Default.SMID = cpu_to_le16(smid);
4319 descriptor.Default.LMID = 0;
4320 descriptor.Default.DescriptorTypeDependent = 0;
4321 if (ioc->is_mcpu_endpoint)
4322 _base_mpi_ep_writeq(*request,
4323 &ioc->chip->RequestDescriptorPostLow,
4324 &ioc->scsi_lookup_lock);
4325 else
4326 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4327 &ioc->scsi_lookup_lock);
4328 }
4329
4330 /**
4331 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4332 * Atomic Request Descriptor
4333 * @ioc: per adapter object
4334 * @smid: system request message index
4335 * @handle: device handle, unused in this function, for function type match
4336 *
4337 * Return: nothing.
4338 */
4339 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4340 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4341 u16 handle)
4342 {
4343 Mpi26AtomicRequestDescriptor_t descriptor;
4344 u32 *request = (u32 *)&descriptor;
4345
4346 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4347 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4348 descriptor.SMID = cpu_to_le16(smid);
4349
4350 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4351 }
4352
4353 /**
4354 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4355 * using Atomic Request Descriptor
4356 * @ioc: per adapter object
4357 * @smid: system request message index
4358 * @handle: device handle, unused in this function, for function type match
4359 * Return: nothing
4360 */
4361 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4362 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4363 u16 handle)
4364 {
4365 Mpi26AtomicRequestDescriptor_t descriptor;
4366 u32 *request = (u32 *)&descriptor;
4367
4368 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4369 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4370 descriptor.SMID = cpu_to_le16(smid);
4371
4372 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4373 }
4374
4375 /**
4376 * _base_put_smid_hi_priority_atomic - send Task Management request to
4377 * firmware using Atomic Request Descriptor
4378 * @ioc: per adapter object
4379 * @smid: system request message index
4380 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4381 *
4382 * Return: nothing.
4383 */
4384 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4385 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4386 u16 msix_task)
4387 {
4388 Mpi26AtomicRequestDescriptor_t descriptor;
4389 u32 *request = (u32 *)&descriptor;
4390
4391 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4392 descriptor.MSIxIndex = msix_task;
4393 descriptor.SMID = cpu_to_le16(smid);
4394
4395 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4396 }
4397
4398 /**
4399 * _base_put_smid_default_atomic - Default, primarily used for config pages
4400 * use Atomic Request Descriptor
4401 * @ioc: per adapter object
4402 * @smid: system request message index
4403 *
4404 * Return: nothing.
4405 */
4406 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4407 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4408 {
4409 Mpi26AtomicRequestDescriptor_t descriptor;
4410 u32 *request = (u32 *)&descriptor;
4411
4412 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4413 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4414 descriptor.SMID = cpu_to_le16(smid);
4415
4416 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4417 }
4418
4419 /**
4420 * _base_display_OEMs_branding - Display branding string
4421 * @ioc: per adapter object
4422 */
4423 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4424 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4425 {
4426 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4427 return;
4428
4429 switch (ioc->pdev->subsystem_vendor) {
4430 case PCI_VENDOR_ID_INTEL:
4431 switch (ioc->pdev->device) {
4432 case MPI2_MFGPAGE_DEVID_SAS2008:
4433 switch (ioc->pdev->subsystem_device) {
4434 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4435 ioc_info(ioc, "%s\n",
4436 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4437 break;
4438 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4439 ioc_info(ioc, "%s\n",
4440 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4441 break;
4442 case MPT2SAS_INTEL_SSD910_SSDID:
4443 ioc_info(ioc, "%s\n",
4444 MPT2SAS_INTEL_SSD910_BRANDING);
4445 break;
4446 default:
4447 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4448 ioc->pdev->subsystem_device);
4449 break;
4450 }
4451 break;
4452 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4453 switch (ioc->pdev->subsystem_device) {
4454 case MPT2SAS_INTEL_RS25GB008_SSDID:
4455 ioc_info(ioc, "%s\n",
4456 MPT2SAS_INTEL_RS25GB008_BRANDING);
4457 break;
4458 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4459 ioc_info(ioc, "%s\n",
4460 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4461 break;
4462 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4463 ioc_info(ioc, "%s\n",
4464 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4465 break;
4466 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4467 ioc_info(ioc, "%s\n",
4468 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4469 break;
4470 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4471 ioc_info(ioc, "%s\n",
4472 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4473 break;
4474 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4475 ioc_info(ioc, "%s\n",
4476 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4477 break;
4478 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4479 ioc_info(ioc, "%s\n",
4480 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4481 break;
4482 default:
4483 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4484 ioc->pdev->subsystem_device);
4485 break;
4486 }
4487 break;
4488 case MPI25_MFGPAGE_DEVID_SAS3008:
4489 switch (ioc->pdev->subsystem_device) {
4490 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4491 ioc_info(ioc, "%s\n",
4492 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4493 break;
4494
4495 case MPT3SAS_INTEL_RS3GC008_SSDID:
4496 ioc_info(ioc, "%s\n",
4497 MPT3SAS_INTEL_RS3GC008_BRANDING);
4498 break;
4499 case MPT3SAS_INTEL_RS3FC044_SSDID:
4500 ioc_info(ioc, "%s\n",
4501 MPT3SAS_INTEL_RS3FC044_BRANDING);
4502 break;
4503 case MPT3SAS_INTEL_RS3UC080_SSDID:
4504 ioc_info(ioc, "%s\n",
4505 MPT3SAS_INTEL_RS3UC080_BRANDING);
4506 break;
4507 default:
4508 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4509 ioc->pdev->subsystem_device);
4510 break;
4511 }
4512 break;
4513 default:
4514 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4515 ioc->pdev->subsystem_device);
4516 break;
4517 }
4518 break;
4519 case PCI_VENDOR_ID_DELL:
4520 switch (ioc->pdev->device) {
4521 case MPI2_MFGPAGE_DEVID_SAS2008:
4522 switch (ioc->pdev->subsystem_device) {
4523 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4524 ioc_info(ioc, "%s\n",
4525 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4526 break;
4527 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4528 ioc_info(ioc, "%s\n",
4529 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4530 break;
4531 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4532 ioc_info(ioc, "%s\n",
4533 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4534 break;
4535 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4536 ioc_info(ioc, "%s\n",
4537 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4538 break;
4539 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4540 ioc_info(ioc, "%s\n",
4541 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4542 break;
4543 case MPT2SAS_DELL_PERC_H200_SSDID:
4544 ioc_info(ioc, "%s\n",
4545 MPT2SAS_DELL_PERC_H200_BRANDING);
4546 break;
4547 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4548 ioc_info(ioc, "%s\n",
4549 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4550 break;
4551 default:
4552 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4553 ioc->pdev->subsystem_device);
4554 break;
4555 }
4556 break;
4557 case MPI25_MFGPAGE_DEVID_SAS3008:
4558 switch (ioc->pdev->subsystem_device) {
4559 case MPT3SAS_DELL_12G_HBA_SSDID:
4560 ioc_info(ioc, "%s\n",
4561 MPT3SAS_DELL_12G_HBA_BRANDING);
4562 break;
4563 default:
4564 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4565 ioc->pdev->subsystem_device);
4566 break;
4567 }
4568 break;
4569 default:
4570 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4571 ioc->pdev->subsystem_device);
4572 break;
4573 }
4574 break;
4575 case PCI_VENDOR_ID_CISCO:
4576 switch (ioc->pdev->device) {
4577 case MPI25_MFGPAGE_DEVID_SAS3008:
4578 switch (ioc->pdev->subsystem_device) {
4579 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4580 ioc_info(ioc, "%s\n",
4581 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4582 break;
4583 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4584 ioc_info(ioc, "%s\n",
4585 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4586 break;
4587 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4588 ioc_info(ioc, "%s\n",
4589 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4590 break;
4591 default:
4592 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593 ioc->pdev->subsystem_device);
4594 break;
4595 }
4596 break;
4597 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4598 switch (ioc->pdev->subsystem_device) {
4599 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4600 ioc_info(ioc, "%s\n",
4601 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4602 break;
4603 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4604 ioc_info(ioc, "%s\n",
4605 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4606 break;
4607 default:
4608 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4609 ioc->pdev->subsystem_device);
4610 break;
4611 }
4612 break;
4613 default:
4614 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4615 ioc->pdev->subsystem_device);
4616 break;
4617 }
4618 break;
4619 case MPT2SAS_HP_3PAR_SSVID:
4620 switch (ioc->pdev->device) {
4621 case MPI2_MFGPAGE_DEVID_SAS2004:
4622 switch (ioc->pdev->subsystem_device) {
4623 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4624 ioc_info(ioc, "%s\n",
4625 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4626 break;
4627 default:
4628 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4629 ioc->pdev->subsystem_device);
4630 break;
4631 }
4632 break;
4633 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4634 switch (ioc->pdev->subsystem_device) {
4635 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4636 ioc_info(ioc, "%s\n",
4637 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4638 break;
4639 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4640 ioc_info(ioc, "%s\n",
4641 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4642 break;
4643 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4644 ioc_info(ioc, "%s\n",
4645 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4646 break;
4647 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4648 ioc_info(ioc, "%s\n",
4649 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4650 break;
4651 default:
4652 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4653 ioc->pdev->subsystem_device);
4654 break;
4655 }
4656 break;
4657 default:
4658 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4659 ioc->pdev->subsystem_device);
4660 break;
4661 }
4662 break;
4663 default:
4664 break;
4665 }
4666 }
4667
4668 /**
4669 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4670 * version from FW Image Header.
4671 * @ioc: per adapter object
4672 *
4673 * Return: 0 for success, non-zero for failure.
4674 */
4675 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4676 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4677 {
4678 Mpi2FWImageHeader_t *fw_img_hdr;
4679 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4680 Mpi25FWUploadRequest_t *mpi_request;
4681 Mpi2FWUploadReply_t mpi_reply;
4682 int r = 0, issue_diag_reset = 0;
4683 u32 package_version = 0;
4684 void *fwpkg_data = NULL;
4685 dma_addr_t fwpkg_data_dma;
4686 u16 smid, ioc_status;
4687 size_t data_length;
4688
4689 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4690
4691 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4692 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4693 return -EAGAIN;
4694 }
4695
4696 data_length = sizeof(Mpi2FWImageHeader_t);
4697 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4698 &fwpkg_data_dma, GFP_KERNEL);
4699 if (!fwpkg_data) {
4700 ioc_err(ioc,
4701 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4702 __FILE__, __LINE__, __func__);
4703 return -ENOMEM;
4704 }
4705
4706 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4707 if (!smid) {
4708 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4709 r = -EAGAIN;
4710 goto out;
4711 }
4712
4713 ioc->base_cmds.status = MPT3_CMD_PENDING;
4714 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4715 ioc->base_cmds.smid = smid;
4716 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4717 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4718 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4719 mpi_request->ImageSize = cpu_to_le32(data_length);
4720 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4721 data_length);
4722 init_completion(&ioc->base_cmds.done);
4723 ioc->put_smid_default(ioc, smid);
4724 /* Wait for 15 seconds */
4725 wait_for_completion_timeout(&ioc->base_cmds.done,
4726 FW_IMG_HDR_READ_TIMEOUT*HZ);
4727 ioc_info(ioc, "%s: complete\n", __func__);
4728 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4729 ioc_err(ioc, "%s: timeout\n", __func__);
4730 _debug_dump_mf(mpi_request,
4731 sizeof(Mpi25FWUploadRequest_t)/4);
4732 issue_diag_reset = 1;
4733 } else {
4734 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4735 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4736 memcpy(&mpi_reply, ioc->base_cmds.reply,
4737 sizeof(Mpi2FWUploadReply_t));
4738 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4739 MPI2_IOCSTATUS_MASK;
4740 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4741 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4742 if (le32_to_cpu(fw_img_hdr->Signature) ==
4743 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4744 cmp_img_hdr =
4745 (Mpi26ComponentImageHeader_t *)
4746 (fwpkg_data);
4747 package_version =
4748 le32_to_cpu(
4749 cmp_img_hdr->ApplicationSpecific);
4750 } else
4751 package_version =
4752 le32_to_cpu(
4753 fw_img_hdr->PackageVersion.Word);
4754 if (package_version)
4755 ioc_info(ioc,
4756 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4757 ((package_version) & 0xFF000000) >> 24,
4758 ((package_version) & 0x00FF0000) >> 16,
4759 ((package_version) & 0x0000FF00) >> 8,
4760 (package_version) & 0x000000FF);
4761 } else {
4762 _debug_dump_mf(&mpi_reply,
4763 sizeof(Mpi2FWUploadReply_t)/4);
4764 }
4765 }
4766 }
4767 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4768 out:
4769 if (fwpkg_data)
4770 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4771 fwpkg_data_dma);
4772 if (issue_diag_reset) {
4773 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4774 return -EFAULT;
4775 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4776 return -EFAULT;
4777 r = -EAGAIN;
4778 }
4779 return r;
4780 }
4781
4782 /**
4783 * _base_display_ioc_capabilities - Display IOC's capabilities.
4784 * @ioc: per adapter object
4785 */
4786 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4787 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4788 {
4789 int i = 0;
4790 char desc[17] = {0};
4791 u32 iounit_pg1_flags;
4792
4793 memtostr(desc, ioc->manu_pg0.ChipName);
4794 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4795 desc,
4796 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4797 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4798 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4799 ioc->facts.FWVersion.Word & 0x000000FF,
4800 ioc->pdev->revision);
4801
4802 _base_display_OEMs_branding(ioc);
4803
4804 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4805 pr_info("%sNVMe", i ? "," : "");
4806 i++;
4807 }
4808
4809 ioc_info(ioc, "Protocol=(");
4810
4811 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4812 pr_cont("Initiator");
4813 i++;
4814 }
4815
4816 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4817 pr_cont("%sTarget", i ? "," : "");
4818 i++;
4819 }
4820
4821 i = 0;
4822 pr_cont("), Capabilities=(");
4823
4824 if (!ioc->hide_ir_msg) {
4825 if (ioc->facts.IOCCapabilities &
4826 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4827 pr_cont("Raid");
4828 i++;
4829 }
4830 }
4831
4832 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4833 pr_cont("%sTLR", i ? "," : "");
4834 i++;
4835 }
4836
4837 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4838 pr_cont("%sMulticast", i ? "," : "");
4839 i++;
4840 }
4841
4842 if (ioc->facts.IOCCapabilities &
4843 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4844 pr_cont("%sBIDI Target", i ? "," : "");
4845 i++;
4846 }
4847
4848 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4849 pr_cont("%sEEDP", i ? "," : "");
4850 i++;
4851 }
4852
4853 if (ioc->facts.IOCCapabilities &
4854 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4855 pr_cont("%sSnapshot Buffer", i ? "," : "");
4856 i++;
4857 }
4858
4859 if (ioc->facts.IOCCapabilities &
4860 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4861 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4862 i++;
4863 }
4864
4865 if (ioc->facts.IOCCapabilities &
4866 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4867 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4868 i++;
4869 }
4870
4871 if (ioc->facts.IOCCapabilities &
4872 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4873 pr_cont("%sTask Set Full", i ? "," : "");
4874 i++;
4875 }
4876
4877 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4878 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4879 pr_cont("%sNCQ", i ? "," : "");
4880 i++;
4881 }
4882
4883 pr_cont(")\n");
4884 }
4885
4886 /**
4887 * mpt3sas_base_update_missing_delay - change the missing delay timers
4888 * @ioc: per adapter object
4889 * @device_missing_delay: amount of time till device is reported missing
4890 * @io_missing_delay: interval IO is returned when there is a missing device
4891 *
4892 * Passed on the command line, this function will modify the device missing
4893 * delay, as well as the io missing delay. This should be called at driver
4894 * load time.
4895 */
4896 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4897 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4898 u16 device_missing_delay, u8 io_missing_delay)
4899 {
4900 u16 dmd, dmd_new, dmd_orignal;
4901 u8 io_missing_delay_original;
4902 u16 sz;
4903 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4904 Mpi2ConfigReply_t mpi_reply;
4905 u8 num_phys = 0;
4906 u16 ioc_status;
4907
4908 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4909 if (!num_phys)
4910 return;
4911
4912 sz = struct_size(sas_iounit_pg1, PhyData, num_phys);
4913 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4914 if (!sas_iounit_pg1) {
4915 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4916 __FILE__, __LINE__, __func__);
4917 goto out;
4918 }
4919 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4920 sas_iounit_pg1, sz))) {
4921 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4922 __FILE__, __LINE__, __func__);
4923 goto out;
4924 }
4925 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4926 MPI2_IOCSTATUS_MASK;
4927 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4928 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4929 __FILE__, __LINE__, __func__);
4930 goto out;
4931 }
4932
4933 /* device missing delay */
4934 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4935 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4936 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4937 else
4938 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4939 dmd_orignal = dmd;
4940 if (device_missing_delay > 0x7F) {
4941 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4942 device_missing_delay;
4943 dmd = dmd / 16;
4944 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4945 } else
4946 dmd = device_missing_delay;
4947 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4948
4949 /* io missing delay */
4950 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4951 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4952
4953 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4954 sz)) {
4955 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4956 dmd_new = (dmd &
4957 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4958 else
4959 dmd_new =
4960 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4961 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4962 dmd_orignal, dmd_new);
4963 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4964 io_missing_delay_original,
4965 io_missing_delay);
4966 ioc->device_missing_delay = dmd_new;
4967 ioc->io_missing_delay = io_missing_delay;
4968 }
4969
4970 out:
4971 kfree(sas_iounit_pg1);
4972 }
4973
4974 /**
4975 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4976 * according to performance mode.
4977 * @ioc : per adapter object
4978 *
4979 * Return: zero on success; otherwise return EAGAIN error code asking the
4980 * caller to retry.
4981 */
4982 static int
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4983 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4984 {
4985 Mpi2IOCPage1_t ioc_pg1;
4986 Mpi2ConfigReply_t mpi_reply;
4987 int rc;
4988
4989 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4990 if (rc)
4991 return rc;
4992 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4993
4994 switch (perf_mode) {
4995 case MPT_PERF_MODE_DEFAULT:
4996 case MPT_PERF_MODE_BALANCED:
4997 if (ioc->high_iops_queues) {
4998 ioc_info(ioc,
4999 "Enable interrupt coalescing only for first\t"
5000 "%d reply queues\n",
5001 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
5002 /*
5003 * If 31st bit is zero then interrupt coalescing is
5004 * enabled for all reply descriptor post queues.
5005 * If 31st bit is set to one then user can
5006 * enable/disable interrupt coalescing on per reply
5007 * descriptor post queue group(8) basis. So to enable
5008 * interrupt coalescing only on first reply descriptor
5009 * post queue group 31st bit and zero th bit is enabled.
5010 */
5011 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
5012 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
5013 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5014 if (rc)
5015 return rc;
5016 ioc_info(ioc, "performance mode: balanced\n");
5017 return 0;
5018 }
5019 fallthrough;
5020 case MPT_PERF_MODE_LATENCY:
5021 /*
5022 * Enable interrupt coalescing on all reply queues
5023 * with timeout value 0xA
5024 */
5025 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5026 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5027 ioc_pg1.ProductSpecific = 0;
5028 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5029 if (rc)
5030 return rc;
5031 ioc_info(ioc, "performance mode: latency\n");
5032 break;
5033 case MPT_PERF_MODE_IOPS:
5034 /*
5035 * Enable interrupt coalescing on all reply queues.
5036 */
5037 ioc_info(ioc,
5038 "performance mode: iops with coalescing timeout: 0x%x\n",
5039 le32_to_cpu(ioc_pg1.CoalescingTimeout));
5040 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5041 ioc_pg1.ProductSpecific = 0;
5042 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5043 if (rc)
5044 return rc;
5045 break;
5046 }
5047 return 0;
5048 }
5049
5050 /**
5051 * _base_get_event_diag_triggers - get event diag trigger values from
5052 * persistent pages
5053 * @ioc : per adapter object
5054 *
5055 * Return: nothing.
5056 */
5057 static int
_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5058 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5059 {
5060 Mpi26DriverTriggerPage2_t trigger_pg2;
5061 struct SL_WH_EVENT_TRIGGER_T *event_tg;
5062 MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg;
5063 Mpi2ConfigReply_t mpi_reply;
5064 int r = 0, i = 0;
5065 u16 count = 0;
5066 u16 ioc_status;
5067
5068 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5069 &trigger_pg2);
5070 if (r)
5071 return r;
5072
5073 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5074 MPI2_IOCSTATUS_MASK;
5075 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5076 dinitprintk(ioc,
5077 ioc_err(ioc,
5078 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5079 __func__, ioc_status));
5080 return 0;
5081 }
5082
5083 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5084 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5085 count = min_t(u16, NUM_VALID_ENTRIES, count);
5086 ioc->diag_trigger_event.ValidEntries = count;
5087
5088 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5089 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5090 for (i = 0; i < count; i++) {
5091 event_tg->EventValue = le16_to_cpu(
5092 mpi_event_tg->MPIEventCode);
5093 event_tg->LogEntryQualifier = le16_to_cpu(
5094 mpi_event_tg->MPIEventCodeSpecific);
5095 event_tg++;
5096 mpi_event_tg++;
5097 }
5098 }
5099 return 0;
5100 }
5101
5102 /**
5103 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5104 * persistent pages
5105 * @ioc : per adapter object
5106 *
5107 * Return: 0 on success; otherwise return failure status.
5108 */
5109 static int
_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5110 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5111 {
5112 Mpi26DriverTriggerPage3_t trigger_pg3;
5113 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5114 MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg;
5115 Mpi2ConfigReply_t mpi_reply;
5116 int r = 0, i = 0;
5117 u16 count = 0;
5118 u16 ioc_status;
5119
5120 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5121 &trigger_pg3);
5122 if (r)
5123 return r;
5124
5125 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5126 MPI2_IOCSTATUS_MASK;
5127 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5128 dinitprintk(ioc,
5129 ioc_err(ioc,
5130 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5131 __func__, ioc_status));
5132 return 0;
5133 }
5134
5135 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5136 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5137 count = min_t(u16, NUM_VALID_ENTRIES, count);
5138 ioc->diag_trigger_scsi.ValidEntries = count;
5139
5140 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5141 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5142 for (i = 0; i < count; i++) {
5143 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5144 scsi_tg->ASC = mpi_scsi_tg->ASC;
5145 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5146
5147 scsi_tg++;
5148 mpi_scsi_tg++;
5149 }
5150 }
5151 return 0;
5152 }
5153
5154 /**
5155 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5156 * persistent pages
5157 * @ioc : per adapter object
5158 *
5159 * Return: 0 on success; otherwise return failure status.
5160 */
5161 static int
_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5162 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5163 {
5164 Mpi26DriverTriggerPage4_t trigger_pg4;
5165 struct SL_WH_MPI_TRIGGER_T *status_tg;
5166 MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg;
5167 Mpi2ConfigReply_t mpi_reply;
5168 int r = 0, i = 0;
5169 u16 count = 0;
5170 u16 ioc_status;
5171
5172 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5173 &trigger_pg4);
5174 if (r)
5175 return r;
5176
5177 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5178 MPI2_IOCSTATUS_MASK;
5179 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5180 dinitprintk(ioc,
5181 ioc_err(ioc,
5182 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5183 __func__, ioc_status));
5184 return 0;
5185 }
5186
5187 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5188 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5189 count = min_t(u16, NUM_VALID_ENTRIES, count);
5190 ioc->diag_trigger_mpi.ValidEntries = count;
5191
5192 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5193 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5194
5195 for (i = 0; i < count; i++) {
5196 status_tg->IOCStatus = le16_to_cpu(
5197 mpi_status_tg->IOCStatus);
5198 status_tg->IocLogInfo = le32_to_cpu(
5199 mpi_status_tg->LogInfo);
5200
5201 status_tg++;
5202 mpi_status_tg++;
5203 }
5204 }
5205 return 0;
5206 }
5207
5208 /**
5209 * _base_get_master_diag_triggers - get master diag trigger values from
5210 * persistent pages
5211 * @ioc : per adapter object
5212 *
5213 * Return: nothing.
5214 */
5215 static int
_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5216 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5217 {
5218 Mpi26DriverTriggerPage1_t trigger_pg1;
5219 Mpi2ConfigReply_t mpi_reply;
5220 int r;
5221 u16 ioc_status;
5222
5223 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5224 &trigger_pg1);
5225 if (r)
5226 return r;
5227
5228 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5229 MPI2_IOCSTATUS_MASK;
5230 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5231 dinitprintk(ioc,
5232 ioc_err(ioc,
5233 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5234 __func__, ioc_status));
5235 return 0;
5236 }
5237
5238 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5239 ioc->diag_trigger_master.MasterData |=
5240 le32_to_cpu(
5241 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5242 return 0;
5243 }
5244
5245 /**
5246 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5247 * driver trigger pages or not
5248 * @ioc : per adapter object
5249 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5250 *
5251 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5252 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5253 * return EAGAIN if diag reset occurred due to FW fault and asking the
5254 * caller to retry the command.
5255 *
5256 */
5257 static int
_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER * ioc,u32 * trigger_flags)5258 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5259 {
5260 Mpi26DriverTriggerPage0_t trigger_pg0;
5261 int r = 0;
5262 Mpi2ConfigReply_t mpi_reply;
5263 u16 ioc_status;
5264
5265 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5266 &trigger_pg0);
5267 if (r)
5268 return r;
5269
5270 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5271 MPI2_IOCSTATUS_MASK;
5272 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5273 return -EFAULT;
5274
5275 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5276 return 0;
5277 }
5278
5279 /**
5280 * _base_get_diag_triggers - Retrieve diag trigger values from
5281 * persistent pages.
5282 * @ioc : per adapter object
5283 *
5284 * Return: zero on success; otherwise return EAGAIN error codes
5285 * asking the caller to retry.
5286 */
5287 static int
_base_get_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5288 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5289 {
5290 int trigger_flags;
5291 int r;
5292
5293 /*
5294 * Default setting of master trigger.
5295 */
5296 ioc->diag_trigger_master.MasterData =
5297 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5298
5299 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5300 if (r) {
5301 if (r == -EAGAIN)
5302 return r;
5303 /*
5304 * Don't go for error handling when FW doesn't support
5305 * driver trigger pages.
5306 */
5307 return 0;
5308 }
5309
5310 ioc->supports_trigger_pages = 1;
5311
5312 /*
5313 * Retrieve master diag trigger values from driver trigger pg1
5314 * if master trigger bit enabled in TriggerFlags.
5315 */
5316 if ((u16)trigger_flags &
5317 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5318 r = _base_get_master_diag_triggers(ioc);
5319 if (r)
5320 return r;
5321 }
5322
5323 /*
5324 * Retrieve event diag trigger values from driver trigger pg2
5325 * if event trigger bit enabled in TriggerFlags.
5326 */
5327 if ((u16)trigger_flags &
5328 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5329 r = _base_get_event_diag_triggers(ioc);
5330 if (r)
5331 return r;
5332 }
5333
5334 /*
5335 * Retrieve scsi diag trigger values from driver trigger pg3
5336 * if scsi trigger bit enabled in TriggerFlags.
5337 */
5338 if ((u16)trigger_flags &
5339 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5340 r = _base_get_scsi_diag_triggers(ioc);
5341 if (r)
5342 return r;
5343 }
5344 /*
5345 * Retrieve mpi error diag trigger values from driver trigger pg4
5346 * if loginfo trigger bit enabled in TriggerFlags.
5347 */
5348 if ((u16)trigger_flags &
5349 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5350 r = _base_get_mpi_diag_triggers(ioc);
5351 if (r)
5352 return r;
5353 }
5354 return 0;
5355 }
5356
5357 /**
5358 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5359 * online FW update, in case updated FW supports driver
5360 * trigger pages.
5361 * @ioc : per adapter object
5362 *
5363 * Return: nothing.
5364 */
5365 static void
_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER * ioc)5366 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5367 {
5368
5369 if (ioc->diag_trigger_master.MasterData)
5370 mpt3sas_config_update_driver_trigger_pg1(ioc,
5371 &ioc->diag_trigger_master, 1);
5372
5373 if (ioc->diag_trigger_event.ValidEntries)
5374 mpt3sas_config_update_driver_trigger_pg2(ioc,
5375 &ioc->diag_trigger_event, 1);
5376
5377 if (ioc->diag_trigger_scsi.ValidEntries)
5378 mpt3sas_config_update_driver_trigger_pg3(ioc,
5379 &ioc->diag_trigger_scsi, 1);
5380
5381 if (ioc->diag_trigger_mpi.ValidEntries)
5382 mpt3sas_config_update_driver_trigger_pg4(ioc,
5383 &ioc->diag_trigger_mpi, 1);
5384 }
5385
5386 /**
5387 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices.
5388 * - On failure set default QD values.
5389 * @ioc : per adapter object
5390 *
5391 * Returns 0 for success, non-zero for failure.
5392 *
5393 */
_base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER * ioc)5394 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5395 {
5396 Mpi2ConfigReply_t mpi_reply;
5397 Mpi2SasIOUnitPage1_t sas_iounit_pg1;
5398 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5399 u16 depth;
5400 int rc = 0;
5401
5402 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5403 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5404 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5405 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5406 if (!ioc->is_gen35_ioc)
5407 goto out;
5408 /* sas iounit page 1 */
5409 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5410 &sas_iounit_pg1, sizeof(Mpi2SasIOUnitPage1_t));
5411 if (rc) {
5412 pr_err("%s: failure at %s:%d/%s()!\n",
5413 ioc->name, __FILE__, __LINE__, __func__);
5414 goto out;
5415 }
5416
5417 depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth);
5418 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5419
5420 depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth);
5421 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5422
5423 depth = sas_iounit_pg1.SATAMaxQDepth;
5424 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5425
5426 /* pcie iounit page 1 */
5427 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5428 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5429 if (rc) {
5430 pr_err("%s: failure at %s:%d/%s()!\n",
5431 ioc->name, __FILE__, __LINE__, __func__);
5432 goto out;
5433 }
5434 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5435 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5436 MPT3SAS_NVME_QUEUE_DEPTH;
5437 out:
5438 dinitprintk(ioc, pr_err(
5439 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5440 ioc->max_wideport_qd, ioc->max_narrowport_qd,
5441 ioc->max_sata_qd, ioc->max_nvme_qd));
5442 return rc;
5443 }
5444
5445 /**
5446 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5447 *
5448 * @ioc : per adapter object
5449 * @n : ptr to the ATTO nvram structure
5450 * Return: 0 for success, non-zero for failure.
5451 */
5452 static int
mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER * ioc,struct ATTO_SAS_NVRAM * n)5453 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5454 struct ATTO_SAS_NVRAM *n)
5455 {
5456 int r = -EINVAL;
5457 union ATTO_SAS_ADDRESS *s1;
5458 u32 len;
5459 u8 *pb;
5460 u8 ckSum;
5461
5462 /* validate nvram checksum */
5463 pb = (u8 *) n;
5464 ckSum = ATTO_SASNVR_CKSUM_SEED;
5465 len = sizeof(struct ATTO_SAS_NVRAM);
5466
5467 while (len--)
5468 ckSum = ckSum + pb[len];
5469
5470 if (ckSum) {
5471 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5472 return r;
5473 }
5474
5475 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5476
5477 if (n->Signature[0] != 'E'
5478 || n->Signature[1] != 'S'
5479 || n->Signature[2] != 'A'
5480 || n->Signature[3] != 'S')
5481 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5482 else if (n->Version > ATTO_SASNVR_VERSION)
5483 ioc_info(ioc, "Invalid ATTO NVRAM version");
5484 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5485 || s1->b[0] != 0x50
5486 || s1->b[1] != 0x01
5487 || s1->b[2] != 0x08
5488 || (s1->b[3] & 0xF0) != 0x60
5489 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5490 ioc_err(ioc, "Invalid ATTO SAS address\n");
5491 } else
5492 r = 0;
5493 return r;
5494 }
5495
5496 /**
5497 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5498 *
5499 * @ioc : per adapter object
5500 * @sas_addr : return sas address
5501 * Return: 0 for success, non-zero for failure.
5502 */
5503 static int
mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER * ioc,union ATTO_SAS_ADDRESS * sas_addr)5504 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5505 {
5506 Mpi2ManufacturingPage1_t mfg_pg1;
5507 Mpi2ConfigReply_t mpi_reply;
5508 struct ATTO_SAS_NVRAM *nvram;
5509 int r;
5510 __be64 addr;
5511
5512 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5513 if (r) {
5514 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5515 return r;
5516 }
5517
5518 /* validate nvram */
5519 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5520 r = mpt3sas_atto_validate_nvram(ioc, nvram);
5521 if (r)
5522 return r;
5523
5524 addr = *((__be64 *) nvram->SasAddr);
5525 sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5526 return r;
5527 }
5528
5529 /**
5530 * mpt3sas_atto_init - perform initializaion for ATTO branded
5531 * adapter.
5532 * @ioc : per adapter object
5533 *5
5534 * Return: 0 for success, non-zero for failure.
5535 */
5536 static int
mpt3sas_atto_init(struct MPT3SAS_ADAPTER * ioc)5537 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5538 {
5539 int sz = 0;
5540 Mpi2BiosPage4_t *bios_pg4 = NULL;
5541 Mpi2ConfigReply_t mpi_reply;
5542 int r;
5543 int ix;
5544 union ATTO_SAS_ADDRESS sas_addr;
5545 union ATTO_SAS_ADDRESS temp;
5546 union ATTO_SAS_ADDRESS bias;
5547
5548 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5549 if (r)
5550 return r;
5551
5552 /* get header first to get size */
5553 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5554 if (r) {
5555 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5556 return r;
5557 }
5558
5559 sz = mpi_reply.Header.PageLength * sizeof(u32);
5560 bios_pg4 = kzalloc(sz, GFP_KERNEL);
5561 if (!bios_pg4) {
5562 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5563 return -ENOMEM;
5564 }
5565
5566 /* read bios page 4 */
5567 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5568 if (r) {
5569 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5570 goto out;
5571 }
5572
5573 /* Update bios page 4 with the ATTO WWID */
5574 bias.q = sas_addr.q;
5575 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5576
5577 for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5578 temp.q = sas_addr.q;
5579 temp.b[7] += ix;
5580 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5581 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5582 }
5583 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5584
5585 out:
5586 kfree(bios_pg4);
5587 return r;
5588 }
5589
5590 /**
5591 * _base_static_config_pages - static start of day config pages
5592 * @ioc: per adapter object
5593 */
5594 static int
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)5595 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5596 {
5597 Mpi2IOUnitPage8_t iounit_pg8;
5598 Mpi2ConfigReply_t mpi_reply;
5599 u32 iounit_pg1_flags;
5600 int tg_flags = 0;
5601 int rc;
5602 ioc->nvme_abort_timeout = 30;
5603
5604 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5605 &ioc->manu_pg0);
5606 if (rc)
5607 return rc;
5608 if (ioc->ir_firmware) {
5609 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5610 &ioc->manu_pg10);
5611 if (rc)
5612 return rc;
5613 }
5614
5615 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5616 rc = mpt3sas_atto_init(ioc);
5617 if (rc)
5618 return rc;
5619 }
5620
5621 /*
5622 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5623 * flag unset in NVDATA.
5624 */
5625 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5626 &ioc->manu_pg11);
5627 if (rc)
5628 return rc;
5629 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5630 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5631 ioc->name);
5632 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5633 ioc->manu_pg11.EEDPTagMode |= 0x1;
5634 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5635 &ioc->manu_pg11);
5636 }
5637 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5638 ioc->tm_custom_handling = 1;
5639 else {
5640 ioc->tm_custom_handling = 0;
5641 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5642 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5643 else if (ioc->manu_pg11.NVMeAbortTO >
5644 NVME_TASK_ABORT_MAX_TIMEOUT)
5645 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5646 else
5647 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5648 }
5649 ioc->time_sync_interval =
5650 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5651 if (ioc->time_sync_interval) {
5652 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5653 ioc->time_sync_interval =
5654 ioc->time_sync_interval * SECONDS_PER_HOUR;
5655 else
5656 ioc->time_sync_interval =
5657 ioc->time_sync_interval * SECONDS_PER_MIN;
5658 dinitprintk(ioc, ioc_info(ioc,
5659 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5660 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5661 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5662 } else {
5663 if (ioc->is_gen35_ioc)
5664 ioc_warn(ioc,
5665 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5666 }
5667 rc = _base_assign_fw_reported_qd(ioc);
5668 if (rc)
5669 return rc;
5670
5671 /*
5672 * ATTO doesn't use bios page 2 and 3 for bios settings.
5673 */
5674 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO)
5675 ioc->bios_pg3.BiosVersion = 0;
5676 else {
5677 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5678 if (rc)
5679 return rc;
5680 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5681 if (rc)
5682 return rc;
5683 }
5684
5685 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5686 if (rc)
5687 return rc;
5688 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5689 if (rc)
5690 return rc;
5691 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5692 if (rc)
5693 return rc;
5694 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &iounit_pg8);
5695 if (rc)
5696 return rc;
5697 _base_display_ioc_capabilities(ioc);
5698
5699 /*
5700 * Enable task_set_full handling in iounit_pg1 when the
5701 * facts capabilities indicate that its supported.
5702 */
5703 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5704 if ((ioc->facts.IOCCapabilities &
5705 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5706 iounit_pg1_flags &=
5707 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5708 else
5709 iounit_pg1_flags |=
5710 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5711 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5712 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5713 if (rc)
5714 return rc;
5715
5716 if (iounit_pg8.NumSensors)
5717 ioc->temp_sensors_count = iounit_pg8.NumSensors;
5718 if (ioc->is_aero_ioc) {
5719 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5720 if (rc)
5721 return rc;
5722 }
5723 if (ioc->is_gen35_ioc) {
5724 if (ioc->is_driver_loading) {
5725 rc = _base_get_diag_triggers(ioc);
5726 if (rc)
5727 return rc;
5728 } else {
5729 /*
5730 * In case of online HBA FW update operation,
5731 * check whether updated FW supports the driver trigger
5732 * pages or not.
5733 * - If previous FW has not supported driver trigger
5734 * pages and newer FW supports them then update these
5735 * pages with current diag trigger values.
5736 * - If previous FW has supported driver trigger pages
5737 * and new FW doesn't support them then disable
5738 * support_trigger_pages flag.
5739 */
5740 _base_check_for_trigger_pages_support(ioc, &tg_flags);
5741 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5742 _base_update_diag_trigger_pages(ioc);
5743 else if (ioc->supports_trigger_pages &&
5744 tg_flags == -EFAULT)
5745 ioc->supports_trigger_pages = 0;
5746 }
5747 }
5748 return 0;
5749 }
5750
5751 /**
5752 * mpt3sas_free_enclosure_list - release memory
5753 * @ioc: per adapter object
5754 *
5755 * Free memory allocated during enclosure add.
5756 */
5757 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)5758 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5759 {
5760 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5761
5762 /* Free enclosure list */
5763 list_for_each_entry_safe(enclosure_dev,
5764 enclosure_dev_next, &ioc->enclosure_list, list) {
5765 list_del(&enclosure_dev->list);
5766 kfree(enclosure_dev);
5767 }
5768 }
5769
5770 /**
5771 * _base_release_memory_pools - release memory
5772 * @ioc: per adapter object
5773 *
5774 * Free memory allocated from _base_allocate_memory_pools.
5775 */
5776 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)5777 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5778 {
5779 int i = 0;
5780 int j = 0;
5781 int dma_alloc_count = 0;
5782 struct chain_tracker *ct;
5783 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5784
5785 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5786
5787 if (ioc->request) {
5788 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5789 ioc->request, ioc->request_dma);
5790 dexitprintk(ioc,
5791 ioc_info(ioc, "request_pool(0x%p): free\n",
5792 ioc->request));
5793 ioc->request = NULL;
5794 }
5795
5796 if (ioc->sense) {
5797 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5798 dma_pool_destroy(ioc->sense_dma_pool);
5799 dexitprintk(ioc,
5800 ioc_info(ioc, "sense_pool(0x%p): free\n",
5801 ioc->sense));
5802 ioc->sense = NULL;
5803 }
5804
5805 if (ioc->reply) {
5806 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5807 dma_pool_destroy(ioc->reply_dma_pool);
5808 dexitprintk(ioc,
5809 ioc_info(ioc, "reply_pool(0x%p): free\n",
5810 ioc->reply));
5811 ioc->reply = NULL;
5812 }
5813
5814 if (ioc->reply_free) {
5815 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5816 ioc->reply_free_dma);
5817 dma_pool_destroy(ioc->reply_free_dma_pool);
5818 dexitprintk(ioc,
5819 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5820 ioc->reply_free));
5821 ioc->reply_free = NULL;
5822 }
5823
5824 if (ioc->reply_post) {
5825 dma_alloc_count = DIV_ROUND_UP(count,
5826 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5827 for (i = 0; i < count; i++) {
5828 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5829 && dma_alloc_count) {
5830 if (ioc->reply_post[i].reply_post_free) {
5831 dma_pool_free(
5832 ioc->reply_post_free_dma_pool,
5833 ioc->reply_post[i].reply_post_free,
5834 ioc->reply_post[i].reply_post_free_dma);
5835 dexitprintk(ioc, ioc_info(ioc,
5836 "reply_post_free_pool(0x%p): free\n",
5837 ioc->reply_post[i].reply_post_free));
5838 ioc->reply_post[i].reply_post_free =
5839 NULL;
5840 }
5841 --dma_alloc_count;
5842 }
5843 }
5844 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5845 if (ioc->reply_post_free_array &&
5846 ioc->rdpq_array_enable) {
5847 dma_pool_free(ioc->reply_post_free_array_dma_pool,
5848 ioc->reply_post_free_array,
5849 ioc->reply_post_free_array_dma);
5850 ioc->reply_post_free_array = NULL;
5851 }
5852 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5853 kfree(ioc->reply_post);
5854 }
5855
5856 if (ioc->pcie_sgl_dma_pool) {
5857 for (i = 0; i < ioc->scsiio_depth; i++) {
5858 dma_pool_free(ioc->pcie_sgl_dma_pool,
5859 ioc->pcie_sg_lookup[i].pcie_sgl,
5860 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5861 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5862 }
5863 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5864 }
5865 kfree(ioc->pcie_sg_lookup);
5866 ioc->pcie_sg_lookup = NULL;
5867
5868 if (ioc->config_page) {
5869 dexitprintk(ioc,
5870 ioc_info(ioc, "config_page(0x%p): free\n",
5871 ioc->config_page));
5872 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5873 ioc->config_page, ioc->config_page_dma);
5874 }
5875
5876 kfree(ioc->hpr_lookup);
5877 ioc->hpr_lookup = NULL;
5878 kfree(ioc->internal_lookup);
5879 ioc->internal_lookup = NULL;
5880 if (ioc->chain_lookup) {
5881 for (i = 0; i < ioc->scsiio_depth; i++) {
5882 for (j = ioc->chains_per_prp_buffer;
5883 j < ioc->chains_needed_per_io; j++) {
5884 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5885 if (ct && ct->chain_buffer)
5886 dma_pool_free(ioc->chain_dma_pool,
5887 ct->chain_buffer,
5888 ct->chain_buffer_dma);
5889 }
5890 kfree(ioc->chain_lookup[i].chains_per_smid);
5891 }
5892 dma_pool_destroy(ioc->chain_dma_pool);
5893 kfree(ioc->chain_lookup);
5894 ioc->chain_lookup = NULL;
5895 }
5896
5897 kfree(ioc->io_queue_num);
5898 ioc->io_queue_num = NULL;
5899 }
5900
5901 /**
5902 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5903 * having same upper 32bits in their base memory address.
5904 * @start_address: Base address of a reply queue set
5905 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5906 *
5907 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5908 * memory address, else 0.
5909 */
5910 static int
mpt3sas_check_same_4gb_region(dma_addr_t start_address,u32 pool_sz)5911 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5912 {
5913 dma_addr_t end_address;
5914
5915 end_address = start_address + pool_sz - 1;
5916
5917 if (upper_32_bits(start_address) == upper_32_bits(end_address))
5918 return 1;
5919 else
5920 return 0;
5921 }
5922
5923 /**
5924 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5925 * @ioc: Adapter object
5926 *
5927 * Return: 0 for success, non-zero for failure.
5928 **/
5929 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)5930 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5931 {
5932 int reduce_sz = 64;
5933
5934 if ((ioc->hba_queue_depth - reduce_sz) >
5935 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5936 ioc->hba_queue_depth -= reduce_sz;
5937 return 0;
5938 } else
5939 return -ENOMEM;
5940 }
5941
5942 /**
5943 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5944 * for pcie sgl pools.
5945 * @ioc: Adapter object
5946 * @sz: DMA Pool size
5947 *
5948 * Return: 0 for success, non-zero for failure.
5949 */
5950
5951 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5952 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5953 {
5954 int i = 0, j = 0;
5955 struct chain_tracker *ct;
5956
5957 ioc->pcie_sgl_dma_pool =
5958 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5959 ioc->page_size, 0);
5960 if (!ioc->pcie_sgl_dma_pool) {
5961 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5962 return -ENOMEM;
5963 }
5964
5965 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5966 ioc->chains_per_prp_buffer =
5967 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5968 for (i = 0; i < ioc->scsiio_depth; i++) {
5969 ioc->pcie_sg_lookup[i].pcie_sgl =
5970 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5971 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5972 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5973 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5974 return -EAGAIN;
5975 }
5976
5977 if (!mpt3sas_check_same_4gb_region(
5978 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5979 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5980 ioc->pcie_sg_lookup[i].pcie_sgl,
5981 (unsigned long long)
5982 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5983 ioc->use_32bit_dma = true;
5984 return -EAGAIN;
5985 }
5986
5987 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5988 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5989 ct->chain_buffer =
5990 ioc->pcie_sg_lookup[i].pcie_sgl +
5991 (j * ioc->chain_segment_sz);
5992 ct->chain_buffer_dma =
5993 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5994 (j * ioc->chain_segment_sz);
5995 }
5996 }
5997 dinitprintk(ioc, ioc_info(ioc,
5998 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5999 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
6000 dinitprintk(ioc, ioc_info(ioc,
6001 "Number of chains can fit in a PRP page(%d)\n",
6002 ioc->chains_per_prp_buffer));
6003 return 0;
6004 }
6005
6006 /**
6007 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
6008 * for chain dma pool.
6009 * @ioc: Adapter object
6010 * @sz: DMA Pool size
6011 *
6012 * Return: 0 for success, non-zero for failure.
6013 */
6014 static int
_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6015 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6016 {
6017 int i = 0, j = 0;
6018 struct chain_tracker *ctr;
6019
6020 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6021 ioc->chain_segment_sz, 16, 0);
6022 if (!ioc->chain_dma_pool)
6023 return -ENOMEM;
6024
6025 for (i = 0; i < ioc->scsiio_depth; i++) {
6026 for (j = ioc->chains_per_prp_buffer;
6027 j < ioc->chains_needed_per_io; j++) {
6028 ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6029 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6030 GFP_KERNEL, &ctr->chain_buffer_dma);
6031 if (!ctr->chain_buffer)
6032 return -EAGAIN;
6033 if (!mpt3sas_check_same_4gb_region(
6034 ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6035 ioc_err(ioc,
6036 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6037 ctr->chain_buffer,
6038 (unsigned long long)ctr->chain_buffer_dma);
6039 ioc->use_32bit_dma = true;
6040 return -EAGAIN;
6041 }
6042 }
6043 }
6044 dinitprintk(ioc, ioc_info(ioc,
6045 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6046 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6047 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6048 ioc->chain_segment_sz))/1024));
6049 return 0;
6050 }
6051
6052 /**
6053 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6054 * for sense dma pool.
6055 * @ioc: Adapter object
6056 * @sz: DMA Pool size
6057 * Return: 0 for success, non-zero for failure.
6058 */
6059 static int
_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6060 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6061 {
6062 ioc->sense_dma_pool =
6063 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6064 if (!ioc->sense_dma_pool)
6065 return -ENOMEM;
6066 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6067 GFP_KERNEL, &ioc->sense_dma);
6068 if (!ioc->sense)
6069 return -EAGAIN;
6070 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6071 dinitprintk(ioc, pr_err(
6072 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6073 ioc->sense, (unsigned long long) ioc->sense_dma));
6074 ioc->use_32bit_dma = true;
6075 return -EAGAIN;
6076 }
6077 ioc_info(ioc,
6078 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6079 ioc->sense, (unsigned long long)ioc->sense_dma,
6080 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6081 return 0;
6082 }
6083
6084 /**
6085 * _base_allocate_reply_pool - Allocating DMA'able memory
6086 * for reply pool.
6087 * @ioc: Adapter object
6088 * @sz: DMA Pool size
6089 * Return: 0 for success, non-zero for failure.
6090 */
6091 static int
_base_allocate_reply_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6092 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6093 {
6094 /* reply pool, 4 byte align */
6095 ioc->reply_dma_pool = dma_pool_create("reply pool",
6096 &ioc->pdev->dev, sz, 4, 0);
6097 if (!ioc->reply_dma_pool)
6098 return -ENOMEM;
6099 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6100 &ioc->reply_dma);
6101 if (!ioc->reply)
6102 return -EAGAIN;
6103 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6104 dinitprintk(ioc, pr_err(
6105 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6106 ioc->reply, (unsigned long long) ioc->reply_dma));
6107 ioc->use_32bit_dma = true;
6108 return -EAGAIN;
6109 }
6110 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6111 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6112 ioc_info(ioc,
6113 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6114 ioc->reply, (unsigned long long)ioc->reply_dma,
6115 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6116 return 0;
6117 }
6118
6119 /**
6120 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6121 * for reply free dma pool.
6122 * @ioc: Adapter object
6123 * @sz: DMA Pool size
6124 * Return: 0 for success, non-zero for failure.
6125 */
6126 static int
_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6127 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6128 {
6129 /* reply free queue, 16 byte align */
6130 ioc->reply_free_dma_pool = dma_pool_create(
6131 "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6132 if (!ioc->reply_free_dma_pool)
6133 return -ENOMEM;
6134 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6135 GFP_KERNEL, &ioc->reply_free_dma);
6136 if (!ioc->reply_free)
6137 return -EAGAIN;
6138 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6139 dinitprintk(ioc,
6140 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6141 ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6142 ioc->use_32bit_dma = true;
6143 return -EAGAIN;
6144 }
6145 memset(ioc->reply_free, 0, sz);
6146 dinitprintk(ioc, ioc_info(ioc,
6147 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6148 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6149 dinitprintk(ioc, ioc_info(ioc,
6150 "reply_free_dma (0x%llx)\n",
6151 (unsigned long long)ioc->reply_free_dma));
6152 return 0;
6153 }
6154
6155 /**
6156 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6157 * for reply post free array.
6158 * @ioc: Adapter object
6159 * @reply_post_free_array_sz: DMA Pool size
6160 * Return: 0 for success, non-zero for failure.
6161 */
6162
6163 static int
_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER * ioc,u32 reply_post_free_array_sz)6164 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6165 u32 reply_post_free_array_sz)
6166 {
6167 ioc->reply_post_free_array_dma_pool =
6168 dma_pool_create("reply_post_free_array pool",
6169 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6170 if (!ioc->reply_post_free_array_dma_pool)
6171 return -ENOMEM;
6172 ioc->reply_post_free_array =
6173 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6174 GFP_KERNEL, &ioc->reply_post_free_array_dma);
6175 if (!ioc->reply_post_free_array)
6176 return -EAGAIN;
6177 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6178 reply_post_free_array_sz)) {
6179 dinitprintk(ioc, pr_err(
6180 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6181 ioc->reply_free,
6182 (unsigned long long) ioc->reply_free_dma));
6183 ioc->use_32bit_dma = true;
6184 return -EAGAIN;
6185 }
6186 return 0;
6187 }
6188 /**
6189 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6190 * for reply queues.
6191 * @ioc: per adapter object
6192 * @sz: DMA Pool size
6193 * Return: 0 for success, non-zero for failure.
6194 */
6195 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)6196 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6197 {
6198 int i = 0;
6199 u32 dma_alloc_count = 0;
6200 int reply_post_free_sz = ioc->reply_post_queue_depth *
6201 sizeof(Mpi2DefaultReplyDescriptor_t);
6202 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6203
6204 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6205 GFP_KERNEL);
6206 if (!ioc->reply_post)
6207 return -ENOMEM;
6208 /*
6209 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6210 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6211 * be within 4GB boundary i.e reply queues in a set must have same
6212 * upper 32-bits in their memory address. so here driver is allocating
6213 * the DMA'able memory for reply queues according.
6214 * Driver uses limitation of
6215 * VENTURA_SERIES to manage INVADER_SERIES as well.
6216 */
6217 dma_alloc_count = DIV_ROUND_UP(count,
6218 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6219 ioc->reply_post_free_dma_pool =
6220 dma_pool_create("reply_post_free pool",
6221 &ioc->pdev->dev, sz, 16, 0);
6222 if (!ioc->reply_post_free_dma_pool)
6223 return -ENOMEM;
6224 for (i = 0; i < count; i++) {
6225 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6226 ioc->reply_post[i].reply_post_free =
6227 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6228 GFP_KERNEL,
6229 &ioc->reply_post[i].reply_post_free_dma);
6230 if (!ioc->reply_post[i].reply_post_free)
6231 return -ENOMEM;
6232 /*
6233 * Each set of RDPQ pool must satisfy 4gb boundary
6234 * restriction.
6235 * 1) Check if allocated resources for RDPQ pool are in
6236 * the same 4GB range.
6237 * 2) If #1 is true, continue with 64 bit DMA.
6238 * 3) If #1 is false, return 1. which means free all the
6239 * resources and set DMA mask to 32 and allocate.
6240 */
6241 if (!mpt3sas_check_same_4gb_region(
6242 ioc->reply_post[i].reply_post_free_dma, sz)) {
6243 dinitprintk(ioc,
6244 ioc_err(ioc, "bad Replypost free pool(0x%p)"
6245 "reply_post_free_dma = (0x%llx)\n",
6246 ioc->reply_post[i].reply_post_free,
6247 (unsigned long long)
6248 ioc->reply_post[i].reply_post_free_dma));
6249 return -EAGAIN;
6250 }
6251 dma_alloc_count--;
6252
6253 } else {
6254 ioc->reply_post[i].reply_post_free =
6255 (Mpi2ReplyDescriptorsUnion_t *)
6256 ((long)ioc->reply_post[i-1].reply_post_free
6257 + reply_post_free_sz);
6258 ioc->reply_post[i].reply_post_free_dma =
6259 (dma_addr_t)
6260 (ioc->reply_post[i-1].reply_post_free_dma +
6261 reply_post_free_sz);
6262 }
6263 }
6264 return 0;
6265 }
6266
6267 /**
6268 * _base_allocate_memory_pools - allocate start of day memory pools
6269 * @ioc: per adapter object
6270 *
6271 * Return: 0 success, anything else error.
6272 */
6273 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)6274 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6275 {
6276 struct mpt3sas_facts *facts;
6277 u16 max_sge_elements;
6278 u16 chains_needed_per_io;
6279 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6280 u32 retry_sz;
6281 u32 rdpq_sz = 0, sense_sz = 0;
6282 u16 max_request_credit, nvme_blocks_needed;
6283 unsigned short sg_tablesize;
6284 u16 sge_size;
6285 int i;
6286 int ret = 0, rc = 0;
6287
6288 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6289
6290
6291 retry_sz = 0;
6292 facts = &ioc->facts;
6293
6294 /* command line tunables for max sgl entries */
6295 if (max_sgl_entries != -1)
6296 sg_tablesize = max_sgl_entries;
6297 else {
6298 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6299 sg_tablesize = MPT2SAS_SG_DEPTH;
6300 else
6301 sg_tablesize = MPT3SAS_SG_DEPTH;
6302 }
6303
6304 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6305 if (reset_devices)
6306 sg_tablesize = min_t(unsigned short, sg_tablesize,
6307 MPT_KDUMP_MIN_PHYS_SEGMENTS);
6308
6309 if (ioc->is_mcpu_endpoint)
6310 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6311 else {
6312 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6313 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6314 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6315 sg_tablesize = min_t(unsigned short, sg_tablesize,
6316 SG_MAX_SEGMENTS);
6317 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6318 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6319 }
6320 ioc->shost->sg_tablesize = sg_tablesize;
6321 }
6322
6323 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6324 (facts->RequestCredit / 4));
6325 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6326 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6327 INTERNAL_SCSIIO_CMDS_COUNT)) {
6328 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6329 facts->RequestCredit);
6330 return -ENOMEM;
6331 }
6332 ioc->internal_depth = 10;
6333 }
6334
6335 ioc->hi_priority_depth = ioc->internal_depth - (5);
6336 /* command line tunables for max controller queue depth */
6337 if (max_queue_depth != -1 && max_queue_depth != 0) {
6338 max_request_credit = min_t(u16, max_queue_depth +
6339 ioc->internal_depth, facts->RequestCredit);
6340 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6341 max_request_credit = MAX_HBA_QUEUE_DEPTH;
6342 } else if (reset_devices)
6343 max_request_credit = min_t(u16, facts->RequestCredit,
6344 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6345 else
6346 max_request_credit = min_t(u16, facts->RequestCredit,
6347 MAX_HBA_QUEUE_DEPTH);
6348
6349 /* Firmware maintains additional facts->HighPriorityCredit number of
6350 * credits for HiPriprity Request messages, so hba queue depth will be
6351 * sum of max_request_credit and high priority queue depth.
6352 */
6353 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6354
6355 /* request frame size */
6356 ioc->request_sz = facts->IOCRequestFrameSize * 4;
6357
6358 /* reply frame size */
6359 ioc->reply_sz = facts->ReplyFrameSize * 4;
6360
6361 /* chain segment size */
6362 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6363 if (facts->IOCMaxChainSegmentSize)
6364 ioc->chain_segment_sz =
6365 facts->IOCMaxChainSegmentSize *
6366 MAX_CHAIN_ELEMT_SZ;
6367 else
6368 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6369 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6370 MAX_CHAIN_ELEMT_SZ;
6371 } else
6372 ioc->chain_segment_sz = ioc->request_sz;
6373
6374 /* calculate the max scatter element size */
6375 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6376
6377 retry_allocation:
6378 total_sz = 0;
6379 /* calculate number of sg elements left over in the 1st frame */
6380 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6381 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6382 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6383
6384 /* now do the same for a chain buffer */
6385 max_sge_elements = ioc->chain_segment_sz - sge_size;
6386 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6387
6388 /*
6389 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6390 */
6391 chains_needed_per_io = ((ioc->shost->sg_tablesize -
6392 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6393 + 1;
6394 if (chains_needed_per_io > facts->MaxChainDepth) {
6395 chains_needed_per_io = facts->MaxChainDepth;
6396 ioc->shost->sg_tablesize = min_t(u16,
6397 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6398 * chains_needed_per_io), ioc->shost->sg_tablesize);
6399 }
6400 ioc->chains_needed_per_io = chains_needed_per_io;
6401
6402 /* reply free queue sizing - taking into account for 64 FW events */
6403 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6404
6405 /* mCPU manage single counters for simplicity */
6406 if (ioc->is_mcpu_endpoint)
6407 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6408 else {
6409 /* calculate reply descriptor post queue depth */
6410 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6411 ioc->reply_free_queue_depth + 1;
6412 /* align the reply post queue on the next 16 count boundary */
6413 if (ioc->reply_post_queue_depth % 16)
6414 ioc->reply_post_queue_depth += 16 -
6415 (ioc->reply_post_queue_depth % 16);
6416 }
6417
6418 if (ioc->reply_post_queue_depth >
6419 facts->MaxReplyDescriptorPostQueueDepth) {
6420 ioc->reply_post_queue_depth =
6421 facts->MaxReplyDescriptorPostQueueDepth -
6422 (facts->MaxReplyDescriptorPostQueueDepth % 16);
6423 ioc->hba_queue_depth =
6424 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6425 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6426 }
6427
6428 ioc_info(ioc,
6429 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6430 "sge_per_io(%d), chains_per_io(%d)\n",
6431 ioc->max_sges_in_main_message,
6432 ioc->max_sges_in_chain_message,
6433 ioc->shost->sg_tablesize,
6434 ioc->chains_needed_per_io);
6435
6436 /* reply post queue, 16 byte align */
6437 reply_post_free_sz = ioc->reply_post_queue_depth *
6438 sizeof(Mpi2DefaultReplyDescriptor_t);
6439 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6440 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6441 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6442 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6443 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6444 if (ret == -EAGAIN) {
6445 /*
6446 * Free allocated bad RDPQ memory pools.
6447 * Change dma coherent mask to 32 bit and reallocate RDPQ
6448 */
6449 _base_release_memory_pools(ioc);
6450 ioc->use_32bit_dma = true;
6451 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6452 ioc_err(ioc,
6453 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6454 return -ENODEV;
6455 }
6456 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6457 return -ENOMEM;
6458 } else if (ret == -ENOMEM)
6459 return -ENOMEM;
6460 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6461 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6462 ioc->scsiio_depth = ioc->hba_queue_depth -
6463 ioc->hi_priority_depth - ioc->internal_depth;
6464
6465 /* set the scsi host can_queue depth
6466 * with some internal commands that could be outstanding
6467 */
6468 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6469 dinitprintk(ioc,
6470 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6471 ioc->shost->can_queue));
6472
6473 /* contiguous pool for request and chains, 16 byte align, one extra "
6474 * "frame for smid=0
6475 */
6476 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6477 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6478
6479 /* hi-priority queue */
6480 sz += (ioc->hi_priority_depth * ioc->request_sz);
6481
6482 /* internal queue */
6483 sz += (ioc->internal_depth * ioc->request_sz);
6484
6485 ioc->request_dma_sz = sz;
6486 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6487 &ioc->request_dma, GFP_KERNEL);
6488 if (!ioc->request) {
6489 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6490 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6491 ioc->request_sz, sz / 1024);
6492 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6493 goto out;
6494 retry_sz = 64;
6495 ioc->hba_queue_depth -= retry_sz;
6496 _base_release_memory_pools(ioc);
6497 goto retry_allocation;
6498 }
6499
6500 if (retry_sz)
6501 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6502 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6503 ioc->request_sz, sz / 1024);
6504
6505 /* hi-priority queue */
6506 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6507 ioc->request_sz);
6508 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6509 ioc->request_sz);
6510
6511 /* internal queue */
6512 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6513 ioc->request_sz);
6514 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6515 ioc->request_sz);
6516
6517 ioc_info(ioc,
6518 "request pool(0x%p) - dma(0x%llx): "
6519 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6520 ioc->request, (unsigned long long) ioc->request_dma,
6521 ioc->hba_queue_depth, ioc->request_sz,
6522 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6523
6524 total_sz += sz;
6525
6526 dinitprintk(ioc,
6527 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6528 ioc->request, ioc->scsiio_depth));
6529
6530 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6531 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6532 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6533 if (!ioc->chain_lookup) {
6534 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6535 goto out;
6536 }
6537
6538 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6539 for (i = 0; i < ioc->scsiio_depth; i++) {
6540 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6541 if (!ioc->chain_lookup[i].chains_per_smid) {
6542 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6543 goto out;
6544 }
6545 }
6546
6547 /* initialize hi-priority queue smid's */
6548 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6549 sizeof(struct request_tracker), GFP_KERNEL);
6550 if (!ioc->hpr_lookup) {
6551 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6552 goto out;
6553 }
6554 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6555 dinitprintk(ioc,
6556 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6557 ioc->hi_priority,
6558 ioc->hi_priority_depth, ioc->hi_priority_smid));
6559
6560 /* initialize internal queue smid's */
6561 ioc->internal_lookup = kcalloc(ioc->internal_depth,
6562 sizeof(struct request_tracker), GFP_KERNEL);
6563 if (!ioc->internal_lookup) {
6564 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6565 goto out;
6566 }
6567 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6568 dinitprintk(ioc,
6569 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6570 ioc->internal,
6571 ioc->internal_depth, ioc->internal_smid));
6572
6573 ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6574 sizeof(u16), GFP_KERNEL);
6575 if (!ioc->io_queue_num)
6576 goto out;
6577 /*
6578 * The number of NVMe page sized blocks needed is:
6579 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6580 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6581 * that is placed in the main message frame. 8 is the size of each PRP
6582 * entry or PRP list pointer entry. 8 is subtracted from page_size
6583 * because of the PRP list pointer entry at the end of a page, so this
6584 * is not counted as a PRP entry. The 1 added page is a round up.
6585 *
6586 * To avoid allocation failures due to the amount of memory that could
6587 * be required for NVMe PRP's, only each set of NVMe blocks will be
6588 * contiguous, so a new set is allocated for each possible I/O.
6589 */
6590
6591 ioc->chains_per_prp_buffer = 0;
6592 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6593 nvme_blocks_needed =
6594 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6595 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6596 nvme_blocks_needed++;
6597
6598 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6599 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6600 if (!ioc->pcie_sg_lookup) {
6601 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6602 goto out;
6603 }
6604 sz = nvme_blocks_needed * ioc->page_size;
6605 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6606 if (rc == -ENOMEM)
6607 return -ENOMEM;
6608 else if (rc == -EAGAIN)
6609 goto try_32bit_dma;
6610 total_sz += sz * ioc->scsiio_depth;
6611 }
6612
6613 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6614 if (rc == -ENOMEM)
6615 return -ENOMEM;
6616 else if (rc == -EAGAIN)
6617 goto try_32bit_dma;
6618 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6619 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6620 dinitprintk(ioc,
6621 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6622 ioc->chain_depth, ioc->chain_segment_sz,
6623 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6624 /* sense buffers, 4 byte align */
6625 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6626 rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6627 if (rc == -ENOMEM)
6628 return -ENOMEM;
6629 else if (rc == -EAGAIN)
6630 goto try_32bit_dma;
6631 total_sz += sense_sz;
6632 /* reply pool, 4 byte align */
6633 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6634 rc = _base_allocate_reply_pool(ioc, sz);
6635 if (rc == -ENOMEM)
6636 return -ENOMEM;
6637 else if (rc == -EAGAIN)
6638 goto try_32bit_dma;
6639 total_sz += sz;
6640
6641 /* reply free queue, 16 byte align */
6642 sz = ioc->reply_free_queue_depth * 4;
6643 rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6644 if (rc == -ENOMEM)
6645 return -ENOMEM;
6646 else if (rc == -EAGAIN)
6647 goto try_32bit_dma;
6648 dinitprintk(ioc,
6649 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6650 (unsigned long long)ioc->reply_free_dma));
6651 total_sz += sz;
6652 if (ioc->rdpq_array_enable) {
6653 reply_post_free_array_sz = ioc->reply_queue_count *
6654 sizeof(Mpi2IOCInitRDPQArrayEntry);
6655 rc = _base_allocate_reply_post_free_array(ioc,
6656 reply_post_free_array_sz);
6657 if (rc == -ENOMEM)
6658 return -ENOMEM;
6659 else if (rc == -EAGAIN)
6660 goto try_32bit_dma;
6661 }
6662 ioc->config_page_sz = 512;
6663 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6664 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6665 if (!ioc->config_page) {
6666 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6667 goto out;
6668 }
6669
6670 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6671 ioc->config_page, (unsigned long long)ioc->config_page_dma,
6672 ioc->config_page_sz);
6673 total_sz += ioc->config_page_sz;
6674
6675 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6676 total_sz / 1024);
6677 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6678 ioc->shost->can_queue, facts->RequestCredit);
6679 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6680 ioc->shost->sg_tablesize);
6681 return 0;
6682
6683 try_32bit_dma:
6684 _base_release_memory_pools(ioc);
6685 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6686 /* Change dma coherent mask to 32 bit and reallocate */
6687 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6688 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6689 pci_name(ioc->pdev));
6690 return -ENODEV;
6691 }
6692 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6693 return -ENOMEM;
6694 goto retry_allocation;
6695
6696 out:
6697 return -ENOMEM;
6698 }
6699
6700 /**
6701 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6702 * @ioc: Pointer to MPT_ADAPTER structure
6703 * @cooked: Request raw or cooked IOC state
6704 *
6705 * Return: all IOC Doorbell register bits if cooked==0, else just the
6706 * Doorbell bits in MPI_IOC_STATE_MASK.
6707 */
6708 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)6709 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6710 {
6711 u32 s, sc;
6712
6713 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6714 sc = s & MPI2_IOC_STATE_MASK;
6715 return cooked ? sc : s;
6716 }
6717
6718 /**
6719 * _base_wait_on_iocstate - waiting on a particular ioc state
6720 * @ioc: ?
6721 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6722 * @timeout: timeout in second
6723 *
6724 * Return: 0 for success, non-zero for failure.
6725 */
6726 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)6727 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6728 {
6729 u32 count, cntdn;
6730 u32 current_state;
6731
6732 count = 0;
6733 cntdn = 1000 * timeout;
6734 do {
6735 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6736 if (current_state == ioc_state)
6737 return 0;
6738 if (count && current_state == MPI2_IOC_STATE_FAULT)
6739 break;
6740 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6741 break;
6742
6743 usleep_range(1000, 1500);
6744 count++;
6745 } while (--cntdn);
6746
6747 return current_state;
6748 }
6749
6750 /**
6751 * _base_dump_reg_set - This function will print hexdump of register set.
6752 * @ioc: per adapter object
6753 *
6754 * Return: nothing.
6755 */
6756 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)6757 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6758 {
6759 unsigned int i, sz = 256;
6760 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6761
6762 ioc_info(ioc, "System Register set:\n");
6763 for (i = 0; i < (sz / sizeof(u32)); i++)
6764 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
6765 }
6766
6767 /**
6768 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6769 * a write to the doorbell)
6770 * @ioc: per adapter object
6771 * @timeout: timeout in seconds
6772 *
6773 * Return: 0 for success, non-zero for failure.
6774 *
6775 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6776 */
6777
6778 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6779 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6780 {
6781 u32 cntdn, count;
6782 u32 int_status;
6783
6784 count = 0;
6785 cntdn = 1000 * timeout;
6786 do {
6787 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6788 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6789 dhsprintk(ioc,
6790 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6791 __func__, count, timeout));
6792 return 0;
6793 }
6794
6795 usleep_range(1000, 1500);
6796 count++;
6797 } while (--cntdn);
6798
6799 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6800 __func__, count, int_status);
6801 return -EFAULT;
6802 }
6803
6804 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6805 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6806 {
6807 u32 cntdn, count;
6808 u32 int_status;
6809
6810 count = 0;
6811 cntdn = 2000 * timeout;
6812 do {
6813 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6814 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6815 dhsprintk(ioc,
6816 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6817 __func__, count, timeout));
6818 return 0;
6819 }
6820
6821 udelay(500);
6822 count++;
6823 } while (--cntdn);
6824
6825 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6826 __func__, count, int_status);
6827 return -EFAULT;
6828
6829 }
6830
6831 /**
6832 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6833 * @ioc: per adapter object
6834 * @timeout: timeout in second
6835 *
6836 * Return: 0 for success, non-zero for failure.
6837 *
6838 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6839 * doorbell.
6840 */
6841 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)6842 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6843 {
6844 u32 cntdn, count;
6845 u32 int_status;
6846 u32 doorbell;
6847
6848 count = 0;
6849 cntdn = 1000 * timeout;
6850 do {
6851 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6852 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6853 dhsprintk(ioc,
6854 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6855 __func__, count, timeout));
6856 return 0;
6857 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6858 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6859 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6860 MPI2_IOC_STATE_FAULT) {
6861 mpt3sas_print_fault_code(ioc, doorbell);
6862 return -EFAULT;
6863 }
6864 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6865 MPI2_IOC_STATE_COREDUMP) {
6866 mpt3sas_print_coredump_info(ioc, doorbell);
6867 return -EFAULT;
6868 }
6869 } else if (int_status == 0xFFFFFFFF)
6870 goto out;
6871
6872 usleep_range(1000, 1500);
6873 count++;
6874 } while (--cntdn);
6875
6876 out:
6877 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6878 __func__, count, int_status);
6879 return -EFAULT;
6880 }
6881
6882 /**
6883 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6884 * @ioc: per adapter object
6885 * @timeout: timeout in second
6886 *
6887 * Return: 0 for success, non-zero for failure.
6888 */
6889 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)6890 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6891 {
6892 u32 cntdn, count;
6893 u32 doorbell_reg;
6894
6895 count = 0;
6896 cntdn = 1000 * timeout;
6897 do {
6898 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6899 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6900 dhsprintk(ioc,
6901 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6902 __func__, count, timeout));
6903 return 0;
6904 }
6905
6906 usleep_range(1000, 1500);
6907 count++;
6908 } while (--cntdn);
6909
6910 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6911 __func__, count, doorbell_reg);
6912 return -EFAULT;
6913 }
6914
6915 /**
6916 * _base_send_ioc_reset - send doorbell reset
6917 * @ioc: per adapter object
6918 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6919 * @timeout: timeout in second
6920 *
6921 * Return: 0 for success, non-zero for failure.
6922 */
6923 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)6924 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6925 {
6926 u32 ioc_state;
6927 int r = 0;
6928 unsigned long flags;
6929
6930 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6931 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6932 return -EFAULT;
6933 }
6934
6935 if (!(ioc->facts.IOCCapabilities &
6936 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6937 return -EFAULT;
6938
6939 ioc_info(ioc, "sending message unit reset !!\n");
6940
6941 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6942 &ioc->chip->Doorbell);
6943 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6944 r = -EFAULT;
6945 goto out;
6946 }
6947
6948 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6949 if (ioc_state) {
6950 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6951 __func__, ioc_state);
6952 r = -EFAULT;
6953 goto out;
6954 }
6955 out:
6956 if (r != 0) {
6957 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6958 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6959 /*
6960 * Wait for IOC state CoreDump to clear only during
6961 * HBA initialization & release time.
6962 */
6963 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6964 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6965 ioc->fault_reset_work_q == NULL)) {
6966 spin_unlock_irqrestore(
6967 &ioc->ioc_reset_in_progress_lock, flags);
6968 mpt3sas_print_coredump_info(ioc, ioc_state);
6969 mpt3sas_base_wait_for_coredump_completion(ioc,
6970 __func__);
6971 spin_lock_irqsave(
6972 &ioc->ioc_reset_in_progress_lock, flags);
6973 }
6974 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6975 }
6976 ioc_info(ioc, "message unit reset: %s\n",
6977 r == 0 ? "SUCCESS" : "FAILED");
6978 return r;
6979 }
6980
6981 /**
6982 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6983 * @ioc: per adapter object
6984 * @timeout: timeout in seconds
6985 *
6986 * Return: Waits up to timeout seconds for the IOC to
6987 * become operational. Returns 0 if IOC is present
6988 * and operational; otherwise returns %-EFAULT.
6989 */
6990
6991 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)6992 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6993 {
6994 int wait_state_count = 0;
6995 u32 ioc_state;
6996
6997 do {
6998 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6999 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
7000 break;
7001
7002 /*
7003 * Watchdog thread will be started after IOC Initialization, so
7004 * no need to wait here for IOC state to become operational
7005 * when IOC Initialization is on. Instead the driver will
7006 * return ETIME status, so that calling function can issue
7007 * diag reset operation and retry the command.
7008 */
7009 if (ioc->is_driver_loading)
7010 return -ETIME;
7011
7012 ssleep(1);
7013 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7014 __func__, ++wait_state_count);
7015 } while (--timeout);
7016 if (!timeout) {
7017 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7018 return -EFAULT;
7019 }
7020 if (wait_state_count)
7021 ioc_info(ioc, "ioc is operational\n");
7022 return 0;
7023 }
7024
7025 /**
7026 * _base_handshake_req_reply_wait - send request thru doorbell interface
7027 * @ioc: per adapter object
7028 * @request_bytes: request length
7029 * @request: pointer having request payload
7030 * @reply_bytes: reply length
7031 * @reply: pointer to reply payload
7032 * @timeout: timeout in second
7033 *
7034 * Return: 0 for success, non-zero for failure.
7035 */
7036 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)7037 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7038 u32 *request, int reply_bytes, u16 *reply, int timeout)
7039 {
7040 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7041 int i;
7042 u8 failed;
7043 __le32 *mfp;
7044 int ret_val;
7045
7046 /* make sure doorbell is not in use */
7047 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7048 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7049 goto doorbell_diag_reset;
7050 }
7051
7052 /* clear pending doorbell interrupts from previous state changes */
7053 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7054 MPI2_HIS_IOC2SYS_DB_STATUS)
7055 writel(0, &ioc->chip->HostInterruptStatus);
7056
7057 /* send message to ioc */
7058 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7059 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7060 &ioc->chip->Doorbell);
7061
7062 if ((_base_spin_on_doorbell_int(ioc, 5))) {
7063 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7064 __LINE__);
7065 return -EFAULT;
7066 }
7067 writel(0, &ioc->chip->HostInterruptStatus);
7068
7069 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7070 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7071 __LINE__);
7072 return -EFAULT;
7073 }
7074
7075 /* send message 32-bits at a time */
7076 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7077 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7078 if ((_base_wait_for_doorbell_ack(ioc, 5)))
7079 failed = 1;
7080 }
7081
7082 if (failed) {
7083 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7084 __LINE__);
7085 return -EFAULT;
7086 }
7087
7088 /* now wait for the reply */
7089 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7090 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7091 __LINE__);
7092 return -EFAULT;
7093 }
7094
7095 /* read the first two 16-bits, it gives the total length of the reply */
7096 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7097 & MPI2_DOORBELL_DATA_MASK);
7098 writel(0, &ioc->chip->HostInterruptStatus);
7099 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7100 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7101 __LINE__);
7102 return -EFAULT;
7103 }
7104 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7105 & MPI2_DOORBELL_DATA_MASK);
7106 writel(0, &ioc->chip->HostInterruptStatus);
7107
7108 for (i = 2; i < default_reply->MsgLength * 2; i++) {
7109 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7110 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7111 __LINE__);
7112 return -EFAULT;
7113 }
7114 if (i >= reply_bytes/2) /* overflow case */
7115 ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7116 else
7117 reply[i] = le16_to_cpu(
7118 ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7119 & MPI2_DOORBELL_DATA_MASK);
7120 writel(0, &ioc->chip->HostInterruptStatus);
7121 }
7122
7123 _base_wait_for_doorbell_int(ioc, 5);
7124 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7125 dhsprintk(ioc,
7126 ioc_info(ioc, "doorbell is in use (line=%d)\n",
7127 __LINE__));
7128 }
7129 writel(0, &ioc->chip->HostInterruptStatus);
7130
7131 if (ioc->logging_level & MPT_DEBUG_INIT) {
7132 mfp = (__le32 *)reply;
7133 pr_info("\toffset:data\n");
7134 for (i = 0; i < reply_bytes/4; i++)
7135 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7136 le32_to_cpu(mfp[i]));
7137 }
7138 return 0;
7139
7140 doorbell_diag_reset:
7141 ret_val = _base_diag_reset(ioc);
7142 return ret_val;
7143 }
7144
7145 /**
7146 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7147 * @ioc: per adapter object
7148 * @mpi_reply: the reply payload from FW
7149 * @mpi_request: the request payload sent to FW
7150 *
7151 * The SAS IO Unit Control Request message allows the host to perform low-level
7152 * operations, such as resets on the PHYs of the IO Unit, also allows the host
7153 * to obtain the IOC assigned device handles for a device if it has other
7154 * identifying information about the device, in addition allows the host to
7155 * remove IOC resources associated with the device.
7156 *
7157 * Return: 0 for success, non-zero for failure.
7158 */
7159 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)7160 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7161 Mpi2SasIoUnitControlReply_t *mpi_reply,
7162 Mpi2SasIoUnitControlRequest_t *mpi_request)
7163 {
7164 u16 smid;
7165 u8 issue_reset = 0;
7166 int rc;
7167 void *request;
7168
7169 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7170
7171 mutex_lock(&ioc->base_cmds.mutex);
7172
7173 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7174 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7175 rc = -EAGAIN;
7176 goto out;
7177 }
7178
7179 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7180 if (rc)
7181 goto out;
7182
7183 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7184 if (!smid) {
7185 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7186 rc = -EAGAIN;
7187 goto out;
7188 }
7189
7190 rc = 0;
7191 ioc->base_cmds.status = MPT3_CMD_PENDING;
7192 request = mpt3sas_base_get_msg_frame(ioc, smid);
7193 ioc->base_cmds.smid = smid;
7194 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7195 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7196 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7197 ioc->ioc_link_reset_in_progress = 1;
7198 init_completion(&ioc->base_cmds.done);
7199 ioc->put_smid_default(ioc, smid);
7200 wait_for_completion_timeout(&ioc->base_cmds.done,
7201 msecs_to_jiffies(10000));
7202 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7203 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7204 ioc->ioc_link_reset_in_progress)
7205 ioc->ioc_link_reset_in_progress = 0;
7206 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7207 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7208 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7209 issue_reset);
7210 goto issue_host_reset;
7211 }
7212 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7213 memcpy(mpi_reply, ioc->base_cmds.reply,
7214 sizeof(Mpi2SasIoUnitControlReply_t));
7215 else
7216 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7217 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7218 goto out;
7219
7220 issue_host_reset:
7221 if (issue_reset)
7222 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7223 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7224 rc = -EFAULT;
7225 out:
7226 mutex_unlock(&ioc->base_cmds.mutex);
7227 return rc;
7228 }
7229
7230 /**
7231 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7232 * @ioc: per adapter object
7233 * @mpi_reply: the reply payload from FW
7234 * @mpi_request: the request payload sent to FW
7235 *
7236 * The SCSI Enclosure Processor request message causes the IOC to
7237 * communicate with SES devices to control LED status signals.
7238 *
7239 * Return: 0 for success, non-zero for failure.
7240 */
7241 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)7242 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7243 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7244 {
7245 u16 smid;
7246 u8 issue_reset = 0;
7247 int rc;
7248 void *request;
7249
7250 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7251
7252 mutex_lock(&ioc->base_cmds.mutex);
7253
7254 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7255 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7256 rc = -EAGAIN;
7257 goto out;
7258 }
7259
7260 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7261 if (rc)
7262 goto out;
7263
7264 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7265 if (!smid) {
7266 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7267 rc = -EAGAIN;
7268 goto out;
7269 }
7270
7271 rc = 0;
7272 ioc->base_cmds.status = MPT3_CMD_PENDING;
7273 request = mpt3sas_base_get_msg_frame(ioc, smid);
7274 ioc->base_cmds.smid = smid;
7275 memset(request, 0, ioc->request_sz);
7276 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7277 init_completion(&ioc->base_cmds.done);
7278 ioc->put_smid_default(ioc, smid);
7279 wait_for_completion_timeout(&ioc->base_cmds.done,
7280 msecs_to_jiffies(10000));
7281 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7282 mpt3sas_check_cmd_timeout(ioc,
7283 ioc->base_cmds.status, mpi_request,
7284 sizeof(Mpi2SepRequest_t)/4, issue_reset);
7285 goto issue_host_reset;
7286 }
7287 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7288 memcpy(mpi_reply, ioc->base_cmds.reply,
7289 sizeof(Mpi2SepReply_t));
7290 else
7291 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7292 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7293 goto out;
7294
7295 issue_host_reset:
7296 if (issue_reset)
7297 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7298 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7299 rc = -EFAULT;
7300 out:
7301 mutex_unlock(&ioc->base_cmds.mutex);
7302 return rc;
7303 }
7304
7305 /**
7306 * _base_get_port_facts - obtain port facts reply and save in ioc
7307 * @ioc: per adapter object
7308 * @port: ?
7309 *
7310 * Return: 0 for success, non-zero for failure.
7311 */
7312 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)7313 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7314 {
7315 Mpi2PortFactsRequest_t mpi_request;
7316 Mpi2PortFactsReply_t mpi_reply;
7317 struct mpt3sas_port_facts *pfacts;
7318 int mpi_reply_sz, mpi_request_sz, r;
7319
7320 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7321
7322 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7323 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7324 memset(&mpi_request, 0, mpi_request_sz);
7325 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7326 mpi_request.PortNumber = port;
7327 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7328 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7329
7330 if (r != 0) {
7331 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7332 return r;
7333 }
7334
7335 pfacts = &ioc->pfacts[port];
7336 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7337 pfacts->PortNumber = mpi_reply.PortNumber;
7338 pfacts->VP_ID = mpi_reply.VP_ID;
7339 pfacts->VF_ID = mpi_reply.VF_ID;
7340 pfacts->MaxPostedCmdBuffers =
7341 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7342
7343 return 0;
7344 }
7345
7346 /**
7347 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7348 * @ioc: per adapter object
7349 * @timeout:
7350 *
7351 * Return: 0 for success, non-zero for failure.
7352 */
7353 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)7354 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7355 {
7356 u32 ioc_state;
7357 int rc;
7358
7359 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7360
7361 if (ioc->pci_error_recovery) {
7362 dfailprintk(ioc,
7363 ioc_info(ioc, "%s: host in pci error recovery\n",
7364 __func__));
7365 return -EFAULT;
7366 }
7367
7368 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7369 dhsprintk(ioc,
7370 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7371 __func__, ioc_state));
7372
7373 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7374 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7375 return 0;
7376
7377 if (ioc_state & MPI2_DOORBELL_USED) {
7378 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7379 goto issue_diag_reset;
7380 }
7381
7382 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7383 mpt3sas_print_fault_code(ioc, ioc_state &
7384 MPI2_DOORBELL_DATA_MASK);
7385 goto issue_diag_reset;
7386 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7387 MPI2_IOC_STATE_COREDUMP) {
7388 ioc_info(ioc,
7389 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7390 __func__, ioc_state);
7391 return -EFAULT;
7392 }
7393
7394 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7395 if (ioc_state) {
7396 dfailprintk(ioc,
7397 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7398 __func__, ioc_state));
7399 return -EFAULT;
7400 }
7401
7402 return 0;
7403
7404 issue_diag_reset:
7405 rc = _base_diag_reset(ioc);
7406 return rc;
7407 }
7408
7409 /**
7410 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7411 * @ioc: per adapter object
7412 *
7413 * Return: 0 for success, non-zero for failure.
7414 */
7415 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)7416 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7417 {
7418 Mpi2IOCFactsRequest_t mpi_request;
7419 Mpi2IOCFactsReply_t mpi_reply;
7420 struct mpt3sas_facts *facts;
7421 int mpi_reply_sz, mpi_request_sz, r;
7422
7423 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7424
7425 r = _base_wait_for_iocstate(ioc, 10);
7426 if (r) {
7427 dfailprintk(ioc,
7428 ioc_info(ioc, "%s: failed getting to correct state\n",
7429 __func__));
7430 return r;
7431 }
7432 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7433 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7434 memset(&mpi_request, 0, mpi_request_sz);
7435 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7436 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7437 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7438
7439 if (r != 0) {
7440 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7441 return r;
7442 }
7443
7444 facts = &ioc->facts;
7445 memset(facts, 0, sizeof(struct mpt3sas_facts));
7446 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7447 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7448 facts->VP_ID = mpi_reply.VP_ID;
7449 facts->VF_ID = mpi_reply.VF_ID;
7450 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7451 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7452 facts->WhoInit = mpi_reply.WhoInit;
7453 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7454 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7455 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7456 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7457 ioc->combined_reply_queue = 0;
7458 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7459 facts->MaxReplyDescriptorPostQueueDepth =
7460 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7461 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7462 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7463 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7464 ioc->ir_firmware = 1;
7465 if ((facts->IOCCapabilities &
7466 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7467 ioc->rdpq_array_capable = 1;
7468 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7469 && ioc->is_aero_ioc)
7470 ioc->atomic_desc_capable = 1;
7471 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7472 facts->IOCRequestFrameSize =
7473 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7474 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7475 facts->IOCMaxChainSegmentSize =
7476 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7477 }
7478 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7479 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7480 ioc->shost->max_id = -1;
7481 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7482 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7483 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7484 facts->HighPriorityCredit =
7485 le16_to_cpu(mpi_reply.HighPriorityCredit);
7486 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7487 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7488 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7489
7490 /*
7491 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7492 */
7493 ioc->page_size = 1 << facts->CurrentHostPageSize;
7494 if (ioc->page_size == 1) {
7495 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7496 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7497 }
7498 dinitprintk(ioc,
7499 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7500 facts->CurrentHostPageSize));
7501
7502 dinitprintk(ioc,
7503 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7504 facts->RequestCredit, facts->MaxChainDepth));
7505 dinitprintk(ioc,
7506 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7507 facts->IOCRequestFrameSize * 4,
7508 facts->ReplyFrameSize * 4));
7509 return 0;
7510 }
7511
7512 /**
7513 * _base_send_ioc_init - send ioc_init to firmware
7514 * @ioc: per adapter object
7515 *
7516 * Return: 0 for success, non-zero for failure.
7517 */
7518 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)7519 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7520 {
7521 Mpi2IOCInitRequest_t mpi_request;
7522 Mpi2IOCInitReply_t mpi_reply;
7523 int i, r = 0;
7524 ktime_t current_time;
7525 u16 ioc_status;
7526 u32 reply_post_free_array_sz = 0;
7527
7528 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7529
7530 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7531 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7532 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7533 mpi_request.VF_ID = 0; /* TODO */
7534 mpi_request.VP_ID = 0;
7535 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7536 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7537 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7538
7539 if (_base_is_controller_msix_enabled(ioc))
7540 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7541 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7542 mpi_request.ReplyDescriptorPostQueueDepth =
7543 cpu_to_le16(ioc->reply_post_queue_depth);
7544 mpi_request.ReplyFreeQueueDepth =
7545 cpu_to_le16(ioc->reply_free_queue_depth);
7546
7547 mpi_request.SenseBufferAddressHigh =
7548 cpu_to_le32((u64)ioc->sense_dma >> 32);
7549 mpi_request.SystemReplyAddressHigh =
7550 cpu_to_le32((u64)ioc->reply_dma >> 32);
7551 mpi_request.SystemRequestFrameBaseAddress =
7552 cpu_to_le64((u64)ioc->request_dma);
7553 mpi_request.ReplyFreeQueueAddress =
7554 cpu_to_le64((u64)ioc->reply_free_dma);
7555
7556 if (ioc->rdpq_array_enable) {
7557 reply_post_free_array_sz = ioc->reply_queue_count *
7558 sizeof(Mpi2IOCInitRDPQArrayEntry);
7559 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7560 for (i = 0; i < ioc->reply_queue_count; i++)
7561 ioc->reply_post_free_array[i].RDPQBaseAddress =
7562 cpu_to_le64(
7563 (u64)ioc->reply_post[i].reply_post_free_dma);
7564 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7565 mpi_request.ReplyDescriptorPostQueueAddress =
7566 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7567 } else {
7568 mpi_request.ReplyDescriptorPostQueueAddress =
7569 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7570 }
7571
7572 /*
7573 * Set the flag to enable CoreDump state feature in IOC firmware.
7574 */
7575 mpi_request.ConfigurationFlags |=
7576 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7577
7578 /* This time stamp specifies number of milliseconds
7579 * since epoch ~ midnight January 1, 1970.
7580 */
7581 current_time = ktime_get_real();
7582 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7583
7584 if (ioc->logging_level & MPT_DEBUG_INIT) {
7585 __le32 *mfp;
7586 int i;
7587
7588 mfp = (__le32 *)&mpi_request;
7589 ioc_info(ioc, "\toffset:data\n");
7590 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7591 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7592 le32_to_cpu(mfp[i]));
7593 }
7594
7595 r = _base_handshake_req_reply_wait(ioc,
7596 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7597 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7598
7599 if (r != 0) {
7600 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7601 return r;
7602 }
7603
7604 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7605 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7606 mpi_reply.IOCLogInfo) {
7607 ioc_err(ioc, "%s: failed\n", __func__);
7608 r = -EIO;
7609 }
7610
7611 /* Reset TimeSync Counter*/
7612 ioc->timestamp_update_count = 0;
7613 return r;
7614 }
7615
7616 /**
7617 * mpt3sas_port_enable_done - command completion routine for port enable
7618 * @ioc: per adapter object
7619 * @smid: system request message index
7620 * @msix_index: MSIX table index supplied by the OS
7621 * @reply: reply message frame(lower 32bit addr)
7622 *
7623 * Return: 1 meaning mf should be freed from _base_interrupt
7624 * 0 means the mf is freed from this function.
7625 */
7626 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)7627 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7628 u32 reply)
7629 {
7630 MPI2DefaultReply_t *mpi_reply;
7631 u16 ioc_status;
7632
7633 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7634 return 1;
7635
7636 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7637 if (!mpi_reply)
7638 return 1;
7639
7640 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7641 return 1;
7642
7643 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7644 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7645 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7646 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7647 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7648 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7649 ioc->port_enable_failed = 1;
7650
7651 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7652 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7653 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7654 mpt3sas_port_enable_complete(ioc);
7655 return 1;
7656 } else {
7657 ioc->start_scan_failed = ioc_status;
7658 ioc->start_scan = 0;
7659 return 1;
7660 }
7661 }
7662 complete(&ioc->port_enable_cmds.done);
7663 return 1;
7664 }
7665
7666 /**
7667 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7668 * @ioc: per adapter object
7669 *
7670 * Return: 0 for success, non-zero for failure.
7671 */
7672 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)7673 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7674 {
7675 Mpi2PortEnableRequest_t *mpi_request;
7676 Mpi2PortEnableReply_t *mpi_reply;
7677 int r = 0;
7678 u16 smid;
7679 u16 ioc_status;
7680
7681 ioc_info(ioc, "sending port enable !!\n");
7682
7683 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7684 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7685 return -EAGAIN;
7686 }
7687
7688 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7689 if (!smid) {
7690 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7691 return -EAGAIN;
7692 }
7693
7694 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7695 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7696 ioc->port_enable_cmds.smid = smid;
7697 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7698 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7699
7700 init_completion(&ioc->port_enable_cmds.done);
7701 ioc->put_smid_default(ioc, smid);
7702 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7703 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7704 ioc_err(ioc, "%s: timeout\n", __func__);
7705 _debug_dump_mf(mpi_request,
7706 sizeof(Mpi2PortEnableRequest_t)/4);
7707 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7708 r = -EFAULT;
7709 else
7710 r = -ETIME;
7711 goto out;
7712 }
7713
7714 mpi_reply = ioc->port_enable_cmds.reply;
7715 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7716 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7717 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7718 __func__, ioc_status);
7719 r = -EFAULT;
7720 goto out;
7721 }
7722
7723 out:
7724 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7725 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7726 return r;
7727 }
7728
7729 /**
7730 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7731 * @ioc: per adapter object
7732 *
7733 * Return: 0 for success, non-zero for failure.
7734 */
7735 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)7736 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7737 {
7738 Mpi2PortEnableRequest_t *mpi_request;
7739 u16 smid;
7740
7741 ioc_info(ioc, "sending port enable !!\n");
7742
7743 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7744 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7745 return -EAGAIN;
7746 }
7747
7748 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7749 if (!smid) {
7750 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7751 return -EAGAIN;
7752 }
7753 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7754 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7755 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7756 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7757 ioc->port_enable_cmds.smid = smid;
7758 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7759 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7760
7761 ioc->put_smid_default(ioc, smid);
7762 return 0;
7763 }
7764
7765 /**
7766 * _base_determine_wait_on_discovery - desposition
7767 * @ioc: per adapter object
7768 *
7769 * Decide whether to wait on discovery to complete. Used to either
7770 * locate boot device, or report volumes ahead of physical devices.
7771 *
7772 * Return: 1 for wait, 0 for don't wait.
7773 */
7774 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)7775 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7776 {
7777 /* We wait for discovery to complete if IR firmware is loaded.
7778 * The sas topology events arrive before PD events, so we need time to
7779 * turn on the bit in ioc->pd_handles to indicate PD
7780 * Also, it maybe required to report Volumes ahead of physical
7781 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7782 */
7783 if (ioc->ir_firmware)
7784 return 1;
7785
7786 /* if no Bios, then we don't need to wait */
7787 if (!ioc->bios_pg3.BiosVersion)
7788 return 0;
7789
7790 /* Bios is present, then we drop down here.
7791 *
7792 * If there any entries in the Bios Page 2, then we wait
7793 * for discovery to complete.
7794 */
7795
7796 /* Current Boot Device */
7797 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7798 MPI2_BIOSPAGE2_FORM_MASK) ==
7799 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7800 /* Request Boot Device */
7801 (ioc->bios_pg2.ReqBootDeviceForm &
7802 MPI2_BIOSPAGE2_FORM_MASK) ==
7803 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7804 /* Alternate Request Boot Device */
7805 (ioc->bios_pg2.ReqAltBootDeviceForm &
7806 MPI2_BIOSPAGE2_FORM_MASK) ==
7807 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7808 return 0;
7809
7810 return 1;
7811 }
7812
7813 /**
7814 * _base_unmask_events - turn on notification for this event
7815 * @ioc: per adapter object
7816 * @event: firmware event
7817 *
7818 * The mask is stored in ioc->event_masks.
7819 */
7820 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)7821 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7822 {
7823 u32 desired_event;
7824
7825 if (event >= 128)
7826 return;
7827
7828 desired_event = (1 << (event % 32));
7829
7830 if (event < 32)
7831 ioc->event_masks[0] &= ~desired_event;
7832 else if (event < 64)
7833 ioc->event_masks[1] &= ~desired_event;
7834 else if (event < 96)
7835 ioc->event_masks[2] &= ~desired_event;
7836 else if (event < 128)
7837 ioc->event_masks[3] &= ~desired_event;
7838 }
7839
7840 /**
7841 * _base_event_notification - send event notification
7842 * @ioc: per adapter object
7843 *
7844 * Return: 0 for success, non-zero for failure.
7845 */
7846 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)7847 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7848 {
7849 Mpi2EventNotificationRequest_t *mpi_request;
7850 u16 smid;
7851 int r = 0;
7852 int i, issue_diag_reset = 0;
7853
7854 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7855
7856 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7857 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7858 return -EAGAIN;
7859 }
7860
7861 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7862 if (!smid) {
7863 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7864 return -EAGAIN;
7865 }
7866 ioc->base_cmds.status = MPT3_CMD_PENDING;
7867 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7868 ioc->base_cmds.smid = smid;
7869 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7870 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7871 mpi_request->VF_ID = 0; /* TODO */
7872 mpi_request->VP_ID = 0;
7873 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7874 mpi_request->EventMasks[i] =
7875 cpu_to_le32(ioc->event_masks[i]);
7876 init_completion(&ioc->base_cmds.done);
7877 ioc->put_smid_default(ioc, smid);
7878 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7879 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7880 ioc_err(ioc, "%s: timeout\n", __func__);
7881 _debug_dump_mf(mpi_request,
7882 sizeof(Mpi2EventNotificationRequest_t)/4);
7883 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7884 r = -EFAULT;
7885 else
7886 issue_diag_reset = 1;
7887
7888 } else
7889 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7890 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7891
7892 if (issue_diag_reset) {
7893 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7894 return -EFAULT;
7895 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7896 return -EFAULT;
7897 r = -EAGAIN;
7898 }
7899 return r;
7900 }
7901
7902 /**
7903 * mpt3sas_base_validate_event_type - validating event types
7904 * @ioc: per adapter object
7905 * @event_type: firmware event
7906 *
7907 * This will turn on firmware event notification when application
7908 * ask for that event. We don't mask events that are already enabled.
7909 */
7910 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)7911 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7912 {
7913 int i, j;
7914 u32 event_mask, desired_event;
7915 u8 send_update_to_fw;
7916
7917 for (i = 0, send_update_to_fw = 0; i <
7918 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7919 event_mask = ~event_type[i];
7920 desired_event = 1;
7921 for (j = 0; j < 32; j++) {
7922 if (!(event_mask & desired_event) &&
7923 (ioc->event_masks[i] & desired_event)) {
7924 ioc->event_masks[i] &= ~desired_event;
7925 send_update_to_fw = 1;
7926 }
7927 desired_event = (desired_event << 1);
7928 }
7929 }
7930
7931 if (!send_update_to_fw)
7932 return;
7933
7934 mutex_lock(&ioc->base_cmds.mutex);
7935 _base_event_notification(ioc);
7936 mutex_unlock(&ioc->base_cmds.mutex);
7937 }
7938
7939 /**
7940 * mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes
7941 * @ioc: per adapter object
7942 * @host_diagnostic: host diagnostic register content
7943 *
7944 * Return: 0 for success, non-zero for failure.
7945 */
7946
7947 int
mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER * ioc,u32 * host_diagnostic)7948 mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc,
7949 u32 *host_diagnostic)
7950 {
7951
7952 u32 count;
7953 *host_diagnostic = 0;
7954 count = 0;
7955
7956 do {
7957 /* Write magic sequence to WriteSequence register
7958 * Loop until in diagnostic mode
7959 */
7960 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7961 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7962 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7963 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7964 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7965 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7966 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7967 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7968
7969 /* wait 100 msec */
7970 msleep(100);
7971
7972 if (count++ > 20) {
7973 ioc_info(ioc,
7974 "Stop writing magic sequence after 20 retries\n");
7975 _base_dump_reg_set(ioc);
7976 return -EFAULT;
7977 }
7978
7979 *host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7980 drsprintk(ioc,
7981 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7982 count, *host_diagnostic));
7983
7984 } while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7985 return 0;
7986 }
7987
7988 /**
7989 * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes
7990 * @ioc: per adapter object
7991 */
7992
7993 void
mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER * ioc)7994 mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc)
7995 {
7996 drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n"));
7997 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7998 }
7999
8000 /**
8001 * _base_diag_reset - the "big hammer" start of day reset
8002 * @ioc: per adapter object
8003 *
8004 * Return: 0 for success, non-zero for failure.
8005 */
8006 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)8007 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
8008 {
8009 u32 host_diagnostic;
8010 u32 ioc_state;
8011 u32 count;
8012 u32 hcb_size;
8013
8014 ioc_info(ioc, "sending diag reset !!\n");
8015
8016 pci_cfg_access_lock(ioc->pdev);
8017
8018 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
8019
8020 mutex_lock(&ioc->hostdiag_unlock_mutex);
8021 if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, &host_diagnostic))
8022 goto out;
8023
8024 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
8025 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
8026 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
8027 &ioc->chip->HostDiagnostic);
8028
8029 /* This delay allows the chip PCIe hardware time to finish reset tasks */
8030 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
8031
8032 /* Approximately 300 second max wait */
8033 for (count = 0; count < (300000000 /
8034 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
8035
8036 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
8037
8038 if (host_diagnostic == 0xFFFFFFFF) {
8039 ioc_info(ioc,
8040 "Invalid host diagnostic register value\n");
8041 _base_dump_reg_set(ioc);
8042 goto out;
8043 }
8044 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
8045 break;
8046
8047 /* Wait to pass the second read delay window */
8048 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000);
8049 }
8050
8051 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8052
8053 drsprintk(ioc,
8054 ioc_info(ioc, "restart the adapter assuming the\n"
8055 "HCB Address points to good F/W\n"));
8056 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8057 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8058 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8059
8060 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8061 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8062 &ioc->chip->HCBSize);
8063 }
8064
8065 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8066 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8067 &ioc->chip->HostDiagnostic);
8068
8069 mpt3sas_base_lock_host_diagnostic(ioc);
8070 mutex_unlock(&ioc->hostdiag_unlock_mutex);
8071
8072 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8073 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8074 if (ioc_state) {
8075 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8076 __func__, ioc_state);
8077 _base_dump_reg_set(ioc);
8078 goto out;
8079 }
8080
8081 pci_cfg_access_unlock(ioc->pdev);
8082 ioc_info(ioc, "diag reset: SUCCESS\n");
8083 return 0;
8084
8085 out:
8086 pci_cfg_access_unlock(ioc->pdev);
8087 ioc_err(ioc, "diag reset: FAILED\n");
8088 mutex_unlock(&ioc->hostdiag_unlock_mutex);
8089 return -EFAULT;
8090 }
8091
8092 /**
8093 * mpt3sas_base_make_ioc_ready - put controller in READY state
8094 * @ioc: per adapter object
8095 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8096 *
8097 * Return: 0 for success, non-zero for failure.
8098 */
8099 int
mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8100 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8101 {
8102 u32 ioc_state;
8103 int rc;
8104 int count;
8105
8106 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8107
8108 if (ioc->pci_error_recovery)
8109 return 0;
8110
8111 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8112 dhsprintk(ioc,
8113 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8114 __func__, ioc_state));
8115
8116 /* if in RESET state, it should move to READY state shortly */
8117 count = 0;
8118 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8119 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8120 MPI2_IOC_STATE_READY) {
8121 if (count++ == 10) {
8122 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8123 __func__, ioc_state);
8124 return -EFAULT;
8125 }
8126 ssleep(1);
8127 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8128 }
8129 }
8130
8131 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8132 return 0;
8133
8134 if (ioc_state & MPI2_DOORBELL_USED) {
8135 ioc_info(ioc, "unexpected doorbell active!\n");
8136 goto issue_diag_reset;
8137 }
8138
8139 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8140 mpt3sas_print_fault_code(ioc, ioc_state &
8141 MPI2_DOORBELL_DATA_MASK);
8142 goto issue_diag_reset;
8143 }
8144
8145 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8146 /*
8147 * if host reset is invoked while watch dog thread is waiting
8148 * for IOC state to be changed to Fault state then driver has
8149 * to wait here for CoreDump state to clear otherwise reset
8150 * will be issued to the FW and FW move the IOC state to
8151 * reset state without copying the FW logs to coredump region.
8152 */
8153 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8154 mpt3sas_print_coredump_info(ioc, ioc_state &
8155 MPI2_DOORBELL_DATA_MASK);
8156 mpt3sas_base_wait_for_coredump_completion(ioc,
8157 __func__);
8158 }
8159 goto issue_diag_reset;
8160 }
8161
8162 if (type == FORCE_BIG_HAMMER)
8163 goto issue_diag_reset;
8164
8165 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8166 if (!(_base_send_ioc_reset(ioc,
8167 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8168 return 0;
8169 }
8170
8171 issue_diag_reset:
8172 rc = _base_diag_reset(ioc);
8173 return rc;
8174 }
8175
8176 /**
8177 * _base_make_ioc_operational - put controller in OPERATIONAL state
8178 * @ioc: per adapter object
8179 *
8180 * Return: 0 for success, non-zero for failure.
8181 */
8182 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)8183 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8184 {
8185 int r, i, index, rc;
8186 unsigned long flags;
8187 u32 reply_address;
8188 u16 smid;
8189 struct _tr_list *delayed_tr, *delayed_tr_next;
8190 struct _sc_list *delayed_sc, *delayed_sc_next;
8191 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8192 u8 hide_flag;
8193 struct adapter_reply_queue *reply_q;
8194 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8195
8196 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8197
8198 /* clean the delayed target reset list */
8199 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8200 &ioc->delayed_tr_list, list) {
8201 list_del(&delayed_tr->list);
8202 kfree(delayed_tr);
8203 }
8204
8205
8206 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8207 &ioc->delayed_tr_volume_list, list) {
8208 list_del(&delayed_tr->list);
8209 kfree(delayed_tr);
8210 }
8211
8212 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8213 &ioc->delayed_sc_list, list) {
8214 list_del(&delayed_sc->list);
8215 kfree(delayed_sc);
8216 }
8217
8218 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8219 &ioc->delayed_event_ack_list, list) {
8220 list_del(&delayed_event_ack->list);
8221 kfree(delayed_event_ack);
8222 }
8223
8224 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8225
8226 /* hi-priority queue */
8227 INIT_LIST_HEAD(&ioc->hpr_free_list);
8228 smid = ioc->hi_priority_smid;
8229 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8230 ioc->hpr_lookup[i].cb_idx = 0xFF;
8231 ioc->hpr_lookup[i].smid = smid;
8232 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8233 &ioc->hpr_free_list);
8234 }
8235
8236 /* internal queue */
8237 INIT_LIST_HEAD(&ioc->internal_free_list);
8238 smid = ioc->internal_smid;
8239 for (i = 0; i < ioc->internal_depth; i++, smid++) {
8240 ioc->internal_lookup[i].cb_idx = 0xFF;
8241 ioc->internal_lookup[i].smid = smid;
8242 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8243 &ioc->internal_free_list);
8244 }
8245
8246 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8247
8248 /* initialize Reply Free Queue */
8249 for (i = 0, reply_address = (u32)ioc->reply_dma ;
8250 i < ioc->reply_free_queue_depth ; i++, reply_address +=
8251 ioc->reply_sz) {
8252 ioc->reply_free[i] = cpu_to_le32(reply_address);
8253 if (ioc->is_mcpu_endpoint)
8254 _base_clone_reply_to_sys_mem(ioc,
8255 reply_address, i);
8256 }
8257
8258 /* initialize reply queues */
8259 if (ioc->is_driver_loading)
8260 _base_assign_reply_queues(ioc);
8261
8262 /* initialize Reply Post Free Queue */
8263 index = 0;
8264 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8265 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8266 /*
8267 * If RDPQ is enabled, switch to the next allocation.
8268 * Otherwise advance within the contiguous region.
8269 */
8270 if (ioc->rdpq_array_enable) {
8271 reply_q->reply_post_free =
8272 ioc->reply_post[index++].reply_post_free;
8273 } else {
8274 reply_q->reply_post_free = reply_post_free_contig;
8275 reply_post_free_contig += ioc->reply_post_queue_depth;
8276 }
8277
8278 reply_q->reply_post_host_index = 0;
8279 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8280 reply_q->reply_post_free[i].Words =
8281 cpu_to_le64(ULLONG_MAX);
8282 if (!_base_is_controller_msix_enabled(ioc))
8283 goto skip_init_reply_post_free_queue;
8284 }
8285 skip_init_reply_post_free_queue:
8286
8287 r = _base_send_ioc_init(ioc);
8288 if (r) {
8289 /*
8290 * No need to check IOC state for fault state & issue
8291 * diag reset during host reset. This check is need
8292 * only during driver load time.
8293 */
8294 if (!ioc->is_driver_loading)
8295 return r;
8296
8297 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8298 if (rc || (_base_send_ioc_init(ioc)))
8299 return r;
8300 }
8301
8302 /* initialize reply free host index */
8303 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8304 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8305
8306 /* initialize reply post host index */
8307 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8308 if (ioc->combined_reply_queue)
8309 writel((reply_q->msix_index & 7)<<
8310 MPI2_RPHI_MSIX_INDEX_SHIFT,
8311 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8312 else
8313 writel(reply_q->msix_index <<
8314 MPI2_RPHI_MSIX_INDEX_SHIFT,
8315 &ioc->chip->ReplyPostHostIndex);
8316
8317 if (!_base_is_controller_msix_enabled(ioc))
8318 goto skip_init_reply_post_host_index;
8319 }
8320
8321 skip_init_reply_post_host_index:
8322
8323 mpt3sas_base_unmask_interrupts(ioc);
8324
8325 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8326 r = _base_display_fwpkg_version(ioc);
8327 if (r)
8328 return r;
8329 }
8330
8331 r = _base_static_config_pages(ioc);
8332 if (r)
8333 return r;
8334
8335 r = _base_event_notification(ioc);
8336 if (r)
8337 return r;
8338
8339 if (!ioc->shost_recovery) {
8340
8341 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8342 == 0x80) {
8343 hide_flag = (u8) (
8344 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8345 MFG_PAGE10_HIDE_SSDS_MASK);
8346 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8347 ioc->mfg_pg10_hide_flag = hide_flag;
8348 }
8349
8350 ioc->wait_for_discovery_to_complete =
8351 _base_determine_wait_on_discovery(ioc);
8352
8353 return r; /* scan_start and scan_finished support */
8354 }
8355
8356 r = _base_send_port_enable(ioc);
8357 if (r)
8358 return r;
8359
8360 return r;
8361 }
8362
8363 /**
8364 * mpt3sas_base_free_resources - free resources controller resources
8365 * @ioc: per adapter object
8366 */
8367 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)8368 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8369 {
8370 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8371
8372 /* synchronizing freeing resource with pci_access_mutex lock */
8373 mutex_lock(&ioc->pci_access_mutex);
8374 if (ioc->chip_phys && ioc->chip) {
8375 mpt3sas_base_mask_interrupts(ioc);
8376 ioc->shost_recovery = 1;
8377 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8378 ioc->shost_recovery = 0;
8379 }
8380
8381 mpt3sas_base_unmap_resources(ioc);
8382 mutex_unlock(&ioc->pci_access_mutex);
8383 return;
8384 }
8385
8386 /**
8387 * mpt3sas_base_attach - attach controller instance
8388 * @ioc: per adapter object
8389 *
8390 * Return: 0 for success, non-zero for failure.
8391 */
8392 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)8393 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8394 {
8395 int r, i, rc;
8396 int cpu_id, last_cpu_id = 0;
8397
8398 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8399
8400 /* setup cpu_msix_table */
8401 ioc->cpu_count = num_online_cpus();
8402 for_each_online_cpu(cpu_id)
8403 last_cpu_id = cpu_id;
8404 ioc->cpu_msix_table_sz = last_cpu_id + 1;
8405 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8406 ioc->reply_queue_count = 1;
8407 if (!ioc->cpu_msix_table) {
8408 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8409 r = -ENOMEM;
8410 goto out_free_resources;
8411 }
8412
8413 if (ioc->is_warpdrive) {
8414 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8415 sizeof(resource_size_t *), GFP_KERNEL);
8416 if (!ioc->reply_post_host_index) {
8417 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8418 r = -ENOMEM;
8419 goto out_free_resources;
8420 }
8421 }
8422
8423 ioc->smp_affinity_enable = smp_affinity_enable;
8424
8425 ioc->rdpq_array_enable_assigned = 0;
8426 ioc->use_32bit_dma = false;
8427 ioc->dma_mask = 64;
8428 if (ioc->is_aero_ioc) {
8429 ioc->base_readl = &_base_readl_aero;
8430 ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8431 } else {
8432 ioc->base_readl = &_base_readl;
8433 ioc->base_readl_ext_retry = &_base_readl;
8434 }
8435 r = mpt3sas_base_map_resources(ioc);
8436 if (r)
8437 goto out_free_resources;
8438
8439 pci_set_drvdata(ioc->pdev, ioc->shost);
8440 r = _base_get_ioc_facts(ioc);
8441 if (r) {
8442 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8443 if (rc || (_base_get_ioc_facts(ioc)))
8444 goto out_free_resources;
8445 }
8446
8447 switch (ioc->hba_mpi_version_belonged) {
8448 case MPI2_VERSION:
8449 ioc->build_sg_scmd = &_base_build_sg_scmd;
8450 ioc->build_sg = &_base_build_sg;
8451 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8452 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8453 break;
8454 case MPI25_VERSION:
8455 case MPI26_VERSION:
8456 /*
8457 * In SAS3.0,
8458 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8459 * Target Status - all require the IEEE formatted scatter gather
8460 * elements.
8461 */
8462 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8463 ioc->build_sg = &_base_build_sg_ieee;
8464 ioc->build_nvme_prp = &_base_build_nvme_prp;
8465 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8466 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8467 if (ioc->high_iops_queues)
8468 ioc->get_msix_index_for_smlio =
8469 &_base_get_high_iops_msix_index;
8470 else
8471 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8472 break;
8473 }
8474 if (ioc->atomic_desc_capable) {
8475 ioc->put_smid_default = &_base_put_smid_default_atomic;
8476 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8477 ioc->put_smid_fast_path =
8478 &_base_put_smid_fast_path_atomic;
8479 ioc->put_smid_hi_priority =
8480 &_base_put_smid_hi_priority_atomic;
8481 } else {
8482 ioc->put_smid_default = &_base_put_smid_default;
8483 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8484 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8485 if (ioc->is_mcpu_endpoint)
8486 ioc->put_smid_scsi_io =
8487 &_base_put_smid_mpi_ep_scsi_io;
8488 else
8489 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8490 }
8491 /*
8492 * These function pointers for other requests that don't
8493 * the require IEEE scatter gather elements.
8494 *
8495 * For example Configuration Pages and SAS IOUNIT Control don't.
8496 */
8497 ioc->build_sg_mpi = &_base_build_sg;
8498 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8499
8500 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8501 if (r)
8502 goto out_free_resources;
8503
8504 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8505 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8506 if (!ioc->pfacts) {
8507 r = -ENOMEM;
8508 goto out_free_resources;
8509 }
8510
8511 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8512 r = _base_get_port_facts(ioc, i);
8513 if (r) {
8514 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8515 if (rc || (_base_get_port_facts(ioc, i)))
8516 goto out_free_resources;
8517 }
8518 }
8519
8520 r = _base_allocate_memory_pools(ioc);
8521 if (r)
8522 goto out_free_resources;
8523
8524 if (irqpoll_weight > 0)
8525 ioc->thresh_hold = irqpoll_weight;
8526 else
8527 ioc->thresh_hold = ioc->hba_queue_depth/4;
8528
8529 _base_init_irqpolls(ioc);
8530 init_waitqueue_head(&ioc->reset_wq);
8531
8532 /* allocate memory pd handle bitmask list */
8533 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8534 if (ioc->facts.MaxDevHandle % 8)
8535 ioc->pd_handles_sz++;
8536 /*
8537 * pd_handles_sz should have, at least, the minimal room for
8538 * set_bit()/test_bit(), otherwise out-of-memory touch may occur.
8539 */
8540 ioc->pd_handles_sz = ALIGN(ioc->pd_handles_sz, sizeof(unsigned long));
8541
8542 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8543 GFP_KERNEL);
8544 if (!ioc->pd_handles) {
8545 r = -ENOMEM;
8546 goto out_free_resources;
8547 }
8548 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8549 GFP_KERNEL);
8550 if (!ioc->blocking_handles) {
8551 r = -ENOMEM;
8552 goto out_free_resources;
8553 }
8554
8555 /* allocate memory for pending OS device add list */
8556 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8557 if (ioc->facts.MaxDevHandle % 8)
8558 ioc->pend_os_device_add_sz++;
8559
8560 /*
8561 * pend_os_device_add_sz should have, at least, the minimal room for
8562 * set_bit()/test_bit(), otherwise out-of-memory may occur.
8563 */
8564 ioc->pend_os_device_add_sz = ALIGN(ioc->pend_os_device_add_sz,
8565 sizeof(unsigned long));
8566 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8567 GFP_KERNEL);
8568 if (!ioc->pend_os_device_add) {
8569 r = -ENOMEM;
8570 goto out_free_resources;
8571 }
8572
8573 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8574 ioc->device_remove_in_progress =
8575 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8576 if (!ioc->device_remove_in_progress) {
8577 r = -ENOMEM;
8578 goto out_free_resources;
8579 }
8580
8581 ioc->fwfault_debug = mpt3sas_fwfault_debug;
8582
8583 /* base internal command bits */
8584 mutex_init(&ioc->base_cmds.mutex);
8585 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8586 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8587
8588 /* port_enable command bits */
8589 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8590 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8591
8592 /* transport internal command bits */
8593 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8594 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8595 mutex_init(&ioc->transport_cmds.mutex);
8596
8597 /* scsih internal command bits */
8598 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8599 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8600 mutex_init(&ioc->scsih_cmds.mutex);
8601
8602 /* task management internal command bits */
8603 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8604 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8605 mutex_init(&ioc->tm_cmds.mutex);
8606
8607 /* config page internal command bits */
8608 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8609 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8610 mutex_init(&ioc->config_cmds.mutex);
8611
8612 /* ctl module internal command bits */
8613 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8614 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8615 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8616 mutex_init(&ioc->ctl_cmds.mutex);
8617
8618 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8619 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8620 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8621 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8622 r = -ENOMEM;
8623 goto out_free_resources;
8624 }
8625
8626 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8627 ioc->event_masks[i] = -1;
8628
8629 /* here we enable the events we care about */
8630 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8631 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8632 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8633 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8634 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8635 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8636 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8637 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8638 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8639 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8640 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8641 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8642 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8643 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8644 if (ioc->is_gen35_ioc) {
8645 _base_unmask_events(ioc,
8646 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8647 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8648 _base_unmask_events(ioc,
8649 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8650 }
8651 }
8652 r = _base_make_ioc_operational(ioc);
8653 if (r == -EAGAIN) {
8654 r = _base_make_ioc_operational(ioc);
8655 if (r)
8656 goto out_free_resources;
8657 }
8658
8659 /*
8660 * Copy current copy of IOCFacts in prev_fw_facts
8661 * and it will be used during online firmware upgrade.
8662 */
8663 memcpy(&ioc->prev_fw_facts, &ioc->facts,
8664 sizeof(struct mpt3sas_facts));
8665
8666 ioc->non_operational_loop = 0;
8667 ioc->ioc_coredump_loop = 0;
8668 ioc->got_task_abort_from_ioctl = 0;
8669 return 0;
8670
8671 out_free_resources:
8672
8673 ioc->remove_host = 1;
8674
8675 mpt3sas_base_free_resources(ioc);
8676 _base_release_memory_pools(ioc);
8677 pci_set_drvdata(ioc->pdev, NULL);
8678 kfree(ioc->cpu_msix_table);
8679 if (ioc->is_warpdrive)
8680 kfree(ioc->reply_post_host_index);
8681 kfree(ioc->pd_handles);
8682 kfree(ioc->blocking_handles);
8683 kfree(ioc->device_remove_in_progress);
8684 kfree(ioc->pend_os_device_add);
8685 kfree(ioc->tm_cmds.reply);
8686 kfree(ioc->transport_cmds.reply);
8687 kfree(ioc->scsih_cmds.reply);
8688 kfree(ioc->config_cmds.reply);
8689 kfree(ioc->base_cmds.reply);
8690 kfree(ioc->port_enable_cmds.reply);
8691 kfree(ioc->ctl_cmds.reply);
8692 kfree(ioc->ctl_cmds.sense);
8693 kfree(ioc->pfacts);
8694 ioc->ctl_cmds.reply = NULL;
8695 ioc->base_cmds.reply = NULL;
8696 ioc->tm_cmds.reply = NULL;
8697 ioc->scsih_cmds.reply = NULL;
8698 ioc->transport_cmds.reply = NULL;
8699 ioc->config_cmds.reply = NULL;
8700 ioc->pfacts = NULL;
8701 return r;
8702 }
8703
8704
8705 /**
8706 * mpt3sas_base_detach - remove controller instance
8707 * @ioc: per adapter object
8708 */
8709 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)8710 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8711 {
8712 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8713
8714 mpt3sas_base_stop_watchdog(ioc);
8715 mpt3sas_base_free_resources(ioc);
8716 _base_release_memory_pools(ioc);
8717 mpt3sas_free_enclosure_list(ioc);
8718 pci_set_drvdata(ioc->pdev, NULL);
8719 kfree(ioc->cpu_msix_table);
8720 if (ioc->is_warpdrive)
8721 kfree(ioc->reply_post_host_index);
8722 kfree(ioc->pd_handles);
8723 kfree(ioc->blocking_handles);
8724 kfree(ioc->device_remove_in_progress);
8725 kfree(ioc->pend_os_device_add);
8726 kfree(ioc->pfacts);
8727 kfree(ioc->ctl_cmds.reply);
8728 kfree(ioc->ctl_cmds.sense);
8729 kfree(ioc->base_cmds.reply);
8730 kfree(ioc->port_enable_cmds.reply);
8731 kfree(ioc->tm_cmds.reply);
8732 kfree(ioc->transport_cmds.reply);
8733 kfree(ioc->scsih_cmds.reply);
8734 kfree(ioc->config_cmds.reply);
8735 }
8736
8737 /**
8738 * _base_pre_reset_handler - pre reset handler
8739 * @ioc: per adapter object
8740 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)8741 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8742 {
8743 mpt3sas_scsih_pre_reset_handler(ioc);
8744 mpt3sas_ctl_pre_reset_handler(ioc);
8745 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8746 }
8747
8748 /**
8749 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8750 * @ioc: per adapter object
8751 */
8752 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)8753 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8754 {
8755 dtmprintk(ioc,
8756 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8757 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8758 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8759 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8760 complete(&ioc->transport_cmds.done);
8761 }
8762 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8763 ioc->base_cmds.status |= MPT3_CMD_RESET;
8764 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8765 complete(&ioc->base_cmds.done);
8766 }
8767 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8768 ioc->port_enable_failed = 1;
8769 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8770 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8771 if (ioc->is_driver_loading) {
8772 ioc->start_scan_failed =
8773 MPI2_IOCSTATUS_INTERNAL_ERROR;
8774 ioc->start_scan = 0;
8775 } else {
8776 complete(&ioc->port_enable_cmds.done);
8777 }
8778 }
8779 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8780 ioc->config_cmds.status |= MPT3_CMD_RESET;
8781 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8782 ioc->config_cmds.smid = USHRT_MAX;
8783 complete(&ioc->config_cmds.done);
8784 }
8785 }
8786
8787 /**
8788 * _base_clear_outstanding_commands - clear all outstanding commands
8789 * @ioc: per adapter object
8790 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)8791 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8792 {
8793 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8794 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8795 _base_clear_outstanding_mpt_commands(ioc);
8796 }
8797
8798 /**
8799 * _base_reset_done_handler - reset done handler
8800 * @ioc: per adapter object
8801 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)8802 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8803 {
8804 mpt3sas_scsih_reset_done_handler(ioc);
8805 mpt3sas_ctl_reset_done_handler(ioc);
8806 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8807 }
8808
8809 /**
8810 * mpt3sas_wait_for_commands_to_complete - reset controller
8811 * @ioc: Pointer to MPT_ADAPTER structure
8812 *
8813 * This function is waiting 10s for all pending commands to complete
8814 * prior to putting controller in reset.
8815 */
8816 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)8817 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8818 {
8819 u32 ioc_state;
8820
8821 ioc->pending_io_count = 0;
8822
8823 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8824 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8825 return;
8826
8827 /* pending command count */
8828 ioc->pending_io_count = scsi_host_busy(ioc->shost);
8829
8830 if (!ioc->pending_io_count)
8831 return;
8832
8833 /* wait for pending commands to complete */
8834 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8835 }
8836
8837 /**
8838 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8839 * attributes during online firmware upgrade and update the corresponding
8840 * IOC variables accordingly.
8841 *
8842 * @ioc: Pointer to MPT_ADAPTER structure
8843 */
8844 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)8845 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8846 {
8847 u16 pd_handles_sz;
8848 void *pd_handles = NULL, *blocking_handles = NULL;
8849 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8850 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8851
8852 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8853 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8854 if (ioc->facts.MaxDevHandle % 8)
8855 pd_handles_sz++;
8856
8857 /*
8858 * pd_handles should have, at least, the minimal room for
8859 * set_bit()/test_bit(), otherwise out-of-memory touch may
8860 * occur.
8861 */
8862 pd_handles_sz = ALIGN(pd_handles_sz, sizeof(unsigned long));
8863 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8864 GFP_KERNEL);
8865 if (!pd_handles) {
8866 ioc_info(ioc,
8867 "Unable to allocate the memory for pd_handles of sz: %d\n",
8868 pd_handles_sz);
8869 return -ENOMEM;
8870 }
8871 memset(pd_handles + ioc->pd_handles_sz, 0,
8872 (pd_handles_sz - ioc->pd_handles_sz));
8873 ioc->pd_handles = pd_handles;
8874
8875 blocking_handles = krealloc(ioc->blocking_handles,
8876 pd_handles_sz, GFP_KERNEL);
8877 if (!blocking_handles) {
8878 ioc_info(ioc,
8879 "Unable to allocate the memory for "
8880 "blocking_handles of sz: %d\n",
8881 pd_handles_sz);
8882 return -ENOMEM;
8883 }
8884 memset(blocking_handles + ioc->pd_handles_sz, 0,
8885 (pd_handles_sz - ioc->pd_handles_sz));
8886 ioc->blocking_handles = blocking_handles;
8887 ioc->pd_handles_sz = pd_handles_sz;
8888
8889 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8890 pd_handles_sz, GFP_KERNEL);
8891 if (!pend_os_device_add) {
8892 ioc_info(ioc,
8893 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8894 pd_handles_sz);
8895 return -ENOMEM;
8896 }
8897 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8898 (pd_handles_sz - ioc->pend_os_device_add_sz));
8899 ioc->pend_os_device_add = pend_os_device_add;
8900 ioc->pend_os_device_add_sz = pd_handles_sz;
8901
8902 device_remove_in_progress = krealloc(
8903 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8904 if (!device_remove_in_progress) {
8905 ioc_info(ioc,
8906 "Unable to allocate the memory for device_remove_in_progress of sz: %d\n",
8907 pd_handles_sz);
8908 return -ENOMEM;
8909 }
8910 memset(device_remove_in_progress +
8911 ioc->device_remove_in_progress_sz, 0,
8912 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8913 ioc->device_remove_in_progress = device_remove_in_progress;
8914 ioc->device_remove_in_progress_sz = pd_handles_sz;
8915 }
8916
8917 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8918 return 0;
8919 }
8920
8921 /**
8922 * mpt3sas_base_hard_reset_handler - reset controller
8923 * @ioc: Pointer to MPT_ADAPTER structure
8924 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8925 *
8926 * Return: 0 for success, non-zero for failure.
8927 */
8928 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8929 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8930 enum reset_type type)
8931 {
8932 int r;
8933 unsigned long flags;
8934 u32 ioc_state;
8935 u8 is_fault = 0, is_trigger = 0;
8936
8937 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8938
8939 if (ioc->pci_error_recovery) {
8940 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8941 r = 0;
8942 goto out_unlocked;
8943 }
8944
8945 if (mpt3sas_fwfault_debug)
8946 mpt3sas_halt_firmware(ioc);
8947
8948 /* wait for an active reset in progress to complete */
8949 mutex_lock(&ioc->reset_in_progress_mutex);
8950
8951 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8952 ioc->shost_recovery = 1;
8953 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8954
8955 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8956 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8957 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8958 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8959 is_trigger = 1;
8960 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8961 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8962 (ioc_state & MPI2_IOC_STATE_MASK) ==
8963 MPI2_IOC_STATE_COREDUMP) {
8964 is_fault = 1;
8965 ioc->htb_rel.trigger_info_dwords[1] =
8966 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8967 }
8968 }
8969 _base_pre_reset_handler(ioc);
8970 mpt3sas_wait_for_commands_to_complete(ioc);
8971 mpt3sas_base_mask_interrupts(ioc);
8972 mpt3sas_base_pause_mq_polling(ioc);
8973 r = mpt3sas_base_make_ioc_ready(ioc, type);
8974 if (r)
8975 goto out;
8976 _base_clear_outstanding_commands(ioc);
8977
8978 /* If this hard reset is called while port enable is active, then
8979 * there is no reason to call make_ioc_operational
8980 */
8981 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8982 ioc->remove_host = 1;
8983 r = -EFAULT;
8984 goto out;
8985 }
8986 r = _base_get_ioc_facts(ioc);
8987 if (r)
8988 goto out;
8989
8990 r = _base_check_ioc_facts_changes(ioc);
8991 if (r) {
8992 ioc_info(ioc,
8993 "Some of the parameters got changed in this new firmware"
8994 " image and it requires system reboot\n");
8995 goto out;
8996 }
8997 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8998 panic("%s: Issue occurred with flashing controller firmware."
8999 "Please reboot the system and ensure that the correct"
9000 " firmware version is running\n", ioc->name);
9001
9002 r = _base_make_ioc_operational(ioc);
9003 if (!r)
9004 _base_reset_done_handler(ioc);
9005
9006 out:
9007 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
9008
9009 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
9010 ioc->shost_recovery = 0;
9011 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
9012 ioc->ioc_reset_count++;
9013 mutex_unlock(&ioc->reset_in_progress_mutex);
9014 mpt3sas_base_resume_mq_polling(ioc);
9015
9016 out_unlocked:
9017 if ((r == 0) && is_trigger) {
9018 if (is_fault)
9019 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
9020 else
9021 mpt3sas_trigger_master(ioc,
9022 MASTER_TRIGGER_ADAPTER_RESET);
9023 }
9024 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
9025 return r;
9026 }
9027