1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41 struct scrub_ctx;
42
43 /*
44 * The following value only influences the performance.
45 *
46 * This determines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49 #define SCRUB_STRIPES_PER_GROUP 8
50
51 /*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57 #define SCRUB_GROUPS_PER_SCTX 16
58
59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 union {
70 /*
71 * Csum pointer for data csum verification. Should point to a
72 * sector csum inside scrub_stripe::csums.
73 *
74 * NULL if this data sector has no csum.
75 */
76 u8 *csum;
77
78 /*
79 * Extra info for metadata verification. All sectors inside a
80 * tree block share the same generation.
81 */
82 u64 generation;
83 };
84 };
85
86 enum scrub_stripe_flags {
87 /* Set when @mirror_num, @dev, @physical and @logical are set. */
88 SCRUB_STRIPE_FLAG_INITIALIZED,
89
90 /* Set when the read-repair is finished. */
91 SCRUB_STRIPE_FLAG_REPAIR_DONE,
92
93 /*
94 * Set for data stripes if it's triggered from P/Q stripe.
95 * During such scrub, we should not report errors in data stripes, nor
96 * update the accounting.
97 */
98 SCRUB_STRIPE_FLAG_NO_REPORT,
99 };
100
101 /*
102 * We have multiple bitmaps for one scrub_stripe.
103 * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits,
104 * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64).
105 *
106 * So to reduce memory usage for each scrub_stripe, we pack those bitmaps
107 * into a larger one.
108 *
109 * These enum records where the sub-bitmap are inside the larger one.
110 * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit.
111 */
112 enum {
113 /* Which blocks are covered by extent items. */
114 scrub_bitmap_nr_has_extent = 0,
115
116 /* Which blocks are metadata. */
117 scrub_bitmap_nr_is_metadata,
118
119 /*
120 * Which blocks have errors, including IO, csum, and metadata
121 * errors.
122 * This sub-bitmap is the OR results of the next few error related
123 * sub-bitmaps.
124 */
125 scrub_bitmap_nr_error,
126 scrub_bitmap_nr_io_error,
127 scrub_bitmap_nr_csum_error,
128 scrub_bitmap_nr_meta_error,
129 scrub_bitmap_nr_meta_gen_error,
130 scrub_bitmap_nr_last,
131 };
132
133 #define SCRUB_STRIPE_MAX_FOLIOS (BTRFS_STRIPE_LEN / PAGE_SIZE)
134
135 /*
136 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
137 */
138 struct scrub_stripe {
139 struct scrub_ctx *sctx;
140 struct btrfs_block_group *bg;
141
142 struct folio *folios[SCRUB_STRIPE_MAX_FOLIOS];
143 struct scrub_sector_verification *sectors;
144
145 struct btrfs_device *dev;
146 u64 logical;
147 u64 physical;
148
149 u16 mirror_num;
150
151 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
152 u16 nr_sectors;
153
154 /*
155 * How many data/meta extents are in this stripe. Only for scrub status
156 * reporting purposes.
157 */
158 u16 nr_data_extents;
159 u16 nr_meta_extents;
160
161 atomic_t pending_io;
162 wait_queue_head_t io_wait;
163 wait_queue_head_t repair_wait;
164
165 /*
166 * Indicate the states of the stripe. Bits are defined in
167 * scrub_stripe_flags enum.
168 */
169 unsigned long state;
170
171 /* The large bitmap contains all the sub-bitmaps. */
172 unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last *
173 (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))];
174
175 /*
176 * For writeback (repair or replace) error reporting.
177 * This one is protected by a spinlock, thus can not be packed into
178 * the larger bitmap.
179 */
180 unsigned long write_error_bitmap;
181
182 /* Writeback can be concurrent, thus we need to protect the bitmap. */
183 spinlock_t write_error_lock;
184
185 /*
186 * Checksum for the whole stripe if this stripe is inside a data block
187 * group.
188 */
189 u8 *csums;
190
191 struct work_struct work;
192 };
193
194 struct scrub_ctx {
195 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
196 struct scrub_stripe *raid56_data_stripes;
197 struct btrfs_fs_info *fs_info;
198 struct btrfs_path extent_path;
199 struct btrfs_path csum_path;
200 int first_free;
201 int cur_stripe;
202 atomic_t cancel_req;
203 int readonly;
204
205 /* State of IO submission throttling affecting the associated device */
206 ktime_t throttle_deadline;
207 u64 throttle_sent;
208
209 bool is_dev_replace;
210 u64 write_pointer;
211
212 struct mutex wr_lock;
213 struct btrfs_device *wr_tgtdev;
214
215 /*
216 * statistics
217 */
218 struct btrfs_scrub_progress stat;
219 spinlock_t stat_lock;
220
221 /*
222 * Use a ref counter to avoid use-after-free issues. Scrub workers
223 * decrement bios_in_flight and workers_pending and then do a wakeup
224 * on the list_wait wait queue. We must ensure the main scrub task
225 * doesn't free the scrub context before or while the workers are
226 * doing the wakeup() call.
227 */
228 refcount_t refs;
229 };
230
231 #define scrub_calc_start_bit(stripe, name, block_nr) \
232 ({ \
233 unsigned int __start_bit; \
234 \
235 ASSERT(block_nr < stripe->nr_sectors, \
236 "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \
237 __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \
238 __start_bit; \
239 })
240
241 #define IMPLEMENT_SCRUB_BITMAP_OPS(name) \
242 static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \
243 unsigned int block_nr, \
244 unsigned int nr_blocks) \
245 { \
246 const unsigned int start_bit = scrub_calc_start_bit(stripe, \
247 name, block_nr); \
248 \
249 bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \
250 } \
251 static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \
252 unsigned int block_nr, \
253 unsigned int nr_blocks) \
254 { \
255 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
256 block_nr); \
257 \
258 bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \
259 } \
260 static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \
261 unsigned int block_nr) \
262 { \
263 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
264 block_nr); \
265 \
266 return test_bit(start_bit, stripe->bitmaps); \
267 } \
268 static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \
269 unsigned int block_nr) \
270 { \
271 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
272 block_nr); \
273 \
274 set_bit(start_bit, stripe->bitmaps); \
275 } \
276 static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \
277 unsigned int block_nr) \
278 { \
279 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
280 block_nr); \
281 \
282 clear_bit(start_bit, stripe->bitmaps); \
283 } \
284 static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \
285 { \
286 const unsigned int nr_blocks = stripe->nr_sectors; \
287 \
288 ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \
289 "nr_blocks=%u BITS_PER_LONG=%u", \
290 nr_blocks, BITS_PER_LONG); \
291 \
292 return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \
293 stripe->nr_sectors); \
294 } \
295 static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \
296 { \
297 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
298 \
299 return bitmap_empty(&bitmap, stripe->nr_sectors); \
300 } \
301 static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \
302 { \
303 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
304 \
305 return bitmap_weight(&bitmap, stripe->nr_sectors); \
306 }
307 IMPLEMENT_SCRUB_BITMAP_OPS(has_extent);
308 IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata);
309 IMPLEMENT_SCRUB_BITMAP_OPS(error);
310 IMPLEMENT_SCRUB_BITMAP_OPS(io_error);
311 IMPLEMENT_SCRUB_BITMAP_OPS(csum_error);
312 IMPLEMENT_SCRUB_BITMAP_OPS(meta_error);
313 IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error);
314
315 struct scrub_warning {
316 struct btrfs_path *path;
317 u64 extent_item_size;
318 const char *errstr;
319 u64 physical;
320 u64 logical;
321 struct btrfs_device *dev;
322 };
323
324 struct scrub_error_records {
325 /*
326 * Bitmap recording which blocks hit errors (IO/csum/...) during the
327 * initial read.
328 */
329 unsigned long init_error_bitmap;
330
331 unsigned int nr_io_errors;
332 unsigned int nr_csum_errors;
333 unsigned int nr_meta_errors;
334 unsigned int nr_meta_gen_errors;
335 };
336
release_scrub_stripe(struct scrub_stripe * stripe)337 static void release_scrub_stripe(struct scrub_stripe *stripe)
338 {
339 if (!stripe)
340 return;
341
342 for (int i = 0; i < SCRUB_STRIPE_MAX_FOLIOS; i++) {
343 if (stripe->folios[i])
344 folio_put(stripe->folios[i]);
345 stripe->folios[i] = NULL;
346 }
347 kfree(stripe->sectors);
348 kfree(stripe->csums);
349 stripe->sectors = NULL;
350 stripe->csums = NULL;
351 stripe->sctx = NULL;
352 stripe->state = 0;
353 }
354
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)355 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
356 struct scrub_stripe *stripe)
357 {
358 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
359 int ret;
360
361 memset(stripe, 0, sizeof(*stripe));
362
363 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
364 stripe->state = 0;
365
366 init_waitqueue_head(&stripe->io_wait);
367 init_waitqueue_head(&stripe->repair_wait);
368 atomic_set(&stripe->pending_io, 0);
369 spin_lock_init(&stripe->write_error_lock);
370
371 ASSERT(BTRFS_STRIPE_LEN >> min_folio_shift <= SCRUB_STRIPE_MAX_FOLIOS);
372 ret = btrfs_alloc_folio_array(BTRFS_STRIPE_LEN >> min_folio_shift,
373 fs_info->block_min_order, stripe->folios);
374 if (ret < 0)
375 goto error;
376
377 stripe->sectors = kcalloc(stripe->nr_sectors,
378 sizeof(struct scrub_sector_verification),
379 GFP_KERNEL);
380 if (!stripe->sectors)
381 goto error;
382
383 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
384 fs_info->csum_size, GFP_KERNEL);
385 if (!stripe->csums)
386 goto error;
387 return 0;
388 error:
389 release_scrub_stripe(stripe);
390 return -ENOMEM;
391 }
392
wait_scrub_stripe_io(struct scrub_stripe * stripe)393 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
394 {
395 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
396 }
397
398 static void scrub_put_ctx(struct scrub_ctx *sctx);
399
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)400 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
401 {
402 while (atomic_read(&fs_info->scrub_pause_req)) {
403 mutex_unlock(&fs_info->scrub_lock);
404 wait_event(fs_info->scrub_pause_wait,
405 atomic_read(&fs_info->scrub_pause_req) == 0);
406 mutex_lock(&fs_info->scrub_lock);
407 }
408 }
409
scrub_pause_on(struct btrfs_fs_info * fs_info)410 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
411 {
412 atomic_inc(&fs_info->scrubs_paused);
413 wake_up(&fs_info->scrub_pause_wait);
414 }
415
scrub_pause_off(struct btrfs_fs_info * fs_info)416 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
417 {
418 mutex_lock(&fs_info->scrub_lock);
419 __scrub_blocked_if_needed(fs_info);
420 atomic_dec(&fs_info->scrubs_paused);
421 mutex_unlock(&fs_info->scrub_lock);
422
423 wake_up(&fs_info->scrub_pause_wait);
424 }
425
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)426 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
427 {
428 scrub_pause_on(fs_info);
429 scrub_pause_off(fs_info);
430 }
431
scrub_free_ctx(struct scrub_ctx * sctx)432 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
433 {
434 int i;
435
436 if (!sctx)
437 return;
438
439 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
440 release_scrub_stripe(&sctx->stripes[i]);
441
442 kvfree(sctx);
443 }
444
scrub_put_ctx(struct scrub_ctx * sctx)445 static void scrub_put_ctx(struct scrub_ctx *sctx)
446 {
447 if (refcount_dec_and_test(&sctx->refs))
448 scrub_free_ctx(sctx);
449 }
450
scrub_setup_ctx(struct btrfs_fs_info * fs_info,bool is_dev_replace)451 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
452 struct btrfs_fs_info *fs_info, bool is_dev_replace)
453 {
454 struct scrub_ctx *sctx;
455 int i;
456
457 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
458 * kvzalloc().
459 */
460 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
461 if (!sctx)
462 goto nomem;
463 refcount_set(&sctx->refs, 1);
464 sctx->is_dev_replace = is_dev_replace;
465 sctx->fs_info = fs_info;
466 sctx->extent_path.search_commit_root = 1;
467 sctx->extent_path.skip_locking = 1;
468 sctx->csum_path.search_commit_root = 1;
469 sctx->csum_path.skip_locking = 1;
470 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
471 int ret;
472
473 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
474 if (ret < 0)
475 goto nomem;
476 sctx->stripes[i].sctx = sctx;
477 }
478 sctx->first_free = 0;
479 atomic_set(&sctx->cancel_req, 0);
480
481 spin_lock_init(&sctx->stat_lock);
482 sctx->throttle_deadline = 0;
483
484 mutex_init(&sctx->wr_lock);
485 if (is_dev_replace) {
486 WARN_ON(!fs_info->dev_replace.tgtdev);
487 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
488 }
489
490 return sctx;
491
492 nomem:
493 scrub_free_ctx(sctx);
494 return ERR_PTR(-ENOMEM);
495 }
496
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)497 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
498 u64 root, void *warn_ctx)
499 {
500 u32 nlink;
501 int ret;
502 int i;
503 unsigned nofs_flag;
504 struct extent_buffer *eb;
505 struct btrfs_inode_item *inode_item;
506 struct scrub_warning *swarn = warn_ctx;
507 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
508 struct inode_fs_paths *ipath = NULL;
509 struct btrfs_root *local_root;
510 struct btrfs_key key;
511
512 local_root = btrfs_get_fs_root(fs_info, root, true);
513 if (IS_ERR(local_root)) {
514 ret = PTR_ERR(local_root);
515 goto err;
516 }
517
518 /*
519 * this makes the path point to (inum INODE_ITEM ioff)
520 */
521 key.objectid = inum;
522 key.type = BTRFS_INODE_ITEM_KEY;
523 key.offset = 0;
524
525 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
526 if (ret) {
527 btrfs_put_root(local_root);
528 btrfs_release_path(swarn->path);
529 goto err;
530 }
531
532 eb = swarn->path->nodes[0];
533 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
534 struct btrfs_inode_item);
535 nlink = btrfs_inode_nlink(eb, inode_item);
536 btrfs_release_path(swarn->path);
537
538 /*
539 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
540 * uses GFP_NOFS in this context, so we keep it consistent but it does
541 * not seem to be strictly necessary.
542 */
543 nofs_flag = memalloc_nofs_save();
544 ipath = init_ipath(4096, local_root, swarn->path);
545 memalloc_nofs_restore(nofs_flag);
546 if (IS_ERR(ipath)) {
547 btrfs_put_root(local_root);
548 ret = PTR_ERR(ipath);
549 ipath = NULL;
550 goto err;
551 }
552 ret = paths_from_inode(inum, ipath);
553
554 if (ret < 0)
555 goto err;
556
557 /*
558 * we deliberately ignore the bit ipath might have been too small to
559 * hold all of the paths here
560 */
561 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
562 btrfs_warn(fs_info,
563 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu length %u links %u (path: %s)",
564 swarn->errstr, swarn->logical,
565 btrfs_dev_name(swarn->dev),
566 swarn->physical,
567 root, inum, offset,
568 fs_info->sectorsize, nlink,
569 (char *)(unsigned long)ipath->fspath->val[i]);
570
571 btrfs_put_root(local_root);
572 free_ipath(ipath);
573 return 0;
574
575 err:
576 btrfs_warn(fs_info,
577 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu: path resolving failed with ret=%d",
578 swarn->errstr, swarn->logical,
579 btrfs_dev_name(swarn->dev),
580 swarn->physical,
581 root, inum, offset, ret);
582
583 free_ipath(ipath);
584 return 0;
585 }
586
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)587 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
588 bool is_super, u64 logical, u64 physical)
589 {
590 struct btrfs_fs_info *fs_info = dev->fs_info;
591 BTRFS_PATH_AUTO_FREE(path);
592 struct btrfs_key found_key;
593 struct extent_buffer *eb;
594 struct btrfs_extent_item *ei;
595 struct scrub_warning swarn;
596 u64 flags = 0;
597 u32 item_size;
598 int ret;
599
600 /* Super block error, no need to search extent tree. */
601 if (is_super) {
602 btrfs_warn(fs_info, "scrub: %s on device %s, physical %llu",
603 errstr, btrfs_dev_name(dev), physical);
604 return;
605 }
606 path = btrfs_alloc_path();
607 if (!path)
608 return;
609
610 swarn.physical = physical;
611 swarn.logical = logical;
612 swarn.errstr = errstr;
613 swarn.dev = NULL;
614
615 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
616 &flags);
617 if (ret < 0)
618 return;
619
620 swarn.extent_item_size = found_key.offset;
621
622 eb = path->nodes[0];
623 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
624 item_size = btrfs_item_size(eb, path->slots[0]);
625
626 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
627 unsigned long ptr = 0;
628 u8 ref_level;
629 u64 ref_root;
630
631 while (true) {
632 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
633 item_size, &ref_root,
634 &ref_level);
635 if (ret < 0) {
636 btrfs_warn(fs_info,
637 "scrub: failed to resolve tree backref for logical %llu: %d",
638 swarn.logical, ret);
639 break;
640 }
641 if (ret > 0)
642 break;
643 btrfs_warn(fs_info,
644 "scrub: %s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
645 errstr, swarn.logical, btrfs_dev_name(dev),
646 swarn.physical, (ref_level ? "node" : "leaf"),
647 ref_level, ref_root);
648 }
649 btrfs_release_path(path);
650 } else {
651 struct btrfs_backref_walk_ctx ctx = { 0 };
652
653 btrfs_release_path(path);
654
655 ctx.bytenr = found_key.objectid;
656 ctx.extent_item_pos = swarn.logical - found_key.objectid;
657 ctx.fs_info = fs_info;
658
659 swarn.path = path;
660 swarn.dev = dev;
661
662 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
663 }
664 }
665
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)666 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
667 {
668 int ret = 0;
669 u64 length;
670
671 if (!btrfs_is_zoned(sctx->fs_info))
672 return 0;
673
674 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
675 return 0;
676
677 if (sctx->write_pointer < physical) {
678 length = physical - sctx->write_pointer;
679
680 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
681 sctx->write_pointer, length);
682 if (!ret)
683 sctx->write_pointer = physical;
684 }
685 return ret;
686 }
687
scrub_stripe_get_kaddr(struct scrub_stripe * stripe,int sector_nr)688 static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr)
689 {
690 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
691 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
692 u32 offset = (sector_nr << fs_info->sectorsize_bits);
693 const struct folio *folio = stripe->folios[offset >> min_folio_shift];
694
695 /* stripe->folios[] is allocated by us and no highmem is allowed. */
696 ASSERT(folio);
697 ASSERT(!folio_test_partial_kmap(folio));
698 return folio_address(folio) + offset_in_folio(folio, offset);
699 }
700
scrub_stripe_get_paddr(struct scrub_stripe * stripe,int sector_nr)701 static phys_addr_t scrub_stripe_get_paddr(struct scrub_stripe *stripe, int sector_nr)
702 {
703 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
704 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
705 u32 offset = (sector_nr << fs_info->sectorsize_bits);
706 const struct folio *folio = stripe->folios[offset >> min_folio_shift];
707
708 /* stripe->folios[] is allocated by us and no highmem is allowed. */
709 ASSERT(folio);
710 ASSERT(!folio_test_partial_kmap(folio));
711 /* And the range must be contained inside the folio. */
712 ASSERT(offset_in_folio(folio, offset) + fs_info->sectorsize <= folio_size(folio));
713 return page_to_phys(folio_page(folio, 0)) + offset_in_folio(folio, offset);
714 }
715
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)716 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
717 {
718 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
719 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
720 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
721 void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
722 struct btrfs_header *header = first_kaddr;
723 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
724 u8 on_disk_csum[BTRFS_CSUM_SIZE];
725 u8 calculated_csum[BTRFS_CSUM_SIZE];
726
727 /*
728 * Here we don't have a good way to attach the pages (and subpages)
729 * to a dummy extent buffer, thus we have to directly grab the members
730 * from pages.
731 */
732 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
733
734 if (logical != btrfs_stack_header_bytenr(header)) {
735 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
736 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
737 btrfs_warn_rl(fs_info,
738 "scrub: tree block %llu mirror %u has bad bytenr, has %llu want %llu",
739 logical, stripe->mirror_num,
740 btrfs_stack_header_bytenr(header), logical);
741 return;
742 }
743 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
744 BTRFS_FSID_SIZE) != 0) {
745 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
746 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
747 btrfs_warn_rl(fs_info,
748 "scrub: tree block %llu mirror %u has bad fsid, has %pU want %pU",
749 logical, stripe->mirror_num,
750 header->fsid, fs_info->fs_devices->fsid);
751 return;
752 }
753 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
754 BTRFS_UUID_SIZE) != 0) {
755 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
756 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
757 btrfs_warn_rl(fs_info,
758 "scrub: tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
759 logical, stripe->mirror_num,
760 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
761 return;
762 }
763
764 /* Now check tree block csum. */
765 shash->tfm = fs_info->csum_shash;
766 crypto_shash_init(shash);
767 crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE,
768 fs_info->sectorsize - BTRFS_CSUM_SIZE);
769
770 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
771 crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i),
772 fs_info->sectorsize);
773 }
774
775 crypto_shash_final(shash, calculated_csum);
776 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
777 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
778 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
779 btrfs_warn_rl(fs_info,
780 "scrub: tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
781 logical, stripe->mirror_num,
782 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
783 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
784 return;
785 }
786 if (stripe->sectors[sector_nr].generation !=
787 btrfs_stack_header_generation(header)) {
788 scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree);
789 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
790 btrfs_warn_rl(fs_info,
791 "scrub: tree block %llu mirror %u has bad generation, has %llu want %llu",
792 logical, stripe->mirror_num,
793 btrfs_stack_header_generation(header),
794 stripe->sectors[sector_nr].generation);
795 return;
796 }
797 scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree);
798 scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree);
799 scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree);
800 scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree);
801 }
802
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)803 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
804 {
805 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
806 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
807 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
808 phys_addr_t paddr = scrub_stripe_get_paddr(stripe, sector_nr);
809 u8 csum_buf[BTRFS_CSUM_SIZE];
810 int ret;
811
812 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
813
814 /* Sector not utilized, skip it. */
815 if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr))
816 return;
817
818 /* IO error, no need to check. */
819 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
820 return;
821
822 /* Metadata, verify the full tree block. */
823 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
824 /*
825 * Check if the tree block crosses the stripe boundary. If
826 * crossed the boundary, we cannot verify it but only give a
827 * warning.
828 *
829 * This can only happen on a very old filesystem where chunks
830 * are not ensured to be stripe aligned.
831 */
832 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
833 btrfs_warn_rl(fs_info,
834 "scrub: tree block at %llu crosses stripe boundary %llu",
835 stripe->logical +
836 (sector_nr << fs_info->sectorsize_bits),
837 stripe->logical);
838 return;
839 }
840 scrub_verify_one_metadata(stripe, sector_nr);
841 return;
842 }
843
844 /*
845 * Data is easier, we just verify the data csum (if we have it). For
846 * cases without csum, we have no other choice but to trust it.
847 */
848 if (!sector->csum) {
849 scrub_bitmap_clear_bit_error(stripe, sector_nr);
850 return;
851 }
852
853 ret = btrfs_check_block_csum(fs_info, paddr, csum_buf, sector->csum);
854 if (ret < 0) {
855 scrub_bitmap_set_bit_csum_error(stripe, sector_nr);
856 scrub_bitmap_set_bit_error(stripe, sector_nr);
857 } else {
858 scrub_bitmap_clear_bit_csum_error(stripe, sector_nr);
859 scrub_bitmap_clear_bit_error(stripe, sector_nr);
860 }
861 }
862
863 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)864 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
865 {
866 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
867 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
868 int sector_nr;
869
870 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
871 scrub_verify_one_sector(stripe, sector_nr);
872 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr))
873 sector_nr += sectors_per_tree - 1;
874 }
875 }
876
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)877 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
878 {
879 int i;
880
881 for (i = 0; i < stripe->nr_sectors; i++) {
882 if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec))
883 break;
884 }
885 ASSERT(i < stripe->nr_sectors);
886 return i;
887 }
888
889 /*
890 * Repair read is different to the regular read:
891 *
892 * - Only reads the failed sectors
893 * - May have extra blocksize limits
894 */
scrub_repair_read_endio(struct btrfs_bio * bbio)895 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
896 {
897 struct scrub_stripe *stripe = bbio->private;
898 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
899 struct bio_vec *bvec;
900 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
901 u32 bio_size = 0;
902 int i;
903
904 ASSERT(sector_nr < stripe->nr_sectors);
905
906 bio_for_each_bvec_all(bvec, &bbio->bio, i)
907 bio_size += bvec->bv_len;
908
909 if (bbio->bio.bi_status) {
910 scrub_bitmap_set_io_error(stripe, sector_nr,
911 bio_size >> fs_info->sectorsize_bits);
912 scrub_bitmap_set_error(stripe, sector_nr,
913 bio_size >> fs_info->sectorsize_bits);
914 } else {
915 scrub_bitmap_clear_io_error(stripe, sector_nr,
916 bio_size >> fs_info->sectorsize_bits);
917 }
918 bio_put(&bbio->bio);
919 if (atomic_dec_and_test(&stripe->pending_io))
920 wake_up(&stripe->io_wait);
921 }
922
calc_next_mirror(int mirror,int num_copies)923 static int calc_next_mirror(int mirror, int num_copies)
924 {
925 ASSERT(mirror <= num_copies);
926 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
927 }
928
scrub_bio_add_sector(struct btrfs_bio * bbio,struct scrub_stripe * stripe,int sector_nr)929 static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe,
930 int sector_nr)
931 {
932 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
933 int ret;
934
935 ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), bbio->fs_info->sectorsize,
936 offset_in_page(kaddr));
937 /*
938 * Caller should ensure the bbio has enough size.
939 * And we cannot use __bio_add_page(), which doesn't do any merge.
940 *
941 * Meanwhile for scrub_submit_initial_read() we fully rely on the merge
942 * to create the minimal amount of bio vectors, for fs block size < page
943 * size cases.
944 */
945 ASSERT(ret == bbio->fs_info->sectorsize);
946 }
947
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)948 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
949 int mirror, int blocksize, bool wait)
950 {
951 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
952 struct btrfs_bio *bbio = NULL;
953 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
954 int i;
955
956 ASSERT(stripe->mirror_num >= 1);
957 ASSERT(atomic_read(&stripe->pending_io) == 0);
958
959 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
960 /* The current sector cannot be merged, submit the bio. */
961 if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) ||
962 bbio->bio.bi_iter.bi_size >= blocksize)) {
963 ASSERT(bbio->bio.bi_iter.bi_size);
964 atomic_inc(&stripe->pending_io);
965 btrfs_submit_bbio(bbio, mirror);
966 if (wait)
967 wait_scrub_stripe_io(stripe);
968 bbio = NULL;
969 }
970
971 if (!bbio) {
972 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
973 fs_info, scrub_repair_read_endio, stripe);
974 bbio->bio.bi_iter.bi_sector = (stripe->logical +
975 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
976 }
977
978 scrub_bio_add_sector(bbio, stripe, i);
979 }
980 if (bbio) {
981 ASSERT(bbio->bio.bi_iter.bi_size);
982 atomic_inc(&stripe->pending_io);
983 btrfs_submit_bbio(bbio, mirror);
984 if (wait)
985 wait_scrub_stripe_io(stripe);
986 }
987 }
988
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,const struct scrub_error_records * errors)989 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
990 struct scrub_stripe *stripe,
991 const struct scrub_error_records *errors)
992 {
993 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
994 DEFAULT_RATELIMIT_BURST);
995 struct btrfs_fs_info *fs_info = sctx->fs_info;
996 struct btrfs_device *dev = NULL;
997 const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe);
998 const unsigned long error_bitmap = scrub_bitmap_read_error(stripe);
999 u64 physical = 0;
1000 int nr_data_sectors = 0;
1001 int nr_meta_sectors = 0;
1002 int nr_nodatacsum_sectors = 0;
1003 int nr_repaired_sectors = 0;
1004 int sector_nr;
1005
1006 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
1007 return;
1008
1009 /*
1010 * Init needed infos for error reporting.
1011 *
1012 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
1013 * thus no need for dev/physical, error reporting still needs dev and physical.
1014 */
1015 if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) {
1016 u64 mapped_len = fs_info->sectorsize;
1017 struct btrfs_io_context *bioc = NULL;
1018 int stripe_index = stripe->mirror_num - 1;
1019 int ret;
1020
1021 /* For scrub, our mirror_num should always start at 1. */
1022 ASSERT(stripe->mirror_num >= 1);
1023 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1024 stripe->logical, &mapped_len, &bioc,
1025 NULL, NULL);
1026 /*
1027 * If we failed, dev will be NULL, and later detailed reports
1028 * will just be skipped.
1029 */
1030 if (ret < 0)
1031 goto skip;
1032 physical = bioc->stripes[stripe_index].physical;
1033 dev = bioc->stripes[stripe_index].dev;
1034 btrfs_put_bioc(bioc);
1035 }
1036
1037 skip:
1038 for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) {
1039 bool repaired = false;
1040
1041 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
1042 nr_meta_sectors++;
1043 } else {
1044 nr_data_sectors++;
1045 if (!stripe->sectors[sector_nr].csum)
1046 nr_nodatacsum_sectors++;
1047 }
1048
1049 if (test_bit(sector_nr, &errors->init_error_bitmap) &&
1050 !test_bit(sector_nr, &error_bitmap)) {
1051 nr_repaired_sectors++;
1052 repaired = true;
1053 }
1054
1055 /* Good sector from the beginning, nothing need to be done. */
1056 if (!test_bit(sector_nr, &errors->init_error_bitmap))
1057 continue;
1058
1059 /*
1060 * Report error for the corrupted sectors. If repaired, just
1061 * output the message of repaired message.
1062 */
1063 if (repaired) {
1064 if (dev) {
1065 btrfs_err_rl(fs_info,
1066 "scrub: fixed up error at logical %llu on dev %s physical %llu",
1067 stripe->logical, btrfs_dev_name(dev),
1068 physical);
1069 } else {
1070 btrfs_err_rl(fs_info,
1071 "scrub: fixed up error at logical %llu on mirror %u",
1072 stripe->logical, stripe->mirror_num);
1073 }
1074 continue;
1075 }
1076
1077 /* The remaining are all for unrepaired. */
1078 if (dev) {
1079 btrfs_err_rl(fs_info,
1080 "scrub: unable to fixup (regular) error at logical %llu on dev %s physical %llu",
1081 stripe->logical, btrfs_dev_name(dev),
1082 physical);
1083 } else {
1084 btrfs_err_rl(fs_info,
1085 "scrub: unable to fixup (regular) error at logical %llu on mirror %u",
1086 stripe->logical, stripe->mirror_num);
1087 }
1088
1089 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
1090 if (__ratelimit(&rs) && dev)
1091 scrub_print_common_warning("i/o error", dev, false,
1092 stripe->logical, physical);
1093 if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr))
1094 if (__ratelimit(&rs) && dev)
1095 scrub_print_common_warning("checksum error", dev, false,
1096 stripe->logical, physical);
1097 if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr))
1098 if (__ratelimit(&rs) && dev)
1099 scrub_print_common_warning("header error", dev, false,
1100 stripe->logical, physical);
1101 if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr))
1102 if (__ratelimit(&rs) && dev)
1103 scrub_print_common_warning("generation error", dev, false,
1104 stripe->logical, physical);
1105 }
1106
1107 /* Update the device stats. */
1108 for (int i = 0; i < errors->nr_io_errors; i++)
1109 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS);
1110 for (int i = 0; i < errors->nr_csum_errors; i++)
1111 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1112 /* Generation mismatch error is based on each metadata, not each block. */
1113 for (int i = 0; i < errors->nr_meta_gen_errors;
1114 i += (fs_info->nodesize >> fs_info->sectorsize_bits))
1115 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS);
1116
1117 spin_lock(&sctx->stat_lock);
1118 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
1119 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
1120 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
1121 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
1122 sctx->stat.no_csum += nr_nodatacsum_sectors;
1123 sctx->stat.read_errors += errors->nr_io_errors;
1124 sctx->stat.csum_errors += errors->nr_csum_errors;
1125 sctx->stat.verify_errors += errors->nr_meta_errors +
1126 errors->nr_meta_gen_errors;
1127 sctx->stat.uncorrectable_errors +=
1128 bitmap_weight(&error_bitmap, stripe->nr_sectors);
1129 sctx->stat.corrected_errors += nr_repaired_sectors;
1130 spin_unlock(&sctx->stat_lock);
1131 }
1132
1133 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1134 unsigned long write_bitmap, bool dev_replace);
1135
1136 /*
1137 * The main entrance for all read related scrub work, including:
1138 *
1139 * - Wait for the initial read to finish
1140 * - Verify and locate any bad sectors
1141 * - Go through the remaining mirrors and try to read as large blocksize as
1142 * possible
1143 * - Go through all mirrors (including the failed mirror) sector-by-sector
1144 * - Submit writeback for repaired sectors
1145 *
1146 * Writeback for dev-replace does not happen here, it needs extra
1147 * synchronization for zoned devices.
1148 */
scrub_stripe_read_repair_worker(struct work_struct * work)1149 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1150 {
1151 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1152 struct scrub_ctx *sctx = stripe->sctx;
1153 struct btrfs_fs_info *fs_info = sctx->fs_info;
1154 struct scrub_error_records errors = { 0 };
1155 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1156 stripe->bg->length);
1157 unsigned long repaired;
1158 unsigned long error;
1159 int mirror;
1160 int i;
1161
1162 ASSERT(stripe->mirror_num > 0);
1163
1164 wait_scrub_stripe_io(stripe);
1165 scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe));
1166 /* Save the initial failed bitmap for later repair and report usage. */
1167 errors.init_error_bitmap = scrub_bitmap_read_error(stripe);
1168 errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe);
1169 errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe);
1170 errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe);
1171 errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe);
1172
1173 if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors))
1174 goto out;
1175
1176 /*
1177 * Try all remaining mirrors.
1178 *
1179 * Here we still try to read as large block as possible, as this is
1180 * faster and we have extra safety nets to rely on.
1181 */
1182 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1183 mirror != stripe->mirror_num;
1184 mirror = calc_next_mirror(mirror, num_copies)) {
1185 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
1186
1187 scrub_stripe_submit_repair_read(stripe, mirror,
1188 BTRFS_STRIPE_LEN, false);
1189 wait_scrub_stripe_io(stripe);
1190 scrub_verify_one_stripe(stripe, old_error_bitmap);
1191 if (scrub_bitmap_empty_error(stripe))
1192 goto out;
1193 }
1194
1195 /*
1196 * Last safety net, try re-checking all mirrors, including the failed
1197 * one, sector-by-sector.
1198 *
1199 * As if one sector failed the drive's internal csum, the whole read
1200 * containing the offending sector would be marked as error.
1201 * Thus here we do sector-by-sector read.
1202 *
1203 * This can be slow, thus we only try it as the last resort.
1204 */
1205
1206 for (i = 0, mirror = stripe->mirror_num;
1207 i < num_copies;
1208 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1209 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
1210
1211 scrub_stripe_submit_repair_read(stripe, mirror,
1212 fs_info->sectorsize, true);
1213 wait_scrub_stripe_io(stripe);
1214 scrub_verify_one_stripe(stripe, old_error_bitmap);
1215 if (scrub_bitmap_empty_error(stripe))
1216 goto out;
1217 }
1218 out:
1219 error = scrub_bitmap_read_error(stripe);
1220 /*
1221 * Submit the repaired sectors. For zoned case, we cannot do repair
1222 * in-place, but queue the bg to be relocated.
1223 */
1224 bitmap_andnot(&repaired, &errors.init_error_bitmap, &error,
1225 stripe->nr_sectors);
1226 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1227 if (btrfs_is_zoned(fs_info)) {
1228 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1229 } else {
1230 scrub_write_sectors(sctx, stripe, repaired, false);
1231 wait_scrub_stripe_io(stripe);
1232 }
1233 }
1234
1235 scrub_stripe_report_errors(sctx, stripe, &errors);
1236 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1237 wake_up(&stripe->repair_wait);
1238 }
1239
scrub_read_endio(struct btrfs_bio * bbio)1240 static void scrub_read_endio(struct btrfs_bio *bbio)
1241 {
1242 struct scrub_stripe *stripe = bbio->private;
1243 struct bio_vec *bvec;
1244 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1245 int num_sectors;
1246 u32 bio_size = 0;
1247 int i;
1248
1249 ASSERT(sector_nr < stripe->nr_sectors);
1250 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1251 bio_size += bvec->bv_len;
1252 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1253
1254 if (bbio->bio.bi_status) {
1255 scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors);
1256 scrub_bitmap_set_error(stripe, sector_nr, num_sectors);
1257 } else {
1258 scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors);
1259 }
1260 bio_put(&bbio->bio);
1261 if (atomic_dec_and_test(&stripe->pending_io)) {
1262 wake_up(&stripe->io_wait);
1263 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1264 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1265 }
1266 }
1267
scrub_write_endio(struct btrfs_bio * bbio)1268 static void scrub_write_endio(struct btrfs_bio *bbio)
1269 {
1270 struct scrub_stripe *stripe = bbio->private;
1271 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1272 struct bio_vec *bvec;
1273 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1274 u32 bio_size = 0;
1275 int i;
1276
1277 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1278 bio_size += bvec->bv_len;
1279
1280 if (bbio->bio.bi_status) {
1281 unsigned long flags;
1282
1283 spin_lock_irqsave(&stripe->write_error_lock, flags);
1284 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1285 bio_size >> fs_info->sectorsize_bits);
1286 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1287 for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++)
1288 btrfs_dev_stat_inc_and_print(stripe->dev,
1289 BTRFS_DEV_STAT_WRITE_ERRS);
1290 }
1291 bio_put(&bbio->bio);
1292
1293 if (atomic_dec_and_test(&stripe->pending_io))
1294 wake_up(&stripe->io_wait);
1295 }
1296
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1297 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1298 struct scrub_stripe *stripe,
1299 struct btrfs_bio *bbio, bool dev_replace)
1300 {
1301 struct btrfs_fs_info *fs_info = sctx->fs_info;
1302 u32 bio_len = bbio->bio.bi_iter.bi_size;
1303 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1304 stripe->logical;
1305
1306 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1307 atomic_inc(&stripe->pending_io);
1308 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1309 if (!btrfs_is_zoned(fs_info))
1310 return;
1311 /*
1312 * For zoned writeback, queue depth must be 1, thus we must wait for
1313 * the write to finish before the next write.
1314 */
1315 wait_scrub_stripe_io(stripe);
1316
1317 /*
1318 * And also need to update the write pointer if write finished
1319 * successfully.
1320 */
1321 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1322 &stripe->write_error_bitmap))
1323 sctx->write_pointer += bio_len;
1324 }
1325
1326 /*
1327 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1328 *
1329 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1330 *
1331 * - Only needs logical bytenr and mirror_num
1332 * Just like the scrub read path
1333 *
1334 * - Would only result in writes to the specified mirror
1335 * Unlike the regular writeback path, which would write back to all stripes
1336 *
1337 * - Handle dev-replace and read-repair writeback differently
1338 */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1339 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1340 unsigned long write_bitmap, bool dev_replace)
1341 {
1342 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1343 struct btrfs_bio *bbio = NULL;
1344 int sector_nr;
1345
1346 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1347 /* We should only writeback sectors covered by an extent. */
1348 ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr));
1349
1350 /* Cannot merge with previous sector, submit the current one. */
1351 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1352 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1353 bbio = NULL;
1354 }
1355 if (!bbio) {
1356 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1357 fs_info, scrub_write_endio, stripe);
1358 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1359 (sector_nr << fs_info->sectorsize_bits)) >>
1360 SECTOR_SHIFT;
1361 }
1362 scrub_bio_add_sector(bbio, stripe, sector_nr);
1363 }
1364 if (bbio)
1365 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1366 }
1367
1368 /*
1369 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1370 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1371 */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1372 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1373 unsigned int bio_size)
1374 {
1375 const int time_slice = 1000;
1376 s64 delta;
1377 ktime_t now;
1378 u32 div;
1379 u64 bwlimit;
1380
1381 bwlimit = READ_ONCE(device->scrub_speed_max);
1382 if (bwlimit == 0)
1383 return;
1384
1385 /*
1386 * Slice is divided into intervals when the IO is submitted, adjust by
1387 * bwlimit and maximum of 64 intervals.
1388 */
1389 div = clamp(bwlimit / (16 * 1024 * 1024), 1, 64);
1390
1391 /* Start new epoch, set deadline */
1392 now = ktime_get();
1393 if (sctx->throttle_deadline == 0) {
1394 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1395 sctx->throttle_sent = 0;
1396 }
1397
1398 /* Still in the time to send? */
1399 if (ktime_before(now, sctx->throttle_deadline)) {
1400 /* If current bio is within the limit, send it */
1401 sctx->throttle_sent += bio_size;
1402 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1403 return;
1404
1405 /* We're over the limit, sleep until the rest of the slice */
1406 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1407 } else {
1408 /* New request after deadline, start new epoch */
1409 delta = 0;
1410 }
1411
1412 if (delta) {
1413 long timeout;
1414
1415 timeout = div_u64(delta * HZ, 1000);
1416 schedule_timeout_interruptible(timeout);
1417 }
1418
1419 /* Next call will start the deadline period */
1420 sctx->throttle_deadline = 0;
1421 }
1422
1423 /*
1424 * Given a physical address, this will calculate it's
1425 * logical offset. if this is a parity stripe, it will return
1426 * the most left data stripe's logical offset.
1427 *
1428 * return 0 if it is a data stripe, 1 means parity stripe.
1429 */
get_raid56_logic_offset(u64 physical,int num,struct btrfs_chunk_map * map,u64 * offset,u64 * stripe_start)1430 static int get_raid56_logic_offset(u64 physical, int num,
1431 struct btrfs_chunk_map *map, u64 *offset,
1432 u64 *stripe_start)
1433 {
1434 int i;
1435 int j = 0;
1436 u64 last_offset;
1437 const int data_stripes = nr_data_stripes(map);
1438
1439 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1440 if (stripe_start)
1441 *stripe_start = last_offset;
1442
1443 *offset = last_offset;
1444 for (i = 0; i < data_stripes; i++) {
1445 u32 stripe_nr;
1446 u32 stripe_index;
1447 u32 rot;
1448
1449 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1450
1451 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1452
1453 /* Work out the disk rotation on this stripe-set */
1454 rot = stripe_nr % map->num_stripes;
1455 /* calculate which stripe this data locates */
1456 rot += i;
1457 stripe_index = rot % map->num_stripes;
1458 if (stripe_index == num)
1459 return 0;
1460 if (stripe_index < num)
1461 j++;
1462 }
1463 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1464 return 1;
1465 }
1466
1467 /*
1468 * Return 0 if the extent item range covers any byte of the range.
1469 * Return <0 if the extent item is before @search_start.
1470 * Return >0 if the extent item is after @start_start + @search_len.
1471 */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1472 static int compare_extent_item_range(struct btrfs_path *path,
1473 u64 search_start, u64 search_len)
1474 {
1475 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1476 u64 len;
1477 struct btrfs_key key;
1478
1479 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1480 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1481 key.type == BTRFS_METADATA_ITEM_KEY);
1482 if (key.type == BTRFS_METADATA_ITEM_KEY)
1483 len = fs_info->nodesize;
1484 else
1485 len = key.offset;
1486
1487 if (key.objectid + len <= search_start)
1488 return -1;
1489 if (key.objectid >= search_start + search_len)
1490 return 1;
1491 return 0;
1492 }
1493
1494 /*
1495 * Locate one extent item which covers any byte in range
1496 * [@search_start, @search_start + @search_length)
1497 *
1498 * If the path is not initialized, we will initialize the search by doing
1499 * a btrfs_search_slot().
1500 * If the path is already initialized, we will use the path as the initial
1501 * slot, to avoid duplicated btrfs_search_slot() calls.
1502 *
1503 * NOTE: If an extent item starts before @search_start, we will still
1504 * return the extent item. This is for data extent crossing stripe boundary.
1505 *
1506 * Return 0 if we found such extent item, and @path will point to the extent item.
1507 * Return >0 if no such extent item can be found, and @path will be released.
1508 * Return <0 if hit fatal error, and @path will be released.
1509 */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1510 static int find_first_extent_item(struct btrfs_root *extent_root,
1511 struct btrfs_path *path,
1512 u64 search_start, u64 search_len)
1513 {
1514 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1515 struct btrfs_key key;
1516 int ret;
1517
1518 /* Continue using the existing path */
1519 if (path->nodes[0])
1520 goto search_forward;
1521
1522 key.objectid = search_start;
1523 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1524 key.type = BTRFS_METADATA_ITEM_KEY;
1525 else
1526 key.type = BTRFS_EXTENT_ITEM_KEY;
1527 key.offset = (u64)-1;
1528
1529 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1530 if (ret < 0)
1531 return ret;
1532 if (unlikely(ret == 0)) {
1533 /*
1534 * Key with offset -1 found, there would have to exist an extent
1535 * item with such offset, but this is out of the valid range.
1536 */
1537 btrfs_release_path(path);
1538 return -EUCLEAN;
1539 }
1540
1541 /*
1542 * Here we intentionally pass 0 as @min_objectid, as there could be
1543 * an extent item starting before @search_start.
1544 */
1545 ret = btrfs_previous_extent_item(extent_root, path, 0);
1546 if (ret < 0)
1547 return ret;
1548 /*
1549 * No matter whether we have found an extent item, the next loop will
1550 * properly do every check on the key.
1551 */
1552 search_forward:
1553 while (true) {
1554 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1555 if (key.objectid >= search_start + search_len)
1556 break;
1557 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1558 key.type != BTRFS_EXTENT_ITEM_KEY)
1559 goto next;
1560
1561 ret = compare_extent_item_range(path, search_start, search_len);
1562 if (ret == 0)
1563 return ret;
1564 if (ret > 0)
1565 break;
1566 next:
1567 ret = btrfs_next_item(extent_root, path);
1568 if (ret) {
1569 /* Either no more items or a fatal error. */
1570 btrfs_release_path(path);
1571 return ret;
1572 }
1573 }
1574 btrfs_release_path(path);
1575 return 1;
1576 }
1577
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1578 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1579 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1580 {
1581 struct btrfs_key key;
1582 struct btrfs_extent_item *ei;
1583
1584 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1585 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1586 key.type == BTRFS_EXTENT_ITEM_KEY);
1587 *extent_start_ret = key.objectid;
1588 if (key.type == BTRFS_METADATA_ITEM_KEY)
1589 *size_ret = path->nodes[0]->fs_info->nodesize;
1590 else
1591 *size_ret = key.offset;
1592 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1593 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1594 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1595 }
1596
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1597 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1598 u64 physical, u64 physical_end)
1599 {
1600 struct btrfs_fs_info *fs_info = sctx->fs_info;
1601 int ret = 0;
1602
1603 if (!btrfs_is_zoned(fs_info))
1604 return 0;
1605
1606 mutex_lock(&sctx->wr_lock);
1607 if (sctx->write_pointer < physical_end) {
1608 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1609 physical,
1610 sctx->write_pointer);
1611 if (ret)
1612 btrfs_err(fs_info, "scrub: zoned: failed to recover write pointer");
1613 }
1614 mutex_unlock(&sctx->wr_lock);
1615 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1616
1617 return ret;
1618 }
1619
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1620 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1621 struct scrub_stripe *stripe,
1622 u64 extent_start, u64 extent_len,
1623 u64 extent_flags, u64 extent_gen)
1624 {
1625 for (u64 cur_logical = max(stripe->logical, extent_start);
1626 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1627 extent_start + extent_len);
1628 cur_logical += fs_info->sectorsize) {
1629 const int nr_sector = (cur_logical - stripe->logical) >>
1630 fs_info->sectorsize_bits;
1631 struct scrub_sector_verification *sector =
1632 &stripe->sectors[nr_sector];
1633
1634 scrub_bitmap_set_bit_has_extent(stripe, nr_sector);
1635 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1636 scrub_bitmap_set_bit_is_metadata(stripe, nr_sector);
1637 sector->generation = extent_gen;
1638 }
1639 }
1640 }
1641
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1642 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1643 {
1644 ASSERT(stripe->nr_sectors);
1645 bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors);
1646 }
1647
1648 /*
1649 * Locate one stripe which has at least one extent in its range.
1650 *
1651 * Return 0 if found such stripe, and store its info into @stripe.
1652 * Return >0 if there is no such stripe in the specified range.
1653 * Return <0 for error.
1654 */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1655 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1656 struct btrfs_path *extent_path,
1657 struct btrfs_path *csum_path,
1658 struct btrfs_device *dev, u64 physical,
1659 int mirror_num, u64 logical_start,
1660 u32 logical_len,
1661 struct scrub_stripe *stripe)
1662 {
1663 struct btrfs_fs_info *fs_info = bg->fs_info;
1664 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1665 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1666 const u64 logical_end = logical_start + logical_len;
1667 u64 cur_logical = logical_start;
1668 u64 stripe_end;
1669 u64 extent_start;
1670 u64 extent_len;
1671 u64 extent_flags;
1672 u64 extent_gen;
1673 int ret;
1674
1675 if (unlikely(!extent_root || !csum_root)) {
1676 btrfs_err(fs_info, "scrub: no valid extent or csum root found");
1677 return -EUCLEAN;
1678 }
1679 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1680 stripe->nr_sectors);
1681 scrub_stripe_reset_bitmaps(stripe);
1682
1683 /* The range must be inside the bg. */
1684 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1685
1686 ret = find_first_extent_item(extent_root, extent_path, logical_start,
1687 logical_len);
1688 /* Either error or not found. */
1689 if (ret)
1690 goto out;
1691 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1692 &extent_gen);
1693 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1694 stripe->nr_meta_extents++;
1695 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1696 stripe->nr_data_extents++;
1697 cur_logical = max(extent_start, cur_logical);
1698
1699 /*
1700 * Round down to stripe boundary.
1701 *
1702 * The extra calculation against bg->start is to handle block groups
1703 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1704 */
1705 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1706 bg->start;
1707 stripe->physical = physical + stripe->logical - logical_start;
1708 stripe->dev = dev;
1709 stripe->bg = bg;
1710 stripe->mirror_num = mirror_num;
1711 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1712
1713 /* Fill the first extent info into stripe->sectors[] array. */
1714 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1715 extent_flags, extent_gen);
1716 cur_logical = extent_start + extent_len;
1717
1718 /* Fill the extent info for the remaining sectors. */
1719 while (cur_logical <= stripe_end) {
1720 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1721 stripe_end - cur_logical + 1);
1722 if (ret < 0)
1723 goto out;
1724 if (ret > 0) {
1725 ret = 0;
1726 break;
1727 }
1728 get_extent_info(extent_path, &extent_start, &extent_len,
1729 &extent_flags, &extent_gen);
1730 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1731 stripe->nr_meta_extents++;
1732 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1733 stripe->nr_data_extents++;
1734 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1735 extent_flags, extent_gen);
1736 cur_logical = extent_start + extent_len;
1737 }
1738
1739 /* Now fill the data csum. */
1740 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1741 int sector_nr;
1742 unsigned long csum_bitmap = 0;
1743
1744 /* Csum space should have already been allocated. */
1745 ASSERT(stripe->csums);
1746
1747 /*
1748 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1749 * should contain at most 16 sectors.
1750 */
1751 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1752
1753 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1754 stripe->logical, stripe_end,
1755 stripe->csums, &csum_bitmap);
1756 if (ret < 0)
1757 goto out;
1758 if (ret > 0)
1759 ret = 0;
1760
1761 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1762 stripe->sectors[sector_nr].csum = stripe->csums +
1763 sector_nr * fs_info->csum_size;
1764 }
1765 }
1766 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1767 out:
1768 return ret;
1769 }
1770
scrub_reset_stripe(struct scrub_stripe * stripe)1771 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1772 {
1773 scrub_stripe_reset_bitmaps(stripe);
1774
1775 stripe->nr_meta_extents = 0;
1776 stripe->nr_data_extents = 0;
1777 stripe->state = 0;
1778
1779 for (int i = 0; i < stripe->nr_sectors; i++) {
1780 stripe->sectors[i].csum = NULL;
1781 stripe->sectors[i].generation = 0;
1782 }
1783 }
1784
stripe_length(const struct scrub_stripe * stripe)1785 static u32 stripe_length(const struct scrub_stripe *stripe)
1786 {
1787 ASSERT(stripe->bg);
1788
1789 return min(BTRFS_STRIPE_LEN,
1790 stripe->bg->start + stripe->bg->length - stripe->logical);
1791 }
1792
scrub_submit_extent_sector_read(struct scrub_stripe * stripe)1793 static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
1794 {
1795 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1796 struct btrfs_bio *bbio = NULL;
1797 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1798 const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe);
1799 u64 stripe_len = BTRFS_STRIPE_LEN;
1800 int mirror = stripe->mirror_num;
1801 int i;
1802
1803 atomic_inc(&stripe->pending_io);
1804
1805 for_each_set_bit(i, &has_extent, stripe->nr_sectors) {
1806 /* We're beyond the chunk boundary, no need to read anymore. */
1807 if (i >= nr_sectors)
1808 break;
1809
1810 /* The current sector cannot be merged, submit the bio. */
1811 if (bbio &&
1812 ((i > 0 && !test_bit(i - 1, &has_extent)) ||
1813 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1814 ASSERT(bbio->bio.bi_iter.bi_size);
1815 atomic_inc(&stripe->pending_io);
1816 btrfs_submit_bbio(bbio, mirror);
1817 bbio = NULL;
1818 }
1819
1820 if (!bbio) {
1821 struct btrfs_io_stripe io_stripe = {};
1822 struct btrfs_io_context *bioc = NULL;
1823 const u64 logical = stripe->logical +
1824 (i << fs_info->sectorsize_bits);
1825 int ret;
1826
1827 io_stripe.rst_search_commit_root = true;
1828 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1829 /*
1830 * For RST cases, we need to manually split the bbio to
1831 * follow the RST boundary.
1832 */
1833 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1834 &stripe_len, &bioc, &io_stripe, &mirror);
1835 btrfs_put_bioc(bioc);
1836 if (ret < 0) {
1837 if (ret != -ENODATA) {
1838 /*
1839 * Earlier btrfs_get_raid_extent_offset()
1840 * returned -ENODATA, which means there's
1841 * no entry for the corresponding range
1842 * in the stripe tree. But if it's in
1843 * the extent tree, then it's a preallocated
1844 * extent and not an error.
1845 */
1846 scrub_bitmap_set_bit_io_error(stripe, i);
1847 scrub_bitmap_set_bit_error(stripe, i);
1848 }
1849 continue;
1850 }
1851
1852 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1853 fs_info, scrub_read_endio, stripe);
1854 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1855 }
1856
1857 scrub_bio_add_sector(bbio, stripe, i);
1858 }
1859
1860 if (bbio) {
1861 ASSERT(bbio->bio.bi_iter.bi_size);
1862 atomic_inc(&stripe->pending_io);
1863 btrfs_submit_bbio(bbio, mirror);
1864 }
1865
1866 if (atomic_dec_and_test(&stripe->pending_io)) {
1867 wake_up(&stripe->io_wait);
1868 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1869 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1870 }
1871 }
1872
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1873 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1874 struct scrub_stripe *stripe)
1875 {
1876 struct btrfs_fs_info *fs_info = sctx->fs_info;
1877 struct btrfs_bio *bbio;
1878 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
1879 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1880 int mirror = stripe->mirror_num;
1881
1882 ASSERT(stripe->bg);
1883 ASSERT(stripe->mirror_num > 0);
1884 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1885
1886 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1887 scrub_submit_extent_sector_read(stripe);
1888 return;
1889 }
1890
1891 bbio = btrfs_bio_alloc(BTRFS_STRIPE_LEN >> min_folio_shift, REQ_OP_READ, fs_info,
1892 scrub_read_endio, stripe);
1893
1894 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1895 /* Read the whole range inside the chunk boundary. */
1896 for (unsigned int cur = 0; cur < nr_sectors; cur++)
1897 scrub_bio_add_sector(bbio, stripe, cur);
1898 atomic_inc(&stripe->pending_io);
1899
1900 /*
1901 * For dev-replace, either user asks to avoid the source dev, or
1902 * the device is missing, we try the next mirror instead.
1903 */
1904 if (sctx->is_dev_replace &&
1905 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1906 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1907 !stripe->dev->bdev)) {
1908 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1909 stripe->bg->length);
1910
1911 mirror = calc_next_mirror(mirror, num_copies);
1912 }
1913 btrfs_submit_bbio(bbio, mirror);
1914 }
1915
stripe_has_metadata_error(struct scrub_stripe * stripe)1916 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1917 {
1918 const unsigned long error = scrub_bitmap_read_error(stripe);
1919 int i;
1920
1921 for_each_set_bit(i, &error, stripe->nr_sectors) {
1922 if (scrub_bitmap_test_bit_is_metadata(stripe, i)) {
1923 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1924
1925 btrfs_err(fs_info,
1926 "scrub: stripe %llu has unrepaired metadata sector at logical %llu",
1927 stripe->logical,
1928 stripe->logical + (i << fs_info->sectorsize_bits));
1929 return true;
1930 }
1931 }
1932 return false;
1933 }
1934
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1935 static void submit_initial_group_read(struct scrub_ctx *sctx,
1936 unsigned int first_slot,
1937 unsigned int nr_stripes)
1938 {
1939 struct blk_plug plug;
1940
1941 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1942 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1943
1944 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1945 btrfs_stripe_nr_to_offset(nr_stripes));
1946 blk_start_plug(&plug);
1947 for (int i = 0; i < nr_stripes; i++) {
1948 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1949
1950 /* Those stripes should be initialized. */
1951 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1952 scrub_submit_initial_read(sctx, stripe);
1953 }
1954 blk_finish_plug(&plug);
1955 }
1956
flush_scrub_stripes(struct scrub_ctx * sctx)1957 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1958 {
1959 struct btrfs_fs_info *fs_info = sctx->fs_info;
1960 struct scrub_stripe *stripe;
1961 const int nr_stripes = sctx->cur_stripe;
1962 int ret = 0;
1963
1964 if (!nr_stripes)
1965 return 0;
1966
1967 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1968
1969 /* Submit the stripes which are populated but not submitted. */
1970 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1971 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1972
1973 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1974 }
1975
1976 for (int i = 0; i < nr_stripes; i++) {
1977 stripe = &sctx->stripes[i];
1978
1979 wait_event(stripe->repair_wait,
1980 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1981 }
1982
1983 /* Submit for dev-replace. */
1984 if (sctx->is_dev_replace) {
1985 /*
1986 * For dev-replace, if we know there is something wrong with
1987 * metadata, we should immediately abort.
1988 */
1989 for (int i = 0; i < nr_stripes; i++) {
1990 if (unlikely(stripe_has_metadata_error(&sctx->stripes[i]))) {
1991 ret = -EIO;
1992 goto out;
1993 }
1994 }
1995 for (int i = 0; i < nr_stripes; i++) {
1996 unsigned long good;
1997 unsigned long has_extent;
1998 unsigned long error;
1999
2000 stripe = &sctx->stripes[i];
2001
2002 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
2003
2004 has_extent = scrub_bitmap_read_has_extent(stripe);
2005 error = scrub_bitmap_read_error(stripe);
2006 bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors);
2007 scrub_write_sectors(sctx, stripe, good, true);
2008 }
2009 }
2010
2011 /* Wait for the above writebacks to finish. */
2012 for (int i = 0; i < nr_stripes; i++) {
2013 stripe = &sctx->stripes[i];
2014
2015 wait_scrub_stripe_io(stripe);
2016 spin_lock(&sctx->stat_lock);
2017 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
2018 spin_unlock(&sctx->stat_lock);
2019 scrub_reset_stripe(stripe);
2020 }
2021 out:
2022 sctx->cur_stripe = 0;
2023 return ret;
2024 }
2025
raid56_scrub_wait_endio(struct bio * bio)2026 static void raid56_scrub_wait_endio(struct bio *bio)
2027 {
2028 complete(bio->bi_private);
2029 }
2030
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)2031 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
2032 struct btrfs_device *dev, int mirror_num,
2033 u64 logical, u32 length, u64 physical,
2034 u64 *found_logical_ret)
2035 {
2036 struct scrub_stripe *stripe;
2037 int ret;
2038
2039 /*
2040 * There should always be one slot left, as caller filling the last
2041 * slot should flush them all.
2042 */
2043 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
2044
2045 /* @found_logical_ret must be specified. */
2046 ASSERT(found_logical_ret);
2047
2048 stripe = &sctx->stripes[sctx->cur_stripe];
2049 scrub_reset_stripe(stripe);
2050 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
2051 &sctx->csum_path, dev, physical,
2052 mirror_num, logical, length, stripe);
2053 /* Either >0 as no more extents or <0 for error. */
2054 if (ret)
2055 return ret;
2056 *found_logical_ret = stripe->logical;
2057 sctx->cur_stripe++;
2058
2059 /* We filled one group, submit it. */
2060 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
2061 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
2062
2063 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
2064 }
2065
2066 /* Last slot used, flush them all. */
2067 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
2068 return flush_scrub_stripes(sctx);
2069 return 0;
2070 }
2071
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 full_stripe_start)2072 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
2073 struct btrfs_device *scrub_dev,
2074 struct btrfs_block_group *bg,
2075 struct btrfs_chunk_map *map,
2076 u64 full_stripe_start)
2077 {
2078 DECLARE_COMPLETION_ONSTACK(io_done);
2079 struct btrfs_fs_info *fs_info = sctx->fs_info;
2080 struct btrfs_raid_bio *rbio;
2081 struct btrfs_io_context *bioc = NULL;
2082 struct btrfs_path extent_path = { 0 };
2083 struct btrfs_path csum_path = { 0 };
2084 struct bio *bio;
2085 struct scrub_stripe *stripe;
2086 bool all_empty = true;
2087 const int data_stripes = nr_data_stripes(map);
2088 unsigned long extent_bitmap = 0;
2089 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
2090 int ret;
2091
2092 ASSERT(sctx->raid56_data_stripes);
2093
2094 /*
2095 * For data stripe search, we cannot reuse the same extent/csum paths,
2096 * as the data stripe bytenr may be smaller than previous extent. Thus
2097 * we have to use our own extent/csum paths.
2098 */
2099 extent_path.search_commit_root = 1;
2100 extent_path.skip_locking = 1;
2101 csum_path.search_commit_root = 1;
2102 csum_path.skip_locking = 1;
2103
2104 for (int i = 0; i < data_stripes; i++) {
2105 int stripe_index;
2106 int rot;
2107 u64 physical;
2108
2109 stripe = &sctx->raid56_data_stripes[i];
2110 rot = div_u64(full_stripe_start - bg->start,
2111 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
2112 stripe_index = (i + rot) % map->num_stripes;
2113 physical = map->stripes[stripe_index].physical +
2114 btrfs_stripe_nr_to_offset(rot);
2115
2116 scrub_reset_stripe(stripe);
2117 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
2118 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
2119 map->stripes[stripe_index].dev, physical, 1,
2120 full_stripe_start + btrfs_stripe_nr_to_offset(i),
2121 BTRFS_STRIPE_LEN, stripe);
2122 if (ret < 0)
2123 goto out;
2124 /*
2125 * No extent in this data stripe, need to manually mark them
2126 * initialized to make later read submission happy.
2127 */
2128 if (ret > 0) {
2129 stripe->logical = full_stripe_start +
2130 btrfs_stripe_nr_to_offset(i);
2131 stripe->dev = map->stripes[stripe_index].dev;
2132 stripe->mirror_num = 1;
2133 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
2134 }
2135 }
2136
2137 /* Check if all data stripes are empty. */
2138 for (int i = 0; i < data_stripes; i++) {
2139 stripe = &sctx->raid56_data_stripes[i];
2140 if (!scrub_bitmap_empty_has_extent(stripe)) {
2141 all_empty = false;
2142 break;
2143 }
2144 }
2145 if (all_empty) {
2146 ret = 0;
2147 goto out;
2148 }
2149
2150 for (int i = 0; i < data_stripes; i++) {
2151 stripe = &sctx->raid56_data_stripes[i];
2152 scrub_submit_initial_read(sctx, stripe);
2153 }
2154 for (int i = 0; i < data_stripes; i++) {
2155 stripe = &sctx->raid56_data_stripes[i];
2156
2157 wait_event(stripe->repair_wait,
2158 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2159 }
2160 /* For now, no zoned support for RAID56. */
2161 ASSERT(!btrfs_is_zoned(sctx->fs_info));
2162
2163 /*
2164 * Now all data stripes are properly verified. Check if we have any
2165 * unrepaired, if so abort immediately or we could further corrupt the
2166 * P/Q stripes.
2167 *
2168 * During the loop, also populate extent_bitmap.
2169 */
2170 for (int i = 0; i < data_stripes; i++) {
2171 unsigned long error;
2172 unsigned long has_extent;
2173
2174 stripe = &sctx->raid56_data_stripes[i];
2175
2176 error = scrub_bitmap_read_error(stripe);
2177 has_extent = scrub_bitmap_read_has_extent(stripe);
2178
2179 /*
2180 * We should only check the errors where there is an extent.
2181 * As we may hit an empty data stripe while it's missing.
2182 */
2183 bitmap_and(&error, &error, &has_extent, stripe->nr_sectors);
2184 if (unlikely(!bitmap_empty(&error, stripe->nr_sectors))) {
2185 btrfs_err(fs_info,
2186 "scrub: unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2187 full_stripe_start, i, stripe->nr_sectors,
2188 &error);
2189 ret = -EIO;
2190 goto out;
2191 }
2192 bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent,
2193 stripe->nr_sectors);
2194 }
2195
2196 /* Now we can check and regenerate the P/Q stripe. */
2197 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2198 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2199 bio->bi_private = &io_done;
2200 bio->bi_end_io = raid56_scrub_wait_endio;
2201
2202 btrfs_bio_counter_inc_blocked(fs_info);
2203 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2204 &length, &bioc, NULL, NULL);
2205 if (ret < 0) {
2206 btrfs_put_bioc(bioc);
2207 btrfs_bio_counter_dec(fs_info);
2208 goto out;
2209 }
2210 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2211 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2212 btrfs_put_bioc(bioc);
2213 if (!rbio) {
2214 ret = -ENOMEM;
2215 btrfs_bio_counter_dec(fs_info);
2216 goto out;
2217 }
2218 /* Use the recovered stripes as cache to avoid read them from disk again. */
2219 for (int i = 0; i < data_stripes; i++) {
2220 stripe = &sctx->raid56_data_stripes[i];
2221
2222 raid56_parity_cache_data_folios(rbio, stripe->folios,
2223 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2224 }
2225 raid56_parity_submit_scrub_rbio(rbio);
2226 wait_for_completion_io(&io_done);
2227 ret = blk_status_to_errno(bio->bi_status);
2228 bio_put(bio);
2229 btrfs_bio_counter_dec(fs_info);
2230
2231 btrfs_release_path(&extent_path);
2232 btrfs_release_path(&csum_path);
2233 out:
2234 return ret;
2235 }
2236
2237 /*
2238 * Scrub one range which can only has simple mirror based profile.
2239 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2240 * RAID0/RAID10).
2241 *
2242 * Since we may need to handle a subset of block group, we need @logical_start
2243 * and @logical_length parameter.
2244 */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2245 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2246 struct btrfs_block_group *bg,
2247 u64 logical_start, u64 logical_length,
2248 struct btrfs_device *device,
2249 u64 physical, int mirror_num)
2250 {
2251 struct btrfs_fs_info *fs_info = sctx->fs_info;
2252 const u64 logical_end = logical_start + logical_length;
2253 u64 cur_logical = logical_start;
2254 int ret = 0;
2255
2256 /* The range must be inside the bg */
2257 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2258
2259 /* Go through each extent items inside the logical range */
2260 while (cur_logical < logical_end) {
2261 u64 found_logical = U64_MAX;
2262 u64 cur_physical = physical + cur_logical - logical_start;
2263
2264 /* Canceled? */
2265 if (atomic_read(&fs_info->scrub_cancel_req) ||
2266 atomic_read(&sctx->cancel_req)) {
2267 ret = -ECANCELED;
2268 break;
2269 }
2270 /* Paused? */
2271 if (atomic_read(&fs_info->scrub_pause_req)) {
2272 /* Push queued extents */
2273 scrub_blocked_if_needed(fs_info);
2274 }
2275 /* Block group removed? */
2276 spin_lock(&bg->lock);
2277 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2278 spin_unlock(&bg->lock);
2279 ret = 0;
2280 break;
2281 }
2282 spin_unlock(&bg->lock);
2283
2284 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2285 cur_logical, logical_end - cur_logical,
2286 cur_physical, &found_logical);
2287 if (ret > 0) {
2288 /* No more extent, just update the accounting */
2289 spin_lock(&sctx->stat_lock);
2290 sctx->stat.last_physical = physical + logical_length;
2291 spin_unlock(&sctx->stat_lock);
2292 ret = 0;
2293 break;
2294 }
2295 if (ret < 0)
2296 break;
2297
2298 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2299 ASSERT(found_logical != U64_MAX);
2300 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2301
2302 /* Don't hold CPU for too long time */
2303 cond_resched();
2304 }
2305 return ret;
2306 }
2307
2308 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct btrfs_chunk_map * map)2309 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2310 {
2311 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2312 BTRFS_BLOCK_GROUP_RAID10));
2313
2314 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2315 }
2316
2317 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct btrfs_chunk_map * map,struct btrfs_block_group * bg,int stripe_index)2318 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2319 struct btrfs_block_group *bg,
2320 int stripe_index)
2321 {
2322 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2323 BTRFS_BLOCK_GROUP_RAID10));
2324 ASSERT(stripe_index < map->num_stripes);
2325
2326 /*
2327 * (stripe_index / sub_stripes) gives how many data stripes we need to
2328 * skip.
2329 */
2330 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2331 bg->start;
2332 }
2333
2334 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct btrfs_chunk_map * map,int stripe_index)2335 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2336 {
2337 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2338 BTRFS_BLOCK_GROUP_RAID10));
2339 ASSERT(stripe_index < map->num_stripes);
2340
2341 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2342 return stripe_index % map->sub_stripes + 1;
2343 }
2344
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * device,int stripe_index)2345 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2346 struct btrfs_block_group *bg,
2347 struct btrfs_chunk_map *map,
2348 struct btrfs_device *device,
2349 int stripe_index)
2350 {
2351 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2352 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2353 const u64 orig_physical = map->stripes[stripe_index].physical;
2354 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2355 u64 cur_logical = orig_logical;
2356 u64 cur_physical = orig_physical;
2357 int ret = 0;
2358
2359 while (cur_logical < bg->start + bg->length) {
2360 /*
2361 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2362 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2363 * this stripe.
2364 */
2365 ret = scrub_simple_mirror(sctx, bg, cur_logical,
2366 BTRFS_STRIPE_LEN, device, cur_physical,
2367 mirror_num);
2368 if (ret)
2369 return ret;
2370 /* Skip to next stripe which belongs to the target device */
2371 cur_logical += logical_increment;
2372 /* For physical offset, we just go to next stripe */
2373 cur_physical += BTRFS_STRIPE_LEN;
2374 }
2375 return ret;
2376 }
2377
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * scrub_dev,int stripe_index)2378 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2379 struct btrfs_block_group *bg,
2380 struct btrfs_chunk_map *map,
2381 struct btrfs_device *scrub_dev,
2382 int stripe_index)
2383 {
2384 struct btrfs_fs_info *fs_info = sctx->fs_info;
2385 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2386 const u64 chunk_logical = bg->start;
2387 int ret;
2388 int ret2;
2389 u64 physical = map->stripes[stripe_index].physical;
2390 const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2391 const u64 physical_end = physical + dev_stripe_len;
2392 u64 logical;
2393 u64 logic_end;
2394 /* The logical increment after finishing one stripe */
2395 u64 increment;
2396 /* Offset inside the chunk */
2397 u64 offset;
2398 u64 stripe_logical;
2399
2400 /* Extent_path should be released by now. */
2401 ASSERT(sctx->extent_path.nodes[0] == NULL);
2402
2403 scrub_blocked_if_needed(fs_info);
2404
2405 if (sctx->is_dev_replace &&
2406 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2407 mutex_lock(&sctx->wr_lock);
2408 sctx->write_pointer = physical;
2409 mutex_unlock(&sctx->wr_lock);
2410 }
2411
2412 /* Prepare the extra data stripes used by RAID56. */
2413 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2414 ASSERT(sctx->raid56_data_stripes == NULL);
2415
2416 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2417 sizeof(struct scrub_stripe),
2418 GFP_KERNEL);
2419 if (!sctx->raid56_data_stripes) {
2420 ret = -ENOMEM;
2421 goto out;
2422 }
2423 for (int i = 0; i < nr_data_stripes(map); i++) {
2424 ret = init_scrub_stripe(fs_info,
2425 &sctx->raid56_data_stripes[i]);
2426 if (ret < 0)
2427 goto out;
2428 sctx->raid56_data_stripes[i].bg = bg;
2429 sctx->raid56_data_stripes[i].sctx = sctx;
2430 }
2431 }
2432 /*
2433 * There used to be a big double loop to handle all profiles using the
2434 * same routine, which grows larger and more gross over time.
2435 *
2436 * So here we handle each profile differently, so simpler profiles
2437 * have simpler scrubbing function.
2438 */
2439 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2440 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2441 /*
2442 * Above check rules out all complex profile, the remaining
2443 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2444 * mirrored duplication without stripe.
2445 *
2446 * Only @physical and @mirror_num needs to calculated using
2447 * @stripe_index.
2448 */
2449 ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
2450 scrub_dev, map->stripes[stripe_index].physical,
2451 stripe_index + 1);
2452 offset = 0;
2453 goto out;
2454 }
2455 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2456 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2457 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2458 goto out;
2459 }
2460
2461 /* Only RAID56 goes through the old code */
2462 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2463 ret = 0;
2464
2465 /* Calculate the logical end of the stripe */
2466 get_raid56_logic_offset(physical_end, stripe_index,
2467 map, &logic_end, NULL);
2468 logic_end += chunk_logical;
2469
2470 /* Initialize @offset in case we need to go to out: label */
2471 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2472 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2473
2474 /*
2475 * Due to the rotation, for RAID56 it's better to iterate each stripe
2476 * using their physical offset.
2477 */
2478 while (physical < physical_end) {
2479 ret = get_raid56_logic_offset(physical, stripe_index, map,
2480 &logical, &stripe_logical);
2481 logical += chunk_logical;
2482 if (ret) {
2483 /* it is parity strip */
2484 stripe_logical += chunk_logical;
2485 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2486 map, stripe_logical);
2487 spin_lock(&sctx->stat_lock);
2488 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2489 physical_end);
2490 spin_unlock(&sctx->stat_lock);
2491 if (ret)
2492 goto out;
2493 goto next;
2494 }
2495
2496 /*
2497 * Now we're at a data stripe, scrub each extents in the range.
2498 *
2499 * At this stage, if we ignore the repair part, inside each data
2500 * stripe it is no different than SINGLE profile.
2501 * We can reuse scrub_simple_mirror() here, as the repair part
2502 * is still based on @mirror_num.
2503 */
2504 ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
2505 scrub_dev, physical, 1);
2506 if (ret < 0)
2507 goto out;
2508 next:
2509 logical += increment;
2510 physical += BTRFS_STRIPE_LEN;
2511 spin_lock(&sctx->stat_lock);
2512 sctx->stat.last_physical = physical;
2513 spin_unlock(&sctx->stat_lock);
2514 }
2515 out:
2516 ret2 = flush_scrub_stripes(sctx);
2517 if (!ret)
2518 ret = ret2;
2519 btrfs_release_path(&sctx->extent_path);
2520 btrfs_release_path(&sctx->csum_path);
2521
2522 if (sctx->raid56_data_stripes) {
2523 for (int i = 0; i < nr_data_stripes(map); i++)
2524 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2525 kfree(sctx->raid56_data_stripes);
2526 sctx->raid56_data_stripes = NULL;
2527 }
2528
2529 if (sctx->is_dev_replace && ret >= 0) {
2530 int ret2;
2531
2532 ret2 = sync_write_pointer_for_zoned(sctx,
2533 chunk_logical + offset,
2534 map->stripes[stripe_index].physical,
2535 physical_end);
2536 if (ret2)
2537 ret = ret2;
2538 }
2539
2540 return ret < 0 ? ret : 0;
2541 }
2542
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2543 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2544 struct btrfs_block_group *bg,
2545 struct btrfs_device *scrub_dev,
2546 u64 dev_offset,
2547 u64 dev_extent_len)
2548 {
2549 struct btrfs_fs_info *fs_info = sctx->fs_info;
2550 struct btrfs_chunk_map *map;
2551 int i;
2552 int ret = 0;
2553
2554 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2555 if (!map) {
2556 /*
2557 * Might have been an unused block group deleted by the cleaner
2558 * kthread or relocation.
2559 */
2560 spin_lock(&bg->lock);
2561 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2562 ret = -EINVAL;
2563 spin_unlock(&bg->lock);
2564
2565 return ret;
2566 }
2567 if (map->start != bg->start)
2568 goto out;
2569 if (map->chunk_len < dev_extent_len)
2570 goto out;
2571
2572 for (i = 0; i < map->num_stripes; ++i) {
2573 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2574 map->stripes[i].physical == dev_offset) {
2575 ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2576 if (ret)
2577 goto out;
2578 }
2579 }
2580 out:
2581 btrfs_free_chunk_map(map);
2582
2583 return ret;
2584 }
2585
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2586 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2587 struct btrfs_block_group *cache)
2588 {
2589 struct btrfs_fs_info *fs_info = cache->fs_info;
2590
2591 if (!btrfs_is_zoned(fs_info))
2592 return 0;
2593
2594 btrfs_wait_block_group_reservations(cache);
2595 btrfs_wait_nocow_writers(cache);
2596 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2597
2598 return btrfs_commit_current_transaction(root);
2599 }
2600
2601 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2602 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2603 struct btrfs_device *scrub_dev, u64 start, u64 end)
2604 {
2605 struct btrfs_dev_extent *dev_extent = NULL;
2606 BTRFS_PATH_AUTO_FREE(path);
2607 struct btrfs_fs_info *fs_info = sctx->fs_info;
2608 struct btrfs_root *root = fs_info->dev_root;
2609 u64 chunk_offset;
2610 int ret = 0;
2611 int ro_set;
2612 int slot;
2613 struct extent_buffer *l;
2614 struct btrfs_key key;
2615 struct btrfs_key found_key;
2616 struct btrfs_block_group *cache;
2617 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2618
2619 path = btrfs_alloc_path();
2620 if (!path)
2621 return -ENOMEM;
2622
2623 path->reada = READA_FORWARD;
2624 path->search_commit_root = 1;
2625 path->skip_locking = 1;
2626
2627 key.objectid = scrub_dev->devid;
2628 key.type = BTRFS_DEV_EXTENT_KEY;
2629 key.offset = 0ull;
2630
2631 while (1) {
2632 u64 dev_extent_len;
2633
2634 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2635 if (ret < 0)
2636 break;
2637 if (ret > 0) {
2638 if (path->slots[0] >=
2639 btrfs_header_nritems(path->nodes[0])) {
2640 ret = btrfs_next_leaf(root, path);
2641 if (ret < 0)
2642 break;
2643 if (ret > 0) {
2644 ret = 0;
2645 break;
2646 }
2647 } else {
2648 ret = 0;
2649 }
2650 }
2651
2652 l = path->nodes[0];
2653 slot = path->slots[0];
2654
2655 btrfs_item_key_to_cpu(l, &found_key, slot);
2656
2657 if (found_key.objectid != scrub_dev->devid)
2658 break;
2659
2660 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2661 break;
2662
2663 if (found_key.offset >= end)
2664 break;
2665
2666 if (found_key.offset < key.offset)
2667 break;
2668
2669 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2670 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2671
2672 if (found_key.offset + dev_extent_len <= start)
2673 goto skip;
2674
2675 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2676
2677 /*
2678 * get a reference on the corresponding block group to prevent
2679 * the chunk from going away while we scrub it
2680 */
2681 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2682
2683 /* some chunks are removed but not committed to disk yet,
2684 * continue scrubbing */
2685 if (!cache)
2686 goto skip;
2687
2688 ASSERT(cache->start <= chunk_offset);
2689 /*
2690 * We are using the commit root to search for device extents, so
2691 * that means we could have found a device extent item from a
2692 * block group that was deleted in the current transaction. The
2693 * logical start offset of the deleted block group, stored at
2694 * @chunk_offset, might be part of the logical address range of
2695 * a new block group (which uses different physical extents).
2696 * In this case btrfs_lookup_block_group() has returned the new
2697 * block group, and its start address is less than @chunk_offset.
2698 *
2699 * We skip such new block groups, because it's pointless to
2700 * process them, as we won't find their extents because we search
2701 * for them using the commit root of the extent tree. For a device
2702 * replace it's also fine to skip it, we won't miss copying them
2703 * to the target device because we have the write duplication
2704 * setup through the regular write path (by btrfs_map_block()),
2705 * and we have committed a transaction when we started the device
2706 * replace, right after setting up the device replace state.
2707 */
2708 if (cache->start < chunk_offset) {
2709 btrfs_put_block_group(cache);
2710 goto skip;
2711 }
2712
2713 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2714 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2715 btrfs_put_block_group(cache);
2716 goto skip;
2717 }
2718 }
2719
2720 /*
2721 * Make sure that while we are scrubbing the corresponding block
2722 * group doesn't get its logical address and its device extents
2723 * reused for another block group, which can possibly be of a
2724 * different type and different profile. We do this to prevent
2725 * false error detections and crashes due to bogus attempts to
2726 * repair extents.
2727 */
2728 spin_lock(&cache->lock);
2729 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2730 spin_unlock(&cache->lock);
2731 btrfs_put_block_group(cache);
2732 goto skip;
2733 }
2734 btrfs_freeze_block_group(cache);
2735 spin_unlock(&cache->lock);
2736
2737 /*
2738 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2739 * to avoid deadlock caused by:
2740 * btrfs_inc_block_group_ro()
2741 * -> btrfs_wait_for_commit()
2742 * -> btrfs_commit_transaction()
2743 * -> btrfs_scrub_pause()
2744 */
2745 scrub_pause_on(fs_info);
2746
2747 /*
2748 * Don't do chunk preallocation for scrub.
2749 *
2750 * This is especially important for SYSTEM bgs, or we can hit
2751 * -EFBIG from btrfs_finish_chunk_alloc() like:
2752 * 1. The only SYSTEM bg is marked RO.
2753 * Since SYSTEM bg is small, that's pretty common.
2754 * 2. New SYSTEM bg will be allocated
2755 * Due to regular version will allocate new chunk.
2756 * 3. New SYSTEM bg is empty and will get cleaned up
2757 * Before cleanup really happens, it's marked RO again.
2758 * 4. Empty SYSTEM bg get scrubbed
2759 * We go back to 2.
2760 *
2761 * This can easily boost the amount of SYSTEM chunks if cleaner
2762 * thread can't be triggered fast enough, and use up all space
2763 * of btrfs_super_block::sys_chunk_array
2764 *
2765 * While for dev replace, we need to try our best to mark block
2766 * group RO, to prevent race between:
2767 * - Write duplication
2768 * Contains latest data
2769 * - Scrub copy
2770 * Contains data from commit tree
2771 *
2772 * If target block group is not marked RO, nocow writes can
2773 * be overwritten by scrub copy, causing data corruption.
2774 * So for dev-replace, it's not allowed to continue if a block
2775 * group is not RO.
2776 */
2777 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2778 if (!ret && sctx->is_dev_replace) {
2779 ret = finish_extent_writes_for_zoned(root, cache);
2780 if (ret) {
2781 btrfs_dec_block_group_ro(cache);
2782 scrub_pause_off(fs_info);
2783 btrfs_put_block_group(cache);
2784 break;
2785 }
2786 }
2787
2788 if (ret == 0) {
2789 ro_set = 1;
2790 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2791 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2792 /*
2793 * btrfs_inc_block_group_ro return -ENOSPC when it
2794 * failed in creating new chunk for metadata.
2795 * It is not a problem for scrub, because
2796 * metadata are always cowed, and our scrub paused
2797 * commit_transactions.
2798 *
2799 * For RAID56 chunks, we have to mark them read-only
2800 * for scrub, as later we would use our own cache
2801 * out of RAID56 realm.
2802 * Thus we want the RAID56 bg to be marked RO to
2803 * prevent RMW from screwing up out cache.
2804 */
2805 ro_set = 0;
2806 } else if (ret == -ETXTBSY) {
2807 btrfs_warn(fs_info,
2808 "scrub: skipping scrub of block group %llu due to active swapfile",
2809 cache->start);
2810 scrub_pause_off(fs_info);
2811 ret = 0;
2812 goto skip_unfreeze;
2813 } else {
2814 btrfs_warn(fs_info, "scrub: failed setting block group ro: %d",
2815 ret);
2816 btrfs_unfreeze_block_group(cache);
2817 btrfs_put_block_group(cache);
2818 scrub_pause_off(fs_info);
2819 break;
2820 }
2821
2822 /*
2823 * Now the target block is marked RO, wait for nocow writes to
2824 * finish before dev-replace.
2825 * COW is fine, as COW never overwrites extents in commit tree.
2826 */
2827 if (sctx->is_dev_replace) {
2828 btrfs_wait_nocow_writers(cache);
2829 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2830 }
2831
2832 scrub_pause_off(fs_info);
2833 down_write(&dev_replace->rwsem);
2834 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2835 dev_replace->cursor_left = found_key.offset;
2836 dev_replace->item_needs_writeback = 1;
2837 up_write(&dev_replace->rwsem);
2838
2839 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2840 dev_extent_len);
2841 if (sctx->is_dev_replace &&
2842 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2843 cache, found_key.offset))
2844 ro_set = 0;
2845
2846 down_write(&dev_replace->rwsem);
2847 dev_replace->cursor_left = dev_replace->cursor_right;
2848 dev_replace->item_needs_writeback = 1;
2849 up_write(&dev_replace->rwsem);
2850
2851 if (ro_set)
2852 btrfs_dec_block_group_ro(cache);
2853
2854 /*
2855 * We might have prevented the cleaner kthread from deleting
2856 * this block group if it was already unused because we raced
2857 * and set it to RO mode first. So add it back to the unused
2858 * list, otherwise it might not ever be deleted unless a manual
2859 * balance is triggered or it becomes used and unused again.
2860 */
2861 spin_lock(&cache->lock);
2862 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2863 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2864 spin_unlock(&cache->lock);
2865 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2866 btrfs_discard_queue_work(&fs_info->discard_ctl,
2867 cache);
2868 else
2869 btrfs_mark_bg_unused(cache);
2870 } else {
2871 spin_unlock(&cache->lock);
2872 }
2873 skip_unfreeze:
2874 btrfs_unfreeze_block_group(cache);
2875 btrfs_put_block_group(cache);
2876 if (ret)
2877 break;
2878 if (unlikely(sctx->is_dev_replace &&
2879 atomic64_read(&dev_replace->num_write_errors) > 0)) {
2880 ret = -EIO;
2881 break;
2882 }
2883 if (sctx->stat.malloc_errors > 0) {
2884 ret = -ENOMEM;
2885 break;
2886 }
2887 skip:
2888 key.offset = found_key.offset + dev_extent_len;
2889 btrfs_release_path(path);
2890 }
2891
2892 return ret;
2893 }
2894
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2895 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2896 struct page *page, u64 physical, u64 generation)
2897 {
2898 struct btrfs_fs_info *fs_info = sctx->fs_info;
2899 struct btrfs_super_block *sb = page_address(page);
2900 int ret;
2901
2902 ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb,
2903 BTRFS_SUPER_INFO_SIZE, REQ_OP_READ);
2904 if (ret < 0)
2905 return ret;
2906 ret = btrfs_check_super_csum(fs_info, sb);
2907 if (unlikely(ret != 0)) {
2908 btrfs_err_rl(fs_info,
2909 "scrub: super block at physical %llu devid %llu has bad csum",
2910 physical, dev->devid);
2911 return -EIO;
2912 }
2913 if (unlikely(btrfs_super_generation(sb) != generation)) {
2914 btrfs_err_rl(fs_info,
2915 "scrub: super block at physical %llu devid %llu has bad generation %llu expect %llu",
2916 physical, dev->devid,
2917 btrfs_super_generation(sb), generation);
2918 return -EUCLEAN;
2919 }
2920
2921 return btrfs_validate_super(fs_info, sb, -1);
2922 }
2923
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2924 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2925 struct btrfs_device *scrub_dev)
2926 {
2927 int i;
2928 u64 bytenr;
2929 u64 gen;
2930 int ret = 0;
2931 struct page *page;
2932 struct btrfs_fs_info *fs_info = sctx->fs_info;
2933
2934 if (BTRFS_FS_ERROR(fs_info))
2935 return -EROFS;
2936
2937 page = alloc_page(GFP_KERNEL);
2938 if (!page) {
2939 spin_lock(&sctx->stat_lock);
2940 sctx->stat.malloc_errors++;
2941 spin_unlock(&sctx->stat_lock);
2942 return -ENOMEM;
2943 }
2944
2945 /* Seed devices of a new filesystem has their own generation. */
2946 if (scrub_dev->fs_devices != fs_info->fs_devices)
2947 gen = scrub_dev->generation;
2948 else
2949 gen = btrfs_get_last_trans_committed(fs_info);
2950
2951 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2952 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2953 if (ret == -ENOENT)
2954 break;
2955
2956 if (ret) {
2957 spin_lock(&sctx->stat_lock);
2958 sctx->stat.super_errors++;
2959 spin_unlock(&sctx->stat_lock);
2960 continue;
2961 }
2962
2963 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2964 scrub_dev->commit_total_bytes)
2965 break;
2966 if (!btrfs_check_super_location(scrub_dev, bytenr))
2967 continue;
2968
2969 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2970 if (ret) {
2971 spin_lock(&sctx->stat_lock);
2972 sctx->stat.super_errors++;
2973 spin_unlock(&sctx->stat_lock);
2974 }
2975 }
2976 __free_page(page);
2977 return 0;
2978 }
2979
scrub_workers_put(struct btrfs_fs_info * fs_info)2980 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2981 {
2982 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2983 &fs_info->scrub_lock)) {
2984 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2985
2986 fs_info->scrub_workers = NULL;
2987 mutex_unlock(&fs_info->scrub_lock);
2988
2989 if (scrub_workers)
2990 destroy_workqueue(scrub_workers);
2991 }
2992 }
2993
2994 /*
2995 * get a reference count on fs_info->scrub_workers. start worker if necessary
2996 */
scrub_workers_get(struct btrfs_fs_info * fs_info)2997 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2998 {
2999 struct workqueue_struct *scrub_workers = NULL;
3000 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3001 int max_active = fs_info->thread_pool_size;
3002 int ret = -ENOMEM;
3003
3004 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3005 return 0;
3006
3007 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
3008 if (!scrub_workers)
3009 return -ENOMEM;
3010
3011 mutex_lock(&fs_info->scrub_lock);
3012 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3013 ASSERT(fs_info->scrub_workers == NULL);
3014 fs_info->scrub_workers = scrub_workers;
3015 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3016 mutex_unlock(&fs_info->scrub_lock);
3017 return 0;
3018 }
3019 /* Other thread raced in and created the workers for us */
3020 refcount_inc(&fs_info->scrub_workers_refcnt);
3021 mutex_unlock(&fs_info->scrub_lock);
3022
3023 ret = 0;
3024
3025 destroy_workqueue(scrub_workers);
3026 return ret;
3027 }
3028
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,bool readonly,bool is_dev_replace)3029 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3030 u64 end, struct btrfs_scrub_progress *progress,
3031 bool readonly, bool is_dev_replace)
3032 {
3033 struct btrfs_dev_lookup_args args = { .devid = devid };
3034 struct scrub_ctx *sctx;
3035 int ret;
3036 struct btrfs_device *dev;
3037 unsigned int nofs_flag;
3038 bool need_commit = false;
3039
3040 if (btrfs_fs_closing(fs_info))
3041 return -EAGAIN;
3042
3043 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
3044 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
3045
3046 /*
3047 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
3048 * value (max nodesize / min sectorsize), thus nodesize should always
3049 * be fine.
3050 */
3051 ASSERT(fs_info->nodesize <=
3052 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
3053
3054 /* Allocate outside of device_list_mutex */
3055 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3056 if (IS_ERR(sctx))
3057 return PTR_ERR(sctx);
3058
3059 ret = scrub_workers_get(fs_info);
3060 if (ret)
3061 goto out_free_ctx;
3062
3063 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3064 dev = btrfs_find_device(fs_info->fs_devices, &args);
3065 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3066 !is_dev_replace)) {
3067 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3068 ret = -ENODEV;
3069 goto out;
3070 }
3071
3072 if (!is_dev_replace && !readonly &&
3073 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3074 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3075 btrfs_err(fs_info,
3076 "scrub: devid %llu: filesystem on %s is not writable",
3077 devid, btrfs_dev_name(dev));
3078 ret = -EROFS;
3079 goto out;
3080 }
3081
3082 mutex_lock(&fs_info->scrub_lock);
3083 if (unlikely(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3084 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state))) {
3085 mutex_unlock(&fs_info->scrub_lock);
3086 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3087 ret = -EIO;
3088 goto out;
3089 }
3090
3091 down_read(&fs_info->dev_replace.rwsem);
3092 if (dev->scrub_ctx ||
3093 (!is_dev_replace &&
3094 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3095 up_read(&fs_info->dev_replace.rwsem);
3096 mutex_unlock(&fs_info->scrub_lock);
3097 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3098 ret = -EINPROGRESS;
3099 goto out;
3100 }
3101 up_read(&fs_info->dev_replace.rwsem);
3102
3103 sctx->readonly = readonly;
3104 dev->scrub_ctx = sctx;
3105 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3106
3107 /*
3108 * checking @scrub_pause_req here, we can avoid
3109 * race between committing transaction and scrubbing.
3110 */
3111 __scrub_blocked_if_needed(fs_info);
3112 atomic_inc(&fs_info->scrubs_running);
3113 mutex_unlock(&fs_info->scrub_lock);
3114
3115 /*
3116 * In order to avoid deadlock with reclaim when there is a transaction
3117 * trying to pause scrub, make sure we use GFP_NOFS for all the
3118 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
3119 * invoked by our callees. The pausing request is done when the
3120 * transaction commit starts, and it blocks the transaction until scrub
3121 * is paused (done at specific points at scrub_stripe() or right above
3122 * before incrementing fs_info->scrubs_running).
3123 */
3124 nofs_flag = memalloc_nofs_save();
3125 if (!is_dev_replace) {
3126 u64 old_super_errors;
3127
3128 spin_lock(&sctx->stat_lock);
3129 old_super_errors = sctx->stat.super_errors;
3130 spin_unlock(&sctx->stat_lock);
3131
3132 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3133 /*
3134 * by holding device list mutex, we can
3135 * kick off writing super in log tree sync.
3136 */
3137 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3138 ret = scrub_supers(sctx, dev);
3139 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3140
3141 spin_lock(&sctx->stat_lock);
3142 /*
3143 * Super block errors found, but we can not commit transaction
3144 * at current context, since btrfs_commit_transaction() needs
3145 * to pause the current running scrub (hold by ourselves).
3146 */
3147 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3148 need_commit = true;
3149 spin_unlock(&sctx->stat_lock);
3150 }
3151
3152 if (!ret)
3153 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3154 memalloc_nofs_restore(nofs_flag);
3155
3156 atomic_dec(&fs_info->scrubs_running);
3157 wake_up(&fs_info->scrub_pause_wait);
3158
3159 if (progress)
3160 memcpy(progress, &sctx->stat, sizeof(*progress));
3161
3162 if (!is_dev_replace)
3163 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3164 ret ? "not finished" : "finished", devid, ret);
3165
3166 mutex_lock(&fs_info->scrub_lock);
3167 dev->scrub_ctx = NULL;
3168 mutex_unlock(&fs_info->scrub_lock);
3169
3170 scrub_workers_put(fs_info);
3171 scrub_put_ctx(sctx);
3172
3173 /*
3174 * We found some super block errors before, now try to force a
3175 * transaction commit, as scrub has finished.
3176 */
3177 if (need_commit) {
3178 struct btrfs_trans_handle *trans;
3179
3180 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3181 if (IS_ERR(trans)) {
3182 ret = PTR_ERR(trans);
3183 btrfs_err(fs_info,
3184 "scrub: failed to start transaction to fix super block errors: %d", ret);
3185 return ret;
3186 }
3187 ret = btrfs_commit_transaction(trans);
3188 if (ret < 0)
3189 btrfs_err(fs_info,
3190 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3191 }
3192 return ret;
3193 out:
3194 scrub_workers_put(fs_info);
3195 out_free_ctx:
3196 scrub_free_ctx(sctx);
3197
3198 return ret;
3199 }
3200
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3201 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3202 {
3203 mutex_lock(&fs_info->scrub_lock);
3204 atomic_inc(&fs_info->scrub_pause_req);
3205 while (atomic_read(&fs_info->scrubs_paused) !=
3206 atomic_read(&fs_info->scrubs_running)) {
3207 mutex_unlock(&fs_info->scrub_lock);
3208 wait_event(fs_info->scrub_pause_wait,
3209 atomic_read(&fs_info->scrubs_paused) ==
3210 atomic_read(&fs_info->scrubs_running));
3211 mutex_lock(&fs_info->scrub_lock);
3212 }
3213 mutex_unlock(&fs_info->scrub_lock);
3214 }
3215
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3216 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3217 {
3218 atomic_dec(&fs_info->scrub_pause_req);
3219 wake_up(&fs_info->scrub_pause_wait);
3220 }
3221
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3222 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3223 {
3224 mutex_lock(&fs_info->scrub_lock);
3225 if (!atomic_read(&fs_info->scrubs_running)) {
3226 mutex_unlock(&fs_info->scrub_lock);
3227 return -ENOTCONN;
3228 }
3229
3230 atomic_inc(&fs_info->scrub_cancel_req);
3231 while (atomic_read(&fs_info->scrubs_running)) {
3232 mutex_unlock(&fs_info->scrub_lock);
3233 wait_event(fs_info->scrub_pause_wait,
3234 atomic_read(&fs_info->scrubs_running) == 0);
3235 mutex_lock(&fs_info->scrub_lock);
3236 }
3237 atomic_dec(&fs_info->scrub_cancel_req);
3238 mutex_unlock(&fs_info->scrub_lock);
3239
3240 return 0;
3241 }
3242
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3243 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3244 {
3245 struct btrfs_fs_info *fs_info = dev->fs_info;
3246 struct scrub_ctx *sctx;
3247
3248 mutex_lock(&fs_info->scrub_lock);
3249 sctx = dev->scrub_ctx;
3250 if (!sctx) {
3251 mutex_unlock(&fs_info->scrub_lock);
3252 return -ENOTCONN;
3253 }
3254 atomic_inc(&sctx->cancel_req);
3255 while (dev->scrub_ctx) {
3256 mutex_unlock(&fs_info->scrub_lock);
3257 wait_event(fs_info->scrub_pause_wait,
3258 dev->scrub_ctx == NULL);
3259 mutex_lock(&fs_info->scrub_lock);
3260 }
3261 mutex_unlock(&fs_info->scrub_lock);
3262
3263 return 0;
3264 }
3265
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3266 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3267 struct btrfs_scrub_progress *progress)
3268 {
3269 struct btrfs_dev_lookup_args args = { .devid = devid };
3270 struct btrfs_device *dev;
3271 struct scrub_ctx *sctx = NULL;
3272
3273 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3274 dev = btrfs_find_device(fs_info->fs_devices, &args);
3275 if (dev)
3276 sctx = dev->scrub_ctx;
3277 if (sctx)
3278 memcpy(progress, &sctx->stat, sizeof(*progress));
3279 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3280
3281 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3282 }
3283