1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 #include <asm/msr.h>
10
11 #include "x86.h"
12 #include "cpuid.h"
13 #include "hyperv.h"
14 #include "mmu.h"
15 #include "nested.h"
16 #include "pmu.h"
17 #include "posted_intr.h"
18 #include "sgx.h"
19 #include "trace.h"
20 #include "vmx.h"
21 #include "smm.h"
22
23 static bool __read_mostly enable_shadow_vmcs = 1;
24 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
25
26 static bool __read_mostly nested_early_check = 0;
27 module_param(nested_early_check, bool, S_IRUGO);
28
29 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
30
31 /*
32 * Hyper-V requires all of these, so mark them as supported even though
33 * they are just treated the same as all-context.
34 */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
36 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
37 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44 VMX_VMREAD_BITMAP,
45 VMX_VMWRITE_BITMAP,
46 VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54 u16 encoding;
55 u16 offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 ARRAY_SIZE(shadow_read_write_fields);
70
init_vmcs_shadow_fields(void)71 static void init_vmcs_shadow_fields(void)
72 {
73 int i, j;
74
75 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 u16 field = entry.encoding;
81
82 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 (i + 1 == max_shadow_read_only_fields ||
84 shadow_read_only_fields[i + 1].encoding != field + 1))
85 pr_err("Missing field from shadow_read_only_field %x\n",
86 field + 1);
87
88 clear_bit(field, vmx_vmread_bitmap);
89 if (field & 1)
90 #ifdef CONFIG_X86_64
91 continue;
92 #else
93 entry.offset += sizeof(u32);
94 #endif
95 shadow_read_only_fields[j++] = entry;
96 }
97 max_shadow_read_only_fields = j;
98
99 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 u16 field = entry.encoding;
102
103 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 (i + 1 == max_shadow_read_write_fields ||
105 shadow_read_write_fields[i + 1].encoding != field + 1))
106 pr_err("Missing field from shadow_read_write_field %x\n",
107 field + 1);
108
109 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 field <= GUEST_TR_AR_BYTES,
111 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113 /*
114 * PML and the preemption timer can be emulated, but the
115 * processor cannot vmwrite to fields that don't exist
116 * on bare metal.
117 */
118 switch (field) {
119 case GUEST_PML_INDEX:
120 if (!cpu_has_vmx_pml())
121 continue;
122 break;
123 case VMX_PREEMPTION_TIMER_VALUE:
124 if (!cpu_has_vmx_preemption_timer())
125 continue;
126 break;
127 case GUEST_INTR_STATUS:
128 if (!cpu_has_vmx_apicv())
129 continue;
130 break;
131 default:
132 break;
133 }
134
135 clear_bit(field, vmx_vmwrite_bitmap);
136 clear_bit(field, vmx_vmread_bitmap);
137 if (field & 1)
138 #ifdef CONFIG_X86_64
139 continue;
140 #else
141 entry.offset += sizeof(u32);
142 #endif
143 shadow_read_write_fields[j++] = entry;
144 }
145 max_shadow_read_write_fields = j;
146 }
147
148 /*
149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150 * set the success or error code of an emulated VMX instruction (as specified
151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152 * instruction.
153 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 return kvm_skip_emulated_instruction(vcpu);
160 }
161
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_CF);
168 return kvm_skip_emulated_instruction(vcpu);
169 }
170
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 u32 vm_instruction_error)
173 {
174 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176 X86_EFLAGS_SF | X86_EFLAGS_OF))
177 | X86_EFLAGS_ZF);
178 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179 /*
180 * We don't need to force sync to shadow VMCS because
181 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
182 * fields and thus must be synced.
183 */
184 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
185 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
186
187 return kvm_skip_emulated_instruction(vcpu);
188 }
189
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)190 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
191 {
192 struct vcpu_vmx *vmx = to_vmx(vcpu);
193
194 /*
195 * failValid writes the error number to the current VMCS, which
196 * can't be done if there isn't a current VMCS.
197 */
198 if (vmx->nested.current_vmptr == INVALID_GPA &&
199 !nested_vmx_is_evmptr12_valid(vmx))
200 return nested_vmx_failInvalid(vcpu);
201
202 return nested_vmx_failValid(vcpu, vm_instruction_error);
203 }
204
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)205 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
206 {
207 /* TODO: not to reset guest simply here. */
208 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
209 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
210 }
211
vmx_control_verify(u32 control,u32 low,u32 high)212 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
213 {
214 return fixed_bits_valid(control, low, high);
215 }
216
vmx_control_msr(u32 low,u32 high)217 static inline u64 vmx_control_msr(u32 low, u32 high)
218 {
219 return low | ((u64)high << 32);
220 }
221
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)222 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
223 {
224 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
225 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
226 vmx->nested.need_vmcs12_to_shadow_sync = false;
227 }
228
nested_release_evmcs(struct kvm_vcpu * vcpu)229 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
230 {
231 #ifdef CONFIG_KVM_HYPERV
232 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
233 struct vcpu_vmx *vmx = to_vmx(vcpu);
234
235 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
236 vmx->nested.hv_evmcs = NULL;
237 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
238
239 if (hv_vcpu) {
240 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 hv_vcpu->nested.vm_id = 0;
242 hv_vcpu->nested.vp_id = 0;
243 }
244 #endif
245 }
246
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)247 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
248 {
249 #ifdef CONFIG_KVM_HYPERV
250 struct vcpu_vmx *vmx = to_vmx(vcpu);
251 /*
252 * When Enlightened VMEntry is enabled on the calling CPU we treat
253 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
254 * way to distinguish it from VMCS12) and we must not corrupt it by
255 * writing to the non-existent 'launch_state' field. The area doesn't
256 * have to be the currently active EVMCS on the calling CPU and there's
257 * nothing KVM has to do to transition it from 'active' to 'non-active'
258 * state. It is possible that the area will stay mapped as
259 * vmx->nested.hv_evmcs but this shouldn't be a problem.
260 */
261 if (!guest_cpu_cap_has_evmcs(vcpu) ||
262 !evmptr_is_valid(nested_get_evmptr(vcpu)))
263 return false;
264
265 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
266 nested_release_evmcs(vcpu);
267
268 return true;
269 #else
270 return false;
271 #endif
272 }
273
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275 struct loaded_vmcs *prev)
276 {
277 struct vmcs_host_state *dest, *src;
278
279 if (unlikely(!vmx->vt.guest_state_loaded))
280 return;
281
282 src = &prev->host_state;
283 dest = &vmx->loaded_vmcs->host_state;
284
285 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286 dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288 dest->ds_sel = src->ds_sel;
289 dest->es_sel = src->es_sel;
290 #endif
291 }
292
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295 struct vcpu_vmx *vmx = to_vmx(vcpu);
296 struct loaded_vmcs *prev;
297 int cpu;
298
299 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
300 return;
301
302 cpu = get_cpu();
303 prev = vmx->loaded_vmcs;
304 vmx->loaded_vmcs = vmcs;
305 vmx_vcpu_load_vmcs(vcpu, cpu);
306 vmx_sync_vmcs_host_state(vmx, prev);
307 put_cpu();
308
309 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
310
311 /*
312 * All lazily updated registers will be reloaded from VMCS12 on both
313 * vmentry and vmexit.
314 */
315 vcpu->arch.regs_dirty = 0;
316 }
317
nested_put_vmcs12_pages(struct kvm_vcpu * vcpu)318 static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
319 {
320 struct vcpu_vmx *vmx = to_vmx(vcpu);
321
322 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
323 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
324 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
325 vmx->nested.pi_desc = NULL;
326 }
327
328 /*
329 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
330 * just stops using VMX.
331 */
free_nested(struct kvm_vcpu * vcpu)332 static void free_nested(struct kvm_vcpu *vcpu)
333 {
334 struct vcpu_vmx *vmx = to_vmx(vcpu);
335
336 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
337 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
338
339 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
340 return;
341
342 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
343
344 vmx->nested.vmxon = false;
345 vmx->nested.smm.vmxon = false;
346 vmx->nested.vmxon_ptr = INVALID_GPA;
347 free_vpid(vmx->nested.vpid02);
348 vmx->nested.posted_intr_nv = -1;
349 vmx->nested.current_vmptr = INVALID_GPA;
350 if (enable_shadow_vmcs) {
351 vmx_disable_shadow_vmcs(vmx);
352 vmcs_clear(vmx->vmcs01.shadow_vmcs);
353 free_vmcs(vmx->vmcs01.shadow_vmcs);
354 vmx->vmcs01.shadow_vmcs = NULL;
355 }
356 kfree(vmx->nested.cached_vmcs12);
357 vmx->nested.cached_vmcs12 = NULL;
358 kfree(vmx->nested.cached_shadow_vmcs12);
359 vmx->nested.cached_shadow_vmcs12 = NULL;
360
361 nested_put_vmcs12_pages(vcpu);
362
363 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
364
365 nested_release_evmcs(vcpu);
366
367 free_loaded_vmcs(&vmx->nested.vmcs02);
368 }
369
370 /*
371 * Ensure that the current vmcs of the logical processor is the
372 * vmcs01 of the vcpu before calling free_nested().
373 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)374 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
375 {
376 vcpu_load(vcpu);
377 vmx_leave_nested(vcpu);
378 vcpu_put(vcpu);
379 }
380
381 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
382
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)383 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
384 {
385 return VALID_PAGE(root_hpa) &&
386 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
387 }
388
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)389 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
390 gpa_t addr)
391 {
392 unsigned long roots = 0;
393 uint i;
394 struct kvm_mmu_root_info *cached_root;
395
396 WARN_ON_ONCE(!mmu_is_nested(vcpu));
397
398 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
399 cached_root = &vcpu->arch.mmu->prev_roots[i];
400
401 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
402 eptp))
403 roots |= KVM_MMU_ROOT_PREVIOUS(i);
404 }
405 if (roots)
406 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
407 }
408
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)409 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
410 struct x86_exception *fault)
411 {
412 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
414 unsigned long exit_qualification;
415 u32 vm_exit_reason;
416
417 if (vmx->nested.pml_full) {
418 vm_exit_reason = EXIT_REASON_PML_FULL;
419 vmx->nested.pml_full = false;
420
421 /*
422 * It should be impossible to trigger a nested PML Full VM-Exit
423 * for anything other than an EPT Violation from L2. KVM *can*
424 * trigger nEPT page fault injection in response to an EPT
425 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
426 * tables also changed, but KVM should not treat EPT Misconfig
427 * VM-Exits as writes.
428 */
429 WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
430
431 /*
432 * PML Full and EPT Violation VM-Exits both use bit 12 to report
433 * "NMI unblocking due to IRET", i.e. the bit can be propagated
434 * as-is from the original EXIT_QUALIFICATION.
435 */
436 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
437 } else {
438 if (fault->error_code & PFERR_RSVD_MASK) {
439 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
440 exit_qualification = 0;
441 } else {
442 exit_qualification = fault->exit_qualification;
443 exit_qualification |= vmx_get_exit_qual(vcpu) &
444 (EPT_VIOLATION_GVA_IS_VALID |
445 EPT_VIOLATION_GVA_TRANSLATED);
446 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
447 }
448
449 /*
450 * Although the caller (kvm_inject_emulated_page_fault) would
451 * have already synced the faulting address in the shadow EPT
452 * tables for the current EPTP12, we also need to sync it for
453 * any other cached EPTP02s based on the same EP4TA, since the
454 * TLB associates mappings to the EP4TA rather than the full EPTP.
455 */
456 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
457 fault->address);
458 }
459
460 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
461 vmcs12->guest_physical_address = fault->address;
462 }
463
nested_ept_new_eptp(struct kvm_vcpu * vcpu)464 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
465 {
466 struct vcpu_vmx *vmx = to_vmx(vcpu);
467 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
468 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
469
470 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
471 nested_ept_ad_enabled(vcpu),
472 nested_ept_get_eptp(vcpu));
473 }
474
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)475 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
476 {
477 WARN_ON(mmu_is_nested(vcpu));
478
479 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
480 nested_ept_new_eptp(vcpu);
481 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
482 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
483 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
484
485 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
486 }
487
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)488 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
489 {
490 vcpu->arch.mmu = &vcpu->arch.root_mmu;
491 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
492 }
493
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)494 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
495 u16 error_code)
496 {
497 bool inequality, bit;
498
499 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
500 inequality =
501 (error_code & vmcs12->page_fault_error_code_mask) !=
502 vmcs12->page_fault_error_code_match;
503 return inequality ^ bit;
504 }
505
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)506 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
507 u32 error_code)
508 {
509 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
510
511 /*
512 * Drop bits 31:16 of the error code when performing the #PF mask+match
513 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
514 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
515 * error code. Including the to-be-dropped bits in the check might
516 * result in an "impossible" or missed exit from L1's perspective.
517 */
518 if (vector == PF_VECTOR)
519 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
520
521 return (vmcs12->exception_bitmap & (1u << vector));
522 }
523
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)524 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
525 struct vmcs12 *vmcs12)
526 {
527 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
528 return 0;
529
530 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
531 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
532 return -EINVAL;
533
534 return 0;
535 }
536
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)537 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
538 struct vmcs12 *vmcs12)
539 {
540 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
541 return 0;
542
543 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
544 return -EINVAL;
545
546 return 0;
547 }
548
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)549 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
550 struct vmcs12 *vmcs12)
551 {
552 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
553 return 0;
554
555 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
556 return -EINVAL;
557
558 return 0;
559 }
560
561 /*
562 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
563 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
564 * only the "disable intercept" case needs to be handled.
565 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)566 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
567 unsigned long *msr_bitmap_l0,
568 u32 msr, int type)
569 {
570 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
571 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
572
573 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
574 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
575 }
576
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)577 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
578 {
579 int msr;
580
581 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
582 unsigned word = msr / BITS_PER_LONG;
583
584 msr_bitmap[word] = ~0;
585 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
586 }
587 }
588
589 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
590 static inline \
591 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
592 unsigned long *msr_bitmap_l1, \
593 unsigned long *msr_bitmap_l0, u32 msr) \
594 { \
595 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
596 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
597 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
598 else \
599 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
600 }
601 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)602 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
603
604 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
605 unsigned long *msr_bitmap_l1,
606 unsigned long *msr_bitmap_l0,
607 u32 msr, int types)
608 {
609 if (types & MSR_TYPE_R)
610 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
611 msr_bitmap_l0, msr);
612 if (types & MSR_TYPE_W)
613 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
614 msr_bitmap_l0, msr);
615 }
616
617 /*
618 * Merge L0's and L1's MSR bitmap, return false to indicate that
619 * we do not use the hardware.
620 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)621 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
622 struct vmcs12 *vmcs12)
623 {
624 struct vcpu_vmx *vmx = to_vmx(vcpu);
625 int msr;
626 unsigned long *msr_bitmap_l1;
627 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
628 struct kvm_host_map map;
629
630 /* Nothing to do if the MSR bitmap is not in use. */
631 if (!cpu_has_vmx_msr_bitmap() ||
632 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
633 return false;
634
635 /*
636 * MSR bitmap update can be skipped when:
637 * - MSR bitmap for L1 hasn't changed.
638 * - Nested hypervisor (L1) is attempting to launch the same L2 as
639 * before.
640 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
641 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
642 */
643 if (!vmx->nested.force_msr_bitmap_recalc) {
644 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
645
646 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
647 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
648 return true;
649 }
650
651 if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
652 return false;
653
654 msr_bitmap_l1 = (unsigned long *)map.hva;
655
656 /*
657 * To keep the control flow simple, pay eight 8-byte writes (sixteen
658 * 4-byte writes on 32-bit systems) up front to enable intercepts for
659 * the x2APIC MSR range and selectively toggle those relevant to L2.
660 */
661 enable_x2apic_msr_intercepts(msr_bitmap_l0);
662
663 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
664 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
665 /*
666 * L0 need not intercept reads for MSRs between 0x800
667 * and 0x8ff, it just lets the processor take the value
668 * from the virtual-APIC page; take those 256 bits
669 * directly from the L1 bitmap.
670 */
671 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
672 unsigned word = msr / BITS_PER_LONG;
673
674 msr_bitmap_l0[word] = msr_bitmap_l1[word];
675 }
676 }
677
678 nested_vmx_disable_intercept_for_x2apic_msr(
679 msr_bitmap_l1, msr_bitmap_l0,
680 X2APIC_MSR(APIC_TASKPRI),
681 MSR_TYPE_R | MSR_TYPE_W);
682
683 if (nested_cpu_has_vid(vmcs12)) {
684 nested_vmx_disable_intercept_for_x2apic_msr(
685 msr_bitmap_l1, msr_bitmap_l0,
686 X2APIC_MSR(APIC_EOI),
687 MSR_TYPE_W);
688 nested_vmx_disable_intercept_for_x2apic_msr(
689 msr_bitmap_l1, msr_bitmap_l0,
690 X2APIC_MSR(APIC_SELF_IPI),
691 MSR_TYPE_W);
692 }
693 }
694
695 /*
696 * Always check vmcs01's bitmap to honor userspace MSR filters and any
697 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
698 */
699 #ifdef CONFIG_X86_64
700 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
701 MSR_FS_BASE, MSR_TYPE_RW);
702
703 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
704 MSR_GS_BASE, MSR_TYPE_RW);
705
706 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
707 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
708 #endif
709 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
710 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
711
712 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
713 MSR_IA32_PRED_CMD, MSR_TYPE_W);
714
715 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
716 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
717
718 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
719 MSR_IA32_APERF, MSR_TYPE_R);
720
721 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
722 MSR_IA32_MPERF, MSR_TYPE_R);
723
724 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
725 MSR_IA32_U_CET, MSR_TYPE_RW);
726
727 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
728 MSR_IA32_S_CET, MSR_TYPE_RW);
729
730 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
731 MSR_IA32_PL0_SSP, MSR_TYPE_RW);
732
733 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
734 MSR_IA32_PL1_SSP, MSR_TYPE_RW);
735
736 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
737 MSR_IA32_PL2_SSP, MSR_TYPE_RW);
738
739 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
740 MSR_IA32_PL3_SSP, MSR_TYPE_RW);
741
742 kvm_vcpu_unmap(vcpu, &map);
743
744 vmx->nested.force_msr_bitmap_recalc = false;
745
746 return true;
747 }
748
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)749 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
750 struct vmcs12 *vmcs12)
751 {
752 struct vcpu_vmx *vmx = to_vmx(vcpu);
753 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
754
755 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
756 vmcs12->vmcs_link_pointer == INVALID_GPA)
757 return;
758
759 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
760 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
761 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
762 return;
763
764 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
765 VMCS12_SIZE);
766 }
767
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)768 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
769 struct vmcs12 *vmcs12)
770 {
771 struct vcpu_vmx *vmx = to_vmx(vcpu);
772 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
773
774 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
775 vmcs12->vmcs_link_pointer == INVALID_GPA)
776 return;
777
778 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
779 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
780 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
781 return;
782
783 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
784 VMCS12_SIZE);
785 }
786
787 /*
788 * In nested virtualization, check if L1 has set
789 * VM_EXIT_ACK_INTR_ON_EXIT
790 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)791 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
792 {
793 return get_vmcs12(vcpu)->vm_exit_controls &
794 VM_EXIT_ACK_INTR_ON_EXIT;
795 }
796
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)797 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
798 struct vmcs12 *vmcs12)
799 {
800 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
801 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
802 return -EINVAL;
803 else
804 return 0;
805 }
806
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)807 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
808 struct vmcs12 *vmcs12)
809 {
810 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
811 !nested_cpu_has_apic_reg_virt(vmcs12) &&
812 !nested_cpu_has_vid(vmcs12) &&
813 !nested_cpu_has_posted_intr(vmcs12))
814 return 0;
815
816 /*
817 * If virtualize x2apic mode is enabled,
818 * virtualize apic access must be disabled.
819 */
820 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
821 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
822 return -EINVAL;
823
824 /*
825 * If virtual interrupt delivery is enabled,
826 * we must exit on external interrupts.
827 */
828 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
829 return -EINVAL;
830
831 /*
832 * bits 15:8 should be zero in posted_intr_nv,
833 * the descriptor address has been already checked
834 * in nested_get_vmcs12_pages.
835 *
836 * bits 5:0 of posted_intr_desc_addr should be zero.
837 */
838 if (nested_cpu_has_posted_intr(vmcs12) &&
839 (CC(!nested_cpu_has_vid(vmcs12)) ||
840 CC(!nested_exit_intr_ack_set(vcpu)) ||
841 CC((vmcs12->posted_intr_nv & 0xff00)) ||
842 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
843 return -EINVAL;
844
845 /* tpr shadow is needed by all apicv features. */
846 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
847 return -EINVAL;
848
849 return 0;
850 }
851
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)852 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
853 {
854 struct vcpu_vmx *vmx = to_vmx(vcpu);
855 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
856 vmx->nested.msrs.misc_high);
857
858 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
859 }
860
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)861 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
862 u32 count, u64 addr)
863 {
864 if (count == 0)
865 return 0;
866
867 /*
868 * Exceeding the limit results in architecturally _undefined_ behavior,
869 * i.e. KVM is allowed to do literally anything in response to a bad
870 * limit. Immediately generate a consistency check so that code that
871 * consumes the count doesn't need to worry about extreme edge cases.
872 */
873 if (count > nested_vmx_max_atomic_switch_msrs(vcpu))
874 return -EINVAL;
875
876 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
877 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
878 return -EINVAL;
879
880 return 0;
881 }
882
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)883 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
884 struct vmcs12 *vmcs12)
885 {
886 if (CC(nested_vmx_check_msr_switch(vcpu,
887 vmcs12->vm_exit_msr_load_count,
888 vmcs12->vm_exit_msr_load_addr)) ||
889 CC(nested_vmx_check_msr_switch(vcpu,
890 vmcs12->vm_exit_msr_store_count,
891 vmcs12->vm_exit_msr_store_addr)))
892 return -EINVAL;
893
894 return 0;
895 }
896
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)897 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
898 struct vmcs12 *vmcs12)
899 {
900 if (CC(nested_vmx_check_msr_switch(vcpu,
901 vmcs12->vm_entry_msr_load_count,
902 vmcs12->vm_entry_msr_load_addr)))
903 return -EINVAL;
904
905 return 0;
906 }
907
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)908 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
909 struct vmcs12 *vmcs12)
910 {
911 if (!nested_cpu_has_pml(vmcs12))
912 return 0;
913
914 if (CC(!nested_cpu_has_ept(vmcs12)) ||
915 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
916 return -EINVAL;
917
918 return 0;
919 }
920
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)921 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
922 struct vmcs12 *vmcs12)
923 {
924 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
925 !nested_cpu_has_ept(vmcs12)))
926 return -EINVAL;
927 return 0;
928 }
929
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)930 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
931 struct vmcs12 *vmcs12)
932 {
933 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
934 !nested_cpu_has_ept(vmcs12)))
935 return -EINVAL;
936 return 0;
937 }
938
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)939 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
940 struct vmcs12 *vmcs12)
941 {
942 if (!nested_cpu_has_shadow_vmcs(vmcs12))
943 return 0;
944
945 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
946 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
947 return -EINVAL;
948
949 return 0;
950 }
951
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)952 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
953 struct vmx_msr_entry *e)
954 {
955 /* x2APIC MSR accesses are not allowed */
956 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
957 return -EINVAL;
958 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
959 CC(e->index == MSR_IA32_UCODE_REV))
960 return -EINVAL;
961 if (CC(e->reserved != 0))
962 return -EINVAL;
963 return 0;
964 }
965
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)966 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
967 struct vmx_msr_entry *e)
968 {
969 if (CC(e->index == MSR_FS_BASE) ||
970 CC(e->index == MSR_GS_BASE) ||
971 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
972 nested_vmx_msr_check_common(vcpu, e))
973 return -EINVAL;
974 return 0;
975 }
976
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)977 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
978 struct vmx_msr_entry *e)
979 {
980 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
981 nested_vmx_msr_check_common(vcpu, e))
982 return -EINVAL;
983 return 0;
984 }
985
986 /*
987 * Load guest's/host's msr at nested entry/exit.
988 * return 0 for success, entry index for failure.
989 *
990 * One of the failure modes for MSR load/store is when a list exceeds the
991 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
992 * as possible, process all valid entries before failing rather than precheck
993 * for a capacity violation.
994 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)995 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
996 {
997 u32 i;
998 struct vmx_msr_entry e;
999 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1000
1001 for (i = 0; i < count; i++) {
1002 if (WARN_ON_ONCE(i >= max_msr_list_size))
1003 goto fail;
1004
1005 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
1006 &e, sizeof(e))) {
1007 pr_debug_ratelimited(
1008 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1009 __func__, i, gpa + i * sizeof(e));
1010 goto fail;
1011 }
1012 if (nested_vmx_load_msr_check(vcpu, &e)) {
1013 pr_debug_ratelimited(
1014 "%s check failed (%u, 0x%x, 0x%x)\n",
1015 __func__, i, e.index, e.reserved);
1016 goto fail;
1017 }
1018 if (kvm_emulate_msr_write(vcpu, e.index, e.value)) {
1019 pr_debug_ratelimited(
1020 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1021 __func__, i, e.index, e.value);
1022 goto fail;
1023 }
1024 }
1025 return 0;
1026 fail:
1027 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
1028 return i + 1;
1029 }
1030
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)1031 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
1032 u32 msr_index,
1033 u64 *data)
1034 {
1035 struct vcpu_vmx *vmx = to_vmx(vcpu);
1036
1037 /*
1038 * If the L0 hypervisor stored a more accurate value for the TSC that
1039 * does not include the time taken for emulation of the L2->L1
1040 * VM-exit in L0, use the more accurate value.
1041 */
1042 if (msr_index == MSR_IA32_TSC) {
1043 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1044 MSR_IA32_TSC);
1045
1046 if (i >= 0) {
1047 u64 val = vmx->msr_autostore.guest.val[i].value;
1048
1049 *data = kvm_read_l1_tsc(vcpu, val);
1050 return true;
1051 }
1052 }
1053
1054 if (kvm_emulate_msr_read(vcpu, msr_index, data)) {
1055 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1056 msr_index);
1057 return false;
1058 }
1059 return true;
1060 }
1061
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1062 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1063 struct vmx_msr_entry *e)
1064 {
1065 if (kvm_vcpu_read_guest(vcpu,
1066 gpa + i * sizeof(*e),
1067 e, 2 * sizeof(u32))) {
1068 pr_debug_ratelimited(
1069 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1070 __func__, i, gpa + i * sizeof(*e));
1071 return false;
1072 }
1073 if (nested_vmx_store_msr_check(vcpu, e)) {
1074 pr_debug_ratelimited(
1075 "%s check failed (%u, 0x%x, 0x%x)\n",
1076 __func__, i, e->index, e->reserved);
1077 return false;
1078 }
1079 return true;
1080 }
1081
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1082 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1083 {
1084 u64 data;
1085 u32 i;
1086 struct vmx_msr_entry e;
1087 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1088
1089 for (i = 0; i < count; i++) {
1090 if (WARN_ON_ONCE(i >= max_msr_list_size))
1091 return -EINVAL;
1092
1093 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1094 return -EINVAL;
1095
1096 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1097 return -EINVAL;
1098
1099 if (kvm_vcpu_write_guest(vcpu,
1100 gpa + i * sizeof(e) +
1101 offsetof(struct vmx_msr_entry, value),
1102 &data, sizeof(data))) {
1103 pr_debug_ratelimited(
1104 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1105 __func__, i, e.index, data);
1106 return -EINVAL;
1107 }
1108 }
1109 return 0;
1110 }
1111
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1112 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1113 {
1114 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1115 u32 count = vmcs12->vm_exit_msr_store_count;
1116 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1117 struct vmx_msr_entry e;
1118 u32 i;
1119
1120 for (i = 0; i < count; i++) {
1121 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1122 return false;
1123
1124 if (e.index == msr_index)
1125 return true;
1126 }
1127 return false;
1128 }
1129
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1130 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1131 u32 msr_index)
1132 {
1133 struct vcpu_vmx *vmx = to_vmx(vcpu);
1134 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1135 bool in_vmcs12_store_list;
1136 int msr_autostore_slot;
1137 bool in_autostore_list;
1138 int last;
1139
1140 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1141 in_autostore_list = msr_autostore_slot >= 0;
1142 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1143
1144 if (in_vmcs12_store_list && !in_autostore_list) {
1145 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1146 /*
1147 * Emulated VMEntry does not fail here. Instead a less
1148 * accurate value will be returned by
1149 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1150 * internal MSR state instead of reading the value from
1151 * the vmcs02 VMExit MSR-store area.
1152 */
1153 pr_warn_ratelimited(
1154 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1155 msr_index);
1156 return;
1157 }
1158 last = autostore->nr++;
1159 autostore->val[last].index = msr_index;
1160 } else if (!in_vmcs12_store_list && in_autostore_list) {
1161 last = --autostore->nr;
1162 autostore->val[msr_autostore_slot] = autostore->val[last];
1163 }
1164 }
1165
1166 /*
1167 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1168 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1169 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1170 * @entry_failure_code.
1171 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1172 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1173 bool nested_ept, bool reload_pdptrs,
1174 enum vm_entry_failure_code *entry_failure_code)
1175 {
1176 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1177 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1178 return -EINVAL;
1179 }
1180
1181 /*
1182 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1183 * must not be dereferenced.
1184 */
1185 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1186 CC(!load_pdptrs(vcpu, cr3))) {
1187 *entry_failure_code = ENTRY_FAIL_PDPTE;
1188 return -EINVAL;
1189 }
1190
1191 vcpu->arch.cr3 = cr3;
1192 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1193
1194 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1195 kvm_init_mmu(vcpu);
1196
1197 if (!nested_ept)
1198 kvm_mmu_new_pgd(vcpu, cr3);
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Returns if KVM is able to config CPU to tag TLB entries
1205 * populated by L2 differently than TLB entries populated
1206 * by L1.
1207 *
1208 * If L0 uses EPT, L1 and L2 run with different EPTP because
1209 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1210 * are tagged with different EPTP.
1211 *
1212 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1213 * with different VPID (L1 entries are tagged with vmx->vpid
1214 * while L2 entries are tagged with vmx->nested.vpid02).
1215 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1216 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1217 {
1218 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1219
1220 return enable_ept ||
1221 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1222 }
1223
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1224 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1225 struct vmcs12 *vmcs12,
1226 bool is_vmenter)
1227 {
1228 struct vcpu_vmx *vmx = to_vmx(vcpu);
1229
1230 /* Handle pending Hyper-V TLB flush requests */
1231 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1232
1233 /*
1234 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1235 * same VPID as the host, and so architecturally, linear and combined
1236 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
1237 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1238 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
1239 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1240 * VPIDs) still occurs from L1's perspective, and KVM may need to
1241 * synchronize the MMU in response to the guest TLB flush.
1242 *
1243 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1244 * EPT is a special snowflake, as guest-physical mappings aren't
1245 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1246 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1247 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1248 * those mappings.
1249 */
1250 if (!nested_cpu_has_vpid(vmcs12)) {
1251 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1252 return;
1253 }
1254
1255 /* L2 should never have a VPID if VPID is disabled. */
1256 WARN_ON(!enable_vpid);
1257
1258 /*
1259 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1260 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1261 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1262 * that the new vpid12 has never been used and thus represents a new
1263 * guest ASID that cannot have entries in the TLB.
1264 */
1265 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1266 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1267 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1268 return;
1269 }
1270
1271 /*
1272 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1273 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1274 * KVM was unable to allocate a VPID for L2, flush the current context
1275 * as the effective ASID is common to both L1 and L2.
1276 */
1277 if (!nested_has_guest_tlb_tag(vcpu))
1278 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1279 }
1280
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1281 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1282 {
1283 superset &= mask;
1284 subset &= mask;
1285
1286 return (superset | subset) == superset;
1287 }
1288
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1289 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1290 {
1291 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1292 VMX_BASIC_INOUT |
1293 VMX_BASIC_TRUE_CTLS |
1294 VMX_BASIC_NO_HW_ERROR_CODE_CC;
1295
1296 const u64 reserved_bits = GENMASK_ULL(63, 57) |
1297 GENMASK_ULL(47, 45) |
1298 BIT_ULL(31);
1299
1300 u64 vmx_basic = vmcs_config.nested.basic;
1301
1302 BUILD_BUG_ON(feature_bits & reserved_bits);
1303
1304 /*
1305 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1306 * inverted polarity), the incoming value must not set feature bits or
1307 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1308 * multi-bit values, are explicitly checked below.
1309 */
1310 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1311 return -EINVAL;
1312
1313 /*
1314 * KVM does not emulate a version of VMX that constrains physical
1315 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1316 */
1317 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1318 return -EINVAL;
1319
1320 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1321 vmx_basic_vmcs_revision_id(data))
1322 return -EINVAL;
1323
1324 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1325 return -EINVAL;
1326
1327 vmx->nested.msrs.basic = data;
1328 return 0;
1329 }
1330
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1331 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1332 u32 **low, u32 **high)
1333 {
1334 switch (msr_index) {
1335 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1336 *low = &msrs->pinbased_ctls_low;
1337 *high = &msrs->pinbased_ctls_high;
1338 break;
1339 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1340 *low = &msrs->procbased_ctls_low;
1341 *high = &msrs->procbased_ctls_high;
1342 break;
1343 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1344 *low = &msrs->exit_ctls_low;
1345 *high = &msrs->exit_ctls_high;
1346 break;
1347 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1348 *low = &msrs->entry_ctls_low;
1349 *high = &msrs->entry_ctls_high;
1350 break;
1351 case MSR_IA32_VMX_PROCBASED_CTLS2:
1352 *low = &msrs->secondary_ctls_low;
1353 *high = &msrs->secondary_ctls_high;
1354 break;
1355 default:
1356 BUG();
1357 }
1358 }
1359
1360 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1361 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1362 {
1363 u32 *lowp, *highp;
1364 u64 supported;
1365
1366 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1367
1368 supported = vmx_control_msr(*lowp, *highp);
1369
1370 /* Check must-be-1 bits are still 1. */
1371 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1372 return -EINVAL;
1373
1374 /* Check must-be-0 bits are still 0. */
1375 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1376 return -EINVAL;
1377
1378 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1379 *lowp = data;
1380 *highp = data >> 32;
1381 return 0;
1382 }
1383
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1384 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1385 {
1386 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1387 VMX_MISC_ACTIVITY_HLT |
1388 VMX_MISC_ACTIVITY_SHUTDOWN |
1389 VMX_MISC_ACTIVITY_WAIT_SIPI |
1390 VMX_MISC_INTEL_PT |
1391 VMX_MISC_RDMSR_IN_SMM |
1392 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1393 VMX_MISC_VMXOFF_BLOCK_SMI |
1394 VMX_MISC_ZERO_LEN_INS;
1395
1396 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1397
1398 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1399 vmcs_config.nested.misc_high);
1400
1401 BUILD_BUG_ON(feature_bits & reserved_bits);
1402
1403 /*
1404 * The incoming value must not set feature bits or reserved bits that
1405 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1406 * explicitly checked below.
1407 */
1408 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1409 return -EINVAL;
1410
1411 if ((vmx->nested.msrs.pinbased_ctls_high &
1412 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1413 vmx_misc_preemption_timer_rate(data) !=
1414 vmx_misc_preemption_timer_rate(vmx_misc))
1415 return -EINVAL;
1416
1417 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1418 return -EINVAL;
1419
1420 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1421 return -EINVAL;
1422
1423 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1424 return -EINVAL;
1425
1426 vmx->nested.msrs.misc_low = data;
1427 vmx->nested.msrs.misc_high = data >> 32;
1428
1429 return 0;
1430 }
1431
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1432 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1433 {
1434 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1435 vmcs_config.nested.vpid_caps);
1436
1437 /* Every bit is either reserved or a feature bit. */
1438 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1439 return -EINVAL;
1440
1441 vmx->nested.msrs.ept_caps = data;
1442 vmx->nested.msrs.vpid_caps = data >> 32;
1443 return 0;
1444 }
1445
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1446 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1447 {
1448 switch (msr_index) {
1449 case MSR_IA32_VMX_CR0_FIXED0:
1450 return &msrs->cr0_fixed0;
1451 case MSR_IA32_VMX_CR4_FIXED0:
1452 return &msrs->cr4_fixed0;
1453 default:
1454 BUG();
1455 }
1456 }
1457
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1458 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1459 {
1460 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1461
1462 /*
1463 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1464 * must be 1 in the restored value.
1465 */
1466 if (!is_bitwise_subset(data, *msr, -1ULL))
1467 return -EINVAL;
1468
1469 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1470 return 0;
1471 }
1472
1473 /*
1474 * Called when userspace is restoring VMX MSRs.
1475 *
1476 * Returns 0 on success, non-0 otherwise.
1477 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1478 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1479 {
1480 struct vcpu_vmx *vmx = to_vmx(vcpu);
1481
1482 /*
1483 * Don't allow changes to the VMX capability MSRs while the vCPU
1484 * is in VMX operation.
1485 */
1486 if (vmx->nested.vmxon)
1487 return -EBUSY;
1488
1489 switch (msr_index) {
1490 case MSR_IA32_VMX_BASIC:
1491 return vmx_restore_vmx_basic(vmx, data);
1492 case MSR_IA32_VMX_PINBASED_CTLS:
1493 case MSR_IA32_VMX_PROCBASED_CTLS:
1494 case MSR_IA32_VMX_EXIT_CTLS:
1495 case MSR_IA32_VMX_ENTRY_CTLS:
1496 /*
1497 * The "non-true" VMX capability MSRs are generated from the
1498 * "true" MSRs, so we do not support restoring them directly.
1499 *
1500 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1501 * should restore the "true" MSRs with the must-be-1 bits
1502 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1503 * DEFAULT SETTINGS".
1504 */
1505 return -EINVAL;
1506 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1507 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1508 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1509 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1510 case MSR_IA32_VMX_PROCBASED_CTLS2:
1511 return vmx_restore_control_msr(vmx, msr_index, data);
1512 case MSR_IA32_VMX_MISC:
1513 return vmx_restore_vmx_misc(vmx, data);
1514 case MSR_IA32_VMX_CR0_FIXED0:
1515 case MSR_IA32_VMX_CR4_FIXED0:
1516 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1517 case MSR_IA32_VMX_CR0_FIXED1:
1518 case MSR_IA32_VMX_CR4_FIXED1:
1519 /*
1520 * These MSRs are generated based on the vCPU's CPUID, so we
1521 * do not support restoring them directly.
1522 */
1523 return -EINVAL;
1524 case MSR_IA32_VMX_EPT_VPID_CAP:
1525 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1526 case MSR_IA32_VMX_VMCS_ENUM:
1527 vmx->nested.msrs.vmcs_enum = data;
1528 return 0;
1529 case MSR_IA32_VMX_VMFUNC:
1530 if (data & ~vmcs_config.nested.vmfunc_controls)
1531 return -EINVAL;
1532 vmx->nested.msrs.vmfunc_controls = data;
1533 return 0;
1534 default:
1535 /*
1536 * The rest of the VMX capability MSRs do not support restore.
1537 */
1538 return -EINVAL;
1539 }
1540 }
1541
1542 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1543 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1544 {
1545 switch (msr_index) {
1546 case MSR_IA32_VMX_BASIC:
1547 *pdata = msrs->basic;
1548 break;
1549 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1550 case MSR_IA32_VMX_PINBASED_CTLS:
1551 *pdata = vmx_control_msr(
1552 msrs->pinbased_ctls_low,
1553 msrs->pinbased_ctls_high);
1554 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1555 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1556 break;
1557 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1558 case MSR_IA32_VMX_PROCBASED_CTLS:
1559 *pdata = vmx_control_msr(
1560 msrs->procbased_ctls_low,
1561 msrs->procbased_ctls_high);
1562 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1563 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1564 break;
1565 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1566 case MSR_IA32_VMX_EXIT_CTLS:
1567 *pdata = vmx_control_msr(
1568 msrs->exit_ctls_low,
1569 msrs->exit_ctls_high);
1570 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1571 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1572 break;
1573 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1574 case MSR_IA32_VMX_ENTRY_CTLS:
1575 *pdata = vmx_control_msr(
1576 msrs->entry_ctls_low,
1577 msrs->entry_ctls_high);
1578 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1579 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1580 break;
1581 case MSR_IA32_VMX_MISC:
1582 *pdata = vmx_control_msr(
1583 msrs->misc_low,
1584 msrs->misc_high);
1585 break;
1586 case MSR_IA32_VMX_CR0_FIXED0:
1587 *pdata = msrs->cr0_fixed0;
1588 break;
1589 case MSR_IA32_VMX_CR0_FIXED1:
1590 *pdata = msrs->cr0_fixed1;
1591 break;
1592 case MSR_IA32_VMX_CR4_FIXED0:
1593 *pdata = msrs->cr4_fixed0;
1594 break;
1595 case MSR_IA32_VMX_CR4_FIXED1:
1596 *pdata = msrs->cr4_fixed1;
1597 break;
1598 case MSR_IA32_VMX_VMCS_ENUM:
1599 *pdata = msrs->vmcs_enum;
1600 break;
1601 case MSR_IA32_VMX_PROCBASED_CTLS2:
1602 *pdata = vmx_control_msr(
1603 msrs->secondary_ctls_low,
1604 msrs->secondary_ctls_high);
1605 break;
1606 case MSR_IA32_VMX_EPT_VPID_CAP:
1607 *pdata = msrs->ept_caps |
1608 ((u64)msrs->vpid_caps << 32);
1609 break;
1610 case MSR_IA32_VMX_VMFUNC:
1611 *pdata = msrs->vmfunc_controls;
1612 break;
1613 default:
1614 return 1;
1615 }
1616
1617 return 0;
1618 }
1619
1620 /*
1621 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1622 * been modified by the L1 guest. Note, "writable" in this context means
1623 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1624 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1625 * VM-exit information fields (which are actually writable if the vCPU is
1626 * configured to support "VMWRITE to any supported field in the VMCS").
1627 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1628 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1629 {
1630 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1631 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1632 struct shadow_vmcs_field field;
1633 unsigned long val;
1634 int i;
1635
1636 if (WARN_ON(!shadow_vmcs))
1637 return;
1638
1639 preempt_disable();
1640
1641 vmcs_load(shadow_vmcs);
1642
1643 for (i = 0; i < max_shadow_read_write_fields; i++) {
1644 field = shadow_read_write_fields[i];
1645 val = __vmcs_readl(field.encoding);
1646 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1647 }
1648
1649 vmcs_clear(shadow_vmcs);
1650 vmcs_load(vmx->loaded_vmcs->vmcs);
1651
1652 preempt_enable();
1653 }
1654
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1655 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1656 {
1657 const struct shadow_vmcs_field *fields[] = {
1658 shadow_read_write_fields,
1659 shadow_read_only_fields
1660 };
1661 const int max_fields[] = {
1662 max_shadow_read_write_fields,
1663 max_shadow_read_only_fields
1664 };
1665 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1666 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1667 struct shadow_vmcs_field field;
1668 unsigned long val;
1669 int i, q;
1670
1671 if (WARN_ON(!shadow_vmcs))
1672 return;
1673
1674 vmcs_load(shadow_vmcs);
1675
1676 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1677 for (i = 0; i < max_fields[q]; i++) {
1678 field = fields[q][i];
1679 val = vmcs12_read_any(vmcs12, field.encoding,
1680 field.offset);
1681 __vmcs_writel(field.encoding, val);
1682 }
1683 }
1684
1685 vmcs_clear(shadow_vmcs);
1686 vmcs_load(vmx->loaded_vmcs->vmcs);
1687 }
1688
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1689 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1690 {
1691 #ifdef CONFIG_KVM_HYPERV
1692 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1693 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1694 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1695
1696 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1697 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1698 vmcs12->guest_rip = evmcs->guest_rip;
1699
1700 if (unlikely(!(hv_clean_fields &
1701 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1702 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1703 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1704 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1705 }
1706
1707 if (unlikely(!(hv_clean_fields &
1708 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1709 vmcs12->guest_rsp = evmcs->guest_rsp;
1710 vmcs12->guest_rflags = evmcs->guest_rflags;
1711 vmcs12->guest_interruptibility_info =
1712 evmcs->guest_interruptibility_info;
1713 /*
1714 * Not present in struct vmcs12:
1715 * vmcs12->guest_ssp = evmcs->guest_ssp;
1716 */
1717 }
1718
1719 if (unlikely(!(hv_clean_fields &
1720 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1721 vmcs12->cpu_based_vm_exec_control =
1722 evmcs->cpu_based_vm_exec_control;
1723 }
1724
1725 if (unlikely(!(hv_clean_fields &
1726 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1727 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1728 }
1729
1730 if (unlikely(!(hv_clean_fields &
1731 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1732 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1733 }
1734
1735 if (unlikely(!(hv_clean_fields &
1736 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1737 vmcs12->vm_entry_intr_info_field =
1738 evmcs->vm_entry_intr_info_field;
1739 vmcs12->vm_entry_exception_error_code =
1740 evmcs->vm_entry_exception_error_code;
1741 vmcs12->vm_entry_instruction_len =
1742 evmcs->vm_entry_instruction_len;
1743 }
1744
1745 if (unlikely(!(hv_clean_fields &
1746 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1747 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1748 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1749 vmcs12->host_cr0 = evmcs->host_cr0;
1750 vmcs12->host_cr3 = evmcs->host_cr3;
1751 vmcs12->host_cr4 = evmcs->host_cr4;
1752 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1753 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1754 vmcs12->host_rip = evmcs->host_rip;
1755 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1756 vmcs12->host_es_selector = evmcs->host_es_selector;
1757 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1758 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1759 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1760 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1761 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1762 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1763 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1764 /*
1765 * Not present in struct vmcs12:
1766 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1767 * vmcs12->host_ssp = evmcs->host_ssp;
1768 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1769 */
1770 }
1771
1772 if (unlikely(!(hv_clean_fields &
1773 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1774 vmcs12->pin_based_vm_exec_control =
1775 evmcs->pin_based_vm_exec_control;
1776 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1777 vmcs12->secondary_vm_exec_control =
1778 evmcs->secondary_vm_exec_control;
1779 }
1780
1781 if (unlikely(!(hv_clean_fields &
1782 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1783 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1784 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1785 }
1786
1787 if (unlikely(!(hv_clean_fields &
1788 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1789 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1790 }
1791
1792 if (unlikely(!(hv_clean_fields &
1793 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1794 vmcs12->guest_es_base = evmcs->guest_es_base;
1795 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1796 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1797 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1798 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1799 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1800 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1801 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1802 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1803 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1804 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1805 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1806 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1807 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1808 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1809 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1810 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1811 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1812 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1813 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1814 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1815 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1816 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1817 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1818 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1819 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1820 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1821 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1822 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1823 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1824 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1825 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1826 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1827 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1828 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1829 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1830 }
1831
1832 if (unlikely(!(hv_clean_fields &
1833 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1834 vmcs12->tsc_offset = evmcs->tsc_offset;
1835 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1836 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1837 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1838 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1839 }
1840
1841 if (unlikely(!(hv_clean_fields &
1842 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1843 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1844 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1845 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1846 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1847 vmcs12->guest_cr0 = evmcs->guest_cr0;
1848 vmcs12->guest_cr3 = evmcs->guest_cr3;
1849 vmcs12->guest_cr4 = evmcs->guest_cr4;
1850 vmcs12->guest_dr7 = evmcs->guest_dr7;
1851 }
1852
1853 if (unlikely(!(hv_clean_fields &
1854 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1855 vmcs12->host_fs_base = evmcs->host_fs_base;
1856 vmcs12->host_gs_base = evmcs->host_gs_base;
1857 vmcs12->host_tr_base = evmcs->host_tr_base;
1858 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1859 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1860 vmcs12->host_rsp = evmcs->host_rsp;
1861 }
1862
1863 if (unlikely(!(hv_clean_fields &
1864 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1865 vmcs12->ept_pointer = evmcs->ept_pointer;
1866 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1867 }
1868
1869 if (unlikely(!(hv_clean_fields &
1870 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1871 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1872 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1873 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1874 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1875 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1876 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1877 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1878 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1879 vmcs12->guest_pending_dbg_exceptions =
1880 evmcs->guest_pending_dbg_exceptions;
1881 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1882 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1883 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1884 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1885 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1886 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1887 /*
1888 * Not present in struct vmcs12:
1889 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1890 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1891 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1892 */
1893 }
1894
1895 /*
1896 * Not used?
1897 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1898 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1899 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1900 * vmcs12->page_fault_error_code_mask =
1901 * evmcs->page_fault_error_code_mask;
1902 * vmcs12->page_fault_error_code_match =
1903 * evmcs->page_fault_error_code_match;
1904 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1905 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1906 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1907 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1908 */
1909
1910 /*
1911 * Read only fields:
1912 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1913 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1914 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1915 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1916 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1917 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1918 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1919 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1920 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1921 * vmcs12->exit_qualification = evmcs->exit_qualification;
1922 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1923 *
1924 * Not present in struct vmcs12:
1925 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1926 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1927 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1928 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1929 */
1930
1931 return;
1932 #else /* CONFIG_KVM_HYPERV */
1933 KVM_BUG_ON(1, vmx->vcpu.kvm);
1934 #endif /* CONFIG_KVM_HYPERV */
1935 }
1936
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1937 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1938 {
1939 #ifdef CONFIG_KVM_HYPERV
1940 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1941 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1942
1943 /*
1944 * Should not be changed by KVM:
1945 *
1946 * evmcs->host_es_selector = vmcs12->host_es_selector;
1947 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1948 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1949 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1950 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1951 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1952 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1953 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1954 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1955 * evmcs->host_cr0 = vmcs12->host_cr0;
1956 * evmcs->host_cr3 = vmcs12->host_cr3;
1957 * evmcs->host_cr4 = vmcs12->host_cr4;
1958 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1959 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1960 * evmcs->host_rip = vmcs12->host_rip;
1961 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1962 * evmcs->host_fs_base = vmcs12->host_fs_base;
1963 * evmcs->host_gs_base = vmcs12->host_gs_base;
1964 * evmcs->host_tr_base = vmcs12->host_tr_base;
1965 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1966 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1967 * evmcs->host_rsp = vmcs12->host_rsp;
1968 * sync_vmcs02_to_vmcs12() doesn't read these:
1969 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1970 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1971 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1972 * evmcs->ept_pointer = vmcs12->ept_pointer;
1973 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1974 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1975 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1976 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1977 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1978 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1979 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1980 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1981 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1982 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1983 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1984 * evmcs->page_fault_error_code_mask =
1985 * vmcs12->page_fault_error_code_mask;
1986 * evmcs->page_fault_error_code_match =
1987 * vmcs12->page_fault_error_code_match;
1988 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1989 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1990 * evmcs->tsc_offset = vmcs12->tsc_offset;
1991 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1992 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1993 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1994 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1995 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1996 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1997 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1998 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1999 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
2000 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
2001 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
2002 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
2003 *
2004 * Not present in struct vmcs12:
2005 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
2006 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
2007 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
2008 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
2009 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
2010 * evmcs->host_ssp = vmcs12->host_ssp;
2011 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
2012 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
2013 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
2014 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
2015 * evmcs->guest_ssp = vmcs12->guest_ssp;
2016 */
2017
2018 evmcs->guest_es_selector = vmcs12->guest_es_selector;
2019 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
2020 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
2021 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
2022 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
2023 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
2024 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
2025 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
2026
2027 evmcs->guest_es_limit = vmcs12->guest_es_limit;
2028 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
2029 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
2030 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
2031 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
2032 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
2033 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
2034 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2035 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2036 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2037
2038 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2039 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2040 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2041 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2042 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2043 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2044 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2045 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2046
2047 evmcs->guest_es_base = vmcs12->guest_es_base;
2048 evmcs->guest_cs_base = vmcs12->guest_cs_base;
2049 evmcs->guest_ss_base = vmcs12->guest_ss_base;
2050 evmcs->guest_ds_base = vmcs12->guest_ds_base;
2051 evmcs->guest_fs_base = vmcs12->guest_fs_base;
2052 evmcs->guest_gs_base = vmcs12->guest_gs_base;
2053 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2054 evmcs->guest_tr_base = vmcs12->guest_tr_base;
2055 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2056 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2057
2058 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2059 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2060
2061 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2062 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2063 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2064 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2065
2066 evmcs->guest_pending_dbg_exceptions =
2067 vmcs12->guest_pending_dbg_exceptions;
2068 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2069 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2070
2071 evmcs->guest_activity_state = vmcs12->guest_activity_state;
2072 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2073
2074 evmcs->guest_cr0 = vmcs12->guest_cr0;
2075 evmcs->guest_cr3 = vmcs12->guest_cr3;
2076 evmcs->guest_cr4 = vmcs12->guest_cr4;
2077 evmcs->guest_dr7 = vmcs12->guest_dr7;
2078
2079 evmcs->guest_physical_address = vmcs12->guest_physical_address;
2080
2081 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2082 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2083 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2084 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2085 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2086 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2087 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2088 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2089
2090 evmcs->exit_qualification = vmcs12->exit_qualification;
2091
2092 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2093 evmcs->guest_rsp = vmcs12->guest_rsp;
2094 evmcs->guest_rflags = vmcs12->guest_rflags;
2095
2096 evmcs->guest_interruptibility_info =
2097 vmcs12->guest_interruptibility_info;
2098 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2099 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2100 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2101 evmcs->vm_entry_exception_error_code =
2102 vmcs12->vm_entry_exception_error_code;
2103 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2104
2105 evmcs->guest_rip = vmcs12->guest_rip;
2106
2107 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2108
2109 return;
2110 #else /* CONFIG_KVM_HYPERV */
2111 KVM_BUG_ON(1, vmx->vcpu.kvm);
2112 #endif /* CONFIG_KVM_HYPERV */
2113 }
2114
2115 /*
2116 * This is an equivalent of the nested hypervisor executing the vmptrld
2117 * instruction.
2118 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2119 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2120 struct kvm_vcpu *vcpu, bool from_launch)
2121 {
2122 #ifdef CONFIG_KVM_HYPERV
2123 struct vcpu_vmx *vmx = to_vmx(vcpu);
2124 bool evmcs_gpa_changed = false;
2125 u64 evmcs_gpa;
2126
2127 if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2128 return EVMPTRLD_DISABLED;
2129
2130 evmcs_gpa = nested_get_evmptr(vcpu);
2131 if (!evmptr_is_valid(evmcs_gpa)) {
2132 nested_release_evmcs(vcpu);
2133 return EVMPTRLD_DISABLED;
2134 }
2135
2136 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2137 vmx->nested.current_vmptr = INVALID_GPA;
2138
2139 nested_release_evmcs(vcpu);
2140
2141 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2142 &vmx->nested.hv_evmcs_map))
2143 return EVMPTRLD_ERROR;
2144
2145 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2146
2147 /*
2148 * Currently, KVM only supports eVMCS version 1
2149 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2150 * value to first u32 field of eVMCS which should specify eVMCS
2151 * VersionNumber.
2152 *
2153 * Guest should be aware of supported eVMCS versions by host by
2154 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2155 * expected to set this CPUID leaf according to the value
2156 * returned in vmcs_version from nested_enable_evmcs().
2157 *
2158 * However, it turns out that Microsoft Hyper-V fails to comply
2159 * to their own invented interface: When Hyper-V use eVMCS, it
2160 * just sets first u32 field of eVMCS to revision_id specified
2161 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2162 * which is one of the supported versions specified in
2163 * CPUID.0x4000000A.EAX[0:15].
2164 *
2165 * To overcome Hyper-V bug, we accept here either a supported
2166 * eVMCS version or VMCS12 revision_id as valid values for first
2167 * u32 field of eVMCS.
2168 */
2169 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2170 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2171 nested_release_evmcs(vcpu);
2172 return EVMPTRLD_VMFAIL;
2173 }
2174
2175 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2176
2177 evmcs_gpa_changed = true;
2178 /*
2179 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2180 * reloaded from guest's memory (read only fields, fields not
2181 * present in struct hv_enlightened_vmcs, ...). Make sure there
2182 * are no leftovers.
2183 */
2184 if (from_launch) {
2185 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2186 memset(vmcs12, 0, sizeof(*vmcs12));
2187 vmcs12->hdr.revision_id = VMCS12_REVISION;
2188 }
2189
2190 }
2191
2192 /*
2193 * Clean fields data can't be used on VMLAUNCH and when we switch
2194 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2195 */
2196 if (from_launch || evmcs_gpa_changed) {
2197 vmx->nested.hv_evmcs->hv_clean_fields &=
2198 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2199
2200 vmx->nested.force_msr_bitmap_recalc = true;
2201 }
2202
2203 return EVMPTRLD_SUCCEEDED;
2204 #else
2205 return EVMPTRLD_DISABLED;
2206 #endif
2207 }
2208
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2209 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2210 {
2211 struct vcpu_vmx *vmx = to_vmx(vcpu);
2212
2213 if (nested_vmx_is_evmptr12_valid(vmx))
2214 copy_vmcs12_to_enlightened(vmx);
2215 else
2216 copy_vmcs12_to_shadow(vmx);
2217
2218 vmx->nested.need_vmcs12_to_shadow_sync = false;
2219 }
2220
vmx_preemption_timer_fn(struct hrtimer * timer)2221 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2222 {
2223 struct vcpu_vmx *vmx =
2224 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2225
2226 vmx->nested.preemption_timer_expired = true;
2227 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2228 kvm_vcpu_kick(&vmx->vcpu);
2229
2230 return HRTIMER_NORESTART;
2231 }
2232
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2233 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2234 {
2235 struct vcpu_vmx *vmx = to_vmx(vcpu);
2236 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2237
2238 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2239 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2240
2241 if (!vmx->nested.has_preemption_timer_deadline) {
2242 vmx->nested.preemption_timer_deadline =
2243 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2244 vmx->nested.has_preemption_timer_deadline = true;
2245 }
2246 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2247 }
2248
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2249 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2250 u64 preemption_timeout)
2251 {
2252 struct vcpu_vmx *vmx = to_vmx(vcpu);
2253
2254 /*
2255 * A timer value of zero is architecturally guaranteed to cause
2256 * a VMExit prior to executing any instructions in the guest.
2257 */
2258 if (preemption_timeout == 0) {
2259 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2260 return;
2261 }
2262
2263 if (vcpu->arch.virtual_tsc_khz == 0)
2264 return;
2265
2266 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2267 preemption_timeout *= 1000000;
2268 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2269 hrtimer_start(&vmx->nested.preemption_timer,
2270 ktime_add_ns(ktime_get(), preemption_timeout),
2271 HRTIMER_MODE_ABS_PINNED);
2272 }
2273
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2274 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2275 {
2276 if (vmx->nested.nested_run_pending &&
2277 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2278 return vmcs12->guest_ia32_efer;
2279 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2280 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2281 else
2282 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2283 }
2284
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2285 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2286 {
2287 struct kvm *kvm = vmx->vcpu.kvm;
2288
2289 /*
2290 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2291 * according to L0's settings (vmcs12 is irrelevant here). Host
2292 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2293 * will be set as needed prior to VMLAUNCH/VMRESUME.
2294 */
2295 if (vmx->nested.vmcs02_initialized)
2296 return;
2297 vmx->nested.vmcs02_initialized = true;
2298
2299 /*
2300 * We don't care what the EPTP value is we just need to guarantee
2301 * it's valid so we don't get a false positive when doing early
2302 * consistency checks.
2303 */
2304 if (enable_ept && nested_early_check)
2305 vmcs_write64(EPT_POINTER,
2306 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2307
2308 if (vmx->ve_info)
2309 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2310
2311 /* All VMFUNCs are currently emulated through L0 vmexits. */
2312 if (cpu_has_vmx_vmfunc())
2313 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2314
2315 if (cpu_has_vmx_posted_intr())
2316 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2317
2318 if (cpu_has_vmx_msr_bitmap())
2319 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2320
2321 /*
2322 * PML is emulated for L2, but never enabled in hardware as the MMU
2323 * handles A/D emulation. Disabling PML for L2 also avoids having to
2324 * deal with filtering out L2 GPAs from the buffer.
2325 */
2326 if (enable_pml) {
2327 vmcs_write64(PML_ADDRESS, 0);
2328 vmcs_write16(GUEST_PML_INDEX, -1);
2329 }
2330
2331 if (cpu_has_vmx_encls_vmexit())
2332 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2333
2334 if (kvm_notify_vmexit_enabled(kvm))
2335 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2336
2337 /*
2338 * Set the MSR load/store lists to match L0's settings. Only the
2339 * addresses are constant (for vmcs02), the counts can change based
2340 * on L2's behavior, e.g. switching to/from long mode.
2341 */
2342 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2343 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2344 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2345
2346 vmx_set_constant_host_state(vmx);
2347 }
2348
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2349 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2350 struct vmcs12 *vmcs12)
2351 {
2352 prepare_vmcs02_constant_state(vmx);
2353
2354 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2355
2356 /*
2357 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2358 * same VPID as the host. Emulate this behavior by using vpid01 for L2
2359 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
2360 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2361 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
2362 * required flushes), but doing so would cause KVM to over-flush. E.g.
2363 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2364 * and then runs L2 X again, then KVM can and should retain TLB entries
2365 * for VPID12=1.
2366 */
2367 if (enable_vpid) {
2368 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2369 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2370 else
2371 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2372 }
2373 }
2374
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2375 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2376 struct vmcs12 *vmcs12)
2377 {
2378 u32 exec_control;
2379 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2380
2381 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2382 prepare_vmcs02_early_rare(vmx, vmcs12);
2383
2384 /*
2385 * PIN CONTROLS
2386 */
2387 exec_control = __pin_controls_get(vmcs01);
2388 exec_control |= (vmcs12->pin_based_vm_exec_control &
2389 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2390
2391 /* Posted interrupts setting is only taken from vmcs12. */
2392 vmx->nested.pi_pending = false;
2393 if (nested_cpu_has_posted_intr(vmcs12)) {
2394 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2395 } else {
2396 vmx->nested.posted_intr_nv = -1;
2397 exec_control &= ~PIN_BASED_POSTED_INTR;
2398 }
2399 pin_controls_set(vmx, exec_control);
2400
2401 /*
2402 * EXEC CONTROLS
2403 */
2404 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2405 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2406 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2407 exec_control &= ~CPU_BASED_TPR_SHADOW;
2408 exec_control |= vmcs12->cpu_based_vm_exec_control;
2409
2410 vmx->nested.l1_tpr_threshold = -1;
2411 if (exec_control & CPU_BASED_TPR_SHADOW)
2412 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2413 #ifdef CONFIG_X86_64
2414 else
2415 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2416 CPU_BASED_CR8_STORE_EXITING;
2417 #endif
2418
2419 /*
2420 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2421 * for I/O port accesses.
2422 */
2423 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2424 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2425
2426 /*
2427 * This bit will be computed in nested_get_vmcs12_pages, because
2428 * we do not have access to L1's MSR bitmap yet. For now, keep
2429 * the same bit as before, hoping to avoid multiple VMWRITEs that
2430 * only set/clear this bit.
2431 */
2432 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2433 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2434
2435 exec_controls_set(vmx, exec_control);
2436
2437 /*
2438 * SECONDARY EXEC CONTROLS
2439 */
2440 if (cpu_has_secondary_exec_ctrls()) {
2441 exec_control = __secondary_exec_controls_get(vmcs01);
2442
2443 /* Take the following fields only from vmcs12 */
2444 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2445 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2446 SECONDARY_EXEC_ENABLE_INVPCID |
2447 SECONDARY_EXEC_ENABLE_RDTSCP |
2448 SECONDARY_EXEC_ENABLE_XSAVES |
2449 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2450 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2451 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2452 SECONDARY_EXEC_ENABLE_VMFUNC |
2453 SECONDARY_EXEC_DESC);
2454
2455 if (nested_cpu_has(vmcs12,
2456 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2457 exec_control |= vmcs12->secondary_vm_exec_control;
2458
2459 /* PML is emulated and never enabled in hardware for L2. */
2460 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2461
2462 /* VMCS shadowing for L2 is emulated for now */
2463 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2464
2465 /*
2466 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2467 * will not have to rewrite the controls just for this bit.
2468 */
2469 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2470 exec_control |= SECONDARY_EXEC_DESC;
2471
2472 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2473 vmcs_write16(GUEST_INTR_STATUS,
2474 vmcs12->guest_intr_status);
2475
2476 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2477 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2478
2479 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2480 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2481
2482 secondary_exec_controls_set(vmx, exec_control);
2483 }
2484
2485 /*
2486 * ENTRY CONTROLS
2487 *
2488 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2489 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2490 * on the related bits (if supported by the CPU) in the hope that
2491 * we can avoid VMWrites during vmx_set_efer().
2492 *
2493 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2494 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2495 * do the same for L2.
2496 */
2497 exec_control = __vm_entry_controls_get(vmcs01);
2498 exec_control |= (vmcs12->vm_entry_controls &
2499 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2500 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2501 if (cpu_has_load_ia32_efer()) {
2502 if (guest_efer & EFER_LMA)
2503 exec_control |= VM_ENTRY_IA32E_MODE;
2504 if (guest_efer != kvm_host.efer)
2505 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2506 }
2507 vm_entry_controls_set(vmx, exec_control);
2508
2509 /*
2510 * EXIT CONTROLS
2511 *
2512 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2513 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2514 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2515 */
2516 exec_control = __vm_exit_controls_get(vmcs01);
2517 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2518 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2519 else
2520 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2521 vm_exit_controls_set(vmx, exec_control);
2522
2523 /*
2524 * Interrupt/Exception Fields
2525 */
2526 if (vmx->nested.nested_run_pending) {
2527 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2528 vmcs12->vm_entry_intr_info_field);
2529 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2530 vmcs12->vm_entry_exception_error_code);
2531 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2532 vmcs12->vm_entry_instruction_len);
2533 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2534 vmcs12->guest_interruptibility_info);
2535 vmx->loaded_vmcs->nmi_known_unmasked =
2536 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2537 } else {
2538 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2539 }
2540 }
2541
vmcs_read_cet_state(struct kvm_vcpu * vcpu,u64 * s_cet,u64 * ssp,u64 * ssp_tbl)2542 static void vmcs_read_cet_state(struct kvm_vcpu *vcpu, u64 *s_cet,
2543 u64 *ssp, u64 *ssp_tbl)
2544 {
2545 if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2546 guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2547 *s_cet = vmcs_readl(GUEST_S_CET);
2548
2549 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2550 *ssp = vmcs_readl(GUEST_SSP);
2551 *ssp_tbl = vmcs_readl(GUEST_INTR_SSP_TABLE);
2552 }
2553 }
2554
vmcs_write_cet_state(struct kvm_vcpu * vcpu,u64 s_cet,u64 ssp,u64 ssp_tbl)2555 static void vmcs_write_cet_state(struct kvm_vcpu *vcpu, u64 s_cet,
2556 u64 ssp, u64 ssp_tbl)
2557 {
2558 if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2559 guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2560 vmcs_writel(GUEST_S_CET, s_cet);
2561
2562 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2563 vmcs_writel(GUEST_SSP, ssp);
2564 vmcs_writel(GUEST_INTR_SSP_TABLE, ssp_tbl);
2565 }
2566 }
2567
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2568 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2569 {
2570 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2571
2572 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2573 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2574
2575 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2576 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2577 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2578 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2579 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2580 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2581 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2582 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2583 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2584 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2585 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2586 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2587 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2588 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2589 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2590 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2591 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2592 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2593 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2594 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2595 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2596 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2597 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2598 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2599 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2600 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2601 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2602 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2603 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2604 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2605 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2606 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2607 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2608 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2609 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2610 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2611
2612 vmx_segment_cache_clear(vmx);
2613 }
2614
2615 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2616 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2617 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2618 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2619 vmcs12->guest_pending_dbg_exceptions);
2620 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2621 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2622
2623 /*
2624 * L1 may access the L2's PDPTR, so save them to construct
2625 * vmcs12
2626 */
2627 if (enable_ept) {
2628 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2629 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2630 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2631 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2632 }
2633
2634 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2635 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2636 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2637 }
2638
2639 if (nested_cpu_has_xsaves(vmcs12))
2640 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2641
2642 /*
2643 * Whether page-faults are trapped is determined by a combination of
2644 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2645 * doesn't care about page faults then we should set all of these to
2646 * L1's desires. However, if L0 does care about (some) page faults, it
2647 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2648 * simply ask to exit on each and every L2 page fault. This is done by
2649 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2650 * Note that below we don't need special code to set EB.PF beyond the
2651 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2652 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2653 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2654 */
2655 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2656 /*
2657 * TODO: if both L0 and L1 need the same MASK and MATCH,
2658 * go ahead and use it?
2659 */
2660 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2661 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2662 } else {
2663 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2664 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2665 }
2666
2667 if (cpu_has_vmx_apicv()) {
2668 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2669 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2670 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2671 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2672 }
2673
2674 /*
2675 * Make sure the msr_autostore list is up to date before we set the
2676 * count in the vmcs02.
2677 */
2678 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2679
2680 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2681 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2682 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2683
2684 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)
2685 vmcs_write_cet_state(&vmx->vcpu, vmcs12->guest_s_cet,
2686 vmcs12->guest_ssp, vmcs12->guest_ssp_tbl);
2687
2688 set_cr4_guest_host_mask(vmx);
2689 }
2690
2691 /*
2692 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2693 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2694 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2695 * guest in a way that will both be appropriate to L1's requests, and our
2696 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2697 * function also has additional necessary side-effects, like setting various
2698 * vcpu->arch fields.
2699 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2700 * is assigned to entry_failure_code on failure.
2701 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2702 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2703 bool from_vmentry,
2704 enum vm_entry_failure_code *entry_failure_code)
2705 {
2706 struct vcpu_vmx *vmx = to_vmx(vcpu);
2707 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2708 bool load_guest_pdptrs_vmcs12 = false;
2709
2710 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2711 prepare_vmcs02_rare(vmx, vmcs12);
2712 vmx->nested.dirty_vmcs12 = false;
2713
2714 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2715 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2716 }
2717
2718 if (vmx->nested.nested_run_pending &&
2719 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2720 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2721 vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
2722 vmx_get_supported_debugctl(vcpu, false));
2723 } else {
2724 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2725 vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
2726 }
2727
2728 if (!vmx->nested.nested_run_pending ||
2729 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
2730 vmcs_write_cet_state(vcpu, vmx->nested.pre_vmenter_s_cet,
2731 vmx->nested.pre_vmenter_ssp,
2732 vmx->nested.pre_vmenter_ssp_tbl);
2733
2734 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2735 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2736 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2737 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2738
2739 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2740 * bitwise-or of what L1 wants to trap for L2, and what we want to
2741 * trap. Note that CR0.TS also needs updating - we do this later.
2742 */
2743 vmx_update_exception_bitmap(vcpu);
2744 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2745 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2746
2747 if (vmx->nested.nested_run_pending &&
2748 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2749 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2750 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2751 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2752 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2753 }
2754
2755 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2756 vcpu->arch.l1_tsc_offset,
2757 vmx_get_l2_tsc_offset(vcpu),
2758 vmx_get_l2_tsc_multiplier(vcpu));
2759
2760 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2761 vcpu->arch.l1_tsc_scaling_ratio,
2762 vmx_get_l2_tsc_multiplier(vcpu));
2763
2764 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2765 if (kvm_caps.has_tsc_control)
2766 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2767
2768 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2769
2770 if (nested_cpu_has_ept(vmcs12))
2771 nested_ept_init_mmu_context(vcpu);
2772
2773 /*
2774 * Override the CR0/CR4 read shadows after setting the effective guest
2775 * CR0/CR4. The common helpers also set the shadows, but they don't
2776 * account for vmcs12's cr0/4_guest_host_mask.
2777 */
2778 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2779 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2780
2781 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2782 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2783
2784 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2785 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2786 vmx_set_efer(vcpu, vcpu->arch.efer);
2787
2788 /*
2789 * Guest state is invalid and unrestricted guest is disabled,
2790 * which means L1 attempted VMEntry to L2 with invalid state.
2791 * Fail the VMEntry.
2792 *
2793 * However when force loading the guest state (SMM exit or
2794 * loading nested state after migration, it is possible to
2795 * have invalid guest state now, which will be later fixed by
2796 * restoring L2 register state
2797 */
2798 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2799 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2800 return -EINVAL;
2801 }
2802
2803 /* Shadow page tables on either EPT or shadow page tables. */
2804 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2805 from_vmentry, entry_failure_code))
2806 return -EINVAL;
2807
2808 /*
2809 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2810 * on nested VM-Exit, which can occur without actually running L2 and
2811 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2812 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2813 * transition to HLT instead of running L2.
2814 */
2815 if (enable_ept)
2816 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2817
2818 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2819 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2820 is_pae_paging(vcpu)) {
2821 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2822 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2823 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2824 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2825 }
2826
2827 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2828 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2829 WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2830 vmcs12->guest_ia32_perf_global_ctrl))) {
2831 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2832 return -EINVAL;
2833 }
2834
2835 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2836 kvm_rip_write(vcpu, vmcs12->guest_rip);
2837
2838 /*
2839 * It was observed that genuine Hyper-V running in L1 doesn't reset
2840 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2841 * bits when it changes a field in eVMCS. Mark all fields as clean
2842 * here.
2843 */
2844 if (nested_vmx_is_evmptr12_valid(vmx))
2845 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2846
2847 return 0;
2848 }
2849
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2850 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2851 {
2852 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2853 nested_cpu_has_virtual_nmis(vmcs12)))
2854 return -EINVAL;
2855
2856 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2857 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2858 return -EINVAL;
2859
2860 return 0;
2861 }
2862
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2863 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2864 {
2865 struct vcpu_vmx *vmx = to_vmx(vcpu);
2866
2867 /* Check for memory type validity */
2868 switch (new_eptp & VMX_EPTP_MT_MASK) {
2869 case VMX_EPTP_MT_UC:
2870 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2871 return false;
2872 break;
2873 case VMX_EPTP_MT_WB:
2874 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2875 return false;
2876 break;
2877 default:
2878 return false;
2879 }
2880
2881 /* Page-walk levels validity. */
2882 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2883 case VMX_EPTP_PWL_5:
2884 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2885 return false;
2886 break;
2887 case VMX_EPTP_PWL_4:
2888 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2889 return false;
2890 break;
2891 default:
2892 return false;
2893 }
2894
2895 /* Reserved bits should not be set */
2896 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2897 return false;
2898
2899 /* AD, if set, should be supported */
2900 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2901 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2902 return false;
2903 }
2904
2905 return true;
2906 }
2907
2908 /*
2909 * Checks related to VM-Execution Control Fields
2910 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2911 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2912 struct vmcs12 *vmcs12)
2913 {
2914 struct vcpu_vmx *vmx = to_vmx(vcpu);
2915
2916 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2917 vmx->nested.msrs.pinbased_ctls_low,
2918 vmx->nested.msrs.pinbased_ctls_high)) ||
2919 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2920 vmx->nested.msrs.procbased_ctls_low,
2921 vmx->nested.msrs.procbased_ctls_high)))
2922 return -EINVAL;
2923
2924 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2925 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2926 vmx->nested.msrs.secondary_ctls_low,
2927 vmx->nested.msrs.secondary_ctls_high)))
2928 return -EINVAL;
2929
2930 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2931 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2932 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2933 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2934 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2935 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2936 nested_vmx_check_nmi_controls(vmcs12) ||
2937 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2938 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2939 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2940 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2941 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2942 return -EINVAL;
2943
2944 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2945 nested_cpu_has_save_preemption_timer(vmcs12))
2946 return -EINVAL;
2947
2948 if (nested_cpu_has_ept(vmcs12) &&
2949 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2950 return -EINVAL;
2951
2952 if (nested_cpu_has_vmfunc(vmcs12)) {
2953 if (CC(vmcs12->vm_function_control &
2954 ~vmx->nested.msrs.vmfunc_controls))
2955 return -EINVAL;
2956
2957 if (nested_cpu_has_eptp_switching(vmcs12)) {
2958 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2959 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2960 return -EINVAL;
2961 }
2962 }
2963
2964 return 0;
2965 }
2966
2967 /*
2968 * Checks related to VM-Exit Control Fields
2969 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2970 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2971 struct vmcs12 *vmcs12)
2972 {
2973 struct vcpu_vmx *vmx = to_vmx(vcpu);
2974
2975 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2976 vmx->nested.msrs.exit_ctls_low,
2977 vmx->nested.msrs.exit_ctls_high)) ||
2978 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2979 return -EINVAL;
2980
2981 return 0;
2982 }
2983
2984 /*
2985 * Checks related to VM-Entry Control Fields
2986 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2987 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2988 struct vmcs12 *vmcs12)
2989 {
2990 struct vcpu_vmx *vmx = to_vmx(vcpu);
2991
2992 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2993 vmx->nested.msrs.entry_ctls_low,
2994 vmx->nested.msrs.entry_ctls_high)))
2995 return -EINVAL;
2996
2997 /*
2998 * From the Intel SDM, volume 3:
2999 * Fields relevant to VM-entry event injection must be set properly.
3000 * These fields are the VM-entry interruption-information field, the
3001 * VM-entry exception error code, and the VM-entry instruction length.
3002 */
3003 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
3004 u32 intr_info = vmcs12->vm_entry_intr_info_field;
3005 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
3006 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
3007 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
3008 bool urg = nested_cpu_has2(vmcs12,
3009 SECONDARY_EXEC_UNRESTRICTED_GUEST);
3010 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
3011
3012 /* VM-entry interruption-info field: interruption type */
3013 if (CC(intr_type == INTR_TYPE_RESERVED) ||
3014 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
3015 !nested_cpu_supports_monitor_trap_flag(vcpu)))
3016 return -EINVAL;
3017
3018 /* VM-entry interruption-info field: vector */
3019 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
3020 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
3021 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
3022 return -EINVAL;
3023
3024 /*
3025 * Cannot deliver error code in real mode or if the interrupt
3026 * type is not hardware exception. For other cases, do the
3027 * consistency check only if the vCPU doesn't enumerate
3028 * VMX_BASIC_NO_HW_ERROR_CODE_CC.
3029 */
3030 if (!prot_mode || intr_type != INTR_TYPE_HARD_EXCEPTION) {
3031 if (CC(has_error_code))
3032 return -EINVAL;
3033 } else if (!nested_cpu_has_no_hw_errcode_cc(vcpu)) {
3034 if (CC(has_error_code != x86_exception_has_error_code(vector)))
3035 return -EINVAL;
3036 }
3037
3038 /* VM-entry exception error code */
3039 if (CC(has_error_code &&
3040 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
3041 return -EINVAL;
3042
3043 /* VM-entry interruption-info field: reserved bits */
3044 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
3045 return -EINVAL;
3046
3047 /* VM-entry instruction length */
3048 switch (intr_type) {
3049 case INTR_TYPE_SOFT_EXCEPTION:
3050 case INTR_TYPE_SOFT_INTR:
3051 case INTR_TYPE_PRIV_SW_EXCEPTION:
3052 if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
3053 CC(vmcs12->vm_entry_instruction_len == 0 &&
3054 CC(!nested_cpu_has_zero_length_injection(vcpu))))
3055 return -EINVAL;
3056 }
3057 }
3058
3059 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
3060 return -EINVAL;
3061
3062 return 0;
3063 }
3064
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3065 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
3066 struct vmcs12 *vmcs12)
3067 {
3068 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
3069 nested_check_vm_exit_controls(vcpu, vmcs12) ||
3070 nested_check_vm_entry_controls(vcpu, vmcs12))
3071 return -EINVAL;
3072
3073 #ifdef CONFIG_KVM_HYPERV
3074 if (guest_cpu_cap_has_evmcs(vcpu))
3075 return nested_evmcs_check_controls(vmcs12);
3076 #endif
3077
3078 return 0;
3079 }
3080
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3081 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3082 struct vmcs12 *vmcs12)
3083 {
3084 #ifdef CONFIG_X86_64
3085 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3086 !!(vcpu->arch.efer & EFER_LMA)))
3087 return -EINVAL;
3088 #endif
3089 return 0;
3090 }
3091
is_l1_noncanonical_address_on_vmexit(u64 la,struct vmcs12 * vmcs12)3092 static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3093 {
3094 /*
3095 * Check that the given linear address is canonical after a VM exit
3096 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3097 */
3098 u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3099
3100 return !__is_canonical_address(la, l1_address_bits_on_exit);
3101 }
3102
nested_vmx_check_cet_state_common(struct kvm_vcpu * vcpu,u64 s_cet,u64 ssp,u64 ssp_tbl)3103 static int nested_vmx_check_cet_state_common(struct kvm_vcpu *vcpu, u64 s_cet,
3104 u64 ssp, u64 ssp_tbl)
3105 {
3106 if (CC(!kvm_is_valid_u_s_cet(vcpu, s_cet)) || CC(!IS_ALIGNED(ssp, 4)) ||
3107 CC(is_noncanonical_msr_address(ssp_tbl, vcpu)))
3108 return -EINVAL;
3109
3110 return 0;
3111 }
3112
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3113 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3114 struct vmcs12 *vmcs12)
3115 {
3116 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3117
3118 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3119 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3120 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3121 return -EINVAL;
3122
3123 if (CC(vmcs12->host_cr4 & X86_CR4_CET && !(vmcs12->host_cr0 & X86_CR0_WP)))
3124 return -EINVAL;
3125
3126 if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3127 CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3128 return -EINVAL;
3129
3130 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3131 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3132 return -EINVAL;
3133
3134 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3135 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3136 vmcs12->host_ia32_perf_global_ctrl)))
3137 return -EINVAL;
3138
3139 if (ia32e) {
3140 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3141 return -EINVAL;
3142 } else {
3143 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3144 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3145 CC((vmcs12->host_rip) >> 32))
3146 return -EINVAL;
3147 }
3148
3149 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3150 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3151 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3152 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3153 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3154 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3155 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3156 CC(vmcs12->host_cs_selector == 0) ||
3157 CC(vmcs12->host_tr_selector == 0) ||
3158 CC(vmcs12->host_ss_selector == 0 && !ia32e))
3159 return -EINVAL;
3160
3161 if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3162 CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3163 CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3164 CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3165 CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3166 CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3167 return -EINVAL;
3168
3169 /*
3170 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3171 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3172 * the values of the LMA and LME bits in the field must each be that of
3173 * the host address-space size VM-exit control.
3174 */
3175 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3176 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3177 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3178 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3179 return -EINVAL;
3180 }
3181
3182 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) {
3183 if (nested_vmx_check_cet_state_common(vcpu, vmcs12->host_s_cet,
3184 vmcs12->host_ssp,
3185 vmcs12->host_ssp_tbl))
3186 return -EINVAL;
3187
3188 /*
3189 * IA32_S_CET and SSP must be canonical if the host will
3190 * enter 64-bit mode after VM-exit; otherwise, higher
3191 * 32-bits must be all 0s.
3192 */
3193 if (ia32e) {
3194 if (CC(is_noncanonical_msr_address(vmcs12->host_s_cet, vcpu)) ||
3195 CC(is_noncanonical_msr_address(vmcs12->host_ssp, vcpu)))
3196 return -EINVAL;
3197 } else {
3198 if (CC(vmcs12->host_s_cet >> 32) || CC(vmcs12->host_ssp >> 32))
3199 return -EINVAL;
3200 }
3201 }
3202
3203 return 0;
3204 }
3205
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3206 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3207 struct vmcs12 *vmcs12)
3208 {
3209 struct vcpu_vmx *vmx = to_vmx(vcpu);
3210 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3211 struct vmcs_hdr hdr;
3212
3213 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3214 return 0;
3215
3216 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3217 return -EINVAL;
3218
3219 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3220 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3221 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3222 return -EINVAL;
3223
3224 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3225 offsetof(struct vmcs12, hdr),
3226 sizeof(hdr))))
3227 return -EINVAL;
3228
3229 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3230 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3231 return -EINVAL;
3232
3233 return 0;
3234 }
3235
3236 /*
3237 * Checks related to Guest Non-register State
3238 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3239 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3240 {
3241 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3242 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3243 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3244 return -EINVAL;
3245
3246 return 0;
3247 }
3248
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3249 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3250 struct vmcs12 *vmcs12,
3251 enum vm_entry_failure_code *entry_failure_code)
3252 {
3253 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3254
3255 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3256
3257 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3258 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3259 return -EINVAL;
3260
3261 if (CC(vmcs12->guest_cr4 & X86_CR4_CET && !(vmcs12->guest_cr0 & X86_CR0_WP)))
3262 return -EINVAL;
3263
3264 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3265 (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
3266 CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
3267 return -EINVAL;
3268
3269 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3270 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3271 return -EINVAL;
3272
3273 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3274 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3275 return -EINVAL;
3276 }
3277
3278 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3279 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3280 vmcs12->guest_ia32_perf_global_ctrl)))
3281 return -EINVAL;
3282
3283 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3284 return -EINVAL;
3285
3286 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3287 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3288 return -EINVAL;
3289
3290 /*
3291 * If the load IA32_EFER VM-entry control is 1, the following checks
3292 * are performed on the field for the IA32_EFER MSR:
3293 * - Bits reserved in the IA32_EFER MSR must be 0.
3294 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3295 * the IA-32e mode guest VM-exit control. It must also be identical
3296 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3297 * CR0.PG) is 1.
3298 */
3299 if (to_vmx(vcpu)->nested.nested_run_pending &&
3300 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3301 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3302 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3303 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3304 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3305 return -EINVAL;
3306 }
3307
3308 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3309 (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3310 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3311 return -EINVAL;
3312
3313 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) {
3314 if (nested_vmx_check_cet_state_common(vcpu, vmcs12->guest_s_cet,
3315 vmcs12->guest_ssp,
3316 vmcs12->guest_ssp_tbl))
3317 return -EINVAL;
3318
3319 /*
3320 * Guest SSP must have 63:N bits identical, rather than
3321 * be canonical (i.e., 63:N-1 bits identical), where N is
3322 * the CPU's maximum linear-address width. Similar to
3323 * is_noncanonical_msr_address(), use the host's
3324 * linear-address width.
3325 */
3326 if (CC(!__is_canonical_address(vmcs12->guest_ssp, max_host_virt_addr_bits() + 1)))
3327 return -EINVAL;
3328 }
3329
3330 if (nested_check_guest_non_reg_state(vmcs12))
3331 return -EINVAL;
3332
3333 return 0;
3334 }
3335
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3336 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3337 {
3338 struct vcpu_vmx *vmx = to_vmx(vcpu);
3339 unsigned long cr3, cr4;
3340 bool vm_fail;
3341
3342 if (!nested_early_check)
3343 return 0;
3344
3345 if (vmx->msr_autoload.host.nr)
3346 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3347 if (vmx->msr_autoload.guest.nr)
3348 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3349
3350 preempt_disable();
3351
3352 vmx_prepare_switch_to_guest(vcpu);
3353
3354 /*
3355 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3356 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3357 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3358 * there is no need to preserve other bits or save/restore the field.
3359 */
3360 vmcs_writel(GUEST_RFLAGS, 0);
3361
3362 cr3 = __get_current_cr3_fast();
3363 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3364 vmcs_writel(HOST_CR3, cr3);
3365 vmx->loaded_vmcs->host_state.cr3 = cr3;
3366 }
3367
3368 cr4 = cr4_read_shadow();
3369 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3370 vmcs_writel(HOST_CR4, cr4);
3371 vmx->loaded_vmcs->host_state.cr4 = cr4;
3372 }
3373
3374 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3375 __vmx_vcpu_run_flags(vmx));
3376
3377 if (vmx->msr_autoload.host.nr)
3378 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3379 if (vmx->msr_autoload.guest.nr)
3380 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3381
3382 if (vm_fail) {
3383 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3384
3385 preempt_enable();
3386
3387 trace_kvm_nested_vmenter_failed(
3388 "early hardware check VM-instruction error: ", error);
3389 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3390 return 1;
3391 }
3392
3393 /*
3394 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3395 */
3396 if (hw_breakpoint_active())
3397 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3398 local_irq_enable();
3399 preempt_enable();
3400
3401 /*
3402 * A non-failing VMEntry means we somehow entered guest mode with
3403 * an illegal RIP, and that's just the tip of the iceberg. There
3404 * is no telling what memory has been modified or what state has
3405 * been exposed to unknown code. Hitting this all but guarantees
3406 * a (very critical) hardware issue.
3407 */
3408 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3409 VMX_EXIT_REASONS_FAILED_VMENTRY));
3410
3411 return 0;
3412 }
3413
3414 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3415 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3416 {
3417 struct vcpu_vmx *vmx = to_vmx(vcpu);
3418
3419 /*
3420 * hv_evmcs may end up being not mapped after migration (when
3421 * L2 was running), map it here to make sure vmcs12 changes are
3422 * properly reflected.
3423 */
3424 if (guest_cpu_cap_has_evmcs(vcpu) &&
3425 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3426 enum nested_evmptrld_status evmptrld_status =
3427 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3428
3429 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3430 evmptrld_status == EVMPTRLD_ERROR)
3431 return false;
3432
3433 /*
3434 * Post migration VMCS12 always provides the most actual
3435 * information, copy it to eVMCS upon entry.
3436 */
3437 vmx->nested.need_vmcs12_to_shadow_sync = true;
3438 }
3439
3440 return true;
3441 }
3442 #endif
3443
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3444 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3445 {
3446 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3447 struct vcpu_vmx *vmx = to_vmx(vcpu);
3448 struct kvm_host_map *map;
3449
3450 if (!vcpu->arch.pdptrs_from_userspace &&
3451 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3452 /*
3453 * Reload the guest's PDPTRs since after a migration
3454 * the guest CR3 might be restored prior to setting the nested
3455 * state which can lead to a load of wrong PDPTRs.
3456 */
3457 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3458 return false;
3459 }
3460
3461
3462 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3463 map = &vmx->nested.apic_access_page_map;
3464
3465 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3466 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3467 } else {
3468 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3469 __func__);
3470 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3471 vcpu->run->internal.suberror =
3472 KVM_INTERNAL_ERROR_EMULATION;
3473 vcpu->run->internal.ndata = 0;
3474 return false;
3475 }
3476 }
3477
3478 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3479 map = &vmx->nested.virtual_apic_map;
3480
3481 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3482 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3483 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3484 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3485 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3486 /*
3487 * The processor will never use the TPR shadow, simply
3488 * clear the bit from the execution control. Such a
3489 * configuration is useless, but it happens in tests.
3490 * For any other configuration, failing the vm entry is
3491 * _not_ what the processor does but it's basically the
3492 * only possibility we have.
3493 */
3494 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3495 } else {
3496 /*
3497 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3498 * force VM-Entry to fail.
3499 */
3500 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3501 }
3502 }
3503
3504 if (nested_cpu_has_posted_intr(vmcs12)) {
3505 map = &vmx->nested.pi_desc_map;
3506
3507 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3508 vmx->nested.pi_desc =
3509 (struct pi_desc *)(((void *)map->hva) +
3510 offset_in_page(vmcs12->posted_intr_desc_addr));
3511 vmcs_write64(POSTED_INTR_DESC_ADDR,
3512 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3513 } else {
3514 /*
3515 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3516 * access the contents of the VMCS12 posted interrupt
3517 * descriptor. (Note that KVM may do this when it
3518 * should not, per the architectural specification.)
3519 */
3520 vmx->nested.pi_desc = NULL;
3521 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3522 }
3523 }
3524 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3525 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3526 else
3527 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3528
3529 return true;
3530 }
3531
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3532 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3533 {
3534 #ifdef CONFIG_KVM_HYPERV
3535 /*
3536 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3537 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3538 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3539 * migration.
3540 */
3541 if (!nested_get_evmcs_page(vcpu)) {
3542 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3543 __func__);
3544 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3545 vcpu->run->internal.suberror =
3546 KVM_INTERNAL_ERROR_EMULATION;
3547 vcpu->run->internal.ndata = 0;
3548
3549 return false;
3550 }
3551 #endif
3552
3553 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3554 return false;
3555
3556 return true;
3557 }
3558
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3559 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3560 {
3561 struct vmcs12 *vmcs12;
3562 struct vcpu_vmx *vmx = to_vmx(vcpu);
3563 gpa_t dst;
3564
3565 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3566 return 0;
3567
3568 if (WARN_ON_ONCE(vmx->nested.pml_full))
3569 return 1;
3570
3571 /*
3572 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3573 * set is already checked as part of A/D emulation.
3574 */
3575 vmcs12 = get_vmcs12(vcpu);
3576 if (!nested_cpu_has_pml(vmcs12))
3577 return 0;
3578
3579 if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3580 vmx->nested.pml_full = true;
3581 return 1;
3582 }
3583
3584 gpa &= ~0xFFFull;
3585 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3586
3587 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3588 offset_in_page(dst), sizeof(gpa)))
3589 return 0;
3590
3591 vmcs12->guest_pml_index--;
3592
3593 return 0;
3594 }
3595
3596 /*
3597 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3598 * for running VMX instructions (except VMXON, whose prerequisites are
3599 * slightly different). It also specifies what exception to inject otherwise.
3600 * Note that many of these exceptions have priority over VM exits, so they
3601 * don't have to be checked again here.
3602 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3603 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3604 {
3605 if (!to_vmx(vcpu)->nested.vmxon) {
3606 kvm_queue_exception(vcpu, UD_VECTOR);
3607 return 0;
3608 }
3609
3610 if (vmx_get_cpl(vcpu)) {
3611 kvm_inject_gp(vcpu, 0);
3612 return 0;
3613 }
3614
3615 return 1;
3616 }
3617
3618 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3619 struct vmcs12 *vmcs12);
3620
3621 /*
3622 * If from_vmentry is false, this is being called from state restore (either RSM
3623 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3624 *
3625 * Returns:
3626 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3627 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3628 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3629 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3630 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3631 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3632 bool from_vmentry)
3633 {
3634 struct vcpu_vmx *vmx = to_vmx(vcpu);
3635 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3636 enum vm_entry_failure_code entry_failure_code;
3637 union vmx_exit_reason exit_reason = {
3638 .basic = EXIT_REASON_INVALID_STATE,
3639 .failed_vmentry = 1,
3640 };
3641 u32 failed_index;
3642
3643 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3644 vmx->nested.current_vmptr,
3645 vmcs12->guest_rip,
3646 vmcs12->guest_intr_status,
3647 vmcs12->vm_entry_intr_info_field,
3648 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3649 vmcs12->ept_pointer,
3650 vmcs12->guest_cr3,
3651 KVM_ISA_VMX);
3652
3653 kvm_service_local_tlb_flush_requests(vcpu);
3654
3655 if (!vmx->nested.nested_run_pending ||
3656 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3657 vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
3658 if (kvm_mpx_supported() &&
3659 (!vmx->nested.nested_run_pending ||
3660 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3661 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3662
3663 if (!vmx->nested.nested_run_pending ||
3664 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
3665 vmcs_read_cet_state(vcpu, &vmx->nested.pre_vmenter_s_cet,
3666 &vmx->nested.pre_vmenter_ssp,
3667 &vmx->nested.pre_vmenter_ssp_tbl);
3668
3669 /*
3670 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3671 * nested early checks are disabled. In the event of a "late" VM-Fail,
3672 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3673 * software model to the pre-VMEntry host state. When EPT is disabled,
3674 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3675 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3676 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3677 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3678 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3679 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3680 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3681 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3682 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3683 * path would need to manually save/restore vmcs01.GUEST_CR3.
3684 */
3685 if (!enable_ept && !nested_early_check)
3686 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3687
3688 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3689
3690 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3691
3692 if (from_vmentry) {
3693 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3694 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3695 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3696 }
3697
3698 if (nested_vmx_check_vmentry_hw(vcpu)) {
3699 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3700 return NVMX_VMENTRY_VMFAIL;
3701 }
3702
3703 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3704 &entry_failure_code)) {
3705 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3706 vmcs12->exit_qualification = entry_failure_code;
3707 goto vmentry_fail_vmexit;
3708 }
3709 }
3710
3711 enter_guest_mode(vcpu);
3712
3713 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3714 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3715 vmcs12->exit_qualification = entry_failure_code;
3716 goto vmentry_fail_vmexit_guest_mode;
3717 }
3718
3719 if (from_vmentry) {
3720 failed_index = nested_vmx_load_msr(vcpu,
3721 vmcs12->vm_entry_msr_load_addr,
3722 vmcs12->vm_entry_msr_load_count);
3723 if (failed_index) {
3724 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3725 vmcs12->exit_qualification = failed_index;
3726 goto vmentry_fail_vmexit_guest_mode;
3727 }
3728 } else {
3729 /*
3730 * The MMU is not initialized to point at the right entities yet and
3731 * "get pages" would need to read data from the guest (i.e. we will
3732 * need to perform gpa to hpa translation). Request a call
3733 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3734 * have already been set at vmentry time and should not be reset.
3735 */
3736 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3737 }
3738
3739 /*
3740 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3741 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3742 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3743 * unconditionally. Take care to pull data from vmcs01 as appropriate,
3744 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3745 */
3746 if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3747 CPU_BASED_NMI_WINDOW_EXITING)) ||
3748 kvm_apic_has_pending_init_or_sipi(vcpu) ||
3749 kvm_apic_has_interrupt(vcpu))
3750 kvm_make_request(KVM_REQ_EVENT, vcpu);
3751
3752 /*
3753 * Do not start the preemption timer hrtimer until after we know
3754 * we are successful, so that only nested_vmx_vmexit needs to cancel
3755 * the timer.
3756 */
3757 vmx->nested.preemption_timer_expired = false;
3758 if (nested_cpu_has_preemption_timer(vmcs12)) {
3759 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3760 vmx_start_preemption_timer(vcpu, timer_value);
3761 }
3762
3763 /*
3764 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3765 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3766 * returned as far as L1 is concerned. It will only return (and set
3767 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3768 */
3769 return NVMX_VMENTRY_SUCCESS;
3770
3771 /*
3772 * A failed consistency check that leads to a VMExit during L1's
3773 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3774 * 26.7 "VM-entry failures during or after loading guest state".
3775 */
3776 vmentry_fail_vmexit_guest_mode:
3777 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3778 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3779 leave_guest_mode(vcpu);
3780
3781 vmentry_fail_vmexit:
3782 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3783
3784 if (!from_vmentry)
3785 return NVMX_VMENTRY_VMEXIT;
3786
3787 load_vmcs12_host_state(vcpu, vmcs12);
3788 vmcs12->vm_exit_reason = exit_reason.full;
3789 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3790 vmx->nested.need_vmcs12_to_shadow_sync = true;
3791 return NVMX_VMENTRY_VMEXIT;
3792 }
3793
3794 /*
3795 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3796 * for running an L2 nested guest.
3797 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3798 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3799 {
3800 struct vmcs12 *vmcs12;
3801 enum nvmx_vmentry_status status;
3802 struct vcpu_vmx *vmx = to_vmx(vcpu);
3803 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3804 enum nested_evmptrld_status evmptrld_status;
3805
3806 if (!nested_vmx_check_permission(vcpu))
3807 return 1;
3808
3809 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3810 if (evmptrld_status == EVMPTRLD_ERROR) {
3811 kvm_queue_exception(vcpu, UD_VECTOR);
3812 return 1;
3813 }
3814
3815 kvm_pmu_branch_retired(vcpu);
3816
3817 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3818 return nested_vmx_failInvalid(vcpu);
3819
3820 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3821 vmx->nested.current_vmptr == INVALID_GPA))
3822 return nested_vmx_failInvalid(vcpu);
3823
3824 vmcs12 = get_vmcs12(vcpu);
3825
3826 /*
3827 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3828 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3829 * rather than RFLAGS.ZF, and no error number is stored to the
3830 * VM-instruction error field.
3831 */
3832 if (CC(vmcs12->hdr.shadow_vmcs))
3833 return nested_vmx_failInvalid(vcpu);
3834
3835 if (nested_vmx_is_evmptr12_valid(vmx)) {
3836 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3837
3838 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3839 /* Enlightened VMCS doesn't have launch state */
3840 vmcs12->launch_state = !launch;
3841 } else if (enable_shadow_vmcs) {
3842 copy_shadow_to_vmcs12(vmx);
3843 }
3844
3845 /*
3846 * The nested entry process starts with enforcing various prerequisites
3847 * on vmcs12 as required by the Intel SDM, and act appropriately when
3848 * they fail: As the SDM explains, some conditions should cause the
3849 * instruction to fail, while others will cause the instruction to seem
3850 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3851 * To speed up the normal (success) code path, we should avoid checking
3852 * for misconfigurations which will anyway be caught by the processor
3853 * when using the merged vmcs02.
3854 */
3855 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3856 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3857
3858 if (CC(vmcs12->launch_state == launch))
3859 return nested_vmx_fail(vcpu,
3860 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3861 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3862
3863 if (nested_vmx_check_controls(vcpu, vmcs12))
3864 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3865
3866 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3867 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3868
3869 if (nested_vmx_check_host_state(vcpu, vmcs12))
3870 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3871
3872 /*
3873 * We're finally done with prerequisite checking, and can start with
3874 * the nested entry.
3875 */
3876 vmx->nested.nested_run_pending = 1;
3877 vmx->nested.has_preemption_timer_deadline = false;
3878 status = nested_vmx_enter_non_root_mode(vcpu, true);
3879 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3880 goto vmentry_failed;
3881
3882 /* Hide L1D cache contents from the nested guest. */
3883 vmx->vcpu.arch.l1tf_flush_l1d = true;
3884
3885 /*
3886 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3887 * also be used as part of restoring nVMX state for
3888 * snapshot restore (migration).
3889 *
3890 * In this flow, it is assumed that vmcs12 cache was
3891 * transferred as part of captured nVMX state and should
3892 * therefore not be read from guest memory (which may not
3893 * exist on destination host yet).
3894 */
3895 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3896
3897 switch (vmcs12->guest_activity_state) {
3898 case GUEST_ACTIVITY_HLT:
3899 /*
3900 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3901 * awakened by event injection or by an NMI-window VM-exit or
3902 * by an interrupt-window VM-exit, halt the vcpu.
3903 */
3904 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3905 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3906 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3907 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3908 vmx->nested.nested_run_pending = 0;
3909 return kvm_emulate_halt_noskip(vcpu);
3910 }
3911 break;
3912 case GUEST_ACTIVITY_WAIT_SIPI:
3913 vmx->nested.nested_run_pending = 0;
3914 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3915 break;
3916 default:
3917 break;
3918 }
3919
3920 return 1;
3921
3922 vmentry_failed:
3923 vmx->nested.nested_run_pending = 0;
3924 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3925 return 0;
3926 if (status == NVMX_VMENTRY_VMEXIT)
3927 return 1;
3928 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3929 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3930 }
3931
3932 /*
3933 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3934 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3935 * This function returns the new value we should put in vmcs12.guest_cr0.
3936 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3937 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3938 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3939 * didn't trap the bit, because if L1 did, so would L0).
3940 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3941 * been modified by L2, and L1 knows it. So just leave the old value of
3942 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3943 * isn't relevant, because if L0 traps this bit it can set it to anything.
3944 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3945 * changed these bits, and therefore they need to be updated, but L0
3946 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3947 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3948 */
3949 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3950 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3951 {
3952 return
3953 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3954 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3955 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3956 vcpu->arch.cr0_guest_owned_bits));
3957 }
3958
3959 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3960 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3961 {
3962 return
3963 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3964 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3965 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3966 vcpu->arch.cr4_guest_owned_bits));
3967 }
3968
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3969 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3970 struct vmcs12 *vmcs12,
3971 u32 vm_exit_reason, u32 exit_intr_info)
3972 {
3973 u32 idt_vectoring;
3974 unsigned int nr;
3975
3976 /*
3977 * Per the SDM, VM-Exits due to double and triple faults are never
3978 * considered to occur during event delivery, even if the double/triple
3979 * fault is the result of an escalating vectoring issue.
3980 *
3981 * Note, the SDM qualifies the double fault behavior with "The original
3982 * event results in a double-fault exception". It's unclear why the
3983 * qualification exists since exits due to double fault can occur only
3984 * while vectoring a different exception (injected events are never
3985 * subject to interception), i.e. there's _always_ an original event.
3986 *
3987 * The SDM also uses NMI as a confusing example for the "original event
3988 * causes the VM exit directly" clause. NMI isn't special in any way,
3989 * the same rule applies to all events that cause an exit directly.
3990 * NMI is an odd choice for the example because NMIs can only occur on
3991 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3992 */
3993 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3994 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3995 is_double_fault(exit_intr_info))) {
3996 vmcs12->idt_vectoring_info_field = 0;
3997 } else if (vcpu->arch.exception.injected) {
3998 nr = vcpu->arch.exception.vector;
3999 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
4000
4001 if (kvm_exception_is_soft(nr)) {
4002 vmcs12->vm_exit_instruction_len =
4003 vcpu->arch.event_exit_inst_len;
4004 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
4005 } else
4006 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
4007
4008 if (vcpu->arch.exception.has_error_code) {
4009 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
4010 vmcs12->idt_vectoring_error_code =
4011 vcpu->arch.exception.error_code;
4012 }
4013
4014 vmcs12->idt_vectoring_info_field = idt_vectoring;
4015 } else if (vcpu->arch.nmi_injected) {
4016 vmcs12->idt_vectoring_info_field =
4017 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
4018 } else if (vcpu->arch.interrupt.injected) {
4019 nr = vcpu->arch.interrupt.nr;
4020 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
4021
4022 if (vcpu->arch.interrupt.soft) {
4023 idt_vectoring |= INTR_TYPE_SOFT_INTR;
4024 vmcs12->vm_entry_instruction_len =
4025 vcpu->arch.event_exit_inst_len;
4026 } else
4027 idt_vectoring |= INTR_TYPE_EXT_INTR;
4028
4029 vmcs12->idt_vectoring_info_field = idt_vectoring;
4030 } else {
4031 vmcs12->idt_vectoring_info_field = 0;
4032 }
4033 }
4034
4035
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)4036 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
4037 {
4038 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4039 gfn_t gfn;
4040
4041 /*
4042 * Don't need to mark the APIC access page dirty; it is never
4043 * written to by the CPU during APIC virtualization.
4044 */
4045
4046 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
4047 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
4048 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4049 }
4050
4051 if (nested_cpu_has_posted_intr(vmcs12)) {
4052 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4053 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4054 }
4055 }
4056
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4057 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4058 {
4059 struct vcpu_vmx *vmx = to_vmx(vcpu);
4060 int max_irr;
4061 void *vapic_page;
4062 u16 status;
4063
4064 if (!vmx->nested.pi_pending)
4065 return 0;
4066
4067 if (!vmx->nested.pi_desc)
4068 goto mmio_needed;
4069
4070 vmx->nested.pi_pending = false;
4071
4072 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4073 return 0;
4074
4075 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4076 if (max_irr > 0) {
4077 vapic_page = vmx->nested.virtual_apic_map.hva;
4078 if (!vapic_page)
4079 goto mmio_needed;
4080
4081 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
4082 vapic_page, &max_irr);
4083 status = vmcs_read16(GUEST_INTR_STATUS);
4084 if ((u8)max_irr > ((u8)status & 0xff)) {
4085 status &= ~0xff;
4086 status |= (u8)max_irr;
4087 vmcs_write16(GUEST_INTR_STATUS, status);
4088 }
4089 }
4090
4091 nested_mark_vmcs12_pages_dirty(vcpu);
4092 return 0;
4093
4094 mmio_needed:
4095 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
4096 return -ENXIO;
4097 }
4098
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)4099 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
4100 {
4101 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
4102 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
4103 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4104 unsigned long exit_qual;
4105
4106 if (ex->has_payload) {
4107 exit_qual = ex->payload;
4108 } else if (ex->vector == PF_VECTOR) {
4109 exit_qual = vcpu->arch.cr2;
4110 } else if (ex->vector == DB_VECTOR) {
4111 exit_qual = vcpu->arch.dr6;
4112 exit_qual &= ~DR6_BT;
4113 exit_qual ^= DR6_ACTIVE_LOW;
4114 } else {
4115 exit_qual = 0;
4116 }
4117
4118 /*
4119 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
4120 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
4121 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
4122 */
4123 if (ex->has_error_code && is_protmode(vcpu)) {
4124 /*
4125 * Intel CPUs do not generate error codes with bits 31:16 set,
4126 * and more importantly VMX disallows setting bits 31:16 in the
4127 * injected error code for VM-Entry. Drop the bits to mimic
4128 * hardware and avoid inducing failure on nested VM-Entry if L1
4129 * chooses to inject the exception back to L2. AMD CPUs _do_
4130 * generate "full" 32-bit error codes, so KVM allows userspace
4131 * to inject exception error codes with bits 31:16 set.
4132 */
4133 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
4134 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
4135 }
4136
4137 if (kvm_exception_is_soft(ex->vector))
4138 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
4139 else
4140 intr_info |= INTR_TYPE_HARD_EXCEPTION;
4141
4142 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4143 vmx_get_nmi_mask(vcpu))
4144 intr_info |= INTR_INFO_UNBLOCK_NMI;
4145
4146 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4147 }
4148
4149 /*
4150 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4151 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4152 * Using the payload is flawed because code breakpoints (fault-like) and data
4153 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4154 * this will return false positives if a to-be-injected code breakpoint #DB is
4155 * pending (from KVM's perspective, but not "pending" across an instruction
4156 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4157 * too is trap-like.
4158 *
4159 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4160 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4161 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4162 * from the emulator (because such #DBs are fault-like and thus don't trigger
4163 * actions that fire on instruction retire).
4164 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4165 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4166 {
4167 if (!ex->pending || ex->vector != DB_VECTOR)
4168 return 0;
4169
4170 /* General Detect #DBs are always fault-like. */
4171 return ex->payload & ~DR6_BD;
4172 }
4173
4174 /*
4175 * Returns true if there's a pending #DB exception that is lower priority than
4176 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4177 * KVM, but could theoretically be injected by userspace. Note, this code is
4178 * imperfect, see above.
4179 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4180 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4181 {
4182 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4183 }
4184
4185 /*
4186 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4187 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4188 * represents these debug traps with a payload that is said to be compatible
4189 * with the 'pending debug exceptions' field, write the payload to the VMCS
4190 * field if a VM-exit is delivered before the debug trap.
4191 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4192 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4193 {
4194 unsigned long pending_dbg;
4195
4196 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4197 if (pending_dbg)
4198 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4199 }
4200
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4201 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4202 {
4203 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4204 to_vmx(vcpu)->nested.preemption_timer_expired;
4205 }
4206
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4207 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4208 {
4209 struct vcpu_vmx *vmx = to_vmx(vcpu);
4210 void *vapic = vmx->nested.virtual_apic_map.hva;
4211 int max_irr, vppr;
4212
4213 if (nested_vmx_preemption_timer_pending(vcpu) ||
4214 vmx->nested.mtf_pending)
4215 return true;
4216
4217 /*
4218 * Virtual Interrupt Delivery doesn't require manual injection. Either
4219 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4220 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4221 * the interrupt from the PIR to RVI prior to entering the guest.
4222 */
4223 if (for_injection)
4224 return false;
4225
4226 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4227 __vmx_interrupt_blocked(vcpu))
4228 return false;
4229
4230 if (!vapic)
4231 return false;
4232
4233 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4234
4235 max_irr = vmx_get_rvi();
4236 if ((max_irr & 0xf0) > (vppr & 0xf0))
4237 return true;
4238
4239 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4240 pi_test_on(vmx->nested.pi_desc)) {
4241 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4242 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4243 return true;
4244 }
4245
4246 return false;
4247 }
4248
4249 /*
4250 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4251 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4252 * and less minor edits to splice in the priority of VMX Non-Root specific
4253 * events, e.g. MTF and NMI/INTR-window exiting.
4254 *
4255 * 1 Hardware Reset and Machine Checks
4256 * - RESET
4257 * - Machine Check
4258 *
4259 * 2 Trap on Task Switch
4260 * - T flag in TSS is set (on task switch)
4261 *
4262 * 3 External Hardware Interventions
4263 * - FLUSH
4264 * - STOPCLK
4265 * - SMI
4266 * - INIT
4267 *
4268 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4269 *
4270 * 4 Traps on Previous Instruction
4271 * - Breakpoints
4272 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4273 * breakpoint, or #DB due to a split-lock access)
4274 *
4275 * 4.3 VMX-preemption timer expired VM-exit
4276 *
4277 * 4.6 NMI-window exiting VM-exit[2]
4278 *
4279 * 5 Nonmaskable Interrupts (NMI)
4280 *
4281 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4282 *
4283 * 6 Maskable Hardware Interrupts
4284 *
4285 * 7 Code Breakpoint Fault
4286 *
4287 * 8 Faults from Fetching Next Instruction
4288 * - Code-Segment Limit Violation
4289 * - Code Page Fault
4290 * - Control protection exception (missing ENDBRANCH at target of indirect
4291 * call or jump)
4292 *
4293 * 9 Faults from Decoding Next Instruction
4294 * - Instruction length > 15 bytes
4295 * - Invalid Opcode
4296 * - Coprocessor Not Available
4297 *
4298 *10 Faults on Executing Instruction
4299 * - Overflow
4300 * - Bound error
4301 * - Invalid TSS
4302 * - Segment Not Present
4303 * - Stack fault
4304 * - General Protection
4305 * - Data Page Fault
4306 * - Alignment Check
4307 * - x86 FPU Floating-point exception
4308 * - SIMD floating-point exception
4309 * - Virtualization exception
4310 * - Control protection exception
4311 *
4312 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4313 * INIT signals, and higher priority events take priority over MTF VM exits.
4314 * MTF VM exits take priority over debug-trap exceptions and lower priority
4315 * events.
4316 *
4317 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4318 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4319 * timer take priority over VM exits caused by the "NMI-window exiting"
4320 * VM-execution control and lower priority events.
4321 *
4322 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4323 * caused by "NMI-window exiting". VM exits caused by this control take
4324 * priority over non-maskable interrupts (NMIs) and lower priority events.
4325 *
4326 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4327 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4328 * non-maskable interrupts (NMIs) and higher priority events take priority over
4329 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4330 * priority over external interrupts and lower priority events.
4331 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4332 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4333 {
4334 struct kvm_lapic *apic = vcpu->arch.apic;
4335 struct vcpu_vmx *vmx = to_vmx(vcpu);
4336 /*
4337 * Only a pending nested run blocks a pending exception. If there is a
4338 * previously injected event, the pending exception occurred while said
4339 * event was being delivered and thus needs to be handled.
4340 */
4341 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4342 /*
4343 * Events that don't require injection, i.e. that are virtualized by
4344 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4345 * to regain control in order to deliver the event, and hardware will
4346 * handle event ordering, e.g. with respect to injected exceptions.
4347 *
4348 * But, new events (not exceptions) are only recognized at instruction
4349 * boundaries. If an event needs reinjection, then KVM is handling a
4350 * VM-Exit that occurred _during_ instruction execution; new events,
4351 * irrespective of whether or not they're injected, are blocked until
4352 * the instruction completes.
4353 */
4354 bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4355 /*
4356 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4357 * for managing priority between concurrent events, i.e. KVM needs to
4358 * wait until after VM-Enter completes to deliver injected events.
4359 */
4360 bool block_nested_events = block_nested_exceptions ||
4361 block_non_injected_events;
4362
4363 if (lapic_in_kernel(vcpu) &&
4364 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4365 if (block_nested_events)
4366 return -EBUSY;
4367 nested_vmx_update_pending_dbg(vcpu);
4368 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4369 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4370 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4371
4372 /* MTF is discarded if the vCPU is in WFS. */
4373 vmx->nested.mtf_pending = false;
4374 return 0;
4375 }
4376
4377 if (lapic_in_kernel(vcpu) &&
4378 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4379 if (block_nested_events)
4380 return -EBUSY;
4381
4382 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4383 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4384 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4385 apic->sipi_vector & 0xFFUL);
4386 return 0;
4387 }
4388 /* Fallthrough, the SIPI is completely ignored. */
4389 }
4390
4391 /*
4392 * Process exceptions that are higher priority than Monitor Trap Flag:
4393 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4394 * could theoretically come in from userspace), and ICEBP (INT1).
4395 *
4396 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4397 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4398 * across SMI/RSM as it should; that needs to be addressed in order to
4399 * prioritize SMI over MTF and trap-like #DBs.
4400 */
4401 if (vcpu->arch.exception_vmexit.pending &&
4402 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4403 if (block_nested_exceptions)
4404 return -EBUSY;
4405
4406 nested_vmx_inject_exception_vmexit(vcpu);
4407 return 0;
4408 }
4409
4410 if (vcpu->arch.exception.pending &&
4411 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4412 if (block_nested_exceptions)
4413 return -EBUSY;
4414 goto no_vmexit;
4415 }
4416
4417 if (vmx->nested.mtf_pending) {
4418 if (block_nested_events)
4419 return -EBUSY;
4420 nested_vmx_update_pending_dbg(vcpu);
4421 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4422 return 0;
4423 }
4424
4425 if (vcpu->arch.exception_vmexit.pending) {
4426 if (block_nested_exceptions)
4427 return -EBUSY;
4428
4429 nested_vmx_inject_exception_vmexit(vcpu);
4430 return 0;
4431 }
4432
4433 if (vcpu->arch.exception.pending) {
4434 if (block_nested_exceptions)
4435 return -EBUSY;
4436 goto no_vmexit;
4437 }
4438
4439 if (nested_vmx_preemption_timer_pending(vcpu)) {
4440 if (block_nested_events)
4441 return -EBUSY;
4442 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4443 return 0;
4444 }
4445
4446 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4447 if (block_nested_events)
4448 return -EBUSY;
4449 goto no_vmexit;
4450 }
4451
4452 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4453 if (block_nested_events)
4454 return -EBUSY;
4455 if (!nested_exit_on_nmi(vcpu))
4456 goto no_vmexit;
4457
4458 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4459 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4460 INTR_INFO_VALID_MASK, 0);
4461 /*
4462 * The NMI-triggered VM exit counts as injection:
4463 * clear this one and block further NMIs.
4464 */
4465 vcpu->arch.nmi_pending = 0;
4466 vmx_set_nmi_mask(vcpu, true);
4467 return 0;
4468 }
4469
4470 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4471 int irq;
4472
4473 if (!nested_exit_on_intr(vcpu)) {
4474 if (block_nested_events)
4475 return -EBUSY;
4476
4477 goto no_vmexit;
4478 }
4479
4480 if (!nested_exit_intr_ack_set(vcpu)) {
4481 if (block_nested_events)
4482 return -EBUSY;
4483
4484 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4485 return 0;
4486 }
4487
4488 irq = kvm_cpu_get_extint(vcpu);
4489 if (irq != -1) {
4490 if (block_nested_events)
4491 return -EBUSY;
4492
4493 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4494 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4495 return 0;
4496 }
4497
4498 irq = kvm_apic_has_interrupt(vcpu);
4499 if (WARN_ON_ONCE(irq < 0))
4500 goto no_vmexit;
4501
4502 /*
4503 * If the IRQ is L2's PI notification vector, process posted
4504 * interrupts for L2 instead of injecting VM-Exit, as the
4505 * detection/morphing architecturally occurs when the IRQ is
4506 * delivered to the CPU. Note, only interrupts that are routed
4507 * through the local APIC trigger posted interrupt processing,
4508 * and enabling posted interrupts requires ACK-on-exit.
4509 */
4510 if (irq == vmx->nested.posted_intr_nv) {
4511 /*
4512 * Nested posted interrupts are delivered via RVI, i.e.
4513 * aren't injected by KVM, and so can be queued even if
4514 * manual event injection is disallowed.
4515 */
4516 if (block_non_injected_events)
4517 return -EBUSY;
4518
4519 vmx->nested.pi_pending = true;
4520 kvm_apic_clear_irr(vcpu, irq);
4521 goto no_vmexit;
4522 }
4523
4524 if (block_nested_events)
4525 return -EBUSY;
4526
4527 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4528 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4529
4530 /*
4531 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4532 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4533 * if APICv is active.
4534 */
4535 kvm_apic_ack_interrupt(vcpu, irq);
4536 return 0;
4537 }
4538
4539 no_vmexit:
4540 return vmx_complete_nested_posted_interrupt(vcpu);
4541 }
4542
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4543 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4544 {
4545 ktime_t remaining =
4546 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4547 u64 value;
4548
4549 if (ktime_to_ns(remaining) <= 0)
4550 return 0;
4551
4552 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4553 do_div(value, 1000000);
4554 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4555 }
4556
is_vmcs12_ext_field(unsigned long field)4557 static bool is_vmcs12_ext_field(unsigned long field)
4558 {
4559 switch (field) {
4560 case GUEST_ES_SELECTOR:
4561 case GUEST_CS_SELECTOR:
4562 case GUEST_SS_SELECTOR:
4563 case GUEST_DS_SELECTOR:
4564 case GUEST_FS_SELECTOR:
4565 case GUEST_GS_SELECTOR:
4566 case GUEST_LDTR_SELECTOR:
4567 case GUEST_TR_SELECTOR:
4568 case GUEST_ES_LIMIT:
4569 case GUEST_CS_LIMIT:
4570 case GUEST_SS_LIMIT:
4571 case GUEST_DS_LIMIT:
4572 case GUEST_FS_LIMIT:
4573 case GUEST_GS_LIMIT:
4574 case GUEST_LDTR_LIMIT:
4575 case GUEST_TR_LIMIT:
4576 case GUEST_GDTR_LIMIT:
4577 case GUEST_IDTR_LIMIT:
4578 case GUEST_ES_AR_BYTES:
4579 case GUEST_DS_AR_BYTES:
4580 case GUEST_FS_AR_BYTES:
4581 case GUEST_GS_AR_BYTES:
4582 case GUEST_LDTR_AR_BYTES:
4583 case GUEST_TR_AR_BYTES:
4584 case GUEST_ES_BASE:
4585 case GUEST_CS_BASE:
4586 case GUEST_SS_BASE:
4587 case GUEST_DS_BASE:
4588 case GUEST_FS_BASE:
4589 case GUEST_GS_BASE:
4590 case GUEST_LDTR_BASE:
4591 case GUEST_TR_BASE:
4592 case GUEST_GDTR_BASE:
4593 case GUEST_IDTR_BASE:
4594 case GUEST_PENDING_DBG_EXCEPTIONS:
4595 case GUEST_BNDCFGS:
4596 return true;
4597 default:
4598 break;
4599 }
4600
4601 return false;
4602 }
4603
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4604 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4605 struct vmcs12 *vmcs12)
4606 {
4607 struct vcpu_vmx *vmx = to_vmx(vcpu);
4608
4609 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4610 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4611 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4612 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4613 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4614 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4615 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4616 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4617 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4618 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4619 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4620 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4621 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4622 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4623 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4624 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4625 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4626 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4627 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4628 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4629 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4630 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4631 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4632 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4633 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4634 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4635 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4636 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4637 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4638 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4639 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4640 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4641 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4642 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4643 vmcs12->guest_pending_dbg_exceptions =
4644 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4645
4646 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4647 }
4648
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4649 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4650 struct vmcs12 *vmcs12)
4651 {
4652 struct vcpu_vmx *vmx = to_vmx(vcpu);
4653 int cpu;
4654
4655 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4656 return;
4657
4658
4659 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4660
4661 cpu = get_cpu();
4662 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4663 vmx_vcpu_load_vmcs(vcpu, cpu);
4664
4665 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4666
4667 vmx->loaded_vmcs = &vmx->vmcs01;
4668 vmx_vcpu_load_vmcs(vcpu, cpu);
4669 put_cpu();
4670 }
4671
4672 /*
4673 * Update the guest state fields of vmcs12 to reflect changes that
4674 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4675 * VM-entry controls is also updated, since this is really a guest
4676 * state bit.)
4677 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4678 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4679 {
4680 struct vcpu_vmx *vmx = to_vmx(vcpu);
4681
4682 if (nested_vmx_is_evmptr12_valid(vmx))
4683 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4684
4685 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4686 !nested_vmx_is_evmptr12_valid(vmx);
4687
4688 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4689 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4690
4691 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4692 vmcs12->guest_rip = kvm_rip_read(vcpu);
4693 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4694
4695 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4696 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4697
4698 vmcs12->guest_interruptibility_info =
4699 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4700
4701 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4702 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4703 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4704 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4705 else
4706 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4707
4708 if (nested_cpu_has_preemption_timer(vmcs12) &&
4709 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4710 !vmx->nested.nested_run_pending)
4711 vmcs12->vmx_preemption_timer_value =
4712 vmx_get_preemption_timer_value(vcpu);
4713
4714 /*
4715 * In some cases (usually, nested EPT), L2 is allowed to change its
4716 * own CR3 without exiting. If it has changed it, we must keep it.
4717 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4718 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4719 *
4720 * Additionally, restore L2's PDPTR to vmcs12.
4721 */
4722 if (enable_ept) {
4723 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4724 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4725 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4726 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4727 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4728 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4729 }
4730 }
4731
4732 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4733
4734 if (nested_cpu_has_vid(vmcs12))
4735 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4736
4737 vmcs12->vm_entry_controls =
4738 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4739 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4740
4741 /*
4742 * Note! Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
4743 * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
4744 * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
4745 * vmcs02 doesn't strictly track vmcs12.
4746 */
4747 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4748 vmcs12->guest_dr7 = vcpu->arch.dr7;
4749
4750 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4751 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4752
4753 vmcs_read_cet_state(&vmx->vcpu, &vmcs12->guest_s_cet,
4754 &vmcs12->guest_ssp,
4755 &vmcs12->guest_ssp_tbl);
4756 }
4757
4758 /*
4759 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4760 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4761 * and this function updates it to reflect the changes to the guest state while
4762 * L2 was running (and perhaps made some exits which were handled directly by L0
4763 * without going back to L1), and to reflect the exit reason.
4764 * Note that we do not have to copy here all VMCS fields, just those that
4765 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4766 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4767 * which already writes to vmcs12 directly.
4768 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4769 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4770 u32 vm_exit_reason, u32 exit_intr_info,
4771 unsigned long exit_qualification, u32 exit_insn_len)
4772 {
4773 /* update exit information fields: */
4774 vmcs12->vm_exit_reason = vm_exit_reason;
4775 if (vmx_get_exit_reason(vcpu).enclave_mode)
4776 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4777 vmcs12->exit_qualification = exit_qualification;
4778
4779 /*
4780 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4781 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4782 * exit info fields are unmodified.
4783 */
4784 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4785 vmcs12->launch_state = 1;
4786
4787 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4788 * instead of reading the real value. */
4789 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4790
4791 /*
4792 * Transfer the event that L0 or L1 may wanted to inject into
4793 * L2 to IDT_VECTORING_INFO_FIELD.
4794 */
4795 vmcs12_save_pending_event(vcpu, vmcs12,
4796 vm_exit_reason, exit_intr_info);
4797
4798 vmcs12->vm_exit_intr_info = exit_intr_info;
4799 vmcs12->vm_exit_instruction_len = exit_insn_len;
4800 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4801
4802 /*
4803 * According to spec, there's no need to store the guest's
4804 * MSRs if the exit is due to a VM-entry failure that occurs
4805 * during or after loading the guest state. Since this exit
4806 * does not fall in that category, we need to save the MSRs.
4807 */
4808 if (nested_vmx_store_msr(vcpu,
4809 vmcs12->vm_exit_msr_store_addr,
4810 vmcs12->vm_exit_msr_store_count))
4811 nested_vmx_abort(vcpu,
4812 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4813 }
4814 }
4815
4816 /*
4817 * A part of what we need to when the nested L2 guest exits and we want to
4818 * run its L1 parent, is to reset L1's guest state to the host state specified
4819 * in vmcs12.
4820 * This function is to be called not only on normal nested exit, but also on
4821 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4822 * Failures During or After Loading Guest State").
4823 * This function should be called when the active VMCS is L1's (vmcs01).
4824 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4825 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4826 struct vmcs12 *vmcs12)
4827 {
4828 enum vm_entry_failure_code ignored;
4829 struct kvm_segment seg;
4830
4831 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4832 vcpu->arch.efer = vmcs12->host_ia32_efer;
4833 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4834 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4835 else
4836 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4837 vmx_set_efer(vcpu, vcpu->arch.efer);
4838
4839 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4840 kvm_rip_write(vcpu, vmcs12->host_rip);
4841 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4842 vmx_set_interrupt_shadow(vcpu, 0);
4843
4844 /*
4845 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4846 * actually changed, because vmx_set_cr0 refers to efer set above.
4847 *
4848 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4849 * (KVM doesn't change it);
4850 */
4851 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4852 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4853
4854 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4855 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4856 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4857
4858 nested_ept_uninit_mmu_context(vcpu);
4859
4860 /*
4861 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4862 * couldn't have changed.
4863 */
4864 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4865 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4866
4867 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4868
4869 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4870 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4871 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4872 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4873 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4874 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4875 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4876
4877 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4878 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4879 vmcs_write64(GUEST_BNDCFGS, 0);
4880
4881 /*
4882 * Load CET state from host state if VM_EXIT_LOAD_CET_STATE is set.
4883 * otherwise CET state should be retained across VM-exit, i.e.,
4884 * guest values should be propagated from vmcs12 to vmcs01.
4885 */
4886 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE)
4887 vmcs_write_cet_state(vcpu, vmcs12->host_s_cet, vmcs12->host_ssp,
4888 vmcs12->host_ssp_tbl);
4889 else
4890 vmcs_write_cet_state(vcpu, vmcs12->guest_s_cet, vmcs12->guest_ssp,
4891 vmcs12->guest_ssp_tbl);
4892
4893 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4894 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4895 vcpu->arch.pat = vmcs12->host_ia32_pat;
4896 }
4897 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4898 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4899 WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4900 vmcs12->host_ia32_perf_global_ctrl));
4901
4902 /* Set L1 segment info according to Intel SDM
4903 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4904 seg = (struct kvm_segment) {
4905 .base = 0,
4906 .limit = 0xFFFFFFFF,
4907 .selector = vmcs12->host_cs_selector,
4908 .type = 11,
4909 .present = 1,
4910 .s = 1,
4911 .g = 1
4912 };
4913 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4914 seg.l = 1;
4915 else
4916 seg.db = 1;
4917 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4918 seg = (struct kvm_segment) {
4919 .base = 0,
4920 .limit = 0xFFFFFFFF,
4921 .type = 3,
4922 .present = 1,
4923 .s = 1,
4924 .db = 1,
4925 .g = 1
4926 };
4927 seg.selector = vmcs12->host_ds_selector;
4928 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4929 seg.selector = vmcs12->host_es_selector;
4930 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4931 seg.selector = vmcs12->host_ss_selector;
4932 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4933 seg.selector = vmcs12->host_fs_selector;
4934 seg.base = vmcs12->host_fs_base;
4935 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4936 seg.selector = vmcs12->host_gs_selector;
4937 seg.base = vmcs12->host_gs_base;
4938 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4939 seg = (struct kvm_segment) {
4940 .base = vmcs12->host_tr_base,
4941 .limit = 0x67,
4942 .selector = vmcs12->host_tr_selector,
4943 .type = 11,
4944 .present = 1
4945 };
4946 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4947
4948 memset(&seg, 0, sizeof(seg));
4949 seg.unusable = 1;
4950 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4951
4952 kvm_set_dr(vcpu, 7, 0x400);
4953 vmx_guest_debugctl_write(vcpu, 0);
4954
4955 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4956 vmcs12->vm_exit_msr_load_count))
4957 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4958
4959 to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4960 }
4961
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4962 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4963 {
4964 struct vmx_uret_msr *efer_msr;
4965 unsigned int i;
4966
4967 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4968 return vmcs_read64(GUEST_IA32_EFER);
4969
4970 if (cpu_has_load_ia32_efer())
4971 return kvm_host.efer;
4972
4973 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4974 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4975 return vmx->msr_autoload.guest.val[i].value;
4976 }
4977
4978 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4979 if (efer_msr)
4980 return efer_msr->data;
4981
4982 return kvm_host.efer;
4983 }
4984
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4985 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4986 {
4987 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4988 struct vcpu_vmx *vmx = to_vmx(vcpu);
4989 struct vmx_msr_entry g, h;
4990 gpa_t gpa;
4991 u32 i, j;
4992
4993 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4994
4995 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4996 /*
4997 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4998 * as vmcs01.GUEST_DR7 contains a userspace defined value
4999 * and vcpu->arch.dr7 is not squirreled away before the
5000 * nested VMENTER (not worth adding a variable in nested_vmx).
5001 */
5002 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
5003 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
5004 else
5005 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
5006 }
5007
5008 /* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
5009 vmx_reload_guest_debugctl(vcpu);
5010
5011 /*
5012 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
5013 * handle a variety of side effects to KVM's software model.
5014 */
5015 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
5016
5017 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
5018 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
5019
5020 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
5021 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
5022
5023 nested_ept_uninit_mmu_context(vcpu);
5024 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
5025 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
5026
5027 /*
5028 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
5029 * from vmcs01 (if necessary). The PDPTRs are not loaded on
5030 * VMFail, like everything else we just need to ensure our
5031 * software model is up-to-date.
5032 */
5033 if (enable_ept && is_pae_paging(vcpu))
5034 ept_save_pdptrs(vcpu);
5035
5036 kvm_mmu_reset_context(vcpu);
5037
5038 /*
5039 * This nasty bit of open coding is a compromise between blindly
5040 * loading L1's MSRs using the exit load lists (incorrect emulation
5041 * of VMFail), leaving the nested VM's MSRs in the software model
5042 * (incorrect behavior) and snapshotting the modified MSRs (too
5043 * expensive since the lists are unbound by hardware). For each
5044 * MSR that was (prematurely) loaded from the nested VMEntry load
5045 * list, reload it from the exit load list if it exists and differs
5046 * from the guest value. The intent is to stuff host state as
5047 * silently as possible, not to fully process the exit load list.
5048 */
5049 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
5050 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
5051 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
5052 pr_debug_ratelimited(
5053 "%s read MSR index failed (%u, 0x%08llx)\n",
5054 __func__, i, gpa);
5055 goto vmabort;
5056 }
5057
5058 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
5059 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
5060 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
5061 pr_debug_ratelimited(
5062 "%s read MSR failed (%u, 0x%08llx)\n",
5063 __func__, j, gpa);
5064 goto vmabort;
5065 }
5066 if (h.index != g.index)
5067 continue;
5068 if (h.value == g.value)
5069 break;
5070
5071 if (nested_vmx_load_msr_check(vcpu, &h)) {
5072 pr_debug_ratelimited(
5073 "%s check failed (%u, 0x%x, 0x%x)\n",
5074 __func__, j, h.index, h.reserved);
5075 goto vmabort;
5076 }
5077
5078 if (kvm_emulate_msr_write(vcpu, h.index, h.value)) {
5079 pr_debug_ratelimited(
5080 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
5081 __func__, j, h.index, h.value);
5082 goto vmabort;
5083 }
5084 }
5085 }
5086
5087 return;
5088
5089 vmabort:
5090 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
5091 }
5092
5093 /*
5094 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
5095 * and modify vmcs12 to make it see what it would expect to see there if
5096 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
5097 */
__nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)5098 void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
5099 u32 exit_intr_info, unsigned long exit_qualification,
5100 u32 exit_insn_len)
5101 {
5102 struct vcpu_vmx *vmx = to_vmx(vcpu);
5103 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5104
5105 /* Pending MTF traps are discarded on VM-Exit. */
5106 vmx->nested.mtf_pending = false;
5107
5108 /* trying to cancel vmlaunch/vmresume is a bug */
5109 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5110
5111 #ifdef CONFIG_KVM_HYPERV
5112 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
5113 /*
5114 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
5115 * Enlightened VMCS after migration and we still need to
5116 * do that when something is forcing L2->L1 exit prior to
5117 * the first L2 run.
5118 */
5119 (void)nested_get_evmcs_page(vcpu);
5120 }
5121 #endif
5122
5123 /* Service pending TLB flush requests for L2 before switching to L1. */
5124 kvm_service_local_tlb_flush_requests(vcpu);
5125
5126 /*
5127 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
5128 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
5129 * up-to-date before switching to L1.
5130 */
5131 if (enable_ept && is_pae_paging(vcpu))
5132 vmx_ept_load_pdptrs(vcpu);
5133
5134 leave_guest_mode(vcpu);
5135
5136 if (nested_cpu_has_preemption_timer(vmcs12))
5137 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
5138
5139 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
5140 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
5141 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
5142 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
5143 }
5144
5145 if (likely(!vmx->fail)) {
5146 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5147
5148 if (vm_exit_reason != -1)
5149 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
5150 exit_intr_info, exit_qualification,
5151 exit_insn_len);
5152
5153 /*
5154 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
5155 * also be used to capture vmcs12 cache as part of
5156 * capturing nVMX state for snapshot (migration).
5157 *
5158 * Otherwise, this flush will dirty guest memory at a
5159 * point it is already assumed by user-space to be
5160 * immutable.
5161 */
5162 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
5163 } else {
5164 /*
5165 * The only expected VM-instruction error is "VM entry with
5166 * invalid control field(s)." Anything else indicates a
5167 * problem with L0. And we should never get here with a
5168 * VMFail of any type if early consistency checks are enabled.
5169 */
5170 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5171 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5172 WARN_ON_ONCE(nested_early_check);
5173 }
5174
5175 /*
5176 * Drop events/exceptions that were queued for re-injection to L2
5177 * (picked up via vmx_complete_interrupts()), as well as exceptions
5178 * that were pending for L2. Note, this must NOT be hoisted above
5179 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5180 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5181 */
5182 vcpu->arch.nmi_injected = false;
5183 kvm_clear_exception_queue(vcpu);
5184 kvm_clear_interrupt_queue(vcpu);
5185
5186 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5187
5188 kvm_nested_vmexit_handle_ibrs(vcpu);
5189
5190 /* Update any VMCS fields that might have changed while L2 ran */
5191 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5192 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5193 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5194 if (kvm_caps.has_tsc_control)
5195 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5196
5197 if (vmx->nested.l1_tpr_threshold != -1)
5198 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5199
5200 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5201 vmx->nested.change_vmcs01_virtual_apic_mode = false;
5202 vmx_set_virtual_apic_mode(vcpu);
5203 }
5204
5205 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5206 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5207 vmx_update_cpu_dirty_logging(vcpu);
5208 }
5209
5210 nested_put_vmcs12_pages(vcpu);
5211
5212 if (vmx->nested.reload_vmcs01_apic_access_page) {
5213 vmx->nested.reload_vmcs01_apic_access_page = false;
5214 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5215 }
5216
5217 if (vmx->nested.update_vmcs01_apicv_status) {
5218 vmx->nested.update_vmcs01_apicv_status = false;
5219 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5220 }
5221
5222 if (vmx->nested.update_vmcs01_hwapic_isr) {
5223 vmx->nested.update_vmcs01_hwapic_isr = false;
5224 kvm_apic_update_hwapic_isr(vcpu);
5225 }
5226
5227 if ((vm_exit_reason != -1) &&
5228 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5229 vmx->nested.need_vmcs12_to_shadow_sync = true;
5230
5231 /* in case we halted in L2 */
5232 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5233
5234 if (likely(!vmx->fail)) {
5235 if (vm_exit_reason != -1)
5236 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5237 vmcs12->exit_qualification,
5238 vmcs12->idt_vectoring_info_field,
5239 vmcs12->vm_exit_intr_info,
5240 vmcs12->vm_exit_intr_error_code,
5241 KVM_ISA_VMX);
5242
5243 load_vmcs12_host_state(vcpu, vmcs12);
5244
5245 /*
5246 * Process events if an injectable IRQ or NMI is pending, even
5247 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5248 * If an event became pending while L2 was active, KVM needs to
5249 * either inject the event or request an IRQ/NMI window. SMIs
5250 * don't need to be processed as SMM is mutually exclusive with
5251 * non-root mode. INIT/SIPI don't need to be checked as INIT
5252 * is blocked post-VMXON, and SIPIs are ignored.
5253 */
5254 if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5255 kvm_make_request(KVM_REQ_EVENT, vcpu);
5256 return;
5257 }
5258
5259 /*
5260 * After an early L2 VM-entry failure, we're now back
5261 * in L1 which thinks it just finished a VMLAUNCH or
5262 * VMRESUME instruction, so we need to set the failure
5263 * flag and the VM-instruction error field of the VMCS
5264 * accordingly, and skip the emulated instruction.
5265 */
5266 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5267
5268 /*
5269 * Restore L1's host state to KVM's software model. We're here
5270 * because a consistency check was caught by hardware, which
5271 * means some amount of guest state has been propagated to KVM's
5272 * model and needs to be unwound to the host's state.
5273 */
5274 nested_vmx_restore_host_state(vcpu);
5275
5276 vmx->fail = 0;
5277 }
5278
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5279 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5280 {
5281 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5282 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5283 }
5284
5285 /*
5286 * Decode the memory-address operand of a vmx instruction, as recorded on an
5287 * exit caused by such an instruction (run by a guest hypervisor).
5288 * On success, returns 0. When the operand is invalid, returns 1 and throws
5289 * #UD, #GP, or #SS.
5290 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5291 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5292 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5293 {
5294 gva_t off;
5295 bool exn;
5296 struct kvm_segment s;
5297
5298 /*
5299 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5300 * Execution", on an exit, vmx_instruction_info holds most of the
5301 * addressing components of the operand. Only the displacement part
5302 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5303 * For how an actual address is calculated from all these components,
5304 * refer to Vol. 1, "Operand Addressing".
5305 */
5306 int scaling = vmx_instruction_info & 3;
5307 int addr_size = (vmx_instruction_info >> 7) & 7;
5308 bool is_reg = vmx_instruction_info & (1u << 10);
5309 int seg_reg = (vmx_instruction_info >> 15) & 7;
5310 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5311 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5312 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5313 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5314
5315 if (is_reg) {
5316 kvm_queue_exception(vcpu, UD_VECTOR);
5317 return 1;
5318 }
5319
5320 /* Addr = segment_base + offset */
5321 /* offset = base + [index * scale] + displacement */
5322 off = exit_qualification; /* holds the displacement */
5323 if (addr_size == 1)
5324 off = (gva_t)sign_extend64(off, 31);
5325 else if (addr_size == 0)
5326 off = (gva_t)sign_extend64(off, 15);
5327 if (base_is_valid)
5328 off += kvm_register_read(vcpu, base_reg);
5329 if (index_is_valid)
5330 off += kvm_register_read(vcpu, index_reg) << scaling;
5331 vmx_get_segment(vcpu, &s, seg_reg);
5332
5333 /*
5334 * The effective address, i.e. @off, of a memory operand is truncated
5335 * based on the address size of the instruction. Note that this is
5336 * the *effective address*, i.e. the address prior to accounting for
5337 * the segment's base.
5338 */
5339 if (addr_size == 1) /* 32 bit */
5340 off &= 0xffffffff;
5341 else if (addr_size == 0) /* 16 bit */
5342 off &= 0xffff;
5343
5344 /* Checks for #GP/#SS exceptions. */
5345 exn = false;
5346 if (is_long_mode(vcpu)) {
5347 /*
5348 * The virtual/linear address is never truncated in 64-bit
5349 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5350 * address when using FS/GS with a non-zero base.
5351 */
5352 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5353 *ret = s.base + off;
5354 else
5355 *ret = off;
5356
5357 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5358 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5359 * non-canonical form. This is the only check on the memory
5360 * destination for long mode!
5361 */
5362 exn = is_noncanonical_address(*ret, vcpu, 0);
5363 } else {
5364 /*
5365 * When not in long mode, the virtual/linear address is
5366 * unconditionally truncated to 32 bits regardless of the
5367 * address size.
5368 */
5369 *ret = (s.base + off) & 0xffffffff;
5370
5371 /* Protected mode: apply checks for segment validity in the
5372 * following order:
5373 * - segment type check (#GP(0) may be thrown)
5374 * - usability check (#GP(0)/#SS(0))
5375 * - limit check (#GP(0)/#SS(0))
5376 */
5377 if (wr)
5378 /* #GP(0) if the destination operand is located in a
5379 * read-only data segment or any code segment.
5380 */
5381 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5382 else
5383 /* #GP(0) if the source operand is located in an
5384 * execute-only code segment
5385 */
5386 exn = ((s.type & 0xa) == 8);
5387 if (exn) {
5388 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5389 return 1;
5390 }
5391 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5392 */
5393 exn = (s.unusable != 0);
5394
5395 /*
5396 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5397 * outside the segment limit. All CPUs that support VMX ignore
5398 * limit checks for flat segments, i.e. segments with base==0,
5399 * limit==0xffffffff and of type expand-up data or code.
5400 */
5401 if (!(s.base == 0 && s.limit == 0xffffffff &&
5402 ((s.type & 8) || !(s.type & 4))))
5403 exn = exn || ((u64)off + len - 1 > s.limit);
5404 }
5405 if (exn) {
5406 kvm_queue_exception_e(vcpu,
5407 seg_reg == VCPU_SREG_SS ?
5408 SS_VECTOR : GP_VECTOR,
5409 0);
5410 return 1;
5411 }
5412
5413 return 0;
5414 }
5415
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5416 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5417 int *ret)
5418 {
5419 gva_t gva;
5420 struct x86_exception e;
5421 int r;
5422
5423 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5424 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5425 sizeof(*vmpointer), &gva)) {
5426 *ret = 1;
5427 return -EINVAL;
5428 }
5429
5430 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5431 if (r != X86EMUL_CONTINUE) {
5432 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5433 return -EINVAL;
5434 }
5435
5436 return 0;
5437 }
5438
5439 /*
5440 * Allocate a shadow VMCS and associate it with the currently loaded
5441 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5442 * VMCS is also VMCLEARed, so that it is ready for use.
5443 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5444 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5445 {
5446 struct vcpu_vmx *vmx = to_vmx(vcpu);
5447 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5448
5449 /*
5450 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5451 * when L1 executes VMXOFF or the vCPU is forced out of nested
5452 * operation. VMXON faults if the CPU is already post-VMXON, so it
5453 * should be impossible to already have an allocated shadow VMCS. KVM
5454 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5455 * always be the loaded VMCS.
5456 */
5457 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5458 return loaded_vmcs->shadow_vmcs;
5459
5460 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5461 if (loaded_vmcs->shadow_vmcs)
5462 vmcs_clear(loaded_vmcs->shadow_vmcs);
5463
5464 return loaded_vmcs->shadow_vmcs;
5465 }
5466
enter_vmx_operation(struct kvm_vcpu * vcpu)5467 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5468 {
5469 struct vcpu_vmx *vmx = to_vmx(vcpu);
5470 int r;
5471
5472 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5473 if (r < 0)
5474 goto out_vmcs02;
5475
5476 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5477 if (!vmx->nested.cached_vmcs12)
5478 goto out_cached_vmcs12;
5479
5480 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5481 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5482 if (!vmx->nested.cached_shadow_vmcs12)
5483 goto out_cached_shadow_vmcs12;
5484
5485 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5486 goto out_shadow_vmcs;
5487
5488 hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5489 HRTIMER_MODE_ABS_PINNED);
5490
5491 vmx->nested.vpid02 = allocate_vpid();
5492
5493 vmx->nested.vmcs02_initialized = false;
5494 vmx->nested.vmxon = true;
5495
5496 if (vmx_pt_mode_is_host_guest()) {
5497 vmx->pt_desc.guest.ctl = 0;
5498 pt_update_intercept_for_msr(vcpu);
5499 }
5500
5501 return 0;
5502
5503 out_shadow_vmcs:
5504 kfree(vmx->nested.cached_shadow_vmcs12);
5505
5506 out_cached_shadow_vmcs12:
5507 kfree(vmx->nested.cached_vmcs12);
5508
5509 out_cached_vmcs12:
5510 free_loaded_vmcs(&vmx->nested.vmcs02);
5511
5512 out_vmcs02:
5513 return -ENOMEM;
5514 }
5515
5516 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5517 static int handle_vmxon(struct kvm_vcpu *vcpu)
5518 {
5519 int ret;
5520 gpa_t vmptr;
5521 uint32_t revision;
5522 struct vcpu_vmx *vmx = to_vmx(vcpu);
5523 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5524 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5525
5526 /*
5527 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5528 * the guest and so cannot rely on hardware to perform the check,
5529 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5530 * for VMXON).
5531 *
5532 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5533 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5534 * force any of the relevant guest state. For a restricted guest, KVM
5535 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5536 * Real Mode, and so there's no need to check CR0.PE manually.
5537 */
5538 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5539 kvm_queue_exception(vcpu, UD_VECTOR);
5540 return 1;
5541 }
5542
5543 /*
5544 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5545 * and has higher priority than the VM-Fail due to being post-VMXON,
5546 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5547 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5548 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5549 * VMX non-root.
5550 *
5551 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5552 * #UD checks (see above), is functionally ok because KVM doesn't allow
5553 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5554 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5555 * missed by hardware due to shadowing CR0 and/or CR4.
5556 */
5557 if (vmx_get_cpl(vcpu)) {
5558 kvm_inject_gp(vcpu, 0);
5559 return 1;
5560 }
5561
5562 if (vmx->nested.vmxon)
5563 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5564
5565 /*
5566 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5567 * only if the vCPU isn't already in VMX operation, i.e. effectively
5568 * have lower priority than the VM-Fail above.
5569 */
5570 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5571 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5572 kvm_inject_gp(vcpu, 0);
5573 return 1;
5574 }
5575
5576 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5577 != VMXON_NEEDED_FEATURES) {
5578 kvm_inject_gp(vcpu, 0);
5579 return 1;
5580 }
5581
5582 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5583 return ret;
5584
5585 /*
5586 * SDM 3: 24.11.5
5587 * The first 4 bytes of VMXON region contain the supported
5588 * VMCS revision identifier
5589 *
5590 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5591 * which replaces physical address width with 32
5592 */
5593 if (!page_address_valid(vcpu, vmptr))
5594 return nested_vmx_failInvalid(vcpu);
5595
5596 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5597 revision != VMCS12_REVISION)
5598 return nested_vmx_failInvalid(vcpu);
5599
5600 vmx->nested.vmxon_ptr = vmptr;
5601 ret = enter_vmx_operation(vcpu);
5602 if (ret)
5603 return ret;
5604
5605 return nested_vmx_succeed(vcpu);
5606 }
5607
nested_release_vmcs12(struct kvm_vcpu * vcpu)5608 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5609 {
5610 struct vcpu_vmx *vmx = to_vmx(vcpu);
5611
5612 if (vmx->nested.current_vmptr == INVALID_GPA)
5613 return;
5614
5615 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5616
5617 if (enable_shadow_vmcs) {
5618 /* copy to memory all shadowed fields in case
5619 they were modified */
5620 copy_shadow_to_vmcs12(vmx);
5621 vmx_disable_shadow_vmcs(vmx);
5622 }
5623 vmx->nested.posted_intr_nv = -1;
5624
5625 /* Flush VMCS12 to guest memory */
5626 kvm_vcpu_write_guest_page(vcpu,
5627 vmx->nested.current_vmptr >> PAGE_SHIFT,
5628 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5629
5630 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5631
5632 vmx->nested.current_vmptr = INVALID_GPA;
5633 }
5634
5635 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5636 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5637 {
5638 if (!nested_vmx_check_permission(vcpu))
5639 return 1;
5640
5641 free_nested(vcpu);
5642
5643 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5644 kvm_make_request(KVM_REQ_EVENT, vcpu);
5645
5646 return nested_vmx_succeed(vcpu);
5647 }
5648
5649 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5650 static int handle_vmclear(struct kvm_vcpu *vcpu)
5651 {
5652 struct vcpu_vmx *vmx = to_vmx(vcpu);
5653 u32 zero = 0;
5654 gpa_t vmptr;
5655 int r;
5656
5657 if (!nested_vmx_check_permission(vcpu))
5658 return 1;
5659
5660 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5661 return r;
5662
5663 if (!page_address_valid(vcpu, vmptr))
5664 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5665
5666 if (vmptr == vmx->nested.vmxon_ptr)
5667 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5668
5669 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5670 if (vmptr == vmx->nested.current_vmptr)
5671 nested_release_vmcs12(vcpu);
5672
5673 /*
5674 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5675 * for VMCLEAR includes a "ensure that data for VMCS referenced
5676 * by the operand is in memory" clause that guards writes to
5677 * memory, i.e. doing nothing for I/O is architecturally valid.
5678 *
5679 * FIXME: Suppress failures if and only if no memslot is found,
5680 * i.e. exit to userspace if __copy_to_user() fails.
5681 */
5682 (void)kvm_vcpu_write_guest(vcpu,
5683 vmptr + offsetof(struct vmcs12,
5684 launch_state),
5685 &zero, sizeof(zero));
5686 }
5687
5688 return nested_vmx_succeed(vcpu);
5689 }
5690
5691 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5692 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5693 {
5694 return nested_vmx_run(vcpu, true);
5695 }
5696
5697 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5698 static int handle_vmresume(struct kvm_vcpu *vcpu)
5699 {
5700
5701 return nested_vmx_run(vcpu, false);
5702 }
5703
handle_vmread(struct kvm_vcpu * vcpu)5704 static int handle_vmread(struct kvm_vcpu *vcpu)
5705 {
5706 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5707 : get_vmcs12(vcpu);
5708 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5709 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5710 struct vcpu_vmx *vmx = to_vmx(vcpu);
5711 struct x86_exception e;
5712 unsigned long field;
5713 u64 value;
5714 gva_t gva = 0;
5715 short offset;
5716 int len, r;
5717
5718 if (!nested_vmx_check_permission(vcpu))
5719 return 1;
5720
5721 /* Decode instruction info and find the field to read */
5722 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5723
5724 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5725 /*
5726 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5727 * any VMREAD sets the ALU flags for VMfailInvalid.
5728 */
5729 if (vmx->nested.current_vmptr == INVALID_GPA ||
5730 (is_guest_mode(vcpu) &&
5731 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5732 return nested_vmx_failInvalid(vcpu);
5733
5734 offset = get_vmcs12_field_offset(field);
5735 if (offset < 0)
5736 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5737
5738 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5739 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5740
5741 /* Read the field, zero-extended to a u64 value */
5742 value = vmcs12_read_any(vmcs12, field, offset);
5743 } else {
5744 /*
5745 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5746 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5747 * unsupported. Unfortunately, certain versions of Windows 11
5748 * don't comply with this requirement which is not enforced in
5749 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5750 * workaround, as misbehaving guests will panic on VM-Fail.
5751 * Note, enlightened VMCS is incompatible with shadow VMCS so
5752 * all VMREADs from L2 should go to L1.
5753 */
5754 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5755 return nested_vmx_failInvalid(vcpu);
5756
5757 offset = evmcs_field_offset(field, NULL);
5758 if (offset < 0)
5759 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5760
5761 /* Read the field, zero-extended to a u64 value */
5762 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5763 }
5764
5765 /*
5766 * Now copy part of this value to register or memory, as requested.
5767 * Note that the number of bits actually copied is 32 or 64 depending
5768 * on the guest's mode (32 or 64 bit), not on the given field's length.
5769 */
5770 if (instr_info & BIT(10)) {
5771 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5772 } else {
5773 len = is_64_bit_mode(vcpu) ? 8 : 4;
5774 if (get_vmx_mem_address(vcpu, exit_qualification,
5775 instr_info, true, len, &gva))
5776 return 1;
5777 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5778 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5779 if (r != X86EMUL_CONTINUE)
5780 return kvm_handle_memory_failure(vcpu, r, &e);
5781 }
5782
5783 return nested_vmx_succeed(vcpu);
5784 }
5785
is_shadow_field_rw(unsigned long field)5786 static bool is_shadow_field_rw(unsigned long field)
5787 {
5788 switch (field) {
5789 #define SHADOW_FIELD_RW(x, y) case x:
5790 #include "vmcs_shadow_fields.h"
5791 return true;
5792 default:
5793 break;
5794 }
5795 return false;
5796 }
5797
is_shadow_field_ro(unsigned long field)5798 static bool is_shadow_field_ro(unsigned long field)
5799 {
5800 switch (field) {
5801 #define SHADOW_FIELD_RO(x, y) case x:
5802 #include "vmcs_shadow_fields.h"
5803 return true;
5804 default:
5805 break;
5806 }
5807 return false;
5808 }
5809
handle_vmwrite(struct kvm_vcpu * vcpu)5810 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5811 {
5812 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5813 : get_vmcs12(vcpu);
5814 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5815 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5816 struct vcpu_vmx *vmx = to_vmx(vcpu);
5817 struct x86_exception e;
5818 unsigned long field;
5819 short offset;
5820 gva_t gva;
5821 int len, r;
5822
5823 /*
5824 * The value to write might be 32 or 64 bits, depending on L1's long
5825 * mode, and eventually we need to write that into a field of several
5826 * possible lengths. The code below first zero-extends the value to 64
5827 * bit (value), and then copies only the appropriate number of
5828 * bits into the vmcs12 field.
5829 */
5830 u64 value = 0;
5831
5832 if (!nested_vmx_check_permission(vcpu))
5833 return 1;
5834
5835 /*
5836 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5837 * any VMWRITE sets the ALU flags for VMfailInvalid.
5838 */
5839 if (vmx->nested.current_vmptr == INVALID_GPA ||
5840 (is_guest_mode(vcpu) &&
5841 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5842 return nested_vmx_failInvalid(vcpu);
5843
5844 if (instr_info & BIT(10))
5845 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5846 else {
5847 len = is_64_bit_mode(vcpu) ? 8 : 4;
5848 if (get_vmx_mem_address(vcpu, exit_qualification,
5849 instr_info, false, len, &gva))
5850 return 1;
5851 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5852 if (r != X86EMUL_CONTINUE)
5853 return kvm_handle_memory_failure(vcpu, r, &e);
5854 }
5855
5856 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5857
5858 offset = get_vmcs12_field_offset(field);
5859 if (offset < 0)
5860 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5861
5862 /*
5863 * If the vCPU supports "VMWRITE to any supported field in the
5864 * VMCS," then the "read-only" fields are actually read/write.
5865 */
5866 if (vmcs_field_readonly(field) &&
5867 !nested_cpu_has_vmwrite_any_field(vcpu))
5868 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5869
5870 /*
5871 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5872 * vmcs12, else we may crush a field or consume a stale value.
5873 */
5874 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5875 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5876
5877 /*
5878 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5879 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5880 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5881 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5882 * from L1 will return a different value than VMREAD from L2 (L1 sees
5883 * the stripped down value, L2 sees the full value as stored by KVM).
5884 */
5885 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5886 value &= 0x1f0ff;
5887
5888 vmcs12_write_any(vmcs12, field, offset, value);
5889
5890 /*
5891 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5892 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5893 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5894 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5895 */
5896 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5897 /*
5898 * L1 can read these fields without exiting, ensure the
5899 * shadow VMCS is up-to-date.
5900 */
5901 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5902 preempt_disable();
5903 vmcs_load(vmx->vmcs01.shadow_vmcs);
5904
5905 __vmcs_writel(field, value);
5906
5907 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5908 vmcs_load(vmx->loaded_vmcs->vmcs);
5909 preempt_enable();
5910 }
5911 vmx->nested.dirty_vmcs12 = true;
5912 }
5913
5914 return nested_vmx_succeed(vcpu);
5915 }
5916
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5917 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5918 {
5919 vmx->nested.current_vmptr = vmptr;
5920 if (enable_shadow_vmcs) {
5921 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5922 vmcs_write64(VMCS_LINK_POINTER,
5923 __pa(vmx->vmcs01.shadow_vmcs));
5924 vmx->nested.need_vmcs12_to_shadow_sync = true;
5925 }
5926 vmx->nested.dirty_vmcs12 = true;
5927 vmx->nested.force_msr_bitmap_recalc = true;
5928 }
5929
5930 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5931 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5932 {
5933 struct vcpu_vmx *vmx = to_vmx(vcpu);
5934 gpa_t vmptr;
5935 int r;
5936
5937 if (!nested_vmx_check_permission(vcpu))
5938 return 1;
5939
5940 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5941 return r;
5942
5943 if (!page_address_valid(vcpu, vmptr))
5944 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5945
5946 if (vmptr == vmx->nested.vmxon_ptr)
5947 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5948
5949 /* Forbid normal VMPTRLD if Enlightened version was used */
5950 if (nested_vmx_is_evmptr12_valid(vmx))
5951 return 1;
5952
5953 if (vmx->nested.current_vmptr != vmptr) {
5954 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5955 struct vmcs_hdr hdr;
5956
5957 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5958 /*
5959 * Reads from an unbacked page return all 1s,
5960 * which means that the 32 bits located at the
5961 * given physical address won't match the required
5962 * VMCS12_REVISION identifier.
5963 */
5964 return nested_vmx_fail(vcpu,
5965 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5966 }
5967
5968 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5969 offsetof(struct vmcs12, hdr),
5970 sizeof(hdr))) {
5971 return nested_vmx_fail(vcpu,
5972 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5973 }
5974
5975 if (hdr.revision_id != VMCS12_REVISION ||
5976 (hdr.shadow_vmcs &&
5977 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5978 return nested_vmx_fail(vcpu,
5979 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5980 }
5981
5982 nested_release_vmcs12(vcpu);
5983
5984 /*
5985 * Load VMCS12 from guest memory since it is not already
5986 * cached.
5987 */
5988 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5989 VMCS12_SIZE)) {
5990 return nested_vmx_fail(vcpu,
5991 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5992 }
5993
5994 set_current_vmptr(vmx, vmptr);
5995 }
5996
5997 return nested_vmx_succeed(vcpu);
5998 }
5999
6000 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)6001 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6002 {
6003 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6004 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6005 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
6006 struct x86_exception e;
6007 gva_t gva;
6008 int r;
6009
6010 if (!nested_vmx_check_permission(vcpu))
6011 return 1;
6012
6013 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
6014 return 1;
6015
6016 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
6017 true, sizeof(gpa_t), &gva))
6018 return 1;
6019 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
6020 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
6021 sizeof(gpa_t), &e);
6022 if (r != X86EMUL_CONTINUE)
6023 return kvm_handle_memory_failure(vcpu, r, &e);
6024
6025 return nested_vmx_succeed(vcpu);
6026 }
6027
6028 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)6029 static int handle_invept(struct kvm_vcpu *vcpu)
6030 {
6031 struct vcpu_vmx *vmx = to_vmx(vcpu);
6032 u32 vmx_instruction_info, types;
6033 unsigned long type, roots_to_free;
6034 struct kvm_mmu *mmu;
6035 gva_t gva;
6036 struct x86_exception e;
6037 struct {
6038 u64 eptp, gpa;
6039 } operand;
6040 int i, r, gpr_index;
6041
6042 if (!(vmx->nested.msrs.secondary_ctls_high &
6043 SECONDARY_EXEC_ENABLE_EPT) ||
6044 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
6045 kvm_queue_exception(vcpu, UD_VECTOR);
6046 return 1;
6047 }
6048
6049 if (!nested_vmx_check_permission(vcpu))
6050 return 1;
6051
6052 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6053 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6054 type = kvm_register_read(vcpu, gpr_index);
6055
6056 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6057
6058 if (type >= 32 || !(types & (1 << type)))
6059 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6060
6061 /* According to the Intel VMX instruction reference, the memory
6062 * operand is read even if it isn't needed (e.g., for type==global)
6063 */
6064 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6065 vmx_instruction_info, false, sizeof(operand), &gva))
6066 return 1;
6067 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6068 if (r != X86EMUL_CONTINUE)
6069 return kvm_handle_memory_failure(vcpu, r, &e);
6070
6071 /*
6072 * Nested EPT roots are always held through guest_mmu,
6073 * not root_mmu.
6074 */
6075 mmu = &vcpu->arch.guest_mmu;
6076
6077 switch (type) {
6078 case VMX_EPT_EXTENT_CONTEXT:
6079 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
6080 return nested_vmx_fail(vcpu,
6081 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6082
6083 roots_to_free = 0;
6084 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
6085 operand.eptp))
6086 roots_to_free |= KVM_MMU_ROOT_CURRENT;
6087
6088 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6089 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
6090 mmu->prev_roots[i].pgd,
6091 operand.eptp))
6092 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6093 }
6094 break;
6095 case VMX_EPT_EXTENT_GLOBAL:
6096 roots_to_free = KVM_MMU_ROOTS_ALL;
6097 break;
6098 default:
6099 BUG();
6100 break;
6101 }
6102
6103 if (roots_to_free)
6104 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
6105
6106 return nested_vmx_succeed(vcpu);
6107 }
6108
handle_invvpid(struct kvm_vcpu * vcpu)6109 static int handle_invvpid(struct kvm_vcpu *vcpu)
6110 {
6111 struct vcpu_vmx *vmx = to_vmx(vcpu);
6112 u32 vmx_instruction_info;
6113 unsigned long type, types;
6114 gva_t gva;
6115 struct x86_exception e;
6116 struct {
6117 u64 vpid;
6118 u64 gla;
6119 } operand;
6120 u16 vpid02;
6121 int r, gpr_index;
6122
6123 if (!(vmx->nested.msrs.secondary_ctls_high &
6124 SECONDARY_EXEC_ENABLE_VPID) ||
6125 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
6126 kvm_queue_exception(vcpu, UD_VECTOR);
6127 return 1;
6128 }
6129
6130 if (!nested_vmx_check_permission(vcpu))
6131 return 1;
6132
6133 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6134 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6135 type = kvm_register_read(vcpu, gpr_index);
6136
6137 types = (vmx->nested.msrs.vpid_caps &
6138 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
6139
6140 if (type >= 32 || !(types & (1 << type)))
6141 return nested_vmx_fail(vcpu,
6142 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6143
6144 /* according to the intel vmx instruction reference, the memory
6145 * operand is read even if it isn't needed (e.g., for type==global)
6146 */
6147 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6148 vmx_instruction_info, false, sizeof(operand), &gva))
6149 return 1;
6150 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6151 if (r != X86EMUL_CONTINUE)
6152 return kvm_handle_memory_failure(vcpu, r, &e);
6153
6154 if (operand.vpid >> 16)
6155 return nested_vmx_fail(vcpu,
6156 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6157
6158 /*
6159 * Always flush the effective vpid02, i.e. never flush the current VPID
6160 * and never explicitly flush vpid01. INVVPID targets a VPID, not a
6161 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6162 * irrelevant (and there may not be a loaded vmcs12).
6163 */
6164 vpid02 = nested_get_vpid02(vcpu);
6165 switch (type) {
6166 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6167 /*
6168 * LAM doesn't apply to addresses that are inputs to TLB
6169 * invalidation.
6170 */
6171 if (!operand.vpid ||
6172 is_noncanonical_invlpg_address(operand.gla, vcpu))
6173 return nested_vmx_fail(vcpu,
6174 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6175 vpid_sync_vcpu_addr(vpid02, operand.gla);
6176 break;
6177 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6178 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6179 if (!operand.vpid)
6180 return nested_vmx_fail(vcpu,
6181 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6182 vpid_sync_context(vpid02);
6183 break;
6184 case VMX_VPID_EXTENT_ALL_CONTEXT:
6185 vpid_sync_context(vpid02);
6186 break;
6187 default:
6188 WARN_ON_ONCE(1);
6189 return kvm_skip_emulated_instruction(vcpu);
6190 }
6191
6192 /*
6193 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6194 * linear mappings for L2 (tagged with L2's VPID). Free all guest
6195 * roots as VPIDs are not tracked in the MMU role.
6196 *
6197 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6198 * an MMU when EPT is disabled.
6199 *
6200 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6201 */
6202 if (!enable_ept)
6203 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6204
6205 return nested_vmx_succeed(vcpu);
6206 }
6207
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6208 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6209 struct vmcs12 *vmcs12)
6210 {
6211 u32 index = kvm_rcx_read(vcpu);
6212 u64 new_eptp;
6213
6214 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6215 return 1;
6216 if (index >= VMFUNC_EPTP_ENTRIES)
6217 return 1;
6218
6219 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6220 &new_eptp, index * 8, 8))
6221 return 1;
6222
6223 /*
6224 * If the (L2) guest does a vmfunc to the currently
6225 * active ept pointer, we don't have to do anything else
6226 */
6227 if (vmcs12->ept_pointer != new_eptp) {
6228 if (!nested_vmx_check_eptp(vcpu, new_eptp))
6229 return 1;
6230
6231 vmcs12->ept_pointer = new_eptp;
6232 nested_ept_new_eptp(vcpu);
6233
6234 if (!nested_cpu_has_vpid(vmcs12))
6235 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6236 }
6237
6238 return 0;
6239 }
6240
handle_vmfunc(struct kvm_vcpu * vcpu)6241 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6242 {
6243 struct vcpu_vmx *vmx = to_vmx(vcpu);
6244 struct vmcs12 *vmcs12;
6245 u32 function = kvm_rax_read(vcpu);
6246
6247 /*
6248 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6249 * VMFUNC for nested VMs, but not for L1.
6250 */
6251 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6252 kvm_queue_exception(vcpu, UD_VECTOR);
6253 return 1;
6254 }
6255
6256 vmcs12 = get_vmcs12(vcpu);
6257
6258 /*
6259 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6260 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6261 */
6262 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6263 kvm_queue_exception(vcpu, UD_VECTOR);
6264 return 1;
6265 }
6266
6267 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6268 goto fail;
6269
6270 switch (function) {
6271 case 0:
6272 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6273 goto fail;
6274 break;
6275 default:
6276 goto fail;
6277 }
6278 return kvm_skip_emulated_instruction(vcpu);
6279
6280 fail:
6281 /*
6282 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6283 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6284 * EXIT_REASON_VMFUNC as the exit reason.
6285 */
6286 nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full,
6287 vmx_get_intr_info(vcpu),
6288 vmx_get_exit_qual(vcpu));
6289 return 1;
6290 }
6291
6292 /*
6293 * Return true if an IO instruction with the specified port and size should cause
6294 * a VM-exit into L1.
6295 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6296 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6297 int size)
6298 {
6299 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6300 gpa_t bitmap, last_bitmap;
6301 u8 b;
6302
6303 last_bitmap = INVALID_GPA;
6304 b = -1;
6305
6306 while (size > 0) {
6307 if (port < 0x8000)
6308 bitmap = vmcs12->io_bitmap_a;
6309 else if (port < 0x10000)
6310 bitmap = vmcs12->io_bitmap_b;
6311 else
6312 return true;
6313 bitmap += (port & 0x7fff) / 8;
6314
6315 if (last_bitmap != bitmap)
6316 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6317 return true;
6318 if (b & (1 << (port & 7)))
6319 return true;
6320
6321 port++;
6322 size--;
6323 last_bitmap = bitmap;
6324 }
6325
6326 return false;
6327 }
6328
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6329 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6330 struct vmcs12 *vmcs12)
6331 {
6332 unsigned long exit_qualification;
6333 unsigned short port;
6334 int size;
6335
6336 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6337 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6338
6339 exit_qualification = vmx_get_exit_qual(vcpu);
6340
6341 port = exit_qualification >> 16;
6342 size = (exit_qualification & 7) + 1;
6343
6344 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6345 }
6346
6347 /*
6348 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6349 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6350 * disinterest in the current event (read or write a specific MSR) by using an
6351 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6352 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6353 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6354 struct vmcs12 *vmcs12,
6355 union vmx_exit_reason exit_reason)
6356 {
6357 u32 msr_index;
6358 gpa_t bitmap;
6359
6360 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6361 return true;
6362
6363 if (exit_reason.basic == EXIT_REASON_MSR_READ_IMM ||
6364 exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6365 msr_index = vmx_get_exit_qual(vcpu);
6366 else
6367 msr_index = kvm_rcx_read(vcpu);
6368
6369 /*
6370 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6371 * for the four combinations of read/write and low/high MSR numbers.
6372 * First we need to figure out which of the four to use:
6373 */
6374 bitmap = vmcs12->msr_bitmap;
6375 if (exit_reason.basic == EXIT_REASON_MSR_WRITE ||
6376 exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6377 bitmap += 2048;
6378 if (msr_index >= 0xc0000000) {
6379 msr_index -= 0xc0000000;
6380 bitmap += 1024;
6381 }
6382
6383 /* Then read the msr_index'th bit from this bitmap: */
6384 if (msr_index < 1024*8) {
6385 unsigned char b;
6386 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6387 return true;
6388 return 1 & (b >> (msr_index & 7));
6389 } else
6390 return true; /* let L1 handle the wrong parameter */
6391 }
6392
6393 /*
6394 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6395 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6396 * intercept (via guest_host_mask etc.) the current event.
6397 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6398 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6399 struct vmcs12 *vmcs12)
6400 {
6401 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6402 int cr = exit_qualification & 15;
6403 int reg;
6404 unsigned long val;
6405
6406 switch ((exit_qualification >> 4) & 3) {
6407 case 0: /* mov to cr */
6408 reg = (exit_qualification >> 8) & 15;
6409 val = kvm_register_read(vcpu, reg);
6410 switch (cr) {
6411 case 0:
6412 if (vmcs12->cr0_guest_host_mask &
6413 (val ^ vmcs12->cr0_read_shadow))
6414 return true;
6415 break;
6416 case 3:
6417 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6418 return true;
6419 break;
6420 case 4:
6421 if (vmcs12->cr4_guest_host_mask &
6422 (vmcs12->cr4_read_shadow ^ val))
6423 return true;
6424 break;
6425 case 8:
6426 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6427 return true;
6428 break;
6429 }
6430 break;
6431 case 2: /* clts */
6432 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6433 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6434 return true;
6435 break;
6436 case 1: /* mov from cr */
6437 switch (cr) {
6438 case 3:
6439 if (vmcs12->cpu_based_vm_exec_control &
6440 CPU_BASED_CR3_STORE_EXITING)
6441 return true;
6442 break;
6443 case 8:
6444 if (vmcs12->cpu_based_vm_exec_control &
6445 CPU_BASED_CR8_STORE_EXITING)
6446 return true;
6447 break;
6448 }
6449 break;
6450 case 3: /* lmsw */
6451 /*
6452 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6453 * cr0. Other attempted changes are ignored, with no exit.
6454 */
6455 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6456 if (vmcs12->cr0_guest_host_mask & 0xe &
6457 (val ^ vmcs12->cr0_read_shadow))
6458 return true;
6459 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6460 !(vmcs12->cr0_read_shadow & 0x1) &&
6461 (val & 0x1))
6462 return true;
6463 break;
6464 }
6465 return false;
6466 }
6467
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6468 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6469 struct vmcs12 *vmcs12)
6470 {
6471 u32 encls_leaf;
6472
6473 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6474 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6475 return false;
6476
6477 encls_leaf = kvm_rax_read(vcpu);
6478 if (encls_leaf > 62)
6479 encls_leaf = 63;
6480 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6481 }
6482
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6483 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6484 struct vmcs12 *vmcs12, gpa_t bitmap)
6485 {
6486 u32 vmx_instruction_info;
6487 unsigned long field;
6488 u8 b;
6489
6490 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6491 return true;
6492
6493 /* Decode instruction info and find the field to access */
6494 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6495 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6496
6497 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6498 if (field >> 15)
6499 return true;
6500
6501 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6502 return true;
6503
6504 return 1 & (b >> (field & 7));
6505 }
6506
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6507 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6508 {
6509 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6510
6511 if (nested_cpu_has_mtf(vmcs12))
6512 return true;
6513
6514 /*
6515 * An MTF VM-exit may be injected into the guest by setting the
6516 * interruption-type to 7 (other event) and the vector field to 0. Such
6517 * is the case regardless of the 'monitor trap flag' VM-execution
6518 * control.
6519 */
6520 return entry_intr_info == (INTR_INFO_VALID_MASK
6521 | INTR_TYPE_OTHER_EVENT);
6522 }
6523
6524 /*
6525 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6526 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6527 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6528 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6529 union vmx_exit_reason exit_reason)
6530 {
6531 u32 intr_info;
6532
6533 switch ((u16)exit_reason.basic) {
6534 case EXIT_REASON_EXCEPTION_NMI:
6535 intr_info = vmx_get_intr_info(vcpu);
6536 if (is_nmi(intr_info))
6537 return true;
6538 else if (is_page_fault(intr_info))
6539 return vcpu->arch.apf.host_apf_flags ||
6540 vmx_need_pf_intercept(vcpu);
6541 else if (is_debug(intr_info) &&
6542 vcpu->guest_debug &
6543 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6544 return true;
6545 else if (is_breakpoint(intr_info) &&
6546 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6547 return true;
6548 else if (is_alignment_check(intr_info) &&
6549 !vmx_guest_inject_ac(vcpu))
6550 return true;
6551 else if (is_ve_fault(intr_info))
6552 return true;
6553 return false;
6554 case EXIT_REASON_EXTERNAL_INTERRUPT:
6555 return true;
6556 case EXIT_REASON_MCE_DURING_VMENTRY:
6557 return true;
6558 case EXIT_REASON_EPT_VIOLATION:
6559 /*
6560 * L0 always deals with the EPT violation. If nested EPT is
6561 * used, and the nested mmu code discovers that the address is
6562 * missing in the guest EPT table (EPT12), the EPT violation
6563 * will be injected with nested_ept_inject_page_fault()
6564 */
6565 return true;
6566 case EXIT_REASON_EPT_MISCONFIG:
6567 /*
6568 * L2 never uses directly L1's EPT, but rather L0's own EPT
6569 * table (shadow on EPT) or a merged EPT table that L0 built
6570 * (EPT on EPT). So any problems with the structure of the
6571 * table is L0's fault.
6572 */
6573 return true;
6574 case EXIT_REASON_PREEMPTION_TIMER:
6575 return true;
6576 case EXIT_REASON_PML_FULL:
6577 /*
6578 * PML is emulated for an L1 VMM and should never be enabled in
6579 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6580 */
6581 return true;
6582 case EXIT_REASON_VMFUNC:
6583 /* VM functions are emulated through L2->L0 vmexits. */
6584 return true;
6585 case EXIT_REASON_BUS_LOCK:
6586 /*
6587 * At present, bus lock VM exit is never exposed to L1.
6588 * Handle L2's bus locks in L0 directly.
6589 */
6590 return true;
6591 #ifdef CONFIG_KVM_HYPERV
6592 case EXIT_REASON_VMCALL:
6593 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6594 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6595 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6596 kvm_hv_is_tlb_flush_hcall(vcpu);
6597 #endif
6598 default:
6599 break;
6600 }
6601 return false;
6602 }
6603
6604 /*
6605 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6606 * is_guest_mode (L2).
6607 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6608 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6609 union vmx_exit_reason exit_reason)
6610 {
6611 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6612 u32 intr_info;
6613
6614 switch ((u16)exit_reason.basic) {
6615 case EXIT_REASON_EXCEPTION_NMI:
6616 intr_info = vmx_get_intr_info(vcpu);
6617 if (is_nmi(intr_info))
6618 return true;
6619 else if (is_page_fault(intr_info))
6620 return true;
6621 return vmcs12->exception_bitmap &
6622 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6623 case EXIT_REASON_EXTERNAL_INTERRUPT:
6624 return nested_exit_on_intr(vcpu);
6625 case EXIT_REASON_TRIPLE_FAULT:
6626 return true;
6627 case EXIT_REASON_INTERRUPT_WINDOW:
6628 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6629 case EXIT_REASON_NMI_WINDOW:
6630 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6631 case EXIT_REASON_TASK_SWITCH:
6632 return true;
6633 case EXIT_REASON_CPUID:
6634 return true;
6635 case EXIT_REASON_HLT:
6636 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6637 case EXIT_REASON_INVD:
6638 return true;
6639 case EXIT_REASON_INVLPG:
6640 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6641 case EXIT_REASON_RDPMC:
6642 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6643 case EXIT_REASON_RDRAND:
6644 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6645 case EXIT_REASON_RDSEED:
6646 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6647 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6648 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6649 case EXIT_REASON_VMREAD:
6650 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6651 vmcs12->vmread_bitmap);
6652 case EXIT_REASON_VMWRITE:
6653 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6654 vmcs12->vmwrite_bitmap);
6655 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6656 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6657 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6658 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6659 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6660 /*
6661 * VMX instructions trap unconditionally. This allows L1 to
6662 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6663 */
6664 return true;
6665 case EXIT_REASON_CR_ACCESS:
6666 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6667 case EXIT_REASON_DR_ACCESS:
6668 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6669 case EXIT_REASON_IO_INSTRUCTION:
6670 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6671 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6672 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6673 case EXIT_REASON_MSR_READ:
6674 case EXIT_REASON_MSR_WRITE:
6675 case EXIT_REASON_MSR_READ_IMM:
6676 case EXIT_REASON_MSR_WRITE_IMM:
6677 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6678 case EXIT_REASON_INVALID_STATE:
6679 return true;
6680 case EXIT_REASON_MWAIT_INSTRUCTION:
6681 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6682 case EXIT_REASON_MONITOR_TRAP_FLAG:
6683 return nested_vmx_exit_handled_mtf(vmcs12);
6684 case EXIT_REASON_MONITOR_INSTRUCTION:
6685 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6686 case EXIT_REASON_PAUSE_INSTRUCTION:
6687 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6688 nested_cpu_has2(vmcs12,
6689 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6690 case EXIT_REASON_MCE_DURING_VMENTRY:
6691 return true;
6692 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6693 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6694 case EXIT_REASON_APIC_ACCESS:
6695 case EXIT_REASON_APIC_WRITE:
6696 case EXIT_REASON_EOI_INDUCED:
6697 /*
6698 * The controls for "virtualize APIC accesses," "APIC-
6699 * register virtualization," and "virtual-interrupt
6700 * delivery" only come from vmcs12.
6701 */
6702 return true;
6703 case EXIT_REASON_INVPCID:
6704 return
6705 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6706 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6707 case EXIT_REASON_WBINVD:
6708 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6709 case EXIT_REASON_XSETBV:
6710 return true;
6711 case EXIT_REASON_XSAVES:
6712 case EXIT_REASON_XRSTORS:
6713 /*
6714 * Always forward XSAVES/XRSTORS to L1 as KVM doesn't utilize
6715 * XSS-bitmap, and always loads vmcs02 with vmcs12's XSS-bitmap
6716 * verbatim, i.e. any exit is due to L1's bitmap. WARN if
6717 * XSAVES isn't enabled, as the CPU is supposed to inject #UD
6718 * in that case, before consulting the XSS-bitmap.
6719 */
6720 WARN_ON_ONCE(!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES));
6721 return true;
6722 case EXIT_REASON_UMWAIT:
6723 case EXIT_REASON_TPAUSE:
6724 return nested_cpu_has2(vmcs12,
6725 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6726 case EXIT_REASON_ENCLS:
6727 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6728 case EXIT_REASON_NOTIFY:
6729 /* Notify VM exit is not exposed to L1 */
6730 return false;
6731 default:
6732 return true;
6733 }
6734 }
6735
6736 /*
6737 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6738 * reflected into L1.
6739 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6740 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6741 {
6742 struct vcpu_vmx *vmx = to_vmx(vcpu);
6743 union vmx_exit_reason exit_reason = vmx->vt.exit_reason;
6744 unsigned long exit_qual;
6745 u32 exit_intr_info;
6746
6747 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6748
6749 /*
6750 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6751 * has already loaded L2's state.
6752 */
6753 if (unlikely(vmx->fail)) {
6754 trace_kvm_nested_vmenter_failed(
6755 "hardware VM-instruction error: ",
6756 vmcs_read32(VM_INSTRUCTION_ERROR));
6757 exit_intr_info = 0;
6758 exit_qual = 0;
6759 goto reflect_vmexit;
6760 }
6761
6762 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6763
6764 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6765 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6766 return false;
6767
6768 /* If L1 doesn't want the exit, handle it in L0. */
6769 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6770 return false;
6771
6772 /*
6773 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6774 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6775 * need to be synthesized by querying the in-kernel LAPIC, but external
6776 * interrupts are never reflected to L1 so it's a non-issue.
6777 */
6778 exit_intr_info = vmx_get_intr_info(vcpu);
6779 if (is_exception_with_error_code(exit_intr_info)) {
6780 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6781
6782 vmcs12->vm_exit_intr_error_code =
6783 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6784 }
6785 exit_qual = vmx_get_exit_qual(vcpu);
6786
6787 reflect_vmexit:
6788 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6789 return true;
6790 }
6791
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6792 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6793 struct kvm_nested_state __user *user_kvm_nested_state,
6794 u32 user_data_size)
6795 {
6796 struct vcpu_vmx *vmx;
6797 struct vmcs12 *vmcs12;
6798 struct kvm_nested_state kvm_state = {
6799 .flags = 0,
6800 .format = KVM_STATE_NESTED_FORMAT_VMX,
6801 .size = sizeof(kvm_state),
6802 .hdr.vmx.flags = 0,
6803 .hdr.vmx.vmxon_pa = INVALID_GPA,
6804 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6805 .hdr.vmx.preemption_timer_deadline = 0,
6806 };
6807 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6808 &user_kvm_nested_state->data.vmx[0];
6809
6810 if (!vcpu)
6811 return kvm_state.size + sizeof(*user_vmx_nested_state);
6812
6813 vmx = to_vmx(vcpu);
6814 vmcs12 = get_vmcs12(vcpu);
6815
6816 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6817 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6818 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6819 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6820
6821 if (vmx_has_valid_vmcs12(vcpu)) {
6822 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6823
6824 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6825 if (nested_vmx_is_evmptr12_set(vmx))
6826 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6827
6828 if (is_guest_mode(vcpu) &&
6829 nested_cpu_has_shadow_vmcs(vmcs12) &&
6830 vmcs12->vmcs_link_pointer != INVALID_GPA)
6831 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6832 }
6833
6834 if (vmx->nested.smm.vmxon)
6835 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6836
6837 if (vmx->nested.smm.guest_mode)
6838 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6839
6840 if (is_guest_mode(vcpu)) {
6841 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6842
6843 if (vmx->nested.nested_run_pending)
6844 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6845
6846 if (vmx->nested.mtf_pending)
6847 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6848
6849 if (nested_cpu_has_preemption_timer(vmcs12) &&
6850 vmx->nested.has_preemption_timer_deadline) {
6851 kvm_state.hdr.vmx.flags |=
6852 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6853 kvm_state.hdr.vmx.preemption_timer_deadline =
6854 vmx->nested.preemption_timer_deadline;
6855 }
6856 }
6857 }
6858
6859 if (user_data_size < kvm_state.size)
6860 goto out;
6861
6862 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6863 return -EFAULT;
6864
6865 if (!vmx_has_valid_vmcs12(vcpu))
6866 goto out;
6867
6868 /*
6869 * When running L2, the authoritative vmcs12 state is in the
6870 * vmcs02. When running L1, the authoritative vmcs12 state is
6871 * in the shadow or enlightened vmcs linked to vmcs01, unless
6872 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6873 * vmcs12 state is in the vmcs12 already.
6874 */
6875 if (is_guest_mode(vcpu)) {
6876 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6877 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6878 } else {
6879 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6880 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6881 if (nested_vmx_is_evmptr12_valid(vmx))
6882 /*
6883 * L1 hypervisor is not obliged to keep eVMCS
6884 * clean fields data always up-to-date while
6885 * not in guest mode, 'hv_clean_fields' is only
6886 * supposed to be actual upon vmentry so we need
6887 * to ignore it here and do full copy.
6888 */
6889 copy_enlightened_to_vmcs12(vmx, 0);
6890 else if (enable_shadow_vmcs)
6891 copy_shadow_to_vmcs12(vmx);
6892 }
6893 }
6894
6895 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6896 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6897
6898 /*
6899 * Copy over the full allocated size of vmcs12 rather than just the size
6900 * of the struct.
6901 */
6902 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6903 return -EFAULT;
6904
6905 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6906 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6907 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6908 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6909 return -EFAULT;
6910 }
6911 out:
6912 return kvm_state.size;
6913 }
6914
vmx_leave_nested(struct kvm_vcpu * vcpu)6915 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6916 {
6917 if (is_guest_mode(vcpu)) {
6918 to_vmx(vcpu)->nested.nested_run_pending = 0;
6919 nested_vmx_vmexit(vcpu, -1, 0, 0);
6920 }
6921 free_nested(vcpu);
6922 }
6923
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6924 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6925 struct kvm_nested_state __user *user_kvm_nested_state,
6926 struct kvm_nested_state *kvm_state)
6927 {
6928 struct vcpu_vmx *vmx = to_vmx(vcpu);
6929 struct vmcs12 *vmcs12;
6930 enum vm_entry_failure_code ignored;
6931 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6932 &user_kvm_nested_state->data.vmx[0];
6933 int ret;
6934
6935 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6936 return -EINVAL;
6937
6938 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6939 if (kvm_state->hdr.vmx.smm.flags)
6940 return -EINVAL;
6941
6942 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6943 return -EINVAL;
6944
6945 /*
6946 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6947 * enable eVMCS capability on vCPU. However, since then
6948 * code was changed such that flag signals vmcs12 should
6949 * be copied into eVMCS in guest memory.
6950 *
6951 * To preserve backwards compatibility, allow user
6952 * to set this flag even when there is no VMXON region.
6953 */
6954 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6955 return -EINVAL;
6956 } else {
6957 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6958 return -EINVAL;
6959
6960 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6961 return -EINVAL;
6962 }
6963
6964 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6965 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6966 return -EINVAL;
6967
6968 if (kvm_state->hdr.vmx.smm.flags &
6969 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6970 return -EINVAL;
6971
6972 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6973 return -EINVAL;
6974
6975 /*
6976 * SMM temporarily disables VMX, so we cannot be in guest mode,
6977 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6978 * must be zero.
6979 */
6980 if (is_smm(vcpu) ?
6981 (kvm_state->flags &
6982 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6983 : kvm_state->hdr.vmx.smm.flags)
6984 return -EINVAL;
6985
6986 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6987 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6988 return -EINVAL;
6989
6990 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6991 (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6992 !vmx->nested.enlightened_vmcs_enabled))
6993 return -EINVAL;
6994
6995 vmx_leave_nested(vcpu);
6996
6997 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6998 return 0;
6999
7000 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
7001 ret = enter_vmx_operation(vcpu);
7002 if (ret)
7003 return ret;
7004
7005 /* Empty 'VMXON' state is permitted if no VMCS loaded */
7006 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
7007 /* See vmx_has_valid_vmcs12. */
7008 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
7009 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
7010 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
7011 return -EINVAL;
7012 else
7013 return 0;
7014 }
7015
7016 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
7017 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
7018 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
7019 return -EINVAL;
7020
7021 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
7022 #ifdef CONFIG_KVM_HYPERV
7023 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
7024 /*
7025 * nested_vmx_handle_enlightened_vmptrld() cannot be called
7026 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
7027 * restored yet. EVMCS will be mapped from
7028 * nested_get_vmcs12_pages().
7029 */
7030 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
7031 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
7032 #endif
7033 } else {
7034 return -EINVAL;
7035 }
7036
7037 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
7038 vmx->nested.smm.vmxon = true;
7039 vmx->nested.vmxon = false;
7040
7041 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
7042 vmx->nested.smm.guest_mode = true;
7043 }
7044
7045 vmcs12 = get_vmcs12(vcpu);
7046 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
7047 return -EFAULT;
7048
7049 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
7050 return -EINVAL;
7051
7052 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
7053 return 0;
7054
7055 vmx->nested.nested_run_pending =
7056 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
7057
7058 vmx->nested.mtf_pending =
7059 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
7060
7061 ret = -EINVAL;
7062 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
7063 vmcs12->vmcs_link_pointer != INVALID_GPA) {
7064 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
7065
7066 if (kvm_state->size <
7067 sizeof(*kvm_state) +
7068 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
7069 goto error_guest_mode;
7070
7071 if (copy_from_user(shadow_vmcs12,
7072 user_vmx_nested_state->shadow_vmcs12,
7073 sizeof(*shadow_vmcs12))) {
7074 ret = -EFAULT;
7075 goto error_guest_mode;
7076 }
7077
7078 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
7079 !shadow_vmcs12->hdr.shadow_vmcs)
7080 goto error_guest_mode;
7081 }
7082
7083 vmx->nested.has_preemption_timer_deadline = false;
7084 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
7085 vmx->nested.has_preemption_timer_deadline = true;
7086 vmx->nested.preemption_timer_deadline =
7087 kvm_state->hdr.vmx.preemption_timer_deadline;
7088 }
7089
7090 if (nested_vmx_check_controls(vcpu, vmcs12) ||
7091 nested_vmx_check_host_state(vcpu, vmcs12) ||
7092 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
7093 goto error_guest_mode;
7094
7095 vmx->nested.dirty_vmcs12 = true;
7096 vmx->nested.force_msr_bitmap_recalc = true;
7097 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7098 if (ret)
7099 goto error_guest_mode;
7100
7101 if (vmx->nested.mtf_pending)
7102 kvm_make_request(KVM_REQ_EVENT, vcpu);
7103
7104 return 0;
7105
7106 error_guest_mode:
7107 vmx->nested.nested_run_pending = 0;
7108 return ret;
7109 }
7110
nested_vmx_set_vmcs_shadowing_bitmap(void)7111 void nested_vmx_set_vmcs_shadowing_bitmap(void)
7112 {
7113 if (enable_shadow_vmcs) {
7114 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
7115 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
7116 }
7117 }
7118
7119 /*
7120 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
7121 * that madness to get the encoding for comparison.
7122 */
7123 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
7124
nested_vmx_calc_vmcs_enum_msr(void)7125 static u64 nested_vmx_calc_vmcs_enum_msr(void)
7126 {
7127 /*
7128 * Note these are the so called "index" of the VMCS field encoding, not
7129 * the index into vmcs12.
7130 */
7131 unsigned int max_idx, idx;
7132 int i;
7133
7134 /*
7135 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
7136 * vmcs12, regardless of whether or not the associated feature is
7137 * exposed to L1. Simply find the field with the highest index.
7138 */
7139 max_idx = 0;
7140 for (i = 0; i < nr_vmcs12_fields; i++) {
7141 /* The vmcs12 table is very, very sparsely populated. */
7142 if (!vmcs12_field_offsets[i])
7143 continue;
7144
7145 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
7146 if (idx > max_idx)
7147 max_idx = idx;
7148 }
7149
7150 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
7151 }
7152
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7153 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
7154 struct nested_vmx_msrs *msrs)
7155 {
7156 msrs->pinbased_ctls_low =
7157 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7158
7159 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
7160 msrs->pinbased_ctls_high &=
7161 PIN_BASED_EXT_INTR_MASK |
7162 PIN_BASED_NMI_EXITING |
7163 PIN_BASED_VIRTUAL_NMIS |
7164 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
7165 msrs->pinbased_ctls_high |=
7166 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7167 PIN_BASED_VMX_PREEMPTION_TIMER;
7168 }
7169
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7170 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7171 struct nested_vmx_msrs *msrs)
7172 {
7173 msrs->exit_ctls_low =
7174 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7175
7176 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7177 msrs->exit_ctls_high &=
7178 #ifdef CONFIG_X86_64
7179 VM_EXIT_HOST_ADDR_SPACE_SIZE |
7180 #endif
7181 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7182 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_CET_STATE;
7183 msrs->exit_ctls_high |=
7184 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7185 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7186 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7187 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7188
7189 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7190 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7191 msrs->exit_ctls_high &= ~VM_EXIT_LOAD_CET_STATE;
7192
7193 /* We support free control of debug control saving. */
7194 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7195 }
7196
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7197 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7198 struct nested_vmx_msrs *msrs)
7199 {
7200 msrs->entry_ctls_low =
7201 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7202
7203 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7204 msrs->entry_ctls_high &=
7205 #ifdef CONFIG_X86_64
7206 VM_ENTRY_IA32E_MODE |
7207 #endif
7208 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
7209 VM_ENTRY_LOAD_CET_STATE;
7210 msrs->entry_ctls_high |=
7211 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7212 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7213
7214 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7215 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7216 msrs->entry_ctls_high &= ~VM_ENTRY_LOAD_CET_STATE;
7217
7218 /* We support free control of debug control loading. */
7219 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7220 }
7221
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7222 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7223 struct nested_vmx_msrs *msrs)
7224 {
7225 msrs->procbased_ctls_low =
7226 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7227
7228 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7229 msrs->procbased_ctls_high &=
7230 CPU_BASED_INTR_WINDOW_EXITING |
7231 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7232 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7233 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7234 CPU_BASED_CR3_STORE_EXITING |
7235 #ifdef CONFIG_X86_64
7236 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7237 #endif
7238 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7239 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7240 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7241 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7242 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7243 /*
7244 * We can allow some features even when not supported by the
7245 * hardware. For example, L1 can specify an MSR bitmap - and we
7246 * can use it to avoid exits to L1 - even when L0 runs L2
7247 * without MSR bitmaps.
7248 */
7249 msrs->procbased_ctls_high |=
7250 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7251 CPU_BASED_USE_MSR_BITMAPS;
7252
7253 /* We support free control of CR3 access interception. */
7254 msrs->procbased_ctls_low &=
7255 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7256 }
7257
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7258 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7259 struct vmcs_config *vmcs_conf,
7260 struct nested_vmx_msrs *msrs)
7261 {
7262 msrs->secondary_ctls_low = 0;
7263
7264 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7265 msrs->secondary_ctls_high &=
7266 SECONDARY_EXEC_DESC |
7267 SECONDARY_EXEC_ENABLE_RDTSCP |
7268 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7269 SECONDARY_EXEC_WBINVD_EXITING |
7270 SECONDARY_EXEC_APIC_REGISTER_VIRT |
7271 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7272 SECONDARY_EXEC_RDRAND_EXITING |
7273 SECONDARY_EXEC_ENABLE_INVPCID |
7274 SECONDARY_EXEC_ENABLE_VMFUNC |
7275 SECONDARY_EXEC_RDSEED_EXITING |
7276 SECONDARY_EXEC_ENABLE_XSAVES |
7277 SECONDARY_EXEC_TSC_SCALING |
7278 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7279
7280 /*
7281 * We can emulate "VMCS shadowing," even if the hardware
7282 * doesn't support it.
7283 */
7284 msrs->secondary_ctls_high |=
7285 SECONDARY_EXEC_SHADOW_VMCS;
7286
7287 if (enable_ept) {
7288 /* nested EPT: emulate EPT also to L1 */
7289 msrs->secondary_ctls_high |=
7290 SECONDARY_EXEC_ENABLE_EPT;
7291 msrs->ept_caps =
7292 VMX_EPT_PAGE_WALK_4_BIT |
7293 VMX_EPT_PAGE_WALK_5_BIT |
7294 VMX_EPTP_WB_BIT |
7295 VMX_EPT_INVEPT_BIT |
7296 VMX_EPT_EXECUTE_ONLY_BIT;
7297
7298 msrs->ept_caps &= ept_caps;
7299 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7300 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7301 VMX_EPT_1GB_PAGE_BIT;
7302 if (enable_ept_ad_bits) {
7303 msrs->secondary_ctls_high |=
7304 SECONDARY_EXEC_ENABLE_PML;
7305 msrs->ept_caps |= VMX_EPT_AD_BIT;
7306 }
7307
7308 /*
7309 * Advertise EPTP switching irrespective of hardware support,
7310 * KVM emulates it in software so long as VMFUNC is supported.
7311 */
7312 if (cpu_has_vmx_vmfunc())
7313 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7314 }
7315
7316 /*
7317 * Old versions of KVM use the single-context version without
7318 * checking for support, so declare that it is supported even
7319 * though it is treated as global context. The alternative is
7320 * not failing the single-context invvpid, and it is worse.
7321 */
7322 if (enable_vpid) {
7323 msrs->secondary_ctls_high |=
7324 SECONDARY_EXEC_ENABLE_VPID;
7325 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7326 VMX_VPID_EXTENT_SUPPORTED_MASK;
7327 }
7328
7329 if (enable_unrestricted_guest)
7330 msrs->secondary_ctls_high |=
7331 SECONDARY_EXEC_UNRESTRICTED_GUEST;
7332
7333 if (flexpriority_enabled)
7334 msrs->secondary_ctls_high |=
7335 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7336
7337 if (enable_sgx)
7338 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7339 }
7340
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7341 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7342 struct nested_vmx_msrs *msrs)
7343 {
7344 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7345 msrs->misc_low |=
7346 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7347 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7348 VMX_MISC_ACTIVITY_HLT |
7349 VMX_MISC_ACTIVITY_WAIT_SIPI;
7350 msrs->misc_high = 0;
7351 }
7352
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7353 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7354 {
7355 /*
7356 * This MSR reports some information about VMX support. We
7357 * should return information about the VMX we emulate for the
7358 * guest, and the VMCS structure we give it - not about the
7359 * VMX support of the underlying hardware.
7360 */
7361 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7362 X86_MEMTYPE_WB);
7363
7364 msrs->basic |= VMX_BASIC_TRUE_CTLS;
7365 if (cpu_has_vmx_basic_inout())
7366 msrs->basic |= VMX_BASIC_INOUT;
7367 if (cpu_has_vmx_basic_no_hw_errcode_cc())
7368 msrs->basic |= VMX_BASIC_NO_HW_ERROR_CODE_CC;
7369 }
7370
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7371 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7372 {
7373 /*
7374 * These MSRs specify bits which the guest must keep fixed on
7375 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7376 * We picked the standard core2 setting.
7377 */
7378 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7379 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7380 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7381 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7382
7383 /* These MSRs specify bits which the guest must keep fixed off. */
7384 rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7385 rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7386
7387 if (vmx_umip_emulated())
7388 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7389 }
7390
7391 /*
7392 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7393 * returned for the various VMX controls MSRs when nested VMX is enabled.
7394 * The same values should also be used to verify that vmcs12 control fields are
7395 * valid during nested entry from L1 to L2.
7396 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7397 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7398 * bit in the high half is on if the corresponding bit in the control field
7399 * may be on. See also vmx_control_verify().
7400 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7401 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7402 {
7403 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7404
7405 /*
7406 * Note that as a general rule, the high half of the MSRs (bits in
7407 * the control fields which may be 1) should be initialized by the
7408 * intersection of the underlying hardware's MSR (i.e., features which
7409 * can be supported) and the list of features we want to expose -
7410 * because they are known to be properly supported in our code.
7411 * Also, usually, the low half of the MSRs (bits which must be 1) can
7412 * be set to 0, meaning that L1 may turn off any of these bits. The
7413 * reason is that if one of these bits is necessary, it will appear
7414 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7415 * fields of vmcs01 and vmcs02, will turn these bits off - and
7416 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7417 * These rules have exceptions below.
7418 */
7419 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7420
7421 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7422
7423 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7424
7425 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7426
7427 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7428
7429 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7430
7431 nested_vmx_setup_basic(msrs);
7432
7433 nested_vmx_setup_cr_fixed(msrs);
7434
7435 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7436 }
7437
nested_vmx_hardware_unsetup(void)7438 void nested_vmx_hardware_unsetup(void)
7439 {
7440 int i;
7441
7442 if (enable_shadow_vmcs) {
7443 for (i = 0; i < VMX_BITMAP_NR; i++)
7444 free_page((unsigned long)vmx_bitmap[i]);
7445 }
7446 }
7447
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7448 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7449 {
7450 int i;
7451
7452 if (!cpu_has_vmx_shadow_vmcs())
7453 enable_shadow_vmcs = 0;
7454 if (enable_shadow_vmcs) {
7455 for (i = 0; i < VMX_BITMAP_NR; i++) {
7456 /*
7457 * The vmx_bitmap is not tied to a VM and so should
7458 * not be charged to a memcg.
7459 */
7460 vmx_bitmap[i] = (unsigned long *)
7461 __get_free_page(GFP_KERNEL);
7462 if (!vmx_bitmap[i]) {
7463 nested_vmx_hardware_unsetup();
7464 return -ENOMEM;
7465 }
7466 }
7467
7468 init_vmcs_shadow_fields();
7469 }
7470
7471 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7472 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7473 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7474 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7475 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7476 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7477 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7478 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7479 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7480 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7481 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7482 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7483
7484 return 0;
7485 }
7486
7487 struct kvm_x86_nested_ops vmx_nested_ops = {
7488 .leave_nested = vmx_leave_nested,
7489 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7490 .check_events = vmx_check_nested_events,
7491 .has_events = vmx_has_nested_events,
7492 .triple_fault = nested_vmx_triple_fault,
7493 .get_state = vmx_get_nested_state,
7494 .set_state = vmx_set_nested_state,
7495 .get_nested_state_pages = vmx_get_nested_state_pages,
7496 .write_log_dirty = nested_vmx_write_pml_buffer,
7497 #ifdef CONFIG_KVM_HYPERV
7498 .enable_evmcs = nested_enable_evmcs,
7499 .get_evmcs_version = nested_get_evmcs_version,
7500 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7501 #endif
7502 };
7503