1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6 /*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "messages.h"
22 #include "ctree.h"
23 #include "tree-checker.h"
24 #include "compression.h"
25 #include "volumes.h"
26 #include "misc.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "inode-item.h"
31 #include "dir-item.h"
32 #include "extent-tree.h"
33
34 /*
35 * Error message should follow the following format:
36 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
37 *
38 * @type: leaf or node
39 * @identifier: the necessary info to locate the leaf/node.
40 * It's recommended to decode key.objecitd/offset if it's
41 * meaningful.
42 * @reason: describe the error
43 * @bad_value: optional, it's recommended to output bad value and its
44 * expected value (range).
45 *
46 * Since comma is used to separate the components, only space is allowed
47 * inside each component.
48 */
49
50 /*
51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
52 * Allows callers to customize the output.
53 */
54 __printf(3, 4)
55 __cold
generic_err(const struct extent_buffer * eb,int slot,const char * fmt,...)56 static void generic_err(const struct extent_buffer *eb, int slot,
57 const char *fmt, ...)
58 {
59 const struct btrfs_fs_info *fs_info = eb->fs_info;
60 struct va_format vaf;
61 va_list args;
62
63 va_start(args, fmt);
64
65 vaf.fmt = fmt;
66 vaf.va = &args;
67
68 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
69 btrfs_crit(fs_info,
70 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
71 btrfs_header_level(eb) == 0 ? "leaf" : "node",
72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73 va_end(args);
74 }
75
76 /*
77 * Customized reporter for extent data item, since its key objectid and
78 * offset has its own meaning.
79 */
80 __printf(3, 4)
81 __cold
file_extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)82 static void file_extent_err(const struct extent_buffer *eb, int slot,
83 const char *fmt, ...)
84 {
85 const struct btrfs_fs_info *fs_info = eb->fs_info;
86 struct btrfs_key key;
87 struct va_format vaf;
88 va_list args;
89
90 btrfs_item_key_to_cpu(eb, &key, slot);
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
97 btrfs_crit(fs_info,
98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99 btrfs_header_level(eb) == 0 ? "leaf" : "node",
100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101 key.objectid, key.offset, &vaf);
102 va_end(args);
103 }
104
105 /*
106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107 * Else return 1
108 */
109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
110 ({ \
111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
112 (alignment)))) \
113 file_extent_err((leaf), (slot), \
114 "invalid %s for file extent, have %llu, should be aligned to %u", \
115 (#name), btrfs_file_extent_##name((leaf), (fi)), \
116 (alignment)); \
117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
118 })
119
file_extent_end(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_file_extent_item * extent)120 static u64 file_extent_end(struct extent_buffer *leaf,
121 struct btrfs_key *key,
122 struct btrfs_file_extent_item *extent)
123 {
124 u64 end;
125 u64 len;
126
127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
128 len = btrfs_file_extent_ram_bytes(leaf, extent);
129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130 } else {
131 len = btrfs_file_extent_num_bytes(leaf, extent);
132 end = key->offset + len;
133 }
134 return end;
135 }
136
137 /*
138 * Customized report for dir_item, the only new important information is
139 * key->objectid, which represents inode number
140 */
141 __printf(3, 4)
142 __cold
dir_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)143 static void dir_item_err(const struct extent_buffer *eb, int slot,
144 const char *fmt, ...)
145 {
146 const struct btrfs_fs_info *fs_info = eb->fs_info;
147 struct btrfs_key key;
148 struct va_format vaf;
149 va_list args;
150
151 btrfs_item_key_to_cpu(eb, &key, slot);
152 va_start(args, fmt);
153
154 vaf.fmt = fmt;
155 vaf.va = &args;
156
157 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
158 btrfs_crit(fs_info,
159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
160 btrfs_header_level(eb) == 0 ? "leaf" : "node",
161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
162 key.objectid, &vaf);
163 va_end(args);
164 }
165
166 /*
167 * This functions checks prev_key->objectid, to ensure current key and prev_key
168 * share the same objectid as inode number.
169 *
170 * This is to detect missing INODE_ITEM in subvolume trees.
171 *
172 * Return true if everything is OK or we don't need to check.
173 * Return false if anything is wrong.
174 */
check_prev_ino(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)175 static bool check_prev_ino(struct extent_buffer *leaf,
176 struct btrfs_key *key, int slot,
177 struct btrfs_key *prev_key)
178 {
179 /* No prev key, skip check */
180 if (slot == 0)
181 return true;
182
183 /* Only these key->types needs to be checked */
184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
185 key->type == BTRFS_INODE_REF_KEY ||
186 key->type == BTRFS_DIR_INDEX_KEY ||
187 key->type == BTRFS_DIR_ITEM_KEY ||
188 key->type == BTRFS_EXTENT_DATA_KEY);
189
190 /*
191 * Only subvolume trees along with their reloc trees need this check.
192 * Things like log tree doesn't follow this ino requirement.
193 */
194 if (!is_fstree(btrfs_header_owner(leaf)))
195 return true;
196
197 if (key->objectid == prev_key->objectid)
198 return true;
199
200 /* Error found */
201 dir_item_err(leaf, slot,
202 "invalid previous key objectid, have %llu expect %llu",
203 prev_key->objectid, key->objectid);
204 return false;
205 }
check_extent_data_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)206 static int check_extent_data_item(struct extent_buffer *leaf,
207 struct btrfs_key *key, int slot,
208 struct btrfs_key *prev_key)
209 {
210 struct btrfs_fs_info *fs_info = leaf->fs_info;
211 struct btrfs_file_extent_item *fi;
212 u32 sectorsize = fs_info->sectorsize;
213 u32 item_size = btrfs_item_size(leaf, slot);
214 u64 extent_end;
215
216 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
217 file_extent_err(leaf, slot,
218 "unaligned file_offset for file extent, have %llu should be aligned to %u",
219 key->offset, sectorsize);
220 return -EUCLEAN;
221 }
222
223 /*
224 * Previous key must have the same key->objectid (ino).
225 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
226 * But if objectids mismatch, it means we have a missing
227 * INODE_ITEM.
228 */
229 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
230 return -EUCLEAN;
231
232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
233
234 /*
235 * Make sure the item contains at least inline header, so the file
236 * extent type is not some garbage.
237 */
238 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
239 file_extent_err(leaf, slot,
240 "invalid item size, have %u expect [%zu, %u)",
241 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
242 SZ_4K);
243 return -EUCLEAN;
244 }
245 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
246 BTRFS_NR_FILE_EXTENT_TYPES)) {
247 file_extent_err(leaf, slot,
248 "invalid type for file extent, have %u expect range [0, %u]",
249 btrfs_file_extent_type(leaf, fi),
250 BTRFS_NR_FILE_EXTENT_TYPES - 1);
251 return -EUCLEAN;
252 }
253
254 /*
255 * Support for new compression/encryption must introduce incompat flag,
256 * and must be caught in open_ctree().
257 */
258 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
259 BTRFS_NR_COMPRESS_TYPES)) {
260 file_extent_err(leaf, slot,
261 "invalid compression for file extent, have %u expect range [0, %u]",
262 btrfs_file_extent_compression(leaf, fi),
263 BTRFS_NR_COMPRESS_TYPES - 1);
264 return -EUCLEAN;
265 }
266 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
267 file_extent_err(leaf, slot,
268 "invalid encryption for file extent, have %u expect 0",
269 btrfs_file_extent_encryption(leaf, fi));
270 return -EUCLEAN;
271 }
272 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
273 /* Inline extent must have 0 as key offset */
274 if (unlikely(key->offset)) {
275 file_extent_err(leaf, slot,
276 "invalid file_offset for inline file extent, have %llu expect 0",
277 key->offset);
278 return -EUCLEAN;
279 }
280
281 /* Compressed inline extent has no on-disk size, skip it */
282 if (btrfs_file_extent_compression(leaf, fi) !=
283 BTRFS_COMPRESS_NONE)
284 return 0;
285
286 /* Uncompressed inline extent size must match item size */
287 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
288 btrfs_file_extent_ram_bytes(leaf, fi))) {
289 file_extent_err(leaf, slot,
290 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
291 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
292 btrfs_file_extent_ram_bytes(leaf, fi));
293 return -EUCLEAN;
294 }
295 return 0;
296 }
297
298 /* Regular or preallocated extent has fixed item size */
299 if (unlikely(item_size != sizeof(*fi))) {
300 file_extent_err(leaf, slot,
301 "invalid item size for reg/prealloc file extent, have %u expect %zu",
302 item_size, sizeof(*fi));
303 return -EUCLEAN;
304 }
305 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
308 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
309 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
310 return -EUCLEAN;
311
312 /* Catch extent end overflow */
313 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
314 key->offset, &extent_end))) {
315 file_extent_err(leaf, slot,
316 "extent end overflow, have file offset %llu extent num bytes %llu",
317 key->offset,
318 btrfs_file_extent_num_bytes(leaf, fi));
319 return -EUCLEAN;
320 }
321
322 /*
323 * Check that no two consecutive file extent items, in the same leaf,
324 * present ranges that overlap each other.
325 */
326 if (slot > 0 &&
327 prev_key->objectid == key->objectid &&
328 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
329 struct btrfs_file_extent_item *prev_fi;
330 u64 prev_end;
331
332 prev_fi = btrfs_item_ptr(leaf, slot - 1,
333 struct btrfs_file_extent_item);
334 prev_end = file_extent_end(leaf, prev_key, prev_fi);
335 if (unlikely(prev_end > key->offset)) {
336 file_extent_err(leaf, slot - 1,
337 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
338 prev_end, key->offset);
339 return -EUCLEAN;
340 }
341 }
342
343 /*
344 * For non-compressed data extents, ram_bytes should match its
345 * disk_num_bytes.
346 * However we do not really utilize ram_bytes in this case, so this check
347 * is only optional for DEBUG builds for developers to catch the
348 * unexpected behaviors.
349 */
350 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) &&
351 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE &&
352 btrfs_file_extent_disk_bytenr(leaf, fi)) {
353 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) !=
354 btrfs_file_extent_disk_num_bytes(leaf, fi)))
355 file_extent_err(leaf, slot,
356 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent",
357 btrfs_file_extent_ram_bytes(leaf, fi),
358 btrfs_file_extent_disk_num_bytes(leaf, fi));
359 }
360
361 return 0;
362 }
363
check_csum_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)364 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
365 int slot, struct btrfs_key *prev_key)
366 {
367 struct btrfs_fs_info *fs_info = leaf->fs_info;
368 u32 sectorsize = fs_info->sectorsize;
369 const u32 csumsize = fs_info->csum_size;
370
371 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
372 generic_err(leaf, slot,
373 "invalid key objectid for csum item, have %llu expect %llu",
374 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
375 return -EUCLEAN;
376 }
377 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
378 generic_err(leaf, slot,
379 "unaligned key offset for csum item, have %llu should be aligned to %u",
380 key->offset, sectorsize);
381 return -EUCLEAN;
382 }
383 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
384 generic_err(leaf, slot,
385 "unaligned item size for csum item, have %u should be aligned to %u",
386 btrfs_item_size(leaf, slot), csumsize);
387 return -EUCLEAN;
388 }
389 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
390 u64 prev_csum_end;
391 u32 prev_item_size;
392
393 prev_item_size = btrfs_item_size(leaf, slot - 1);
394 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
395 prev_csum_end += prev_key->offset;
396 if (unlikely(prev_csum_end > key->offset)) {
397 generic_err(leaf, slot - 1,
398 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
399 prev_csum_end, key->offset);
400 return -EUCLEAN;
401 }
402 }
403 return 0;
404 }
405
406 /* Inode item error output has the same format as dir_item_err() */
407 #define inode_item_err(eb, slot, fmt, ...) \
408 dir_item_err(eb, slot, fmt, __VA_ARGS__)
409
check_inode_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)410 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
411 int slot)
412 {
413 struct btrfs_key item_key;
414 bool is_inode_item;
415
416 btrfs_item_key_to_cpu(leaf, &item_key, slot);
417 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
418
419 /* For XATTR_ITEM, location key should be all 0 */
420 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
421 if (unlikely(key->objectid != 0 || key->type != 0 ||
422 key->offset != 0))
423 return -EUCLEAN;
424 return 0;
425 }
426
427 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
428 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
429 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
430 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
431 if (is_inode_item) {
432 generic_err(leaf, slot,
433 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
434 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
435 BTRFS_FIRST_FREE_OBJECTID,
436 BTRFS_LAST_FREE_OBJECTID,
437 BTRFS_FREE_INO_OBJECTID);
438 } else {
439 dir_item_err(leaf, slot,
440 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
441 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
442 BTRFS_FIRST_FREE_OBJECTID,
443 BTRFS_LAST_FREE_OBJECTID,
444 BTRFS_FREE_INO_OBJECTID);
445 }
446 return -EUCLEAN;
447 }
448 if (unlikely(key->offset != 0)) {
449 if (is_inode_item)
450 inode_item_err(leaf, slot,
451 "invalid key offset: has %llu expect 0",
452 key->offset);
453 else
454 dir_item_err(leaf, slot,
455 "invalid location key offset:has %llu expect 0",
456 key->offset);
457 return -EUCLEAN;
458 }
459 return 0;
460 }
461
check_root_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)462 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
463 int slot)
464 {
465 struct btrfs_key item_key;
466 bool is_root_item;
467
468 btrfs_item_key_to_cpu(leaf, &item_key, slot);
469 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
470
471 /*
472 * Bad rootid for reloc trees.
473 *
474 * Reloc trees are only for subvolume trees, other trees only need
475 * to be COWed to be relocated.
476 */
477 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
478 !is_fstree(key->offset))) {
479 generic_err(leaf, slot,
480 "invalid reloc tree for root %lld, root id is not a subvolume tree",
481 key->offset);
482 return -EUCLEAN;
483 }
484
485 /* No such tree id */
486 if (unlikely(key->objectid == 0)) {
487 if (is_root_item)
488 generic_err(leaf, slot, "invalid root id 0");
489 else
490 dir_item_err(leaf, slot,
491 "invalid location key root id 0");
492 return -EUCLEAN;
493 }
494
495 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
496 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
497 dir_item_err(leaf, slot,
498 "invalid location key objectid, have %llu expect [%llu, %llu]",
499 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
500 BTRFS_LAST_FREE_OBJECTID);
501 return -EUCLEAN;
502 }
503
504 /*
505 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
506 * @offset transid.
507 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
508 *
509 * So here we only check offset for reloc tree whose key->offset must
510 * be a valid tree.
511 */
512 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
513 key->offset == 0)) {
514 generic_err(leaf, slot, "invalid root id 0 for reloc tree");
515 return -EUCLEAN;
516 }
517 return 0;
518 }
519
check_dir_item(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)520 static int check_dir_item(struct extent_buffer *leaf,
521 struct btrfs_key *key, struct btrfs_key *prev_key,
522 int slot)
523 {
524 struct btrfs_fs_info *fs_info = leaf->fs_info;
525 struct btrfs_dir_item *di;
526 u32 item_size = btrfs_item_size(leaf, slot);
527 u32 cur = 0;
528
529 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
530 return -EUCLEAN;
531
532 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
533 while (cur < item_size) {
534 struct btrfs_key location_key;
535 u32 name_len;
536 u32 data_len;
537 u32 max_name_len;
538 u32 total_size;
539 u32 name_hash;
540 u8 dir_type;
541 int ret;
542
543 /* header itself should not cross item boundary */
544 if (unlikely(cur + sizeof(*di) > item_size)) {
545 dir_item_err(leaf, slot,
546 "dir item header crosses item boundary, have %zu boundary %u",
547 cur + sizeof(*di), item_size);
548 return -EUCLEAN;
549 }
550
551 /* Location key check */
552 btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
553 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
554 ret = check_root_key(leaf, &location_key, slot);
555 if (unlikely(ret < 0))
556 return ret;
557 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
558 location_key.type == 0) {
559 ret = check_inode_key(leaf, &location_key, slot);
560 if (unlikely(ret < 0))
561 return ret;
562 } else {
563 dir_item_err(leaf, slot,
564 "invalid location key type, have %u, expect %u or %u",
565 location_key.type, BTRFS_ROOT_ITEM_KEY,
566 BTRFS_INODE_ITEM_KEY);
567 return -EUCLEAN;
568 }
569
570 /* dir type check */
571 dir_type = btrfs_dir_ftype(leaf, di);
572 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN ||
573 dir_type >= BTRFS_FT_MAX)) {
574 dir_item_err(leaf, slot,
575 "invalid dir item type, have %u expect (0, %u)",
576 dir_type, BTRFS_FT_MAX);
577 return -EUCLEAN;
578 }
579
580 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
581 dir_type != BTRFS_FT_XATTR)) {
582 dir_item_err(leaf, slot,
583 "invalid dir item type for XATTR key, have %u expect %u",
584 dir_type, BTRFS_FT_XATTR);
585 return -EUCLEAN;
586 }
587 if (unlikely(dir_type == BTRFS_FT_XATTR &&
588 key->type != BTRFS_XATTR_ITEM_KEY)) {
589 dir_item_err(leaf, slot,
590 "xattr dir type found for non-XATTR key");
591 return -EUCLEAN;
592 }
593 if (dir_type == BTRFS_FT_XATTR)
594 max_name_len = XATTR_NAME_MAX;
595 else
596 max_name_len = BTRFS_NAME_LEN;
597
598 /* Name/data length check */
599 name_len = btrfs_dir_name_len(leaf, di);
600 data_len = btrfs_dir_data_len(leaf, di);
601 if (unlikely(name_len > max_name_len)) {
602 dir_item_err(leaf, slot,
603 "dir item name len too long, have %u max %u",
604 name_len, max_name_len);
605 return -EUCLEAN;
606 }
607 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
608 dir_item_err(leaf, slot,
609 "dir item name and data len too long, have %u max %u",
610 name_len + data_len,
611 BTRFS_MAX_XATTR_SIZE(fs_info));
612 return -EUCLEAN;
613 }
614
615 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
616 dir_item_err(leaf, slot,
617 "dir item with invalid data len, have %u expect 0",
618 data_len);
619 return -EUCLEAN;
620 }
621
622 total_size = sizeof(*di) + name_len + data_len;
623
624 /* header and name/data should not cross item boundary */
625 if (unlikely(cur + total_size > item_size)) {
626 dir_item_err(leaf, slot,
627 "dir item data crosses item boundary, have %u boundary %u",
628 cur + total_size, item_size);
629 return -EUCLEAN;
630 }
631
632 /*
633 * Special check for XATTR/DIR_ITEM, as key->offset is name
634 * hash, should match its name
635 */
636 if (key->type == BTRFS_DIR_ITEM_KEY ||
637 key->type == BTRFS_XATTR_ITEM_KEY) {
638 char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
639
640 read_extent_buffer(leaf, namebuf,
641 (unsigned long)(di + 1), name_len);
642 name_hash = btrfs_name_hash(namebuf, name_len);
643 if (unlikely(key->offset != name_hash)) {
644 dir_item_err(leaf, slot,
645 "name hash mismatch with key, have 0x%016x expect 0x%016llx",
646 name_hash, key->offset);
647 return -EUCLEAN;
648 }
649 }
650 cur += total_size;
651 di = (struct btrfs_dir_item *)((void *)di + total_size);
652 }
653 return 0;
654 }
655
656 __printf(3, 4)
657 __cold
block_group_err(const struct extent_buffer * eb,int slot,const char * fmt,...)658 static void block_group_err(const struct extent_buffer *eb, int slot,
659 const char *fmt, ...)
660 {
661 const struct btrfs_fs_info *fs_info = eb->fs_info;
662 struct btrfs_key key;
663 struct va_format vaf;
664 va_list args;
665
666 btrfs_item_key_to_cpu(eb, &key, slot);
667 va_start(args, fmt);
668
669 vaf.fmt = fmt;
670 vaf.va = &args;
671
672 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
673 btrfs_crit(fs_info,
674 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
675 btrfs_header_level(eb) == 0 ? "leaf" : "node",
676 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
677 key.objectid, key.offset, &vaf);
678 va_end(args);
679 }
680
check_block_group_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)681 static int check_block_group_item(struct extent_buffer *leaf,
682 struct btrfs_key *key, int slot)
683 {
684 struct btrfs_fs_info *fs_info = leaf->fs_info;
685 struct btrfs_block_group_item bgi;
686 u32 item_size = btrfs_item_size(leaf, slot);
687 u64 chunk_objectid;
688 u64 flags;
689 u64 type;
690
691 /*
692 * Here we don't really care about alignment since extent allocator can
693 * handle it. We care more about the size.
694 */
695 if (unlikely(key->offset == 0)) {
696 block_group_err(leaf, slot,
697 "invalid block group size 0");
698 return -EUCLEAN;
699 }
700
701 if (unlikely(item_size != sizeof(bgi))) {
702 block_group_err(leaf, slot,
703 "invalid item size, have %u expect %zu",
704 item_size, sizeof(bgi));
705 return -EUCLEAN;
706 }
707
708 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
709 sizeof(bgi));
710 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
711 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
712 /*
713 * We don't init the nr_global_roots until we load the global
714 * roots, so this could be 0 at mount time. If it's 0 we'll
715 * just assume we're fine, and later we'll check against our
716 * actual value.
717 */
718 if (unlikely(fs_info->nr_global_roots &&
719 chunk_objectid >= fs_info->nr_global_roots)) {
720 block_group_err(leaf, slot,
721 "invalid block group global root id, have %llu, needs to be <= %llu",
722 chunk_objectid,
723 fs_info->nr_global_roots);
724 return -EUCLEAN;
725 }
726 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
727 block_group_err(leaf, slot,
728 "invalid block group chunk objectid, have %llu expect %llu",
729 btrfs_stack_block_group_chunk_objectid(&bgi),
730 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
731 return -EUCLEAN;
732 }
733
734 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
735 block_group_err(leaf, slot,
736 "invalid block group used, have %llu expect [0, %llu)",
737 btrfs_stack_block_group_used(&bgi), key->offset);
738 return -EUCLEAN;
739 }
740
741 flags = btrfs_stack_block_group_flags(&bgi);
742 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
743 block_group_err(leaf, slot,
744 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
745 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
746 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
747 return -EUCLEAN;
748 }
749
750 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
751 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
752 type != BTRFS_BLOCK_GROUP_METADATA &&
753 type != BTRFS_BLOCK_GROUP_SYSTEM &&
754 type != (BTRFS_BLOCK_GROUP_METADATA |
755 BTRFS_BLOCK_GROUP_DATA))) {
756 block_group_err(leaf, slot,
757 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
758 type, hweight64(type),
759 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
760 BTRFS_BLOCK_GROUP_SYSTEM,
761 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
762 return -EUCLEAN;
763 }
764 return 0;
765 }
766
767 __printf(5, 6)
768 __cold
chunk_err(const struct btrfs_fs_info * fs_info,const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,const char * fmt,...)769 static void chunk_err(const struct btrfs_fs_info *fs_info,
770 const struct extent_buffer *leaf,
771 const struct btrfs_chunk *chunk, u64 logical,
772 const char *fmt, ...)
773 {
774 bool is_sb = !leaf;
775 struct va_format vaf;
776 va_list args;
777 int i;
778 int slot = -1;
779
780 if (!is_sb) {
781 /*
782 * Get the slot number by iterating through all slots, this
783 * would provide better readability.
784 */
785 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
786 if (btrfs_item_ptr_offset(leaf, i) ==
787 (unsigned long)chunk) {
788 slot = i;
789 break;
790 }
791 }
792 }
793 va_start(args, fmt);
794 vaf.fmt = fmt;
795 vaf.va = &args;
796
797 if (is_sb)
798 btrfs_crit(fs_info,
799 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
800 logical, &vaf);
801 else
802 btrfs_crit(fs_info,
803 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
804 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
805 logical, &vaf);
806 va_end(args);
807 }
808
809 /*
810 * The common chunk check which could also work on super block sys chunk array.
811 *
812 * If @leaf is NULL, then @chunk must be an on-stack chunk item.
813 * (For superblock sys_chunk array, and fs_info->sectorsize is unreliable)
814 *
815 * Return -EUCLEAN if anything is corrupted.
816 * Return 0 if everything is OK.
817 */
btrfs_check_chunk_valid(const struct btrfs_fs_info * fs_info,const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,u32 sectorsize)818 int btrfs_check_chunk_valid(const struct btrfs_fs_info *fs_info,
819 const struct extent_buffer *leaf,
820 const struct btrfs_chunk *chunk, u64 logical,
821 u32 sectorsize)
822 {
823 u64 length;
824 u64 chunk_end;
825 u64 stripe_len;
826 u16 num_stripes;
827 u16 sub_stripes;
828 u64 type;
829 u64 features;
830 u32 chunk_sector_size;
831 bool mixed = false;
832 int raid_index;
833 int nparity;
834 int ncopies;
835
836 if (leaf) {
837 length = btrfs_chunk_length(leaf, chunk);
838 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
839 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
840 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
841 type = btrfs_chunk_type(leaf, chunk);
842 chunk_sector_size = btrfs_chunk_sector_size(leaf, chunk);
843 } else {
844 length = btrfs_stack_chunk_length(chunk);
845 stripe_len = btrfs_stack_chunk_stripe_len(chunk);
846 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
847 sub_stripes = btrfs_stack_chunk_sub_stripes(chunk);
848 type = btrfs_stack_chunk_type(chunk);
849 chunk_sector_size = btrfs_stack_chunk_sector_size(chunk);
850 }
851 raid_index = btrfs_bg_flags_to_raid_index(type);
852 ncopies = btrfs_raid_array[raid_index].ncopies;
853 nparity = btrfs_raid_array[raid_index].nparity;
854
855 if (unlikely(!num_stripes)) {
856 chunk_err(fs_info, leaf, chunk, logical,
857 "invalid chunk num_stripes, have %u", num_stripes);
858 return -EUCLEAN;
859 }
860 if (unlikely(num_stripes < ncopies)) {
861 chunk_err(fs_info, leaf, chunk, logical,
862 "invalid chunk num_stripes < ncopies, have %u < %d",
863 num_stripes, ncopies);
864 return -EUCLEAN;
865 }
866 if (unlikely(nparity && num_stripes == nparity)) {
867 chunk_err(fs_info, leaf, chunk, logical,
868 "invalid chunk num_stripes == nparity, have %u == %d",
869 num_stripes, nparity);
870 return -EUCLEAN;
871 }
872 if (unlikely(!IS_ALIGNED(logical, sectorsize))) {
873 chunk_err(fs_info, leaf, chunk, logical,
874 "invalid chunk logical, have %llu should aligned to %u",
875 logical, sectorsize);
876 return -EUCLEAN;
877 }
878 if (unlikely(chunk_sector_size != sectorsize)) {
879 chunk_err(fs_info, leaf, chunk, logical,
880 "invalid chunk sectorsize, have %u expect %u",
881 chunk_sector_size, sectorsize);
882 return -EUCLEAN;
883 }
884 if (unlikely(!length || !IS_ALIGNED(length, sectorsize))) {
885 chunk_err(fs_info, leaf, chunk, logical,
886 "invalid chunk length, have %llu", length);
887 return -EUCLEAN;
888 }
889 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
890 chunk_err(fs_info, leaf, chunk, logical,
891 "invalid chunk logical start and length, have logical start %llu length %llu",
892 logical, length);
893 return -EUCLEAN;
894 }
895 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
896 chunk_err(fs_info, leaf, chunk, logical,
897 "invalid chunk stripe length: %llu",
898 stripe_len);
899 return -EUCLEAN;
900 }
901 /*
902 * We artificially limit the chunk size, so that the number of stripes
903 * inside a chunk can be fit into a U32. The current limit (256G) is
904 * way too large for real world usage anyway, and it's also much larger
905 * than our existing limit (10G).
906 *
907 * Thus it should be a good way to catch obvious bitflips.
908 */
909 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
910 chunk_err(fs_info, leaf, chunk, logical,
911 "chunk length too large: have %llu limit %llu",
912 length, btrfs_stripe_nr_to_offset(U32_MAX));
913 return -EUCLEAN;
914 }
915 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
916 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
917 chunk_err(fs_info, leaf, chunk, logical,
918 "unrecognized chunk type: 0x%llx",
919 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
920 BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
921 return -EUCLEAN;
922 }
923
924 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
925 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
926 chunk_err(fs_info, leaf, chunk, logical,
927 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
928 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
929 return -EUCLEAN;
930 }
931 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
932 chunk_err(fs_info, leaf, chunk, logical,
933 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
934 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
935 return -EUCLEAN;
936 }
937
938 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
939 (type & (BTRFS_BLOCK_GROUP_METADATA |
940 BTRFS_BLOCK_GROUP_DATA)))) {
941 chunk_err(fs_info, leaf, chunk, logical,
942 "system chunk with data or metadata type: 0x%llx",
943 type);
944 return -EUCLEAN;
945 }
946
947 features = btrfs_super_incompat_flags(fs_info->super_copy);
948 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
949 mixed = true;
950
951 if (!mixed) {
952 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
953 (type & BTRFS_BLOCK_GROUP_DATA))) {
954 chunk_err(fs_info, leaf, chunk, logical,
955 "mixed chunk type in non-mixed mode: 0x%llx", type);
956 return -EUCLEAN;
957 }
958 }
959
960 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
961 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
962 (type & BTRFS_BLOCK_GROUP_RAID1 &&
963 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
964 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
965 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
966 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
967 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
968 (type & BTRFS_BLOCK_GROUP_RAID5 &&
969 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
970 (type & BTRFS_BLOCK_GROUP_RAID6 &&
971 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
972 (type & BTRFS_BLOCK_GROUP_DUP &&
973 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
974 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
975 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
976 chunk_err(fs_info, leaf, chunk, logical,
977 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
978 num_stripes, sub_stripes,
979 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
980 return -EUCLEAN;
981 }
982
983 return 0;
984 }
985
986 /*
987 * Enhanced version of chunk item checker.
988 *
989 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
990 * to work on super block sys_chunk_array which doesn't have full item ptr.
991 */
check_leaf_chunk_item(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_key * key,int slot)992 static int check_leaf_chunk_item(struct extent_buffer *leaf,
993 struct btrfs_chunk *chunk,
994 struct btrfs_key *key, int slot)
995 {
996 struct btrfs_fs_info *fs_info = leaf->fs_info;
997 int num_stripes;
998
999 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
1000 chunk_err(fs_info, leaf, chunk, key->offset,
1001 "invalid chunk item size: have %u expect [%zu, %u)",
1002 btrfs_item_size(leaf, slot),
1003 sizeof(struct btrfs_chunk),
1004 BTRFS_LEAF_DATA_SIZE(fs_info));
1005 return -EUCLEAN;
1006 }
1007
1008 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1009 /* Let btrfs_check_chunk_valid() handle this error type */
1010 if (num_stripes == 0)
1011 goto out;
1012
1013 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
1014 btrfs_item_size(leaf, slot))) {
1015 chunk_err(fs_info, leaf, chunk, key->offset,
1016 "invalid chunk item size: have %u expect %lu",
1017 btrfs_item_size(leaf, slot),
1018 btrfs_chunk_item_size(num_stripes));
1019 return -EUCLEAN;
1020 }
1021 out:
1022 return btrfs_check_chunk_valid(fs_info, leaf, chunk, key->offset,
1023 fs_info->sectorsize);
1024 }
1025
1026 __printf(3, 4)
1027 __cold
dev_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1028 static void dev_item_err(const struct extent_buffer *eb, int slot,
1029 const char *fmt, ...)
1030 {
1031 struct btrfs_key key;
1032 struct va_format vaf;
1033 va_list args;
1034
1035 btrfs_item_key_to_cpu(eb, &key, slot);
1036 va_start(args, fmt);
1037
1038 vaf.fmt = fmt;
1039 vaf.va = &args;
1040
1041 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1042 btrfs_crit(eb->fs_info,
1043 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1044 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1045 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1046 key.objectid, &vaf);
1047 va_end(args);
1048 }
1049
check_dev_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1050 static int check_dev_item(struct extent_buffer *leaf,
1051 struct btrfs_key *key, int slot)
1052 {
1053 struct btrfs_dev_item *ditem;
1054 const u32 item_size = btrfs_item_size(leaf, slot);
1055
1056 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1057 dev_item_err(leaf, slot,
1058 "invalid objectid: has=%llu expect=%llu",
1059 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1060 return -EUCLEAN;
1061 }
1062
1063 if (unlikely(item_size != sizeof(*ditem))) {
1064 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1065 item_size, sizeof(*ditem));
1066 return -EUCLEAN;
1067 }
1068
1069 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1070 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1071 dev_item_err(leaf, slot,
1072 "devid mismatch: key has=%llu item has=%llu",
1073 key->offset, btrfs_device_id(leaf, ditem));
1074 return -EUCLEAN;
1075 }
1076
1077 /*
1078 * For device total_bytes, we don't have reliable way to check it, as
1079 * it can be 0 for device removal. Device size check can only be done
1080 * by dev extents check.
1081 */
1082 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1083 btrfs_device_total_bytes(leaf, ditem))) {
1084 dev_item_err(leaf, slot,
1085 "invalid bytes used: have %llu expect [0, %llu]",
1086 btrfs_device_bytes_used(leaf, ditem),
1087 btrfs_device_total_bytes(leaf, ditem));
1088 return -EUCLEAN;
1089 }
1090 /*
1091 * Remaining members like io_align/type/gen/dev_group aren't really
1092 * utilized. Skip them to make later usage of them easier.
1093 */
1094 return 0;
1095 }
1096
check_inode_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1097 static int check_inode_item(struct extent_buffer *leaf,
1098 struct btrfs_key *key, int slot)
1099 {
1100 struct btrfs_fs_info *fs_info = leaf->fs_info;
1101 struct btrfs_inode_item *iitem;
1102 u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1103 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1104 const u32 item_size = btrfs_item_size(leaf, slot);
1105 u32 mode;
1106 int ret;
1107 u32 flags;
1108 u32 ro_flags;
1109
1110 ret = check_inode_key(leaf, key, slot);
1111 if (unlikely(ret < 0))
1112 return ret;
1113
1114 if (unlikely(item_size != sizeof(*iitem))) {
1115 generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1116 item_size, sizeof(*iitem));
1117 return -EUCLEAN;
1118 }
1119
1120 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1121
1122 /* Here we use super block generation + 1 to handle log tree */
1123 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1124 inode_item_err(leaf, slot,
1125 "invalid inode generation: has %llu expect (0, %llu]",
1126 btrfs_inode_generation(leaf, iitem),
1127 super_gen + 1);
1128 return -EUCLEAN;
1129 }
1130 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1131 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1132 inode_item_err(leaf, slot,
1133 "invalid inode transid: has %llu expect [0, %llu]",
1134 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1135 return -EUCLEAN;
1136 }
1137
1138 /*
1139 * For size and nbytes it's better not to be too strict, as for dir
1140 * item its size/nbytes can easily get wrong, but doesn't affect
1141 * anything in the fs. So here we skip the check.
1142 */
1143 mode = btrfs_inode_mode(leaf, iitem);
1144 if (unlikely(mode & ~valid_mask)) {
1145 inode_item_err(leaf, slot,
1146 "unknown mode bit detected: 0x%x",
1147 mode & ~valid_mask);
1148 return -EUCLEAN;
1149 }
1150
1151 /*
1152 * S_IFMT is not bit mapped so we can't completely rely on
1153 * is_power_of_2/has_single_bit_set, but it can save us from checking
1154 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1155 */
1156 if (!has_single_bit_set(mode & S_IFMT)) {
1157 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1158 inode_item_err(leaf, slot,
1159 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1160 mode & S_IFMT);
1161 return -EUCLEAN;
1162 }
1163 }
1164 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1165 inode_item_err(leaf, slot,
1166 "invalid nlink: has %u expect no more than 1 for dir",
1167 btrfs_inode_nlink(leaf, iitem));
1168 return -EUCLEAN;
1169 }
1170 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1171 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1172 inode_item_err(leaf, slot,
1173 "unknown incompat flags detected: 0x%x", flags);
1174 return -EUCLEAN;
1175 }
1176 if (unlikely(!sb_rdonly(fs_info->sb) &&
1177 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1178 inode_item_err(leaf, slot,
1179 "unknown ro-compat flags detected on writeable mount: 0x%x",
1180 ro_flags);
1181 return -EUCLEAN;
1182 }
1183 return 0;
1184 }
1185
check_root_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1186 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1187 int slot)
1188 {
1189 struct btrfs_fs_info *fs_info = leaf->fs_info;
1190 struct btrfs_root_item ri = { 0 };
1191 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1192 BTRFS_ROOT_SUBVOL_DEAD;
1193 int ret;
1194
1195 ret = check_root_key(leaf, key, slot);
1196 if (unlikely(ret < 0))
1197 return ret;
1198
1199 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1200 btrfs_item_size(leaf, slot) !=
1201 btrfs_legacy_root_item_size())) {
1202 generic_err(leaf, slot,
1203 "invalid root item size, have %u expect %zu or %u",
1204 btrfs_item_size(leaf, slot), sizeof(ri),
1205 btrfs_legacy_root_item_size());
1206 return -EUCLEAN;
1207 }
1208
1209 /*
1210 * For legacy root item, the members starting at generation_v2 will be
1211 * all filled with 0.
1212 * And since we allow geneartion_v2 as 0, it will still pass the check.
1213 */
1214 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1215 btrfs_item_size(leaf, slot));
1216
1217 /* Generation related */
1218 if (unlikely(btrfs_root_generation(&ri) >
1219 btrfs_super_generation(fs_info->super_copy) + 1)) {
1220 generic_err(leaf, slot,
1221 "invalid root generation, have %llu expect (0, %llu]",
1222 btrfs_root_generation(&ri),
1223 btrfs_super_generation(fs_info->super_copy) + 1);
1224 return -EUCLEAN;
1225 }
1226 if (unlikely(btrfs_root_generation_v2(&ri) >
1227 btrfs_super_generation(fs_info->super_copy) + 1)) {
1228 generic_err(leaf, slot,
1229 "invalid root v2 generation, have %llu expect (0, %llu]",
1230 btrfs_root_generation_v2(&ri),
1231 btrfs_super_generation(fs_info->super_copy) + 1);
1232 return -EUCLEAN;
1233 }
1234 if (unlikely(btrfs_root_last_snapshot(&ri) >
1235 btrfs_super_generation(fs_info->super_copy) + 1)) {
1236 generic_err(leaf, slot,
1237 "invalid root last_snapshot, have %llu expect (0, %llu]",
1238 btrfs_root_last_snapshot(&ri),
1239 btrfs_super_generation(fs_info->super_copy) + 1);
1240 return -EUCLEAN;
1241 }
1242
1243 /* Alignment and level check */
1244 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1245 generic_err(leaf, slot,
1246 "invalid root bytenr, have %llu expect to be aligned to %u",
1247 btrfs_root_bytenr(&ri), fs_info->sectorsize);
1248 return -EUCLEAN;
1249 }
1250 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1251 generic_err(leaf, slot,
1252 "invalid root level, have %u expect [0, %u]",
1253 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1254 return -EUCLEAN;
1255 }
1256 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1257 generic_err(leaf, slot,
1258 "invalid root level, have %u expect [0, %u]",
1259 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1260 return -EUCLEAN;
1261 }
1262
1263 /* Flags check */
1264 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1265 generic_err(leaf, slot,
1266 "invalid root flags, have 0x%llx expect mask 0x%llx",
1267 btrfs_root_flags(&ri), valid_root_flags);
1268 return -EUCLEAN;
1269 }
1270 return 0;
1271 }
1272
1273 __printf(3,4)
1274 __cold
extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1275 static void extent_err(const struct extent_buffer *eb, int slot,
1276 const char *fmt, ...)
1277 {
1278 struct btrfs_key key;
1279 struct va_format vaf;
1280 va_list args;
1281 u64 bytenr;
1282 u64 len;
1283
1284 btrfs_item_key_to_cpu(eb, &key, slot);
1285 bytenr = key.objectid;
1286 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1287 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1288 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1289 len = eb->fs_info->nodesize;
1290 else
1291 len = key.offset;
1292 va_start(args, fmt);
1293
1294 vaf.fmt = fmt;
1295 vaf.va = &args;
1296
1297 dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1298 btrfs_crit(eb->fs_info,
1299 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1300 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1301 eb->start, slot, bytenr, len, &vaf);
1302 va_end(args);
1303 }
1304
is_valid_dref_root(u64 rootid)1305 static bool is_valid_dref_root(u64 rootid)
1306 {
1307 /*
1308 * The following tree root objectids are allowed to have a data backref:
1309 * - subvolume trees
1310 * - data reloc tree
1311 * - tree root
1312 * For v1 space cache
1313 */
1314 return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID ||
1315 rootid == BTRFS_ROOT_TREE_OBJECTID;
1316 }
1317
check_extent_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1318 static int check_extent_item(struct extent_buffer *leaf,
1319 struct btrfs_key *key, int slot,
1320 struct btrfs_key *prev_key)
1321 {
1322 struct btrfs_fs_info *fs_info = leaf->fs_info;
1323 struct btrfs_extent_item *ei;
1324 bool is_tree_block = false;
1325 unsigned long ptr; /* Current pointer inside inline refs */
1326 unsigned long end; /* Extent item end */
1327 const u32 item_size = btrfs_item_size(leaf, slot);
1328 u8 last_type = 0;
1329 u64 last_seq = U64_MAX;
1330 u64 flags;
1331 u64 generation;
1332 u64 total_refs; /* Total refs in btrfs_extent_item */
1333 u64 inline_refs = 0; /* found total inline refs */
1334
1335 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1336 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1337 generic_err(leaf, slot,
1338 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1339 return -EUCLEAN;
1340 }
1341 /* key->objectid is the bytenr for both key types */
1342 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1343 generic_err(leaf, slot,
1344 "invalid key objectid, have %llu expect to be aligned to %u",
1345 key->objectid, fs_info->sectorsize);
1346 return -EUCLEAN;
1347 }
1348
1349 /* key->offset is tree level for METADATA_ITEM_KEY */
1350 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1351 key->offset >= BTRFS_MAX_LEVEL)) {
1352 extent_err(leaf, slot,
1353 "invalid tree level, have %llu expect [0, %u]",
1354 key->offset, BTRFS_MAX_LEVEL - 1);
1355 return -EUCLEAN;
1356 }
1357
1358 /*
1359 * EXTENT/METADATA_ITEM consists of:
1360 * 1) One btrfs_extent_item
1361 * Records the total refs, type and generation of the extent.
1362 *
1363 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1364 * Records the first key and level of the tree block.
1365 *
1366 * 2) Zero or more btrfs_extent_inline_ref(s)
1367 * Each inline ref has one btrfs_extent_inline_ref shows:
1368 * 2.1) The ref type, one of the 4
1369 * TREE_BLOCK_REF Tree block only
1370 * SHARED_BLOCK_REF Tree block only
1371 * EXTENT_DATA_REF Data only
1372 * SHARED_DATA_REF Data only
1373 * 2.2) Ref type specific data
1374 * Either using btrfs_extent_inline_ref::offset, or specific
1375 * data structure.
1376 *
1377 * All above inline items should follow the order:
1378 *
1379 * - All btrfs_extent_inline_ref::type should be in an ascending
1380 * order
1381 *
1382 * - Within the same type, the items should follow a descending
1383 * order by their sequence number. The sequence number is
1384 * determined by:
1385 * * btrfs_extent_inline_ref::offset for all types other than
1386 * EXTENT_DATA_REF
1387 * * hash_extent_data_ref() for EXTENT_DATA_REF
1388 */
1389 if (unlikely(item_size < sizeof(*ei))) {
1390 extent_err(leaf, slot,
1391 "invalid item size, have %u expect [%zu, %u)",
1392 item_size, sizeof(*ei),
1393 BTRFS_LEAF_DATA_SIZE(fs_info));
1394 return -EUCLEAN;
1395 }
1396 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1397
1398 /* Checks against extent_item */
1399 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1400 flags = btrfs_extent_flags(leaf, ei);
1401 total_refs = btrfs_extent_refs(leaf, ei);
1402 generation = btrfs_extent_generation(leaf, ei);
1403 if (unlikely(generation >
1404 btrfs_super_generation(fs_info->super_copy) + 1)) {
1405 extent_err(leaf, slot,
1406 "invalid generation, have %llu expect (0, %llu]",
1407 generation,
1408 btrfs_super_generation(fs_info->super_copy) + 1);
1409 return -EUCLEAN;
1410 }
1411 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1412 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1413 extent_err(leaf, slot,
1414 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1415 flags, BTRFS_EXTENT_FLAG_DATA |
1416 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1417 return -EUCLEAN;
1418 }
1419 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1420 if (is_tree_block) {
1421 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1422 key->offset != fs_info->nodesize)) {
1423 extent_err(leaf, slot,
1424 "invalid extent length, have %llu expect %u",
1425 key->offset, fs_info->nodesize);
1426 return -EUCLEAN;
1427 }
1428 } else {
1429 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1430 extent_err(leaf, slot,
1431 "invalid key type, have %u expect %u for data backref",
1432 key->type, BTRFS_EXTENT_ITEM_KEY);
1433 return -EUCLEAN;
1434 }
1435 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1436 extent_err(leaf, slot,
1437 "invalid extent length, have %llu expect aligned to %u",
1438 key->offset, fs_info->sectorsize);
1439 return -EUCLEAN;
1440 }
1441 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1442 extent_err(leaf, slot,
1443 "invalid extent flag, data has full backref set");
1444 return -EUCLEAN;
1445 }
1446 }
1447 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1448
1449 /* Check the special case of btrfs_tree_block_info */
1450 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1451 struct btrfs_tree_block_info *info;
1452
1453 info = (struct btrfs_tree_block_info *)ptr;
1454 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1455 extent_err(leaf, slot,
1456 "invalid tree block info level, have %u expect [0, %u]",
1457 btrfs_tree_block_level(leaf, info),
1458 BTRFS_MAX_LEVEL - 1);
1459 return -EUCLEAN;
1460 }
1461 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1462 }
1463
1464 /* Check inline refs */
1465 while (ptr < end) {
1466 struct btrfs_extent_inline_ref *iref;
1467 struct btrfs_extent_data_ref *dref;
1468 struct btrfs_shared_data_ref *sref;
1469 u64 seq;
1470 u64 dref_root;
1471 u64 dref_objectid;
1472 u64 dref_offset;
1473 u64 inline_offset;
1474 u8 inline_type;
1475
1476 if (unlikely(ptr + sizeof(*iref) > end)) {
1477 extent_err(leaf, slot,
1478 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1479 ptr, sizeof(*iref), end);
1480 return -EUCLEAN;
1481 }
1482 iref = (struct btrfs_extent_inline_ref *)ptr;
1483 inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1484 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1485 seq = inline_offset;
1486 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1487 extent_err(leaf, slot,
1488 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1489 ptr, btrfs_extent_inline_ref_size(inline_type), end);
1490 return -EUCLEAN;
1491 }
1492
1493 switch (inline_type) {
1494 /* inline_offset is subvolid of the owner, no need to check */
1495 case BTRFS_TREE_BLOCK_REF_KEY:
1496 inline_refs++;
1497 break;
1498 /* Contains parent bytenr */
1499 case BTRFS_SHARED_BLOCK_REF_KEY:
1500 if (unlikely(!IS_ALIGNED(inline_offset,
1501 fs_info->sectorsize))) {
1502 extent_err(leaf, slot,
1503 "invalid tree parent bytenr, have %llu expect aligned to %u",
1504 inline_offset, fs_info->sectorsize);
1505 return -EUCLEAN;
1506 }
1507 inline_refs++;
1508 break;
1509 /*
1510 * Contains owner subvolid, owner key objectid, adjusted offset.
1511 * The only obvious corruption can happen in that offset.
1512 */
1513 case BTRFS_EXTENT_DATA_REF_KEY:
1514 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1515 dref_root = btrfs_extent_data_ref_root(leaf, dref);
1516 dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1517 dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1518 seq = hash_extent_data_ref(
1519 btrfs_extent_data_ref_root(leaf, dref),
1520 btrfs_extent_data_ref_objectid(leaf, dref),
1521 btrfs_extent_data_ref_offset(leaf, dref));
1522 if (unlikely(!is_valid_dref_root(dref_root))) {
1523 extent_err(leaf, slot,
1524 "invalid data ref root value %llu",
1525 dref_root);
1526 return -EUCLEAN;
1527 }
1528 if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID ||
1529 dref_objectid > BTRFS_LAST_FREE_OBJECTID)) {
1530 extent_err(leaf, slot,
1531 "invalid data ref objectid value %llu",
1532 dref_objectid);
1533 return -EUCLEAN;
1534 }
1535 if (unlikely(!IS_ALIGNED(dref_offset,
1536 fs_info->sectorsize))) {
1537 extent_err(leaf, slot,
1538 "invalid data ref offset, have %llu expect aligned to %u",
1539 dref_offset, fs_info->sectorsize);
1540 return -EUCLEAN;
1541 }
1542 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1543 extent_err(leaf, slot,
1544 "invalid data ref count, should have non-zero value");
1545 return -EUCLEAN;
1546 }
1547 inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1548 break;
1549 /* Contains parent bytenr and ref count */
1550 case BTRFS_SHARED_DATA_REF_KEY:
1551 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1552 if (unlikely(!IS_ALIGNED(inline_offset,
1553 fs_info->sectorsize))) {
1554 extent_err(leaf, slot,
1555 "invalid data parent bytenr, have %llu expect aligned to %u",
1556 inline_offset, fs_info->sectorsize);
1557 return -EUCLEAN;
1558 }
1559 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1560 extent_err(leaf, slot,
1561 "invalid shared data ref count, should have non-zero value");
1562 return -EUCLEAN;
1563 }
1564 inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1565 break;
1566 case BTRFS_EXTENT_OWNER_REF_KEY:
1567 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1568 break;
1569 default:
1570 extent_err(leaf, slot, "unknown inline ref type: %u",
1571 inline_type);
1572 return -EUCLEAN;
1573 }
1574 if (inline_type < last_type) {
1575 extent_err(leaf, slot,
1576 "inline ref out-of-order: has type %u, prev type %u",
1577 inline_type, last_type);
1578 return -EUCLEAN;
1579 }
1580 /* Type changed, allow the sequence starts from U64_MAX again. */
1581 if (inline_type > last_type)
1582 last_seq = U64_MAX;
1583 if (seq > last_seq) {
1584 extent_err(leaf, slot,
1585 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1586 inline_type, inline_offset, seq,
1587 last_type, last_seq);
1588 return -EUCLEAN;
1589 }
1590 last_type = inline_type;
1591 last_seq = seq;
1592 ptr += btrfs_extent_inline_ref_size(inline_type);
1593 }
1594 /* No padding is allowed */
1595 if (unlikely(ptr != end)) {
1596 extent_err(leaf, slot,
1597 "invalid extent item size, padding bytes found");
1598 return -EUCLEAN;
1599 }
1600
1601 /* Finally, check the inline refs against total refs */
1602 if (unlikely(inline_refs > total_refs)) {
1603 extent_err(leaf, slot,
1604 "invalid extent refs, have %llu expect >= inline %llu",
1605 total_refs, inline_refs);
1606 return -EUCLEAN;
1607 }
1608
1609 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1610 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1611 u64 prev_end = prev_key->objectid;
1612
1613 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1614 prev_end += fs_info->nodesize;
1615 else
1616 prev_end += prev_key->offset;
1617
1618 if (unlikely(prev_end > key->objectid)) {
1619 extent_err(leaf, slot,
1620 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1621 prev_key->objectid, prev_key->type,
1622 prev_key->offset, key->objectid, key->type,
1623 key->offset);
1624 return -EUCLEAN;
1625 }
1626 }
1627
1628 return 0;
1629 }
1630
check_simple_keyed_refs(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1631 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1632 struct btrfs_key *key, int slot)
1633 {
1634 u32 expect_item_size = 0;
1635
1636 if (key->type == BTRFS_SHARED_DATA_REF_KEY) {
1637 struct btrfs_shared_data_ref *sref;
1638
1639 sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref);
1640 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1641 extent_err(leaf, slot,
1642 "invalid shared data backref count, should have non-zero value");
1643 return -EUCLEAN;
1644 }
1645
1646 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1647 }
1648
1649 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1650 generic_err(leaf, slot,
1651 "invalid item size, have %u expect %u for key type %u",
1652 btrfs_item_size(leaf, slot),
1653 expect_item_size, key->type);
1654 return -EUCLEAN;
1655 }
1656 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1657 generic_err(leaf, slot,
1658 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1659 key->objectid, leaf->fs_info->sectorsize);
1660 return -EUCLEAN;
1661 }
1662 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1663 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1664 extent_err(leaf, slot,
1665 "invalid tree parent bytenr, have %llu expect aligned to %u",
1666 key->offset, leaf->fs_info->sectorsize);
1667 return -EUCLEAN;
1668 }
1669 return 0;
1670 }
1671
check_extent_data_ref(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1672 static int check_extent_data_ref(struct extent_buffer *leaf,
1673 struct btrfs_key *key, int slot)
1674 {
1675 struct btrfs_extent_data_ref *dref;
1676 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1677 const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1678
1679 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1680 generic_err(leaf, slot,
1681 "invalid item size, have %u expect aligned to %zu for key type %u",
1682 btrfs_item_size(leaf, slot),
1683 sizeof(*dref), key->type);
1684 return -EUCLEAN;
1685 }
1686 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1687 generic_err(leaf, slot,
1688 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1689 key->objectid, leaf->fs_info->sectorsize);
1690 return -EUCLEAN;
1691 }
1692 for (; ptr < end; ptr += sizeof(*dref)) {
1693 u64 root;
1694 u64 objectid;
1695 u64 offset;
1696
1697 /*
1698 * We cannot check the extent_data_ref hash due to possible
1699 * overflow from the leaf due to hash collisions.
1700 */
1701 dref = (struct btrfs_extent_data_ref *)ptr;
1702 root = btrfs_extent_data_ref_root(leaf, dref);
1703 objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1704 offset = btrfs_extent_data_ref_offset(leaf, dref);
1705 if (unlikely(!is_valid_dref_root(root))) {
1706 extent_err(leaf, slot,
1707 "invalid extent data backref root value %llu",
1708 root);
1709 return -EUCLEAN;
1710 }
1711 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID ||
1712 objectid > BTRFS_LAST_FREE_OBJECTID)) {
1713 extent_err(leaf, slot,
1714 "invalid extent data backref objectid value %llu",
1715 root);
1716 return -EUCLEAN;
1717 }
1718 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1719 extent_err(leaf, slot,
1720 "invalid extent data backref offset, have %llu expect aligned to %u",
1721 offset, leaf->fs_info->sectorsize);
1722 return -EUCLEAN;
1723 }
1724 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1725 extent_err(leaf, slot,
1726 "invalid extent data backref count, should have non-zero value");
1727 return -EUCLEAN;
1728 }
1729 }
1730 return 0;
1731 }
1732
1733 #define inode_ref_err(eb, slot, fmt, args...) \
1734 inode_item_err(eb, slot, fmt, ##args)
check_inode_ref(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)1735 static int check_inode_ref(struct extent_buffer *leaf,
1736 struct btrfs_key *key, struct btrfs_key *prev_key,
1737 int slot)
1738 {
1739 struct btrfs_inode_ref *iref;
1740 unsigned long ptr;
1741 unsigned long end;
1742
1743 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1744 return -EUCLEAN;
1745 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1746 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1747 inode_ref_err(leaf, slot,
1748 "invalid item size, have %u expect (%zu, %u)",
1749 btrfs_item_size(leaf, slot),
1750 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1751 return -EUCLEAN;
1752 }
1753
1754 ptr = btrfs_item_ptr_offset(leaf, slot);
1755 end = ptr + btrfs_item_size(leaf, slot);
1756 while (ptr < end) {
1757 u16 namelen;
1758
1759 if (unlikely(ptr + sizeof(iref) > end)) {
1760 inode_ref_err(leaf, slot,
1761 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1762 ptr, end, sizeof(iref));
1763 return -EUCLEAN;
1764 }
1765
1766 iref = (struct btrfs_inode_ref *)ptr;
1767 namelen = btrfs_inode_ref_name_len(leaf, iref);
1768 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1769 inode_ref_err(leaf, slot,
1770 "inode ref overflow, ptr %lu end %lu namelen %u",
1771 ptr, end, namelen);
1772 return -EUCLEAN;
1773 }
1774
1775 /*
1776 * NOTE: In theory we should record all found index numbers
1777 * to find any duplicated indexes, but that will be too time
1778 * consuming for inodes with too many hard links.
1779 */
1780 ptr += sizeof(*iref) + namelen;
1781 }
1782 return 0;
1783 }
1784
check_raid_stripe_extent(const struct extent_buffer * leaf,const struct btrfs_key * key,int slot)1785 static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1786 const struct btrfs_key *key, int slot)
1787 {
1788 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1789 generic_err(leaf, slot,
1790 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1791 key->objectid, leaf->fs_info->sectorsize);
1792 return -EUCLEAN;
1793 }
1794
1795 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1796 generic_err(leaf, slot,
1797 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1798 return -EUCLEAN;
1799 }
1800
1801 return 0;
1802 }
1803
check_dev_extent_item(const struct extent_buffer * leaf,const struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1804 static int check_dev_extent_item(const struct extent_buffer *leaf,
1805 const struct btrfs_key *key,
1806 int slot,
1807 struct btrfs_key *prev_key)
1808 {
1809 struct btrfs_dev_extent *de;
1810 const u32 sectorsize = leaf->fs_info->sectorsize;
1811
1812 de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
1813 /* Basic fixed member checks. */
1814 if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) !=
1815 BTRFS_CHUNK_TREE_OBJECTID)) {
1816 generic_err(leaf, slot,
1817 "invalid dev extent chunk tree id, has %llu expect %llu",
1818 btrfs_dev_extent_chunk_tree(leaf, de),
1819 BTRFS_CHUNK_TREE_OBJECTID);
1820 return -EUCLEAN;
1821 }
1822 if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) !=
1823 BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
1824 generic_err(leaf, slot,
1825 "invalid dev extent chunk objectid, has %llu expect %llu",
1826 btrfs_dev_extent_chunk_objectid(leaf, de),
1827 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1828 return -EUCLEAN;
1829 }
1830 /* Alignment check. */
1831 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
1832 generic_err(leaf, slot,
1833 "invalid dev extent key.offset, has %llu not aligned to %u",
1834 key->offset, sectorsize);
1835 return -EUCLEAN;
1836 }
1837 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de),
1838 sectorsize))) {
1839 generic_err(leaf, slot,
1840 "invalid dev extent chunk offset, has %llu not aligned to %u",
1841 btrfs_dev_extent_chunk_objectid(leaf, de),
1842 sectorsize);
1843 return -EUCLEAN;
1844 }
1845 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de),
1846 sectorsize))) {
1847 generic_err(leaf, slot,
1848 "invalid dev extent length, has %llu not aligned to %u",
1849 btrfs_dev_extent_length(leaf, de), sectorsize);
1850 return -EUCLEAN;
1851 }
1852 /* Overlap check with previous dev extent. */
1853 if (slot && prev_key->objectid == key->objectid &&
1854 prev_key->type == key->type) {
1855 struct btrfs_dev_extent *prev_de;
1856 u64 prev_len;
1857
1858 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent);
1859 prev_len = btrfs_dev_extent_length(leaf, prev_de);
1860 if (unlikely(prev_key->offset + prev_len > key->offset)) {
1861 generic_err(leaf, slot,
1862 "dev extent overlap, prev offset %llu len %llu current offset %llu",
1863 prev_key->objectid, prev_len, key->offset);
1864 return -EUCLEAN;
1865 }
1866 }
1867 return 0;
1868 }
1869
1870 /*
1871 * Common point to switch the item-specific validation.
1872 */
check_leaf_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1873 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1874 struct btrfs_key *key,
1875 int slot,
1876 struct btrfs_key *prev_key)
1877 {
1878 int ret = 0;
1879 struct btrfs_chunk *chunk;
1880
1881 switch (key->type) {
1882 case BTRFS_EXTENT_DATA_KEY:
1883 ret = check_extent_data_item(leaf, key, slot, prev_key);
1884 break;
1885 case BTRFS_EXTENT_CSUM_KEY:
1886 ret = check_csum_item(leaf, key, slot, prev_key);
1887 break;
1888 case BTRFS_DIR_ITEM_KEY:
1889 case BTRFS_DIR_INDEX_KEY:
1890 case BTRFS_XATTR_ITEM_KEY:
1891 ret = check_dir_item(leaf, key, prev_key, slot);
1892 break;
1893 case BTRFS_INODE_REF_KEY:
1894 ret = check_inode_ref(leaf, key, prev_key, slot);
1895 break;
1896 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1897 ret = check_block_group_item(leaf, key, slot);
1898 break;
1899 case BTRFS_CHUNK_ITEM_KEY:
1900 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1901 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1902 break;
1903 case BTRFS_DEV_ITEM_KEY:
1904 ret = check_dev_item(leaf, key, slot);
1905 break;
1906 case BTRFS_DEV_EXTENT_KEY:
1907 ret = check_dev_extent_item(leaf, key, slot, prev_key);
1908 break;
1909 case BTRFS_INODE_ITEM_KEY:
1910 ret = check_inode_item(leaf, key, slot);
1911 break;
1912 case BTRFS_ROOT_ITEM_KEY:
1913 ret = check_root_item(leaf, key, slot);
1914 break;
1915 case BTRFS_EXTENT_ITEM_KEY:
1916 case BTRFS_METADATA_ITEM_KEY:
1917 ret = check_extent_item(leaf, key, slot, prev_key);
1918 break;
1919 case BTRFS_TREE_BLOCK_REF_KEY:
1920 case BTRFS_SHARED_DATA_REF_KEY:
1921 case BTRFS_SHARED_BLOCK_REF_KEY:
1922 ret = check_simple_keyed_refs(leaf, key, slot);
1923 break;
1924 case BTRFS_EXTENT_DATA_REF_KEY:
1925 ret = check_extent_data_ref(leaf, key, slot);
1926 break;
1927 case BTRFS_RAID_STRIPE_KEY:
1928 ret = check_raid_stripe_extent(leaf, key, slot);
1929 break;
1930 }
1931
1932 if (ret)
1933 return BTRFS_TREE_BLOCK_INVALID_ITEM;
1934 return BTRFS_TREE_BLOCK_CLEAN;
1935 }
1936
__btrfs_check_leaf(struct extent_buffer * leaf)1937 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1938 {
1939 struct btrfs_fs_info *fs_info = leaf->fs_info;
1940 /* No valid key type is 0, so all key should be larger than this key */
1941 struct btrfs_key prev_key = {0, 0, 0};
1942 struct btrfs_key key;
1943 u32 nritems = btrfs_header_nritems(leaf);
1944 int slot;
1945
1946 if (unlikely(btrfs_header_level(leaf) != 0)) {
1947 generic_err(leaf, 0,
1948 "invalid level for leaf, have %d expect 0",
1949 btrfs_header_level(leaf));
1950 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1951 }
1952
1953 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) {
1954 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set");
1955 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
1956 }
1957
1958 /*
1959 * Extent buffers from a relocation tree have a owner field that
1960 * corresponds to the subvolume tree they are based on. So just from an
1961 * extent buffer alone we can not find out what is the id of the
1962 * corresponding subvolume tree, so we can not figure out if the extent
1963 * buffer corresponds to the root of the relocation tree or not. So
1964 * skip this check for relocation trees.
1965 */
1966 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1967 u64 owner = btrfs_header_owner(leaf);
1968
1969 /* These trees must never be empty */
1970 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1971 owner == BTRFS_CHUNK_TREE_OBJECTID ||
1972 owner == BTRFS_DEV_TREE_OBJECTID ||
1973 owner == BTRFS_FS_TREE_OBJECTID ||
1974 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1975 generic_err(leaf, 0,
1976 "invalid root, root %llu must never be empty",
1977 owner);
1978 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1979 }
1980
1981 /* Unknown tree */
1982 if (unlikely(owner == 0)) {
1983 generic_err(leaf, 0,
1984 "invalid owner, root 0 is not defined");
1985 return BTRFS_TREE_BLOCK_INVALID_OWNER;
1986 }
1987
1988 /* EXTENT_TREE_V2 can have empty extent trees. */
1989 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1990 return BTRFS_TREE_BLOCK_CLEAN;
1991
1992 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1993 generic_err(leaf, 0,
1994 "invalid root, root %llu must never be empty",
1995 owner);
1996 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1997 }
1998
1999 return BTRFS_TREE_BLOCK_CLEAN;
2000 }
2001
2002 if (unlikely(nritems == 0))
2003 return BTRFS_TREE_BLOCK_CLEAN;
2004
2005 /*
2006 * Check the following things to make sure this is a good leaf, and
2007 * leaf users won't need to bother with similar sanity checks:
2008 *
2009 * 1) key ordering
2010 * 2) item offset and size
2011 * No overlap, no hole, all inside the leaf.
2012 * 3) item content
2013 * If possible, do comprehensive sanity check.
2014 * NOTE: All checks must only rely on the item data itself.
2015 */
2016 for (slot = 0; slot < nritems; slot++) {
2017 u32 item_end_expected;
2018 u64 item_data_end;
2019 enum btrfs_tree_block_status ret;
2020
2021 btrfs_item_key_to_cpu(leaf, &key, slot);
2022
2023 /* Make sure the keys are in the right order */
2024 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
2025 generic_err(leaf, slot,
2026 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
2027 prev_key.objectid, prev_key.type,
2028 prev_key.offset, key.objectid, key.type,
2029 key.offset);
2030 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2031 }
2032
2033 item_data_end = (u64)btrfs_item_offset(leaf, slot) +
2034 btrfs_item_size(leaf, slot);
2035 /*
2036 * Make sure the offset and ends are right, remember that the
2037 * item data starts at the end of the leaf and grows towards the
2038 * front.
2039 */
2040 if (slot == 0)
2041 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
2042 else
2043 item_end_expected = btrfs_item_offset(leaf,
2044 slot - 1);
2045 if (unlikely(item_data_end != item_end_expected)) {
2046 generic_err(leaf, slot,
2047 "unexpected item end, have %llu expect %u",
2048 item_data_end, item_end_expected);
2049 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2050 }
2051
2052 /*
2053 * Check to make sure that we don't point outside of the leaf,
2054 * just in case all the items are consistent to each other, but
2055 * all point outside of the leaf.
2056 */
2057 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
2058 generic_err(leaf, slot,
2059 "slot end outside of leaf, have %llu expect range [0, %u]",
2060 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
2061 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2062 }
2063
2064 /* Also check if the item pointer overlaps with btrfs item. */
2065 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
2066 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
2067 generic_err(leaf, slot,
2068 "slot overlaps with its data, item end %lu data start %lu",
2069 btrfs_item_nr_offset(leaf, slot) +
2070 sizeof(struct btrfs_item),
2071 btrfs_item_ptr_offset(leaf, slot));
2072 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2073 }
2074
2075 /* Check if the item size and content meet other criteria. */
2076 ret = check_leaf_item(leaf, &key, slot, &prev_key);
2077 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2078 return ret;
2079
2080 prev_key.objectid = key.objectid;
2081 prev_key.type = key.type;
2082 prev_key.offset = key.offset;
2083 }
2084
2085 return BTRFS_TREE_BLOCK_CLEAN;
2086 }
2087
btrfs_check_leaf(struct extent_buffer * leaf)2088 int btrfs_check_leaf(struct extent_buffer *leaf)
2089 {
2090 enum btrfs_tree_block_status ret;
2091
2092 ret = __btrfs_check_leaf(leaf);
2093 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2094 return -EUCLEAN;
2095 return 0;
2096 }
2097 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
2098
__btrfs_check_node(struct extent_buffer * node)2099 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
2100 {
2101 struct btrfs_fs_info *fs_info = node->fs_info;
2102 unsigned long nr = btrfs_header_nritems(node);
2103 struct btrfs_key key, next_key;
2104 int slot;
2105 int level = btrfs_header_level(node);
2106 u64 bytenr;
2107
2108 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) {
2109 generic_err(node, 0, "invalid flag for node, WRITTEN not set");
2110 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2111 }
2112
2113 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
2114 generic_err(node, 0,
2115 "invalid level for node, have %d expect [1, %d]",
2116 level, BTRFS_MAX_LEVEL - 1);
2117 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2118 }
2119 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
2120 btrfs_crit(fs_info,
2121 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
2122 btrfs_header_owner(node), node->start,
2123 nr == 0 ? "small" : "large", nr,
2124 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
2125 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2126 }
2127
2128 for (slot = 0; slot < nr - 1; slot++) {
2129 bytenr = btrfs_node_blockptr(node, slot);
2130 btrfs_node_key_to_cpu(node, &key, slot);
2131 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
2132
2133 if (unlikely(!bytenr)) {
2134 generic_err(node, slot,
2135 "invalid NULL node pointer");
2136 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2137 }
2138 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
2139 generic_err(node, slot,
2140 "unaligned pointer, have %llu should be aligned to %u",
2141 bytenr, fs_info->sectorsize);
2142 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2143 }
2144
2145 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
2146 generic_err(node, slot,
2147 "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
2148 key.objectid, key.type, key.offset,
2149 next_key.objectid, next_key.type,
2150 next_key.offset);
2151 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2152 }
2153 }
2154 return BTRFS_TREE_BLOCK_CLEAN;
2155 }
2156
btrfs_check_node(struct extent_buffer * node)2157 int btrfs_check_node(struct extent_buffer *node)
2158 {
2159 enum btrfs_tree_block_status ret;
2160
2161 ret = __btrfs_check_node(node);
2162 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2163 return -EUCLEAN;
2164 return 0;
2165 }
2166 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2167
btrfs_check_eb_owner(const struct extent_buffer * eb,u64 root_owner)2168 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2169 {
2170 const bool is_subvol = is_fstree(root_owner);
2171 const u64 eb_owner = btrfs_header_owner(eb);
2172
2173 /*
2174 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2175 * root.
2176 */
2177 if (btrfs_is_testing(eb->fs_info))
2178 return 0;
2179 /*
2180 * There are several call sites (backref walking, qgroup, and data
2181 * reloc) passing 0 as @root_owner, as they are not holding the
2182 * tree root. In that case, we can not do a reliable ownership check,
2183 * so just exit.
2184 */
2185 if (root_owner == 0)
2186 return 0;
2187 /*
2188 * These trees use key.offset as their owner, our callers don't have
2189 * the extra capacity to pass key.offset here. So we just skip them.
2190 */
2191 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2192 root_owner == BTRFS_TREE_RELOC_OBJECTID)
2193 return 0;
2194
2195 if (!is_subvol) {
2196 /* For non-subvolume trees, the eb owner should match root owner */
2197 if (unlikely(root_owner != eb_owner)) {
2198 btrfs_crit(eb->fs_info,
2199 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2200 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2201 root_owner, btrfs_header_bytenr(eb), eb_owner,
2202 root_owner);
2203 return -EUCLEAN;
2204 }
2205 return 0;
2206 }
2207
2208 /*
2209 * For subvolume trees, owners can mismatch, but they should all belong
2210 * to subvolume trees.
2211 */
2212 if (unlikely(is_subvol != is_fstree(eb_owner))) {
2213 btrfs_crit(eb->fs_info,
2214 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2215 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2216 root_owner, btrfs_header_bytenr(eb), eb_owner,
2217 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2218 return -EUCLEAN;
2219 }
2220 return 0;
2221 }
2222
btrfs_verify_level_key(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)2223 int btrfs_verify_level_key(struct extent_buffer *eb,
2224 const struct btrfs_tree_parent_check *check)
2225 {
2226 struct btrfs_fs_info *fs_info = eb->fs_info;
2227 int found_level;
2228 struct btrfs_key found_key;
2229 int ret;
2230
2231 found_level = btrfs_header_level(eb);
2232 if (found_level != check->level) {
2233 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2234 KERN_ERR "BTRFS: tree level check failed\n");
2235 btrfs_err(fs_info,
2236 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2237 eb->start, check->level, found_level);
2238 return -EIO;
2239 }
2240
2241 if (!check->has_first_key)
2242 return 0;
2243
2244 /*
2245 * For live tree block (new tree blocks in current transaction),
2246 * we need proper lock context to avoid race, which is impossible here.
2247 * So we only checks tree blocks which is read from disk, whose
2248 * generation <= fs_info->last_trans_committed.
2249 */
2250 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2251 return 0;
2252
2253 /* We have @first_key, so this @eb must have at least one item */
2254 if (btrfs_header_nritems(eb) == 0) {
2255 btrfs_err(fs_info,
2256 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2257 eb->start);
2258 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2259 return -EUCLEAN;
2260 }
2261
2262 if (found_level)
2263 btrfs_node_key_to_cpu(eb, &found_key, 0);
2264 else
2265 btrfs_item_key_to_cpu(eb, &found_key, 0);
2266 ret = btrfs_comp_cpu_keys(&check->first_key, &found_key);
2267
2268 if (ret) {
2269 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2270 KERN_ERR "BTRFS: tree first key check failed\n");
2271 btrfs_err(fs_info,
2272 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2273 eb->start, check->transid, check->first_key.objectid,
2274 check->first_key.type, check->first_key.offset,
2275 found_key.objectid, found_key.type,
2276 found_key.offset);
2277 }
2278 return ret;
2279 }
2280