1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71 * Compute the csum of a btree block and store the result to provided buffer.
72 */
csum_tree_block(struct extent_buffer * buf,u8 * result)73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 struct btrfs_fs_info *fs_info = buf->fs_info;
76 int num_pages;
77 u32 first_page_part;
78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 char *kaddr;
80 int i;
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
91 kaddr = folio_address(buf->folios[0]);
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 first_page_part - BTRFS_CSUM_SIZE);
98
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 kaddr = folio_address(buf->folios[i]);
107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 }
109 memset(result, 0, BTRFS_CSUM_SIZE);
110 crypto_shash_final(shash, result);
111 }
112
113 /*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,bool atomic)119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic)
120 {
121 if (!extent_buffer_uptodate(eb))
122 return 0;
123
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
127 if (atomic)
128 return -EAGAIN;
129
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
135 parent_transid, btrfs_header_generation(eb));
136 clear_extent_buffer_uptodate(eb);
137 return 0;
138 }
139 return 1;
140 }
141
btrfs_supported_super_csum(u16 csum_type)142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
146 case BTRFS_CSUM_TYPE_XXHASH:
147 case BTRFS_CSUM_TYPE_SHA256:
148 case BTRFS_CSUM_TYPE_BLAKE2:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 /*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
161 {
162 char result[BTRFS_CSUM_SIZE];
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
166
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 return 1;
177
178 return 0;
179 }
180
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183 {
184 struct btrfs_fs_info *fs_info = eb->fs_info;
185 int ret = 0;
186
187 if (sb_rdonly(fs_info->sb))
188 return -EROFS;
189
190 for (int i = 0; i < num_extent_folios(eb); i++) {
191 struct folio *folio = eb->folios[i];
192 u64 start = max_t(u64, eb->start, folio_pos(folio));
193 u64 end = min_t(u64, eb->start + eb->len,
194 folio_pos(folio) + eb->folio_size);
195 u32 len = end - start;
196 phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) +
197 offset_in_folio(folio, start);
198
199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, start,
200 paddr, mirror_num);
201 if (ret)
202 break;
203 }
204
205 return ret;
206 }
207
208 /*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
211 *
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
214 */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 const struct btrfs_tree_parent_check *check)
217 {
218 struct btrfs_fs_info *fs_info = eb->fs_info;
219 int failed = 0;
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
223 int failed_mirror = 0;
224
225 ASSERT(check);
226
227 while (1) {
228 ret = read_extent_buffer_pages(eb, mirror_num, check);
229 if (!ret)
230 break;
231
232 num_copies = btrfs_num_copies(fs_info,
233 eb->start, eb->len);
234 if (num_copies == 1)
235 break;
236
237 if (!failed_mirror) {
238 failed = 1;
239 failed_mirror = eb->read_mirror;
240 }
241
242 mirror_num++;
243 if (mirror_num == failed_mirror)
244 mirror_num++;
245
246 if (mirror_num > num_copies)
247 break;
248 }
249
250 if (failed && !ret && failed_mirror)
251 btrfs_repair_eb_io_failure(eb, failed_mirror);
252
253 return ret;
254 }
255
256 /*
257 * Checksum a dirty tree block before IO.
258 */
btree_csum_one_bio(struct btrfs_bio * bbio)259 int btree_csum_one_bio(struct btrfs_bio *bbio)
260 {
261 struct extent_buffer *eb = bbio->private;
262 struct btrfs_fs_info *fs_info = eb->fs_info;
263 u64 found_start = btrfs_header_bytenr(eb);
264 u64 last_trans;
265 u8 result[BTRFS_CSUM_SIZE];
266 int ret;
267
268 /* Btree blocks are always contiguous on disk. */
269 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
270 return -EIO;
271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
272 return -EIO;
273
274 /*
275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
276 * checksum it but zero-out its content. This is done to preserve
277 * ordering of I/O without unnecessarily writing out data.
278 */
279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
280 memzero_extent_buffer(eb, 0, eb->len);
281 return 0;
282 }
283
284 if (WARN_ON_ONCE(found_start != eb->start))
285 return -EIO;
286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
287 return -EIO;
288
289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
290 offsetof(struct btrfs_header, fsid),
291 BTRFS_FSID_SIZE) == 0);
292 csum_tree_block(eb, result);
293
294 if (btrfs_header_level(eb))
295 ret = btrfs_check_node(eb);
296 else
297 ret = btrfs_check_leaf(eb);
298
299 if (ret < 0)
300 goto error;
301
302 /*
303 * Also check the generation, the eb reached here must be newer than
304 * last committed. Or something seriously wrong happened.
305 */
306 last_trans = btrfs_get_last_trans_committed(fs_info);
307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
308 ret = -EUCLEAN;
309 btrfs_err(fs_info,
310 "block=%llu bad generation, have %llu expect > %llu",
311 eb->start, btrfs_header_generation(eb), last_trans);
312 goto error;
313 }
314 write_extent_buffer(eb, result, 0, fs_info->csum_size);
315 return 0;
316
317 error:
318 btrfs_print_tree(eb, 0);
319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
320 eb->start);
321 /*
322 * Be noisy if this is an extent buffer from a log tree. We don't abort
323 * a transaction in case there's a bad log tree extent buffer, we just
324 * fallback to a transaction commit. Still we want to know when there is
325 * a bad log tree extent buffer, as that may signal a bug somewhere.
326 */
327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
329 return ret;
330 }
331
check_tree_block_fsid(struct extent_buffer * eb)332 static bool check_tree_block_fsid(struct extent_buffer *eb)
333 {
334 struct btrfs_fs_info *fs_info = eb->fs_info;
335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
336 u8 fsid[BTRFS_FSID_SIZE];
337
338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
339 BTRFS_FSID_SIZE);
340
341 /*
342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
343 * This is then overwritten by metadata_uuid if it is present in the
344 * device_list_add(). The same true for a seed device as well. So use of
345 * fs_devices::metadata_uuid is appropriate here.
346 */
347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
348 return false;
349
350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
352 return false;
353
354 return true;
355 }
356
357 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)358 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
359 const struct btrfs_tree_parent_check *check)
360 {
361 struct btrfs_fs_info *fs_info = eb->fs_info;
362 u64 found_start;
363 const u32 csum_size = fs_info->csum_size;
364 u8 found_level;
365 u8 result[BTRFS_CSUM_SIZE];
366 const u8 *header_csum;
367 int ret = 0;
368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
369
370 ASSERT(check);
371
372 found_start = btrfs_header_bytenr(eb);
373 if (unlikely(found_start != eb->start)) {
374 btrfs_err_rl(fs_info,
375 "bad tree block start, mirror %u want %llu have %llu",
376 eb->read_mirror, eb->start, found_start);
377 ret = -EIO;
378 goto out;
379 }
380 if (unlikely(check_tree_block_fsid(eb))) {
381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
382 eb->start, eb->read_mirror);
383 ret = -EIO;
384 goto out;
385 }
386 found_level = btrfs_header_level(eb);
387 if (unlikely(found_level >= BTRFS_MAX_LEVEL)) {
388 btrfs_err(fs_info,
389 "bad tree block level, mirror %u level %d on logical %llu",
390 eb->read_mirror, btrfs_header_level(eb), eb->start);
391 ret = -EIO;
392 goto out;
393 }
394
395 csum_tree_block(eb, result);
396 header_csum = folio_address(eb->folios[0]) +
397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
398
399 if (memcmp(result, header_csum, csum_size) != 0) {
400 btrfs_warn_rl(fs_info,
401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
402 eb->start, eb->read_mirror,
403 CSUM_FMT_VALUE(csum_size, header_csum),
404 CSUM_FMT_VALUE(csum_size, result),
405 btrfs_header_level(eb),
406 ignore_csum ? ", ignored" : "");
407 if (unlikely(!ignore_csum)) {
408 ret = -EUCLEAN;
409 goto out;
410 }
411 }
412
413 if (unlikely(found_level != check->level)) {
414 btrfs_err(fs_info,
415 "level verify failed on logical %llu mirror %u wanted %u found %u",
416 eb->start, eb->read_mirror, check->level, found_level);
417 ret = -EIO;
418 goto out;
419 }
420 if (unlikely(check->transid &&
421 btrfs_header_generation(eb) != check->transid)) {
422 btrfs_err_rl(eb->fs_info,
423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
424 eb->start, eb->read_mirror, check->transid,
425 btrfs_header_generation(eb));
426 ret = -EIO;
427 goto out;
428 }
429 if (check->has_first_key) {
430 const struct btrfs_key *expect_key = &check->first_key;
431 struct btrfs_key found_key;
432
433 if (found_level)
434 btrfs_node_key_to_cpu(eb, &found_key, 0);
435 else
436 btrfs_item_key_to_cpu(eb, &found_key, 0);
437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
438 btrfs_err(fs_info,
439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440 eb->start, check->transid,
441 expect_key->objectid,
442 expect_key->type, expect_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
445 ret = -EUCLEAN;
446 goto out;
447 }
448 }
449 if (check->owner_root) {
450 ret = btrfs_check_eb_owner(eb, check->owner_root);
451 if (ret < 0)
452 goto out;
453 }
454
455 /* If this is a leaf block and it is corrupt, just return -EIO. */
456 if (found_level == 0 && btrfs_check_leaf(eb))
457 ret = -EIO;
458
459 if (found_level > 0 && btrfs_check_node(eb))
460 ret = -EIO;
461
462 if (ret)
463 btrfs_err(fs_info,
464 "read time tree block corruption detected on logical %llu mirror %u",
465 eb->start, eb->read_mirror);
466 out:
467 return ret;
468 }
469
470 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)471 static int btree_migrate_folio(struct address_space *mapping,
472 struct folio *dst, struct folio *src, enum migrate_mode mode)
473 {
474 /*
475 * we can't safely write a btree page from here,
476 * we haven't done the locking hook
477 */
478 if (folio_test_dirty(src))
479 return -EAGAIN;
480 /*
481 * Buffers may be managed in a filesystem specific way.
482 * We must have no buffers or drop them.
483 */
484 if (folio_get_private(src) &&
485 !filemap_release_folio(src, GFP_KERNEL))
486 return -EAGAIN;
487 return migrate_folio(mapping, dst, src, mode);
488 }
489 #else
490 #define btree_migrate_folio NULL
491 #endif
492
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)493 static int btree_writepages(struct address_space *mapping,
494 struct writeback_control *wbc)
495 {
496 int ret;
497
498 if (wbc->sync_mode == WB_SYNC_NONE) {
499 struct btrfs_fs_info *fs_info;
500
501 if (wbc->for_kupdate)
502 return 0;
503
504 fs_info = inode_to_fs_info(mapping->host);
505 /* this is a bit racy, but that's ok */
506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
507 BTRFS_DIRTY_METADATA_THRESH,
508 fs_info->dirty_metadata_batch);
509 if (ret < 0)
510 return 0;
511 }
512 return btree_write_cache_pages(mapping, wbc);
513 }
514
btree_release_folio(struct folio * folio,gfp_t gfp_flags)515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
516 {
517 if (folio_test_writeback(folio) || folio_test_dirty(folio))
518 return false;
519
520 return try_release_extent_buffer(folio);
521 }
522
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)523 static void btree_invalidate_folio(struct folio *folio, size_t offset,
524 size_t length)
525 {
526 struct extent_io_tree *tree;
527
528 tree = &folio_to_inode(folio)->io_tree;
529 extent_invalidate_folio(tree, folio, offset);
530 btree_release_folio(folio, GFP_NOFS);
531 if (folio_get_private(folio)) {
532 btrfs_warn(folio_to_fs_info(folio),
533 "folio private not zero on folio %llu",
534 (unsigned long long)folio_pos(folio));
535 folio_detach_private(folio);
536 }
537 }
538
539 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)540 static bool btree_dirty_folio(struct address_space *mapping,
541 struct folio *folio)
542 {
543 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
544 struct btrfs_subpage_info *spi = fs_info->subpage_info;
545 struct btrfs_subpage *subpage;
546 struct extent_buffer *eb;
547 int cur_bit = 0;
548 u64 page_start = folio_pos(folio);
549
550 if (fs_info->sectorsize == PAGE_SIZE) {
551 eb = folio_get_private(folio);
552 BUG_ON(!eb);
553 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
554 BUG_ON(!atomic_read(&eb->refs));
555 btrfs_assert_tree_write_locked(eb);
556 return filemap_dirty_folio(mapping, folio);
557 }
558
559 ASSERT(spi);
560 subpage = folio_get_private(folio);
561
562 for (cur_bit = spi->dirty_offset;
563 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
564 cur_bit++) {
565 unsigned long flags;
566 u64 cur;
567
568 spin_lock_irqsave(&subpage->lock, flags);
569 if (!test_bit(cur_bit, subpage->bitmaps)) {
570 spin_unlock_irqrestore(&subpage->lock, flags);
571 continue;
572 }
573 spin_unlock_irqrestore(&subpage->lock, flags);
574 cur = page_start + cur_bit * fs_info->sectorsize;
575
576 eb = find_extent_buffer(fs_info, cur);
577 ASSERT(eb);
578 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
579 ASSERT(atomic_read(&eb->refs));
580 btrfs_assert_tree_write_locked(eb);
581 free_extent_buffer(eb);
582
583 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
584 }
585 return filemap_dirty_folio(mapping, folio);
586 }
587 #else
588 #define btree_dirty_folio filemap_dirty_folio
589 #endif
590
591 static const struct address_space_operations btree_aops = {
592 .writepages = btree_writepages,
593 .release_folio = btree_release_folio,
594 .invalidate_folio = btree_invalidate_folio,
595 .migrate_folio = btree_migrate_folio,
596 .dirty_folio = btree_dirty_folio,
597 };
598
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)599 struct extent_buffer *btrfs_find_create_tree_block(
600 struct btrfs_fs_info *fs_info,
601 u64 bytenr, u64 owner_root,
602 int level)
603 {
604 if (btrfs_is_testing(fs_info))
605 return alloc_test_extent_buffer(fs_info, bytenr);
606 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
607 }
608
609 /*
610 * Read tree block at logical address @bytenr and do variant basic but critical
611 * verification.
612 *
613 * @check: expected tree parentness check, see comments of the
614 * structure for details.
615 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
617 struct btrfs_tree_parent_check *check)
618 {
619 struct extent_buffer *buf = NULL;
620 int ret;
621
622 ASSERT(check);
623
624 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
625 check->level);
626 if (IS_ERR(buf))
627 return buf;
628
629 ret = btrfs_read_extent_buffer(buf, check);
630 if (ret) {
631 free_extent_buffer_stale(buf);
632 return ERR_PTR(ret);
633 }
634 return buf;
635
636 }
637
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
639 u64 objectid, gfp_t flags)
640 {
641 struct btrfs_root *root;
642
643 root = kzalloc(sizeof(*root), flags);
644 if (!root)
645 return NULL;
646
647 memset(&root->root_key, 0, sizeof(root->root_key));
648 memset(&root->root_item, 0, sizeof(root->root_item));
649 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
650 root->fs_info = fs_info;
651 root->root_key.objectid = objectid;
652 root->node = NULL;
653 root->commit_root = NULL;
654 root->state = 0;
655 RB_CLEAR_NODE(&root->rb_node);
656
657 btrfs_set_root_last_trans(root, 0);
658 root->free_objectid = 0;
659 root->nr_delalloc_inodes = 0;
660 root->nr_ordered_extents = 0;
661 xa_init(&root->inodes);
662 xa_init(&root->delayed_nodes);
663
664 btrfs_init_root_block_rsv(root);
665
666 INIT_LIST_HEAD(&root->dirty_list);
667 INIT_LIST_HEAD(&root->root_list);
668 INIT_LIST_HEAD(&root->delalloc_inodes);
669 INIT_LIST_HEAD(&root->delalloc_root);
670 INIT_LIST_HEAD(&root->ordered_extents);
671 INIT_LIST_HEAD(&root->ordered_root);
672 INIT_LIST_HEAD(&root->reloc_dirty_list);
673 spin_lock_init(&root->delalloc_lock);
674 spin_lock_init(&root->ordered_extent_lock);
675 spin_lock_init(&root->accounting_lock);
676 spin_lock_init(&root->qgroup_meta_rsv_lock);
677 mutex_init(&root->objectid_mutex);
678 mutex_init(&root->log_mutex);
679 mutex_init(&root->ordered_extent_mutex);
680 mutex_init(&root->delalloc_mutex);
681 init_waitqueue_head(&root->qgroup_flush_wait);
682 init_waitqueue_head(&root->log_writer_wait);
683 init_waitqueue_head(&root->log_commit_wait[0]);
684 init_waitqueue_head(&root->log_commit_wait[1]);
685 INIT_LIST_HEAD(&root->log_ctxs[0]);
686 INIT_LIST_HEAD(&root->log_ctxs[1]);
687 atomic_set(&root->log_commit[0], 0);
688 atomic_set(&root->log_commit[1], 0);
689 atomic_set(&root->log_writers, 0);
690 atomic_set(&root->log_batch, 0);
691 refcount_set(&root->refs, 1);
692 atomic_set(&root->snapshot_force_cow, 0);
693 atomic_set(&root->nr_swapfiles, 0);
694 btrfs_set_root_log_transid(root, 0);
695 root->log_transid_committed = -1;
696 btrfs_set_root_last_log_commit(root, 0);
697 root->anon_dev = 0;
698 if (!btrfs_is_testing(fs_info)) {
699 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
700 IO_TREE_ROOT_DIRTY_LOG_PAGES);
701 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
702 IO_TREE_LOG_CSUM_RANGE);
703 }
704
705 spin_lock_init(&root->root_item_lock);
706 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
707 #ifdef CONFIG_BTRFS_DEBUG
708 INIT_LIST_HEAD(&root->leak_list);
709 spin_lock(&fs_info->fs_roots_radix_lock);
710 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
711 spin_unlock(&fs_info->fs_roots_radix_lock);
712 #endif
713
714 return root;
715 }
716
717 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
718 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)719 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
720 {
721 struct btrfs_root *root;
722
723 if (!fs_info)
724 return ERR_PTR(-EINVAL);
725
726 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
727 if (!root)
728 return ERR_PTR(-ENOMEM);
729
730 /* We don't use the stripesize in selftest, set it as sectorsize */
731 root->alloc_bytenr = 0;
732
733 return root;
734 }
735 #endif
736
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)737 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
738 {
739 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
740 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
741
742 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
743 }
744
global_root_key_cmp(const void * k,const struct rb_node * node)745 static int global_root_key_cmp(const void *k, const struct rb_node *node)
746 {
747 const struct btrfs_key *key = k;
748 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
749
750 return btrfs_comp_cpu_keys(key, &root->root_key);
751 }
752
btrfs_global_root_insert(struct btrfs_root * root)753 int btrfs_global_root_insert(struct btrfs_root *root)
754 {
755 struct btrfs_fs_info *fs_info = root->fs_info;
756 struct rb_node *tmp;
757 int ret = 0;
758
759 write_lock(&fs_info->global_root_lock);
760 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
761 write_unlock(&fs_info->global_root_lock);
762
763 if (tmp) {
764 ret = -EEXIST;
765 btrfs_warn(fs_info, "global root %llu %llu already exists",
766 btrfs_root_id(root), root->root_key.offset);
767 }
768 return ret;
769 }
770
btrfs_global_root_delete(struct btrfs_root * root)771 void btrfs_global_root_delete(struct btrfs_root *root)
772 {
773 struct btrfs_fs_info *fs_info = root->fs_info;
774
775 write_lock(&fs_info->global_root_lock);
776 rb_erase(&root->rb_node, &fs_info->global_root_tree);
777 write_unlock(&fs_info->global_root_lock);
778 }
779
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)780 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
781 struct btrfs_key *key)
782 {
783 struct rb_node *node;
784 struct btrfs_root *root = NULL;
785
786 read_lock(&fs_info->global_root_lock);
787 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
788 if (node)
789 root = container_of(node, struct btrfs_root, rb_node);
790 read_unlock(&fs_info->global_root_lock);
791
792 return root;
793 }
794
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)795 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
796 {
797 struct btrfs_block_group *block_group;
798 u64 ret;
799
800 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
801 return 0;
802
803 if (bytenr)
804 block_group = btrfs_lookup_block_group(fs_info, bytenr);
805 else
806 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
807 ASSERT(block_group);
808 if (!block_group)
809 return 0;
810 ret = block_group->global_root_id;
811 btrfs_put_block_group(block_group);
812
813 return ret;
814 }
815
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)816 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
817 {
818 struct btrfs_key key = {
819 .objectid = BTRFS_CSUM_TREE_OBJECTID,
820 .type = BTRFS_ROOT_ITEM_KEY,
821 .offset = btrfs_global_root_id(fs_info, bytenr),
822 };
823
824 return btrfs_global_root(fs_info, &key);
825 }
826
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)827 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828 {
829 struct btrfs_key key = {
830 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
831 .type = BTRFS_ROOT_ITEM_KEY,
832 .offset = btrfs_global_root_id(fs_info, bytenr),
833 };
834
835 return btrfs_global_root(fs_info, &key);
836 }
837
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)838 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
839 u64 objectid)
840 {
841 struct btrfs_fs_info *fs_info = trans->fs_info;
842 struct extent_buffer *leaf;
843 struct btrfs_root *tree_root = fs_info->tree_root;
844 struct btrfs_root *root;
845 struct btrfs_key key;
846 unsigned int nofs_flag;
847 int ret = 0;
848
849 /*
850 * We're holding a transaction handle, so use a NOFS memory allocation
851 * context to avoid deadlock if reclaim happens.
852 */
853 nofs_flag = memalloc_nofs_save();
854 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
855 memalloc_nofs_restore(nofs_flag);
856 if (!root)
857 return ERR_PTR(-ENOMEM);
858
859 root->root_key.objectid = objectid;
860 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
861 root->root_key.offset = 0;
862
863 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
864 0, BTRFS_NESTING_NORMAL);
865 if (IS_ERR(leaf)) {
866 ret = PTR_ERR(leaf);
867 leaf = NULL;
868 goto fail;
869 }
870
871 root->node = leaf;
872 btrfs_mark_buffer_dirty(trans, leaf);
873
874 root->commit_root = btrfs_root_node(root);
875 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
876
877 btrfs_set_root_flags(&root->root_item, 0);
878 btrfs_set_root_limit(&root->root_item, 0);
879 btrfs_set_root_bytenr(&root->root_item, leaf->start);
880 btrfs_set_root_generation(&root->root_item, trans->transid);
881 btrfs_set_root_level(&root->root_item, 0);
882 btrfs_set_root_refs(&root->root_item, 1);
883 btrfs_set_root_used(&root->root_item, leaf->len);
884 btrfs_set_root_last_snapshot(&root->root_item, 0);
885 btrfs_set_root_dirid(&root->root_item, 0);
886 if (btrfs_is_fstree(objectid))
887 generate_random_guid(root->root_item.uuid);
888 else
889 export_guid(root->root_item.uuid, &guid_null);
890 btrfs_set_root_drop_level(&root->root_item, 0);
891
892 btrfs_tree_unlock(leaf);
893
894 key.objectid = objectid;
895 key.type = BTRFS_ROOT_ITEM_KEY;
896 key.offset = 0;
897 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
898 if (ret)
899 goto fail;
900
901 return root;
902
903 fail:
904 btrfs_put_root(root);
905
906 return ERR_PTR(ret);
907 }
908
alloc_log_tree(struct btrfs_fs_info * fs_info)909 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
910 {
911 struct btrfs_root *root;
912
913 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
914 if (!root)
915 return ERR_PTR(-ENOMEM);
916
917 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
918 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
919 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
920
921 return root;
922 }
923
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)924 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
925 struct btrfs_root *root)
926 {
927 struct extent_buffer *leaf;
928
929 /*
930 * DON'T set SHAREABLE bit for log trees.
931 *
932 * Log trees are not exposed to user space thus can't be snapshotted,
933 * and they go away before a real commit is actually done.
934 *
935 * They do store pointers to file data extents, and those reference
936 * counts still get updated (along with back refs to the log tree).
937 */
938
939 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
940 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
941 if (IS_ERR(leaf))
942 return PTR_ERR(leaf);
943
944 root->node = leaf;
945
946 btrfs_mark_buffer_dirty(trans, root->node);
947 btrfs_tree_unlock(root->node);
948
949 return 0;
950 }
951
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)952 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
953 struct btrfs_fs_info *fs_info)
954 {
955 struct btrfs_root *log_root;
956
957 log_root = alloc_log_tree(fs_info);
958 if (IS_ERR(log_root))
959 return PTR_ERR(log_root);
960
961 if (!btrfs_is_zoned(fs_info)) {
962 int ret = btrfs_alloc_log_tree_node(trans, log_root);
963
964 if (ret) {
965 btrfs_put_root(log_root);
966 return ret;
967 }
968 }
969
970 WARN_ON(fs_info->log_root_tree);
971 fs_info->log_root_tree = log_root;
972 return 0;
973 }
974
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)975 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
976 struct btrfs_root *root)
977 {
978 struct btrfs_fs_info *fs_info = root->fs_info;
979 struct btrfs_root *log_root;
980 struct btrfs_inode_item *inode_item;
981 int ret;
982
983 log_root = alloc_log_tree(fs_info);
984 if (IS_ERR(log_root))
985 return PTR_ERR(log_root);
986
987 ret = btrfs_alloc_log_tree_node(trans, log_root);
988 if (ret) {
989 btrfs_put_root(log_root);
990 return ret;
991 }
992
993 btrfs_set_root_last_trans(log_root, trans->transid);
994 log_root->root_key.offset = btrfs_root_id(root);
995
996 inode_item = &log_root->root_item.inode;
997 btrfs_set_stack_inode_generation(inode_item, 1);
998 btrfs_set_stack_inode_size(inode_item, 3);
999 btrfs_set_stack_inode_nlink(inode_item, 1);
1000 btrfs_set_stack_inode_nbytes(inode_item,
1001 fs_info->nodesize);
1002 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1003
1004 btrfs_set_root_node(&log_root->root_item, log_root->node);
1005
1006 WARN_ON(root->log_root);
1007 root->log_root = log_root;
1008 btrfs_set_root_log_transid(root, 0);
1009 root->log_transid_committed = -1;
1010 btrfs_set_root_last_log_commit(root, 0);
1011 return 0;
1012 }
1013
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1014 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1015 struct btrfs_path *path,
1016 const struct btrfs_key *key)
1017 {
1018 struct btrfs_root *root;
1019 struct btrfs_tree_parent_check check = { 0 };
1020 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1021 u64 generation;
1022 int ret;
1023 int level;
1024
1025 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1026 if (!root)
1027 return ERR_PTR(-ENOMEM);
1028
1029 ret = btrfs_find_root(tree_root, key, path,
1030 &root->root_item, &root->root_key);
1031 if (ret) {
1032 if (ret > 0)
1033 ret = -ENOENT;
1034 goto fail;
1035 }
1036
1037 generation = btrfs_root_generation(&root->root_item);
1038 level = btrfs_root_level(&root->root_item);
1039 check.level = level;
1040 check.transid = generation;
1041 check.owner_root = key->objectid;
1042 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1043 &check);
1044 if (IS_ERR(root->node)) {
1045 ret = PTR_ERR(root->node);
1046 root->node = NULL;
1047 goto fail;
1048 }
1049 if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) {
1050 ret = -EIO;
1051 goto fail;
1052 }
1053
1054 /*
1055 * For real fs, and not log/reloc trees, root owner must
1056 * match its root node owner
1057 */
1058 if (unlikely(!btrfs_is_testing(fs_info) &&
1059 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1060 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1061 btrfs_root_id(root) != btrfs_header_owner(root->node))) {
1062 btrfs_crit(fs_info,
1063 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1064 btrfs_root_id(root), root->node->start,
1065 btrfs_header_owner(root->node),
1066 btrfs_root_id(root));
1067 ret = -EUCLEAN;
1068 goto fail;
1069 }
1070 root->commit_root = btrfs_root_node(root);
1071 return root;
1072 fail:
1073 btrfs_put_root(root);
1074 return ERR_PTR(ret);
1075 }
1076
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1077 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1078 const struct btrfs_key *key)
1079 {
1080 struct btrfs_root *root;
1081 BTRFS_PATH_AUTO_FREE(path);
1082
1083 path = btrfs_alloc_path();
1084 if (!path)
1085 return ERR_PTR(-ENOMEM);
1086 root = read_tree_root_path(tree_root, path, key);
1087
1088 return root;
1089 }
1090
1091 /*
1092 * Initialize subvolume root in-memory structure.
1093 *
1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1095 *
1096 * In case of failure the caller is responsible to call btrfs_free_fs_root()
1097 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1098 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1099 {
1100 int ret;
1101
1102 btrfs_drew_lock_init(&root->snapshot_lock);
1103
1104 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1105 !btrfs_is_data_reloc_root(root) &&
1106 btrfs_is_fstree(btrfs_root_id(root))) {
1107 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1108 btrfs_check_and_init_root_item(&root->root_item);
1109 }
1110
1111 /*
1112 * Don't assign anonymous block device to roots that are not exposed to
1113 * userspace, the id pool is limited to 1M
1114 */
1115 if (btrfs_is_fstree(btrfs_root_id(root)) &&
1116 btrfs_root_refs(&root->root_item) > 0) {
1117 if (!anon_dev) {
1118 ret = get_anon_bdev(&root->anon_dev);
1119 if (ret)
1120 return ret;
1121 } else {
1122 root->anon_dev = anon_dev;
1123 }
1124 }
1125
1126 mutex_lock(&root->objectid_mutex);
1127 ret = btrfs_init_root_free_objectid(root);
1128 if (ret) {
1129 mutex_unlock(&root->objectid_mutex);
1130 return ret;
1131 }
1132
1133 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1134
1135 mutex_unlock(&root->objectid_mutex);
1136
1137 return 0;
1138 }
1139
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1140 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1141 u64 root_id)
1142 {
1143 struct btrfs_root *root;
1144
1145 spin_lock(&fs_info->fs_roots_radix_lock);
1146 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1147 (unsigned long)root_id);
1148 root = btrfs_grab_root(root);
1149 spin_unlock(&fs_info->fs_roots_radix_lock);
1150 return root;
1151 }
1152
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1153 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1154 u64 objectid)
1155 {
1156 struct btrfs_key key = {
1157 .objectid = objectid,
1158 .type = BTRFS_ROOT_ITEM_KEY,
1159 .offset = 0,
1160 };
1161
1162 switch (objectid) {
1163 case BTRFS_ROOT_TREE_OBJECTID:
1164 return btrfs_grab_root(fs_info->tree_root);
1165 case BTRFS_EXTENT_TREE_OBJECTID:
1166 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1167 case BTRFS_CHUNK_TREE_OBJECTID:
1168 return btrfs_grab_root(fs_info->chunk_root);
1169 case BTRFS_DEV_TREE_OBJECTID:
1170 return btrfs_grab_root(fs_info->dev_root);
1171 case BTRFS_CSUM_TREE_OBJECTID:
1172 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1173 case BTRFS_QUOTA_TREE_OBJECTID:
1174 return btrfs_grab_root(fs_info->quota_root);
1175 case BTRFS_UUID_TREE_OBJECTID:
1176 return btrfs_grab_root(fs_info->uuid_root);
1177 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1178 return btrfs_grab_root(fs_info->block_group_root);
1179 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1180 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1181 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1182 return btrfs_grab_root(fs_info->stripe_root);
1183 default:
1184 return NULL;
1185 }
1186 }
1187
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1188 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1189 struct btrfs_root *root)
1190 {
1191 int ret;
1192
1193 ret = radix_tree_preload(GFP_NOFS);
1194 if (ret)
1195 return ret;
1196
1197 spin_lock(&fs_info->fs_roots_radix_lock);
1198 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1199 (unsigned long)btrfs_root_id(root),
1200 root);
1201 if (ret == 0) {
1202 btrfs_grab_root(root);
1203 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1204 }
1205 spin_unlock(&fs_info->fs_roots_radix_lock);
1206 radix_tree_preload_end();
1207
1208 return ret;
1209 }
1210
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1211 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1212 {
1213 #ifdef CONFIG_BTRFS_DEBUG
1214 struct btrfs_root *root;
1215
1216 while (!list_empty(&fs_info->allocated_roots)) {
1217 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1218
1219 root = list_first_entry(&fs_info->allocated_roots,
1220 struct btrfs_root, leak_list);
1221 btrfs_err(fs_info, "leaked root %s refcount %d",
1222 btrfs_root_name(&root->root_key, buf),
1223 refcount_read(&root->refs));
1224 WARN_ON_ONCE(1);
1225 while (refcount_read(&root->refs) > 1)
1226 btrfs_put_root(root);
1227 btrfs_put_root(root);
1228 }
1229 #endif
1230 }
1231
free_global_roots(struct btrfs_fs_info * fs_info)1232 static void free_global_roots(struct btrfs_fs_info *fs_info)
1233 {
1234 struct btrfs_root *root;
1235 struct rb_node *node;
1236
1237 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1238 root = rb_entry(node, struct btrfs_root, rb_node);
1239 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1240 btrfs_put_root(root);
1241 }
1242 }
1243
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1244 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1245 {
1246 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1247
1248 if (fs_info->fs_devices)
1249 btrfs_close_devices(fs_info->fs_devices);
1250 btrfs_free_compress_wsm(fs_info);
1251 percpu_counter_destroy(&fs_info->stats_read_blocks);
1252 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1253 percpu_counter_destroy(&fs_info->delalloc_bytes);
1254 percpu_counter_destroy(&fs_info->ordered_bytes);
1255 if (percpu_counter_initialized(em_counter))
1256 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1257 percpu_counter_destroy(em_counter);
1258 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1259 btrfs_free_csum_hash(fs_info);
1260 btrfs_free_stripe_hash_table(fs_info);
1261 btrfs_free_ref_cache(fs_info);
1262 kfree(fs_info->balance_ctl);
1263 kfree(fs_info->delayed_root);
1264 free_global_roots(fs_info);
1265 btrfs_put_root(fs_info->tree_root);
1266 btrfs_put_root(fs_info->chunk_root);
1267 btrfs_put_root(fs_info->dev_root);
1268 btrfs_put_root(fs_info->quota_root);
1269 btrfs_put_root(fs_info->uuid_root);
1270 btrfs_put_root(fs_info->fs_root);
1271 btrfs_put_root(fs_info->data_reloc_root);
1272 btrfs_put_root(fs_info->block_group_root);
1273 btrfs_put_root(fs_info->stripe_root);
1274 btrfs_check_leaked_roots(fs_info);
1275 btrfs_extent_buffer_leak_debug_check(fs_info);
1276 kfree(fs_info->super_copy);
1277 kfree(fs_info->super_for_commit);
1278 kvfree(fs_info);
1279 }
1280
1281
1282 /*
1283 * Get an in-memory reference of a root structure.
1284 *
1285 * For essential trees like root/extent tree, we grab it from fs_info directly.
1286 * For subvolume trees, we check the cached filesystem roots first. If not
1287 * found, then read it from disk and add it to cached fs roots.
1288 *
1289 * Caller should release the root by calling btrfs_put_root() after the usage.
1290 *
1291 * NOTE: Reloc and log trees can't be read by this function as they share the
1292 * same root objectid.
1293 *
1294 * @objectid: root id
1295 * @anon_dev: preallocated anonymous block device number for new roots,
1296 * pass NULL for a new allocation.
1297 * @check_ref: whether to check root item references, If true, return -ENOENT
1298 * for orphan roots
1299 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1300 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1301 u64 objectid, dev_t *anon_dev,
1302 bool check_ref)
1303 {
1304 struct btrfs_root *root;
1305 struct btrfs_path *path;
1306 struct btrfs_key key;
1307 int ret;
1308
1309 root = btrfs_get_global_root(fs_info, objectid);
1310 if (root)
1311 return root;
1312
1313 /*
1314 * If we're called for non-subvolume trees, and above function didn't
1315 * find one, do not try to read it from disk.
1316 *
1317 * This is namely for free-space-tree and quota tree, which can change
1318 * at runtime and should only be grabbed from fs_info.
1319 */
1320 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1321 return ERR_PTR(-ENOENT);
1322 again:
1323 root = btrfs_lookup_fs_root(fs_info, objectid);
1324 if (root) {
1325 /*
1326 * Some other caller may have read out the newly inserted
1327 * subvolume already (for things like backref walk etc). Not
1328 * that common but still possible. In that case, we just need
1329 * to free the anon_dev.
1330 */
1331 if (unlikely(anon_dev && *anon_dev)) {
1332 free_anon_bdev(*anon_dev);
1333 *anon_dev = 0;
1334 }
1335
1336 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1337 btrfs_put_root(root);
1338 return ERR_PTR(-ENOENT);
1339 }
1340 return root;
1341 }
1342
1343 key.objectid = objectid;
1344 key.type = BTRFS_ROOT_ITEM_KEY;
1345 key.offset = (u64)-1;
1346 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1347 if (IS_ERR(root))
1348 return root;
1349
1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351 ret = -ENOENT;
1352 goto fail;
1353 }
1354
1355 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1356 if (ret)
1357 goto fail;
1358
1359 path = btrfs_alloc_path();
1360 if (!path) {
1361 ret = -ENOMEM;
1362 goto fail;
1363 }
1364 key.objectid = BTRFS_ORPHAN_OBJECTID;
1365 key.type = BTRFS_ORPHAN_ITEM_KEY;
1366 key.offset = objectid;
1367
1368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1369 btrfs_free_path(path);
1370 if (ret < 0)
1371 goto fail;
1372 if (ret == 0)
1373 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1374
1375 ret = btrfs_insert_fs_root(fs_info, root);
1376 if (ret) {
1377 if (ret == -EEXIST) {
1378 btrfs_put_root(root);
1379 goto again;
1380 }
1381 goto fail;
1382 }
1383 return root;
1384 fail:
1385 /*
1386 * If our caller provided us an anonymous device, then it's his
1387 * responsibility to free it in case we fail. So we have to set our
1388 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1389 * and once again by our caller.
1390 */
1391 if (anon_dev && *anon_dev)
1392 root->anon_dev = 0;
1393 btrfs_put_root(root);
1394 return ERR_PTR(ret);
1395 }
1396
1397 /*
1398 * Get in-memory reference of a root structure
1399 *
1400 * @objectid: tree objectid
1401 * @check_ref: if set, verify that the tree exists and the item has at least
1402 * one reference
1403 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1404 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1405 u64 objectid, bool check_ref)
1406 {
1407 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1408 }
1409
1410 /*
1411 * Get in-memory reference of a root structure, created as new, optionally pass
1412 * the anonymous block device id
1413 *
1414 * @objectid: tree objectid
1415 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1416 * parameter value if not NULL
1417 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1418 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1419 u64 objectid, dev_t *anon_dev)
1420 {
1421 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1422 }
1423
1424 /*
1425 * Return a root for the given objectid.
1426 *
1427 * @fs_info: the fs_info
1428 * @objectid: the objectid we need to lookup
1429 *
1430 * This is exclusively used for backref walking, and exists specifically because
1431 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1432 * creation time, which means we may have to read the tree_root in order to look
1433 * up a fs root that is not in memory. If the root is not in memory we will
1434 * read the tree root commit root and look up the fs root from there. This is a
1435 * temporary root, it will not be inserted into the radix tree as it doesn't
1436 * have the most uptodate information, it'll simply be discarded once the
1437 * backref code is finished using the root.
1438 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1439 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1440 struct btrfs_path *path,
1441 u64 objectid)
1442 {
1443 struct btrfs_root *root;
1444 struct btrfs_key key;
1445
1446 ASSERT(path->search_commit_root && path->skip_locking);
1447
1448 /*
1449 * This can return -ENOENT if we ask for a root that doesn't exist, but
1450 * since this is called via the backref walking code we won't be looking
1451 * up a root that doesn't exist, unless there's corruption. So if root
1452 * != NULL just return it.
1453 */
1454 root = btrfs_get_global_root(fs_info, objectid);
1455 if (root)
1456 return root;
1457
1458 root = btrfs_lookup_fs_root(fs_info, objectid);
1459 if (root)
1460 return root;
1461
1462 key.objectid = objectid;
1463 key.type = BTRFS_ROOT_ITEM_KEY;
1464 key.offset = (u64)-1;
1465 root = read_tree_root_path(fs_info->tree_root, path, &key);
1466 btrfs_release_path(path);
1467
1468 return root;
1469 }
1470
cleaner_kthread(void * arg)1471 static int cleaner_kthread(void *arg)
1472 {
1473 struct btrfs_fs_info *fs_info = arg;
1474 int again;
1475
1476 while (1) {
1477 again = 0;
1478
1479 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1480
1481 /* Make the cleaner go to sleep early. */
1482 if (btrfs_need_cleaner_sleep(fs_info))
1483 goto sleep;
1484
1485 /*
1486 * Do not do anything if we might cause open_ctree() to block
1487 * before we have finished mounting the filesystem.
1488 */
1489 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1490 goto sleep;
1491
1492 if (!mutex_trylock(&fs_info->cleaner_mutex))
1493 goto sleep;
1494
1495 /*
1496 * Avoid the problem that we change the status of the fs
1497 * during the above check and trylock.
1498 */
1499 if (btrfs_need_cleaner_sleep(fs_info)) {
1500 mutex_unlock(&fs_info->cleaner_mutex);
1501 goto sleep;
1502 }
1503
1504 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1505 btrfs_sysfs_feature_update(fs_info);
1506
1507 btrfs_run_delayed_iputs(fs_info);
1508
1509 again = btrfs_clean_one_deleted_snapshot(fs_info);
1510 mutex_unlock(&fs_info->cleaner_mutex);
1511
1512 /*
1513 * The defragger has dealt with the R/O remount and umount,
1514 * needn't do anything special here.
1515 */
1516 btrfs_run_defrag_inodes(fs_info);
1517
1518 /*
1519 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1520 * with relocation (btrfs_relocate_chunk) and relocation
1521 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1522 * after acquiring fs_info->reclaim_bgs_lock. So we
1523 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1524 * unused block groups.
1525 */
1526 btrfs_delete_unused_bgs(fs_info);
1527
1528 /*
1529 * Reclaim block groups in the reclaim_bgs list after we deleted
1530 * all unused block_groups. This possibly gives us some more free
1531 * space.
1532 */
1533 btrfs_reclaim_bgs(fs_info);
1534 sleep:
1535 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1536 if (kthread_should_park())
1537 kthread_parkme();
1538 if (kthread_should_stop())
1539 return 0;
1540 if (!again) {
1541 set_current_state(TASK_INTERRUPTIBLE);
1542 schedule();
1543 __set_current_state(TASK_RUNNING);
1544 }
1545 }
1546 }
1547
transaction_kthread(void * arg)1548 static int transaction_kthread(void *arg)
1549 {
1550 struct btrfs_root *root = arg;
1551 struct btrfs_fs_info *fs_info = root->fs_info;
1552 struct btrfs_trans_handle *trans;
1553 struct btrfs_transaction *cur;
1554 u64 transid;
1555 time64_t delta;
1556 unsigned long delay;
1557 bool cannot_commit;
1558
1559 do {
1560 cannot_commit = false;
1561 delay = secs_to_jiffies(fs_info->commit_interval);
1562 mutex_lock(&fs_info->transaction_kthread_mutex);
1563
1564 spin_lock(&fs_info->trans_lock);
1565 cur = fs_info->running_transaction;
1566 if (!cur) {
1567 spin_unlock(&fs_info->trans_lock);
1568 goto sleep;
1569 }
1570
1571 delta = ktime_get_seconds() - cur->start_time;
1572 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1573 cur->state < TRANS_STATE_COMMIT_PREP &&
1574 delta < fs_info->commit_interval) {
1575 spin_unlock(&fs_info->trans_lock);
1576 delay -= secs_to_jiffies(delta - 1);
1577 delay = min(delay,
1578 secs_to_jiffies(fs_info->commit_interval));
1579 goto sleep;
1580 }
1581 transid = cur->transid;
1582 spin_unlock(&fs_info->trans_lock);
1583
1584 /* If the file system is aborted, this will always fail. */
1585 trans = btrfs_attach_transaction(root);
1586 if (IS_ERR(trans)) {
1587 if (PTR_ERR(trans) != -ENOENT)
1588 cannot_commit = true;
1589 goto sleep;
1590 }
1591 if (transid == trans->transid) {
1592 btrfs_commit_transaction(trans);
1593 } else {
1594 btrfs_end_transaction(trans);
1595 }
1596 sleep:
1597 wake_up_process(fs_info->cleaner_kthread);
1598 mutex_unlock(&fs_info->transaction_kthread_mutex);
1599
1600 if (BTRFS_FS_ERROR(fs_info))
1601 btrfs_cleanup_transaction(fs_info);
1602 if (!kthread_should_stop() &&
1603 (!btrfs_transaction_blocked(fs_info) ||
1604 cannot_commit))
1605 schedule_timeout_interruptible(delay);
1606 } while (!kthread_should_stop());
1607 return 0;
1608 }
1609
1610 /*
1611 * This will find the highest generation in the array of root backups. The
1612 * index of the highest array is returned, or -EINVAL if we can't find
1613 * anything.
1614 *
1615 * We check to make sure the array is valid by comparing the
1616 * generation of the latest root in the array with the generation
1617 * in the super block. If they don't match we pitch it.
1618 */
find_newest_super_backup(struct btrfs_fs_info * info)1619 static int find_newest_super_backup(struct btrfs_fs_info *info)
1620 {
1621 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1622 u64 cur;
1623 struct btrfs_root_backup *root_backup;
1624 int i;
1625
1626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627 root_backup = info->super_copy->super_roots + i;
1628 cur = btrfs_backup_tree_root_gen(root_backup);
1629 if (cur == newest_gen)
1630 return i;
1631 }
1632
1633 return -EINVAL;
1634 }
1635
1636 /*
1637 * copy all the root pointers into the super backup array.
1638 * this will bump the backup pointer by one when it is
1639 * done
1640 */
backup_super_roots(struct btrfs_fs_info * info)1641 static void backup_super_roots(struct btrfs_fs_info *info)
1642 {
1643 const int next_backup = info->backup_root_index;
1644 struct btrfs_root_backup *root_backup;
1645
1646 root_backup = info->super_for_commit->super_roots + next_backup;
1647
1648 /*
1649 * make sure all of our padding and empty slots get zero filled
1650 * regardless of which ones we use today
1651 */
1652 memset(root_backup, 0, sizeof(*root_backup));
1653
1654 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1655
1656 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1657 btrfs_set_backup_tree_root_gen(root_backup,
1658 btrfs_header_generation(info->tree_root->node));
1659
1660 btrfs_set_backup_tree_root_level(root_backup,
1661 btrfs_header_level(info->tree_root->node));
1662
1663 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1664 btrfs_set_backup_chunk_root_gen(root_backup,
1665 btrfs_header_generation(info->chunk_root->node));
1666 btrfs_set_backup_chunk_root_level(root_backup,
1667 btrfs_header_level(info->chunk_root->node));
1668
1669 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1670 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1671 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1672
1673 btrfs_set_backup_extent_root(root_backup,
1674 extent_root->node->start);
1675 btrfs_set_backup_extent_root_gen(root_backup,
1676 btrfs_header_generation(extent_root->node));
1677 btrfs_set_backup_extent_root_level(root_backup,
1678 btrfs_header_level(extent_root->node));
1679
1680 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1681 btrfs_set_backup_csum_root_gen(root_backup,
1682 btrfs_header_generation(csum_root->node));
1683 btrfs_set_backup_csum_root_level(root_backup,
1684 btrfs_header_level(csum_root->node));
1685 }
1686
1687 /*
1688 * we might commit during log recovery, which happens before we set
1689 * the fs_root. Make sure it is valid before we fill it in.
1690 */
1691 if (info->fs_root && info->fs_root->node) {
1692 btrfs_set_backup_fs_root(root_backup,
1693 info->fs_root->node->start);
1694 btrfs_set_backup_fs_root_gen(root_backup,
1695 btrfs_header_generation(info->fs_root->node));
1696 btrfs_set_backup_fs_root_level(root_backup,
1697 btrfs_header_level(info->fs_root->node));
1698 }
1699
1700 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1701 btrfs_set_backup_dev_root_gen(root_backup,
1702 btrfs_header_generation(info->dev_root->node));
1703 btrfs_set_backup_dev_root_level(root_backup,
1704 btrfs_header_level(info->dev_root->node));
1705
1706 btrfs_set_backup_total_bytes(root_backup,
1707 btrfs_super_total_bytes(info->super_copy));
1708 btrfs_set_backup_bytes_used(root_backup,
1709 btrfs_super_bytes_used(info->super_copy));
1710 btrfs_set_backup_num_devices(root_backup,
1711 btrfs_super_num_devices(info->super_copy));
1712
1713 /*
1714 * if we don't copy this out to the super_copy, it won't get remembered
1715 * for the next commit
1716 */
1717 memcpy(&info->super_copy->super_roots,
1718 &info->super_for_commit->super_roots,
1719 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1720 }
1721
1722 /*
1723 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1724 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1725 *
1726 * @fs_info: filesystem whose backup roots need to be read
1727 * @priority: priority of backup root required
1728 *
1729 * Returns backup root index on success and -EINVAL otherwise.
1730 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1731 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1732 {
1733 int backup_index = find_newest_super_backup(fs_info);
1734 struct btrfs_super_block *super = fs_info->super_copy;
1735 struct btrfs_root_backup *root_backup;
1736
1737 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1738 if (priority == 0)
1739 return backup_index;
1740
1741 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1742 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1743 } else {
1744 return -EINVAL;
1745 }
1746
1747 root_backup = super->super_roots + backup_index;
1748
1749 btrfs_set_super_generation(super,
1750 btrfs_backup_tree_root_gen(root_backup));
1751 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1752 btrfs_set_super_root_level(super,
1753 btrfs_backup_tree_root_level(root_backup));
1754 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1755
1756 /*
1757 * Fixme: the total bytes and num_devices need to match or we should
1758 * need a fsck
1759 */
1760 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1761 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1762
1763 return backup_index;
1764 }
1765
1766 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1767 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1768 {
1769 btrfs_destroy_workqueue(fs_info->fixup_workers);
1770 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1771 btrfs_destroy_workqueue(fs_info->workers);
1772 if (fs_info->endio_workers)
1773 destroy_workqueue(fs_info->endio_workers);
1774 if (fs_info->rmw_workers)
1775 destroy_workqueue(fs_info->rmw_workers);
1776 if (fs_info->compressed_write_workers)
1777 destroy_workqueue(fs_info->compressed_write_workers);
1778 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1779 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1780 btrfs_destroy_workqueue(fs_info->delayed_workers);
1781 btrfs_destroy_workqueue(fs_info->caching_workers);
1782 btrfs_destroy_workqueue(fs_info->flush_workers);
1783 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1784 if (fs_info->discard_ctl.discard_workers)
1785 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1786 /*
1787 * Now that all other work queues are destroyed, we can safely destroy
1788 * the queues used for metadata I/O, since tasks from those other work
1789 * queues can do metadata I/O operations.
1790 */
1791 if (fs_info->endio_meta_workers)
1792 destroy_workqueue(fs_info->endio_meta_workers);
1793 }
1794
free_root_extent_buffers(struct btrfs_root * root)1795 static void free_root_extent_buffers(struct btrfs_root *root)
1796 {
1797 if (root) {
1798 free_extent_buffer(root->node);
1799 free_extent_buffer(root->commit_root);
1800 root->node = NULL;
1801 root->commit_root = NULL;
1802 }
1803 }
1804
free_global_root_pointers(struct btrfs_fs_info * fs_info)1805 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1806 {
1807 struct btrfs_root *root, *tmp;
1808
1809 rbtree_postorder_for_each_entry_safe(root, tmp,
1810 &fs_info->global_root_tree,
1811 rb_node)
1812 free_root_extent_buffers(root);
1813 }
1814
1815 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1816 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1817 {
1818 free_root_extent_buffers(info->tree_root);
1819
1820 free_global_root_pointers(info);
1821 free_root_extent_buffers(info->dev_root);
1822 free_root_extent_buffers(info->quota_root);
1823 free_root_extent_buffers(info->uuid_root);
1824 free_root_extent_buffers(info->fs_root);
1825 free_root_extent_buffers(info->data_reloc_root);
1826 free_root_extent_buffers(info->block_group_root);
1827 free_root_extent_buffers(info->stripe_root);
1828 if (free_chunk_root)
1829 free_root_extent_buffers(info->chunk_root);
1830 }
1831
btrfs_put_root(struct btrfs_root * root)1832 void btrfs_put_root(struct btrfs_root *root)
1833 {
1834 if (!root)
1835 return;
1836
1837 if (refcount_dec_and_test(&root->refs)) {
1838 if (WARN_ON(!xa_empty(&root->inodes)))
1839 xa_destroy(&root->inodes);
1840 if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1841 xa_destroy(&root->delayed_nodes);
1842 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1843 if (root->anon_dev)
1844 free_anon_bdev(root->anon_dev);
1845 free_root_extent_buffers(root);
1846 #ifdef CONFIG_BTRFS_DEBUG
1847 spin_lock(&root->fs_info->fs_roots_radix_lock);
1848 list_del_init(&root->leak_list);
1849 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1850 #endif
1851 kfree(root);
1852 }
1853 }
1854
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1855 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1856 {
1857 int ret;
1858 struct btrfs_root *gang[8];
1859 int i;
1860
1861 while (!list_empty(&fs_info->dead_roots)) {
1862 gang[0] = list_first_entry(&fs_info->dead_roots,
1863 struct btrfs_root, root_list);
1864 list_del(&gang[0]->root_list);
1865
1866 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1867 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1868 btrfs_put_root(gang[0]);
1869 }
1870
1871 while (1) {
1872 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1873 (void **)gang, 0,
1874 ARRAY_SIZE(gang));
1875 if (!ret)
1876 break;
1877 for (i = 0; i < ret; i++)
1878 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1879 }
1880 }
1881
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1882 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1883 {
1884 mutex_init(&fs_info->scrub_lock);
1885 atomic_set(&fs_info->scrubs_running, 0);
1886 atomic_set(&fs_info->scrub_pause_req, 0);
1887 atomic_set(&fs_info->scrubs_paused, 0);
1888 atomic_set(&fs_info->scrub_cancel_req, 0);
1889 init_waitqueue_head(&fs_info->scrub_pause_wait);
1890 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1891 }
1892
btrfs_init_balance(struct btrfs_fs_info * fs_info)1893 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1894 {
1895 spin_lock_init(&fs_info->balance_lock);
1896 mutex_init(&fs_info->balance_mutex);
1897 atomic_set(&fs_info->balance_pause_req, 0);
1898 atomic_set(&fs_info->balance_cancel_req, 0);
1899 fs_info->balance_ctl = NULL;
1900 init_waitqueue_head(&fs_info->balance_wait_q);
1901 atomic_set(&fs_info->reloc_cancel_req, 0);
1902 }
1903
btrfs_init_btree_inode(struct super_block * sb)1904 static int btrfs_init_btree_inode(struct super_block *sb)
1905 {
1906 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1907 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1908 fs_info->tree_root);
1909 struct inode *inode;
1910
1911 inode = new_inode(sb);
1912 if (!inode)
1913 return -ENOMEM;
1914
1915 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1916 set_nlink(inode, 1);
1917 /*
1918 * we set the i_size on the btree inode to the max possible int.
1919 * the real end of the address space is determined by all of
1920 * the devices in the system
1921 */
1922 inode->i_size = OFFSET_MAX;
1923 inode->i_mapping->a_ops = &btree_aops;
1924 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1925
1926 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1927 IO_TREE_BTREE_INODE_IO);
1928 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1929
1930 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1931 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1932 __insert_inode_hash(inode, hash);
1933 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags);
1934 fs_info->btree_inode = inode;
1935
1936 return 0;
1937 }
1938
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1939 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1940 {
1941 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1942 init_rwsem(&fs_info->dev_replace.rwsem);
1943 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1944 }
1945
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1946 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1947 {
1948 spin_lock_init(&fs_info->qgroup_lock);
1949 mutex_init(&fs_info->qgroup_ioctl_lock);
1950 fs_info->qgroup_tree = RB_ROOT;
1951 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1952 fs_info->qgroup_seq = 1;
1953 fs_info->qgroup_rescan_running = false;
1954 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1955 mutex_init(&fs_info->qgroup_rescan_lock);
1956 }
1957
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1958 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1959 {
1960 u32 max_active = fs_info->thread_pool_size;
1961 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1962 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU;
1963
1964 fs_info->workers =
1965 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1966
1967 fs_info->delalloc_workers =
1968 btrfs_alloc_workqueue(fs_info, "delalloc",
1969 flags, max_active, 2);
1970
1971 fs_info->flush_workers =
1972 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1973 flags, max_active, 0);
1974
1975 fs_info->caching_workers =
1976 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1977
1978 fs_info->fixup_workers =
1979 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1980
1981 fs_info->endio_workers =
1982 alloc_workqueue("btrfs-endio", flags, max_active);
1983 fs_info->endio_meta_workers =
1984 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1985 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1986 fs_info->endio_write_workers =
1987 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1988 max_active, 2);
1989 fs_info->compressed_write_workers =
1990 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1991 fs_info->endio_freespace_worker =
1992 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1993 max_active, 0);
1994 fs_info->delayed_workers =
1995 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1996 max_active, 0);
1997 fs_info->qgroup_rescan_workers =
1998 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1999 ordered_flags);
2000 fs_info->discard_ctl.discard_workers =
2001 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
2002
2003 if (!(fs_info->workers &&
2004 fs_info->delalloc_workers && fs_info->flush_workers &&
2005 fs_info->endio_workers && fs_info->endio_meta_workers &&
2006 fs_info->compressed_write_workers &&
2007 fs_info->endio_write_workers &&
2008 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2009 fs_info->caching_workers && fs_info->fixup_workers &&
2010 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2011 fs_info->discard_ctl.discard_workers)) {
2012 return -ENOMEM;
2013 }
2014
2015 return 0;
2016 }
2017
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2018 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2019 {
2020 struct crypto_shash *csum_shash;
2021 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2022
2023 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2024
2025 if (IS_ERR(csum_shash)) {
2026 btrfs_err(fs_info, "error allocating %s hash for checksum",
2027 csum_driver);
2028 return PTR_ERR(csum_shash);
2029 }
2030
2031 fs_info->csum_shash = csum_shash;
2032
2033 /* Check if the checksum implementation is a fast accelerated one. */
2034 switch (csum_type) {
2035 case BTRFS_CSUM_TYPE_CRC32:
2036 if (crc32_optimizations() & CRC32C_OPTIMIZATION)
2037 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2038 break;
2039 case BTRFS_CSUM_TYPE_XXHASH:
2040 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2041 break;
2042 default:
2043 break;
2044 }
2045
2046 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2047 btrfs_super_csum_name(csum_type),
2048 crypto_shash_driver_name(csum_shash));
2049 return 0;
2050 }
2051
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2052 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2053 struct btrfs_fs_devices *fs_devices)
2054 {
2055 int ret;
2056 struct btrfs_tree_parent_check check = { 0 };
2057 struct btrfs_root *log_tree_root;
2058 struct btrfs_super_block *disk_super = fs_info->super_copy;
2059 u64 bytenr = btrfs_super_log_root(disk_super);
2060 int level = btrfs_super_log_root_level(disk_super);
2061
2062 if (unlikely(fs_devices->rw_devices == 0)) {
2063 btrfs_warn(fs_info, "log replay required on RO media");
2064 return -EIO;
2065 }
2066
2067 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2068 GFP_KERNEL);
2069 if (!log_tree_root)
2070 return -ENOMEM;
2071
2072 check.level = level;
2073 check.transid = fs_info->generation + 1;
2074 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2075 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2076 if (IS_ERR(log_tree_root->node)) {
2077 btrfs_warn(fs_info, "failed to read log tree");
2078 ret = PTR_ERR(log_tree_root->node);
2079 log_tree_root->node = NULL;
2080 btrfs_put_root(log_tree_root);
2081 return ret;
2082 }
2083 if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) {
2084 btrfs_err(fs_info, "failed to read log tree");
2085 btrfs_put_root(log_tree_root);
2086 return -EIO;
2087 }
2088
2089 /* returns with log_tree_root freed on success */
2090 ret = btrfs_recover_log_trees(log_tree_root);
2091 btrfs_put_root(log_tree_root);
2092 if (ret) {
2093 btrfs_handle_fs_error(fs_info, ret,
2094 "Failed to recover log tree");
2095 return ret;
2096 }
2097
2098 if (sb_rdonly(fs_info->sb)) {
2099 ret = btrfs_commit_super(fs_info);
2100 if (ret)
2101 return ret;
2102 }
2103
2104 return 0;
2105 }
2106
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2107 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2108 struct btrfs_path *path, u64 objectid,
2109 const char *name)
2110 {
2111 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2112 struct btrfs_root *root;
2113 u64 max_global_id = 0;
2114 int ret;
2115 struct btrfs_key key = {
2116 .objectid = objectid,
2117 .type = BTRFS_ROOT_ITEM_KEY,
2118 .offset = 0,
2119 };
2120 bool found = false;
2121
2122 /* If we have IGNOREDATACSUMS skip loading these roots. */
2123 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2124 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2125 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2126 return 0;
2127 }
2128
2129 while (1) {
2130 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2131 if (ret < 0)
2132 break;
2133
2134 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2135 ret = btrfs_next_leaf(tree_root, path);
2136 if (ret) {
2137 if (ret > 0)
2138 ret = 0;
2139 break;
2140 }
2141 }
2142 ret = 0;
2143
2144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2145 if (key.objectid != objectid)
2146 break;
2147 btrfs_release_path(path);
2148
2149 /*
2150 * Just worry about this for extent tree, it'll be the same for
2151 * everybody.
2152 */
2153 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2154 max_global_id = max(max_global_id, key.offset);
2155
2156 found = true;
2157 root = read_tree_root_path(tree_root, path, &key);
2158 if (IS_ERR(root)) {
2159 ret = PTR_ERR(root);
2160 break;
2161 }
2162 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2163 ret = btrfs_global_root_insert(root);
2164 if (ret) {
2165 btrfs_put_root(root);
2166 break;
2167 }
2168 key.offset++;
2169 }
2170 btrfs_release_path(path);
2171
2172 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2173 fs_info->nr_global_roots = max_global_id + 1;
2174
2175 if (!found || ret) {
2176 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2177 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2178
2179 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180 ret = ret ? ret : -ENOENT;
2181 else
2182 ret = 0;
2183 btrfs_err(fs_info, "failed to load root %s", name);
2184 }
2185 return ret;
2186 }
2187
load_global_roots(struct btrfs_root * tree_root)2188 static int load_global_roots(struct btrfs_root *tree_root)
2189 {
2190 BTRFS_PATH_AUTO_FREE(path);
2191 int ret;
2192
2193 path = btrfs_alloc_path();
2194 if (!path)
2195 return -ENOMEM;
2196
2197 ret = load_global_roots_objectid(tree_root, path,
2198 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2199 if (ret)
2200 return ret;
2201 ret = load_global_roots_objectid(tree_root, path,
2202 BTRFS_CSUM_TREE_OBJECTID, "csum");
2203 if (ret)
2204 return ret;
2205 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2206 return ret;
2207 ret = load_global_roots_objectid(tree_root, path,
2208 BTRFS_FREE_SPACE_TREE_OBJECTID,
2209 "free space");
2210
2211 return ret;
2212 }
2213
btrfs_read_roots(struct btrfs_fs_info * fs_info)2214 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2215 {
2216 struct btrfs_root *tree_root = fs_info->tree_root;
2217 struct btrfs_root *root;
2218 struct btrfs_key location;
2219 int ret;
2220
2221 ASSERT(fs_info->tree_root);
2222
2223 ret = load_global_roots(tree_root);
2224 if (ret)
2225 return ret;
2226
2227 location.type = BTRFS_ROOT_ITEM_KEY;
2228 location.offset = 0;
2229
2230 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2231 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2232 root = btrfs_read_tree_root(tree_root, &location);
2233 if (IS_ERR(root)) {
2234 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2235 ret = PTR_ERR(root);
2236 goto out;
2237 }
2238 } else {
2239 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2240 fs_info->block_group_root = root;
2241 }
2242 }
2243
2244 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2245 root = btrfs_read_tree_root(tree_root, &location);
2246 if (IS_ERR(root)) {
2247 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2248 ret = PTR_ERR(root);
2249 goto out;
2250 }
2251 } else {
2252 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2253 fs_info->dev_root = root;
2254 }
2255 /* Initialize fs_info for all devices in any case */
2256 ret = btrfs_init_devices_late(fs_info);
2257 if (ret)
2258 goto out;
2259
2260 /*
2261 * This tree can share blocks with some other fs tree during relocation
2262 * and we need a proper setup by btrfs_get_fs_root
2263 */
2264 root = btrfs_get_fs_root(tree_root->fs_info,
2265 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2266 if (IS_ERR(root)) {
2267 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2268 ret = PTR_ERR(root);
2269 goto out;
2270 }
2271 } else {
2272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2273 fs_info->data_reloc_root = root;
2274 }
2275
2276 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2277 root = btrfs_read_tree_root(tree_root, &location);
2278 if (!IS_ERR(root)) {
2279 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2280 fs_info->quota_root = root;
2281 }
2282
2283 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2284 root = btrfs_read_tree_root(tree_root, &location);
2285 if (IS_ERR(root)) {
2286 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2287 ret = PTR_ERR(root);
2288 if (ret != -ENOENT)
2289 goto out;
2290 }
2291 } else {
2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 fs_info->uuid_root = root;
2294 }
2295
2296 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2297 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2298 root = btrfs_read_tree_root(tree_root, &location);
2299 if (IS_ERR(root)) {
2300 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2301 ret = PTR_ERR(root);
2302 goto out;
2303 }
2304 } else {
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 fs_info->stripe_root = root;
2307 }
2308 }
2309
2310 return 0;
2311 out:
2312 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2313 location.objectid, ret);
2314 return ret;
2315 }
2316
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2317 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2318 const struct btrfs_super_block *sb)
2319 {
2320 unsigned int cur = 0; /* Offset inside the sys chunk array */
2321 /*
2322 * At sb read time, fs_info is not fully initialized. Thus we have
2323 * to use super block sectorsize, which should have been validated.
2324 */
2325 const u32 sectorsize = btrfs_super_sectorsize(sb);
2326 u32 sys_array_size = btrfs_super_sys_array_size(sb);
2327
2328 if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) {
2329 btrfs_err(fs_info, "system chunk array too big %u > %u",
2330 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2331 return -EUCLEAN;
2332 }
2333
2334 while (cur < sys_array_size) {
2335 struct btrfs_disk_key *disk_key;
2336 struct btrfs_chunk *chunk;
2337 struct btrfs_key key;
2338 u64 type;
2339 u16 num_stripes;
2340 u32 len;
2341 int ret;
2342
2343 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2344 len = sizeof(*disk_key);
2345
2346 if (unlikely(cur + len > sys_array_size))
2347 goto short_read;
2348 cur += len;
2349
2350 btrfs_disk_key_to_cpu(&key, disk_key);
2351 if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) {
2352 btrfs_err(fs_info,
2353 "unexpected item type %u in sys_array at offset %u",
2354 key.type, cur);
2355 return -EUCLEAN;
2356 }
2357 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2358 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2359 if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size))
2360 goto short_read;
2361 type = btrfs_stack_chunk_type(chunk);
2362 if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) {
2363 btrfs_err(fs_info,
2364 "invalid chunk type %llu in sys_array at offset %u",
2365 type, cur);
2366 return -EUCLEAN;
2367 }
2368 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2369 sectorsize);
2370 if (ret < 0)
2371 return ret;
2372 cur += btrfs_chunk_item_size(num_stripes);
2373 }
2374 return 0;
2375 short_read:
2376 btrfs_err(fs_info,
2377 "super block sys chunk array short read, cur=%u sys_array_size=%u",
2378 cur, sys_array_size);
2379 return -EUCLEAN;
2380 }
2381
2382 /*
2383 * Real super block validation
2384 * NOTE: super csum type and incompat features will not be checked here.
2385 *
2386 * @sb: super block to check
2387 * @mirror_num: the super block number to check its bytenr:
2388 * 0 the primary (1st) sb
2389 * 1, 2 2nd and 3rd backup copy
2390 * -1 skip bytenr check
2391 */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2392 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2393 const struct btrfs_super_block *sb, int mirror_num)
2394 {
2395 u64 nodesize = btrfs_super_nodesize(sb);
2396 u64 sectorsize = btrfs_super_sectorsize(sb);
2397 int ret = 0;
2398 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2399
2400 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2401 btrfs_err(fs_info, "no valid FS found");
2402 ret = -EINVAL;
2403 }
2404 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2405 if (!ignore_flags) {
2406 btrfs_err(fs_info,
2407 "unrecognized or unsupported super flag 0x%llx",
2408 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2409 ret = -EINVAL;
2410 } else {
2411 btrfs_info(fs_info,
2412 "unrecognized or unsupported super flags: 0x%llx, ignored",
2413 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2414 }
2415 }
2416 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2418 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2419 ret = -EINVAL;
2420 }
2421 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2423 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2424 ret = -EINVAL;
2425 }
2426 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2428 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2429 ret = -EINVAL;
2430 }
2431
2432 /*
2433 * Check sectorsize and nodesize first, other check will need it.
2434 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2435 */
2436 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2437 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2438 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2439 ret = -EINVAL;
2440 }
2441
2442 if (!btrfs_supported_blocksize(sectorsize)) {
2443 btrfs_err(fs_info,
2444 "sectorsize %llu not yet supported for page size %lu",
2445 sectorsize, PAGE_SIZE);
2446 ret = -EINVAL;
2447 }
2448
2449 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2452 ret = -EINVAL;
2453 }
2454 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456 le32_to_cpu(sb->__unused_leafsize), nodesize);
2457 ret = -EINVAL;
2458 }
2459
2460 /* Root alignment check */
2461 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463 btrfs_super_root(sb));
2464 ret = -EINVAL;
2465 }
2466 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468 btrfs_super_chunk_root(sb));
2469 ret = -EINVAL;
2470 }
2471 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473 btrfs_super_log_root(sb));
2474 ret = -EINVAL;
2475 }
2476
2477 if (!fs_info->fs_devices->temp_fsid &&
2478 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2479 btrfs_err(fs_info,
2480 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2481 sb->fsid, fs_info->fs_devices->fsid);
2482 ret = -EINVAL;
2483 }
2484
2485 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2486 BTRFS_FSID_SIZE) != 0) {
2487 btrfs_err(fs_info,
2488 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2489 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2490 ret = -EINVAL;
2491 }
2492
2493 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2494 BTRFS_FSID_SIZE) != 0) {
2495 btrfs_err(fs_info,
2496 "dev_item UUID does not match metadata fsid: %pU != %pU",
2497 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2498 ret = -EINVAL;
2499 }
2500
2501 /*
2502 * Artificial requirement for block-group-tree to force newer features
2503 * (free-space-tree, no-holes) so the test matrix is smaller.
2504 */
2505 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2506 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2507 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2508 btrfs_err(fs_info,
2509 "block-group-tree feature requires free-space-tree and no-holes");
2510 ret = -EINVAL;
2511 }
2512
2513 /*
2514 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2515 * done later
2516 */
2517 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2518 btrfs_err(fs_info, "bytes_used is too small %llu",
2519 btrfs_super_bytes_used(sb));
2520 ret = -EINVAL;
2521 }
2522 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2523 btrfs_err(fs_info, "invalid stripesize %u",
2524 btrfs_super_stripesize(sb));
2525 ret = -EINVAL;
2526 }
2527 if (btrfs_super_num_devices(sb) > (1UL << 31))
2528 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2529 btrfs_super_num_devices(sb));
2530 if (btrfs_super_num_devices(sb) == 0) {
2531 btrfs_err(fs_info, "number of devices is 0");
2532 ret = -EINVAL;
2533 }
2534
2535 if (mirror_num >= 0 &&
2536 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2537 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2538 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2539 ret = -EINVAL;
2540 }
2541
2542 if (ret)
2543 return ret;
2544
2545 ret = validate_sys_chunk_array(fs_info, sb);
2546
2547 /*
2548 * Obvious sys_chunk_array corruptions, it must hold at least one key
2549 * and one chunk
2550 */
2551 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2552 btrfs_err(fs_info, "system chunk array too big %u > %u",
2553 btrfs_super_sys_array_size(sb),
2554 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2555 ret = -EINVAL;
2556 }
2557 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2558 + sizeof(struct btrfs_chunk)) {
2559 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2560 btrfs_super_sys_array_size(sb),
2561 sizeof(struct btrfs_disk_key)
2562 + sizeof(struct btrfs_chunk));
2563 ret = -EINVAL;
2564 }
2565
2566 /*
2567 * The generation is a global counter, we'll trust it more than the others
2568 * but it's still possible that it's the one that's wrong.
2569 */
2570 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2571 btrfs_warn(fs_info,
2572 "suspicious: generation < chunk_root_generation: %llu < %llu",
2573 btrfs_super_generation(sb),
2574 btrfs_super_chunk_root_generation(sb));
2575 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2576 && btrfs_super_cache_generation(sb) != (u64)-1)
2577 btrfs_warn(fs_info,
2578 "suspicious: generation < cache_generation: %llu < %llu",
2579 btrfs_super_generation(sb),
2580 btrfs_super_cache_generation(sb));
2581
2582 return ret;
2583 }
2584
2585 /*
2586 * Validation of super block at mount time.
2587 * Some checks already done early at mount time, like csum type and incompat
2588 * flags will be skipped.
2589 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2590 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2591 {
2592 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2593 }
2594
2595 /*
2596 * Validation of super block at write time.
2597 * Some checks like bytenr check will be skipped as their values will be
2598 * overwritten soon.
2599 * Extra checks like csum type and incompat flags will be done here.
2600 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2601 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2602 struct btrfs_super_block *sb)
2603 {
2604 int ret;
2605
2606 ret = btrfs_validate_super(fs_info, sb, -1);
2607 if (ret < 0)
2608 goto out;
2609 if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) {
2610 ret = -EUCLEAN;
2611 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2612 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2613 goto out;
2614 }
2615 if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) {
2616 ret = -EUCLEAN;
2617 btrfs_err(fs_info,
2618 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2619 btrfs_super_incompat_flags(sb),
2620 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2621 goto out;
2622 }
2623 out:
2624 if (ret < 0)
2625 btrfs_err(fs_info,
2626 "super block corruption detected before writing it to disk");
2627 return ret;
2628 }
2629
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2630 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2631 {
2632 struct btrfs_tree_parent_check check = {
2633 .level = level,
2634 .transid = gen,
2635 .owner_root = btrfs_root_id(root)
2636 };
2637 int ret = 0;
2638
2639 root->node = read_tree_block(root->fs_info, bytenr, &check);
2640 if (IS_ERR(root->node)) {
2641 ret = PTR_ERR(root->node);
2642 root->node = NULL;
2643 return ret;
2644 }
2645 if (unlikely(!extent_buffer_uptodate(root->node))) {
2646 free_extent_buffer(root->node);
2647 root->node = NULL;
2648 return -EIO;
2649 }
2650
2651 btrfs_set_root_node(&root->root_item, root->node);
2652 root->commit_root = btrfs_root_node(root);
2653 btrfs_set_root_refs(&root->root_item, 1);
2654 return ret;
2655 }
2656
load_important_roots(struct btrfs_fs_info * fs_info)2657 static int load_important_roots(struct btrfs_fs_info *fs_info)
2658 {
2659 struct btrfs_super_block *sb = fs_info->super_copy;
2660 u64 gen, bytenr;
2661 int level, ret;
2662
2663 bytenr = btrfs_super_root(sb);
2664 gen = btrfs_super_generation(sb);
2665 level = btrfs_super_root_level(sb);
2666 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2667 if (ret) {
2668 btrfs_warn(fs_info, "couldn't read tree root");
2669 return ret;
2670 }
2671 return 0;
2672 }
2673
init_tree_roots(struct btrfs_fs_info * fs_info)2674 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2675 {
2676 int backup_index = find_newest_super_backup(fs_info);
2677 struct btrfs_super_block *sb = fs_info->super_copy;
2678 struct btrfs_root *tree_root = fs_info->tree_root;
2679 bool handle_error = false;
2680 int ret = 0;
2681 int i;
2682
2683 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2684 if (handle_error) {
2685 if (!IS_ERR(tree_root->node))
2686 free_extent_buffer(tree_root->node);
2687 tree_root->node = NULL;
2688
2689 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2690 break;
2691
2692 free_root_pointers(fs_info, 0);
2693
2694 /*
2695 * Don't use the log in recovery mode, it won't be
2696 * valid
2697 */
2698 btrfs_set_super_log_root(sb, 0);
2699
2700 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2701 ret = read_backup_root(fs_info, i);
2702 backup_index = ret;
2703 if (ret < 0)
2704 return ret;
2705 }
2706
2707 ret = load_important_roots(fs_info);
2708 if (ret) {
2709 handle_error = true;
2710 continue;
2711 }
2712
2713 /*
2714 * No need to hold btrfs_root::objectid_mutex since the fs
2715 * hasn't been fully initialised and we are the only user
2716 */
2717 ret = btrfs_init_root_free_objectid(tree_root);
2718 if (ret < 0) {
2719 handle_error = true;
2720 continue;
2721 }
2722
2723 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2724
2725 ret = btrfs_read_roots(fs_info);
2726 if (ret < 0) {
2727 handle_error = true;
2728 continue;
2729 }
2730
2731 /* All successful */
2732 fs_info->generation = btrfs_header_generation(tree_root->node);
2733 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2734 fs_info->last_reloc_trans = 0;
2735
2736 /* Always begin writing backup roots after the one being used */
2737 if (backup_index < 0) {
2738 fs_info->backup_root_index = 0;
2739 } else {
2740 fs_info->backup_root_index = backup_index + 1;
2741 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2742 }
2743 break;
2744 }
2745
2746 return ret;
2747 }
2748
2749 /*
2750 * Lockdep gets confused between our buffer_tree which requires IRQ locking because
2751 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2752 * have these requirements. Use a class key so lockdep doesn't get them mixed up.
2753 */
2754 static struct lock_class_key buffer_xa_class;
2755
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2756 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2757 {
2758 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2759
2760 /* Use the same flags as mapping->i_pages. */
2761 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2762 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2763
2764 INIT_LIST_HEAD(&fs_info->trans_list);
2765 INIT_LIST_HEAD(&fs_info->dead_roots);
2766 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2767 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2768 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2769 spin_lock_init(&fs_info->delalloc_root_lock);
2770 spin_lock_init(&fs_info->trans_lock);
2771 spin_lock_init(&fs_info->fs_roots_radix_lock);
2772 spin_lock_init(&fs_info->delayed_iput_lock);
2773 spin_lock_init(&fs_info->defrag_inodes_lock);
2774 spin_lock_init(&fs_info->super_lock);
2775 spin_lock_init(&fs_info->unused_bgs_lock);
2776 spin_lock_init(&fs_info->treelog_bg_lock);
2777 spin_lock_init(&fs_info->zone_active_bgs_lock);
2778 spin_lock_init(&fs_info->relocation_bg_lock);
2779 rwlock_init(&fs_info->tree_mod_log_lock);
2780 rwlock_init(&fs_info->global_root_lock);
2781 mutex_init(&fs_info->unused_bg_unpin_mutex);
2782 mutex_init(&fs_info->reclaim_bgs_lock);
2783 mutex_init(&fs_info->reloc_mutex);
2784 mutex_init(&fs_info->delalloc_root_mutex);
2785 mutex_init(&fs_info->zoned_meta_io_lock);
2786 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2787 seqlock_init(&fs_info->profiles_lock);
2788
2789 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2790 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2791 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2792 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2793 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2794 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2795 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2796 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2797 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2798 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2799 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2800 BTRFS_LOCKDEP_TRANS_COMPLETED);
2801
2802 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2803 INIT_LIST_HEAD(&fs_info->space_info);
2804 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2805 INIT_LIST_HEAD(&fs_info->unused_bgs);
2806 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2807 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2808 #ifdef CONFIG_BTRFS_DEBUG
2809 INIT_LIST_HEAD(&fs_info->allocated_roots);
2810 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2811 spin_lock_init(&fs_info->eb_leak_lock);
2812 #endif
2813 fs_info->mapping_tree = RB_ROOT_CACHED;
2814 rwlock_init(&fs_info->mapping_tree_lock);
2815 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2816 BTRFS_BLOCK_RSV_GLOBAL);
2817 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2818 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2819 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2820 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2821 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2822 BTRFS_BLOCK_RSV_DELOPS);
2823 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2824 BTRFS_BLOCK_RSV_DELREFS);
2825
2826 atomic_set(&fs_info->async_delalloc_pages, 0);
2827 atomic_set(&fs_info->defrag_running, 0);
2828 atomic_set(&fs_info->nr_delayed_iputs, 0);
2829 atomic64_set(&fs_info->tree_mod_seq, 0);
2830 fs_info->global_root_tree = RB_ROOT;
2831 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2832 fs_info->metadata_ratio = 0;
2833 fs_info->defrag_inodes = RB_ROOT;
2834 atomic64_set(&fs_info->free_chunk_space, 0);
2835 fs_info->tree_mod_log = RB_ROOT;
2836 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2837 btrfs_init_ref_verify(fs_info);
2838
2839 fs_info->thread_pool_size = min_t(unsigned long,
2840 num_online_cpus() + 2, 8);
2841
2842 INIT_LIST_HEAD(&fs_info->ordered_roots);
2843 spin_lock_init(&fs_info->ordered_root_lock);
2844
2845 btrfs_init_scrub(fs_info);
2846 btrfs_init_balance(fs_info);
2847 btrfs_init_async_reclaim_work(fs_info);
2848 btrfs_init_extent_map_shrinker_work(fs_info);
2849
2850 rwlock_init(&fs_info->block_group_cache_lock);
2851 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2852
2853 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2854 IO_TREE_FS_EXCLUDED_EXTENTS);
2855
2856 mutex_init(&fs_info->ordered_operations_mutex);
2857 mutex_init(&fs_info->tree_log_mutex);
2858 mutex_init(&fs_info->chunk_mutex);
2859 mutex_init(&fs_info->transaction_kthread_mutex);
2860 mutex_init(&fs_info->cleaner_mutex);
2861 mutex_init(&fs_info->ro_block_group_mutex);
2862 init_rwsem(&fs_info->commit_root_sem);
2863 init_rwsem(&fs_info->cleanup_work_sem);
2864 init_rwsem(&fs_info->subvol_sem);
2865 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2866
2867 btrfs_init_dev_replace_locks(fs_info);
2868 btrfs_init_qgroup(fs_info);
2869 btrfs_discard_init(fs_info);
2870
2871 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2872 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2873
2874 init_waitqueue_head(&fs_info->transaction_throttle);
2875 init_waitqueue_head(&fs_info->transaction_wait);
2876 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2877 init_waitqueue_head(&fs_info->async_submit_wait);
2878 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2879
2880 /* Usable values until the real ones are cached from the superblock */
2881 fs_info->nodesize = 4096;
2882 fs_info->sectorsize = 4096;
2883 fs_info->sectorsize_bits = ilog2(4096);
2884 fs_info->stripesize = 4096;
2885
2886 /* Default compress algorithm when user does -o compress */
2887 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2888
2889 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2890
2891 spin_lock_init(&fs_info->swapfile_pins_lock);
2892 fs_info->swapfile_pins = RB_ROOT;
2893
2894 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2895 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2896 }
2897
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2898 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2899 {
2900 int ret;
2901
2902 fs_info->sb = sb;
2903 /* Temporary fixed values for block size until we read the superblock. */
2904 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2905 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2906
2907 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2908 if (ret)
2909 return ret;
2910
2911 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2912 if (ret)
2913 return ret;
2914
2915 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2916 if (ret)
2917 return ret;
2918
2919 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2920 if (ret)
2921 return ret;
2922
2923 fs_info->dirty_metadata_batch = PAGE_SIZE *
2924 (1 + ilog2(nr_cpu_ids));
2925
2926 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2927 if (ret)
2928 return ret;
2929
2930 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2931 GFP_KERNEL);
2932 if (ret)
2933 return ret;
2934
2935 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2936 GFP_KERNEL);
2937 if (!fs_info->delayed_root)
2938 return -ENOMEM;
2939 btrfs_init_delayed_root(fs_info->delayed_root);
2940
2941 if (sb_rdonly(sb))
2942 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2943 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2944 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2945
2946 return btrfs_alloc_stripe_hash_table(fs_info);
2947 }
2948
btrfs_uuid_rescan_kthread(void * data)2949 static int btrfs_uuid_rescan_kthread(void *data)
2950 {
2951 struct btrfs_fs_info *fs_info = data;
2952 int ret;
2953
2954 /*
2955 * 1st step is to iterate through the existing UUID tree and
2956 * to delete all entries that contain outdated data.
2957 * 2nd step is to add all missing entries to the UUID tree.
2958 */
2959 ret = btrfs_uuid_tree_iterate(fs_info);
2960 if (ret < 0) {
2961 if (ret != -EINTR)
2962 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2963 ret);
2964 up(&fs_info->uuid_tree_rescan_sem);
2965 return ret;
2966 }
2967 return btrfs_uuid_scan_kthread(data);
2968 }
2969
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2970 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2971 {
2972 struct task_struct *task;
2973
2974 down(&fs_info->uuid_tree_rescan_sem);
2975 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2976 if (IS_ERR(task)) {
2977 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2978 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2979 up(&fs_info->uuid_tree_rescan_sem);
2980 return PTR_ERR(task);
2981 }
2982
2983 return 0;
2984 }
2985
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2986 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2987 {
2988 u64 root_objectid = 0;
2989 struct btrfs_root *gang[8];
2990 int ret = 0;
2991
2992 while (1) {
2993 unsigned int found;
2994
2995 spin_lock(&fs_info->fs_roots_radix_lock);
2996 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2997 (void **)gang, root_objectid,
2998 ARRAY_SIZE(gang));
2999 if (!found) {
3000 spin_unlock(&fs_info->fs_roots_radix_lock);
3001 break;
3002 }
3003 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3004
3005 for (int i = 0; i < found; i++) {
3006 /* Avoid to grab roots in dead_roots. */
3007 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3008 gang[i] = NULL;
3009 continue;
3010 }
3011 /* Grab all the search result for later use. */
3012 gang[i] = btrfs_grab_root(gang[i]);
3013 }
3014 spin_unlock(&fs_info->fs_roots_radix_lock);
3015
3016 for (int i = 0; i < found; i++) {
3017 if (!gang[i])
3018 continue;
3019 root_objectid = btrfs_root_id(gang[i]);
3020 /*
3021 * Continue to release the remaining roots after the first
3022 * error without cleanup and preserve the first error
3023 * for the return.
3024 */
3025 if (!ret)
3026 ret = btrfs_orphan_cleanup(gang[i]);
3027 btrfs_put_root(gang[i]);
3028 }
3029 if (ret)
3030 break;
3031
3032 root_objectid++;
3033 }
3034 return ret;
3035 }
3036
3037 /*
3038 * Mounting logic specific to read-write file systems. Shared by open_ctree
3039 * and btrfs_remount when remounting from read-only to read-write.
3040 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3041 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3042 {
3043 int ret;
3044 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3045 bool rebuild_free_space_tree = false;
3046
3047 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3048 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3049 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3050 btrfs_warn(fs_info,
3051 "'clear_cache' option is ignored with extent tree v2");
3052 else
3053 rebuild_free_space_tree = true;
3054 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3055 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3056 btrfs_warn(fs_info, "free space tree is invalid");
3057 rebuild_free_space_tree = true;
3058 }
3059
3060 if (rebuild_free_space_tree) {
3061 btrfs_info(fs_info, "rebuilding free space tree");
3062 ret = btrfs_rebuild_free_space_tree(fs_info);
3063 if (ret) {
3064 btrfs_warn(fs_info,
3065 "failed to rebuild free space tree: %d", ret);
3066 goto out;
3067 }
3068 }
3069
3070 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3071 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3072 btrfs_info(fs_info, "disabling free space tree");
3073 ret = btrfs_delete_free_space_tree(fs_info);
3074 if (ret) {
3075 btrfs_warn(fs_info,
3076 "failed to disable free space tree: %d", ret);
3077 goto out;
3078 }
3079 }
3080
3081 /*
3082 * btrfs_find_orphan_roots() is responsible for finding all the dead
3083 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3084 * them into the fs_info->fs_roots_radix tree. This must be done before
3085 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3086 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3087 * item before the root's tree is deleted - this means that if we unmount
3088 * or crash before the deletion completes, on the next mount we will not
3089 * delete what remains of the tree because the orphan item does not
3090 * exists anymore, which is what tells us we have a pending deletion.
3091 */
3092 ret = btrfs_find_orphan_roots(fs_info);
3093 if (ret)
3094 goto out;
3095
3096 ret = btrfs_cleanup_fs_roots(fs_info);
3097 if (ret)
3098 goto out;
3099
3100 down_read(&fs_info->cleanup_work_sem);
3101 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3102 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3103 up_read(&fs_info->cleanup_work_sem);
3104 goto out;
3105 }
3106 up_read(&fs_info->cleanup_work_sem);
3107
3108 mutex_lock(&fs_info->cleaner_mutex);
3109 ret = btrfs_recover_relocation(fs_info);
3110 mutex_unlock(&fs_info->cleaner_mutex);
3111 if (ret < 0) {
3112 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3113 goto out;
3114 }
3115
3116 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3117 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3118 btrfs_info(fs_info, "creating free space tree");
3119 ret = btrfs_create_free_space_tree(fs_info);
3120 if (ret) {
3121 btrfs_warn(fs_info,
3122 "failed to create free space tree: %d", ret);
3123 goto out;
3124 }
3125 }
3126
3127 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3128 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3129 if (ret)
3130 goto out;
3131 }
3132
3133 ret = btrfs_resume_balance_async(fs_info);
3134 if (ret)
3135 goto out;
3136
3137 ret = btrfs_resume_dev_replace_async(fs_info);
3138 if (ret) {
3139 btrfs_warn(fs_info, "failed to resume dev_replace");
3140 goto out;
3141 }
3142
3143 btrfs_qgroup_rescan_resume(fs_info);
3144
3145 if (!fs_info->uuid_root) {
3146 btrfs_info(fs_info, "creating UUID tree");
3147 ret = btrfs_create_uuid_tree(fs_info);
3148 if (ret) {
3149 btrfs_warn(fs_info,
3150 "failed to create the UUID tree %d", ret);
3151 goto out;
3152 }
3153 }
3154
3155 out:
3156 return ret;
3157 }
3158
3159 /*
3160 * Do various sanity and dependency checks of different features.
3161 *
3162 * @is_rw_mount: If the mount is read-write.
3163 *
3164 * This is the place for less strict checks (like for subpage or artificial
3165 * feature dependencies).
3166 *
3167 * For strict checks or possible corruption detection, see
3168 * btrfs_validate_super().
3169 *
3170 * This should be called after btrfs_parse_options(), as some mount options
3171 * (space cache related) can modify on-disk format like free space tree and
3172 * screw up certain feature dependencies.
3173 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3174 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3175 {
3176 struct btrfs_super_block *disk_super = fs_info->super_copy;
3177 u64 incompat = btrfs_super_incompat_flags(disk_super);
3178 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3179 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3180
3181 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3182 btrfs_err(fs_info,
3183 "cannot mount because of unknown incompat features (0x%llx)",
3184 incompat);
3185 return -EINVAL;
3186 }
3187
3188 /* Runtime limitation for mixed block groups. */
3189 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3190 (fs_info->sectorsize != fs_info->nodesize)) {
3191 btrfs_err(fs_info,
3192 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3193 fs_info->nodesize, fs_info->sectorsize);
3194 return -EINVAL;
3195 }
3196
3197 /* Mixed backref is an always-enabled feature. */
3198 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3199
3200 /* Set compression related flags just in case. */
3201 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3202 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3203 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3204 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3205
3206 /*
3207 * An ancient flag, which should really be marked deprecated.
3208 * Such runtime limitation doesn't really need a incompat flag.
3209 */
3210 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3211 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3212
3213 if (compat_ro_unsupp && is_rw_mount) {
3214 btrfs_err(fs_info,
3215 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3216 compat_ro);
3217 return -EINVAL;
3218 }
3219
3220 /*
3221 * We have unsupported RO compat features, although RO mounted, we
3222 * should not cause any metadata writes, including log replay.
3223 * Or we could screw up whatever the new feature requires.
3224 */
3225 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3226 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3227 btrfs_err(fs_info,
3228 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3229 compat_ro);
3230 return -EINVAL;
3231 }
3232
3233 /*
3234 * Artificial limitations for block group tree, to force
3235 * block-group-tree to rely on no-holes and free-space-tree.
3236 */
3237 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3238 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3239 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3240 btrfs_err(fs_info,
3241 "block-group-tree feature requires no-holes and free-space-tree features");
3242 return -EINVAL;
3243 }
3244
3245 /*
3246 * Subpage/bs > ps runtime limitation on v1 cache.
3247 *
3248 * V1 space cache still has some hard coded PAGE_SIZE usage, while
3249 * we're already defaulting to v2 cache, no need to bother v1 as it's
3250 * going to be deprecated anyway.
3251 */
3252 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3253 btrfs_warn(fs_info,
3254 "v1 space cache is not supported for page size %lu with sectorsize %u",
3255 PAGE_SIZE, fs_info->sectorsize);
3256 return -EINVAL;
3257 }
3258 if (fs_info->sectorsize > PAGE_SIZE && btrfs_fs_incompat(fs_info, RAID56)) {
3259 btrfs_err(fs_info,
3260 "RAID56 is not supported for page size %lu with sectorsize %u",
3261 PAGE_SIZE, fs_info->sectorsize);
3262 return -EINVAL;
3263 }
3264
3265 /* This can be called by remount, we need to protect the super block. */
3266 spin_lock(&fs_info->super_lock);
3267 btrfs_set_super_incompat_flags(disk_super, incompat);
3268 spin_unlock(&fs_info->super_lock);
3269
3270 return 0;
3271 }
3272
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3273 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3274 {
3275 u32 sectorsize;
3276 u32 nodesize;
3277 u32 stripesize;
3278 u64 generation;
3279 u16 csum_type;
3280 struct btrfs_super_block *disk_super;
3281 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3282 struct btrfs_root *tree_root;
3283 struct btrfs_root *chunk_root;
3284 int ret;
3285 int level;
3286
3287 ret = init_mount_fs_info(fs_info, sb);
3288 if (ret)
3289 goto fail;
3290
3291 /* These need to be init'ed before we start creating inodes and such. */
3292 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3293 GFP_KERNEL);
3294 fs_info->tree_root = tree_root;
3295 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3296 GFP_KERNEL);
3297 fs_info->chunk_root = chunk_root;
3298 if (!tree_root || !chunk_root) {
3299 ret = -ENOMEM;
3300 goto fail;
3301 }
3302
3303 ret = btrfs_init_btree_inode(sb);
3304 if (ret)
3305 goto fail;
3306
3307 invalidate_bdev(fs_devices->latest_dev->bdev);
3308
3309 /*
3310 * Read super block and check the signature bytes only
3311 */
3312 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3313 if (IS_ERR(disk_super)) {
3314 ret = PTR_ERR(disk_super);
3315 goto fail_alloc;
3316 }
3317
3318 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3319 /*
3320 * Verify the type first, if that or the checksum value are
3321 * corrupted, we'll find out
3322 */
3323 csum_type = btrfs_super_csum_type(disk_super);
3324 if (!btrfs_supported_super_csum(csum_type)) {
3325 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3326 csum_type);
3327 ret = -EINVAL;
3328 btrfs_release_disk_super(disk_super);
3329 goto fail_alloc;
3330 }
3331
3332 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3333
3334 ret = btrfs_init_csum_hash(fs_info, csum_type);
3335 if (ret) {
3336 btrfs_release_disk_super(disk_super);
3337 goto fail_alloc;
3338 }
3339
3340 /*
3341 * We want to check superblock checksum, the type is stored inside.
3342 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3343 */
3344 if (btrfs_check_super_csum(fs_info, disk_super)) {
3345 btrfs_err(fs_info, "superblock checksum mismatch");
3346 ret = -EINVAL;
3347 btrfs_release_disk_super(disk_super);
3348 goto fail_alloc;
3349 }
3350
3351 /*
3352 * super_copy is zeroed at allocation time and we never touch the
3353 * following bytes up to INFO_SIZE, the checksum is calculated from
3354 * the whole block of INFO_SIZE
3355 */
3356 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3357 btrfs_release_disk_super(disk_super);
3358
3359 disk_super = fs_info->super_copy;
3360
3361 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3362 sizeof(*fs_info->super_for_commit));
3363
3364 ret = btrfs_validate_mount_super(fs_info);
3365 if (ret) {
3366 btrfs_err(fs_info, "superblock contains fatal errors");
3367 ret = -EINVAL;
3368 goto fail_alloc;
3369 }
3370
3371 if (!btrfs_super_root(disk_super)) {
3372 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3373 ret = -EINVAL;
3374 goto fail_alloc;
3375 }
3376
3377 /* check FS state, whether FS is broken. */
3378 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3379 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3380
3381 /* Set up fs_info before parsing mount options */
3382 nodesize = btrfs_super_nodesize(disk_super);
3383 sectorsize = btrfs_super_sectorsize(disk_super);
3384 stripesize = sectorsize;
3385 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3386 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3387
3388 fs_info->nodesize = nodesize;
3389 fs_info->nodesize_bits = ilog2(nodesize);
3390 fs_info->sectorsize = sectorsize;
3391 fs_info->sectorsize_bits = ilog2(sectorsize);
3392 fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT);
3393 fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT);
3394 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3395 fs_info->stripesize = stripesize;
3396 fs_info->fs_devices->fs_info = fs_info;
3397
3398 if (fs_info->sectorsize > PAGE_SIZE)
3399 btrfs_warn(fs_info,
3400 "support for block size %u with page size %zu is experimental, some features may be missing",
3401 fs_info->sectorsize, PAGE_SIZE);
3402 /*
3403 * Handle the space caching options appropriately now that we have the
3404 * super block loaded and validated.
3405 */
3406 btrfs_set_free_space_cache_settings(fs_info);
3407
3408 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3409 ret = -EINVAL;
3410 goto fail_alloc;
3411 }
3412
3413 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3414 if (ret < 0)
3415 goto fail_alloc;
3416
3417 /*
3418 * At this point our mount options are validated, if we set ->max_inline
3419 * to something non-standard make sure we truncate it to sectorsize.
3420 */
3421 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3422
3423 ret = btrfs_alloc_compress_wsm(fs_info);
3424 if (ret)
3425 goto fail_sb_buffer;
3426 ret = btrfs_init_workqueues(fs_info);
3427 if (ret)
3428 goto fail_sb_buffer;
3429
3430 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3431 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3432
3433 /* Update the values for the current filesystem. */
3434 sb->s_blocksize = sectorsize;
3435 sb->s_blocksize_bits = blksize_bits(sectorsize);
3436 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3437
3438 mutex_lock(&fs_info->chunk_mutex);
3439 ret = btrfs_read_sys_array(fs_info);
3440 mutex_unlock(&fs_info->chunk_mutex);
3441 if (ret) {
3442 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3443 goto fail_sb_buffer;
3444 }
3445
3446 generation = btrfs_super_chunk_root_generation(disk_super);
3447 level = btrfs_super_chunk_root_level(disk_super);
3448 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3449 generation, level);
3450 if (ret) {
3451 btrfs_err(fs_info, "failed to read chunk root");
3452 goto fail_tree_roots;
3453 }
3454
3455 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3456 offsetof(struct btrfs_header, chunk_tree_uuid),
3457 BTRFS_UUID_SIZE);
3458
3459 ret = btrfs_read_chunk_tree(fs_info);
3460 if (ret) {
3461 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3462 goto fail_tree_roots;
3463 }
3464
3465 /*
3466 * At this point we know all the devices that make this filesystem,
3467 * including the seed devices but we don't know yet if the replace
3468 * target is required. So free devices that are not part of this
3469 * filesystem but skip the replace target device which is checked
3470 * below in btrfs_init_dev_replace().
3471 */
3472 btrfs_free_extra_devids(fs_devices);
3473 if (unlikely(!fs_devices->latest_dev->bdev)) {
3474 btrfs_err(fs_info, "failed to read devices");
3475 ret = -EIO;
3476 goto fail_tree_roots;
3477 }
3478
3479 ret = init_tree_roots(fs_info);
3480 if (ret)
3481 goto fail_tree_roots;
3482
3483 /*
3484 * Get zone type information of zoned block devices. This will also
3485 * handle emulation of a zoned filesystem if a regular device has the
3486 * zoned incompat feature flag set.
3487 */
3488 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3489 if (ret) {
3490 btrfs_err(fs_info,
3491 "zoned: failed to read device zone info: %d", ret);
3492 goto fail_block_groups;
3493 }
3494
3495 /*
3496 * If we have a uuid root and we're not being told to rescan we need to
3497 * check the generation here so we can set the
3498 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3499 * transaction during a balance or the log replay without updating the
3500 * uuid generation, and then if we crash we would rescan the uuid tree,
3501 * even though it was perfectly fine.
3502 */
3503 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3504 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3505 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3506
3507 ret = btrfs_verify_dev_extents(fs_info);
3508 if (ret) {
3509 btrfs_err(fs_info,
3510 "failed to verify dev extents against chunks: %d",
3511 ret);
3512 goto fail_block_groups;
3513 }
3514 ret = btrfs_recover_balance(fs_info);
3515 if (ret) {
3516 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3517 goto fail_block_groups;
3518 }
3519
3520 ret = btrfs_init_dev_stats(fs_info);
3521 if (ret) {
3522 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3523 goto fail_block_groups;
3524 }
3525
3526 ret = btrfs_init_dev_replace(fs_info);
3527 if (ret) {
3528 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3529 goto fail_block_groups;
3530 }
3531
3532 ret = btrfs_check_zoned_mode(fs_info);
3533 if (ret) {
3534 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3535 ret);
3536 goto fail_block_groups;
3537 }
3538
3539 ret = btrfs_sysfs_add_fsid(fs_devices);
3540 if (ret) {
3541 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3542 ret);
3543 goto fail_block_groups;
3544 }
3545
3546 ret = btrfs_sysfs_add_mounted(fs_info);
3547 if (ret) {
3548 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3549 goto fail_fsdev_sysfs;
3550 }
3551
3552 ret = btrfs_init_space_info(fs_info);
3553 if (ret) {
3554 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3555 goto fail_sysfs;
3556 }
3557
3558 ret = btrfs_read_block_groups(fs_info);
3559 if (ret) {
3560 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3561 goto fail_sysfs;
3562 }
3563
3564 btrfs_zoned_reserve_data_reloc_bg(fs_info);
3565 btrfs_free_zone_cache(fs_info);
3566
3567 btrfs_check_active_zone_reservation(fs_info);
3568
3569 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3570 !btrfs_check_rw_degradable(fs_info, NULL)) {
3571 btrfs_warn(fs_info,
3572 "writable mount is not allowed due to too many missing devices");
3573 ret = -EINVAL;
3574 goto fail_sysfs;
3575 }
3576
3577 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3578 "btrfs-cleaner");
3579 if (IS_ERR(fs_info->cleaner_kthread)) {
3580 ret = PTR_ERR(fs_info->cleaner_kthread);
3581 goto fail_sysfs;
3582 }
3583
3584 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3585 tree_root,
3586 "btrfs-transaction");
3587 if (IS_ERR(fs_info->transaction_kthread)) {
3588 ret = PTR_ERR(fs_info->transaction_kthread);
3589 goto fail_cleaner;
3590 }
3591
3592 ret = btrfs_read_qgroup_config(fs_info);
3593 if (ret)
3594 goto fail_trans_kthread;
3595
3596 if (btrfs_build_ref_tree(fs_info))
3597 btrfs_err(fs_info, "couldn't build ref tree");
3598
3599 /* do not make disk changes in broken FS or nologreplay is given */
3600 if (btrfs_super_log_root(disk_super) != 0 &&
3601 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3602 btrfs_info(fs_info, "start tree-log replay");
3603 ret = btrfs_replay_log(fs_info, fs_devices);
3604 if (ret)
3605 goto fail_qgroup;
3606 }
3607
3608 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3609 if (IS_ERR(fs_info->fs_root)) {
3610 ret = PTR_ERR(fs_info->fs_root);
3611 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3612 fs_info->fs_root = NULL;
3613 goto fail_qgroup;
3614 }
3615
3616 if (sb_rdonly(sb))
3617 return 0;
3618
3619 ret = btrfs_start_pre_rw_mount(fs_info);
3620 if (ret) {
3621 close_ctree(fs_info);
3622 return ret;
3623 }
3624 btrfs_discard_resume(fs_info);
3625
3626 if (fs_info->uuid_root &&
3627 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3628 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3629 btrfs_info(fs_info, "checking UUID tree");
3630 ret = btrfs_check_uuid_tree(fs_info);
3631 if (ret) {
3632 btrfs_warn(fs_info,
3633 "failed to check the UUID tree: %d", ret);
3634 close_ctree(fs_info);
3635 return ret;
3636 }
3637 }
3638
3639 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3640
3641 /* Kick the cleaner thread so it'll start deleting snapshots. */
3642 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3643 wake_up_process(fs_info->cleaner_kthread);
3644
3645 return 0;
3646
3647 fail_qgroup:
3648 btrfs_free_qgroup_config(fs_info);
3649 fail_trans_kthread:
3650 kthread_stop(fs_info->transaction_kthread);
3651 btrfs_cleanup_transaction(fs_info);
3652 btrfs_free_fs_roots(fs_info);
3653 fail_cleaner:
3654 kthread_stop(fs_info->cleaner_kthread);
3655
3656 /*
3657 * make sure we're done with the btree inode before we stop our
3658 * kthreads
3659 */
3660 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3661
3662 fail_sysfs:
3663 btrfs_sysfs_remove_mounted(fs_info);
3664
3665 fail_fsdev_sysfs:
3666 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3667
3668 fail_block_groups:
3669 btrfs_put_block_group_cache(fs_info);
3670
3671 fail_tree_roots:
3672 if (fs_info->data_reloc_root)
3673 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3674 free_root_pointers(fs_info, true);
3675 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3676
3677 fail_sb_buffer:
3678 btrfs_stop_all_workers(fs_info);
3679 btrfs_free_block_groups(fs_info);
3680 fail_alloc:
3681 btrfs_mapping_tree_free(fs_info);
3682
3683 iput(fs_info->btree_inode);
3684 fail:
3685 ASSERT(ret < 0);
3686 return ret;
3687 }
3688 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3689
btrfs_end_super_write(struct bio * bio)3690 static void btrfs_end_super_write(struct bio *bio)
3691 {
3692 struct btrfs_device *device = bio->bi_private;
3693 struct folio_iter fi;
3694
3695 bio_for_each_folio_all(fi, bio) {
3696 if (bio->bi_status) {
3697 btrfs_warn_rl(device->fs_info,
3698 "lost super block write due to IO error on %s (%d)",
3699 btrfs_dev_name(device),
3700 blk_status_to_errno(bio->bi_status));
3701 btrfs_dev_stat_inc_and_print(device,
3702 BTRFS_DEV_STAT_WRITE_ERRS);
3703 /* Ensure failure if the primary sb fails. */
3704 if (bio->bi_opf & REQ_FUA)
3705 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3706 &device->sb_write_errors);
3707 else
3708 atomic_inc(&device->sb_write_errors);
3709 }
3710 folio_unlock(fi.folio);
3711 folio_put(fi.folio);
3712 }
3713
3714 bio_put(bio);
3715 }
3716
3717 /*
3718 * Write superblock @sb to the @device. Do not wait for completion, all the
3719 * folios we use for writing are locked.
3720 *
3721 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3722 * the expected device size at commit time. Note that max_mirrors must be
3723 * same for write and wait phases.
3724 *
3725 * Return number of errors when folio is not found or submission fails.
3726 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3727 static int write_dev_supers(struct btrfs_device *device,
3728 struct btrfs_super_block *sb, int max_mirrors)
3729 {
3730 struct btrfs_fs_info *fs_info = device->fs_info;
3731 struct address_space *mapping = device->bdev->bd_mapping;
3732 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3733 int i;
3734 int ret;
3735 u64 bytenr, bytenr_orig;
3736
3737 atomic_set(&device->sb_write_errors, 0);
3738
3739 if (max_mirrors == 0)
3740 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3741
3742 shash->tfm = fs_info->csum_shash;
3743
3744 for (i = 0; i < max_mirrors; i++) {
3745 struct folio *folio;
3746 struct bio *bio;
3747 struct btrfs_super_block *disk_super;
3748 size_t offset;
3749
3750 bytenr_orig = btrfs_sb_offset(i);
3751 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3752 if (ret == -ENOENT) {
3753 continue;
3754 } else if (ret < 0) {
3755 btrfs_err(device->fs_info,
3756 "couldn't get super block location for mirror %d error %d",
3757 i, ret);
3758 atomic_inc(&device->sb_write_errors);
3759 continue;
3760 }
3761 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3762 device->commit_total_bytes)
3763 break;
3764
3765 btrfs_set_super_bytenr(sb, bytenr_orig);
3766
3767 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3768 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3769 sb->csum);
3770
3771 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3772 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3773 GFP_NOFS);
3774 if (IS_ERR(folio)) {
3775 btrfs_err(device->fs_info,
3776 "couldn't get super block page for bytenr %llu error %ld",
3777 bytenr, PTR_ERR(folio));
3778 atomic_inc(&device->sb_write_errors);
3779 continue;
3780 }
3781
3782 offset = offset_in_folio(folio, bytenr);
3783 disk_super = folio_address(folio) + offset;
3784 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3785
3786 /*
3787 * Directly use bios here instead of relying on the page cache
3788 * to do I/O, so we don't lose the ability to do integrity
3789 * checking.
3790 */
3791 bio = bio_alloc(device->bdev, 1,
3792 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3793 GFP_NOFS);
3794 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3795 bio->bi_private = device;
3796 bio->bi_end_io = btrfs_end_super_write;
3797 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3798
3799 /*
3800 * We FUA only the first super block. The others we allow to
3801 * go down lazy and there's a short window where the on-disk
3802 * copies might still contain the older version.
3803 */
3804 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3805 bio->bi_opf |= REQ_FUA;
3806 submit_bio(bio);
3807
3808 if (btrfs_advance_sb_log(device, i))
3809 atomic_inc(&device->sb_write_errors);
3810 }
3811 return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3812 }
3813
3814 /*
3815 * Wait for write completion of superblocks done by write_dev_supers,
3816 * @max_mirrors same for write and wait phases.
3817 *
3818 * Return -1 if primary super block write failed or when there were no super block
3819 * copies written. Otherwise 0.
3820 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3821 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3822 {
3823 int i;
3824 int errors = 0;
3825 bool primary_failed = false;
3826 int ret;
3827 u64 bytenr;
3828
3829 if (max_mirrors == 0)
3830 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3831
3832 for (i = 0; i < max_mirrors; i++) {
3833 struct folio *folio;
3834
3835 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3836 if (ret == -ENOENT) {
3837 break;
3838 } else if (ret < 0) {
3839 errors++;
3840 if (i == 0)
3841 primary_failed = true;
3842 continue;
3843 }
3844 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3845 device->commit_total_bytes)
3846 break;
3847
3848 folio = filemap_get_folio(device->bdev->bd_mapping,
3849 bytenr >> PAGE_SHIFT);
3850 /* If the folio has been removed, then we know it completed. */
3851 if (IS_ERR(folio))
3852 continue;
3853
3854 /* Folio will be unlocked once the write completes. */
3855 folio_wait_locked(folio);
3856 folio_put(folio);
3857 }
3858
3859 errors += atomic_read(&device->sb_write_errors);
3860 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3861 primary_failed = true;
3862 if (primary_failed) {
3863 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3864 device->devid);
3865 return -1;
3866 }
3867
3868 return errors < i ? 0 : -1;
3869 }
3870
3871 /*
3872 * endio for the write_dev_flush, this will wake anyone waiting
3873 * for the barrier when it is done
3874 */
btrfs_end_empty_barrier(struct bio * bio)3875 static void btrfs_end_empty_barrier(struct bio *bio)
3876 {
3877 bio_uninit(bio);
3878 complete(bio->bi_private);
3879 }
3880
3881 /*
3882 * Submit a flush request to the device if it supports it. Error handling is
3883 * done in the waiting counterpart.
3884 */
write_dev_flush(struct btrfs_device * device)3885 static void write_dev_flush(struct btrfs_device *device)
3886 {
3887 struct bio *bio = &device->flush_bio;
3888
3889 device->last_flush_error = BLK_STS_OK;
3890
3891 bio_init(bio, device->bdev, NULL, 0,
3892 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3893 bio->bi_end_io = btrfs_end_empty_barrier;
3894 init_completion(&device->flush_wait);
3895 bio->bi_private = &device->flush_wait;
3896 submit_bio(bio);
3897 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3898 }
3899
3900 /*
3901 * If the flush bio has been submitted by write_dev_flush, wait for it.
3902 * Return true for any error, and false otherwise.
3903 */
wait_dev_flush(struct btrfs_device * device)3904 static bool wait_dev_flush(struct btrfs_device *device)
3905 {
3906 struct bio *bio = &device->flush_bio;
3907
3908 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3909 return false;
3910
3911 wait_for_completion_io(&device->flush_wait);
3912
3913 if (bio->bi_status) {
3914 device->last_flush_error = bio->bi_status;
3915 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3916 return true;
3917 }
3918
3919 return false;
3920 }
3921
3922 /*
3923 * send an empty flush down to each device in parallel,
3924 * then wait for them
3925 */
barrier_all_devices(struct btrfs_fs_info * info)3926 static int barrier_all_devices(struct btrfs_fs_info *info)
3927 {
3928 struct list_head *head;
3929 struct btrfs_device *dev;
3930 int errors_wait = 0;
3931
3932 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3933 /* send down all the barriers */
3934 head = &info->fs_devices->devices;
3935 list_for_each_entry(dev, head, dev_list) {
3936 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3937 continue;
3938 if (!dev->bdev)
3939 continue;
3940 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3941 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3942 continue;
3943
3944 write_dev_flush(dev);
3945 }
3946
3947 /* wait for all the barriers */
3948 list_for_each_entry(dev, head, dev_list) {
3949 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3950 continue;
3951 if (!dev->bdev) {
3952 errors_wait++;
3953 continue;
3954 }
3955 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3956 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3957 continue;
3958
3959 if (wait_dev_flush(dev))
3960 errors_wait++;
3961 }
3962
3963 /*
3964 * Checks last_flush_error of disks in order to determine the device
3965 * state.
3966 */
3967 if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL)))
3968 return -EIO;
3969
3970 return 0;
3971 }
3972
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3973 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3974 {
3975 int raid_type;
3976 int min_tolerated = INT_MAX;
3977
3978 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3979 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3980 min_tolerated = min_t(int, min_tolerated,
3981 btrfs_raid_array[BTRFS_RAID_SINGLE].
3982 tolerated_failures);
3983
3984 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3985 if (raid_type == BTRFS_RAID_SINGLE)
3986 continue;
3987 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3988 continue;
3989 min_tolerated = min_t(int, min_tolerated,
3990 btrfs_raid_array[raid_type].
3991 tolerated_failures);
3992 }
3993
3994 if (min_tolerated == INT_MAX) {
3995 btrfs_warn(NULL, "unknown raid flag: %llu", flags);
3996 min_tolerated = 0;
3997 }
3998
3999 return min_tolerated;
4000 }
4001
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4002 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4003 {
4004 struct list_head *head;
4005 struct btrfs_device *dev;
4006 struct btrfs_super_block *sb;
4007 struct btrfs_dev_item *dev_item;
4008 int ret;
4009 int do_barriers;
4010 int max_errors;
4011 int total_errors = 0;
4012 u64 flags;
4013
4014 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4015
4016 /*
4017 * max_mirrors == 0 indicates we're from commit_transaction,
4018 * not from fsync where the tree roots in fs_info have not
4019 * been consistent on disk.
4020 */
4021 if (max_mirrors == 0)
4022 backup_super_roots(fs_info);
4023
4024 sb = fs_info->super_for_commit;
4025 dev_item = &sb->dev_item;
4026
4027 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4028 head = &fs_info->fs_devices->devices;
4029 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4030
4031 if (do_barriers) {
4032 ret = barrier_all_devices(fs_info);
4033 if (ret) {
4034 mutex_unlock(
4035 &fs_info->fs_devices->device_list_mutex);
4036 btrfs_handle_fs_error(fs_info, ret,
4037 "errors while submitting device barriers.");
4038 return ret;
4039 }
4040 }
4041
4042 list_for_each_entry(dev, head, dev_list) {
4043 if (!dev->bdev) {
4044 total_errors++;
4045 continue;
4046 }
4047 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4048 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4049 continue;
4050
4051 btrfs_set_stack_device_generation(dev_item, 0);
4052 btrfs_set_stack_device_type(dev_item, dev->type);
4053 btrfs_set_stack_device_id(dev_item, dev->devid);
4054 btrfs_set_stack_device_total_bytes(dev_item,
4055 dev->commit_total_bytes);
4056 btrfs_set_stack_device_bytes_used(dev_item,
4057 dev->commit_bytes_used);
4058 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4059 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4060 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4061 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4062 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4063 BTRFS_FSID_SIZE);
4064
4065 flags = btrfs_super_flags(sb);
4066 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4067
4068 ret = btrfs_validate_write_super(fs_info, sb);
4069 if (unlikely(ret < 0)) {
4070 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4071 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4072 "unexpected superblock corruption detected");
4073 return -EUCLEAN;
4074 }
4075
4076 ret = write_dev_supers(dev, sb, max_mirrors);
4077 if (ret)
4078 total_errors++;
4079 }
4080 if (unlikely(total_errors > max_errors)) {
4081 btrfs_err(fs_info, "%d errors while writing supers",
4082 total_errors);
4083 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4084
4085 /* FUA is masked off if unsupported and can't be the reason */
4086 btrfs_handle_fs_error(fs_info, -EIO,
4087 "%d errors while writing supers",
4088 total_errors);
4089 return -EIO;
4090 }
4091
4092 total_errors = 0;
4093 list_for_each_entry(dev, head, dev_list) {
4094 if (!dev->bdev)
4095 continue;
4096 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4097 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4098 continue;
4099
4100 ret = wait_dev_supers(dev, max_mirrors);
4101 if (ret)
4102 total_errors++;
4103 }
4104 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4105 if (unlikely(total_errors > max_errors)) {
4106 btrfs_handle_fs_error(fs_info, -EIO,
4107 "%d errors while writing supers",
4108 total_errors);
4109 return -EIO;
4110 }
4111 return 0;
4112 }
4113
4114 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4115 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4116 struct btrfs_root *root)
4117 {
4118 bool drop_ref = false;
4119
4120 spin_lock(&fs_info->fs_roots_radix_lock);
4121 radix_tree_delete(&fs_info->fs_roots_radix,
4122 (unsigned long)btrfs_root_id(root));
4123 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4124 drop_ref = true;
4125 spin_unlock(&fs_info->fs_roots_radix_lock);
4126
4127 if (BTRFS_FS_ERROR(fs_info)) {
4128 ASSERT(root->log_root == NULL);
4129 if (root->reloc_root) {
4130 btrfs_put_root(root->reloc_root);
4131 root->reloc_root = NULL;
4132 }
4133 }
4134
4135 if (drop_ref)
4136 btrfs_put_root(root);
4137 }
4138
btrfs_commit_super(struct btrfs_fs_info * fs_info)4139 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4140 {
4141 mutex_lock(&fs_info->cleaner_mutex);
4142 btrfs_run_delayed_iputs(fs_info);
4143 mutex_unlock(&fs_info->cleaner_mutex);
4144 wake_up_process(fs_info->cleaner_kthread);
4145
4146 /* wait until ongoing cleanup work done */
4147 down_write(&fs_info->cleanup_work_sem);
4148 up_write(&fs_info->cleanup_work_sem);
4149
4150 return btrfs_commit_current_transaction(fs_info->tree_root);
4151 }
4152
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4153 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4154 {
4155 struct btrfs_transaction *trans;
4156 struct btrfs_transaction *tmp;
4157 bool found = false;
4158
4159 /*
4160 * This function is only called at the very end of close_ctree(),
4161 * thus no other running transaction, no need to take trans_lock.
4162 */
4163 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4164 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4165 struct extent_state *cached = NULL;
4166 u64 dirty_bytes = 0;
4167 u64 cur = 0;
4168 u64 found_start;
4169 u64 found_end;
4170
4171 found = true;
4172 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4173 &found_start, &found_end,
4174 EXTENT_DIRTY, &cached)) {
4175 dirty_bytes += found_end + 1 - found_start;
4176 cur = found_end + 1;
4177 }
4178 btrfs_warn(fs_info,
4179 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4180 trans->transid, dirty_bytes);
4181 btrfs_cleanup_one_transaction(trans);
4182
4183 if (trans == fs_info->running_transaction)
4184 fs_info->running_transaction = NULL;
4185 list_del_init(&trans->list);
4186
4187 btrfs_put_transaction(trans);
4188 trace_btrfs_transaction_commit(fs_info);
4189 }
4190 ASSERT(!found);
4191 }
4192
close_ctree(struct btrfs_fs_info * fs_info)4193 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4194 {
4195 int ret;
4196
4197 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4198
4199 /*
4200 * If we had UNFINISHED_DROPS we could still be processing them, so
4201 * clear that bit and wake up relocation so it can stop.
4202 * We must do this before stopping the block group reclaim task, because
4203 * at btrfs_relocate_block_group() we wait for this bit, and after the
4204 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4205 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4206 * return 1.
4207 */
4208 btrfs_wake_unfinished_drop(fs_info);
4209
4210 /*
4211 * We may have the reclaim task running and relocating a data block group,
4212 * in which case it may create delayed iputs. So stop it before we park
4213 * the cleaner kthread otherwise we can get new delayed iputs after
4214 * parking the cleaner, and that can make the async reclaim task to hang
4215 * if it's waiting for delayed iputs to complete, since the cleaner is
4216 * parked and can not run delayed iputs - this will make us hang when
4217 * trying to stop the async reclaim task.
4218 */
4219 cancel_work_sync(&fs_info->reclaim_bgs_work);
4220 /*
4221 * We don't want the cleaner to start new transactions, add more delayed
4222 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4223 * because that frees the task_struct, and the transaction kthread might
4224 * still try to wake up the cleaner.
4225 */
4226 kthread_park(fs_info->cleaner_kthread);
4227
4228 /* wait for the qgroup rescan worker to stop */
4229 btrfs_qgroup_wait_for_completion(fs_info, false);
4230
4231 /* wait for the uuid_scan task to finish */
4232 down(&fs_info->uuid_tree_rescan_sem);
4233 /* avoid complains from lockdep et al., set sem back to initial state */
4234 up(&fs_info->uuid_tree_rescan_sem);
4235
4236 /* pause restriper - we want to resume on mount */
4237 btrfs_pause_balance(fs_info);
4238
4239 btrfs_dev_replace_suspend_for_unmount(fs_info);
4240
4241 btrfs_scrub_cancel(fs_info);
4242
4243 /* wait for any defraggers to finish */
4244 wait_event(fs_info->transaction_wait,
4245 (atomic_read(&fs_info->defrag_running) == 0));
4246
4247 /* clear out the rbtree of defraggable inodes */
4248 btrfs_cleanup_defrag_inodes(fs_info);
4249
4250 /*
4251 * Handle the error fs first, as it will flush and wait for all ordered
4252 * extents. This will generate delayed iputs, thus we want to handle
4253 * it first.
4254 */
4255 if (unlikely(BTRFS_FS_ERROR(fs_info)))
4256 btrfs_error_commit_super(fs_info);
4257
4258 /*
4259 * Wait for any fixup workers to complete.
4260 * If we don't wait for them here and they are still running by the time
4261 * we call kthread_stop() against the cleaner kthread further below, we
4262 * get an use-after-free on the cleaner because the fixup worker adds an
4263 * inode to the list of delayed iputs and then attempts to wakeup the
4264 * cleaner kthread, which was already stopped and destroyed. We parked
4265 * already the cleaner, but below we run all pending delayed iputs.
4266 */
4267 btrfs_flush_workqueue(fs_info->fixup_workers);
4268 /*
4269 * Similar case here, we have to wait for delalloc workers before we
4270 * proceed below and stop the cleaner kthread, otherwise we trigger a
4271 * use-after-tree on the cleaner kthread task_struct when a delalloc
4272 * worker running submit_compressed_extents() adds a delayed iput, which
4273 * does a wake up on the cleaner kthread, which was already freed below
4274 * when we call kthread_stop().
4275 */
4276 btrfs_flush_workqueue(fs_info->delalloc_workers);
4277
4278 /*
4279 * We can have ordered extents getting their last reference dropped from
4280 * the fs_info->workers queue because for async writes for data bios we
4281 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4282 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4283 * has an error, and that later function can do the final
4284 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4285 * which adds a delayed iput for the inode. So we must flush the queue
4286 * so that we don't have delayed iputs after committing the current
4287 * transaction below and stopping the cleaner and transaction kthreads.
4288 */
4289 btrfs_flush_workqueue(fs_info->workers);
4290
4291 /*
4292 * When finishing a compressed write bio we schedule a work queue item
4293 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4294 * calls btrfs_finish_ordered_extent() which in turns does a call to
4295 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4296 * completion either in the endio_write_workers work queue or in the
4297 * fs_info->endio_freespace_worker work queue. We flush those queues
4298 * below, so before we flush them we must flush this queue for the
4299 * workers of compressed writes.
4300 */
4301 flush_workqueue(fs_info->compressed_write_workers);
4302
4303 /*
4304 * After we parked the cleaner kthread, ordered extents may have
4305 * completed and created new delayed iputs. If one of the async reclaim
4306 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4307 * can hang forever trying to stop it, because if a delayed iput is
4308 * added after it ran btrfs_run_delayed_iputs() and before it called
4309 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4310 * no one else to run iputs.
4311 *
4312 * So wait for all ongoing ordered extents to complete and then run
4313 * delayed iputs. This works because once we reach this point no one
4314 * can create new ordered extents, but delayed iputs can still be added
4315 * by a reclaim worker (see comments further below).
4316 *
4317 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4318 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4319 * but the delayed iput for the respective inode is made only when doing
4320 * the final btrfs_put_ordered_extent() (which must happen at
4321 * btrfs_finish_ordered_io() when we are unmounting).
4322 */
4323 btrfs_flush_workqueue(fs_info->endio_write_workers);
4324 /* Ordered extents for free space inodes. */
4325 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4326 /*
4327 * Run delayed iputs in case an async reclaim worker is waiting for them
4328 * to be run as mentioned above.
4329 */
4330 btrfs_run_delayed_iputs(fs_info);
4331
4332 cancel_work_sync(&fs_info->async_reclaim_work);
4333 cancel_work_sync(&fs_info->async_data_reclaim_work);
4334 cancel_work_sync(&fs_info->preempt_reclaim_work);
4335 cancel_work_sync(&fs_info->em_shrinker_work);
4336
4337 /*
4338 * Run delayed iputs again because an async reclaim worker may have
4339 * added new ones if it was flushing delalloc:
4340 *
4341 * shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4342 * start_delalloc_inodes() -> btrfs_add_delayed_iput()
4343 */
4344 btrfs_run_delayed_iputs(fs_info);
4345
4346 /* There should be no more workload to generate new delayed iputs. */
4347 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4348
4349 /* Cancel or finish ongoing discard work */
4350 btrfs_discard_cleanup(fs_info);
4351
4352 if (!sb_rdonly(fs_info->sb)) {
4353 /*
4354 * The cleaner kthread is stopped, so do one final pass over
4355 * unused block groups.
4356 */
4357 btrfs_delete_unused_bgs(fs_info);
4358
4359 /*
4360 * There might be existing delayed inode workers still running
4361 * and holding an empty delayed inode item. We must wait for
4362 * them to complete first because they can create a transaction.
4363 * This happens when someone calls btrfs_balance_delayed_items()
4364 * and then a transaction commit runs the same delayed nodes
4365 * before any delayed worker has done something with the nodes.
4366 * We must wait for any worker here and not at transaction
4367 * commit time since that could cause a deadlock.
4368 * This is a very rare case.
4369 */
4370 btrfs_flush_workqueue(fs_info->delayed_workers);
4371
4372 ret = btrfs_commit_super(fs_info);
4373 if (ret)
4374 btrfs_err(fs_info, "commit super ret %d", ret);
4375 }
4376
4377 kthread_stop(fs_info->transaction_kthread);
4378 kthread_stop(fs_info->cleaner_kthread);
4379
4380 ASSERT(list_empty(&fs_info->delayed_iputs));
4381 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4382
4383 if (btrfs_check_quota_leak(fs_info)) {
4384 DEBUG_WARN("qgroup reserved space leaked");
4385 btrfs_err(fs_info, "qgroup reserved space leaked");
4386 }
4387
4388 btrfs_free_qgroup_config(fs_info);
4389 ASSERT(list_empty(&fs_info->delalloc_roots));
4390
4391 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4392 btrfs_info(fs_info, "at unmount delalloc count %lld",
4393 percpu_counter_sum(&fs_info->delalloc_bytes));
4394 }
4395
4396 if (percpu_counter_sum(&fs_info->ordered_bytes))
4397 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4398 percpu_counter_sum(&fs_info->ordered_bytes));
4399
4400 btrfs_sysfs_remove_mounted(fs_info);
4401 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4402
4403 btrfs_put_block_group_cache(fs_info);
4404
4405 /*
4406 * we must make sure there is not any read request to
4407 * submit after we stopping all workers.
4408 */
4409 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4410 btrfs_stop_all_workers(fs_info);
4411
4412 /* We shouldn't have any transaction open at this point */
4413 warn_about_uncommitted_trans(fs_info);
4414
4415 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4416 free_root_pointers(fs_info, true);
4417 btrfs_free_fs_roots(fs_info);
4418
4419 /*
4420 * We must free the block groups after dropping the fs_roots as we could
4421 * have had an IO error and have left over tree log blocks that aren't
4422 * cleaned up until the fs roots are freed. This makes the block group
4423 * accounting appear to be wrong because there's pending reserved bytes,
4424 * so make sure we do the block group cleanup afterwards.
4425 */
4426 btrfs_free_block_groups(fs_info);
4427
4428 iput(fs_info->btree_inode);
4429
4430 btrfs_mapping_tree_free(fs_info);
4431 }
4432
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4433 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4434 struct extent_buffer *buf)
4435 {
4436 struct btrfs_fs_info *fs_info = buf->fs_info;
4437 u64 transid = btrfs_header_generation(buf);
4438
4439 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4440 /*
4441 * This is a fast path so only do this check if we have sanity tests
4442 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4443 * outside of the sanity tests.
4444 */
4445 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4446 return;
4447 #endif
4448 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4449 ASSERT(trans->transid == fs_info->generation);
4450 btrfs_assert_tree_write_locked(buf);
4451 if (unlikely(transid != fs_info->generation)) {
4452 btrfs_abort_transaction(trans, -EUCLEAN);
4453 btrfs_crit(fs_info,
4454 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4455 buf->start, transid, fs_info->generation);
4456 }
4457 set_extent_buffer_dirty(buf);
4458 }
4459
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4460 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4461 int flush_delayed)
4462 {
4463 /*
4464 * looks as though older kernels can get into trouble with
4465 * this code, they end up stuck in balance_dirty_pages forever
4466 */
4467 int ret;
4468
4469 if (current->flags & PF_MEMALLOC)
4470 return;
4471
4472 if (flush_delayed)
4473 btrfs_balance_delayed_items(fs_info);
4474
4475 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4476 BTRFS_DIRTY_METADATA_THRESH,
4477 fs_info->dirty_metadata_batch);
4478 if (ret > 0) {
4479 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4480 }
4481 }
4482
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4483 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4484 {
4485 __btrfs_btree_balance_dirty(fs_info, 1);
4486 }
4487
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4488 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4489 {
4490 __btrfs_btree_balance_dirty(fs_info, 0);
4491 }
4492
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4493 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4494 {
4495 /* cleanup FS via transaction */
4496 btrfs_cleanup_transaction(fs_info);
4497
4498 down_write(&fs_info->cleanup_work_sem);
4499 up_write(&fs_info->cleanup_work_sem);
4500 }
4501
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4502 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4503 {
4504 struct btrfs_root *gang[8];
4505 u64 root_objectid = 0;
4506 int ret;
4507
4508 spin_lock(&fs_info->fs_roots_radix_lock);
4509 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4510 (void **)gang, root_objectid,
4511 ARRAY_SIZE(gang))) != 0) {
4512 int i;
4513
4514 for (i = 0; i < ret; i++)
4515 gang[i] = btrfs_grab_root(gang[i]);
4516 spin_unlock(&fs_info->fs_roots_radix_lock);
4517
4518 for (i = 0; i < ret; i++) {
4519 if (!gang[i])
4520 continue;
4521 root_objectid = btrfs_root_id(gang[i]);
4522 btrfs_free_log(NULL, gang[i]);
4523 btrfs_put_root(gang[i]);
4524 }
4525 root_objectid++;
4526 spin_lock(&fs_info->fs_roots_radix_lock);
4527 }
4528 spin_unlock(&fs_info->fs_roots_radix_lock);
4529 btrfs_free_log_root_tree(NULL, fs_info);
4530 }
4531
btrfs_destroy_ordered_extents(struct btrfs_root * root)4532 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4533 {
4534 struct btrfs_ordered_extent *ordered;
4535
4536 spin_lock(&root->ordered_extent_lock);
4537 /*
4538 * This will just short circuit the ordered completion stuff which will
4539 * make sure the ordered extent gets properly cleaned up.
4540 */
4541 list_for_each_entry(ordered, &root->ordered_extents,
4542 root_extent_list)
4543 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4544 spin_unlock(&root->ordered_extent_lock);
4545 }
4546
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4547 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4548 {
4549 struct btrfs_root *root;
4550 LIST_HEAD(splice);
4551
4552 spin_lock(&fs_info->ordered_root_lock);
4553 list_splice_init(&fs_info->ordered_roots, &splice);
4554 while (!list_empty(&splice)) {
4555 root = list_first_entry(&splice, struct btrfs_root,
4556 ordered_root);
4557 list_move_tail(&root->ordered_root,
4558 &fs_info->ordered_roots);
4559
4560 spin_unlock(&fs_info->ordered_root_lock);
4561 btrfs_destroy_ordered_extents(root);
4562
4563 cond_resched();
4564 spin_lock(&fs_info->ordered_root_lock);
4565 }
4566 spin_unlock(&fs_info->ordered_root_lock);
4567
4568 /*
4569 * We need this here because if we've been flipped read-only we won't
4570 * get sync() from the umount, so we need to make sure any ordered
4571 * extents that haven't had their dirty pages IO start writeout yet
4572 * actually get run and error out properly.
4573 */
4574 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4575 }
4576
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4577 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4578 {
4579 struct btrfs_inode *btrfs_inode;
4580 LIST_HEAD(splice);
4581
4582 spin_lock(&root->delalloc_lock);
4583 list_splice_init(&root->delalloc_inodes, &splice);
4584
4585 while (!list_empty(&splice)) {
4586 struct inode *inode = NULL;
4587 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4588 delalloc_inodes);
4589 btrfs_del_delalloc_inode(btrfs_inode);
4590 spin_unlock(&root->delalloc_lock);
4591
4592 /*
4593 * Make sure we get a live inode and that it'll not disappear
4594 * meanwhile.
4595 */
4596 inode = igrab(&btrfs_inode->vfs_inode);
4597 if (inode) {
4598 unsigned int nofs_flag;
4599
4600 nofs_flag = memalloc_nofs_save();
4601 invalidate_inode_pages2(inode->i_mapping);
4602 memalloc_nofs_restore(nofs_flag);
4603 iput(inode);
4604 }
4605 spin_lock(&root->delalloc_lock);
4606 }
4607 spin_unlock(&root->delalloc_lock);
4608 }
4609
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4610 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4611 {
4612 struct btrfs_root *root;
4613 LIST_HEAD(splice);
4614
4615 spin_lock(&fs_info->delalloc_root_lock);
4616 list_splice_init(&fs_info->delalloc_roots, &splice);
4617 while (!list_empty(&splice)) {
4618 root = list_first_entry(&splice, struct btrfs_root,
4619 delalloc_root);
4620 root = btrfs_grab_root(root);
4621 BUG_ON(!root);
4622 spin_unlock(&fs_info->delalloc_root_lock);
4623
4624 btrfs_destroy_delalloc_inodes(root);
4625 btrfs_put_root(root);
4626
4627 spin_lock(&fs_info->delalloc_root_lock);
4628 }
4629 spin_unlock(&fs_info->delalloc_root_lock);
4630 }
4631
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4632 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4633 struct extent_io_tree *dirty_pages,
4634 int mark)
4635 {
4636 struct extent_buffer *eb;
4637 u64 start = 0;
4638 u64 end;
4639
4640 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4641 mark, NULL)) {
4642 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL);
4643 while (start <= end) {
4644 eb = find_extent_buffer(fs_info, start);
4645 start += fs_info->nodesize;
4646 if (!eb)
4647 continue;
4648
4649 btrfs_tree_lock(eb);
4650 wait_on_extent_buffer_writeback(eb);
4651 btrfs_clear_buffer_dirty(NULL, eb);
4652 btrfs_tree_unlock(eb);
4653
4654 free_extent_buffer_stale(eb);
4655 }
4656 }
4657 }
4658
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4659 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4660 struct extent_io_tree *unpin)
4661 {
4662 u64 start;
4663 u64 end;
4664
4665 while (1) {
4666 struct extent_state *cached_state = NULL;
4667
4668 /*
4669 * The btrfs_finish_extent_commit() may get the same range as
4670 * ours between find_first_extent_bit and clear_extent_dirty.
4671 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4672 * the same extent range.
4673 */
4674 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4675 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4676 EXTENT_DIRTY, &cached_state)) {
4677 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4678 break;
4679 }
4680
4681 btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4682 btrfs_free_extent_state(cached_state);
4683 btrfs_error_unpin_extent_range(fs_info, start, end);
4684 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4685 cond_resched();
4686 }
4687 }
4688
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4689 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4690 {
4691 struct inode *inode;
4692
4693 inode = cache->io_ctl.inode;
4694 if (inode) {
4695 unsigned int nofs_flag;
4696
4697 nofs_flag = memalloc_nofs_save();
4698 invalidate_inode_pages2(inode->i_mapping);
4699 memalloc_nofs_restore(nofs_flag);
4700
4701 BTRFS_I(inode)->generation = 0;
4702 cache->io_ctl.inode = NULL;
4703 iput(inode);
4704 }
4705 ASSERT(cache->io_ctl.pages == NULL);
4706 btrfs_put_block_group(cache);
4707 }
4708
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4709 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4710 struct btrfs_fs_info *fs_info)
4711 {
4712 struct btrfs_block_group *cache;
4713
4714 spin_lock(&cur_trans->dirty_bgs_lock);
4715 while (!list_empty(&cur_trans->dirty_bgs)) {
4716 cache = list_first_entry(&cur_trans->dirty_bgs,
4717 struct btrfs_block_group,
4718 dirty_list);
4719
4720 if (!list_empty(&cache->io_list)) {
4721 spin_unlock(&cur_trans->dirty_bgs_lock);
4722 list_del_init(&cache->io_list);
4723 btrfs_cleanup_bg_io(cache);
4724 spin_lock(&cur_trans->dirty_bgs_lock);
4725 }
4726
4727 list_del_init(&cache->dirty_list);
4728 spin_lock(&cache->lock);
4729 cache->disk_cache_state = BTRFS_DC_ERROR;
4730 spin_unlock(&cache->lock);
4731
4732 spin_unlock(&cur_trans->dirty_bgs_lock);
4733 btrfs_put_block_group(cache);
4734 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4735 spin_lock(&cur_trans->dirty_bgs_lock);
4736 }
4737 spin_unlock(&cur_trans->dirty_bgs_lock);
4738
4739 /*
4740 * Refer to the definition of io_bgs member for details why it's safe
4741 * to use it without any locking
4742 */
4743 while (!list_empty(&cur_trans->io_bgs)) {
4744 cache = list_first_entry(&cur_trans->io_bgs,
4745 struct btrfs_block_group,
4746 io_list);
4747
4748 list_del_init(&cache->io_list);
4749 spin_lock(&cache->lock);
4750 cache->disk_cache_state = BTRFS_DC_ERROR;
4751 spin_unlock(&cache->lock);
4752 btrfs_cleanup_bg_io(cache);
4753 }
4754 }
4755
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4756 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4757 {
4758 struct btrfs_root *gang[8];
4759 int i;
4760 int ret;
4761
4762 spin_lock(&fs_info->fs_roots_radix_lock);
4763 while (1) {
4764 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4765 (void **)gang, 0,
4766 ARRAY_SIZE(gang),
4767 BTRFS_ROOT_TRANS_TAG);
4768 if (ret == 0)
4769 break;
4770 for (i = 0; i < ret; i++) {
4771 struct btrfs_root *root = gang[i];
4772
4773 btrfs_qgroup_free_meta_all_pertrans(root);
4774 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4775 (unsigned long)btrfs_root_id(root),
4776 BTRFS_ROOT_TRANS_TAG);
4777 }
4778 }
4779 spin_unlock(&fs_info->fs_roots_radix_lock);
4780 }
4781
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4782 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4783 {
4784 struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4785 struct btrfs_device *dev, *tmp;
4786
4787 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4788 ASSERT(list_empty(&cur_trans->dirty_bgs));
4789 ASSERT(list_empty(&cur_trans->io_bgs));
4790
4791 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4792 post_commit_list) {
4793 list_del_init(&dev->post_commit_list);
4794 }
4795
4796 btrfs_destroy_delayed_refs(cur_trans);
4797
4798 cur_trans->state = TRANS_STATE_COMMIT_START;
4799 wake_up(&fs_info->transaction_blocked_wait);
4800
4801 cur_trans->state = TRANS_STATE_UNBLOCKED;
4802 wake_up(&fs_info->transaction_wait);
4803
4804 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4805 EXTENT_DIRTY);
4806 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4807
4808 cur_trans->state =TRANS_STATE_COMPLETED;
4809 wake_up(&cur_trans->commit_wait);
4810 }
4811
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4812 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4813 {
4814 struct btrfs_transaction *t;
4815
4816 mutex_lock(&fs_info->transaction_kthread_mutex);
4817
4818 spin_lock(&fs_info->trans_lock);
4819 while (!list_empty(&fs_info->trans_list)) {
4820 t = list_first_entry(&fs_info->trans_list,
4821 struct btrfs_transaction, list);
4822 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4823 refcount_inc(&t->use_count);
4824 spin_unlock(&fs_info->trans_lock);
4825 btrfs_wait_for_commit(fs_info, t->transid);
4826 btrfs_put_transaction(t);
4827 spin_lock(&fs_info->trans_lock);
4828 continue;
4829 }
4830 if (t == fs_info->running_transaction) {
4831 t->state = TRANS_STATE_COMMIT_DOING;
4832 spin_unlock(&fs_info->trans_lock);
4833 /*
4834 * We wait for 0 num_writers since we don't hold a trans
4835 * handle open currently for this transaction.
4836 */
4837 wait_event(t->writer_wait,
4838 atomic_read(&t->num_writers) == 0);
4839 } else {
4840 spin_unlock(&fs_info->trans_lock);
4841 }
4842 btrfs_cleanup_one_transaction(t);
4843
4844 spin_lock(&fs_info->trans_lock);
4845 if (t == fs_info->running_transaction)
4846 fs_info->running_transaction = NULL;
4847 list_del_init(&t->list);
4848 spin_unlock(&fs_info->trans_lock);
4849
4850 btrfs_put_transaction(t);
4851 trace_btrfs_transaction_commit(fs_info);
4852 spin_lock(&fs_info->trans_lock);
4853 }
4854 spin_unlock(&fs_info->trans_lock);
4855 btrfs_destroy_all_ordered_extents(fs_info);
4856 btrfs_destroy_delayed_inodes(fs_info);
4857 btrfs_assert_delayed_root_empty(fs_info);
4858 btrfs_destroy_all_delalloc_inodes(fs_info);
4859 btrfs_drop_all_logs(fs_info);
4860 btrfs_free_all_qgroup_pertrans(fs_info);
4861 mutex_unlock(&fs_info->transaction_kthread_mutex);
4862
4863 return 0;
4864 }
4865
btrfs_init_root_free_objectid(struct btrfs_root * root)4866 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4867 {
4868 BTRFS_PATH_AUTO_FREE(path);
4869 int ret;
4870 struct extent_buffer *l;
4871 struct btrfs_key search_key;
4872 struct btrfs_key found_key;
4873 int slot;
4874
4875 path = btrfs_alloc_path();
4876 if (!path)
4877 return -ENOMEM;
4878
4879 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4880 search_key.type = -1;
4881 search_key.offset = (u64)-1;
4882 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4883 if (ret < 0)
4884 return ret;
4885 if (unlikely(ret == 0)) {
4886 /*
4887 * Key with offset -1 found, there would have to exist a root
4888 * with such id, but this is out of valid range.
4889 */
4890 return -EUCLEAN;
4891 }
4892 if (path->slots[0] > 0) {
4893 slot = path->slots[0] - 1;
4894 l = path->nodes[0];
4895 btrfs_item_key_to_cpu(l, &found_key, slot);
4896 root->free_objectid = max_t(u64, found_key.objectid + 1,
4897 BTRFS_FIRST_FREE_OBJECTID);
4898 } else {
4899 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4900 }
4901
4902 return 0;
4903 }
4904
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4905 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4906 {
4907 int ret;
4908 mutex_lock(&root->objectid_mutex);
4909
4910 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4911 btrfs_warn(root->fs_info,
4912 "the objectid of root %llu reaches its highest value",
4913 btrfs_root_id(root));
4914 ret = -ENOSPC;
4915 goto out;
4916 }
4917
4918 *objectid = root->free_objectid++;
4919 ret = 0;
4920 out:
4921 mutex_unlock(&root->objectid_mutex);
4922 return ret;
4923 }
4924