1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33
34 #include "disasm.h"
35
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 [_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46
47 enum bpf_features {
48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0,
49 BPF_FEAT_STREAMS = 1,
50 __MAX_BPF_FEAT,
51 };
52
53 struct bpf_mem_alloc bpf_global_percpu_ma;
54 static bool bpf_global_percpu_ma_set;
55
56 /* bpf_check() is a static code analyzer that walks eBPF program
57 * instruction by instruction and updates register/stack state.
58 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
59 *
60 * The first pass is depth-first-search to check that the program is a DAG.
61 * It rejects the following programs:
62 * - larger than BPF_MAXINSNS insns
63 * - if loop is present (detected via back-edge)
64 * - unreachable insns exist (shouldn't be a forest. program = one function)
65 * - out of bounds or malformed jumps
66 * The second pass is all possible path descent from the 1st insn.
67 * Since it's analyzing all paths through the program, the length of the
68 * analysis is limited to 64k insn, which may be hit even if total number of
69 * insn is less then 4K, but there are too many branches that change stack/regs.
70 * Number of 'branches to be analyzed' is limited to 1k
71 *
72 * On entry to each instruction, each register has a type, and the instruction
73 * changes the types of the registers depending on instruction semantics.
74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
75 * copied to R1.
76 *
77 * All registers are 64-bit.
78 * R0 - return register
79 * R1-R5 argument passing registers
80 * R6-R9 callee saved registers
81 * R10 - frame pointer read-only
82 *
83 * At the start of BPF program the register R1 contains a pointer to bpf_context
84 * and has type PTR_TO_CTX.
85 *
86 * Verifier tracks arithmetic operations on pointers in case:
87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
89 * 1st insn copies R10 (which has FRAME_PTR) type into R1
90 * and 2nd arithmetic instruction is pattern matched to recognize
91 * that it wants to construct a pointer to some element within stack.
92 * So after 2nd insn, the register R1 has type PTR_TO_STACK
93 * (and -20 constant is saved for further stack bounds checking).
94 * Meaning that this reg is a pointer to stack plus known immediate constant.
95 *
96 * Most of the time the registers have SCALAR_VALUE type, which
97 * means the register has some value, but it's not a valid pointer.
98 * (like pointer plus pointer becomes SCALAR_VALUE type)
99 *
100 * When verifier sees load or store instructions the type of base register
101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
102 * four pointer types recognized by check_mem_access() function.
103 *
104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
105 * and the range of [ptr, ptr + map's value_size) is accessible.
106 *
107 * registers used to pass values to function calls are checked against
108 * function argument constraints.
109 *
110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
111 * It means that the register type passed to this function must be
112 * PTR_TO_STACK and it will be used inside the function as
113 * 'pointer to map element key'
114 *
115 * For example the argument constraints for bpf_map_lookup_elem():
116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
117 * .arg1_type = ARG_CONST_MAP_PTR,
118 * .arg2_type = ARG_PTR_TO_MAP_KEY,
119 *
120 * ret_type says that this function returns 'pointer to map elem value or null'
121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
122 * 2nd argument should be a pointer to stack, which will be used inside
123 * the helper function as a pointer to map element key.
124 *
125 * On the kernel side the helper function looks like:
126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
127 * {
128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
129 * void *key = (void *) (unsigned long) r2;
130 * void *value;
131 *
132 * here kernel can access 'key' and 'map' pointers safely, knowing that
133 * [key, key + map->key_size) bytes are valid and were initialized on
134 * the stack of eBPF program.
135 * }
136 *
137 * Corresponding eBPF program may look like:
138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
142 * here verifier looks at prototype of map_lookup_elem() and sees:
143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
145 *
146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
148 * and were initialized prior to this call.
149 * If it's ok, then verifier allows this BPF_CALL insn and looks at
150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
152 * returns either pointer to map value or NULL.
153 *
154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
155 * insn, the register holding that pointer in the true branch changes state to
156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
157 * branch. See check_cond_jmp_op().
158 *
159 * After the call R0 is set to return type of the function and registers R1-R5
160 * are set to NOT_INIT to indicate that they are no longer readable.
161 *
162 * The following reference types represent a potential reference to a kernel
163 * resource which, after first being allocated, must be checked and freed by
164 * the BPF program:
165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
166 *
167 * When the verifier sees a helper call return a reference type, it allocates a
168 * pointer id for the reference and stores it in the current function state.
169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
171 * passes through a NULL-check conditional. For the branch wherein the state is
172 * changed to CONST_IMM, the verifier releases the reference.
173 *
174 * For each helper function that allocates a reference, such as
175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
176 * bpf_sk_release(). When a reference type passes into the release function,
177 * the verifier also releases the reference. If any unchecked or unreleased
178 * reference remains at the end of the program, the verifier rejects it.
179 */
180
181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
182 struct bpf_verifier_stack_elem {
183 /* verifier state is 'st'
184 * before processing instruction 'insn_idx'
185 * and after processing instruction 'prev_insn_idx'
186 */
187 struct bpf_verifier_state st;
188 int insn_idx;
189 int prev_insn_idx;
190 struct bpf_verifier_stack_elem *next;
191 /* length of verifier log at the time this state was pushed on stack */
192 u32 log_pos;
193 };
194
195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
196 #define BPF_COMPLEXITY_LIMIT_STATES 64
197
198 #define BPF_MAP_KEY_POISON (1ULL << 63)
199 #define BPF_MAP_KEY_SEEN (1ULL << 62)
200
201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
202
203 #define BPF_PRIV_STACK_MIN_SIZE 64
204
205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
210 static int ref_set_non_owning(struct bpf_verifier_env *env,
211 struct bpf_reg_state *reg);
212 static bool is_trusted_reg(const struct bpf_reg_state *reg);
213
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)214 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
215 {
216 return aux->map_ptr_state.poison;
217 }
218
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)219 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
220 {
221 return aux->map_ptr_state.unpriv;
222 }
223
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,struct bpf_map * map,bool unpriv,bool poison)224 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
225 struct bpf_map *map,
226 bool unpriv, bool poison)
227 {
228 unpriv |= bpf_map_ptr_unpriv(aux);
229 aux->map_ptr_state.unpriv = unpriv;
230 aux->map_ptr_state.poison = poison;
231 aux->map_ptr_state.map_ptr = map;
232 }
233
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)234 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
235 {
236 return aux->map_key_state & BPF_MAP_KEY_POISON;
237 }
238
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)239 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
240 {
241 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
242 }
243
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)244 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
245 {
246 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
247 }
248
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)249 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
250 {
251 bool poisoned = bpf_map_key_poisoned(aux);
252
253 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
254 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
255 }
256
bpf_helper_call(const struct bpf_insn * insn)257 static bool bpf_helper_call(const struct bpf_insn *insn)
258 {
259 return insn->code == (BPF_JMP | BPF_CALL) &&
260 insn->src_reg == 0;
261 }
262
bpf_pseudo_call(const struct bpf_insn * insn)263 static bool bpf_pseudo_call(const struct bpf_insn *insn)
264 {
265 return insn->code == (BPF_JMP | BPF_CALL) &&
266 insn->src_reg == BPF_PSEUDO_CALL;
267 }
268
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)269 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
270 {
271 return insn->code == (BPF_JMP | BPF_CALL) &&
272 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
273 }
274
275 struct bpf_map_desc {
276 struct bpf_map *ptr;
277 int uid;
278 };
279
280 struct bpf_call_arg_meta {
281 struct bpf_map_desc map;
282 bool raw_mode;
283 bool pkt_access;
284 u8 release_regno;
285 int regno;
286 int access_size;
287 int mem_size;
288 u64 msize_max_value;
289 int ref_obj_id;
290 int dynptr_id;
291 int func_id;
292 struct btf *btf;
293 u32 btf_id;
294 struct btf *ret_btf;
295 u32 ret_btf_id;
296 u32 subprogno;
297 struct btf_field *kptr_field;
298 s64 const_map_key;
299 };
300
301 struct bpf_kfunc_meta {
302 struct btf *btf;
303 const struct btf_type *proto;
304 const char *name;
305 const u32 *flags;
306 s32 id;
307 };
308
309 struct bpf_kfunc_call_arg_meta {
310 /* In parameters */
311 struct btf *btf;
312 u32 func_id;
313 u32 kfunc_flags;
314 const struct btf_type *func_proto;
315 const char *func_name;
316 /* Out parameters */
317 u32 ref_obj_id;
318 u8 release_regno;
319 bool r0_rdonly;
320 u32 ret_btf_id;
321 u64 r0_size;
322 u32 subprogno;
323 struct {
324 u64 value;
325 bool found;
326 } arg_constant;
327
328 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
329 * generally to pass info about user-defined local kptr types to later
330 * verification logic
331 * bpf_obj_drop/bpf_percpu_obj_drop
332 * Record the local kptr type to be drop'd
333 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
334 * Record the local kptr type to be refcount_incr'd and use
335 * arg_owning_ref to determine whether refcount_acquire should be
336 * fallible
337 */
338 struct btf *arg_btf;
339 u32 arg_btf_id;
340 bool arg_owning_ref;
341 bool arg_prog;
342
343 struct {
344 struct btf_field *field;
345 } arg_list_head;
346 struct {
347 struct btf_field *field;
348 } arg_rbtree_root;
349 struct {
350 enum bpf_dynptr_type type;
351 u32 id;
352 u32 ref_obj_id;
353 } initialized_dynptr;
354 struct {
355 u8 spi;
356 u8 frameno;
357 } iter;
358 struct bpf_map_desc map;
359 u64 mem_size;
360 };
361
362 struct btf *btf_vmlinux;
363
btf_type_name(const struct btf * btf,u32 id)364 static const char *btf_type_name(const struct btf *btf, u32 id)
365 {
366 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
367 }
368
369 static DEFINE_MUTEX(bpf_verifier_lock);
370 static DEFINE_MUTEX(bpf_percpu_ma_lock);
371
verbose(void * private_data,const char * fmt,...)372 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
373 {
374 struct bpf_verifier_env *env = private_data;
375 va_list args;
376
377 if (!bpf_verifier_log_needed(&env->log))
378 return;
379
380 va_start(args, fmt);
381 bpf_verifier_vlog(&env->log, fmt, args);
382 va_end(args);
383 }
384
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_retval_range range,const char * ctx,const char * reg_name)385 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
386 struct bpf_reg_state *reg,
387 struct bpf_retval_range range, const char *ctx,
388 const char *reg_name)
389 {
390 bool unknown = true;
391
392 verbose(env, "%s the register %s has", ctx, reg_name);
393 if (reg->smin_value > S64_MIN) {
394 verbose(env, " smin=%lld", reg->smin_value);
395 unknown = false;
396 }
397 if (reg->smax_value < S64_MAX) {
398 verbose(env, " smax=%lld", reg->smax_value);
399 unknown = false;
400 }
401 if (unknown)
402 verbose(env, " unknown scalar value");
403 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
404 }
405
reg_not_null(const struct bpf_reg_state * reg)406 static bool reg_not_null(const struct bpf_reg_state *reg)
407 {
408 enum bpf_reg_type type;
409
410 type = reg->type;
411 if (type_may_be_null(type))
412 return false;
413
414 type = base_type(type);
415 return type == PTR_TO_SOCKET ||
416 type == PTR_TO_TCP_SOCK ||
417 type == PTR_TO_MAP_VALUE ||
418 type == PTR_TO_MAP_KEY ||
419 type == PTR_TO_SOCK_COMMON ||
420 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
421 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) ||
422 type == CONST_PTR_TO_MAP;
423 }
424
reg_btf_record(const struct bpf_reg_state * reg)425 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
426 {
427 struct btf_record *rec = NULL;
428 struct btf_struct_meta *meta;
429
430 if (reg->type == PTR_TO_MAP_VALUE) {
431 rec = reg->map_ptr->record;
432 } else if (type_is_ptr_alloc_obj(reg->type)) {
433 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
434 if (meta)
435 rec = meta->record;
436 }
437 return rec;
438 }
439
subprog_is_global(const struct bpf_verifier_env * env,int subprog)440 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
441 {
442 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
443
444 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
445 }
446
subprog_name(const struct bpf_verifier_env * env,int subprog)447 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
448 {
449 struct bpf_func_info *info;
450
451 if (!env->prog->aux->func_info)
452 return "";
453
454 info = &env->prog->aux->func_info[subprog];
455 return btf_type_name(env->prog->aux->btf, info->type_id);
456 }
457
mark_subprog_exc_cb(struct bpf_verifier_env * env,int subprog)458 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
459 {
460 struct bpf_subprog_info *info = subprog_info(env, subprog);
461
462 info->is_cb = true;
463 info->is_async_cb = true;
464 info->is_exception_cb = true;
465 }
466
subprog_is_exc_cb(struct bpf_verifier_env * env,int subprog)467 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
468 {
469 return subprog_info(env, subprog)->is_exception_cb;
470 }
471
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)472 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
473 {
474 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
475 }
476
type_is_rdonly_mem(u32 type)477 static bool type_is_rdonly_mem(u32 type)
478 {
479 return type & MEM_RDONLY;
480 }
481
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)482 static bool is_acquire_function(enum bpf_func_id func_id,
483 const struct bpf_map *map)
484 {
485 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
486
487 if (func_id == BPF_FUNC_sk_lookup_tcp ||
488 func_id == BPF_FUNC_sk_lookup_udp ||
489 func_id == BPF_FUNC_skc_lookup_tcp ||
490 func_id == BPF_FUNC_ringbuf_reserve ||
491 func_id == BPF_FUNC_kptr_xchg)
492 return true;
493
494 if (func_id == BPF_FUNC_map_lookup_elem &&
495 (map_type == BPF_MAP_TYPE_SOCKMAP ||
496 map_type == BPF_MAP_TYPE_SOCKHASH))
497 return true;
498
499 return false;
500 }
501
is_ptr_cast_function(enum bpf_func_id func_id)502 static bool is_ptr_cast_function(enum bpf_func_id func_id)
503 {
504 return func_id == BPF_FUNC_tcp_sock ||
505 func_id == BPF_FUNC_sk_fullsock ||
506 func_id == BPF_FUNC_skc_to_tcp_sock ||
507 func_id == BPF_FUNC_skc_to_tcp6_sock ||
508 func_id == BPF_FUNC_skc_to_udp6_sock ||
509 func_id == BPF_FUNC_skc_to_mptcp_sock ||
510 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
511 func_id == BPF_FUNC_skc_to_tcp_request_sock;
512 }
513
is_dynptr_ref_function(enum bpf_func_id func_id)514 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
515 {
516 return func_id == BPF_FUNC_dynptr_data;
517 }
518
519 static bool is_sync_callback_calling_kfunc(u32 btf_id);
520 static bool is_async_callback_calling_kfunc(u32 btf_id);
521 static bool is_callback_calling_kfunc(u32 btf_id);
522 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
523
524 static bool is_bpf_wq_set_callback_kfunc(u32 btf_id);
525 static bool is_task_work_add_kfunc(u32 func_id);
526
is_sync_callback_calling_function(enum bpf_func_id func_id)527 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
528 {
529 return func_id == BPF_FUNC_for_each_map_elem ||
530 func_id == BPF_FUNC_find_vma ||
531 func_id == BPF_FUNC_loop ||
532 func_id == BPF_FUNC_user_ringbuf_drain;
533 }
534
is_async_callback_calling_function(enum bpf_func_id func_id)535 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
536 {
537 return func_id == BPF_FUNC_timer_set_callback;
538 }
539
is_callback_calling_function(enum bpf_func_id func_id)540 static bool is_callback_calling_function(enum bpf_func_id func_id)
541 {
542 return is_sync_callback_calling_function(func_id) ||
543 is_async_callback_calling_function(func_id);
544 }
545
is_sync_callback_calling_insn(struct bpf_insn * insn)546 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
547 {
548 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
549 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
550 }
551
is_async_callback_calling_insn(struct bpf_insn * insn)552 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
553 {
554 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
555 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
556 }
557
is_async_cb_sleepable(struct bpf_verifier_env * env,struct bpf_insn * insn)558 static bool is_async_cb_sleepable(struct bpf_verifier_env *env, struct bpf_insn *insn)
559 {
560 /* bpf_timer callbacks are never sleepable. */
561 if (bpf_helper_call(insn) && insn->imm == BPF_FUNC_timer_set_callback)
562 return false;
563
564 /* bpf_wq and bpf_task_work callbacks are always sleepable. */
565 if (bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
566 (is_bpf_wq_set_callback_kfunc(insn->imm) || is_task_work_add_kfunc(insn->imm)))
567 return true;
568
569 verifier_bug(env, "unhandled async callback in is_async_cb_sleepable");
570 return false;
571 }
572
is_may_goto_insn(struct bpf_insn * insn)573 static bool is_may_goto_insn(struct bpf_insn *insn)
574 {
575 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
576 }
577
is_may_goto_insn_at(struct bpf_verifier_env * env,int insn_idx)578 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
579 {
580 return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
581 }
582
is_storage_get_function(enum bpf_func_id func_id)583 static bool is_storage_get_function(enum bpf_func_id func_id)
584 {
585 return func_id == BPF_FUNC_sk_storage_get ||
586 func_id == BPF_FUNC_inode_storage_get ||
587 func_id == BPF_FUNC_task_storage_get ||
588 func_id == BPF_FUNC_cgrp_storage_get;
589 }
590
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)591 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
592 const struct bpf_map *map)
593 {
594 int ref_obj_uses = 0;
595
596 if (is_ptr_cast_function(func_id))
597 ref_obj_uses++;
598 if (is_acquire_function(func_id, map))
599 ref_obj_uses++;
600 if (is_dynptr_ref_function(func_id))
601 ref_obj_uses++;
602
603 return ref_obj_uses > 1;
604 }
605
is_cmpxchg_insn(const struct bpf_insn * insn)606 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
607 {
608 return BPF_CLASS(insn->code) == BPF_STX &&
609 BPF_MODE(insn->code) == BPF_ATOMIC &&
610 insn->imm == BPF_CMPXCHG;
611 }
612
is_atomic_load_insn(const struct bpf_insn * insn)613 static bool is_atomic_load_insn(const struct bpf_insn *insn)
614 {
615 return BPF_CLASS(insn->code) == BPF_STX &&
616 BPF_MODE(insn->code) == BPF_ATOMIC &&
617 insn->imm == BPF_LOAD_ACQ;
618 }
619
__get_spi(s32 off)620 static int __get_spi(s32 off)
621 {
622 return (-off - 1) / BPF_REG_SIZE;
623 }
624
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)625 static struct bpf_func_state *func(struct bpf_verifier_env *env,
626 const struct bpf_reg_state *reg)
627 {
628 struct bpf_verifier_state *cur = env->cur_state;
629
630 return cur->frame[reg->frameno];
631 }
632
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)633 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
634 {
635 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
636
637 /* We need to check that slots between [spi - nr_slots + 1, spi] are
638 * within [0, allocated_stack).
639 *
640 * Please note that the spi grows downwards. For example, a dynptr
641 * takes the size of two stack slots; the first slot will be at
642 * spi and the second slot will be at spi - 1.
643 */
644 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
645 }
646
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)647 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
648 const char *obj_kind, int nr_slots)
649 {
650 int off, spi;
651
652 if (!tnum_is_const(reg->var_off)) {
653 verbose(env, "%s has to be at a constant offset\n", obj_kind);
654 return -EINVAL;
655 }
656
657 off = reg->off + reg->var_off.value;
658 if (off % BPF_REG_SIZE) {
659 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
660 return -EINVAL;
661 }
662
663 spi = __get_spi(off);
664 if (spi + 1 < nr_slots) {
665 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
666 return -EINVAL;
667 }
668
669 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
670 return -ERANGE;
671 return spi;
672 }
673
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)674 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
675 {
676 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
677 }
678
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)679 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
680 {
681 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
682 }
683
irq_flag_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)684 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
685 {
686 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
687 }
688
arg_to_dynptr_type(enum bpf_arg_type arg_type)689 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
690 {
691 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
692 case DYNPTR_TYPE_LOCAL:
693 return BPF_DYNPTR_TYPE_LOCAL;
694 case DYNPTR_TYPE_RINGBUF:
695 return BPF_DYNPTR_TYPE_RINGBUF;
696 case DYNPTR_TYPE_SKB:
697 return BPF_DYNPTR_TYPE_SKB;
698 case DYNPTR_TYPE_XDP:
699 return BPF_DYNPTR_TYPE_XDP;
700 case DYNPTR_TYPE_SKB_META:
701 return BPF_DYNPTR_TYPE_SKB_META;
702 case DYNPTR_TYPE_FILE:
703 return BPF_DYNPTR_TYPE_FILE;
704 default:
705 return BPF_DYNPTR_TYPE_INVALID;
706 }
707 }
708
get_dynptr_type_flag(enum bpf_dynptr_type type)709 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
710 {
711 switch (type) {
712 case BPF_DYNPTR_TYPE_LOCAL:
713 return DYNPTR_TYPE_LOCAL;
714 case BPF_DYNPTR_TYPE_RINGBUF:
715 return DYNPTR_TYPE_RINGBUF;
716 case BPF_DYNPTR_TYPE_SKB:
717 return DYNPTR_TYPE_SKB;
718 case BPF_DYNPTR_TYPE_XDP:
719 return DYNPTR_TYPE_XDP;
720 case BPF_DYNPTR_TYPE_SKB_META:
721 return DYNPTR_TYPE_SKB_META;
722 case BPF_DYNPTR_TYPE_FILE:
723 return DYNPTR_TYPE_FILE;
724 default:
725 return 0;
726 }
727 }
728
dynptr_type_refcounted(enum bpf_dynptr_type type)729 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
730 {
731 return type == BPF_DYNPTR_TYPE_RINGBUF || type == BPF_DYNPTR_TYPE_FILE;
732 }
733
734 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
735 enum bpf_dynptr_type type,
736 bool first_slot, int dynptr_id);
737
738 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
739 struct bpf_reg_state *reg);
740
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)741 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
742 struct bpf_reg_state *sreg1,
743 struct bpf_reg_state *sreg2,
744 enum bpf_dynptr_type type)
745 {
746 int id = ++env->id_gen;
747
748 __mark_dynptr_reg(sreg1, type, true, id);
749 __mark_dynptr_reg(sreg2, type, false, id);
750 }
751
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)752 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
753 struct bpf_reg_state *reg,
754 enum bpf_dynptr_type type)
755 {
756 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
757 }
758
759 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
760 struct bpf_func_state *state, int spi);
761
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)762 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
763 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
764 {
765 struct bpf_func_state *state = func(env, reg);
766 enum bpf_dynptr_type type;
767 int spi, i, err;
768
769 spi = dynptr_get_spi(env, reg);
770 if (spi < 0)
771 return spi;
772
773 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
774 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
775 * to ensure that for the following example:
776 * [d1][d1][d2][d2]
777 * spi 3 2 1 0
778 * So marking spi = 2 should lead to destruction of both d1 and d2. In
779 * case they do belong to same dynptr, second call won't see slot_type
780 * as STACK_DYNPTR and will simply skip destruction.
781 */
782 err = destroy_if_dynptr_stack_slot(env, state, spi);
783 if (err)
784 return err;
785 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
786 if (err)
787 return err;
788
789 for (i = 0; i < BPF_REG_SIZE; i++) {
790 state->stack[spi].slot_type[i] = STACK_DYNPTR;
791 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
792 }
793
794 type = arg_to_dynptr_type(arg_type);
795 if (type == BPF_DYNPTR_TYPE_INVALID)
796 return -EINVAL;
797
798 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
799 &state->stack[spi - 1].spilled_ptr, type);
800
801 if (dynptr_type_refcounted(type)) {
802 /* The id is used to track proper releasing */
803 int id;
804
805 if (clone_ref_obj_id)
806 id = clone_ref_obj_id;
807 else
808 id = acquire_reference(env, insn_idx);
809
810 if (id < 0)
811 return id;
812
813 state->stack[spi].spilled_ptr.ref_obj_id = id;
814 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
815 }
816
817 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
818
819 return 0;
820 }
821
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)822 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
823 {
824 int i;
825
826 for (i = 0; i < BPF_REG_SIZE; i++) {
827 state->stack[spi].slot_type[i] = STACK_INVALID;
828 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
829 }
830
831 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
832 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
833
834 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
835 }
836
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)837 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
838 {
839 struct bpf_func_state *state = func(env, reg);
840 int spi, ref_obj_id, i;
841
842 /*
843 * This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
844 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
845 * is safe to do directly.
846 */
847 if (reg->type == CONST_PTR_TO_DYNPTR) {
848 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released");
849 return -EFAULT;
850 }
851 spi = dynptr_get_spi(env, reg);
852 if (spi < 0)
853 return spi;
854
855 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
856 invalidate_dynptr(env, state, spi);
857 return 0;
858 }
859
860 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
861
862 /* If the dynptr has a ref_obj_id, then we need to invalidate
863 * two things:
864 *
865 * 1) Any dynptrs with a matching ref_obj_id (clones)
866 * 2) Any slices derived from this dynptr.
867 */
868
869 /* Invalidate any slices associated with this dynptr */
870 WARN_ON_ONCE(release_reference(env, ref_obj_id));
871
872 /* Invalidate any dynptr clones */
873 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
874 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
875 continue;
876
877 /* it should always be the case that if the ref obj id
878 * matches then the stack slot also belongs to a
879 * dynptr
880 */
881 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
882 verifier_bug(env, "misconfigured ref_obj_id");
883 return -EFAULT;
884 }
885 if (state->stack[i].spilled_ptr.dynptr.first_slot)
886 invalidate_dynptr(env, state, i);
887 }
888
889 return 0;
890 }
891
892 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
893 struct bpf_reg_state *reg);
894
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)895 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
896 {
897 if (!env->allow_ptr_leaks)
898 __mark_reg_not_init(env, reg);
899 else
900 __mark_reg_unknown(env, reg);
901 }
902
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)903 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
904 struct bpf_func_state *state, int spi)
905 {
906 struct bpf_func_state *fstate;
907 struct bpf_reg_state *dreg;
908 int i, dynptr_id;
909
910 /* We always ensure that STACK_DYNPTR is never set partially,
911 * hence just checking for slot_type[0] is enough. This is
912 * different for STACK_SPILL, where it may be only set for
913 * 1 byte, so code has to use is_spilled_reg.
914 */
915 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
916 return 0;
917
918 /* Reposition spi to first slot */
919 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
920 spi = spi + 1;
921
922 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
923 verbose(env, "cannot overwrite referenced dynptr\n");
924 return -EINVAL;
925 }
926
927 mark_stack_slot_scratched(env, spi);
928 mark_stack_slot_scratched(env, spi - 1);
929
930 /* Writing partially to one dynptr stack slot destroys both. */
931 for (i = 0; i < BPF_REG_SIZE; i++) {
932 state->stack[spi].slot_type[i] = STACK_INVALID;
933 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
934 }
935
936 dynptr_id = state->stack[spi].spilled_ptr.id;
937 /* Invalidate any slices associated with this dynptr */
938 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
939 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
940 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
941 continue;
942 if (dreg->dynptr_id == dynptr_id)
943 mark_reg_invalid(env, dreg);
944 }));
945
946 /* Do not release reference state, we are destroying dynptr on stack,
947 * not using some helper to release it. Just reset register.
948 */
949 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
950 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
951
952 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
953
954 return 0;
955 }
956
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)957 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
958 {
959 int spi;
960
961 if (reg->type == CONST_PTR_TO_DYNPTR)
962 return false;
963
964 spi = dynptr_get_spi(env, reg);
965
966 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
967 * error because this just means the stack state hasn't been updated yet.
968 * We will do check_mem_access to check and update stack bounds later.
969 */
970 if (spi < 0 && spi != -ERANGE)
971 return false;
972
973 /* We don't need to check if the stack slots are marked by previous
974 * dynptr initializations because we allow overwriting existing unreferenced
975 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
976 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
977 * touching are completely destructed before we reinitialize them for a new
978 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
979 * instead of delaying it until the end where the user will get "Unreleased
980 * reference" error.
981 */
982 return true;
983 }
984
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)985 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
986 {
987 struct bpf_func_state *state = func(env, reg);
988 int i, spi;
989
990 /* This already represents first slot of initialized bpf_dynptr.
991 *
992 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
993 * check_func_arg_reg_off's logic, so we don't need to check its
994 * offset and alignment.
995 */
996 if (reg->type == CONST_PTR_TO_DYNPTR)
997 return true;
998
999 spi = dynptr_get_spi(env, reg);
1000 if (spi < 0)
1001 return false;
1002 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1003 return false;
1004
1005 for (i = 0; i < BPF_REG_SIZE; i++) {
1006 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1007 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1008 return false;
1009 }
1010
1011 return true;
1012 }
1013
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1014 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1015 enum bpf_arg_type arg_type)
1016 {
1017 struct bpf_func_state *state = func(env, reg);
1018 enum bpf_dynptr_type dynptr_type;
1019 int spi;
1020
1021 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1022 if (arg_type == ARG_PTR_TO_DYNPTR)
1023 return true;
1024
1025 dynptr_type = arg_to_dynptr_type(arg_type);
1026 if (reg->type == CONST_PTR_TO_DYNPTR) {
1027 return reg->dynptr.type == dynptr_type;
1028 } else {
1029 spi = dynptr_get_spi(env, reg);
1030 if (spi < 0)
1031 return false;
1032 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1033 }
1034 }
1035
1036 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1037
1038 static bool in_rcu_cs(struct bpf_verifier_env *env);
1039
1040 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1041
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1042 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1043 struct bpf_kfunc_call_arg_meta *meta,
1044 struct bpf_reg_state *reg, int insn_idx,
1045 struct btf *btf, u32 btf_id, int nr_slots)
1046 {
1047 struct bpf_func_state *state = func(env, reg);
1048 int spi, i, j, id;
1049
1050 spi = iter_get_spi(env, reg, nr_slots);
1051 if (spi < 0)
1052 return spi;
1053
1054 id = acquire_reference(env, insn_idx);
1055 if (id < 0)
1056 return id;
1057
1058 for (i = 0; i < nr_slots; i++) {
1059 struct bpf_stack_state *slot = &state->stack[spi - i];
1060 struct bpf_reg_state *st = &slot->spilled_ptr;
1061
1062 __mark_reg_known_zero(st);
1063 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1064 if (is_kfunc_rcu_protected(meta)) {
1065 if (in_rcu_cs(env))
1066 st->type |= MEM_RCU;
1067 else
1068 st->type |= PTR_UNTRUSTED;
1069 }
1070 st->ref_obj_id = i == 0 ? id : 0;
1071 st->iter.btf = btf;
1072 st->iter.btf_id = btf_id;
1073 st->iter.state = BPF_ITER_STATE_ACTIVE;
1074 st->iter.depth = 0;
1075
1076 for (j = 0; j < BPF_REG_SIZE; j++)
1077 slot->slot_type[j] = STACK_ITER;
1078
1079 bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
1080 mark_stack_slot_scratched(env, spi - i);
1081 }
1082
1083 return 0;
1084 }
1085
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1086 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1087 struct bpf_reg_state *reg, int nr_slots)
1088 {
1089 struct bpf_func_state *state = func(env, reg);
1090 int spi, i, j;
1091
1092 spi = iter_get_spi(env, reg, nr_slots);
1093 if (spi < 0)
1094 return spi;
1095
1096 for (i = 0; i < nr_slots; i++) {
1097 struct bpf_stack_state *slot = &state->stack[spi - i];
1098 struct bpf_reg_state *st = &slot->spilled_ptr;
1099
1100 if (i == 0)
1101 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1102
1103 __mark_reg_not_init(env, st);
1104
1105 for (j = 0; j < BPF_REG_SIZE; j++)
1106 slot->slot_type[j] = STACK_INVALID;
1107
1108 bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
1109 mark_stack_slot_scratched(env, spi - i);
1110 }
1111
1112 return 0;
1113 }
1114
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1115 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1116 struct bpf_reg_state *reg, int nr_slots)
1117 {
1118 struct bpf_func_state *state = func(env, reg);
1119 int spi, i, j;
1120
1121 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1122 * will do check_mem_access to check and update stack bounds later, so
1123 * return true for that case.
1124 */
1125 spi = iter_get_spi(env, reg, nr_slots);
1126 if (spi == -ERANGE)
1127 return true;
1128 if (spi < 0)
1129 return false;
1130
1131 for (i = 0; i < nr_slots; i++) {
1132 struct bpf_stack_state *slot = &state->stack[spi - i];
1133
1134 for (j = 0; j < BPF_REG_SIZE; j++)
1135 if (slot->slot_type[j] == STACK_ITER)
1136 return false;
1137 }
1138
1139 return true;
1140 }
1141
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1142 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1143 struct btf *btf, u32 btf_id, int nr_slots)
1144 {
1145 struct bpf_func_state *state = func(env, reg);
1146 int spi, i, j;
1147
1148 spi = iter_get_spi(env, reg, nr_slots);
1149 if (spi < 0)
1150 return -EINVAL;
1151
1152 for (i = 0; i < nr_slots; i++) {
1153 struct bpf_stack_state *slot = &state->stack[spi - i];
1154 struct bpf_reg_state *st = &slot->spilled_ptr;
1155
1156 if (st->type & PTR_UNTRUSTED)
1157 return -EPROTO;
1158 /* only main (first) slot has ref_obj_id set */
1159 if (i == 0 && !st->ref_obj_id)
1160 return -EINVAL;
1161 if (i != 0 && st->ref_obj_id)
1162 return -EINVAL;
1163 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1164 return -EINVAL;
1165
1166 for (j = 0; j < BPF_REG_SIZE; j++)
1167 if (slot->slot_type[j] != STACK_ITER)
1168 return -EINVAL;
1169 }
1170
1171 return 0;
1172 }
1173
1174 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
1175 static int release_irq_state(struct bpf_verifier_state *state, int id);
1176
mark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,int kfunc_class)1177 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
1178 struct bpf_kfunc_call_arg_meta *meta,
1179 struct bpf_reg_state *reg, int insn_idx,
1180 int kfunc_class)
1181 {
1182 struct bpf_func_state *state = func(env, reg);
1183 struct bpf_stack_state *slot;
1184 struct bpf_reg_state *st;
1185 int spi, i, id;
1186
1187 spi = irq_flag_get_spi(env, reg);
1188 if (spi < 0)
1189 return spi;
1190
1191 id = acquire_irq_state(env, insn_idx);
1192 if (id < 0)
1193 return id;
1194
1195 slot = &state->stack[spi];
1196 st = &slot->spilled_ptr;
1197
1198 bpf_mark_stack_write(env, reg->frameno, BIT(spi));
1199 __mark_reg_known_zero(st);
1200 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1201 st->ref_obj_id = id;
1202 st->irq.kfunc_class = kfunc_class;
1203
1204 for (i = 0; i < BPF_REG_SIZE; i++)
1205 slot->slot_type[i] = STACK_IRQ_FLAG;
1206
1207 mark_stack_slot_scratched(env, spi);
1208 return 0;
1209 }
1210
unmark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int kfunc_class)1211 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1212 int kfunc_class)
1213 {
1214 struct bpf_func_state *state = func(env, reg);
1215 struct bpf_stack_state *slot;
1216 struct bpf_reg_state *st;
1217 int spi, i, err;
1218
1219 spi = irq_flag_get_spi(env, reg);
1220 if (spi < 0)
1221 return spi;
1222
1223 slot = &state->stack[spi];
1224 st = &slot->spilled_ptr;
1225
1226 if (st->irq.kfunc_class != kfunc_class) {
1227 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1228 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1229
1230 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
1231 flag_kfunc, used_kfunc);
1232 return -EINVAL;
1233 }
1234
1235 err = release_irq_state(env->cur_state, st->ref_obj_id);
1236 WARN_ON_ONCE(err && err != -EACCES);
1237 if (err) {
1238 int insn_idx = 0;
1239
1240 for (int i = 0; i < env->cur_state->acquired_refs; i++) {
1241 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
1242 insn_idx = env->cur_state->refs[i].insn_idx;
1243 break;
1244 }
1245 }
1246
1247 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
1248 env->cur_state->active_irq_id, insn_idx);
1249 return err;
1250 }
1251
1252 __mark_reg_not_init(env, st);
1253
1254 bpf_mark_stack_write(env, reg->frameno, BIT(spi));
1255
1256 for (i = 0; i < BPF_REG_SIZE; i++)
1257 slot->slot_type[i] = STACK_INVALID;
1258
1259 mark_stack_slot_scratched(env, spi);
1260 return 0;
1261 }
1262
is_irq_flag_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1263 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1264 {
1265 struct bpf_func_state *state = func(env, reg);
1266 struct bpf_stack_state *slot;
1267 int spi, i;
1268
1269 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1270 * will do check_mem_access to check and update stack bounds later, so
1271 * return true for that case.
1272 */
1273 spi = irq_flag_get_spi(env, reg);
1274 if (spi == -ERANGE)
1275 return true;
1276 if (spi < 0)
1277 return false;
1278
1279 slot = &state->stack[spi];
1280
1281 for (i = 0; i < BPF_REG_SIZE; i++)
1282 if (slot->slot_type[i] == STACK_IRQ_FLAG)
1283 return false;
1284 return true;
1285 }
1286
is_irq_flag_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1287 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1288 {
1289 struct bpf_func_state *state = func(env, reg);
1290 struct bpf_stack_state *slot;
1291 struct bpf_reg_state *st;
1292 int spi, i;
1293
1294 spi = irq_flag_get_spi(env, reg);
1295 if (spi < 0)
1296 return -EINVAL;
1297
1298 slot = &state->stack[spi];
1299 st = &slot->spilled_ptr;
1300
1301 if (!st->ref_obj_id)
1302 return -EINVAL;
1303
1304 for (i = 0; i < BPF_REG_SIZE; i++)
1305 if (slot->slot_type[i] != STACK_IRQ_FLAG)
1306 return -EINVAL;
1307 return 0;
1308 }
1309
1310 /* Check if given stack slot is "special":
1311 * - spilled register state (STACK_SPILL);
1312 * - dynptr state (STACK_DYNPTR);
1313 * - iter state (STACK_ITER).
1314 * - irq flag state (STACK_IRQ_FLAG)
1315 */
is_stack_slot_special(const struct bpf_stack_state * stack)1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319
1320 switch (type) {
1321 case STACK_SPILL:
1322 case STACK_DYNPTR:
1323 case STACK_ITER:
1324 case STACK_IRQ_FLAG:
1325 return true;
1326 case STACK_INVALID:
1327 case STACK_MISC:
1328 case STACK_ZERO:
1329 return false;
1330 default:
1331 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1332 return true;
1333 }
1334 }
1335
1336 /* The reg state of a pointer or a bounded scalar was saved when
1337 * it was spilled to the stack.
1338 */
is_spilled_reg(const struct bpf_stack_state * stack)1339 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1340 {
1341 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1342 }
1343
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1344 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1345 {
1346 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1347 stack->spilled_ptr.type == SCALAR_VALUE;
1348 }
1349
is_spilled_scalar_reg64(const struct bpf_stack_state * stack)1350 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1351 {
1352 return stack->slot_type[0] == STACK_SPILL &&
1353 stack->spilled_ptr.type == SCALAR_VALUE;
1354 }
1355
1356 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1357 * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1358 * more precise STACK_ZERO.
1359 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1360 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1361 * unnecessary as both are considered equivalent when loading data and pruning,
1362 * in case of unprivileged mode it will be incorrect to allow reads of invalid
1363 * slots.
1364 */
mark_stack_slot_misc(struct bpf_verifier_env * env,u8 * stype)1365 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1366 {
1367 if (*stype == STACK_ZERO)
1368 return;
1369 if (*stype == STACK_INVALID)
1370 return;
1371 *stype = STACK_MISC;
1372 }
1373
scrub_spilled_slot(u8 * stype)1374 static void scrub_spilled_slot(u8 *stype)
1375 {
1376 if (*stype != STACK_INVALID)
1377 *stype = STACK_MISC;
1378 }
1379
1380 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1381 * small to hold src. This is different from krealloc since we don't want to preserve
1382 * the contents of dst.
1383 *
1384 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1385 * not be allocated.
1386 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1387 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1388 {
1389 size_t alloc_bytes;
1390 void *orig = dst;
1391 size_t bytes;
1392
1393 if (ZERO_OR_NULL_PTR(src))
1394 goto out;
1395
1396 if (unlikely(check_mul_overflow(n, size, &bytes)))
1397 return NULL;
1398
1399 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1400 dst = krealloc(orig, alloc_bytes, flags);
1401 if (!dst) {
1402 kfree(orig);
1403 return NULL;
1404 }
1405
1406 memcpy(dst, src, bytes);
1407 out:
1408 return dst ? dst : ZERO_SIZE_PTR;
1409 }
1410
1411 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1412 * small to hold new_n items. new items are zeroed out if the array grows.
1413 *
1414 * Contrary to krealloc_array, does not free arr if new_n is zero.
1415 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1416 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1417 {
1418 size_t alloc_size;
1419 void *new_arr;
1420
1421 if (!new_n || old_n == new_n)
1422 goto out;
1423
1424 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1425 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT);
1426 if (!new_arr) {
1427 kfree(arr);
1428 return NULL;
1429 }
1430 arr = new_arr;
1431
1432 if (new_n > old_n)
1433 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1434
1435 out:
1436 return arr ? arr : ZERO_SIZE_PTR;
1437 }
1438
copy_reference_state(struct bpf_verifier_state * dst,const struct bpf_verifier_state * src)1439 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
1440 {
1441 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1442 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT);
1443 if (!dst->refs)
1444 return -ENOMEM;
1445
1446 dst->acquired_refs = src->acquired_refs;
1447 dst->active_locks = src->active_locks;
1448 dst->active_preempt_locks = src->active_preempt_locks;
1449 dst->active_rcu_locks = src->active_rcu_locks;
1450 dst->active_irq_id = src->active_irq_id;
1451 dst->active_lock_id = src->active_lock_id;
1452 dst->active_lock_ptr = src->active_lock_ptr;
1453 return 0;
1454 }
1455
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1456 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1457 {
1458 size_t n = src->allocated_stack / BPF_REG_SIZE;
1459
1460 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1461 GFP_KERNEL_ACCOUNT);
1462 if (!dst->stack)
1463 return -ENOMEM;
1464
1465 dst->allocated_stack = src->allocated_stack;
1466 return 0;
1467 }
1468
resize_reference_state(struct bpf_verifier_state * state,size_t n)1469 static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
1470 {
1471 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1472 sizeof(struct bpf_reference_state));
1473 if (!state->refs)
1474 return -ENOMEM;
1475
1476 state->acquired_refs = n;
1477 return 0;
1478 }
1479
1480 /* Possibly update state->allocated_stack to be at least size bytes. Also
1481 * possibly update the function's high-water mark in its bpf_subprog_info.
1482 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1483 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1484 {
1485 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1486
1487 /* The stack size is always a multiple of BPF_REG_SIZE. */
1488 size = round_up(size, BPF_REG_SIZE);
1489 n = size / BPF_REG_SIZE;
1490
1491 if (old_n >= n)
1492 return 0;
1493
1494 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1495 if (!state->stack)
1496 return -ENOMEM;
1497
1498 state->allocated_stack = size;
1499
1500 /* update known max for given subprogram */
1501 if (env->subprog_info[state->subprogno].stack_depth < size)
1502 env->subprog_info[state->subprogno].stack_depth = size;
1503
1504 return 0;
1505 }
1506
1507 /* Acquire a pointer id from the env and update the state->refs to include
1508 * this new pointer reference.
1509 * On success, returns a valid pointer id to associate with the register
1510 * On failure, returns a negative errno.
1511 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1512 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1513 {
1514 struct bpf_verifier_state *state = env->cur_state;
1515 int new_ofs = state->acquired_refs;
1516 int err;
1517
1518 err = resize_reference_state(state, state->acquired_refs + 1);
1519 if (err)
1520 return NULL;
1521 state->refs[new_ofs].insn_idx = insn_idx;
1522
1523 return &state->refs[new_ofs];
1524 }
1525
acquire_reference(struct bpf_verifier_env * env,int insn_idx)1526 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
1527 {
1528 struct bpf_reference_state *s;
1529
1530 s = acquire_reference_state(env, insn_idx);
1531 if (!s)
1532 return -ENOMEM;
1533 s->type = REF_TYPE_PTR;
1534 s->id = ++env->id_gen;
1535 return s->id;
1536 }
1537
acquire_lock_state(struct bpf_verifier_env * env,int insn_idx,enum ref_state_type type,int id,void * ptr)1538 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1539 int id, void *ptr)
1540 {
1541 struct bpf_verifier_state *state = env->cur_state;
1542 struct bpf_reference_state *s;
1543
1544 s = acquire_reference_state(env, insn_idx);
1545 if (!s)
1546 return -ENOMEM;
1547 s->type = type;
1548 s->id = id;
1549 s->ptr = ptr;
1550
1551 state->active_locks++;
1552 state->active_lock_id = id;
1553 state->active_lock_ptr = ptr;
1554 return 0;
1555 }
1556
acquire_irq_state(struct bpf_verifier_env * env,int insn_idx)1557 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
1558 {
1559 struct bpf_verifier_state *state = env->cur_state;
1560 struct bpf_reference_state *s;
1561
1562 s = acquire_reference_state(env, insn_idx);
1563 if (!s)
1564 return -ENOMEM;
1565 s->type = REF_TYPE_IRQ;
1566 s->id = ++env->id_gen;
1567
1568 state->active_irq_id = s->id;
1569 return s->id;
1570 }
1571
release_reference_state(struct bpf_verifier_state * state,int idx)1572 static void release_reference_state(struct bpf_verifier_state *state, int idx)
1573 {
1574 int last_idx;
1575 size_t rem;
1576
1577 /* IRQ state requires the relative ordering of elements remaining the
1578 * same, since it relies on the refs array to behave as a stack, so that
1579 * it can detect out-of-order IRQ restore. Hence use memmove to shift
1580 * the array instead of swapping the final element into the deleted idx.
1581 */
1582 last_idx = state->acquired_refs - 1;
1583 rem = state->acquired_refs - idx - 1;
1584 if (last_idx && idx != last_idx)
1585 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
1586 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1587 state->acquired_refs--;
1588 return;
1589 }
1590
find_reference_state(struct bpf_verifier_state * state,int ptr_id)1591 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
1592 {
1593 int i;
1594
1595 for (i = 0; i < state->acquired_refs; i++)
1596 if (state->refs[i].id == ptr_id)
1597 return true;
1598
1599 return false;
1600 }
1601
release_lock_state(struct bpf_verifier_state * state,int type,int id,void * ptr)1602 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
1603 {
1604 void *prev_ptr = NULL;
1605 u32 prev_id = 0;
1606 int i;
1607
1608 for (i = 0; i < state->acquired_refs; i++) {
1609 if (state->refs[i].type == type && state->refs[i].id == id &&
1610 state->refs[i].ptr == ptr) {
1611 release_reference_state(state, i);
1612 state->active_locks--;
1613 /* Reassign active lock (id, ptr). */
1614 state->active_lock_id = prev_id;
1615 state->active_lock_ptr = prev_ptr;
1616 return 0;
1617 }
1618 if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
1619 prev_id = state->refs[i].id;
1620 prev_ptr = state->refs[i].ptr;
1621 }
1622 }
1623 return -EINVAL;
1624 }
1625
release_irq_state(struct bpf_verifier_state * state,int id)1626 static int release_irq_state(struct bpf_verifier_state *state, int id)
1627 {
1628 u32 prev_id = 0;
1629 int i;
1630
1631 if (id != state->active_irq_id)
1632 return -EACCES;
1633
1634 for (i = 0; i < state->acquired_refs; i++) {
1635 if (state->refs[i].type != REF_TYPE_IRQ)
1636 continue;
1637 if (state->refs[i].id == id) {
1638 release_reference_state(state, i);
1639 state->active_irq_id = prev_id;
1640 return 0;
1641 } else {
1642 prev_id = state->refs[i].id;
1643 }
1644 }
1645 return -EINVAL;
1646 }
1647
find_lock_state(struct bpf_verifier_state * state,enum ref_state_type type,int id,void * ptr)1648 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
1649 int id, void *ptr)
1650 {
1651 int i;
1652
1653 for (i = 0; i < state->acquired_refs; i++) {
1654 struct bpf_reference_state *s = &state->refs[i];
1655
1656 if (!(s->type & type))
1657 continue;
1658
1659 if (s->id == id && s->ptr == ptr)
1660 return s;
1661 }
1662 return NULL;
1663 }
1664
update_peak_states(struct bpf_verifier_env * env)1665 static void update_peak_states(struct bpf_verifier_env *env)
1666 {
1667 u32 cur_states;
1668
1669 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges;
1670 env->peak_states = max(env->peak_states, cur_states);
1671 }
1672
free_func_state(struct bpf_func_state * state)1673 static void free_func_state(struct bpf_func_state *state)
1674 {
1675 if (!state)
1676 return;
1677 kfree(state->stack);
1678 kfree(state);
1679 }
1680
clear_jmp_history(struct bpf_verifier_state * state)1681 static void clear_jmp_history(struct bpf_verifier_state *state)
1682 {
1683 kfree(state->jmp_history);
1684 state->jmp_history = NULL;
1685 state->jmp_history_cnt = 0;
1686 }
1687
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1688 static void free_verifier_state(struct bpf_verifier_state *state,
1689 bool free_self)
1690 {
1691 int i;
1692
1693 for (i = 0; i <= state->curframe; i++) {
1694 free_func_state(state->frame[i]);
1695 state->frame[i] = NULL;
1696 }
1697 kfree(state->refs);
1698 clear_jmp_history(state);
1699 if (free_self)
1700 kfree(state);
1701 }
1702
1703 /* struct bpf_verifier_state->parent refers to states
1704 * that are in either of env->{expored_states,free_list}.
1705 * In both cases the state is contained in struct bpf_verifier_state_list.
1706 */
state_parent_as_list(struct bpf_verifier_state * st)1707 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
1708 {
1709 if (st->parent)
1710 return container_of(st->parent, struct bpf_verifier_state_list, state);
1711 return NULL;
1712 }
1713
1714 static bool incomplete_read_marks(struct bpf_verifier_env *env,
1715 struct bpf_verifier_state *st);
1716
1717 /* A state can be freed if it is no longer referenced:
1718 * - is in the env->free_list;
1719 * - has no children states;
1720 */
maybe_free_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state_list * sl)1721 static void maybe_free_verifier_state(struct bpf_verifier_env *env,
1722 struct bpf_verifier_state_list *sl)
1723 {
1724 if (!sl->in_free_list
1725 || sl->state.branches != 0
1726 || incomplete_read_marks(env, &sl->state))
1727 return;
1728 list_del(&sl->node);
1729 free_verifier_state(&sl->state, false);
1730 kfree(sl);
1731 env->free_list_size--;
1732 }
1733
1734 /* copy verifier state from src to dst growing dst stack space
1735 * when necessary to accommodate larger src stack
1736 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1737 static int copy_func_state(struct bpf_func_state *dst,
1738 const struct bpf_func_state *src)
1739 {
1740 memcpy(dst, src, offsetof(struct bpf_func_state, stack));
1741 return copy_stack_state(dst, src);
1742 }
1743
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1744 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1745 const struct bpf_verifier_state *src)
1746 {
1747 struct bpf_func_state *dst;
1748 int i, err;
1749
1750 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1751 src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1752 GFP_KERNEL_ACCOUNT);
1753 if (!dst_state->jmp_history)
1754 return -ENOMEM;
1755 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1756
1757 /* if dst has more stack frames then src frame, free them, this is also
1758 * necessary in case of exceptional exits using bpf_throw.
1759 */
1760 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1761 free_func_state(dst_state->frame[i]);
1762 dst_state->frame[i] = NULL;
1763 }
1764 err = copy_reference_state(dst_state, src);
1765 if (err)
1766 return err;
1767 dst_state->speculative = src->speculative;
1768 dst_state->in_sleepable = src->in_sleepable;
1769 dst_state->cleaned = src->cleaned;
1770 dst_state->curframe = src->curframe;
1771 dst_state->branches = src->branches;
1772 dst_state->parent = src->parent;
1773 dst_state->first_insn_idx = src->first_insn_idx;
1774 dst_state->last_insn_idx = src->last_insn_idx;
1775 dst_state->dfs_depth = src->dfs_depth;
1776 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1777 dst_state->may_goto_depth = src->may_goto_depth;
1778 dst_state->equal_state = src->equal_state;
1779 for (i = 0; i <= src->curframe; i++) {
1780 dst = dst_state->frame[i];
1781 if (!dst) {
1782 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT);
1783 if (!dst)
1784 return -ENOMEM;
1785 dst_state->frame[i] = dst;
1786 }
1787 err = copy_func_state(dst, src->frame[i]);
1788 if (err)
1789 return err;
1790 }
1791 return 0;
1792 }
1793
state_htab_size(struct bpf_verifier_env * env)1794 static u32 state_htab_size(struct bpf_verifier_env *env)
1795 {
1796 return env->prog->len;
1797 }
1798
explored_state(struct bpf_verifier_env * env,int idx)1799 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
1800 {
1801 struct bpf_verifier_state *cur = env->cur_state;
1802 struct bpf_func_state *state = cur->frame[cur->curframe];
1803
1804 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1805 }
1806
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1807 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1808 {
1809 int fr;
1810
1811 if (a->curframe != b->curframe)
1812 return false;
1813
1814 for (fr = a->curframe; fr >= 0; fr--)
1815 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1816 return false;
1817
1818 return true;
1819 }
1820
1821 /* Return IP for a given frame in a call stack */
frame_insn_idx(struct bpf_verifier_state * st,u32 frame)1822 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame)
1823 {
1824 return frame == st->curframe
1825 ? st->insn_idx
1826 : st->frame[frame + 1]->callsite;
1827 }
1828
1829 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC,
1830 * if such frame exists form a corresponding @callchain as an array of
1831 * call sites leading to this frame and SCC id.
1832 * E.g.:
1833 *
1834 * void foo() { A: loop {... SCC#1 ...}; }
1835 * void bar() { B: loop { C: foo(); ... SCC#2 ... }
1836 * D: loop { E: foo(); ... SCC#3 ... } }
1837 * void main() { F: bar(); }
1838 *
1839 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending
1840 * on @st frame call sites being (F,C,A) or (F,E,A).
1841 */
compute_scc_callchain(struct bpf_verifier_env * env,struct bpf_verifier_state * st,struct bpf_scc_callchain * callchain)1842 static bool compute_scc_callchain(struct bpf_verifier_env *env,
1843 struct bpf_verifier_state *st,
1844 struct bpf_scc_callchain *callchain)
1845 {
1846 u32 i, scc, insn_idx;
1847
1848 memset(callchain, 0, sizeof(*callchain));
1849 for (i = 0; i <= st->curframe; i++) {
1850 insn_idx = frame_insn_idx(st, i);
1851 scc = env->insn_aux_data[insn_idx].scc;
1852 if (scc) {
1853 callchain->scc = scc;
1854 break;
1855 } else if (i < st->curframe) {
1856 callchain->callsites[i] = insn_idx;
1857 } else {
1858 return false;
1859 }
1860 }
1861 return true;
1862 }
1863
1864 /* Check if bpf_scc_visit instance for @callchain exists. */
scc_visit_lookup(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1865 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env,
1866 struct bpf_scc_callchain *callchain)
1867 {
1868 struct bpf_scc_info *info = env->scc_info[callchain->scc];
1869 struct bpf_scc_visit *visits = info->visits;
1870 u32 i;
1871
1872 if (!info)
1873 return NULL;
1874 for (i = 0; i < info->num_visits; i++)
1875 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0)
1876 return &visits[i];
1877 return NULL;
1878 }
1879
1880 /* Allocate a new bpf_scc_visit instance corresponding to @callchain.
1881 * Allocated instances are alive for a duration of the do_check_common()
1882 * call and are freed by free_states().
1883 */
scc_visit_alloc(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1884 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env,
1885 struct bpf_scc_callchain *callchain)
1886 {
1887 struct bpf_scc_visit *visit;
1888 struct bpf_scc_info *info;
1889 u32 scc, num_visits;
1890 u64 new_sz;
1891
1892 scc = callchain->scc;
1893 info = env->scc_info[scc];
1894 num_visits = info ? info->num_visits : 0;
1895 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1);
1896 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT);
1897 if (!info)
1898 return NULL;
1899 env->scc_info[scc] = info;
1900 info->num_visits = num_visits + 1;
1901 visit = &info->visits[num_visits];
1902 memset(visit, 0, sizeof(*visit));
1903 memcpy(&visit->callchain, callchain, sizeof(*callchain));
1904 return visit;
1905 }
1906
1907 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */
format_callchain(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1908 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain)
1909 {
1910 char *buf = env->tmp_str_buf;
1911 int i, delta = 0;
1912
1913 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "(");
1914 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) {
1915 if (!callchain->callsites[i])
1916 break;
1917 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,",
1918 callchain->callsites[i]);
1919 }
1920 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc);
1921 return env->tmp_str_buf;
1922 }
1923
1924 /* If callchain for @st exists (@st is in some SCC), ensure that
1925 * bpf_scc_visit instance for this callchain exists.
1926 * If instance does not exist or is empty, assign visit->entry_state to @st.
1927 */
maybe_enter_scc(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1928 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1929 {
1930 struct bpf_scc_callchain *callchain = &env->callchain_buf;
1931 struct bpf_scc_visit *visit;
1932
1933 if (!compute_scc_callchain(env, st, callchain))
1934 return 0;
1935 visit = scc_visit_lookup(env, callchain);
1936 visit = visit ?: scc_visit_alloc(env, callchain);
1937 if (!visit)
1938 return -ENOMEM;
1939 if (!visit->entry_state) {
1940 visit->entry_state = st;
1941 if (env->log.level & BPF_LOG_LEVEL2)
1942 verbose(env, "SCC enter %s\n", format_callchain(env, callchain));
1943 }
1944 return 0;
1945 }
1946
1947 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit);
1948
1949 /* If callchain for @st exists (@st is in some SCC), make it empty:
1950 * - set visit->entry_state to NULL;
1951 * - flush accumulated backedges.
1952 */
maybe_exit_scc(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1953 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1954 {
1955 struct bpf_scc_callchain *callchain = &env->callchain_buf;
1956 struct bpf_scc_visit *visit;
1957
1958 if (!compute_scc_callchain(env, st, callchain))
1959 return 0;
1960 visit = scc_visit_lookup(env, callchain);
1961 if (!visit) {
1962 /*
1963 * If path traversal stops inside an SCC, corresponding bpf_scc_visit
1964 * must exist for non-speculative paths. For non-speculative paths
1965 * traversal stops when:
1966 * a. Verification error is found, maybe_exit_scc() is not called.
1967 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member
1968 * of any SCC.
1969 * c. A checkpoint is reached and matched. Checkpoints are created by
1970 * is_state_visited(), which calls maybe_enter_scc(), which allocates
1971 * bpf_scc_visit instances for checkpoints within SCCs.
1972 * (c) is the only case that can reach this point.
1973 */
1974 if (!st->speculative) {
1975 verifier_bug(env, "scc exit: no visit info for call chain %s",
1976 format_callchain(env, callchain));
1977 return -EFAULT;
1978 }
1979 return 0;
1980 }
1981 if (visit->entry_state != st)
1982 return 0;
1983 if (env->log.level & BPF_LOG_LEVEL2)
1984 verbose(env, "SCC exit %s\n", format_callchain(env, callchain));
1985 visit->entry_state = NULL;
1986 env->num_backedges -= visit->num_backedges;
1987 visit->num_backedges = 0;
1988 update_peak_states(env);
1989 return propagate_backedges(env, visit);
1990 }
1991
1992 /* Lookup an bpf_scc_visit instance corresponding to @st callchain
1993 * and add @backedge to visit->backedges. @st callchain must exist.
1994 */
add_scc_backedge(struct bpf_verifier_env * env,struct bpf_verifier_state * st,struct bpf_scc_backedge * backedge)1995 static int add_scc_backedge(struct bpf_verifier_env *env,
1996 struct bpf_verifier_state *st,
1997 struct bpf_scc_backedge *backedge)
1998 {
1999 struct bpf_scc_callchain *callchain = &env->callchain_buf;
2000 struct bpf_scc_visit *visit;
2001
2002 if (!compute_scc_callchain(env, st, callchain)) {
2003 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d",
2004 st->insn_idx);
2005 return -EFAULT;
2006 }
2007 visit = scc_visit_lookup(env, callchain);
2008 if (!visit) {
2009 verifier_bug(env, "add backedge: no visit info for call chain %s",
2010 format_callchain(env, callchain));
2011 return -EFAULT;
2012 }
2013 if (env->log.level & BPF_LOG_LEVEL2)
2014 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain));
2015 backedge->next = visit->backedges;
2016 visit->backedges = backedge;
2017 visit->num_backedges++;
2018 env->num_backedges++;
2019 update_peak_states(env);
2020 return 0;
2021 }
2022
2023 /* bpf_reg_state->live marks for registers in a state @st are incomplete,
2024 * if state @st is in some SCC and not all execution paths starting at this
2025 * SCC are fully explored.
2026 */
incomplete_read_marks(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2027 static bool incomplete_read_marks(struct bpf_verifier_env *env,
2028 struct bpf_verifier_state *st)
2029 {
2030 struct bpf_scc_callchain *callchain = &env->callchain_buf;
2031 struct bpf_scc_visit *visit;
2032
2033 if (!compute_scc_callchain(env, st, callchain))
2034 return false;
2035 visit = scc_visit_lookup(env, callchain);
2036 if (!visit)
2037 return false;
2038 return !!visit->backedges;
2039 }
2040
free_backedges(struct bpf_scc_visit * visit)2041 static void free_backedges(struct bpf_scc_visit *visit)
2042 {
2043 struct bpf_scc_backedge *backedge, *next;
2044
2045 for (backedge = visit->backedges; backedge; backedge = next) {
2046 free_verifier_state(&backedge->state, false);
2047 next = backedge->next;
2048 kfree(backedge);
2049 }
2050 visit->backedges = NULL;
2051 }
2052
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2053 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2054 {
2055 struct bpf_verifier_state_list *sl = NULL, *parent_sl;
2056 struct bpf_verifier_state *parent;
2057 int err;
2058
2059 while (st) {
2060 u32 br = --st->branches;
2061
2062 /* verifier_bug_if(br > 1, ...) technically makes sense here,
2063 * but see comment in push_stack(), hence:
2064 */
2065 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br);
2066 if (br)
2067 break;
2068 err = maybe_exit_scc(env, st);
2069 if (err)
2070 return err;
2071 parent = st->parent;
2072 parent_sl = state_parent_as_list(st);
2073 if (sl)
2074 maybe_free_verifier_state(env, sl);
2075 st = parent;
2076 sl = parent_sl;
2077 }
2078 return 0;
2079 }
2080
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2081 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2082 int *insn_idx, bool pop_log)
2083 {
2084 struct bpf_verifier_state *cur = env->cur_state;
2085 struct bpf_verifier_stack_elem *elem, *head = env->head;
2086 int err;
2087
2088 if (env->head == NULL)
2089 return -ENOENT;
2090
2091 if (cur) {
2092 err = copy_verifier_state(cur, &head->st);
2093 if (err)
2094 return err;
2095 }
2096 if (pop_log)
2097 bpf_vlog_reset(&env->log, head->log_pos);
2098 if (insn_idx)
2099 *insn_idx = head->insn_idx;
2100 if (prev_insn_idx)
2101 *prev_insn_idx = head->prev_insn_idx;
2102 elem = head->next;
2103 free_verifier_state(&head->st, false);
2104 kfree(head);
2105 env->head = elem;
2106 env->stack_size--;
2107 return 0;
2108 }
2109
error_recoverable_with_nospec(int err)2110 static bool error_recoverable_with_nospec(int err)
2111 {
2112 /* Should only return true for non-fatal errors that are allowed to
2113 * occur during speculative verification. For these we can insert a
2114 * nospec and the program might still be accepted. Do not include
2115 * something like ENOMEM because it is likely to re-occur for the next
2116 * architectural path once it has been recovered-from in all speculative
2117 * paths.
2118 */
2119 return err == -EPERM || err == -EACCES || err == -EINVAL;
2120 }
2121
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2122 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2123 int insn_idx, int prev_insn_idx,
2124 bool speculative)
2125 {
2126 struct bpf_verifier_state *cur = env->cur_state;
2127 struct bpf_verifier_stack_elem *elem;
2128 int err;
2129
2130 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2131 if (!elem)
2132 return ERR_PTR(-ENOMEM);
2133
2134 elem->insn_idx = insn_idx;
2135 elem->prev_insn_idx = prev_insn_idx;
2136 elem->next = env->head;
2137 elem->log_pos = env->log.end_pos;
2138 env->head = elem;
2139 env->stack_size++;
2140 err = copy_verifier_state(&elem->st, cur);
2141 if (err)
2142 return ERR_PTR(-ENOMEM);
2143 elem->st.speculative |= speculative;
2144 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2145 verbose(env, "The sequence of %d jumps is too complex.\n",
2146 env->stack_size);
2147 return ERR_PTR(-E2BIG);
2148 }
2149 if (elem->st.parent) {
2150 ++elem->st.parent->branches;
2151 /* WARN_ON(branches > 2) technically makes sense here,
2152 * but
2153 * 1. speculative states will bump 'branches' for non-branch
2154 * instructions
2155 * 2. is_state_visited() heuristics may decide not to create
2156 * a new state for a sequence of branches and all such current
2157 * and cloned states will be pointing to a single parent state
2158 * which might have large 'branches' count.
2159 */
2160 }
2161 return &elem->st;
2162 }
2163
2164 #define CALLER_SAVED_REGS 6
2165 static const int caller_saved[CALLER_SAVED_REGS] = {
2166 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2167 };
2168
2169 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2170 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2171 {
2172 reg->var_off = tnum_const(imm);
2173 reg->smin_value = (s64)imm;
2174 reg->smax_value = (s64)imm;
2175 reg->umin_value = imm;
2176 reg->umax_value = imm;
2177
2178 reg->s32_min_value = (s32)imm;
2179 reg->s32_max_value = (s32)imm;
2180 reg->u32_min_value = (u32)imm;
2181 reg->u32_max_value = (u32)imm;
2182 }
2183
2184 /* Mark the unknown part of a register (variable offset or scalar value) as
2185 * known to have the value @imm.
2186 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2187 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2188 {
2189 /* Clear off and union(map_ptr, range) */
2190 memset(((u8 *)reg) + sizeof(reg->type), 0,
2191 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2192 reg->id = 0;
2193 reg->ref_obj_id = 0;
2194 ___mark_reg_known(reg, imm);
2195 }
2196
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2197 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2198 {
2199 reg->var_off = tnum_const_subreg(reg->var_off, imm);
2200 reg->s32_min_value = (s32)imm;
2201 reg->s32_max_value = (s32)imm;
2202 reg->u32_min_value = (u32)imm;
2203 reg->u32_max_value = (u32)imm;
2204 }
2205
2206 /* Mark the 'variable offset' part of a register as zero. This should be
2207 * used only on registers holding a pointer type.
2208 */
__mark_reg_known_zero(struct bpf_reg_state * reg)2209 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2210 {
2211 __mark_reg_known(reg, 0);
2212 }
2213
__mark_reg_const_zero(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2214 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2215 {
2216 __mark_reg_known(reg, 0);
2217 reg->type = SCALAR_VALUE;
2218 /* all scalars are assumed imprecise initially (unless unprivileged,
2219 * in which case everything is forced to be precise)
2220 */
2221 reg->precise = !env->bpf_capable;
2222 }
2223
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2224 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2225 struct bpf_reg_state *regs, u32 regno)
2226 {
2227 if (WARN_ON(regno >= MAX_BPF_REG)) {
2228 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2229 /* Something bad happened, let's kill all regs */
2230 for (regno = 0; regno < MAX_BPF_REG; regno++)
2231 __mark_reg_not_init(env, regs + regno);
2232 return;
2233 }
2234 __mark_reg_known_zero(regs + regno);
2235 }
2236
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2237 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2238 bool first_slot, int dynptr_id)
2239 {
2240 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2241 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2242 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2243 */
2244 __mark_reg_known_zero(reg);
2245 reg->type = CONST_PTR_TO_DYNPTR;
2246 /* Give each dynptr a unique id to uniquely associate slices to it. */
2247 reg->id = dynptr_id;
2248 reg->dynptr.type = type;
2249 reg->dynptr.first_slot = first_slot;
2250 }
2251
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2252 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2253 {
2254 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2255 const struct bpf_map *map = reg->map_ptr;
2256
2257 if (map->inner_map_meta) {
2258 reg->type = CONST_PTR_TO_MAP;
2259 reg->map_ptr = map->inner_map_meta;
2260 /* transfer reg's id which is unique for every map_lookup_elem
2261 * as UID of the inner map.
2262 */
2263 if (btf_record_has_field(map->inner_map_meta->record,
2264 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) {
2265 reg->map_uid = reg->id;
2266 }
2267 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2268 reg->type = PTR_TO_XDP_SOCK;
2269 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2270 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2271 reg->type = PTR_TO_SOCKET;
2272 } else {
2273 reg->type = PTR_TO_MAP_VALUE;
2274 }
2275 return;
2276 }
2277
2278 reg->type &= ~PTR_MAYBE_NULL;
2279 }
2280
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2281 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2282 struct btf_field_graph_root *ds_head)
2283 {
2284 __mark_reg_known_zero(®s[regno]);
2285 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2286 regs[regno].btf = ds_head->btf;
2287 regs[regno].btf_id = ds_head->value_btf_id;
2288 regs[regno].off = ds_head->node_offset;
2289 }
2290
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2291 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2292 {
2293 return type_is_pkt_pointer(reg->type);
2294 }
2295
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2296 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2297 {
2298 return reg_is_pkt_pointer(reg) ||
2299 reg->type == PTR_TO_PACKET_END;
2300 }
2301
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2302 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2303 {
2304 return base_type(reg->type) == PTR_TO_MEM &&
2305 (reg->type &
2306 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META));
2307 }
2308
2309 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2310 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2311 enum bpf_reg_type which)
2312 {
2313 /* The register can already have a range from prior markings.
2314 * This is fine as long as it hasn't been advanced from its
2315 * origin.
2316 */
2317 return reg->type == which &&
2318 reg->id == 0 &&
2319 reg->off == 0 &&
2320 tnum_equals_const(reg->var_off, 0);
2321 }
2322
2323 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2324 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2325 {
2326 reg->smin_value = S64_MIN;
2327 reg->smax_value = S64_MAX;
2328 reg->umin_value = 0;
2329 reg->umax_value = U64_MAX;
2330
2331 reg->s32_min_value = S32_MIN;
2332 reg->s32_max_value = S32_MAX;
2333 reg->u32_min_value = 0;
2334 reg->u32_max_value = U32_MAX;
2335 }
2336
__mark_reg64_unbounded(struct bpf_reg_state * reg)2337 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2338 {
2339 reg->smin_value = S64_MIN;
2340 reg->smax_value = S64_MAX;
2341 reg->umin_value = 0;
2342 reg->umax_value = U64_MAX;
2343 }
2344
__mark_reg32_unbounded(struct bpf_reg_state * reg)2345 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2346 {
2347 reg->s32_min_value = S32_MIN;
2348 reg->s32_max_value = S32_MAX;
2349 reg->u32_min_value = 0;
2350 reg->u32_max_value = U32_MAX;
2351 }
2352
reset_reg64_and_tnum(struct bpf_reg_state * reg)2353 static void reset_reg64_and_tnum(struct bpf_reg_state *reg)
2354 {
2355 __mark_reg64_unbounded(reg);
2356 reg->var_off = tnum_unknown;
2357 }
2358
reset_reg32_and_tnum(struct bpf_reg_state * reg)2359 static void reset_reg32_and_tnum(struct bpf_reg_state *reg)
2360 {
2361 __mark_reg32_unbounded(reg);
2362 reg->var_off = tnum_unknown;
2363 }
2364
__update_reg32_bounds(struct bpf_reg_state * reg)2365 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2366 {
2367 struct tnum var32_off = tnum_subreg(reg->var_off);
2368
2369 /* min signed is max(sign bit) | min(other bits) */
2370 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2371 var32_off.value | (var32_off.mask & S32_MIN));
2372 /* max signed is min(sign bit) | max(other bits) */
2373 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2374 var32_off.value | (var32_off.mask & S32_MAX));
2375 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2376 reg->u32_max_value = min(reg->u32_max_value,
2377 (u32)(var32_off.value | var32_off.mask));
2378 }
2379
__update_reg64_bounds(struct bpf_reg_state * reg)2380 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2381 {
2382 /* min signed is max(sign bit) | min(other bits) */
2383 reg->smin_value = max_t(s64, reg->smin_value,
2384 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2385 /* max signed is min(sign bit) | max(other bits) */
2386 reg->smax_value = min_t(s64, reg->smax_value,
2387 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2388 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2389 reg->umax_value = min(reg->umax_value,
2390 reg->var_off.value | reg->var_off.mask);
2391 }
2392
__update_reg_bounds(struct bpf_reg_state * reg)2393 static void __update_reg_bounds(struct bpf_reg_state *reg)
2394 {
2395 __update_reg32_bounds(reg);
2396 __update_reg64_bounds(reg);
2397 }
2398
2399 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2400 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2401 {
2402 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2403 * bits to improve our u32/s32 boundaries.
2404 *
2405 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2406 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2407 * [10, 20] range. But this property holds for any 64-bit range as
2408 * long as upper 32 bits in that entire range of values stay the same.
2409 *
2410 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2411 * in decimal) has the same upper 32 bits throughout all the values in
2412 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2413 * range.
2414 *
2415 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2416 * following the rules outlined below about u64/s64 correspondence
2417 * (which equally applies to u32 vs s32 correspondence). In general it
2418 * depends on actual hexadecimal values of 32-bit range. They can form
2419 * only valid u32, or only valid s32 ranges in some cases.
2420 *
2421 * So we use all these insights to derive bounds for subregisters here.
2422 */
2423 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2424 /* u64 to u32 casting preserves validity of low 32 bits as
2425 * a range, if upper 32 bits are the same
2426 */
2427 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2428 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2429
2430 if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2431 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2432 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2433 }
2434 }
2435 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2436 /* low 32 bits should form a proper u32 range */
2437 if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2438 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2439 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2440 }
2441 /* low 32 bits should form a proper s32 range */
2442 if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2443 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2444 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2445 }
2446 }
2447 /* Special case where upper bits form a small sequence of two
2448 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2449 * 0x00000000 is also valid), while lower bits form a proper s32 range
2450 * going from negative numbers to positive numbers. E.g., let's say we
2451 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2452 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2453 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2454 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2455 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2456 * upper 32 bits. As a random example, s64 range
2457 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2458 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2459 */
2460 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2461 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2462 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2463 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2464 }
2465 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2466 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2467 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2468 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2469 }
2470 /* if u32 range forms a valid s32 range (due to matching sign bit),
2471 * try to learn from that
2472 */
2473 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2474 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2475 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2476 }
2477 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2478 * are the same, so combine. This works even in the negative case, e.g.
2479 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2480 */
2481 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2482 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2483 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2484 }
2485 }
2486
__reg64_deduce_bounds(struct bpf_reg_state * reg)2487 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2488 {
2489 /* If u64 range forms a valid s64 range (due to matching sign bit),
2490 * try to learn from that. Let's do a bit of ASCII art to see when
2491 * this is happening. Let's take u64 range first:
2492 *
2493 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2494 * |-------------------------------|--------------------------------|
2495 *
2496 * Valid u64 range is formed when umin and umax are anywhere in the
2497 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2498 * straightforward. Let's see how s64 range maps onto the same range
2499 * of values, annotated below the line for comparison:
2500 *
2501 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2502 * |-------------------------------|--------------------------------|
2503 * 0 S64_MAX S64_MIN -1
2504 *
2505 * So s64 values basically start in the middle and they are logically
2506 * contiguous to the right of it, wrapping around from -1 to 0, and
2507 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2508 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2509 * more visually as mapped to sign-agnostic range of hex values.
2510 *
2511 * u64 start u64 end
2512 * _______________________________________________________________
2513 * / \
2514 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2515 * |-------------------------------|--------------------------------|
2516 * 0 S64_MAX S64_MIN -1
2517 * / \
2518 * >------------------------------ ------------------------------->
2519 * s64 continues... s64 end s64 start s64 "midpoint"
2520 *
2521 * What this means is that, in general, we can't always derive
2522 * something new about u64 from any random s64 range, and vice versa.
2523 *
2524 * But we can do that in two particular cases. One is when entire
2525 * u64/s64 range is *entirely* contained within left half of the above
2526 * diagram or when it is *entirely* contained in the right half. I.e.:
2527 *
2528 * |-------------------------------|--------------------------------|
2529 * ^ ^ ^ ^
2530 * A B C D
2531 *
2532 * [A, B] and [C, D] are contained entirely in their respective halves
2533 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2534 * will be non-negative both as u64 and s64 (and in fact it will be
2535 * identical ranges no matter the signedness). [C, D] treated as s64
2536 * will be a range of negative values, while in u64 it will be
2537 * non-negative range of values larger than 0x8000000000000000.
2538 *
2539 * Now, any other range here can't be represented in both u64 and s64
2540 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2541 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2542 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2543 * for example. Similarly, valid s64 range [D, A] (going from negative
2544 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2545 * ranges as u64. Currently reg_state can't represent two segments per
2546 * numeric domain, so in such situations we can only derive maximal
2547 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2548 *
2549 * So we use these facts to derive umin/umax from smin/smax and vice
2550 * versa only if they stay within the same "half". This is equivalent
2551 * to checking sign bit: lower half will have sign bit as zero, upper
2552 * half have sign bit 1. Below in code we simplify this by just
2553 * casting umin/umax as smin/smax and checking if they form valid
2554 * range, and vice versa. Those are equivalent checks.
2555 */
2556 if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2557 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2558 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2559 }
2560 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2561 * are the same, so combine. This works even in the negative case, e.g.
2562 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2563 */
2564 if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2565 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2566 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2567 } else {
2568 /* If the s64 range crosses the sign boundary, then it's split
2569 * between the beginning and end of the U64 domain. In that
2570 * case, we can derive new bounds if the u64 range overlaps
2571 * with only one end of the s64 range.
2572 *
2573 * In the following example, the u64 range overlaps only with
2574 * positive portion of the s64 range.
2575 *
2576 * 0 U64_MAX
2577 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] |
2578 * |----------------------------|----------------------------|
2579 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx|
2580 * 0 S64_MAX S64_MIN -1
2581 *
2582 * We can thus derive the following new s64 and u64 ranges.
2583 *
2584 * 0 U64_MAX
2585 * | [xxxxxx u64 range xxxxx] |
2586 * |----------------------------|----------------------------|
2587 * | [xxxxxx s64 range xxxxx] |
2588 * 0 S64_MAX S64_MIN -1
2589 *
2590 * If they overlap in two places, we can't derive anything
2591 * because reg_state can't represent two ranges per numeric
2592 * domain.
2593 *
2594 * 0 U64_MAX
2595 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] |
2596 * |----------------------------|----------------------------|
2597 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx|
2598 * 0 S64_MAX S64_MIN -1
2599 *
2600 * The first condition below corresponds to the first diagram
2601 * above.
2602 */
2603 if (reg->umax_value < (u64)reg->smin_value) {
2604 reg->smin_value = (s64)reg->umin_value;
2605 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value);
2606 } else if ((u64)reg->smax_value < reg->umin_value) {
2607 /* This second condition considers the case where the u64 range
2608 * overlaps with the negative portion of the s64 range:
2609 *
2610 * 0 U64_MAX
2611 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] |
2612 * |----------------------------|----------------------------|
2613 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range |
2614 * 0 S64_MAX S64_MIN -1
2615 */
2616 reg->smax_value = (s64)reg->umax_value;
2617 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value);
2618 }
2619 }
2620 }
2621
__reg_deduce_mixed_bounds(struct bpf_reg_state * reg)2622 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2623 {
2624 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2625 * values on both sides of 64-bit range in hope to have tighter range.
2626 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2627 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2628 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2629 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2630 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2631 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2632 * We just need to make sure that derived bounds we are intersecting
2633 * with are well-formed ranges in respective s64 or u64 domain, just
2634 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2635 */
2636 __u64 new_umin, new_umax;
2637 __s64 new_smin, new_smax;
2638
2639 /* u32 -> u64 tightening, it's always well-formed */
2640 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2641 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2642 reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2643 reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2644 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2645 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2646 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2647 reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2648 reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2649
2650 /* Here we would like to handle a special case after sign extending load,
2651 * when upper bits for a 64-bit range are all 1s or all 0s.
2652 *
2653 * Upper bits are all 1s when register is in a range:
2654 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2655 * Upper bits are all 0s when register is in a range:
2656 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2657 * Together this forms are continuous range:
2658 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2659 *
2660 * Now, suppose that register range is in fact tighter:
2661 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2662 * Also suppose that it's 32-bit range is positive,
2663 * meaning that lower 32-bits of the full 64-bit register
2664 * are in the range:
2665 * [0x0000_0000, 0x7fff_ffff] (W)
2666 *
2667 * If this happens, then any value in a range:
2668 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2669 * is smaller than a lowest bound of the range (R):
2670 * 0xffff_ffff_8000_0000
2671 * which means that upper bits of the full 64-bit register
2672 * can't be all 1s, when lower bits are in range (W).
2673 *
2674 * Note that:
2675 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2676 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2677 * These relations are used in the conditions below.
2678 */
2679 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2680 reg->smin_value = reg->s32_min_value;
2681 reg->smax_value = reg->s32_max_value;
2682 reg->umin_value = reg->s32_min_value;
2683 reg->umax_value = reg->s32_max_value;
2684 reg->var_off = tnum_intersect(reg->var_off,
2685 tnum_range(reg->smin_value, reg->smax_value));
2686 }
2687 }
2688
__reg_deduce_bounds(struct bpf_reg_state * reg)2689 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2690 {
2691 __reg32_deduce_bounds(reg);
2692 __reg64_deduce_bounds(reg);
2693 __reg_deduce_mixed_bounds(reg);
2694 }
2695
2696 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2697 static void __reg_bound_offset(struct bpf_reg_state *reg)
2698 {
2699 struct tnum var64_off = tnum_intersect(reg->var_off,
2700 tnum_range(reg->umin_value,
2701 reg->umax_value));
2702 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2703 tnum_range(reg->u32_min_value,
2704 reg->u32_max_value));
2705
2706 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2707 }
2708
reg_bounds_sync(struct bpf_reg_state * reg)2709 static void reg_bounds_sync(struct bpf_reg_state *reg)
2710 {
2711 /* We might have learned new bounds from the var_off. */
2712 __update_reg_bounds(reg);
2713 /* We might have learned something about the sign bit. */
2714 __reg_deduce_bounds(reg);
2715 __reg_deduce_bounds(reg);
2716 __reg_deduce_bounds(reg);
2717 /* We might have learned some bits from the bounds. */
2718 __reg_bound_offset(reg);
2719 /* Intersecting with the old var_off might have improved our bounds
2720 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2721 * then new var_off is (0; 0x7f...fc) which improves our umax.
2722 */
2723 __update_reg_bounds(reg);
2724 }
2725
reg_bounds_sanity_check(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * ctx)2726 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2727 struct bpf_reg_state *reg, const char *ctx)
2728 {
2729 const char *msg;
2730
2731 if (reg->umin_value > reg->umax_value ||
2732 reg->smin_value > reg->smax_value ||
2733 reg->u32_min_value > reg->u32_max_value ||
2734 reg->s32_min_value > reg->s32_max_value) {
2735 msg = "range bounds violation";
2736 goto out;
2737 }
2738
2739 if (tnum_is_const(reg->var_off)) {
2740 u64 uval = reg->var_off.value;
2741 s64 sval = (s64)uval;
2742
2743 if (reg->umin_value != uval || reg->umax_value != uval ||
2744 reg->smin_value != sval || reg->smax_value != sval) {
2745 msg = "const tnum out of sync with range bounds";
2746 goto out;
2747 }
2748 }
2749
2750 if (tnum_subreg_is_const(reg->var_off)) {
2751 u32 uval32 = tnum_subreg(reg->var_off).value;
2752 s32 sval32 = (s32)uval32;
2753
2754 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2755 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2756 msg = "const subreg tnum out of sync with range bounds";
2757 goto out;
2758 }
2759 }
2760
2761 return 0;
2762 out:
2763 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2764 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)",
2765 ctx, msg, reg->umin_value, reg->umax_value,
2766 reg->smin_value, reg->smax_value,
2767 reg->u32_min_value, reg->u32_max_value,
2768 reg->s32_min_value, reg->s32_max_value,
2769 reg->var_off.value, reg->var_off.mask);
2770 if (env->test_reg_invariants)
2771 return -EFAULT;
2772 __mark_reg_unbounded(reg);
2773 return 0;
2774 }
2775
__reg32_bound_s64(s32 a)2776 static bool __reg32_bound_s64(s32 a)
2777 {
2778 return a >= 0 && a <= S32_MAX;
2779 }
2780
__reg_assign_32_into_64(struct bpf_reg_state * reg)2781 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2782 {
2783 reg->umin_value = reg->u32_min_value;
2784 reg->umax_value = reg->u32_max_value;
2785
2786 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2787 * be positive otherwise set to worse case bounds and refine later
2788 * from tnum.
2789 */
2790 if (__reg32_bound_s64(reg->s32_min_value) &&
2791 __reg32_bound_s64(reg->s32_max_value)) {
2792 reg->smin_value = reg->s32_min_value;
2793 reg->smax_value = reg->s32_max_value;
2794 } else {
2795 reg->smin_value = 0;
2796 reg->smax_value = U32_MAX;
2797 }
2798 }
2799
2800 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown_imprecise(struct bpf_reg_state * reg)2801 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2802 {
2803 /*
2804 * Clear type, off, and union(map_ptr, range) and
2805 * padding between 'type' and union
2806 */
2807 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2808 reg->type = SCALAR_VALUE;
2809 reg->id = 0;
2810 reg->ref_obj_id = 0;
2811 reg->var_off = tnum_unknown;
2812 reg->frameno = 0;
2813 reg->precise = false;
2814 __mark_reg_unbounded(reg);
2815 }
2816
2817 /* Mark a register as having a completely unknown (scalar) value,
2818 * initialize .precise as true when not bpf capable.
2819 */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2820 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2821 struct bpf_reg_state *reg)
2822 {
2823 __mark_reg_unknown_imprecise(reg);
2824 reg->precise = !env->bpf_capable;
2825 }
2826
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2827 static void mark_reg_unknown(struct bpf_verifier_env *env,
2828 struct bpf_reg_state *regs, u32 regno)
2829 {
2830 if (WARN_ON(regno >= MAX_BPF_REG)) {
2831 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2832 /* Something bad happened, let's kill all regs except FP */
2833 for (regno = 0; regno < BPF_REG_FP; regno++)
2834 __mark_reg_not_init(env, regs + regno);
2835 return;
2836 }
2837 __mark_reg_unknown(env, regs + regno);
2838 }
2839
__mark_reg_s32_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,s32 s32_min,s32 s32_max)2840 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2841 struct bpf_reg_state *regs,
2842 u32 regno,
2843 s32 s32_min,
2844 s32 s32_max)
2845 {
2846 struct bpf_reg_state *reg = regs + regno;
2847
2848 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2849 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2850
2851 reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2852 reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2853
2854 reg_bounds_sync(reg);
2855
2856 return reg_bounds_sanity_check(env, reg, "s32_range");
2857 }
2858
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2860 struct bpf_reg_state *reg)
2861 {
2862 __mark_reg_unknown(env, reg);
2863 reg->type = NOT_INIT;
2864 }
2865
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2866 static void mark_reg_not_init(struct bpf_verifier_env *env,
2867 struct bpf_reg_state *regs, u32 regno)
2868 {
2869 if (WARN_ON(regno >= MAX_BPF_REG)) {
2870 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2871 /* Something bad happened, let's kill all regs except FP */
2872 for (regno = 0; regno < BPF_REG_FP; regno++)
2873 __mark_reg_not_init(env, regs + regno);
2874 return;
2875 }
2876 __mark_reg_not_init(env, regs + regno);
2877 }
2878
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2879 static int mark_btf_ld_reg(struct bpf_verifier_env *env,
2880 struct bpf_reg_state *regs, u32 regno,
2881 enum bpf_reg_type reg_type,
2882 struct btf *btf, u32 btf_id,
2883 enum bpf_type_flag flag)
2884 {
2885 switch (reg_type) {
2886 case SCALAR_VALUE:
2887 mark_reg_unknown(env, regs, regno);
2888 return 0;
2889 case PTR_TO_BTF_ID:
2890 mark_reg_known_zero(env, regs, regno);
2891 regs[regno].type = PTR_TO_BTF_ID | flag;
2892 regs[regno].btf = btf;
2893 regs[regno].btf_id = btf_id;
2894 if (type_may_be_null(flag))
2895 regs[regno].id = ++env->id_gen;
2896 return 0;
2897 case PTR_TO_MEM:
2898 mark_reg_known_zero(env, regs, regno);
2899 regs[regno].type = PTR_TO_MEM | flag;
2900 regs[regno].mem_size = 0;
2901 return 0;
2902 default:
2903 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__);
2904 return -EFAULT;
2905 }
2906 }
2907
2908 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2909 static void init_reg_state(struct bpf_verifier_env *env,
2910 struct bpf_func_state *state)
2911 {
2912 struct bpf_reg_state *regs = state->regs;
2913 int i;
2914
2915 for (i = 0; i < MAX_BPF_REG; i++) {
2916 mark_reg_not_init(env, regs, i);
2917 regs[i].subreg_def = DEF_NOT_SUBREG;
2918 }
2919
2920 /* frame pointer */
2921 regs[BPF_REG_FP].type = PTR_TO_STACK;
2922 mark_reg_known_zero(env, regs, BPF_REG_FP);
2923 regs[BPF_REG_FP].frameno = state->frameno;
2924 }
2925
retval_range(s32 minval,s32 maxval)2926 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2927 {
2928 return (struct bpf_retval_range){ minval, maxval };
2929 }
2930
2931 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2932 static void init_func_state(struct bpf_verifier_env *env,
2933 struct bpf_func_state *state,
2934 int callsite, int frameno, int subprogno)
2935 {
2936 state->callsite = callsite;
2937 state->frameno = frameno;
2938 state->subprogno = subprogno;
2939 state->callback_ret_range = retval_range(0, 0);
2940 init_reg_state(env, state);
2941 mark_verifier_state_scratched(env);
2942 }
2943
2944 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog,bool is_sleepable)2945 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2946 int insn_idx, int prev_insn_idx,
2947 int subprog, bool is_sleepable)
2948 {
2949 struct bpf_verifier_stack_elem *elem;
2950 struct bpf_func_state *frame;
2951
2952 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2953 if (!elem)
2954 return ERR_PTR(-ENOMEM);
2955
2956 elem->insn_idx = insn_idx;
2957 elem->prev_insn_idx = prev_insn_idx;
2958 elem->next = env->head;
2959 elem->log_pos = env->log.end_pos;
2960 env->head = elem;
2961 env->stack_size++;
2962 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2963 verbose(env,
2964 "The sequence of %d jumps is too complex for async cb.\n",
2965 env->stack_size);
2966 return ERR_PTR(-E2BIG);
2967 }
2968 /* Unlike push_stack() do not copy_verifier_state().
2969 * The caller state doesn't matter.
2970 * This is async callback. It starts in a fresh stack.
2971 * Initialize it similar to do_check_common().
2972 */
2973 elem->st.branches = 1;
2974 elem->st.in_sleepable = is_sleepable;
2975 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT);
2976 if (!frame)
2977 return ERR_PTR(-ENOMEM);
2978 init_func_state(env, frame,
2979 BPF_MAIN_FUNC /* callsite */,
2980 0 /* frameno within this callchain */,
2981 subprog /* subprog number within this prog */);
2982 elem->st.frame[0] = frame;
2983 return &elem->st;
2984 }
2985
2986
2987 enum reg_arg_type {
2988 SRC_OP, /* register is used as source operand */
2989 DST_OP, /* register is used as destination operand */
2990 DST_OP_NO_MARK /* same as above, check only, don't mark */
2991 };
2992
cmp_subprogs(const void * a,const void * b)2993 static int cmp_subprogs(const void *a, const void *b)
2994 {
2995 return ((struct bpf_subprog_info *)a)->start -
2996 ((struct bpf_subprog_info *)b)->start;
2997 }
2998
2999 /* Find subprogram that contains instruction at 'off' */
bpf_find_containing_subprog(struct bpf_verifier_env * env,int off)3000 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off)
3001 {
3002 struct bpf_subprog_info *vals = env->subprog_info;
3003 int l, r, m;
3004
3005 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
3006 return NULL;
3007
3008 l = 0;
3009 r = env->subprog_cnt - 1;
3010 while (l < r) {
3011 m = l + (r - l + 1) / 2;
3012 if (vals[m].start <= off)
3013 l = m;
3014 else
3015 r = m - 1;
3016 }
3017 return &vals[l];
3018 }
3019
3020 /* Find subprogram that starts exactly at 'off' */
find_subprog(struct bpf_verifier_env * env,int off)3021 static int find_subprog(struct bpf_verifier_env *env, int off)
3022 {
3023 struct bpf_subprog_info *p;
3024
3025 p = bpf_find_containing_subprog(env, off);
3026 if (!p || p->start != off)
3027 return -ENOENT;
3028 return p - env->subprog_info;
3029 }
3030
add_subprog(struct bpf_verifier_env * env,int off)3031 static int add_subprog(struct bpf_verifier_env *env, int off)
3032 {
3033 int insn_cnt = env->prog->len;
3034 int ret;
3035
3036 if (off >= insn_cnt || off < 0) {
3037 verbose(env, "call to invalid destination\n");
3038 return -EINVAL;
3039 }
3040 ret = find_subprog(env, off);
3041 if (ret >= 0)
3042 return ret;
3043 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
3044 verbose(env, "too many subprograms\n");
3045 return -E2BIG;
3046 }
3047 /* determine subprog starts. The end is one before the next starts */
3048 env->subprog_info[env->subprog_cnt++].start = off;
3049 sort(env->subprog_info, env->subprog_cnt,
3050 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
3051 return env->subprog_cnt - 1;
3052 }
3053
bpf_find_exception_callback_insn_off(struct bpf_verifier_env * env)3054 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
3055 {
3056 struct bpf_prog_aux *aux = env->prog->aux;
3057 struct btf *btf = aux->btf;
3058 const struct btf_type *t;
3059 u32 main_btf_id, id;
3060 const char *name;
3061 int ret, i;
3062
3063 /* Non-zero func_info_cnt implies valid btf */
3064 if (!aux->func_info_cnt)
3065 return 0;
3066 main_btf_id = aux->func_info[0].type_id;
3067
3068 t = btf_type_by_id(btf, main_btf_id);
3069 if (!t) {
3070 verbose(env, "invalid btf id for main subprog in func_info\n");
3071 return -EINVAL;
3072 }
3073
3074 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
3075 if (IS_ERR(name)) {
3076 ret = PTR_ERR(name);
3077 /* If there is no tag present, there is no exception callback */
3078 if (ret == -ENOENT)
3079 ret = 0;
3080 else if (ret == -EEXIST)
3081 verbose(env, "multiple exception callback tags for main subprog\n");
3082 return ret;
3083 }
3084
3085 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
3086 if (ret < 0) {
3087 verbose(env, "exception callback '%s' could not be found in BTF\n", name);
3088 return ret;
3089 }
3090 id = ret;
3091 t = btf_type_by_id(btf, id);
3092 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3093 verbose(env, "exception callback '%s' must have global linkage\n", name);
3094 return -EINVAL;
3095 }
3096 ret = 0;
3097 for (i = 0; i < aux->func_info_cnt; i++) {
3098 if (aux->func_info[i].type_id != id)
3099 continue;
3100 ret = aux->func_info[i].insn_off;
3101 /* Further func_info and subprog checks will also happen
3102 * later, so assume this is the right insn_off for now.
3103 */
3104 if (!ret) {
3105 verbose(env, "invalid exception callback insn_off in func_info: 0\n");
3106 ret = -EINVAL;
3107 }
3108 }
3109 if (!ret) {
3110 verbose(env, "exception callback type id not found in func_info\n");
3111 ret = -EINVAL;
3112 }
3113 return ret;
3114 }
3115
3116 #define MAX_KFUNC_DESCS 256
3117 #define MAX_KFUNC_BTFS 256
3118
3119 struct bpf_kfunc_desc {
3120 struct btf_func_model func_model;
3121 u32 func_id;
3122 s32 imm;
3123 u16 offset;
3124 unsigned long addr;
3125 };
3126
3127 struct bpf_kfunc_btf {
3128 struct btf *btf;
3129 struct module *module;
3130 u16 offset;
3131 };
3132
3133 struct bpf_kfunc_desc_tab {
3134 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
3135 * verification. JITs do lookups by bpf_insn, where func_id may not be
3136 * available, therefore at the end of verification do_misc_fixups()
3137 * sorts this by imm and offset.
3138 */
3139 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
3140 u32 nr_descs;
3141 };
3142
3143 struct bpf_kfunc_btf_tab {
3144 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
3145 u32 nr_descs;
3146 };
3147
3148 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc,
3149 int insn_idx);
3150
kfunc_desc_cmp_by_id_off(const void * a,const void * b)3151 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
3152 {
3153 const struct bpf_kfunc_desc *d0 = a;
3154 const struct bpf_kfunc_desc *d1 = b;
3155
3156 /* func_id is not greater than BTF_MAX_TYPE */
3157 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
3158 }
3159
kfunc_btf_cmp_by_off(const void * a,const void * b)3160 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
3161 {
3162 const struct bpf_kfunc_btf *d0 = a;
3163 const struct bpf_kfunc_btf *d1 = b;
3164
3165 return d0->offset - d1->offset;
3166 }
3167
3168 static struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)3169 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
3170 {
3171 struct bpf_kfunc_desc desc = {
3172 .func_id = func_id,
3173 .offset = offset,
3174 };
3175 struct bpf_kfunc_desc_tab *tab;
3176
3177 tab = prog->aux->kfunc_tab;
3178 return bsearch(&desc, tab->descs, tab->nr_descs,
3179 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
3180 }
3181
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3182 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3183 u16 btf_fd_idx, u8 **func_addr)
3184 {
3185 const struct bpf_kfunc_desc *desc;
3186
3187 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
3188 if (!desc)
3189 return -EFAULT;
3190
3191 *func_addr = (u8 *)desc->addr;
3192 return 0;
3193 }
3194
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3195 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
3196 s16 offset)
3197 {
3198 struct bpf_kfunc_btf kf_btf = { .offset = offset };
3199 struct bpf_kfunc_btf_tab *tab;
3200 struct bpf_kfunc_btf *b;
3201 struct module *mod;
3202 struct btf *btf;
3203 int btf_fd;
3204
3205 tab = env->prog->aux->kfunc_btf_tab;
3206 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
3207 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
3208 if (!b) {
3209 if (tab->nr_descs == MAX_KFUNC_BTFS) {
3210 verbose(env, "too many different module BTFs\n");
3211 return ERR_PTR(-E2BIG);
3212 }
3213
3214 if (bpfptr_is_null(env->fd_array)) {
3215 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
3216 return ERR_PTR(-EPROTO);
3217 }
3218
3219 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
3220 offset * sizeof(btf_fd),
3221 sizeof(btf_fd)))
3222 return ERR_PTR(-EFAULT);
3223
3224 btf = btf_get_by_fd(btf_fd);
3225 if (IS_ERR(btf)) {
3226 verbose(env, "invalid module BTF fd specified\n");
3227 return btf;
3228 }
3229
3230 if (!btf_is_module(btf)) {
3231 verbose(env, "BTF fd for kfunc is not a module BTF\n");
3232 btf_put(btf);
3233 return ERR_PTR(-EINVAL);
3234 }
3235
3236 mod = btf_try_get_module(btf);
3237 if (!mod) {
3238 btf_put(btf);
3239 return ERR_PTR(-ENXIO);
3240 }
3241
3242 b = &tab->descs[tab->nr_descs++];
3243 b->btf = btf;
3244 b->module = mod;
3245 b->offset = offset;
3246
3247 /* sort() reorders entries by value, so b may no longer point
3248 * to the right entry after this
3249 */
3250 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3251 kfunc_btf_cmp_by_off, NULL);
3252 } else {
3253 btf = b->btf;
3254 }
3255
3256 return btf;
3257 }
3258
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)3259 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
3260 {
3261 if (!tab)
3262 return;
3263
3264 while (tab->nr_descs--) {
3265 module_put(tab->descs[tab->nr_descs].module);
3266 btf_put(tab->descs[tab->nr_descs].btf);
3267 }
3268 kfree(tab);
3269 }
3270
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3271 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
3272 {
3273 if (offset) {
3274 if (offset < 0) {
3275 /* In the future, this can be allowed to increase limit
3276 * of fd index into fd_array, interpreted as u16.
3277 */
3278 verbose(env, "negative offset disallowed for kernel module function call\n");
3279 return ERR_PTR(-EINVAL);
3280 }
3281
3282 return __find_kfunc_desc_btf(env, offset);
3283 }
3284 return btf_vmlinux ?: ERR_PTR(-ENOENT);
3285 }
3286
3287 #define KF_IMPL_SUFFIX "_impl"
3288
find_kfunc_impl_proto(struct bpf_verifier_env * env,struct btf * btf,const char * func_name)3289 static const struct btf_type *find_kfunc_impl_proto(struct bpf_verifier_env *env,
3290 struct btf *btf,
3291 const char *func_name)
3292 {
3293 char *buf = env->tmp_str_buf;
3294 const struct btf_type *func;
3295 s32 impl_id;
3296 int len;
3297
3298 len = snprintf(buf, TMP_STR_BUF_LEN, "%s%s", func_name, KF_IMPL_SUFFIX);
3299 if (len < 0 || len >= TMP_STR_BUF_LEN) {
3300 verbose(env, "function name %s%s is too long\n", func_name, KF_IMPL_SUFFIX);
3301 return NULL;
3302 }
3303
3304 impl_id = btf_find_by_name_kind(btf, buf, BTF_KIND_FUNC);
3305 if (impl_id <= 0) {
3306 verbose(env, "cannot find function %s in BTF\n", buf);
3307 return NULL;
3308 }
3309
3310 func = btf_type_by_id(btf, impl_id);
3311
3312 return btf_type_by_id(btf, func->type);
3313 }
3314
fetch_kfunc_meta(struct bpf_verifier_env * env,s32 func_id,s16 offset,struct bpf_kfunc_meta * kfunc)3315 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
3316 s32 func_id,
3317 s16 offset,
3318 struct bpf_kfunc_meta *kfunc)
3319 {
3320 const struct btf_type *func, *func_proto;
3321 const char *func_name;
3322 u32 *kfunc_flags;
3323 struct btf *btf;
3324
3325 if (func_id <= 0) {
3326 verbose(env, "invalid kernel function btf_id %d\n", func_id);
3327 return -EINVAL;
3328 }
3329
3330 btf = find_kfunc_desc_btf(env, offset);
3331 if (IS_ERR(btf)) {
3332 verbose(env, "failed to find BTF for kernel function\n");
3333 return PTR_ERR(btf);
3334 }
3335
3336 /*
3337 * Note that kfunc_flags may be NULL at this point, which
3338 * means that we couldn't find func_id in any relevant
3339 * kfunc_id_set. This most likely indicates an invalid kfunc
3340 * call. However we don't fail with an error here,
3341 * and let the caller decide what to do with NULL kfunc->flags.
3342 */
3343 kfunc_flags = btf_kfunc_flags(btf, func_id, env->prog);
3344
3345 func = btf_type_by_id(btf, func_id);
3346 if (!func || !btf_type_is_func(func)) {
3347 verbose(env, "kernel btf_id %d is not a function\n", func_id);
3348 return -EINVAL;
3349 }
3350
3351 func_name = btf_name_by_offset(btf, func->name_off);
3352
3353 /*
3354 * An actual prototype of a kfunc with KF_IMPLICIT_ARGS flag
3355 * can be found through the counterpart _impl kfunc.
3356 */
3357 if (kfunc_flags && (*kfunc_flags & KF_IMPLICIT_ARGS))
3358 func_proto = find_kfunc_impl_proto(env, btf, func_name);
3359 else
3360 func_proto = btf_type_by_id(btf, func->type);
3361
3362 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3363 verbose(env, "kernel function btf_id %d does not have a valid func_proto\n",
3364 func_id);
3365 return -EINVAL;
3366 }
3367
3368 memset(kfunc, 0, sizeof(*kfunc));
3369 kfunc->btf = btf;
3370 kfunc->id = func_id;
3371 kfunc->name = func_name;
3372 kfunc->proto = func_proto;
3373 kfunc->flags = kfunc_flags;
3374
3375 return 0;
3376 }
3377
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)3378 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
3379 {
3380 struct bpf_kfunc_btf_tab *btf_tab;
3381 struct btf_func_model func_model;
3382 struct bpf_kfunc_desc_tab *tab;
3383 struct bpf_prog_aux *prog_aux;
3384 struct bpf_kfunc_meta kfunc;
3385 struct bpf_kfunc_desc *desc;
3386 unsigned long addr;
3387 int err;
3388
3389 prog_aux = env->prog->aux;
3390 tab = prog_aux->kfunc_tab;
3391 btf_tab = prog_aux->kfunc_btf_tab;
3392 if (!tab) {
3393 if (!btf_vmlinux) {
3394 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
3395 return -ENOTSUPP;
3396 }
3397
3398 if (!env->prog->jit_requested) {
3399 verbose(env, "JIT is required for calling kernel function\n");
3400 return -ENOTSUPP;
3401 }
3402
3403 if (!bpf_jit_supports_kfunc_call()) {
3404 verbose(env, "JIT does not support calling kernel function\n");
3405 return -ENOTSUPP;
3406 }
3407
3408 if (!env->prog->gpl_compatible) {
3409 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
3410 return -EINVAL;
3411 }
3412
3413 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT);
3414 if (!tab)
3415 return -ENOMEM;
3416 prog_aux->kfunc_tab = tab;
3417 }
3418
3419 /* func_id == 0 is always invalid, but instead of returning an error, be
3420 * conservative and wait until the code elimination pass before returning
3421 * error, so that invalid calls that get pruned out can be in BPF programs
3422 * loaded from userspace. It is also required that offset be untouched
3423 * for such calls.
3424 */
3425 if (!func_id && !offset)
3426 return 0;
3427
3428 if (!btf_tab && offset) {
3429 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT);
3430 if (!btf_tab)
3431 return -ENOMEM;
3432 prog_aux->kfunc_btf_tab = btf_tab;
3433 }
3434
3435 if (find_kfunc_desc(env->prog, func_id, offset))
3436 return 0;
3437
3438 if (tab->nr_descs == MAX_KFUNC_DESCS) {
3439 verbose(env, "too many different kernel function calls\n");
3440 return -E2BIG;
3441 }
3442
3443 err = fetch_kfunc_meta(env, func_id, offset, &kfunc);
3444 if (err)
3445 return err;
3446
3447 addr = kallsyms_lookup_name(kfunc.name);
3448 if (!addr) {
3449 verbose(env, "cannot find address for kernel function %s\n", kfunc.name);
3450 return -EINVAL;
3451 }
3452
3453 if (bpf_dev_bound_kfunc_id(func_id)) {
3454 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3455 if (err)
3456 return err;
3457 }
3458
3459 err = btf_distill_func_proto(&env->log, kfunc.btf, kfunc.proto, kfunc.name, &func_model);
3460 if (err)
3461 return err;
3462
3463 desc = &tab->descs[tab->nr_descs++];
3464 desc->func_id = func_id;
3465 desc->offset = offset;
3466 desc->addr = addr;
3467 desc->func_model = func_model;
3468 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3469 kfunc_desc_cmp_by_id_off, NULL);
3470 return 0;
3471 }
3472
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)3473 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3474 {
3475 const struct bpf_kfunc_desc *d0 = a;
3476 const struct bpf_kfunc_desc *d1 = b;
3477
3478 if (d0->imm != d1->imm)
3479 return d0->imm < d1->imm ? -1 : 1;
3480 if (d0->offset != d1->offset)
3481 return d0->offset < d1->offset ? -1 : 1;
3482 return 0;
3483 }
3484
set_kfunc_desc_imm(struct bpf_verifier_env * env,struct bpf_kfunc_desc * desc)3485 static int set_kfunc_desc_imm(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc)
3486 {
3487 unsigned long call_imm;
3488
3489 if (bpf_jit_supports_far_kfunc_call()) {
3490 call_imm = desc->func_id;
3491 } else {
3492 call_imm = BPF_CALL_IMM(desc->addr);
3493 /* Check whether the relative offset overflows desc->imm */
3494 if ((unsigned long)(s32)call_imm != call_imm) {
3495 verbose(env, "address of kernel func_id %u is out of range\n",
3496 desc->func_id);
3497 return -EINVAL;
3498 }
3499 }
3500 desc->imm = call_imm;
3501 return 0;
3502 }
3503
sort_kfunc_descs_by_imm_off(struct bpf_verifier_env * env)3504 static int sort_kfunc_descs_by_imm_off(struct bpf_verifier_env *env)
3505 {
3506 struct bpf_kfunc_desc_tab *tab;
3507 int i, err;
3508
3509 tab = env->prog->aux->kfunc_tab;
3510 if (!tab)
3511 return 0;
3512
3513 for (i = 0; i < tab->nr_descs; i++) {
3514 err = set_kfunc_desc_imm(env, &tab->descs[i]);
3515 if (err)
3516 return err;
3517 }
3518
3519 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3520 kfunc_desc_cmp_by_imm_off, NULL);
3521 return 0;
3522 }
3523
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3524 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3525 {
3526 return !!prog->aux->kfunc_tab;
3527 }
3528
3529 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3530 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3531 const struct bpf_insn *insn)
3532 {
3533 const struct bpf_kfunc_desc desc = {
3534 .imm = insn->imm,
3535 .offset = insn->off,
3536 };
3537 const struct bpf_kfunc_desc *res;
3538 struct bpf_kfunc_desc_tab *tab;
3539
3540 tab = prog->aux->kfunc_tab;
3541 res = bsearch(&desc, tab->descs, tab->nr_descs,
3542 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3543
3544 return res ? &res->func_model : NULL;
3545 }
3546
add_kfunc_in_insns(struct bpf_verifier_env * env,struct bpf_insn * insn,int cnt)3547 static int add_kfunc_in_insns(struct bpf_verifier_env *env,
3548 struct bpf_insn *insn, int cnt)
3549 {
3550 int i, ret;
3551
3552 for (i = 0; i < cnt; i++, insn++) {
3553 if (bpf_pseudo_kfunc_call(insn)) {
3554 ret = add_kfunc_call(env, insn->imm, insn->off);
3555 if (ret < 0)
3556 return ret;
3557 }
3558 }
3559 return 0;
3560 }
3561
add_subprog_and_kfunc(struct bpf_verifier_env * env)3562 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3563 {
3564 struct bpf_subprog_info *subprog = env->subprog_info;
3565 int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3566 struct bpf_insn *insn = env->prog->insnsi;
3567
3568 /* Add entry function. */
3569 ret = add_subprog(env, 0);
3570 if (ret)
3571 return ret;
3572
3573 for (i = 0; i < insn_cnt; i++, insn++) {
3574 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3575 !bpf_pseudo_kfunc_call(insn))
3576 continue;
3577
3578 if (!env->bpf_capable) {
3579 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3580 return -EPERM;
3581 }
3582
3583 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3584 ret = add_subprog(env, i + insn->imm + 1);
3585 else
3586 ret = add_kfunc_call(env, insn->imm, insn->off);
3587
3588 if (ret < 0)
3589 return ret;
3590 }
3591
3592 ret = bpf_find_exception_callback_insn_off(env);
3593 if (ret < 0)
3594 return ret;
3595 ex_cb_insn = ret;
3596
3597 /* If ex_cb_insn > 0, this means that the main program has a subprog
3598 * marked using BTF decl tag to serve as the exception callback.
3599 */
3600 if (ex_cb_insn) {
3601 ret = add_subprog(env, ex_cb_insn);
3602 if (ret < 0)
3603 return ret;
3604 for (i = 1; i < env->subprog_cnt; i++) {
3605 if (env->subprog_info[i].start != ex_cb_insn)
3606 continue;
3607 env->exception_callback_subprog = i;
3608 mark_subprog_exc_cb(env, i);
3609 break;
3610 }
3611 }
3612
3613 /* Add a fake 'exit' subprog which could simplify subprog iteration
3614 * logic. 'subprog_cnt' should not be increased.
3615 */
3616 subprog[env->subprog_cnt].start = insn_cnt;
3617
3618 if (env->log.level & BPF_LOG_LEVEL2)
3619 for (i = 0; i < env->subprog_cnt; i++)
3620 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3621
3622 return 0;
3623 }
3624
check_subprogs(struct bpf_verifier_env * env)3625 static int check_subprogs(struct bpf_verifier_env *env)
3626 {
3627 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3628 struct bpf_subprog_info *subprog = env->subprog_info;
3629 struct bpf_insn *insn = env->prog->insnsi;
3630 int insn_cnt = env->prog->len;
3631
3632 /* now check that all jumps are within the same subprog */
3633 subprog_start = subprog[cur_subprog].start;
3634 subprog_end = subprog[cur_subprog + 1].start;
3635 for (i = 0; i < insn_cnt; i++) {
3636 u8 code = insn[i].code;
3637
3638 if (code == (BPF_JMP | BPF_CALL) &&
3639 insn[i].src_reg == 0 &&
3640 insn[i].imm == BPF_FUNC_tail_call) {
3641 subprog[cur_subprog].has_tail_call = true;
3642 subprog[cur_subprog].tail_call_reachable = true;
3643 }
3644 if (BPF_CLASS(code) == BPF_LD &&
3645 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3646 subprog[cur_subprog].has_ld_abs = true;
3647 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3648 goto next;
3649 if (BPF_OP(code) == BPF_CALL)
3650 goto next;
3651 if (BPF_OP(code) == BPF_EXIT) {
3652 subprog[cur_subprog].exit_idx = i;
3653 goto next;
3654 }
3655 off = i + bpf_jmp_offset(&insn[i]) + 1;
3656 if (off < subprog_start || off >= subprog_end) {
3657 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3658 return -EINVAL;
3659 }
3660 next:
3661 if (i == subprog_end - 1) {
3662 /* to avoid fall-through from one subprog into another
3663 * the last insn of the subprog should be either exit
3664 * or unconditional jump back or bpf_throw call
3665 */
3666 if (code != (BPF_JMP | BPF_EXIT) &&
3667 code != (BPF_JMP32 | BPF_JA) &&
3668 code != (BPF_JMP | BPF_JA)) {
3669 verbose(env, "last insn is not an exit or jmp\n");
3670 return -EINVAL;
3671 }
3672 subprog_start = subprog_end;
3673 cur_subprog++;
3674 if (cur_subprog < env->subprog_cnt)
3675 subprog_end = subprog[cur_subprog + 1].start;
3676 }
3677 }
3678 return 0;
3679 }
3680
mark_stack_slot_obj_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3681 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3682 int spi, int nr_slots)
3683 {
3684 int err, i;
3685
3686 for (i = 0; i < nr_slots; i++) {
3687 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i));
3688 if (err)
3689 return err;
3690 mark_stack_slot_scratched(env, spi - i);
3691 }
3692 return 0;
3693 }
3694
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3695 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3696 {
3697 int spi;
3698
3699 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3700 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3701 * check_kfunc_call.
3702 */
3703 if (reg->type == CONST_PTR_TO_DYNPTR)
3704 return 0;
3705 spi = dynptr_get_spi(env, reg);
3706 if (spi < 0)
3707 return spi;
3708 /* Caller ensures dynptr is valid and initialized, which means spi is in
3709 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3710 * read.
3711 */
3712 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
3713 }
3714
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3715 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3716 int spi, int nr_slots)
3717 {
3718 return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
3719 }
3720
mark_irq_flag_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3721 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3722 {
3723 int spi;
3724
3725 spi = irq_flag_get_spi(env, reg);
3726 if (spi < 0)
3727 return spi;
3728 return mark_stack_slot_obj_read(env, reg, spi, 1);
3729 }
3730
3731 /* This function is supposed to be used by the following 32-bit optimization
3732 * code only. It returns TRUE if the source or destination register operates
3733 * on 64-bit, otherwise return FALSE.
3734 */
is_reg64(struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3735 static bool is_reg64(struct bpf_insn *insn,
3736 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3737 {
3738 u8 code, class, op;
3739
3740 code = insn->code;
3741 class = BPF_CLASS(code);
3742 op = BPF_OP(code);
3743 if (class == BPF_JMP) {
3744 /* BPF_EXIT for "main" will reach here. Return TRUE
3745 * conservatively.
3746 */
3747 if (op == BPF_EXIT)
3748 return true;
3749 if (op == BPF_CALL) {
3750 /* BPF to BPF call will reach here because of marking
3751 * caller saved clobber with DST_OP_NO_MARK for which we
3752 * don't care the register def because they are anyway
3753 * marked as NOT_INIT already.
3754 */
3755 if (insn->src_reg == BPF_PSEUDO_CALL)
3756 return false;
3757 /* Helper call will reach here because of arg type
3758 * check, conservatively return TRUE.
3759 */
3760 if (t == SRC_OP)
3761 return true;
3762
3763 return false;
3764 }
3765 }
3766
3767 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3768 return false;
3769
3770 if (class == BPF_ALU64 || class == BPF_JMP ||
3771 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3772 return true;
3773
3774 if (class == BPF_ALU || class == BPF_JMP32)
3775 return false;
3776
3777 if (class == BPF_LDX) {
3778 if (t != SRC_OP)
3779 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3780 /* LDX source must be ptr. */
3781 return true;
3782 }
3783
3784 if (class == BPF_STX) {
3785 /* BPF_STX (including atomic variants) has one or more source
3786 * operands, one of which is a ptr. Check whether the caller is
3787 * asking about it.
3788 */
3789 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3790 return true;
3791 return BPF_SIZE(code) == BPF_DW;
3792 }
3793
3794 if (class == BPF_LD) {
3795 u8 mode = BPF_MODE(code);
3796
3797 /* LD_IMM64 */
3798 if (mode == BPF_IMM)
3799 return true;
3800
3801 /* Both LD_IND and LD_ABS return 32-bit data. */
3802 if (t != SRC_OP)
3803 return false;
3804
3805 /* Implicit ctx ptr. */
3806 if (regno == BPF_REG_6)
3807 return true;
3808
3809 /* Explicit source could be any width. */
3810 return true;
3811 }
3812
3813 if (class == BPF_ST)
3814 /* The only source register for BPF_ST is a ptr. */
3815 return true;
3816
3817 /* Conservatively return true at default. */
3818 return true;
3819 }
3820
3821 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3822 static int insn_def_regno(const struct bpf_insn *insn)
3823 {
3824 switch (BPF_CLASS(insn->code)) {
3825 case BPF_JMP:
3826 case BPF_JMP32:
3827 case BPF_ST:
3828 return -1;
3829 case BPF_STX:
3830 if (BPF_MODE(insn->code) == BPF_ATOMIC ||
3831 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
3832 if (insn->imm == BPF_CMPXCHG)
3833 return BPF_REG_0;
3834 else if (insn->imm == BPF_LOAD_ACQ)
3835 return insn->dst_reg;
3836 else if (insn->imm & BPF_FETCH)
3837 return insn->src_reg;
3838 }
3839 return -1;
3840 default:
3841 return insn->dst_reg;
3842 }
3843 }
3844
3845 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_insn * insn)3846 static bool insn_has_def32(struct bpf_insn *insn)
3847 {
3848 int dst_reg = insn_def_regno(insn);
3849
3850 if (dst_reg == -1)
3851 return false;
3852
3853 return !is_reg64(insn, dst_reg, NULL, DST_OP);
3854 }
3855
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3856 static void mark_insn_zext(struct bpf_verifier_env *env,
3857 struct bpf_reg_state *reg)
3858 {
3859 s32 def_idx = reg->subreg_def;
3860
3861 if (def_idx == DEF_NOT_SUBREG)
3862 return;
3863
3864 env->insn_aux_data[def_idx - 1].zext_dst = true;
3865 /* The dst will be zero extended, so won't be sub-register anymore. */
3866 reg->subreg_def = DEF_NOT_SUBREG;
3867 }
3868
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3869 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3870 enum reg_arg_type t)
3871 {
3872 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3873 struct bpf_reg_state *reg;
3874 bool rw64;
3875
3876 if (regno >= MAX_BPF_REG) {
3877 verbose(env, "R%d is invalid\n", regno);
3878 return -EINVAL;
3879 }
3880
3881 mark_reg_scratched(env, regno);
3882
3883 reg = ®s[regno];
3884 rw64 = is_reg64(insn, regno, reg, t);
3885 if (t == SRC_OP) {
3886 /* check whether register used as source operand can be read */
3887 if (reg->type == NOT_INIT) {
3888 verbose(env, "R%d !read_ok\n", regno);
3889 return -EACCES;
3890 }
3891 /* We don't need to worry about FP liveness because it's read-only */
3892 if (regno == BPF_REG_FP)
3893 return 0;
3894
3895 if (rw64)
3896 mark_insn_zext(env, reg);
3897
3898 return 0;
3899 } else {
3900 /* check whether register used as dest operand can be written to */
3901 if (regno == BPF_REG_FP) {
3902 verbose(env, "frame pointer is read only\n");
3903 return -EACCES;
3904 }
3905 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3906 if (t == DST_OP)
3907 mark_reg_unknown(env, regs, regno);
3908 }
3909 return 0;
3910 }
3911
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3912 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3913 enum reg_arg_type t)
3914 {
3915 struct bpf_verifier_state *vstate = env->cur_state;
3916 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3917
3918 return __check_reg_arg(env, state->regs, regno, t);
3919 }
3920
insn_stack_access_flags(int frameno,int spi)3921 static int insn_stack_access_flags(int frameno, int spi)
3922 {
3923 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3924 }
3925
insn_stack_access_spi(int insn_flags)3926 static int insn_stack_access_spi(int insn_flags)
3927 {
3928 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3929 }
3930
insn_stack_access_frameno(int insn_flags)3931 static int insn_stack_access_frameno(int insn_flags)
3932 {
3933 return insn_flags & INSN_F_FRAMENO_MASK;
3934 }
3935
mark_jmp_point(struct bpf_verifier_env * env,int idx)3936 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3937 {
3938 env->insn_aux_data[idx].jmp_point = true;
3939 }
3940
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3941 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3942 {
3943 return env->insn_aux_data[insn_idx].jmp_point;
3944 }
3945
3946 #define LR_FRAMENO_BITS 3
3947 #define LR_SPI_BITS 6
3948 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3949 #define LR_SIZE_BITS 4
3950 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1)
3951 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1)
3952 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1)
3953 #define LR_SPI_OFF LR_FRAMENO_BITS
3954 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS)
3955 #define LINKED_REGS_MAX 6
3956
3957 struct linked_reg {
3958 u8 frameno;
3959 union {
3960 u8 spi;
3961 u8 regno;
3962 };
3963 bool is_reg;
3964 };
3965
3966 struct linked_regs {
3967 int cnt;
3968 struct linked_reg entries[LINKED_REGS_MAX];
3969 };
3970
linked_regs_push(struct linked_regs * s)3971 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3972 {
3973 if (s->cnt < LINKED_REGS_MAX)
3974 return &s->entries[s->cnt++];
3975
3976 return NULL;
3977 }
3978
3979 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3980 * number of elements currently in stack.
3981 * Pack one history entry for linked registers as 10 bits in the following format:
3982 * - 3-bits frameno
3983 * - 6-bits spi_or_reg
3984 * - 1-bit is_reg
3985 */
linked_regs_pack(struct linked_regs * s)3986 static u64 linked_regs_pack(struct linked_regs *s)
3987 {
3988 u64 val = 0;
3989 int i;
3990
3991 for (i = 0; i < s->cnt; ++i) {
3992 struct linked_reg *e = &s->entries[i];
3993 u64 tmp = 0;
3994
3995 tmp |= e->frameno;
3996 tmp |= e->spi << LR_SPI_OFF;
3997 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3998
3999 val <<= LR_ENTRY_BITS;
4000 val |= tmp;
4001 }
4002 val <<= LR_SIZE_BITS;
4003 val |= s->cnt;
4004 return val;
4005 }
4006
linked_regs_unpack(u64 val,struct linked_regs * s)4007 static void linked_regs_unpack(u64 val, struct linked_regs *s)
4008 {
4009 int i;
4010
4011 s->cnt = val & LR_SIZE_MASK;
4012 val >>= LR_SIZE_BITS;
4013
4014 for (i = 0; i < s->cnt; ++i) {
4015 struct linked_reg *e = &s->entries[i];
4016
4017 e->frameno = val & LR_FRAMENO_MASK;
4018 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK;
4019 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1;
4020 val >>= LR_ENTRY_BITS;
4021 }
4022 }
4023
4024 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags,u64 linked_regs)4025 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
4026 int insn_flags, u64 linked_regs)
4027 {
4028 u32 cnt = cur->jmp_history_cnt;
4029 struct bpf_jmp_history_entry *p;
4030 size_t alloc_size;
4031
4032 /* combine instruction flags if we already recorded this instruction */
4033 if (env->cur_hist_ent) {
4034 /* atomic instructions push insn_flags twice, for READ and
4035 * WRITE sides, but they should agree on stack slot
4036 */
4037 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
4038 (env->cur_hist_ent->flags & insn_flags) != insn_flags,
4039 env, "insn history: insn_idx %d cur flags %x new flags %x",
4040 env->insn_idx, env->cur_hist_ent->flags, insn_flags);
4041 env->cur_hist_ent->flags |= insn_flags;
4042 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
4043 "insn history: insn_idx %d linked_regs: %#llx",
4044 env->insn_idx, env->cur_hist_ent->linked_regs);
4045 env->cur_hist_ent->linked_regs = linked_regs;
4046 return 0;
4047 }
4048
4049 cnt++;
4050 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
4051 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT);
4052 if (!p)
4053 return -ENOMEM;
4054 cur->jmp_history = p;
4055
4056 p = &cur->jmp_history[cnt - 1];
4057 p->idx = env->insn_idx;
4058 p->prev_idx = env->prev_insn_idx;
4059 p->flags = insn_flags;
4060 p->linked_regs = linked_regs;
4061 cur->jmp_history_cnt = cnt;
4062 env->cur_hist_ent = p;
4063
4064 return 0;
4065 }
4066
get_jmp_hist_entry(struct bpf_verifier_state * st,u32 hist_end,int insn_idx)4067 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
4068 u32 hist_end, int insn_idx)
4069 {
4070 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
4071 return &st->jmp_history[hist_end - 1];
4072 return NULL;
4073 }
4074
4075 /* Backtrack one insn at a time. If idx is not at the top of recorded
4076 * history then previous instruction came from straight line execution.
4077 * Return -ENOENT if we exhausted all instructions within given state.
4078 *
4079 * It's legal to have a bit of a looping with the same starting and ending
4080 * insn index within the same state, e.g.: 3->4->5->3, so just because current
4081 * instruction index is the same as state's first_idx doesn't mean we are
4082 * done. If there is still some jump history left, we should keep going. We
4083 * need to take into account that we might have a jump history between given
4084 * state's parent and itself, due to checkpointing. In this case, we'll have
4085 * history entry recording a jump from last instruction of parent state and
4086 * first instruction of given state.
4087 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)4088 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
4089 u32 *history)
4090 {
4091 u32 cnt = *history;
4092
4093 if (i == st->first_insn_idx) {
4094 if (cnt == 0)
4095 return -ENOENT;
4096 if (cnt == 1 && st->jmp_history[0].idx == i)
4097 return -ENOENT;
4098 }
4099
4100 if (cnt && st->jmp_history[cnt - 1].idx == i) {
4101 i = st->jmp_history[cnt - 1].prev_idx;
4102 (*history)--;
4103 } else {
4104 i--;
4105 }
4106 return i;
4107 }
4108
disasm_kfunc_name(void * data,const struct bpf_insn * insn)4109 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
4110 {
4111 const struct btf_type *func;
4112 struct btf *desc_btf;
4113
4114 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
4115 return NULL;
4116
4117 desc_btf = find_kfunc_desc_btf(data, insn->off);
4118 if (IS_ERR(desc_btf))
4119 return "<error>";
4120
4121 func = btf_type_by_id(desc_btf, insn->imm);
4122 return btf_name_by_offset(desc_btf, func->name_off);
4123 }
4124
verbose_insn(struct bpf_verifier_env * env,struct bpf_insn * insn)4125 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
4126 {
4127 const struct bpf_insn_cbs cbs = {
4128 .cb_call = disasm_kfunc_name,
4129 .cb_print = verbose,
4130 .private_data = env,
4131 };
4132
4133 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4134 }
4135
bt_init(struct backtrack_state * bt,u32 frame)4136 static inline void bt_init(struct backtrack_state *bt, u32 frame)
4137 {
4138 bt->frame = frame;
4139 }
4140
bt_reset(struct backtrack_state * bt)4141 static inline void bt_reset(struct backtrack_state *bt)
4142 {
4143 struct bpf_verifier_env *env = bt->env;
4144
4145 memset(bt, 0, sizeof(*bt));
4146 bt->env = env;
4147 }
4148
bt_empty(struct backtrack_state * bt)4149 static inline u32 bt_empty(struct backtrack_state *bt)
4150 {
4151 u64 mask = 0;
4152 int i;
4153
4154 for (i = 0; i <= bt->frame; i++)
4155 mask |= bt->reg_masks[i] | bt->stack_masks[i];
4156
4157 return mask == 0;
4158 }
4159
bt_subprog_enter(struct backtrack_state * bt)4160 static inline int bt_subprog_enter(struct backtrack_state *bt)
4161 {
4162 if (bt->frame == MAX_CALL_FRAMES - 1) {
4163 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
4164 return -EFAULT;
4165 }
4166 bt->frame++;
4167 return 0;
4168 }
4169
bt_subprog_exit(struct backtrack_state * bt)4170 static inline int bt_subprog_exit(struct backtrack_state *bt)
4171 {
4172 if (bt->frame == 0) {
4173 verifier_bug(bt->env, "subprog exit from frame 0");
4174 return -EFAULT;
4175 }
4176 bt->frame--;
4177 return 0;
4178 }
4179
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4180 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4181 {
4182 bt->reg_masks[frame] |= 1 << reg;
4183 }
4184
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4185 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4186 {
4187 bt->reg_masks[frame] &= ~(1 << reg);
4188 }
4189
bt_set_reg(struct backtrack_state * bt,u32 reg)4190 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
4191 {
4192 bt_set_frame_reg(bt, bt->frame, reg);
4193 }
4194
bt_clear_reg(struct backtrack_state * bt,u32 reg)4195 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
4196 {
4197 bt_clear_frame_reg(bt, bt->frame, reg);
4198 }
4199
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4200 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4201 {
4202 bt->stack_masks[frame] |= 1ull << slot;
4203 }
4204
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4205 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4206 {
4207 bt->stack_masks[frame] &= ~(1ull << slot);
4208 }
4209
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)4210 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
4211 {
4212 return bt->reg_masks[frame];
4213 }
4214
bt_reg_mask(struct backtrack_state * bt)4215 static inline u32 bt_reg_mask(struct backtrack_state *bt)
4216 {
4217 return bt->reg_masks[bt->frame];
4218 }
4219
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)4220 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
4221 {
4222 return bt->stack_masks[frame];
4223 }
4224
bt_stack_mask(struct backtrack_state * bt)4225 static inline u64 bt_stack_mask(struct backtrack_state *bt)
4226 {
4227 return bt->stack_masks[bt->frame];
4228 }
4229
bt_is_reg_set(struct backtrack_state * bt,u32 reg)4230 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
4231 {
4232 return bt->reg_masks[bt->frame] & (1 << reg);
4233 }
4234
bt_is_frame_reg_set(struct backtrack_state * bt,u32 frame,u32 reg)4235 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
4236 {
4237 return bt->reg_masks[frame] & (1 << reg);
4238 }
4239
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)4240 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
4241 {
4242 return bt->stack_masks[frame] & (1ull << slot);
4243 }
4244
4245 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)4246 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
4247 {
4248 DECLARE_BITMAP(mask, 64);
4249 bool first = true;
4250 int i, n;
4251
4252 buf[0] = '\0';
4253
4254 bitmap_from_u64(mask, reg_mask);
4255 for_each_set_bit(i, mask, 32) {
4256 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
4257 first = false;
4258 buf += n;
4259 buf_sz -= n;
4260 if (buf_sz < 0)
4261 break;
4262 }
4263 }
4264 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
bpf_fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)4265 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
4266 {
4267 DECLARE_BITMAP(mask, 64);
4268 bool first = true;
4269 int i, n;
4270
4271 buf[0] = '\0';
4272
4273 bitmap_from_u64(mask, stack_mask);
4274 for_each_set_bit(i, mask, 64) {
4275 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
4276 first = false;
4277 buf += n;
4278 buf_sz -= n;
4279 if (buf_sz < 0)
4280 break;
4281 }
4282 }
4283
4284 /* If any register R in hist->linked_regs is marked as precise in bt,
4285 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
4286 */
bt_sync_linked_regs(struct backtrack_state * bt,struct bpf_jmp_history_entry * hist)4287 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
4288 {
4289 struct linked_regs linked_regs;
4290 bool some_precise = false;
4291 int i;
4292
4293 if (!hist || hist->linked_regs == 0)
4294 return;
4295
4296 linked_regs_unpack(hist->linked_regs, &linked_regs);
4297 for (i = 0; i < linked_regs.cnt; ++i) {
4298 struct linked_reg *e = &linked_regs.entries[i];
4299
4300 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
4301 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
4302 some_precise = true;
4303 break;
4304 }
4305 }
4306
4307 if (!some_precise)
4308 return;
4309
4310 for (i = 0; i < linked_regs.cnt; ++i) {
4311 struct linked_reg *e = &linked_regs.entries[i];
4312
4313 if (e->is_reg)
4314 bt_set_frame_reg(bt, e->frameno, e->regno);
4315 else
4316 bt_set_frame_slot(bt, e->frameno, e->spi);
4317 }
4318 }
4319
4320 /* For given verifier state backtrack_insn() is called from the last insn to
4321 * the first insn. Its purpose is to compute a bitmask of registers and
4322 * stack slots that needs precision in the parent verifier state.
4323 *
4324 * @idx is an index of the instruction we are currently processing;
4325 * @subseq_idx is an index of the subsequent instruction that:
4326 * - *would be* executed next, if jump history is viewed in forward order;
4327 * - *was* processed previously during backtracking.
4328 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_jmp_history_entry * hist,struct backtrack_state * bt)4329 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
4330 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
4331 {
4332 struct bpf_insn *insn = env->prog->insnsi + idx;
4333 u8 class = BPF_CLASS(insn->code);
4334 u8 opcode = BPF_OP(insn->code);
4335 u8 mode = BPF_MODE(insn->code);
4336 u32 dreg = insn->dst_reg;
4337 u32 sreg = insn->src_reg;
4338 u32 spi, i, fr;
4339
4340 if (insn->code == 0)
4341 return 0;
4342 if (env->log.level & BPF_LOG_LEVEL2) {
4343 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
4344 verbose(env, "mark_precise: frame%d: regs=%s ",
4345 bt->frame, env->tmp_str_buf);
4346 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
4347 verbose(env, "stack=%s before ", env->tmp_str_buf);
4348 verbose(env, "%d: ", idx);
4349 verbose_insn(env, insn);
4350 }
4351
4352 /* If there is a history record that some registers gained range at this insn,
4353 * propagate precision marks to those registers, so that bt_is_reg_set()
4354 * accounts for these registers.
4355 */
4356 bt_sync_linked_regs(bt, hist);
4357
4358 if (class == BPF_ALU || class == BPF_ALU64) {
4359 if (!bt_is_reg_set(bt, dreg))
4360 return 0;
4361 if (opcode == BPF_END || opcode == BPF_NEG) {
4362 /* sreg is reserved and unused
4363 * dreg still need precision before this insn
4364 */
4365 return 0;
4366 } else if (opcode == BPF_MOV) {
4367 if (BPF_SRC(insn->code) == BPF_X) {
4368 /* dreg = sreg or dreg = (s8, s16, s32)sreg
4369 * dreg needs precision after this insn
4370 * sreg needs precision before this insn
4371 */
4372 bt_clear_reg(bt, dreg);
4373 if (sreg != BPF_REG_FP)
4374 bt_set_reg(bt, sreg);
4375 } else {
4376 /* dreg = K
4377 * dreg needs precision after this insn.
4378 * Corresponding register is already marked
4379 * as precise=true in this verifier state.
4380 * No further markings in parent are necessary
4381 */
4382 bt_clear_reg(bt, dreg);
4383 }
4384 } else {
4385 if (BPF_SRC(insn->code) == BPF_X) {
4386 /* dreg += sreg
4387 * both dreg and sreg need precision
4388 * before this insn
4389 */
4390 if (sreg != BPF_REG_FP)
4391 bt_set_reg(bt, sreg);
4392 } /* else dreg += K
4393 * dreg still needs precision before this insn
4394 */
4395 }
4396 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
4397 if (!bt_is_reg_set(bt, dreg))
4398 return 0;
4399 bt_clear_reg(bt, dreg);
4400
4401 /* scalars can only be spilled into stack w/o losing precision.
4402 * Load from any other memory can be zero extended.
4403 * The desire to keep that precision is already indicated
4404 * by 'precise' mark in corresponding register of this state.
4405 * No further tracking necessary.
4406 */
4407 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4408 return 0;
4409 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
4410 * that [fp - off] slot contains scalar that needs to be
4411 * tracked with precision
4412 */
4413 spi = insn_stack_access_spi(hist->flags);
4414 fr = insn_stack_access_frameno(hist->flags);
4415 bt_set_frame_slot(bt, fr, spi);
4416 } else if (class == BPF_STX || class == BPF_ST) {
4417 if (bt_is_reg_set(bt, dreg))
4418 /* stx & st shouldn't be using _scalar_ dst_reg
4419 * to access memory. It means backtracking
4420 * encountered a case of pointer subtraction.
4421 */
4422 return -ENOTSUPP;
4423 /* scalars can only be spilled into stack */
4424 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4425 return 0;
4426 spi = insn_stack_access_spi(hist->flags);
4427 fr = insn_stack_access_frameno(hist->flags);
4428 if (!bt_is_frame_slot_set(bt, fr, spi))
4429 return 0;
4430 bt_clear_frame_slot(bt, fr, spi);
4431 if (class == BPF_STX)
4432 bt_set_reg(bt, sreg);
4433 } else if (class == BPF_JMP || class == BPF_JMP32) {
4434 if (bpf_pseudo_call(insn)) {
4435 int subprog_insn_idx, subprog;
4436
4437 subprog_insn_idx = idx + insn->imm + 1;
4438 subprog = find_subprog(env, subprog_insn_idx);
4439 if (subprog < 0)
4440 return -EFAULT;
4441
4442 if (subprog_is_global(env, subprog)) {
4443 /* check that jump history doesn't have any
4444 * extra instructions from subprog; the next
4445 * instruction after call to global subprog
4446 * should be literally next instruction in
4447 * caller program
4448 */
4449 verifier_bug_if(idx + 1 != subseq_idx, env,
4450 "extra insn from subprog");
4451 /* r1-r5 are invalidated after subprog call,
4452 * so for global func call it shouldn't be set
4453 * anymore
4454 */
4455 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4456 verifier_bug(env, "global subprog unexpected regs %x",
4457 bt_reg_mask(bt));
4458 return -EFAULT;
4459 }
4460 /* global subprog always sets R0 */
4461 bt_clear_reg(bt, BPF_REG_0);
4462 return 0;
4463 } else {
4464 /* static subprog call instruction, which
4465 * means that we are exiting current subprog,
4466 * so only r1-r5 could be still requested as
4467 * precise, r0 and r6-r10 or any stack slot in
4468 * the current frame should be zero by now
4469 */
4470 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4471 verifier_bug(env, "static subprog unexpected regs %x",
4472 bt_reg_mask(bt));
4473 return -EFAULT;
4474 }
4475 /* we are now tracking register spills correctly,
4476 * so any instance of leftover slots is a bug
4477 */
4478 if (bt_stack_mask(bt) != 0) {
4479 verifier_bug(env,
4480 "static subprog leftover stack slots %llx",
4481 bt_stack_mask(bt));
4482 return -EFAULT;
4483 }
4484 /* propagate r1-r5 to the caller */
4485 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4486 if (bt_is_reg_set(bt, i)) {
4487 bt_clear_reg(bt, i);
4488 bt_set_frame_reg(bt, bt->frame - 1, i);
4489 }
4490 }
4491 if (bt_subprog_exit(bt))
4492 return -EFAULT;
4493 return 0;
4494 }
4495 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4496 /* exit from callback subprog to callback-calling helper or
4497 * kfunc call. Use idx/subseq_idx check to discern it from
4498 * straight line code backtracking.
4499 * Unlike the subprog call handling above, we shouldn't
4500 * propagate precision of r1-r5 (if any requested), as they are
4501 * not actually arguments passed directly to callback subprogs
4502 */
4503 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4504 verifier_bug(env, "callback unexpected regs %x",
4505 bt_reg_mask(bt));
4506 return -EFAULT;
4507 }
4508 if (bt_stack_mask(bt) != 0) {
4509 verifier_bug(env, "callback leftover stack slots %llx",
4510 bt_stack_mask(bt));
4511 return -EFAULT;
4512 }
4513 /* clear r1-r5 in callback subprog's mask */
4514 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4515 bt_clear_reg(bt, i);
4516 if (bt_subprog_exit(bt))
4517 return -EFAULT;
4518 return 0;
4519 } else if (opcode == BPF_CALL) {
4520 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
4521 * catch this error later. Make backtracking conservative
4522 * with ENOTSUPP.
4523 */
4524 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4525 return -ENOTSUPP;
4526 /* regular helper call sets R0 */
4527 bt_clear_reg(bt, BPF_REG_0);
4528 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4529 /* if backtracking was looking for registers R1-R5
4530 * they should have been found already.
4531 */
4532 verifier_bug(env, "backtracking call unexpected regs %x",
4533 bt_reg_mask(bt));
4534 return -EFAULT;
4535 }
4536 if (insn->src_reg == BPF_REG_0 && insn->imm == BPF_FUNC_tail_call
4537 && subseq_idx - idx != 1) {
4538 if (bt_subprog_enter(bt))
4539 return -EFAULT;
4540 }
4541 } else if (opcode == BPF_EXIT) {
4542 bool r0_precise;
4543
4544 /* Backtracking to a nested function call, 'idx' is a part of
4545 * the inner frame 'subseq_idx' is a part of the outer frame.
4546 * In case of a regular function call, instructions giving
4547 * precision to registers R1-R5 should have been found already.
4548 * In case of a callback, it is ok to have R1-R5 marked for
4549 * backtracking, as these registers are set by the function
4550 * invoking callback.
4551 */
4552 if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx))
4553 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4554 bt_clear_reg(bt, i);
4555 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4556 verifier_bug(env, "backtracking exit unexpected regs %x",
4557 bt_reg_mask(bt));
4558 return -EFAULT;
4559 }
4560
4561 /* BPF_EXIT in subprog or callback always returns
4562 * right after the call instruction, so by checking
4563 * whether the instruction at subseq_idx-1 is subprog
4564 * call or not we can distinguish actual exit from
4565 * *subprog* from exit from *callback*. In the former
4566 * case, we need to propagate r0 precision, if
4567 * necessary. In the former we never do that.
4568 */
4569 r0_precise = subseq_idx - 1 >= 0 &&
4570 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4571 bt_is_reg_set(bt, BPF_REG_0);
4572
4573 bt_clear_reg(bt, BPF_REG_0);
4574 if (bt_subprog_enter(bt))
4575 return -EFAULT;
4576
4577 if (r0_precise)
4578 bt_set_reg(bt, BPF_REG_0);
4579 /* r6-r9 and stack slots will stay set in caller frame
4580 * bitmasks until we return back from callee(s)
4581 */
4582 return 0;
4583 } else if (BPF_SRC(insn->code) == BPF_X) {
4584 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4585 return 0;
4586 /* dreg <cond> sreg
4587 * Both dreg and sreg need precision before
4588 * this insn. If only sreg was marked precise
4589 * before it would be equally necessary to
4590 * propagate it to dreg.
4591 */
4592 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
4593 bt_set_reg(bt, sreg);
4594 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
4595 bt_set_reg(bt, dreg);
4596 } else if (BPF_SRC(insn->code) == BPF_K) {
4597 /* dreg <cond> K
4598 * Only dreg still needs precision before
4599 * this insn, so for the K-based conditional
4600 * there is nothing new to be marked.
4601 */
4602 }
4603 } else if (class == BPF_LD) {
4604 if (!bt_is_reg_set(bt, dreg))
4605 return 0;
4606 bt_clear_reg(bt, dreg);
4607 /* It's ld_imm64 or ld_abs or ld_ind.
4608 * For ld_imm64 no further tracking of precision
4609 * into parent is necessary
4610 */
4611 if (mode == BPF_IND || mode == BPF_ABS)
4612 /* to be analyzed */
4613 return -ENOTSUPP;
4614 }
4615 /* Propagate precision marks to linked registers, to account for
4616 * registers marked as precise in this function.
4617 */
4618 bt_sync_linked_regs(bt, hist);
4619 return 0;
4620 }
4621
4622 /* the scalar precision tracking algorithm:
4623 * . at the start all registers have precise=false.
4624 * . scalar ranges are tracked as normal through alu and jmp insns.
4625 * . once precise value of the scalar register is used in:
4626 * . ptr + scalar alu
4627 * . if (scalar cond K|scalar)
4628 * . helper_call(.., scalar, ...) where ARG_CONST is expected
4629 * backtrack through the verifier states and mark all registers and
4630 * stack slots with spilled constants that these scalar registers
4631 * should be precise.
4632 * . during state pruning two registers (or spilled stack slots)
4633 * are equivalent if both are not precise.
4634 *
4635 * Note the verifier cannot simply walk register parentage chain,
4636 * since many different registers and stack slots could have been
4637 * used to compute single precise scalar.
4638 *
4639 * The approach of starting with precise=true for all registers and then
4640 * backtrack to mark a register as not precise when the verifier detects
4641 * that program doesn't care about specific value (e.g., when helper
4642 * takes register as ARG_ANYTHING parameter) is not safe.
4643 *
4644 * It's ok to walk single parentage chain of the verifier states.
4645 * It's possible that this backtracking will go all the way till 1st insn.
4646 * All other branches will be explored for needing precision later.
4647 *
4648 * The backtracking needs to deal with cases like:
4649 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4650 * r9 -= r8
4651 * r5 = r9
4652 * if r5 > 0x79f goto pc+7
4653 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4654 * r5 += 1
4655 * ...
4656 * call bpf_perf_event_output#25
4657 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4658 *
4659 * and this case:
4660 * r6 = 1
4661 * call foo // uses callee's r6 inside to compute r0
4662 * r0 += r6
4663 * if r0 == 0 goto
4664 *
4665 * to track above reg_mask/stack_mask needs to be independent for each frame.
4666 *
4667 * Also if parent's curframe > frame where backtracking started,
4668 * the verifier need to mark registers in both frames, otherwise callees
4669 * may incorrectly prune callers. This is similar to
4670 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4671 *
4672 * For now backtracking falls back into conservative marking.
4673 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4674 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4675 struct bpf_verifier_state *st)
4676 {
4677 struct bpf_func_state *func;
4678 struct bpf_reg_state *reg;
4679 int i, j;
4680
4681 if (env->log.level & BPF_LOG_LEVEL2) {
4682 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4683 st->curframe);
4684 }
4685
4686 /* big hammer: mark all scalars precise in this path.
4687 * pop_stack may still get !precise scalars.
4688 * We also skip current state and go straight to first parent state,
4689 * because precision markings in current non-checkpointed state are
4690 * not needed. See why in the comment in __mark_chain_precision below.
4691 */
4692 for (st = st->parent; st; st = st->parent) {
4693 for (i = 0; i <= st->curframe; i++) {
4694 func = st->frame[i];
4695 for (j = 0; j < BPF_REG_FP; j++) {
4696 reg = &func->regs[j];
4697 if (reg->type != SCALAR_VALUE || reg->precise)
4698 continue;
4699 reg->precise = true;
4700 if (env->log.level & BPF_LOG_LEVEL2) {
4701 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4702 i, j);
4703 }
4704 }
4705 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4706 if (!is_spilled_reg(&func->stack[j]))
4707 continue;
4708 reg = &func->stack[j].spilled_ptr;
4709 if (reg->type != SCALAR_VALUE || reg->precise)
4710 continue;
4711 reg->precise = true;
4712 if (env->log.level & BPF_LOG_LEVEL2) {
4713 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4714 i, -(j + 1) * 8);
4715 }
4716 }
4717 }
4718 }
4719 }
4720
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4721 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4722 {
4723 struct bpf_func_state *func;
4724 struct bpf_reg_state *reg;
4725 int i, j;
4726
4727 for (i = 0; i <= st->curframe; i++) {
4728 func = st->frame[i];
4729 for (j = 0; j < BPF_REG_FP; j++) {
4730 reg = &func->regs[j];
4731 if (reg->type != SCALAR_VALUE)
4732 continue;
4733 reg->precise = false;
4734 }
4735 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4736 if (!is_spilled_reg(&func->stack[j]))
4737 continue;
4738 reg = &func->stack[j].spilled_ptr;
4739 if (reg->type != SCALAR_VALUE)
4740 continue;
4741 reg->precise = false;
4742 }
4743 }
4744 }
4745
4746 /*
4747 * __mark_chain_precision() backtracks BPF program instruction sequence and
4748 * chain of verifier states making sure that register *regno* (if regno >= 0)
4749 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4750 * SCALARS, as well as any other registers and slots that contribute to
4751 * a tracked state of given registers/stack slots, depending on specific BPF
4752 * assembly instructions (see backtrack_insns() for exact instruction handling
4753 * logic). This backtracking relies on recorded jmp_history and is able to
4754 * traverse entire chain of parent states. This process ends only when all the
4755 * necessary registers/slots and their transitive dependencies are marked as
4756 * precise.
4757 *
4758 * One important and subtle aspect is that precise marks *do not matter* in
4759 * the currently verified state (current state). It is important to understand
4760 * why this is the case.
4761 *
4762 * First, note that current state is the state that is not yet "checkpointed",
4763 * i.e., it is not yet put into env->explored_states, and it has no children
4764 * states as well. It's ephemeral, and can end up either a) being discarded if
4765 * compatible explored state is found at some point or BPF_EXIT instruction is
4766 * reached or b) checkpointed and put into env->explored_states, branching out
4767 * into one or more children states.
4768 *
4769 * In the former case, precise markings in current state are completely
4770 * ignored by state comparison code (see regsafe() for details). Only
4771 * checkpointed ("old") state precise markings are important, and if old
4772 * state's register/slot is precise, regsafe() assumes current state's
4773 * register/slot as precise and checks value ranges exactly and precisely. If
4774 * states turn out to be compatible, current state's necessary precise
4775 * markings and any required parent states' precise markings are enforced
4776 * after the fact with propagate_precision() logic, after the fact. But it's
4777 * important to realize that in this case, even after marking current state
4778 * registers/slots as precise, we immediately discard current state. So what
4779 * actually matters is any of the precise markings propagated into current
4780 * state's parent states, which are always checkpointed (due to b) case above).
4781 * As such, for scenario a) it doesn't matter if current state has precise
4782 * markings set or not.
4783 *
4784 * Now, for the scenario b), checkpointing and forking into child(ren)
4785 * state(s). Note that before current state gets to checkpointing step, any
4786 * processed instruction always assumes precise SCALAR register/slot
4787 * knowledge: if precise value or range is useful to prune jump branch, BPF
4788 * verifier takes this opportunity enthusiastically. Similarly, when
4789 * register's value is used to calculate offset or memory address, exact
4790 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4791 * what we mentioned above about state comparison ignoring precise markings
4792 * during state comparison, BPF verifier ignores and also assumes precise
4793 * markings *at will* during instruction verification process. But as verifier
4794 * assumes precision, it also propagates any precision dependencies across
4795 * parent states, which are not yet finalized, so can be further restricted
4796 * based on new knowledge gained from restrictions enforced by their children
4797 * states. This is so that once those parent states are finalized, i.e., when
4798 * they have no more active children state, state comparison logic in
4799 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4800 * required for correctness.
4801 *
4802 * To build a bit more intuition, note also that once a state is checkpointed,
4803 * the path we took to get to that state is not important. This is crucial
4804 * property for state pruning. When state is checkpointed and finalized at
4805 * some instruction index, it can be correctly and safely used to "short
4806 * circuit" any *compatible* state that reaches exactly the same instruction
4807 * index. I.e., if we jumped to that instruction from a completely different
4808 * code path than original finalized state was derived from, it doesn't
4809 * matter, current state can be discarded because from that instruction
4810 * forward having a compatible state will ensure we will safely reach the
4811 * exit. States describe preconditions for further exploration, but completely
4812 * forget the history of how we got here.
4813 *
4814 * This also means that even if we needed precise SCALAR range to get to
4815 * finalized state, but from that point forward *that same* SCALAR register is
4816 * never used in a precise context (i.e., it's precise value is not needed for
4817 * correctness), it's correct and safe to mark such register as "imprecise"
4818 * (i.e., precise marking set to false). This is what we rely on when we do
4819 * not set precise marking in current state. If no child state requires
4820 * precision for any given SCALAR register, it's safe to dictate that it can
4821 * be imprecise. If any child state does require this register to be precise,
4822 * we'll mark it precise later retroactively during precise markings
4823 * propagation from child state to parent states.
4824 *
4825 * Skipping precise marking setting in current state is a mild version of
4826 * relying on the above observation. But we can utilize this property even
4827 * more aggressively by proactively forgetting any precise marking in the
4828 * current state (which we inherited from the parent state), right before we
4829 * checkpoint it and branch off into new child state. This is done by
4830 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4831 * finalized states which help in short circuiting more future states.
4832 */
__mark_chain_precision(struct bpf_verifier_env * env,struct bpf_verifier_state * starting_state,int regno,bool * changed)4833 static int __mark_chain_precision(struct bpf_verifier_env *env,
4834 struct bpf_verifier_state *starting_state,
4835 int regno,
4836 bool *changed)
4837 {
4838 struct bpf_verifier_state *st = starting_state;
4839 struct backtrack_state *bt = &env->bt;
4840 int first_idx = st->first_insn_idx;
4841 int last_idx = starting_state->insn_idx;
4842 int subseq_idx = -1;
4843 struct bpf_func_state *func;
4844 bool tmp, skip_first = true;
4845 struct bpf_reg_state *reg;
4846 int i, fr, err;
4847
4848 if (!env->bpf_capable)
4849 return 0;
4850
4851 changed = changed ?: &tmp;
4852 /* set frame number from which we are starting to backtrack */
4853 bt_init(bt, starting_state->curframe);
4854
4855 /* Do sanity checks against current state of register and/or stack
4856 * slot, but don't set precise flag in current state, as precision
4857 * tracking in the current state is unnecessary.
4858 */
4859 func = st->frame[bt->frame];
4860 if (regno >= 0) {
4861 reg = &func->regs[regno];
4862 if (reg->type != SCALAR_VALUE) {
4863 verifier_bug(env, "backtracking misuse");
4864 return -EFAULT;
4865 }
4866 bt_set_reg(bt, regno);
4867 }
4868
4869 if (bt_empty(bt))
4870 return 0;
4871
4872 for (;;) {
4873 DECLARE_BITMAP(mask, 64);
4874 u32 history = st->jmp_history_cnt;
4875 struct bpf_jmp_history_entry *hist;
4876
4877 if (env->log.level & BPF_LOG_LEVEL2) {
4878 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4879 bt->frame, last_idx, first_idx, subseq_idx);
4880 }
4881
4882 if (last_idx < 0) {
4883 /* we are at the entry into subprog, which
4884 * is expected for global funcs, but only if
4885 * requested precise registers are R1-R5
4886 * (which are global func's input arguments)
4887 */
4888 if (st->curframe == 0 &&
4889 st->frame[0]->subprogno > 0 &&
4890 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4891 bt_stack_mask(bt) == 0 &&
4892 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4893 bitmap_from_u64(mask, bt_reg_mask(bt));
4894 for_each_set_bit(i, mask, 32) {
4895 reg = &st->frame[0]->regs[i];
4896 bt_clear_reg(bt, i);
4897 if (reg->type == SCALAR_VALUE) {
4898 reg->precise = true;
4899 *changed = true;
4900 }
4901 }
4902 return 0;
4903 }
4904
4905 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
4906 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4907 return -EFAULT;
4908 }
4909
4910 for (i = last_idx;;) {
4911 if (skip_first) {
4912 err = 0;
4913 skip_first = false;
4914 } else {
4915 hist = get_jmp_hist_entry(st, history, i);
4916 err = backtrack_insn(env, i, subseq_idx, hist, bt);
4917 }
4918 if (err == -ENOTSUPP) {
4919 mark_all_scalars_precise(env, starting_state);
4920 bt_reset(bt);
4921 return 0;
4922 } else if (err) {
4923 return err;
4924 }
4925 if (bt_empty(bt))
4926 /* Found assignment(s) into tracked register in this state.
4927 * Since this state is already marked, just return.
4928 * Nothing to be tracked further in the parent state.
4929 */
4930 return 0;
4931 subseq_idx = i;
4932 i = get_prev_insn_idx(st, i, &history);
4933 if (i == -ENOENT)
4934 break;
4935 if (i >= env->prog->len) {
4936 /* This can happen if backtracking reached insn 0
4937 * and there are still reg_mask or stack_mask
4938 * to backtrack.
4939 * It means the backtracking missed the spot where
4940 * particular register was initialized with a constant.
4941 */
4942 verifier_bug(env, "backtracking idx %d", i);
4943 return -EFAULT;
4944 }
4945 }
4946 st = st->parent;
4947 if (!st)
4948 break;
4949
4950 for (fr = bt->frame; fr >= 0; fr--) {
4951 func = st->frame[fr];
4952 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4953 for_each_set_bit(i, mask, 32) {
4954 reg = &func->regs[i];
4955 if (reg->type != SCALAR_VALUE) {
4956 bt_clear_frame_reg(bt, fr, i);
4957 continue;
4958 }
4959 if (reg->precise) {
4960 bt_clear_frame_reg(bt, fr, i);
4961 } else {
4962 reg->precise = true;
4963 *changed = true;
4964 }
4965 }
4966
4967 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4968 for_each_set_bit(i, mask, 64) {
4969 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
4970 env, "stack slot %d, total slots %d",
4971 i, func->allocated_stack / BPF_REG_SIZE))
4972 return -EFAULT;
4973
4974 if (!is_spilled_scalar_reg(&func->stack[i])) {
4975 bt_clear_frame_slot(bt, fr, i);
4976 continue;
4977 }
4978 reg = &func->stack[i].spilled_ptr;
4979 if (reg->precise) {
4980 bt_clear_frame_slot(bt, fr, i);
4981 } else {
4982 reg->precise = true;
4983 *changed = true;
4984 }
4985 }
4986 if (env->log.level & BPF_LOG_LEVEL2) {
4987 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4988 bt_frame_reg_mask(bt, fr));
4989 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4990 fr, env->tmp_str_buf);
4991 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4992 bt_frame_stack_mask(bt, fr));
4993 verbose(env, "stack=%s: ", env->tmp_str_buf);
4994 print_verifier_state(env, st, fr, true);
4995 }
4996 }
4997
4998 if (bt_empty(bt))
4999 return 0;
5000
5001 subseq_idx = first_idx;
5002 last_idx = st->last_insn_idx;
5003 first_idx = st->first_insn_idx;
5004 }
5005
5006 /* if we still have requested precise regs or slots, we missed
5007 * something (e.g., stack access through non-r10 register), so
5008 * fallback to marking all precise
5009 */
5010 if (!bt_empty(bt)) {
5011 mark_all_scalars_precise(env, starting_state);
5012 bt_reset(bt);
5013 }
5014
5015 return 0;
5016 }
5017
mark_chain_precision(struct bpf_verifier_env * env,int regno)5018 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
5019 {
5020 return __mark_chain_precision(env, env->cur_state, regno, NULL);
5021 }
5022
5023 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
5024 * desired reg and stack masks across all relevant frames
5025 */
mark_chain_precision_batch(struct bpf_verifier_env * env,struct bpf_verifier_state * starting_state)5026 static int mark_chain_precision_batch(struct bpf_verifier_env *env,
5027 struct bpf_verifier_state *starting_state)
5028 {
5029 return __mark_chain_precision(env, starting_state, -1, NULL);
5030 }
5031
is_spillable_regtype(enum bpf_reg_type type)5032 static bool is_spillable_regtype(enum bpf_reg_type type)
5033 {
5034 switch (base_type(type)) {
5035 case PTR_TO_MAP_VALUE:
5036 case PTR_TO_STACK:
5037 case PTR_TO_CTX:
5038 case PTR_TO_PACKET:
5039 case PTR_TO_PACKET_META:
5040 case PTR_TO_PACKET_END:
5041 case PTR_TO_FLOW_KEYS:
5042 case CONST_PTR_TO_MAP:
5043 case PTR_TO_SOCKET:
5044 case PTR_TO_SOCK_COMMON:
5045 case PTR_TO_TCP_SOCK:
5046 case PTR_TO_XDP_SOCK:
5047 case PTR_TO_BTF_ID:
5048 case PTR_TO_BUF:
5049 case PTR_TO_MEM:
5050 case PTR_TO_FUNC:
5051 case PTR_TO_MAP_KEY:
5052 case PTR_TO_ARENA:
5053 return true;
5054 default:
5055 return false;
5056 }
5057 }
5058
5059 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)5060 static bool register_is_null(struct bpf_reg_state *reg)
5061 {
5062 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
5063 }
5064
5065 /* check if register is a constant scalar value */
is_reg_const(struct bpf_reg_state * reg,bool subreg32)5066 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
5067 {
5068 return reg->type == SCALAR_VALUE &&
5069 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
5070 }
5071
5072 /* assuming is_reg_const() is true, return constant value of a register */
reg_const_value(struct bpf_reg_state * reg,bool subreg32)5073 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
5074 {
5075 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
5076 }
5077
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)5078 static bool __is_pointer_value(bool allow_ptr_leaks,
5079 const struct bpf_reg_state *reg)
5080 {
5081 if (allow_ptr_leaks)
5082 return false;
5083
5084 return reg->type != SCALAR_VALUE;
5085 }
5086
assign_scalar_id_before_mov(struct bpf_verifier_env * env,struct bpf_reg_state * src_reg)5087 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
5088 struct bpf_reg_state *src_reg)
5089 {
5090 if (src_reg->type != SCALAR_VALUE)
5091 return;
5092
5093 if (src_reg->id & BPF_ADD_CONST) {
5094 /*
5095 * The verifier is processing rX = rY insn and
5096 * rY->id has special linked register already.
5097 * Cleared it, since multiple rX += const are not supported.
5098 */
5099 src_reg->id = 0;
5100 src_reg->off = 0;
5101 }
5102
5103 if (!src_reg->id && !tnum_is_const(src_reg->var_off))
5104 /* Ensure that src_reg has a valid ID that will be copied to
5105 * dst_reg and then will be used by sync_linked_regs() to
5106 * propagate min/max range.
5107 */
5108 src_reg->id = ++env->id_gen;
5109 }
5110
5111 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)5112 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
5113 {
5114 *dst = *src;
5115 }
5116
save_register_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)5117 static void save_register_state(struct bpf_verifier_env *env,
5118 struct bpf_func_state *state,
5119 int spi, struct bpf_reg_state *reg,
5120 int size)
5121 {
5122 int i;
5123
5124 copy_register_state(&state->stack[spi].spilled_ptr, reg);
5125
5126 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
5127 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
5128
5129 /* size < 8 bytes spill */
5130 for (; i; i--)
5131 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
5132 }
5133
is_bpf_st_mem(struct bpf_insn * insn)5134 static bool is_bpf_st_mem(struct bpf_insn *insn)
5135 {
5136 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
5137 }
5138
get_reg_width(struct bpf_reg_state * reg)5139 static int get_reg_width(struct bpf_reg_state *reg)
5140 {
5141 return fls64(reg->umax_value);
5142 }
5143
5144 /* See comment for mark_fastcall_pattern_for_call() */
check_fastcall_stack_contract(struct bpf_verifier_env * env,struct bpf_func_state * state,int insn_idx,int off)5145 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
5146 struct bpf_func_state *state, int insn_idx, int off)
5147 {
5148 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
5149 struct bpf_insn_aux_data *aux = env->insn_aux_data;
5150 int i;
5151
5152 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
5153 return;
5154 /* access to the region [max_stack_depth .. fastcall_stack_off)
5155 * from something that is not a part of the fastcall pattern,
5156 * disable fastcall rewrites for current subprogram by setting
5157 * fastcall_stack_off to a value smaller than any possible offset.
5158 */
5159 subprog->fastcall_stack_off = S16_MIN;
5160 /* reset fastcall aux flags within subprogram,
5161 * happens at most once per subprogram
5162 */
5163 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
5164 aux[i].fastcall_spills_num = 0;
5165 aux[i].fastcall_pattern = 0;
5166 }
5167 }
5168
5169 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
5170 * stack boundary and alignment are checked in check_mem_access()
5171 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)5172 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
5173 /* stack frame we're writing to */
5174 struct bpf_func_state *state,
5175 int off, int size, int value_regno,
5176 int insn_idx)
5177 {
5178 struct bpf_func_state *cur; /* state of the current function */
5179 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
5180 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5181 struct bpf_reg_state *reg = NULL;
5182 int insn_flags = insn_stack_access_flags(state->frameno, spi);
5183
5184 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
5185 * so it's aligned access and [off, off + size) are within stack limits
5186 */
5187 if (!env->allow_ptr_leaks &&
5188 is_spilled_reg(&state->stack[spi]) &&
5189 !is_spilled_scalar_reg(&state->stack[spi]) &&
5190 size != BPF_REG_SIZE) {
5191 verbose(env, "attempt to corrupt spilled pointer on stack\n");
5192 return -EACCES;
5193 }
5194
5195 cur = env->cur_state->frame[env->cur_state->curframe];
5196 if (value_regno >= 0)
5197 reg = &cur->regs[value_regno];
5198 if (!env->bypass_spec_v4) {
5199 bool sanitize = reg && is_spillable_regtype(reg->type);
5200
5201 for (i = 0; i < size; i++) {
5202 u8 type = state->stack[spi].slot_type[i];
5203
5204 if (type != STACK_MISC && type != STACK_ZERO) {
5205 sanitize = true;
5206 break;
5207 }
5208 }
5209
5210 if (sanitize)
5211 env->insn_aux_data[insn_idx].nospec_result = true;
5212 }
5213
5214 err = destroy_if_dynptr_stack_slot(env, state, spi);
5215 if (err)
5216 return err;
5217
5218 if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) {
5219 /* only mark the slot as written if all 8 bytes were written
5220 * otherwise read propagation may incorrectly stop too soon
5221 * when stack slots are partially written.
5222 * This heuristic means that read propagation will be
5223 * conservative, since it will add reg_live_read marks
5224 * to stack slots all the way to first state when programs
5225 * writes+reads less than 8 bytes
5226 */
5227 bpf_mark_stack_write(env, state->frameno, BIT(spi));
5228 }
5229
5230 check_fastcall_stack_contract(env, state, insn_idx, off);
5231 mark_stack_slot_scratched(env, spi);
5232 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
5233 bool reg_value_fits;
5234
5235 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
5236 /* Make sure that reg had an ID to build a relation on spill. */
5237 if (reg_value_fits)
5238 assign_scalar_id_before_mov(env, reg);
5239 save_register_state(env, state, spi, reg, size);
5240 /* Break the relation on a narrowing spill. */
5241 if (!reg_value_fits)
5242 state->stack[spi].spilled_ptr.id = 0;
5243 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
5244 env->bpf_capable) {
5245 struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
5246
5247 memset(tmp_reg, 0, sizeof(*tmp_reg));
5248 __mark_reg_known(tmp_reg, insn->imm);
5249 tmp_reg->type = SCALAR_VALUE;
5250 save_register_state(env, state, spi, tmp_reg, size);
5251 } else if (reg && is_spillable_regtype(reg->type)) {
5252 /* register containing pointer is being spilled into stack */
5253 if (size != BPF_REG_SIZE) {
5254 verbose_linfo(env, insn_idx, "; ");
5255 verbose(env, "invalid size of register spill\n");
5256 return -EACCES;
5257 }
5258 if (state != cur && reg->type == PTR_TO_STACK) {
5259 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
5260 return -EINVAL;
5261 }
5262 save_register_state(env, state, spi, reg, size);
5263 } else {
5264 u8 type = STACK_MISC;
5265
5266 /* regular write of data into stack destroys any spilled ptr */
5267 state->stack[spi].spilled_ptr.type = NOT_INIT;
5268 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
5269 if (is_stack_slot_special(&state->stack[spi]))
5270 for (i = 0; i < BPF_REG_SIZE; i++)
5271 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
5272
5273 /* when we zero initialize stack slots mark them as such */
5274 if ((reg && register_is_null(reg)) ||
5275 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
5276 /* STACK_ZERO case happened because register spill
5277 * wasn't properly aligned at the stack slot boundary,
5278 * so it's not a register spill anymore; force
5279 * originating register to be precise to make
5280 * STACK_ZERO correct for subsequent states
5281 */
5282 err = mark_chain_precision(env, value_regno);
5283 if (err)
5284 return err;
5285 type = STACK_ZERO;
5286 }
5287
5288 /* Mark slots affected by this stack write. */
5289 for (i = 0; i < size; i++)
5290 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
5291 insn_flags = 0; /* not a register spill */
5292 }
5293
5294 if (insn_flags)
5295 return push_jmp_history(env, env->cur_state, insn_flags, 0);
5296 return 0;
5297 }
5298
5299 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
5300 * known to contain a variable offset.
5301 * This function checks whether the write is permitted and conservatively
5302 * tracks the effects of the write, considering that each stack slot in the
5303 * dynamic range is potentially written to.
5304 *
5305 * 'off' includes 'regno->off'.
5306 * 'value_regno' can be -1, meaning that an unknown value is being written to
5307 * the stack.
5308 *
5309 * Spilled pointers in range are not marked as written because we don't know
5310 * what's going to be actually written. This means that read propagation for
5311 * future reads cannot be terminated by this write.
5312 *
5313 * For privileged programs, uninitialized stack slots are considered
5314 * initialized by this write (even though we don't know exactly what offsets
5315 * are going to be written to). The idea is that we don't want the verifier to
5316 * reject future reads that access slots written to through variable offsets.
5317 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)5318 static int check_stack_write_var_off(struct bpf_verifier_env *env,
5319 /* func where register points to */
5320 struct bpf_func_state *state,
5321 int ptr_regno, int off, int size,
5322 int value_regno, int insn_idx)
5323 {
5324 struct bpf_func_state *cur; /* state of the current function */
5325 int min_off, max_off;
5326 int i, err;
5327 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
5328 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5329 bool writing_zero = false;
5330 /* set if the fact that we're writing a zero is used to let any
5331 * stack slots remain STACK_ZERO
5332 */
5333 bool zero_used = false;
5334
5335 cur = env->cur_state->frame[env->cur_state->curframe];
5336 ptr_reg = &cur->regs[ptr_regno];
5337 min_off = ptr_reg->smin_value + off;
5338 max_off = ptr_reg->smax_value + off + size;
5339 if (value_regno >= 0)
5340 value_reg = &cur->regs[value_regno];
5341 if ((value_reg && register_is_null(value_reg)) ||
5342 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
5343 writing_zero = true;
5344
5345 for (i = min_off; i < max_off; i++) {
5346 int spi;
5347
5348 spi = __get_spi(i);
5349 err = destroy_if_dynptr_stack_slot(env, state, spi);
5350 if (err)
5351 return err;
5352 }
5353
5354 check_fastcall_stack_contract(env, state, insn_idx, min_off);
5355 /* Variable offset writes destroy any spilled pointers in range. */
5356 for (i = min_off; i < max_off; i++) {
5357 u8 new_type, *stype;
5358 int slot, spi;
5359
5360 slot = -i - 1;
5361 spi = slot / BPF_REG_SIZE;
5362 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5363 mark_stack_slot_scratched(env, spi);
5364
5365 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
5366 /* Reject the write if range we may write to has not
5367 * been initialized beforehand. If we didn't reject
5368 * here, the ptr status would be erased below (even
5369 * though not all slots are actually overwritten),
5370 * possibly opening the door to leaks.
5371 *
5372 * We do however catch STACK_INVALID case below, and
5373 * only allow reading possibly uninitialized memory
5374 * later for CAP_PERFMON, as the write may not happen to
5375 * that slot.
5376 */
5377 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
5378 insn_idx, i);
5379 return -EINVAL;
5380 }
5381
5382 /* If writing_zero and the spi slot contains a spill of value 0,
5383 * maintain the spill type.
5384 */
5385 if (writing_zero && *stype == STACK_SPILL &&
5386 is_spilled_scalar_reg(&state->stack[spi])) {
5387 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
5388
5389 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
5390 zero_used = true;
5391 continue;
5392 }
5393 }
5394
5395 /* Erase all other spilled pointers. */
5396 state->stack[spi].spilled_ptr.type = NOT_INIT;
5397
5398 /* Update the slot type. */
5399 new_type = STACK_MISC;
5400 if (writing_zero && *stype == STACK_ZERO) {
5401 new_type = STACK_ZERO;
5402 zero_used = true;
5403 }
5404 /* If the slot is STACK_INVALID, we check whether it's OK to
5405 * pretend that it will be initialized by this write. The slot
5406 * might not actually be written to, and so if we mark it as
5407 * initialized future reads might leak uninitialized memory.
5408 * For privileged programs, we will accept such reads to slots
5409 * that may or may not be written because, if we're reject
5410 * them, the error would be too confusing.
5411 */
5412 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
5413 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
5414 insn_idx, i);
5415 return -EINVAL;
5416 }
5417 *stype = new_type;
5418 }
5419 if (zero_used) {
5420 /* backtracking doesn't work for STACK_ZERO yet. */
5421 err = mark_chain_precision(env, value_regno);
5422 if (err)
5423 return err;
5424 }
5425 return 0;
5426 }
5427
5428 /* When register 'dst_regno' is assigned some values from stack[min_off,
5429 * max_off), we set the register's type according to the types of the
5430 * respective stack slots. If all the stack values are known to be zeros, then
5431 * so is the destination reg. Otherwise, the register is considered to be
5432 * SCALAR. This function does not deal with register filling; the caller must
5433 * ensure that all spilled registers in the stack range have been marked as
5434 * read.
5435 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)5436 static void mark_reg_stack_read(struct bpf_verifier_env *env,
5437 /* func where src register points to */
5438 struct bpf_func_state *ptr_state,
5439 int min_off, int max_off, int dst_regno)
5440 {
5441 struct bpf_verifier_state *vstate = env->cur_state;
5442 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5443 int i, slot, spi;
5444 u8 *stype;
5445 int zeros = 0;
5446
5447 for (i = min_off; i < max_off; i++) {
5448 slot = -i - 1;
5449 spi = slot / BPF_REG_SIZE;
5450 mark_stack_slot_scratched(env, spi);
5451 stype = ptr_state->stack[spi].slot_type;
5452 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
5453 break;
5454 zeros++;
5455 }
5456 if (zeros == max_off - min_off) {
5457 /* Any access_size read into register is zero extended,
5458 * so the whole register == const_zero.
5459 */
5460 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5461 } else {
5462 /* have read misc data from the stack */
5463 mark_reg_unknown(env, state->regs, dst_regno);
5464 }
5465 }
5466
5467 /* Read the stack at 'off' and put the results into the register indicated by
5468 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
5469 * spilled reg.
5470 *
5471 * 'dst_regno' can be -1, meaning that the read value is not going to a
5472 * register.
5473 *
5474 * The access is assumed to be within the current stack bounds.
5475 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)5476 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
5477 /* func where src register points to */
5478 struct bpf_func_state *reg_state,
5479 int off, int size, int dst_regno)
5480 {
5481 struct bpf_verifier_state *vstate = env->cur_state;
5482 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5483 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5484 struct bpf_reg_state *reg;
5485 u8 *stype, type;
5486 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5487 int err;
5488
5489 stype = reg_state->stack[spi].slot_type;
5490 reg = ®_state->stack[spi].spilled_ptr;
5491
5492 mark_stack_slot_scratched(env, spi);
5493 check_fastcall_stack_contract(env, state, env->insn_idx, off);
5494 err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi));
5495 if (err)
5496 return err;
5497
5498 if (is_spilled_reg(®_state->stack[spi])) {
5499 u8 spill_size = 1;
5500
5501 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5502 spill_size++;
5503
5504 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5505 if (reg->type != SCALAR_VALUE) {
5506 verbose_linfo(env, env->insn_idx, "; ");
5507 verbose(env, "invalid size of register fill\n");
5508 return -EACCES;
5509 }
5510
5511 if (dst_regno < 0)
5512 return 0;
5513
5514 if (size <= spill_size &&
5515 bpf_stack_narrow_access_ok(off, size, spill_size)) {
5516 /* The earlier check_reg_arg() has decided the
5517 * subreg_def for this insn. Save it first.
5518 */
5519 s32 subreg_def = state->regs[dst_regno].subreg_def;
5520
5521 if (env->bpf_capable && size == 4 && spill_size == 4 &&
5522 get_reg_width(reg) <= 32)
5523 /* Ensure stack slot has an ID to build a relation
5524 * with the destination register on fill.
5525 */
5526 assign_scalar_id_before_mov(env, reg);
5527 copy_register_state(&state->regs[dst_regno], reg);
5528 state->regs[dst_regno].subreg_def = subreg_def;
5529
5530 /* Break the relation on a narrowing fill.
5531 * coerce_reg_to_size will adjust the boundaries.
5532 */
5533 if (get_reg_width(reg) > size * BITS_PER_BYTE)
5534 state->regs[dst_regno].id = 0;
5535 } else {
5536 int spill_cnt = 0, zero_cnt = 0;
5537
5538 for (i = 0; i < size; i++) {
5539 type = stype[(slot - i) % BPF_REG_SIZE];
5540 if (type == STACK_SPILL) {
5541 spill_cnt++;
5542 continue;
5543 }
5544 if (type == STACK_MISC)
5545 continue;
5546 if (type == STACK_ZERO) {
5547 zero_cnt++;
5548 continue;
5549 }
5550 if (type == STACK_INVALID && env->allow_uninit_stack)
5551 continue;
5552 verbose(env, "invalid read from stack off %d+%d size %d\n",
5553 off, i, size);
5554 return -EACCES;
5555 }
5556
5557 if (spill_cnt == size &&
5558 tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5559 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5560 /* this IS register fill, so keep insn_flags */
5561 } else if (zero_cnt == size) {
5562 /* similarly to mark_reg_stack_read(), preserve zeroes */
5563 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5564 insn_flags = 0; /* not restoring original register state */
5565 } else {
5566 mark_reg_unknown(env, state->regs, dst_regno);
5567 insn_flags = 0; /* not restoring original register state */
5568 }
5569 }
5570 } else if (dst_regno >= 0) {
5571 /* restore register state from stack */
5572 if (env->bpf_capable)
5573 /* Ensure stack slot has an ID to build a relation
5574 * with the destination register on fill.
5575 */
5576 assign_scalar_id_before_mov(env, reg);
5577 copy_register_state(&state->regs[dst_regno], reg);
5578 /* mark reg as written since spilled pointer state likely
5579 * has its liveness marks cleared by is_state_visited()
5580 * which resets stack/reg liveness for state transitions
5581 */
5582 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5583 /* If dst_regno==-1, the caller is asking us whether
5584 * it is acceptable to use this value as a SCALAR_VALUE
5585 * (e.g. for XADD).
5586 * We must not allow unprivileged callers to do that
5587 * with spilled pointers.
5588 */
5589 verbose(env, "leaking pointer from stack off %d\n",
5590 off);
5591 return -EACCES;
5592 }
5593 } else {
5594 for (i = 0; i < size; i++) {
5595 type = stype[(slot - i) % BPF_REG_SIZE];
5596 if (type == STACK_MISC)
5597 continue;
5598 if (type == STACK_ZERO)
5599 continue;
5600 if (type == STACK_INVALID && env->allow_uninit_stack)
5601 continue;
5602 verbose(env, "invalid read from stack off %d+%d size %d\n",
5603 off, i, size);
5604 return -EACCES;
5605 }
5606 if (dst_regno >= 0)
5607 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5608 insn_flags = 0; /* we are not restoring spilled register */
5609 }
5610 if (insn_flags)
5611 return push_jmp_history(env, env->cur_state, insn_flags, 0);
5612 return 0;
5613 }
5614
5615 enum bpf_access_src {
5616 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
5617 ACCESS_HELPER = 2, /* the access is performed by a helper */
5618 };
5619
5620 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5621 int regno, int off, int access_size,
5622 bool zero_size_allowed,
5623 enum bpf_access_type type,
5624 struct bpf_call_arg_meta *meta);
5625
reg_state(struct bpf_verifier_env * env,int regno)5626 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5627 {
5628 return cur_regs(env) + regno;
5629 }
5630
5631 /* Read the stack at 'ptr_regno + off' and put the result into the register
5632 * 'dst_regno'.
5633 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5634 * but not its variable offset.
5635 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5636 *
5637 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5638 * filling registers (i.e. reads of spilled register cannot be detected when
5639 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5640 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5641 * offset; for a fixed offset check_stack_read_fixed_off should be used
5642 * instead.
5643 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5644 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5645 int ptr_regno, int off, int size, int dst_regno)
5646 {
5647 /* The state of the source register. */
5648 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5649 struct bpf_func_state *ptr_state = func(env, reg);
5650 int err;
5651 int min_off, max_off;
5652
5653 /* Note that we pass a NULL meta, so raw access will not be permitted.
5654 */
5655 err = check_stack_range_initialized(env, ptr_regno, off, size,
5656 false, BPF_READ, NULL);
5657 if (err)
5658 return err;
5659
5660 min_off = reg->smin_value + off;
5661 max_off = reg->smax_value + off;
5662 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5663 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5664 return 0;
5665 }
5666
5667 /* check_stack_read dispatches to check_stack_read_fixed_off or
5668 * check_stack_read_var_off.
5669 *
5670 * The caller must ensure that the offset falls within the allocated stack
5671 * bounds.
5672 *
5673 * 'dst_regno' is a register which will receive the value from the stack. It
5674 * can be -1, meaning that the read value is not going to a register.
5675 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5676 static int check_stack_read(struct bpf_verifier_env *env,
5677 int ptr_regno, int off, int size,
5678 int dst_regno)
5679 {
5680 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5681 struct bpf_func_state *state = func(env, reg);
5682 int err;
5683 /* Some accesses are only permitted with a static offset. */
5684 bool var_off = !tnum_is_const(reg->var_off);
5685
5686 /* The offset is required to be static when reads don't go to a
5687 * register, in order to not leak pointers (see
5688 * check_stack_read_fixed_off).
5689 */
5690 if (dst_regno < 0 && var_off) {
5691 char tn_buf[48];
5692
5693 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5694 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5695 tn_buf, off, size);
5696 return -EACCES;
5697 }
5698 /* Variable offset is prohibited for unprivileged mode for simplicity
5699 * since it requires corresponding support in Spectre masking for stack
5700 * ALU. See also retrieve_ptr_limit(). The check in
5701 * check_stack_access_for_ptr_arithmetic() called by
5702 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5703 * with variable offsets, therefore no check is required here. Further,
5704 * just checking it here would be insufficient as speculative stack
5705 * writes could still lead to unsafe speculative behaviour.
5706 */
5707 if (!var_off) {
5708 off += reg->var_off.value;
5709 err = check_stack_read_fixed_off(env, state, off, size,
5710 dst_regno);
5711 } else {
5712 /* Variable offset stack reads need more conservative handling
5713 * than fixed offset ones. Note that dst_regno >= 0 on this
5714 * branch.
5715 */
5716 err = check_stack_read_var_off(env, ptr_regno, off, size,
5717 dst_regno);
5718 }
5719 return err;
5720 }
5721
5722
5723 /* check_stack_write dispatches to check_stack_write_fixed_off or
5724 * check_stack_write_var_off.
5725 *
5726 * 'ptr_regno' is the register used as a pointer into the stack.
5727 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5728 * 'value_regno' is the register whose value we're writing to the stack. It can
5729 * be -1, meaning that we're not writing from a register.
5730 *
5731 * The caller must ensure that the offset falls within the maximum stack size.
5732 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5733 static int check_stack_write(struct bpf_verifier_env *env,
5734 int ptr_regno, int off, int size,
5735 int value_regno, int insn_idx)
5736 {
5737 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5738 struct bpf_func_state *state = func(env, reg);
5739 int err;
5740
5741 if (tnum_is_const(reg->var_off)) {
5742 off += reg->var_off.value;
5743 err = check_stack_write_fixed_off(env, state, off, size,
5744 value_regno, insn_idx);
5745 } else {
5746 /* Variable offset stack reads need more conservative handling
5747 * than fixed offset ones.
5748 */
5749 err = check_stack_write_var_off(env, state,
5750 ptr_regno, off, size,
5751 value_regno, insn_idx);
5752 }
5753 return err;
5754 }
5755
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5756 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5757 int off, int size, enum bpf_access_type type)
5758 {
5759 struct bpf_reg_state *reg = reg_state(env, regno);
5760 struct bpf_map *map = reg->map_ptr;
5761 u32 cap = bpf_map_flags_to_cap(map);
5762
5763 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5764 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5765 map->value_size, off, size);
5766 return -EACCES;
5767 }
5768
5769 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5770 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5771 map->value_size, off, size);
5772 return -EACCES;
5773 }
5774
5775 return 0;
5776 }
5777
5778 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5779 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5780 int off, int size, u32 mem_size,
5781 bool zero_size_allowed)
5782 {
5783 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5784 struct bpf_reg_state *reg;
5785
5786 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5787 return 0;
5788
5789 reg = &cur_regs(env)[regno];
5790 switch (reg->type) {
5791 case PTR_TO_MAP_KEY:
5792 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5793 mem_size, off, size);
5794 break;
5795 case PTR_TO_MAP_VALUE:
5796 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5797 mem_size, off, size);
5798 break;
5799 case PTR_TO_PACKET:
5800 case PTR_TO_PACKET_META:
5801 case PTR_TO_PACKET_END:
5802 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5803 off, size, regno, reg->id, off, mem_size);
5804 break;
5805 case PTR_TO_MEM:
5806 default:
5807 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5808 mem_size, off, size);
5809 }
5810
5811 return -EACCES;
5812 }
5813
5814 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5815 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5816 int off, int size, u32 mem_size,
5817 bool zero_size_allowed)
5818 {
5819 struct bpf_verifier_state *vstate = env->cur_state;
5820 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5821 struct bpf_reg_state *reg = &state->regs[regno];
5822 int err;
5823
5824 /* We may have adjusted the register pointing to memory region, so we
5825 * need to try adding each of min_value and max_value to off
5826 * to make sure our theoretical access will be safe.
5827 *
5828 * The minimum value is only important with signed
5829 * comparisons where we can't assume the floor of a
5830 * value is 0. If we are using signed variables for our
5831 * index'es we need to make sure that whatever we use
5832 * will have a set floor within our range.
5833 */
5834 if (reg->smin_value < 0 &&
5835 (reg->smin_value == S64_MIN ||
5836 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5837 reg->smin_value + off < 0)) {
5838 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5839 regno);
5840 return -EACCES;
5841 }
5842 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5843 mem_size, zero_size_allowed);
5844 if (err) {
5845 verbose(env, "R%d min value is outside of the allowed memory range\n",
5846 regno);
5847 return err;
5848 }
5849
5850 /* If we haven't set a max value then we need to bail since we can't be
5851 * sure we won't do bad things.
5852 * If reg->umax_value + off could overflow, treat that as unbounded too.
5853 */
5854 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5855 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5856 regno);
5857 return -EACCES;
5858 }
5859 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5860 mem_size, zero_size_allowed);
5861 if (err) {
5862 verbose(env, "R%d max value is outside of the allowed memory range\n",
5863 regno);
5864 return err;
5865 }
5866
5867 return 0;
5868 }
5869
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5870 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5871 const struct bpf_reg_state *reg, int regno,
5872 bool fixed_off_ok)
5873 {
5874 /* Access to this pointer-typed register or passing it to a helper
5875 * is only allowed in its original, unmodified form.
5876 */
5877
5878 if (reg->off < 0) {
5879 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5880 reg_type_str(env, reg->type), regno, reg->off);
5881 return -EACCES;
5882 }
5883
5884 if (!fixed_off_ok && reg->off) {
5885 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5886 reg_type_str(env, reg->type), regno, reg->off);
5887 return -EACCES;
5888 }
5889
5890 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5891 char tn_buf[48];
5892
5893 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5894 verbose(env, "variable %s access var_off=%s disallowed\n",
5895 reg_type_str(env, reg->type), tn_buf);
5896 return -EACCES;
5897 }
5898
5899 return 0;
5900 }
5901
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5902 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5903 const struct bpf_reg_state *reg, int regno)
5904 {
5905 return __check_ptr_off_reg(env, reg, regno, false);
5906 }
5907
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5908 static int map_kptr_match_type(struct bpf_verifier_env *env,
5909 struct btf_field *kptr_field,
5910 struct bpf_reg_state *reg, u32 regno)
5911 {
5912 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5913 int perm_flags;
5914 const char *reg_name = "";
5915
5916 if (btf_is_kernel(reg->btf)) {
5917 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5918
5919 /* Only unreferenced case accepts untrusted pointers */
5920 if (kptr_field->type == BPF_KPTR_UNREF)
5921 perm_flags |= PTR_UNTRUSTED;
5922 } else {
5923 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5924 if (kptr_field->type == BPF_KPTR_PERCPU)
5925 perm_flags |= MEM_PERCPU;
5926 }
5927
5928 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5929 goto bad_type;
5930
5931 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5932 reg_name = btf_type_name(reg->btf, reg->btf_id);
5933
5934 /* For ref_ptr case, release function check should ensure we get one
5935 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5936 * normal store of unreferenced kptr, we must ensure var_off is zero.
5937 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5938 * reg->off and reg->ref_obj_id are not needed here.
5939 */
5940 if (__check_ptr_off_reg(env, reg, regno, true))
5941 return -EACCES;
5942
5943 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5944 * we also need to take into account the reg->off.
5945 *
5946 * We want to support cases like:
5947 *
5948 * struct foo {
5949 * struct bar br;
5950 * struct baz bz;
5951 * };
5952 *
5953 * struct foo *v;
5954 * v = func(); // PTR_TO_BTF_ID
5955 * val->foo = v; // reg->off is zero, btf and btf_id match type
5956 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5957 * // first member type of struct after comparison fails
5958 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5959 * // to match type
5960 *
5961 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5962 * is zero. We must also ensure that btf_struct_ids_match does not walk
5963 * the struct to match type against first member of struct, i.e. reject
5964 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5965 * strict mode to true for type match.
5966 */
5967 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5968 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5969 kptr_field->type != BPF_KPTR_UNREF))
5970 goto bad_type;
5971 return 0;
5972 bad_type:
5973 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5974 reg_type_str(env, reg->type), reg_name);
5975 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5976 if (kptr_field->type == BPF_KPTR_UNREF)
5977 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5978 targ_name);
5979 else
5980 verbose(env, "\n");
5981 return -EINVAL;
5982 }
5983
in_sleepable(struct bpf_verifier_env * env)5984 static bool in_sleepable(struct bpf_verifier_env *env)
5985 {
5986 return env->cur_state->in_sleepable;
5987 }
5988
5989 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5990 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5991 */
in_rcu_cs(struct bpf_verifier_env * env)5992 static bool in_rcu_cs(struct bpf_verifier_env *env)
5993 {
5994 return env->cur_state->active_rcu_locks ||
5995 env->cur_state->active_locks ||
5996 !in_sleepable(env);
5997 }
5998
5999 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
6000 BTF_SET_START(rcu_protected_types)
6001 #ifdef CONFIG_NET
BTF_ID(struct,prog_test_ref_kfunc)6002 BTF_ID(struct, prog_test_ref_kfunc)
6003 #endif
6004 #ifdef CONFIG_CGROUPS
6005 BTF_ID(struct, cgroup)
6006 #endif
6007 #ifdef CONFIG_BPF_JIT
6008 BTF_ID(struct, bpf_cpumask)
6009 #endif
6010 BTF_ID(struct, task_struct)
6011 #ifdef CONFIG_CRYPTO
6012 BTF_ID(struct, bpf_crypto_ctx)
6013 #endif
6014 BTF_SET_END(rcu_protected_types)
6015
6016 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
6017 {
6018 if (!btf_is_kernel(btf))
6019 return true;
6020 return btf_id_set_contains(&rcu_protected_types, btf_id);
6021 }
6022
kptr_pointee_btf_record(struct btf_field * kptr_field)6023 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
6024 {
6025 struct btf_struct_meta *meta;
6026
6027 if (btf_is_kernel(kptr_field->kptr.btf))
6028 return NULL;
6029
6030 meta = btf_find_struct_meta(kptr_field->kptr.btf,
6031 kptr_field->kptr.btf_id);
6032
6033 return meta ? meta->record : NULL;
6034 }
6035
rcu_safe_kptr(const struct btf_field * field)6036 static bool rcu_safe_kptr(const struct btf_field *field)
6037 {
6038 const struct btf_field_kptr *kptr = &field->kptr;
6039
6040 return field->type == BPF_KPTR_PERCPU ||
6041 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
6042 }
6043
btf_ld_kptr_type(struct bpf_verifier_env * env,struct btf_field * kptr_field)6044 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
6045 {
6046 struct btf_record *rec;
6047 u32 ret;
6048
6049 ret = PTR_MAYBE_NULL;
6050 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
6051 ret |= MEM_RCU;
6052 if (kptr_field->type == BPF_KPTR_PERCPU)
6053 ret |= MEM_PERCPU;
6054 else if (!btf_is_kernel(kptr_field->kptr.btf))
6055 ret |= MEM_ALLOC;
6056
6057 rec = kptr_pointee_btf_record(kptr_field);
6058 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
6059 ret |= NON_OWN_REF;
6060 } else {
6061 ret |= PTR_UNTRUSTED;
6062 }
6063
6064 return ret;
6065 }
6066
mark_uptr_ld_reg(struct bpf_verifier_env * env,u32 regno,struct btf_field * field)6067 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
6068 struct btf_field *field)
6069 {
6070 struct bpf_reg_state *reg;
6071 const struct btf_type *t;
6072
6073 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
6074 mark_reg_known_zero(env, cur_regs(env), regno);
6075 reg = reg_state(env, regno);
6076 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6077 reg->mem_size = t->size;
6078 reg->id = ++env->id_gen;
6079
6080 return 0;
6081 }
6082
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)6083 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
6084 int value_regno, int insn_idx,
6085 struct btf_field *kptr_field)
6086 {
6087 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
6088 int class = BPF_CLASS(insn->code);
6089 struct bpf_reg_state *val_reg;
6090 int ret;
6091
6092 /* Things we already checked for in check_map_access and caller:
6093 * - Reject cases where variable offset may touch kptr
6094 * - size of access (must be BPF_DW)
6095 * - tnum_is_const(reg->var_off)
6096 * - kptr_field->offset == off + reg->var_off.value
6097 */
6098 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
6099 if (BPF_MODE(insn->code) != BPF_MEM) {
6100 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
6101 return -EACCES;
6102 }
6103
6104 /* We only allow loading referenced kptr, since it will be marked as
6105 * untrusted, similar to unreferenced kptr.
6106 */
6107 if (class != BPF_LDX &&
6108 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
6109 verbose(env, "store to referenced kptr disallowed\n");
6110 return -EACCES;
6111 }
6112 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
6113 verbose(env, "store to uptr disallowed\n");
6114 return -EACCES;
6115 }
6116
6117 if (class == BPF_LDX) {
6118 if (kptr_field->type == BPF_UPTR)
6119 return mark_uptr_ld_reg(env, value_regno, kptr_field);
6120
6121 /* We can simply mark the value_regno receiving the pointer
6122 * value from map as PTR_TO_BTF_ID, with the correct type.
6123 */
6124 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID,
6125 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
6126 btf_ld_kptr_type(env, kptr_field));
6127 if (ret < 0)
6128 return ret;
6129 } else if (class == BPF_STX) {
6130 val_reg = reg_state(env, value_regno);
6131 if (!register_is_null(val_reg) &&
6132 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
6133 return -EACCES;
6134 } else if (class == BPF_ST) {
6135 if (insn->imm) {
6136 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
6137 kptr_field->offset);
6138 return -EACCES;
6139 }
6140 } else {
6141 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
6142 return -EACCES;
6143 }
6144 return 0;
6145 }
6146
6147 /*
6148 * Return the size of the memory region accessible from a pointer to map value.
6149 * For INSN_ARRAY maps whole bpf_insn_array->ips array is accessible.
6150 */
map_mem_size(const struct bpf_map * map)6151 static u32 map_mem_size(const struct bpf_map *map)
6152 {
6153 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
6154 return map->max_entries * sizeof(long);
6155
6156 return map->value_size;
6157 }
6158
6159 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)6160 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
6161 int off, int size, bool zero_size_allowed,
6162 enum bpf_access_src src)
6163 {
6164 struct bpf_verifier_state *vstate = env->cur_state;
6165 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6166 struct bpf_reg_state *reg = &state->regs[regno];
6167 struct bpf_map *map = reg->map_ptr;
6168 u32 mem_size = map_mem_size(map);
6169 struct btf_record *rec;
6170 int err, i;
6171
6172 err = check_mem_region_access(env, regno, off, size, mem_size, zero_size_allowed);
6173 if (err)
6174 return err;
6175
6176 if (IS_ERR_OR_NULL(map->record))
6177 return 0;
6178 rec = map->record;
6179 for (i = 0; i < rec->cnt; i++) {
6180 struct btf_field *field = &rec->fields[i];
6181 u32 p = field->offset;
6182
6183 /* If any part of a field can be touched by load/store, reject
6184 * this program. To check that [x1, x2) overlaps with [y1, y2),
6185 * it is sufficient to check x1 < y2 && y1 < x2.
6186 */
6187 if (reg->smin_value + off < p + field->size &&
6188 p < reg->umax_value + off + size) {
6189 switch (field->type) {
6190 case BPF_KPTR_UNREF:
6191 case BPF_KPTR_REF:
6192 case BPF_KPTR_PERCPU:
6193 case BPF_UPTR:
6194 if (src != ACCESS_DIRECT) {
6195 verbose(env, "%s cannot be accessed indirectly by helper\n",
6196 btf_field_type_name(field->type));
6197 return -EACCES;
6198 }
6199 if (!tnum_is_const(reg->var_off)) {
6200 verbose(env, "%s access cannot have variable offset\n",
6201 btf_field_type_name(field->type));
6202 return -EACCES;
6203 }
6204 if (p != off + reg->var_off.value) {
6205 verbose(env, "%s access misaligned expected=%u off=%llu\n",
6206 btf_field_type_name(field->type),
6207 p, off + reg->var_off.value);
6208 return -EACCES;
6209 }
6210 if (size != bpf_size_to_bytes(BPF_DW)) {
6211 verbose(env, "%s access size must be BPF_DW\n",
6212 btf_field_type_name(field->type));
6213 return -EACCES;
6214 }
6215 break;
6216 default:
6217 verbose(env, "%s cannot be accessed directly by load/store\n",
6218 btf_field_type_name(field->type));
6219 return -EACCES;
6220 }
6221 }
6222 }
6223 return 0;
6224 }
6225
6226 #define MAX_PACKET_OFF 0xffff
6227
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)6228 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
6229 const struct bpf_call_arg_meta *meta,
6230 enum bpf_access_type t)
6231 {
6232 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6233
6234 switch (prog_type) {
6235 /* Program types only with direct read access go here! */
6236 case BPF_PROG_TYPE_LWT_IN:
6237 case BPF_PROG_TYPE_LWT_OUT:
6238 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
6239 case BPF_PROG_TYPE_SK_REUSEPORT:
6240 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6241 case BPF_PROG_TYPE_CGROUP_SKB:
6242 if (t == BPF_WRITE)
6243 return false;
6244 fallthrough;
6245
6246 /* Program types with direct read + write access go here! */
6247 case BPF_PROG_TYPE_SCHED_CLS:
6248 case BPF_PROG_TYPE_SCHED_ACT:
6249 case BPF_PROG_TYPE_XDP:
6250 case BPF_PROG_TYPE_LWT_XMIT:
6251 case BPF_PROG_TYPE_SK_SKB:
6252 case BPF_PROG_TYPE_SK_MSG:
6253 if (meta)
6254 return meta->pkt_access;
6255
6256 env->seen_direct_write = true;
6257 return true;
6258
6259 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6260 if (t == BPF_WRITE)
6261 env->seen_direct_write = true;
6262
6263 return true;
6264
6265 default:
6266 return false;
6267 }
6268 }
6269
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)6270 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
6271 int size, bool zero_size_allowed)
6272 {
6273 struct bpf_reg_state *reg = reg_state(env, regno);
6274 int err;
6275
6276 /* We may have added a variable offset to the packet pointer; but any
6277 * reg->range we have comes after that. We are only checking the fixed
6278 * offset.
6279 */
6280
6281 /* We don't allow negative numbers, because we aren't tracking enough
6282 * detail to prove they're safe.
6283 */
6284 if (reg->smin_value < 0) {
6285 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6286 regno);
6287 return -EACCES;
6288 }
6289
6290 err = reg->range < 0 ? -EINVAL :
6291 __check_mem_access(env, regno, off, size, reg->range,
6292 zero_size_allowed);
6293 if (err) {
6294 verbose(env, "R%d offset is outside of the packet\n", regno);
6295 return err;
6296 }
6297
6298 /* __check_mem_access has made sure "off + size - 1" is within u16.
6299 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
6300 * otherwise find_good_pkt_pointers would have refused to set range info
6301 * that __check_mem_access would have rejected this pkt access.
6302 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
6303 */
6304 env->prog->aux->max_pkt_offset =
6305 max_t(u32, env->prog->aux->max_pkt_offset,
6306 off + reg->umax_value + size - 1);
6307
6308 return err;
6309 }
6310
6311 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,struct bpf_insn_access_aux * info)6312 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
6313 enum bpf_access_type t, struct bpf_insn_access_aux *info)
6314 {
6315 if (env->ops->is_valid_access &&
6316 env->ops->is_valid_access(off, size, t, env->prog, info)) {
6317 /* A non zero info.ctx_field_size indicates that this field is a
6318 * candidate for later verifier transformation to load the whole
6319 * field and then apply a mask when accessed with a narrower
6320 * access than actual ctx access size. A zero info.ctx_field_size
6321 * will only allow for whole field access and rejects any other
6322 * type of narrower access.
6323 */
6324 if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
6325 if (info->ref_obj_id &&
6326 !find_reference_state(env->cur_state, info->ref_obj_id)) {
6327 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
6328 off);
6329 return -EACCES;
6330 }
6331 } else {
6332 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
6333 }
6334 /* remember the offset of last byte accessed in ctx */
6335 if (env->prog->aux->max_ctx_offset < off + size)
6336 env->prog->aux->max_ctx_offset = off + size;
6337 return 0;
6338 }
6339
6340 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
6341 return -EACCES;
6342 }
6343
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)6344 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
6345 int size)
6346 {
6347 if (size < 0 || off < 0 ||
6348 (u64)off + size > sizeof(struct bpf_flow_keys)) {
6349 verbose(env, "invalid access to flow keys off=%d size=%d\n",
6350 off, size);
6351 return -EACCES;
6352 }
6353 return 0;
6354 }
6355
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)6356 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
6357 u32 regno, int off, int size,
6358 enum bpf_access_type t)
6359 {
6360 struct bpf_reg_state *reg = reg_state(env, regno);
6361 struct bpf_insn_access_aux info = {};
6362 bool valid;
6363
6364 if (reg->smin_value < 0) {
6365 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6366 regno);
6367 return -EACCES;
6368 }
6369
6370 switch (reg->type) {
6371 case PTR_TO_SOCK_COMMON:
6372 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
6373 break;
6374 case PTR_TO_SOCKET:
6375 valid = bpf_sock_is_valid_access(off, size, t, &info);
6376 break;
6377 case PTR_TO_TCP_SOCK:
6378 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
6379 break;
6380 case PTR_TO_XDP_SOCK:
6381 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
6382 break;
6383 default:
6384 valid = false;
6385 }
6386
6387
6388 if (valid) {
6389 env->insn_aux_data[insn_idx].ctx_field_size =
6390 info.ctx_field_size;
6391 return 0;
6392 }
6393
6394 verbose(env, "R%d invalid %s access off=%d size=%d\n",
6395 regno, reg_type_str(env, reg->type), off, size);
6396
6397 return -EACCES;
6398 }
6399
is_pointer_value(struct bpf_verifier_env * env,int regno)6400 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
6401 {
6402 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
6403 }
6404
is_ctx_reg(struct bpf_verifier_env * env,int regno)6405 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
6406 {
6407 const struct bpf_reg_state *reg = reg_state(env, regno);
6408
6409 return reg->type == PTR_TO_CTX;
6410 }
6411
is_sk_reg(struct bpf_verifier_env * env,int regno)6412 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
6413 {
6414 const struct bpf_reg_state *reg = reg_state(env, regno);
6415
6416 return type_is_sk_pointer(reg->type);
6417 }
6418
is_pkt_reg(struct bpf_verifier_env * env,int regno)6419 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
6420 {
6421 const struct bpf_reg_state *reg = reg_state(env, regno);
6422
6423 return type_is_pkt_pointer(reg->type);
6424 }
6425
is_flow_key_reg(struct bpf_verifier_env * env,int regno)6426 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
6427 {
6428 const struct bpf_reg_state *reg = reg_state(env, regno);
6429
6430 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
6431 return reg->type == PTR_TO_FLOW_KEYS;
6432 }
6433
is_arena_reg(struct bpf_verifier_env * env,int regno)6434 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
6435 {
6436 const struct bpf_reg_state *reg = reg_state(env, regno);
6437
6438 return reg->type == PTR_TO_ARENA;
6439 }
6440
6441 /* Return false if @regno contains a pointer whose type isn't supported for
6442 * atomic instruction @insn.
6443 */
atomic_ptr_type_ok(struct bpf_verifier_env * env,int regno,struct bpf_insn * insn)6444 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
6445 struct bpf_insn *insn)
6446 {
6447 if (is_ctx_reg(env, regno))
6448 return false;
6449 if (is_pkt_reg(env, regno))
6450 return false;
6451 if (is_flow_key_reg(env, regno))
6452 return false;
6453 if (is_sk_reg(env, regno))
6454 return false;
6455 if (is_arena_reg(env, regno))
6456 return bpf_jit_supports_insn(insn, true);
6457
6458 return true;
6459 }
6460
6461 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6462 #ifdef CONFIG_NET
6463 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6464 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6465 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6466 #endif
6467 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
6468 };
6469
is_trusted_reg(const struct bpf_reg_state * reg)6470 static bool is_trusted_reg(const struct bpf_reg_state *reg)
6471 {
6472 /* A referenced register is always trusted. */
6473 if (reg->ref_obj_id)
6474 return true;
6475
6476 /* Types listed in the reg2btf_ids are always trusted */
6477 if (reg2btf_ids[base_type(reg->type)] &&
6478 !bpf_type_has_unsafe_modifiers(reg->type))
6479 return true;
6480
6481 /* If a register is not referenced, it is trusted if it has the
6482 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
6483 * other type modifiers may be safe, but we elect to take an opt-in
6484 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
6485 * not.
6486 *
6487 * Eventually, we should make PTR_TRUSTED the single source of truth
6488 * for whether a register is trusted.
6489 */
6490 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
6491 !bpf_type_has_unsafe_modifiers(reg->type);
6492 }
6493
is_rcu_reg(const struct bpf_reg_state * reg)6494 static bool is_rcu_reg(const struct bpf_reg_state *reg)
6495 {
6496 return reg->type & MEM_RCU;
6497 }
6498
clear_trusted_flags(enum bpf_type_flag * flag)6499 static void clear_trusted_flags(enum bpf_type_flag *flag)
6500 {
6501 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
6502 }
6503
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)6504 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
6505 const struct bpf_reg_state *reg,
6506 int off, int size, bool strict)
6507 {
6508 struct tnum reg_off;
6509 int ip_align;
6510
6511 /* Byte size accesses are always allowed. */
6512 if (!strict || size == 1)
6513 return 0;
6514
6515 /* For platforms that do not have a Kconfig enabling
6516 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
6517 * NET_IP_ALIGN is universally set to '2'. And on platforms
6518 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
6519 * to this code only in strict mode where we want to emulate
6520 * the NET_IP_ALIGN==2 checking. Therefore use an
6521 * unconditional IP align value of '2'.
6522 */
6523 ip_align = 2;
6524
6525 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6526 if (!tnum_is_aligned(reg_off, size)) {
6527 char tn_buf[48];
6528
6529 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6530 verbose(env,
6531 "misaligned packet access off %d+%s+%d+%d size %d\n",
6532 ip_align, tn_buf, reg->off, off, size);
6533 return -EACCES;
6534 }
6535
6536 return 0;
6537 }
6538
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)6539 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6540 const struct bpf_reg_state *reg,
6541 const char *pointer_desc,
6542 int off, int size, bool strict)
6543 {
6544 struct tnum reg_off;
6545
6546 /* Byte size accesses are always allowed. */
6547 if (!strict || size == 1)
6548 return 0;
6549
6550 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6551 if (!tnum_is_aligned(reg_off, size)) {
6552 char tn_buf[48];
6553
6554 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6555 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6556 pointer_desc, tn_buf, reg->off, off, size);
6557 return -EACCES;
6558 }
6559
6560 return 0;
6561 }
6562
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)6563 static int check_ptr_alignment(struct bpf_verifier_env *env,
6564 const struct bpf_reg_state *reg, int off,
6565 int size, bool strict_alignment_once)
6566 {
6567 bool strict = env->strict_alignment || strict_alignment_once;
6568 const char *pointer_desc = "";
6569
6570 switch (reg->type) {
6571 case PTR_TO_PACKET:
6572 case PTR_TO_PACKET_META:
6573 /* Special case, because of NET_IP_ALIGN. Given metadata sits
6574 * right in front, treat it the very same way.
6575 */
6576 return check_pkt_ptr_alignment(env, reg, off, size, strict);
6577 case PTR_TO_FLOW_KEYS:
6578 pointer_desc = "flow keys ";
6579 break;
6580 case PTR_TO_MAP_KEY:
6581 pointer_desc = "key ";
6582 break;
6583 case PTR_TO_MAP_VALUE:
6584 pointer_desc = "value ";
6585 if (reg->map_ptr->map_type == BPF_MAP_TYPE_INSN_ARRAY)
6586 strict = true;
6587 break;
6588 case PTR_TO_CTX:
6589 pointer_desc = "context ";
6590 break;
6591 case PTR_TO_STACK:
6592 pointer_desc = "stack ";
6593 /* The stack spill tracking logic in check_stack_write_fixed_off()
6594 * and check_stack_read_fixed_off() relies on stack accesses being
6595 * aligned.
6596 */
6597 strict = true;
6598 break;
6599 case PTR_TO_SOCKET:
6600 pointer_desc = "sock ";
6601 break;
6602 case PTR_TO_SOCK_COMMON:
6603 pointer_desc = "sock_common ";
6604 break;
6605 case PTR_TO_TCP_SOCK:
6606 pointer_desc = "tcp_sock ";
6607 break;
6608 case PTR_TO_XDP_SOCK:
6609 pointer_desc = "xdp_sock ";
6610 break;
6611 case PTR_TO_ARENA:
6612 return 0;
6613 default:
6614 break;
6615 }
6616 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6617 strict);
6618 }
6619
bpf_enable_priv_stack(struct bpf_prog * prog)6620 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6621 {
6622 if (!bpf_jit_supports_private_stack())
6623 return NO_PRIV_STACK;
6624
6625 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6626 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6627 * explicitly.
6628 */
6629 switch (prog->type) {
6630 case BPF_PROG_TYPE_KPROBE:
6631 case BPF_PROG_TYPE_TRACEPOINT:
6632 case BPF_PROG_TYPE_PERF_EVENT:
6633 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6634 return PRIV_STACK_ADAPTIVE;
6635 case BPF_PROG_TYPE_TRACING:
6636 case BPF_PROG_TYPE_LSM:
6637 case BPF_PROG_TYPE_STRUCT_OPS:
6638 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6639 return PRIV_STACK_ADAPTIVE;
6640 fallthrough;
6641 default:
6642 break;
6643 }
6644
6645 return NO_PRIV_STACK;
6646 }
6647
round_up_stack_depth(struct bpf_verifier_env * env,int stack_depth)6648 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6649 {
6650 if (env->prog->jit_requested)
6651 return round_up(stack_depth, 16);
6652
6653 /* round up to 32-bytes, since this is granularity
6654 * of interpreter stack size
6655 */
6656 return round_up(max_t(u32, stack_depth, 1), 32);
6657 }
6658
6659 /* starting from main bpf function walk all instructions of the function
6660 * and recursively walk all callees that given function can call.
6661 * Ignore jump and exit insns.
6662 * Since recursion is prevented by check_cfg() this algorithm
6663 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6664 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx,bool priv_stack_supported)6665 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6666 bool priv_stack_supported)
6667 {
6668 struct bpf_subprog_info *subprog = env->subprog_info;
6669 struct bpf_insn *insn = env->prog->insnsi;
6670 int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6671 bool tail_call_reachable = false;
6672 int ret_insn[MAX_CALL_FRAMES];
6673 int ret_prog[MAX_CALL_FRAMES];
6674 int j;
6675
6676 i = subprog[idx].start;
6677 if (!priv_stack_supported)
6678 subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6679 process_func:
6680 /* protect against potential stack overflow that might happen when
6681 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6682 * depth for such case down to 256 so that the worst case scenario
6683 * would result in 8k stack size (32 which is tailcall limit * 256 =
6684 * 8k).
6685 *
6686 * To get the idea what might happen, see an example:
6687 * func1 -> sub rsp, 128
6688 * subfunc1 -> sub rsp, 256
6689 * tailcall1 -> add rsp, 256
6690 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6691 * subfunc2 -> sub rsp, 64
6692 * subfunc22 -> sub rsp, 128
6693 * tailcall2 -> add rsp, 128
6694 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6695 *
6696 * tailcall will unwind the current stack frame but it will not get rid
6697 * of caller's stack as shown on the example above.
6698 */
6699 if (idx && subprog[idx].has_tail_call && depth >= 256) {
6700 verbose(env,
6701 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6702 depth);
6703 return -EACCES;
6704 }
6705
6706 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6707 if (priv_stack_supported) {
6708 /* Request private stack support only if the subprog stack
6709 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6710 * avoid jit penalty if the stack usage is small.
6711 */
6712 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6713 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6714 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6715 }
6716
6717 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6718 if (subprog_depth > MAX_BPF_STACK) {
6719 verbose(env, "stack size of subprog %d is %d. Too large\n",
6720 idx, subprog_depth);
6721 return -EACCES;
6722 }
6723 } else {
6724 depth += subprog_depth;
6725 if (depth > MAX_BPF_STACK) {
6726 verbose(env, "combined stack size of %d calls is %d. Too large\n",
6727 frame + 1, depth);
6728 return -EACCES;
6729 }
6730 }
6731 continue_func:
6732 subprog_end = subprog[idx + 1].start;
6733 for (; i < subprog_end; i++) {
6734 int next_insn, sidx;
6735
6736 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6737 bool err = false;
6738
6739 if (!is_bpf_throw_kfunc(insn + i))
6740 continue;
6741 if (subprog[idx].is_cb)
6742 err = true;
6743 for (int c = 0; c < frame && !err; c++) {
6744 if (subprog[ret_prog[c]].is_cb) {
6745 err = true;
6746 break;
6747 }
6748 }
6749 if (!err)
6750 continue;
6751 verbose(env,
6752 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6753 i, idx);
6754 return -EINVAL;
6755 }
6756
6757 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6758 continue;
6759 /* remember insn and function to return to */
6760 ret_insn[frame] = i + 1;
6761 ret_prog[frame] = idx;
6762
6763 /* find the callee */
6764 next_insn = i + insn[i].imm + 1;
6765 sidx = find_subprog(env, next_insn);
6766 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
6767 return -EFAULT;
6768 if (subprog[sidx].is_async_cb) {
6769 if (subprog[sidx].has_tail_call) {
6770 verifier_bug(env, "subprog has tail_call and async cb");
6771 return -EFAULT;
6772 }
6773 /* async callbacks don't increase bpf prog stack size unless called directly */
6774 if (!bpf_pseudo_call(insn + i))
6775 continue;
6776 if (subprog[sidx].is_exception_cb) {
6777 verbose(env, "insn %d cannot call exception cb directly", i);
6778 return -EINVAL;
6779 }
6780 }
6781 i = next_insn;
6782 idx = sidx;
6783 if (!priv_stack_supported)
6784 subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6785
6786 if (subprog[idx].has_tail_call)
6787 tail_call_reachable = true;
6788
6789 frame++;
6790 if (frame >= MAX_CALL_FRAMES) {
6791 verbose(env, "the call stack of %d frames is too deep !\n",
6792 frame);
6793 return -E2BIG;
6794 }
6795 goto process_func;
6796 }
6797 /* if tail call got detected across bpf2bpf calls then mark each of the
6798 * currently present subprog frames as tail call reachable subprogs;
6799 * this info will be utilized by JIT so that we will be preserving the
6800 * tail call counter throughout bpf2bpf calls combined with tailcalls
6801 */
6802 if (tail_call_reachable)
6803 for (j = 0; j < frame; j++) {
6804 if (subprog[ret_prog[j]].is_exception_cb) {
6805 verbose(env, "cannot tail call within exception cb\n");
6806 return -EINVAL;
6807 }
6808 subprog[ret_prog[j]].tail_call_reachable = true;
6809 }
6810 if (subprog[0].tail_call_reachable)
6811 env->prog->aux->tail_call_reachable = true;
6812
6813 /* end of for() loop means the last insn of the 'subprog'
6814 * was reached. Doesn't matter whether it was JA or EXIT
6815 */
6816 if (frame == 0)
6817 return 0;
6818 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6819 depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6820 frame--;
6821 i = ret_insn[frame];
6822 idx = ret_prog[frame];
6823 goto continue_func;
6824 }
6825
check_max_stack_depth(struct bpf_verifier_env * env)6826 static int check_max_stack_depth(struct bpf_verifier_env *env)
6827 {
6828 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6829 struct bpf_subprog_info *si = env->subprog_info;
6830 bool priv_stack_supported;
6831 int ret;
6832
6833 for (int i = 0; i < env->subprog_cnt; i++) {
6834 if (si[i].has_tail_call) {
6835 priv_stack_mode = NO_PRIV_STACK;
6836 break;
6837 }
6838 }
6839
6840 if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6841 priv_stack_mode = bpf_enable_priv_stack(env->prog);
6842
6843 /* All async_cb subprogs use normal kernel stack. If a particular
6844 * subprog appears in both main prog and async_cb subtree, that
6845 * subprog will use normal kernel stack to avoid potential nesting.
6846 * The reverse subprog traversal ensures when main prog subtree is
6847 * checked, the subprogs appearing in async_cb subtrees are already
6848 * marked as using normal kernel stack, so stack size checking can
6849 * be done properly.
6850 */
6851 for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6852 if (!i || si[i].is_async_cb) {
6853 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6854 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6855 if (ret < 0)
6856 return ret;
6857 }
6858 }
6859
6860 for (int i = 0; i < env->subprog_cnt; i++) {
6861 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6862 env->prog->aux->jits_use_priv_stack = true;
6863 break;
6864 }
6865 }
6866
6867 return 0;
6868 }
6869
6870 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)6871 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6872 const struct bpf_insn *insn, int idx)
6873 {
6874 int start = idx + insn->imm + 1, subprog;
6875
6876 subprog = find_subprog(env, start);
6877 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
6878 return -EFAULT;
6879 return env->subprog_info[subprog].stack_depth;
6880 }
6881 #endif
6882
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6883 static int __check_buffer_access(struct bpf_verifier_env *env,
6884 const char *buf_info,
6885 const struct bpf_reg_state *reg,
6886 int regno, int off, int size)
6887 {
6888 if (off < 0) {
6889 verbose(env,
6890 "R%d invalid %s buffer access: off=%d, size=%d\n",
6891 regno, buf_info, off, size);
6892 return -EACCES;
6893 }
6894 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6895 char tn_buf[48];
6896
6897 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6898 verbose(env,
6899 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6900 regno, off, tn_buf);
6901 return -EACCES;
6902 }
6903
6904 return 0;
6905 }
6906
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6907 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6908 const struct bpf_reg_state *reg,
6909 int regno, int off, int size)
6910 {
6911 int err;
6912
6913 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6914 if (err)
6915 return err;
6916
6917 if (off + size > env->prog->aux->max_tp_access)
6918 env->prog->aux->max_tp_access = off + size;
6919
6920 return 0;
6921 }
6922
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6923 static int check_buffer_access(struct bpf_verifier_env *env,
6924 const struct bpf_reg_state *reg,
6925 int regno, int off, int size,
6926 bool zero_size_allowed,
6927 u32 *max_access)
6928 {
6929 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6930 int err;
6931
6932 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6933 if (err)
6934 return err;
6935
6936 if (off + size > *max_access)
6937 *max_access = off + size;
6938
6939 return 0;
6940 }
6941
6942 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6943 static void zext_32_to_64(struct bpf_reg_state *reg)
6944 {
6945 reg->var_off = tnum_subreg(reg->var_off);
6946 __reg_assign_32_into_64(reg);
6947 }
6948
6949 /* truncate register to smaller size (in bytes)
6950 * must be called with size < BPF_REG_SIZE
6951 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6952 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6953 {
6954 u64 mask;
6955
6956 /* clear high bits in bit representation */
6957 reg->var_off = tnum_cast(reg->var_off, size);
6958
6959 /* fix arithmetic bounds */
6960 mask = ((u64)1 << (size * 8)) - 1;
6961 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6962 reg->umin_value &= mask;
6963 reg->umax_value &= mask;
6964 } else {
6965 reg->umin_value = 0;
6966 reg->umax_value = mask;
6967 }
6968 reg->smin_value = reg->umin_value;
6969 reg->smax_value = reg->umax_value;
6970
6971 /* If size is smaller than 32bit register the 32bit register
6972 * values are also truncated so we push 64-bit bounds into
6973 * 32-bit bounds. Above were truncated < 32-bits already.
6974 */
6975 if (size < 4)
6976 __mark_reg32_unbounded(reg);
6977
6978 reg_bounds_sync(reg);
6979 }
6980
set_sext64_default_val(struct bpf_reg_state * reg,int size)6981 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6982 {
6983 if (size == 1) {
6984 reg->smin_value = reg->s32_min_value = S8_MIN;
6985 reg->smax_value = reg->s32_max_value = S8_MAX;
6986 } else if (size == 2) {
6987 reg->smin_value = reg->s32_min_value = S16_MIN;
6988 reg->smax_value = reg->s32_max_value = S16_MAX;
6989 } else {
6990 /* size == 4 */
6991 reg->smin_value = reg->s32_min_value = S32_MIN;
6992 reg->smax_value = reg->s32_max_value = S32_MAX;
6993 }
6994 reg->umin_value = reg->u32_min_value = 0;
6995 reg->umax_value = U64_MAX;
6996 reg->u32_max_value = U32_MAX;
6997 reg->var_off = tnum_unknown;
6998 }
6999
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)7000 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
7001 {
7002 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
7003 u64 top_smax_value, top_smin_value;
7004 u64 num_bits = size * 8;
7005
7006 if (tnum_is_const(reg->var_off)) {
7007 u64_cval = reg->var_off.value;
7008 if (size == 1)
7009 reg->var_off = tnum_const((s8)u64_cval);
7010 else if (size == 2)
7011 reg->var_off = tnum_const((s16)u64_cval);
7012 else
7013 /* size == 4 */
7014 reg->var_off = tnum_const((s32)u64_cval);
7015
7016 u64_cval = reg->var_off.value;
7017 reg->smax_value = reg->smin_value = u64_cval;
7018 reg->umax_value = reg->umin_value = u64_cval;
7019 reg->s32_max_value = reg->s32_min_value = u64_cval;
7020 reg->u32_max_value = reg->u32_min_value = u64_cval;
7021 return;
7022 }
7023
7024 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
7025 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
7026
7027 if (top_smax_value != top_smin_value)
7028 goto out;
7029
7030 /* find the s64_min and s64_min after sign extension */
7031 if (size == 1) {
7032 init_s64_max = (s8)reg->smax_value;
7033 init_s64_min = (s8)reg->smin_value;
7034 } else if (size == 2) {
7035 init_s64_max = (s16)reg->smax_value;
7036 init_s64_min = (s16)reg->smin_value;
7037 } else {
7038 init_s64_max = (s32)reg->smax_value;
7039 init_s64_min = (s32)reg->smin_value;
7040 }
7041
7042 s64_max = max(init_s64_max, init_s64_min);
7043 s64_min = min(init_s64_max, init_s64_min);
7044
7045 /* both of s64_max/s64_min positive or negative */
7046 if ((s64_max >= 0) == (s64_min >= 0)) {
7047 reg->s32_min_value = reg->smin_value = s64_min;
7048 reg->s32_max_value = reg->smax_value = s64_max;
7049 reg->u32_min_value = reg->umin_value = s64_min;
7050 reg->u32_max_value = reg->umax_value = s64_max;
7051 reg->var_off = tnum_range(s64_min, s64_max);
7052 return;
7053 }
7054
7055 out:
7056 set_sext64_default_val(reg, size);
7057 }
7058
set_sext32_default_val(struct bpf_reg_state * reg,int size)7059 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
7060 {
7061 if (size == 1) {
7062 reg->s32_min_value = S8_MIN;
7063 reg->s32_max_value = S8_MAX;
7064 } else {
7065 /* size == 2 */
7066 reg->s32_min_value = S16_MIN;
7067 reg->s32_max_value = S16_MAX;
7068 }
7069 reg->u32_min_value = 0;
7070 reg->u32_max_value = U32_MAX;
7071 reg->var_off = tnum_subreg(tnum_unknown);
7072 }
7073
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)7074 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
7075 {
7076 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
7077 u32 top_smax_value, top_smin_value;
7078 u32 num_bits = size * 8;
7079
7080 if (tnum_is_const(reg->var_off)) {
7081 u32_val = reg->var_off.value;
7082 if (size == 1)
7083 reg->var_off = tnum_const((s8)u32_val);
7084 else
7085 reg->var_off = tnum_const((s16)u32_val);
7086
7087 u32_val = reg->var_off.value;
7088 reg->s32_min_value = reg->s32_max_value = u32_val;
7089 reg->u32_min_value = reg->u32_max_value = u32_val;
7090 return;
7091 }
7092
7093 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
7094 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
7095
7096 if (top_smax_value != top_smin_value)
7097 goto out;
7098
7099 /* find the s32_min and s32_min after sign extension */
7100 if (size == 1) {
7101 init_s32_max = (s8)reg->s32_max_value;
7102 init_s32_min = (s8)reg->s32_min_value;
7103 } else {
7104 /* size == 2 */
7105 init_s32_max = (s16)reg->s32_max_value;
7106 init_s32_min = (s16)reg->s32_min_value;
7107 }
7108 s32_max = max(init_s32_max, init_s32_min);
7109 s32_min = min(init_s32_max, init_s32_min);
7110
7111 if ((s32_min >= 0) == (s32_max >= 0)) {
7112 reg->s32_min_value = s32_min;
7113 reg->s32_max_value = s32_max;
7114 reg->u32_min_value = (u32)s32_min;
7115 reg->u32_max_value = (u32)s32_max;
7116 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
7117 return;
7118 }
7119
7120 out:
7121 set_sext32_default_val(reg, size);
7122 }
7123
bpf_map_is_rdonly(const struct bpf_map * map)7124 static bool bpf_map_is_rdonly(const struct bpf_map *map)
7125 {
7126 /* A map is considered read-only if the following condition are true:
7127 *
7128 * 1) BPF program side cannot change any of the map content. The
7129 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
7130 * and was set at map creation time.
7131 * 2) The map value(s) have been initialized from user space by a
7132 * loader and then "frozen", such that no new map update/delete
7133 * operations from syscall side are possible for the rest of
7134 * the map's lifetime from that point onwards.
7135 * 3) Any parallel/pending map update/delete operations from syscall
7136 * side have been completed. Only after that point, it's safe to
7137 * assume that map value(s) are immutable.
7138 */
7139 return (map->map_flags & BPF_F_RDONLY_PROG) &&
7140 READ_ONCE(map->frozen) &&
7141 !bpf_map_write_active(map);
7142 }
7143
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)7144 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
7145 bool is_ldsx)
7146 {
7147 void *ptr;
7148 u64 addr;
7149 int err;
7150
7151 err = map->ops->map_direct_value_addr(map, &addr, off);
7152 if (err)
7153 return err;
7154 ptr = (void *)(long)addr + off;
7155
7156 switch (size) {
7157 case sizeof(u8):
7158 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
7159 break;
7160 case sizeof(u16):
7161 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
7162 break;
7163 case sizeof(u32):
7164 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
7165 break;
7166 case sizeof(u64):
7167 *val = *(u64 *)ptr;
7168 break;
7169 default:
7170 return -EINVAL;
7171 }
7172 return 0;
7173 }
7174
7175 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
7176 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
7177 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
7178 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
7179
7180 /*
7181 * Allow list few fields as RCU trusted or full trusted.
7182 * This logic doesn't allow mix tagging and will be removed once GCC supports
7183 * btf_type_tag.
7184 */
7185
7186 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)7187 BTF_TYPE_SAFE_RCU(struct task_struct) {
7188 const cpumask_t *cpus_ptr;
7189 struct css_set __rcu *cgroups;
7190 struct task_struct __rcu *real_parent;
7191 struct task_struct *group_leader;
7192 };
7193
BTF_TYPE_SAFE_RCU(struct cgroup)7194 BTF_TYPE_SAFE_RCU(struct cgroup) {
7195 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
7196 struct kernfs_node *kn;
7197 };
7198
BTF_TYPE_SAFE_RCU(struct css_set)7199 BTF_TYPE_SAFE_RCU(struct css_set) {
7200 struct cgroup *dfl_cgrp;
7201 };
7202
BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)7203 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) {
7204 struct cgroup *cgroup;
7205 };
7206
7207 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)7208 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
7209 struct file __rcu *exe_file;
7210 #ifdef CONFIG_MEMCG
7211 struct task_struct __rcu *owner;
7212 #endif
7213 };
7214
7215 /* skb->sk, req->sk are not RCU protected, but we mark them as such
7216 * because bpf prog accessible sockets are SOCK_RCU_FREE.
7217 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)7218 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
7219 struct sock *sk;
7220 };
7221
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)7222 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
7223 struct sock *sk;
7224 };
7225
7226 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)7227 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
7228 struct seq_file *seq;
7229 };
7230
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)7231 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
7232 struct bpf_iter_meta *meta;
7233 struct task_struct *task;
7234 };
7235
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)7236 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
7237 struct file *file;
7238 };
7239
BTF_TYPE_SAFE_TRUSTED(struct file)7240 BTF_TYPE_SAFE_TRUSTED(struct file) {
7241 struct inode *f_inode;
7242 };
7243
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)7244 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
7245 struct inode *d_inode;
7246 };
7247
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)7248 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
7249 struct sock *sk;
7250 };
7251
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct)7252 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct) {
7253 struct mm_struct *vm_mm;
7254 struct file *vm_file;
7255 };
7256
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7257 static bool type_is_rcu(struct bpf_verifier_env *env,
7258 struct bpf_reg_state *reg,
7259 const char *field_name, u32 btf_id)
7260 {
7261 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
7262 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
7263 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
7264 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state));
7265
7266 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
7267 }
7268
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7269 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
7270 struct bpf_reg_state *reg,
7271 const char *field_name, u32 btf_id)
7272 {
7273 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
7274 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
7275 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
7276
7277 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
7278 }
7279
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7280 static bool type_is_trusted(struct bpf_verifier_env *env,
7281 struct bpf_reg_state *reg,
7282 const char *field_name, u32 btf_id)
7283 {
7284 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
7285 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
7286 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
7287 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
7288
7289 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
7290 }
7291
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7292 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
7293 struct bpf_reg_state *reg,
7294 const char *field_name, u32 btf_id)
7295 {
7296 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
7297 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
7298 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct));
7299
7300 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
7301 "__safe_trusted_or_null");
7302 }
7303
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7304 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
7305 struct bpf_reg_state *regs,
7306 int regno, int off, int size,
7307 enum bpf_access_type atype,
7308 int value_regno)
7309 {
7310 struct bpf_reg_state *reg = regs + regno;
7311 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
7312 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
7313 const char *field_name = NULL;
7314 enum bpf_type_flag flag = 0;
7315 u32 btf_id = 0;
7316 int ret;
7317
7318 if (!env->allow_ptr_leaks) {
7319 verbose(env,
7320 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7321 tname);
7322 return -EPERM;
7323 }
7324 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
7325 verbose(env,
7326 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
7327 tname);
7328 return -EINVAL;
7329 }
7330 if (off < 0) {
7331 verbose(env,
7332 "R%d is ptr_%s invalid negative access: off=%d\n",
7333 regno, tname, off);
7334 return -EACCES;
7335 }
7336 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
7337 char tn_buf[48];
7338
7339 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7340 verbose(env,
7341 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
7342 regno, tname, off, tn_buf);
7343 return -EACCES;
7344 }
7345
7346 if (reg->type & MEM_USER) {
7347 verbose(env,
7348 "R%d is ptr_%s access user memory: off=%d\n",
7349 regno, tname, off);
7350 return -EACCES;
7351 }
7352
7353 if (reg->type & MEM_PERCPU) {
7354 verbose(env,
7355 "R%d is ptr_%s access percpu memory: off=%d\n",
7356 regno, tname, off);
7357 return -EACCES;
7358 }
7359
7360 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
7361 if (!btf_is_kernel(reg->btf)) {
7362 verifier_bug(env, "reg->btf must be kernel btf");
7363 return -EFAULT;
7364 }
7365 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
7366 } else {
7367 /* Writes are permitted with default btf_struct_access for
7368 * program allocated objects (which always have ref_obj_id > 0),
7369 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
7370 */
7371 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
7372 verbose(env, "only read is supported\n");
7373 return -EACCES;
7374 }
7375
7376 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
7377 !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
7378 verifier_bug(env, "ref_obj_id for allocated object must be non-zero");
7379 return -EFAULT;
7380 }
7381
7382 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
7383 }
7384
7385 if (ret < 0)
7386 return ret;
7387
7388 if (ret != PTR_TO_BTF_ID) {
7389 /* just mark; */
7390
7391 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
7392 /* If this is an untrusted pointer, all pointers formed by walking it
7393 * also inherit the untrusted flag.
7394 */
7395 flag = PTR_UNTRUSTED;
7396
7397 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
7398 /* By default any pointer obtained from walking a trusted pointer is no
7399 * longer trusted, unless the field being accessed has explicitly been
7400 * marked as inheriting its parent's state of trust (either full or RCU).
7401 * For example:
7402 * 'cgroups' pointer is untrusted if task->cgroups dereference
7403 * happened in a sleepable program outside of bpf_rcu_read_lock()
7404 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
7405 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
7406 *
7407 * A regular RCU-protected pointer with __rcu tag can also be deemed
7408 * trusted if we are in an RCU CS. Such pointer can be NULL.
7409 */
7410 if (type_is_trusted(env, reg, field_name, btf_id)) {
7411 flag |= PTR_TRUSTED;
7412 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
7413 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
7414 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
7415 if (type_is_rcu(env, reg, field_name, btf_id)) {
7416 /* ignore __rcu tag and mark it MEM_RCU */
7417 flag |= MEM_RCU;
7418 } else if (flag & MEM_RCU ||
7419 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
7420 /* __rcu tagged pointers can be NULL */
7421 flag |= MEM_RCU | PTR_MAYBE_NULL;
7422
7423 /* We always trust them */
7424 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
7425 flag & PTR_UNTRUSTED)
7426 flag &= ~PTR_UNTRUSTED;
7427 } else if (flag & (MEM_PERCPU | MEM_USER)) {
7428 /* keep as-is */
7429 } else {
7430 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
7431 clear_trusted_flags(&flag);
7432 }
7433 } else {
7434 /*
7435 * If not in RCU CS or MEM_RCU pointer can be NULL then
7436 * aggressively mark as untrusted otherwise such
7437 * pointers will be plain PTR_TO_BTF_ID without flags
7438 * and will be allowed to be passed into helpers for
7439 * compat reasons.
7440 */
7441 flag = PTR_UNTRUSTED;
7442 }
7443 } else {
7444 /* Old compat. Deprecated */
7445 clear_trusted_flags(&flag);
7446 }
7447
7448 if (atype == BPF_READ && value_regno >= 0) {
7449 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
7450 if (ret < 0)
7451 return ret;
7452 }
7453
7454 return 0;
7455 }
7456
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7457 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
7458 struct bpf_reg_state *regs,
7459 int regno, int off, int size,
7460 enum bpf_access_type atype,
7461 int value_regno)
7462 {
7463 struct bpf_reg_state *reg = regs + regno;
7464 struct bpf_map *map = reg->map_ptr;
7465 struct bpf_reg_state map_reg;
7466 enum bpf_type_flag flag = 0;
7467 const struct btf_type *t;
7468 const char *tname;
7469 u32 btf_id;
7470 int ret;
7471
7472 if (!btf_vmlinux) {
7473 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
7474 return -ENOTSUPP;
7475 }
7476
7477 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
7478 verbose(env, "map_ptr access not supported for map type %d\n",
7479 map->map_type);
7480 return -ENOTSUPP;
7481 }
7482
7483 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
7484 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
7485
7486 if (!env->allow_ptr_leaks) {
7487 verbose(env,
7488 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7489 tname);
7490 return -EPERM;
7491 }
7492
7493 if (off < 0) {
7494 verbose(env, "R%d is %s invalid negative access: off=%d\n",
7495 regno, tname, off);
7496 return -EACCES;
7497 }
7498
7499 if (atype != BPF_READ) {
7500 verbose(env, "only read from %s is supported\n", tname);
7501 return -EACCES;
7502 }
7503
7504 /* Simulate access to a PTR_TO_BTF_ID */
7505 memset(&map_reg, 0, sizeof(map_reg));
7506 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID,
7507 btf_vmlinux, *map->ops->map_btf_id, 0);
7508 if (ret < 0)
7509 return ret;
7510 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
7511 if (ret < 0)
7512 return ret;
7513
7514 if (value_regno >= 0) {
7515 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
7516 if (ret < 0)
7517 return ret;
7518 }
7519
7520 return 0;
7521 }
7522
7523 /* Check that the stack access at the given offset is within bounds. The
7524 * maximum valid offset is -1.
7525 *
7526 * The minimum valid offset is -MAX_BPF_STACK for writes, and
7527 * -state->allocated_stack for reads.
7528 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)7529 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7530 s64 off,
7531 struct bpf_func_state *state,
7532 enum bpf_access_type t)
7533 {
7534 int min_valid_off;
7535
7536 if (t == BPF_WRITE || env->allow_uninit_stack)
7537 min_valid_off = -MAX_BPF_STACK;
7538 else
7539 min_valid_off = -state->allocated_stack;
7540
7541 if (off < min_valid_off || off > -1)
7542 return -EACCES;
7543 return 0;
7544 }
7545
7546 /* Check that the stack access at 'regno + off' falls within the maximum stack
7547 * bounds.
7548 *
7549 * 'off' includes `regno->offset`, but not its dynamic part (if any).
7550 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_type type)7551 static int check_stack_access_within_bounds(
7552 struct bpf_verifier_env *env,
7553 int regno, int off, int access_size,
7554 enum bpf_access_type type)
7555 {
7556 struct bpf_reg_state *reg = reg_state(env, regno);
7557 struct bpf_func_state *state = func(env, reg);
7558 s64 min_off, max_off;
7559 int err;
7560 char *err_extra;
7561
7562 if (type == BPF_READ)
7563 err_extra = " read from";
7564 else
7565 err_extra = " write to";
7566
7567 if (tnum_is_const(reg->var_off)) {
7568 min_off = (s64)reg->var_off.value + off;
7569 max_off = min_off + access_size;
7570 } else {
7571 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7572 reg->smin_value <= -BPF_MAX_VAR_OFF) {
7573 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7574 err_extra, regno);
7575 return -EACCES;
7576 }
7577 min_off = reg->smin_value + off;
7578 max_off = reg->smax_value + off + access_size;
7579 }
7580
7581 err = check_stack_slot_within_bounds(env, min_off, state, type);
7582 if (!err && max_off > 0)
7583 err = -EINVAL; /* out of stack access into non-negative offsets */
7584 if (!err && access_size < 0)
7585 /* access_size should not be negative (or overflow an int); others checks
7586 * along the way should have prevented such an access.
7587 */
7588 err = -EFAULT; /* invalid negative access size; integer overflow? */
7589
7590 if (err) {
7591 if (tnum_is_const(reg->var_off)) {
7592 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7593 err_extra, regno, off, access_size);
7594 } else {
7595 char tn_buf[48];
7596
7597 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7598 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7599 err_extra, regno, tn_buf, off, access_size);
7600 }
7601 return err;
7602 }
7603
7604 /* Note that there is no stack access with offset zero, so the needed stack
7605 * size is -min_off, not -min_off+1.
7606 */
7607 return grow_stack_state(env, state, -min_off /* size */);
7608 }
7609
get_func_retval_range(struct bpf_prog * prog,struct bpf_retval_range * range)7610 static bool get_func_retval_range(struct bpf_prog *prog,
7611 struct bpf_retval_range *range)
7612 {
7613 if (prog->type == BPF_PROG_TYPE_LSM &&
7614 prog->expected_attach_type == BPF_LSM_MAC &&
7615 !bpf_lsm_get_retval_range(prog, range)) {
7616 return true;
7617 }
7618 return false;
7619 }
7620
7621 /* check whether memory at (regno + off) is accessible for t = (read | write)
7622 * if t==write, value_regno is a register which value is stored into memory
7623 * if t==read, value_regno is a register which will receive the value from memory
7624 * if t==write && value_regno==-1, some unknown value is stored into memory
7625 * if t==read && value_regno==-1, don't care what we read from memory
7626 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)7627 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7628 int off, int bpf_size, enum bpf_access_type t,
7629 int value_regno, bool strict_alignment_once, bool is_ldsx)
7630 {
7631 struct bpf_reg_state *regs = cur_regs(env);
7632 struct bpf_reg_state *reg = regs + regno;
7633 int size, err = 0;
7634
7635 size = bpf_size_to_bytes(bpf_size);
7636 if (size < 0)
7637 return size;
7638
7639 /* alignment checks will add in reg->off themselves */
7640 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7641 if (err)
7642 return err;
7643
7644 /* for access checks, reg->off is just part of off */
7645 off += reg->off;
7646
7647 if (reg->type == PTR_TO_MAP_KEY) {
7648 if (t == BPF_WRITE) {
7649 verbose(env, "write to change key R%d not allowed\n", regno);
7650 return -EACCES;
7651 }
7652
7653 err = check_mem_region_access(env, regno, off, size,
7654 reg->map_ptr->key_size, false);
7655 if (err)
7656 return err;
7657 if (value_regno >= 0)
7658 mark_reg_unknown(env, regs, value_regno);
7659 } else if (reg->type == PTR_TO_MAP_VALUE) {
7660 struct btf_field *kptr_field = NULL;
7661
7662 if (t == BPF_WRITE && value_regno >= 0 &&
7663 is_pointer_value(env, value_regno)) {
7664 verbose(env, "R%d leaks addr into map\n", value_regno);
7665 return -EACCES;
7666 }
7667 err = check_map_access_type(env, regno, off, size, t);
7668 if (err)
7669 return err;
7670 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7671 if (err)
7672 return err;
7673 if (tnum_is_const(reg->var_off))
7674 kptr_field = btf_record_find(reg->map_ptr->record,
7675 off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7676 if (kptr_field) {
7677 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7678 } else if (t == BPF_READ && value_regno >= 0) {
7679 struct bpf_map *map = reg->map_ptr;
7680
7681 /*
7682 * If map is read-only, track its contents as scalars,
7683 * unless it is an insn array (see the special case below)
7684 */
7685 if (tnum_is_const(reg->var_off) &&
7686 bpf_map_is_rdonly(map) &&
7687 map->ops->map_direct_value_addr &&
7688 map->map_type != BPF_MAP_TYPE_INSN_ARRAY) {
7689 int map_off = off + reg->var_off.value;
7690 u64 val = 0;
7691
7692 err = bpf_map_direct_read(map, map_off, size,
7693 &val, is_ldsx);
7694 if (err)
7695 return err;
7696
7697 regs[value_regno].type = SCALAR_VALUE;
7698 __mark_reg_known(®s[value_regno], val);
7699 } else if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
7700 if (bpf_size != BPF_DW) {
7701 verbose(env, "Invalid read of %d bytes from insn_array\n",
7702 size);
7703 return -EACCES;
7704 }
7705 copy_register_state(®s[value_regno], reg);
7706 regs[value_regno].type = PTR_TO_INSN;
7707 } else {
7708 mark_reg_unknown(env, regs, value_regno);
7709 }
7710 }
7711 } else if (base_type(reg->type) == PTR_TO_MEM) {
7712 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7713 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED);
7714
7715 if (type_may_be_null(reg->type)) {
7716 verbose(env, "R%d invalid mem access '%s'\n", regno,
7717 reg_type_str(env, reg->type));
7718 return -EACCES;
7719 }
7720
7721 if (t == BPF_WRITE && rdonly_mem) {
7722 verbose(env, "R%d cannot write into %s\n",
7723 regno, reg_type_str(env, reg->type));
7724 return -EACCES;
7725 }
7726
7727 if (t == BPF_WRITE && value_regno >= 0 &&
7728 is_pointer_value(env, value_regno)) {
7729 verbose(env, "R%d leaks addr into mem\n", value_regno);
7730 return -EACCES;
7731 }
7732
7733 /*
7734 * Accesses to untrusted PTR_TO_MEM are done through probe
7735 * instructions, hence no need to check bounds in that case.
7736 */
7737 if (!rdonly_untrusted)
7738 err = check_mem_region_access(env, regno, off, size,
7739 reg->mem_size, false);
7740 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7741 mark_reg_unknown(env, regs, value_regno);
7742 } else if (reg->type == PTR_TO_CTX) {
7743 struct bpf_retval_range range;
7744 struct bpf_insn_access_aux info = {
7745 .reg_type = SCALAR_VALUE,
7746 .is_ldsx = is_ldsx,
7747 .log = &env->log,
7748 };
7749
7750 if (t == BPF_WRITE && value_regno >= 0 &&
7751 is_pointer_value(env, value_regno)) {
7752 verbose(env, "R%d leaks addr into ctx\n", value_regno);
7753 return -EACCES;
7754 }
7755
7756 err = check_ptr_off_reg(env, reg, regno);
7757 if (err < 0)
7758 return err;
7759
7760 err = check_ctx_access(env, insn_idx, off, size, t, &info);
7761 if (err)
7762 verbose_linfo(env, insn_idx, "; ");
7763 if (!err && t == BPF_READ && value_regno >= 0) {
7764 /* ctx access returns either a scalar, or a
7765 * PTR_TO_PACKET[_META,_END]. In the latter
7766 * case, we know the offset is zero.
7767 */
7768 if (info.reg_type == SCALAR_VALUE) {
7769 if (info.is_retval && get_func_retval_range(env->prog, &range)) {
7770 err = __mark_reg_s32_range(env, regs, value_regno,
7771 range.minval, range.maxval);
7772 if (err)
7773 return err;
7774 } else {
7775 mark_reg_unknown(env, regs, value_regno);
7776 }
7777 } else {
7778 mark_reg_known_zero(env, regs,
7779 value_regno);
7780 if (type_may_be_null(info.reg_type))
7781 regs[value_regno].id = ++env->id_gen;
7782 /* A load of ctx field could have different
7783 * actual load size with the one encoded in the
7784 * insn. When the dst is PTR, it is for sure not
7785 * a sub-register.
7786 */
7787 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7788 if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
7789 regs[value_regno].btf = info.btf;
7790 regs[value_regno].btf_id = info.btf_id;
7791 regs[value_regno].ref_obj_id = info.ref_obj_id;
7792 }
7793 }
7794 regs[value_regno].type = info.reg_type;
7795 }
7796
7797 } else if (reg->type == PTR_TO_STACK) {
7798 /* Basic bounds checks. */
7799 err = check_stack_access_within_bounds(env, regno, off, size, t);
7800 if (err)
7801 return err;
7802
7803 if (t == BPF_READ)
7804 err = check_stack_read(env, regno, off, size,
7805 value_regno);
7806 else
7807 err = check_stack_write(env, regno, off, size,
7808 value_regno, insn_idx);
7809 } else if (reg_is_pkt_pointer(reg)) {
7810 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7811 verbose(env, "cannot write into packet\n");
7812 return -EACCES;
7813 }
7814 if (t == BPF_WRITE && value_regno >= 0 &&
7815 is_pointer_value(env, value_regno)) {
7816 verbose(env, "R%d leaks addr into packet\n",
7817 value_regno);
7818 return -EACCES;
7819 }
7820 err = check_packet_access(env, regno, off, size, false);
7821 if (!err && t == BPF_READ && value_regno >= 0)
7822 mark_reg_unknown(env, regs, value_regno);
7823 } else if (reg->type == PTR_TO_FLOW_KEYS) {
7824 if (t == BPF_WRITE && value_regno >= 0 &&
7825 is_pointer_value(env, value_regno)) {
7826 verbose(env, "R%d leaks addr into flow keys\n",
7827 value_regno);
7828 return -EACCES;
7829 }
7830
7831 err = check_flow_keys_access(env, off, size);
7832 if (!err && t == BPF_READ && value_regno >= 0)
7833 mark_reg_unknown(env, regs, value_regno);
7834 } else if (type_is_sk_pointer(reg->type)) {
7835 if (t == BPF_WRITE) {
7836 verbose(env, "R%d cannot write into %s\n",
7837 regno, reg_type_str(env, reg->type));
7838 return -EACCES;
7839 }
7840 err = check_sock_access(env, insn_idx, regno, off, size, t);
7841 if (!err && value_regno >= 0)
7842 mark_reg_unknown(env, regs, value_regno);
7843 } else if (reg->type == PTR_TO_TP_BUFFER) {
7844 err = check_tp_buffer_access(env, reg, regno, off, size);
7845 if (!err && t == BPF_READ && value_regno >= 0)
7846 mark_reg_unknown(env, regs, value_regno);
7847 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7848 !type_may_be_null(reg->type)) {
7849 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7850 value_regno);
7851 } else if (reg->type == CONST_PTR_TO_MAP) {
7852 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7853 value_regno);
7854 } else if (base_type(reg->type) == PTR_TO_BUF) {
7855 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7856 u32 *max_access;
7857
7858 if (rdonly_mem) {
7859 if (t == BPF_WRITE) {
7860 verbose(env, "R%d cannot write into %s\n",
7861 regno, reg_type_str(env, reg->type));
7862 return -EACCES;
7863 }
7864 max_access = &env->prog->aux->max_rdonly_access;
7865 } else {
7866 max_access = &env->prog->aux->max_rdwr_access;
7867 }
7868
7869 err = check_buffer_access(env, reg, regno, off, size, false,
7870 max_access);
7871
7872 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7873 mark_reg_unknown(env, regs, value_regno);
7874 } else if (reg->type == PTR_TO_ARENA) {
7875 if (t == BPF_READ && value_regno >= 0)
7876 mark_reg_unknown(env, regs, value_regno);
7877 } else {
7878 verbose(env, "R%d invalid mem access '%s'\n", regno,
7879 reg_type_str(env, reg->type));
7880 return -EACCES;
7881 }
7882
7883 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7884 regs[value_regno].type == SCALAR_VALUE) {
7885 if (!is_ldsx)
7886 /* b/h/w load zero-extends, mark upper bits as known 0 */
7887 coerce_reg_to_size(®s[value_regno], size);
7888 else
7889 coerce_reg_to_size_sx(®s[value_regno], size);
7890 }
7891 return err;
7892 }
7893
7894 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7895 bool allow_trust_mismatch);
7896
check_load_mem(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once,bool is_ldsx,bool allow_trust_mismatch,const char * ctx)7897 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
7898 bool strict_alignment_once, bool is_ldsx,
7899 bool allow_trust_mismatch, const char *ctx)
7900 {
7901 struct bpf_reg_state *regs = cur_regs(env);
7902 enum bpf_reg_type src_reg_type;
7903 int err;
7904
7905 /* check src operand */
7906 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7907 if (err)
7908 return err;
7909
7910 /* check dst operand */
7911 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7912 if (err)
7913 return err;
7914
7915 src_reg_type = regs[insn->src_reg].type;
7916
7917 /* Check if (src_reg + off) is readable. The state of dst_reg will be
7918 * updated by this call.
7919 */
7920 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
7921 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
7922 strict_alignment_once, is_ldsx);
7923 err = err ?: save_aux_ptr_type(env, src_reg_type,
7924 allow_trust_mismatch);
7925 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx);
7926
7927 return err;
7928 }
7929
check_store_reg(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once)7930 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
7931 bool strict_alignment_once)
7932 {
7933 struct bpf_reg_state *regs = cur_regs(env);
7934 enum bpf_reg_type dst_reg_type;
7935 int err;
7936
7937 /* check src1 operand */
7938 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7939 if (err)
7940 return err;
7941
7942 /* check src2 operand */
7943 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7944 if (err)
7945 return err;
7946
7947 dst_reg_type = regs[insn->dst_reg].type;
7948
7949 /* Check if (dst_reg + off) is writeable. */
7950 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7951 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
7952 strict_alignment_once, false);
7953 err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
7954
7955 return err;
7956 }
7957
check_atomic_rmw(struct bpf_verifier_env * env,struct bpf_insn * insn)7958 static int check_atomic_rmw(struct bpf_verifier_env *env,
7959 struct bpf_insn *insn)
7960 {
7961 int load_reg;
7962 int err;
7963
7964 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7965 verbose(env, "invalid atomic operand size\n");
7966 return -EINVAL;
7967 }
7968
7969 /* check src1 operand */
7970 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7971 if (err)
7972 return err;
7973
7974 /* check src2 operand */
7975 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7976 if (err)
7977 return err;
7978
7979 if (insn->imm == BPF_CMPXCHG) {
7980 /* Check comparison of R0 with memory location */
7981 const u32 aux_reg = BPF_REG_0;
7982
7983 err = check_reg_arg(env, aux_reg, SRC_OP);
7984 if (err)
7985 return err;
7986
7987 if (is_pointer_value(env, aux_reg)) {
7988 verbose(env, "R%d leaks addr into mem\n", aux_reg);
7989 return -EACCES;
7990 }
7991 }
7992
7993 if (is_pointer_value(env, insn->src_reg)) {
7994 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7995 return -EACCES;
7996 }
7997
7998 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7999 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
8000 insn->dst_reg,
8001 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
8002 return -EACCES;
8003 }
8004
8005 if (insn->imm & BPF_FETCH) {
8006 if (insn->imm == BPF_CMPXCHG)
8007 load_reg = BPF_REG_0;
8008 else
8009 load_reg = insn->src_reg;
8010
8011 /* check and record load of old value */
8012 err = check_reg_arg(env, load_reg, DST_OP);
8013 if (err)
8014 return err;
8015 } else {
8016 /* This instruction accesses a memory location but doesn't
8017 * actually load it into a register.
8018 */
8019 load_reg = -1;
8020 }
8021
8022 /* Check whether we can read the memory, with second call for fetch
8023 * case to simulate the register fill.
8024 */
8025 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
8026 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
8027 if (!err && load_reg >= 0)
8028 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8029 insn->off, BPF_SIZE(insn->code),
8030 BPF_READ, load_reg, true, false);
8031 if (err)
8032 return err;
8033
8034 if (is_arena_reg(env, insn->dst_reg)) {
8035 err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
8036 if (err)
8037 return err;
8038 }
8039 /* Check whether we can write into the same memory. */
8040 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
8041 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
8042 if (err)
8043 return err;
8044 return 0;
8045 }
8046
check_atomic_load(struct bpf_verifier_env * env,struct bpf_insn * insn)8047 static int check_atomic_load(struct bpf_verifier_env *env,
8048 struct bpf_insn *insn)
8049 {
8050 int err;
8051
8052 err = check_load_mem(env, insn, true, false, false, "atomic_load");
8053 if (err)
8054 return err;
8055
8056 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
8057 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
8058 insn->src_reg,
8059 reg_type_str(env, reg_state(env, insn->src_reg)->type));
8060 return -EACCES;
8061 }
8062
8063 return 0;
8064 }
8065
check_atomic_store(struct bpf_verifier_env * env,struct bpf_insn * insn)8066 static int check_atomic_store(struct bpf_verifier_env *env,
8067 struct bpf_insn *insn)
8068 {
8069 int err;
8070
8071 err = check_store_reg(env, insn, true);
8072 if (err)
8073 return err;
8074
8075 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
8076 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
8077 insn->dst_reg,
8078 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
8079 return -EACCES;
8080 }
8081
8082 return 0;
8083 }
8084
check_atomic(struct bpf_verifier_env * env,struct bpf_insn * insn)8085 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
8086 {
8087 switch (insn->imm) {
8088 case BPF_ADD:
8089 case BPF_ADD | BPF_FETCH:
8090 case BPF_AND:
8091 case BPF_AND | BPF_FETCH:
8092 case BPF_OR:
8093 case BPF_OR | BPF_FETCH:
8094 case BPF_XOR:
8095 case BPF_XOR | BPF_FETCH:
8096 case BPF_XCHG:
8097 case BPF_CMPXCHG:
8098 return check_atomic_rmw(env, insn);
8099 case BPF_LOAD_ACQ:
8100 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8101 verbose(env,
8102 "64-bit load-acquires are only supported on 64-bit arches\n");
8103 return -EOPNOTSUPP;
8104 }
8105 return check_atomic_load(env, insn);
8106 case BPF_STORE_REL:
8107 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8108 verbose(env,
8109 "64-bit store-releases are only supported on 64-bit arches\n");
8110 return -EOPNOTSUPP;
8111 }
8112 return check_atomic_store(env, insn);
8113 default:
8114 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
8115 insn->imm);
8116 return -EINVAL;
8117 }
8118 }
8119
8120 /* When register 'regno' is used to read the stack (either directly or through
8121 * a helper function) make sure that it's within stack boundary and, depending
8122 * on the access type and privileges, that all elements of the stack are
8123 * initialized.
8124 *
8125 * 'off' includes 'regno->off', but not its dynamic part (if any).
8126 *
8127 * All registers that have been spilled on the stack in the slots within the
8128 * read offsets are marked as read.
8129 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_type type,struct bpf_call_arg_meta * meta)8130 static int check_stack_range_initialized(
8131 struct bpf_verifier_env *env, int regno, int off,
8132 int access_size, bool zero_size_allowed,
8133 enum bpf_access_type type, struct bpf_call_arg_meta *meta)
8134 {
8135 struct bpf_reg_state *reg = reg_state(env, regno);
8136 struct bpf_func_state *state = func(env, reg);
8137 int err, min_off, max_off, i, j, slot, spi;
8138 /* Some accesses can write anything into the stack, others are
8139 * read-only.
8140 */
8141 bool clobber = false;
8142
8143 if (access_size == 0 && !zero_size_allowed) {
8144 verbose(env, "invalid zero-sized read\n");
8145 return -EACCES;
8146 }
8147
8148 if (type == BPF_WRITE)
8149 clobber = true;
8150
8151 err = check_stack_access_within_bounds(env, regno, off, access_size, type);
8152 if (err)
8153 return err;
8154
8155
8156 if (tnum_is_const(reg->var_off)) {
8157 min_off = max_off = reg->var_off.value + off;
8158 } else {
8159 /* Variable offset is prohibited for unprivileged mode for
8160 * simplicity since it requires corresponding support in
8161 * Spectre masking for stack ALU.
8162 * See also retrieve_ptr_limit().
8163 */
8164 if (!env->bypass_spec_v1) {
8165 char tn_buf[48];
8166
8167 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8168 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
8169 regno, tn_buf);
8170 return -EACCES;
8171 }
8172 /* Only initialized buffer on stack is allowed to be accessed
8173 * with variable offset. With uninitialized buffer it's hard to
8174 * guarantee that whole memory is marked as initialized on
8175 * helper return since specific bounds are unknown what may
8176 * cause uninitialized stack leaking.
8177 */
8178 if (meta && meta->raw_mode)
8179 meta = NULL;
8180
8181 min_off = reg->smin_value + off;
8182 max_off = reg->smax_value + off;
8183 }
8184
8185 if (meta && meta->raw_mode) {
8186 /* Ensure we won't be overwriting dynptrs when simulating byte
8187 * by byte access in check_helper_call using meta.access_size.
8188 * This would be a problem if we have a helper in the future
8189 * which takes:
8190 *
8191 * helper(uninit_mem, len, dynptr)
8192 *
8193 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
8194 * may end up writing to dynptr itself when touching memory from
8195 * arg 1. This can be relaxed on a case by case basis for known
8196 * safe cases, but reject due to the possibilitiy of aliasing by
8197 * default.
8198 */
8199 for (i = min_off; i < max_off + access_size; i++) {
8200 int stack_off = -i - 1;
8201
8202 spi = __get_spi(i);
8203 /* raw_mode may write past allocated_stack */
8204 if (state->allocated_stack <= stack_off)
8205 continue;
8206 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
8207 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
8208 return -EACCES;
8209 }
8210 }
8211 meta->access_size = access_size;
8212 meta->regno = regno;
8213 return 0;
8214 }
8215
8216 for (i = min_off; i < max_off + access_size; i++) {
8217 u8 *stype;
8218
8219 slot = -i - 1;
8220 spi = slot / BPF_REG_SIZE;
8221 if (state->allocated_stack <= slot) {
8222 verbose(env, "allocated_stack too small\n");
8223 return -EFAULT;
8224 }
8225
8226 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
8227 if (*stype == STACK_MISC)
8228 goto mark;
8229 if ((*stype == STACK_ZERO) ||
8230 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
8231 if (clobber) {
8232 /* helper can write anything into the stack */
8233 *stype = STACK_MISC;
8234 }
8235 goto mark;
8236 }
8237
8238 if (is_spilled_reg(&state->stack[spi]) &&
8239 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
8240 env->allow_ptr_leaks)) {
8241 if (clobber) {
8242 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
8243 for (j = 0; j < BPF_REG_SIZE; j++)
8244 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
8245 }
8246 goto mark;
8247 }
8248
8249 if (tnum_is_const(reg->var_off)) {
8250 verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
8251 regno, min_off, i - min_off, access_size);
8252 } else {
8253 char tn_buf[48];
8254
8255 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8256 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
8257 regno, tn_buf, i - min_off, access_size);
8258 }
8259 return -EACCES;
8260 mark:
8261 /* reading any byte out of 8-byte 'spill_slot' will cause
8262 * the whole slot to be marked as 'read'
8263 */
8264 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi));
8265 if (err)
8266 return err;
8267 /* We do not call bpf_mark_stack_write(), as we can not
8268 * be sure that whether stack slot is written to or not. Hence,
8269 * we must still conservatively propagate reads upwards even if
8270 * helper may write to the entire memory range.
8271 */
8272 }
8273 return 0;
8274 }
8275
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8276 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
8277 int access_size, enum bpf_access_type access_type,
8278 bool zero_size_allowed,
8279 struct bpf_call_arg_meta *meta)
8280 {
8281 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8282 u32 *max_access;
8283
8284 switch (base_type(reg->type)) {
8285 case PTR_TO_PACKET:
8286 case PTR_TO_PACKET_META:
8287 return check_packet_access(env, regno, reg->off, access_size,
8288 zero_size_allowed);
8289 case PTR_TO_MAP_KEY:
8290 if (access_type == BPF_WRITE) {
8291 verbose(env, "R%d cannot write into %s\n", regno,
8292 reg_type_str(env, reg->type));
8293 return -EACCES;
8294 }
8295 return check_mem_region_access(env, regno, reg->off, access_size,
8296 reg->map_ptr->key_size, false);
8297 case PTR_TO_MAP_VALUE:
8298 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
8299 return -EACCES;
8300 return check_map_access(env, regno, reg->off, access_size,
8301 zero_size_allowed, ACCESS_HELPER);
8302 case PTR_TO_MEM:
8303 if (type_is_rdonly_mem(reg->type)) {
8304 if (access_type == BPF_WRITE) {
8305 verbose(env, "R%d cannot write into %s\n", regno,
8306 reg_type_str(env, reg->type));
8307 return -EACCES;
8308 }
8309 }
8310 return check_mem_region_access(env, regno, reg->off,
8311 access_size, reg->mem_size,
8312 zero_size_allowed);
8313 case PTR_TO_BUF:
8314 if (type_is_rdonly_mem(reg->type)) {
8315 if (access_type == BPF_WRITE) {
8316 verbose(env, "R%d cannot write into %s\n", regno,
8317 reg_type_str(env, reg->type));
8318 return -EACCES;
8319 }
8320
8321 max_access = &env->prog->aux->max_rdonly_access;
8322 } else {
8323 max_access = &env->prog->aux->max_rdwr_access;
8324 }
8325 return check_buffer_access(env, reg, regno, reg->off,
8326 access_size, zero_size_allowed,
8327 max_access);
8328 case PTR_TO_STACK:
8329 return check_stack_range_initialized(
8330 env,
8331 regno, reg->off, access_size,
8332 zero_size_allowed, access_type, meta);
8333 case PTR_TO_BTF_ID:
8334 return check_ptr_to_btf_access(env, regs, regno, reg->off,
8335 access_size, BPF_READ, -1);
8336 case PTR_TO_CTX:
8337 /* in case the function doesn't know how to access the context,
8338 * (because we are in a program of type SYSCALL for example), we
8339 * can not statically check its size.
8340 * Dynamically check it now.
8341 */
8342 if (!env->ops->convert_ctx_access) {
8343 int offset = access_size - 1;
8344
8345 /* Allow zero-byte read from PTR_TO_CTX */
8346 if (access_size == 0)
8347 return zero_size_allowed ? 0 : -EACCES;
8348
8349 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
8350 access_type, -1, false, false);
8351 }
8352
8353 fallthrough;
8354 default: /* scalar_value or invalid ptr */
8355 /* Allow zero-byte read from NULL, regardless of pointer type */
8356 if (zero_size_allowed && access_size == 0 &&
8357 register_is_null(reg))
8358 return 0;
8359
8360 verbose(env, "R%d type=%s ", regno,
8361 reg_type_str(env, reg->type));
8362 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
8363 return -EACCES;
8364 }
8365 }
8366
8367 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
8368 * size.
8369 *
8370 * @regno is the register containing the access size. regno-1 is the register
8371 * containing the pointer.
8372 */
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8373 static int check_mem_size_reg(struct bpf_verifier_env *env,
8374 struct bpf_reg_state *reg, u32 regno,
8375 enum bpf_access_type access_type,
8376 bool zero_size_allowed,
8377 struct bpf_call_arg_meta *meta)
8378 {
8379 int err;
8380
8381 /* This is used to refine r0 return value bounds for helpers
8382 * that enforce this value as an upper bound on return values.
8383 * See do_refine_retval_range() for helpers that can refine
8384 * the return value. C type of helper is u32 so we pull register
8385 * bound from umax_value however, if negative verifier errors
8386 * out. Only upper bounds can be learned because retval is an
8387 * int type and negative retvals are allowed.
8388 */
8389 meta->msize_max_value = reg->umax_value;
8390
8391 /* The register is SCALAR_VALUE; the access check happens using
8392 * its boundaries. For unprivileged variable accesses, disable
8393 * raw mode so that the program is required to initialize all
8394 * the memory that the helper could just partially fill up.
8395 */
8396 if (!tnum_is_const(reg->var_off))
8397 meta = NULL;
8398
8399 if (reg->smin_value < 0) {
8400 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
8401 regno);
8402 return -EACCES;
8403 }
8404
8405 if (reg->umin_value == 0 && !zero_size_allowed) {
8406 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
8407 regno, reg->umin_value, reg->umax_value);
8408 return -EACCES;
8409 }
8410
8411 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
8412 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
8413 regno);
8414 return -EACCES;
8415 }
8416 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
8417 access_type, zero_size_allowed, meta);
8418 if (!err)
8419 err = mark_chain_precision(env, regno);
8420 return err;
8421 }
8422
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)8423 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8424 u32 regno, u32 mem_size)
8425 {
8426 bool may_be_null = type_may_be_null(reg->type);
8427 struct bpf_reg_state saved_reg;
8428 int err;
8429
8430 if (register_is_null(reg))
8431 return 0;
8432
8433 /* Assuming that the register contains a value check if the memory
8434 * access is safe. Temporarily save and restore the register's state as
8435 * the conversion shouldn't be visible to a caller.
8436 */
8437 if (may_be_null) {
8438 saved_reg = *reg;
8439 mark_ptr_not_null_reg(reg);
8440 }
8441
8442 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
8443 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
8444
8445 if (may_be_null)
8446 *reg = saved_reg;
8447
8448 return err;
8449 }
8450
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)8451 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8452 u32 regno)
8453 {
8454 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
8455 bool may_be_null = type_may_be_null(mem_reg->type);
8456 struct bpf_reg_state saved_reg;
8457 struct bpf_call_arg_meta meta;
8458 int err;
8459
8460 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
8461
8462 memset(&meta, 0, sizeof(meta));
8463
8464 if (may_be_null) {
8465 saved_reg = *mem_reg;
8466 mark_ptr_not_null_reg(mem_reg);
8467 }
8468
8469 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
8470 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
8471
8472 if (may_be_null)
8473 *mem_reg = saved_reg;
8474
8475 return err;
8476 }
8477
8478 enum {
8479 PROCESS_SPIN_LOCK = (1 << 0),
8480 PROCESS_RES_LOCK = (1 << 1),
8481 PROCESS_LOCK_IRQ = (1 << 2),
8482 };
8483
8484 /* Implementation details:
8485 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
8486 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
8487 * Two bpf_map_lookups (even with the same key) will have different reg->id.
8488 * Two separate bpf_obj_new will also have different reg->id.
8489 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
8490 * clears reg->id after value_or_null->value transition, since the verifier only
8491 * cares about the range of access to valid map value pointer and doesn't care
8492 * about actual address of the map element.
8493 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
8494 * reg->id > 0 after value_or_null->value transition. By doing so
8495 * two bpf_map_lookups will be considered two different pointers that
8496 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
8497 * returned from bpf_obj_new.
8498 * The verifier allows taking only one bpf_spin_lock at a time to avoid
8499 * dead-locks.
8500 * Since only one bpf_spin_lock is allowed the checks are simpler than
8501 * reg_is_refcounted() logic. The verifier needs to remember only
8502 * one spin_lock instead of array of acquired_refs.
8503 * env->cur_state->active_locks remembers which map value element or allocated
8504 * object got locked and clears it after bpf_spin_unlock.
8505 */
process_spin_lock(struct bpf_verifier_env * env,int regno,int flags)8506 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
8507 {
8508 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
8509 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
8510 struct bpf_reg_state *reg = reg_state(env, regno);
8511 struct bpf_verifier_state *cur = env->cur_state;
8512 bool is_const = tnum_is_const(reg->var_off);
8513 bool is_irq = flags & PROCESS_LOCK_IRQ;
8514 u64 val = reg->var_off.value;
8515 struct bpf_map *map = NULL;
8516 struct btf *btf = NULL;
8517 struct btf_record *rec;
8518 u32 spin_lock_off;
8519 int err;
8520
8521 if (!is_const) {
8522 verbose(env,
8523 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
8524 regno, lock_str);
8525 return -EINVAL;
8526 }
8527 if (reg->type == PTR_TO_MAP_VALUE) {
8528 map = reg->map_ptr;
8529 if (!map->btf) {
8530 verbose(env,
8531 "map '%s' has to have BTF in order to use %s_lock\n",
8532 map->name, lock_str);
8533 return -EINVAL;
8534 }
8535 } else {
8536 btf = reg->btf;
8537 }
8538
8539 rec = reg_btf_record(reg);
8540 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
8541 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
8542 map ? map->name : "kptr", lock_str);
8543 return -EINVAL;
8544 }
8545 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
8546 if (spin_lock_off != val + reg->off) {
8547 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
8548 val + reg->off, lock_str, spin_lock_off);
8549 return -EINVAL;
8550 }
8551 if (is_lock) {
8552 void *ptr;
8553 int type;
8554
8555 if (map)
8556 ptr = map;
8557 else
8558 ptr = btf;
8559
8560 if (!is_res_lock && cur->active_locks) {
8561 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
8562 verbose(env,
8563 "Locking two bpf_spin_locks are not allowed\n");
8564 return -EINVAL;
8565 }
8566 } else if (is_res_lock && cur->active_locks) {
8567 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
8568 verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
8569 return -EINVAL;
8570 }
8571 }
8572
8573 if (is_res_lock && is_irq)
8574 type = REF_TYPE_RES_LOCK_IRQ;
8575 else if (is_res_lock)
8576 type = REF_TYPE_RES_LOCK;
8577 else
8578 type = REF_TYPE_LOCK;
8579 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
8580 if (err < 0) {
8581 verbose(env, "Failed to acquire lock state\n");
8582 return err;
8583 }
8584 } else {
8585 void *ptr;
8586 int type;
8587
8588 if (map)
8589 ptr = map;
8590 else
8591 ptr = btf;
8592
8593 if (!cur->active_locks) {
8594 verbose(env, "%s_unlock without taking a lock\n", lock_str);
8595 return -EINVAL;
8596 }
8597
8598 if (is_res_lock && is_irq)
8599 type = REF_TYPE_RES_LOCK_IRQ;
8600 else if (is_res_lock)
8601 type = REF_TYPE_RES_LOCK;
8602 else
8603 type = REF_TYPE_LOCK;
8604 if (!find_lock_state(cur, type, reg->id, ptr)) {
8605 verbose(env, "%s_unlock of different lock\n", lock_str);
8606 return -EINVAL;
8607 }
8608 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
8609 verbose(env, "%s_unlock cannot be out of order\n", lock_str);
8610 return -EINVAL;
8611 }
8612 if (release_lock_state(cur, type, reg->id, ptr)) {
8613 verbose(env, "%s_unlock of different lock\n", lock_str);
8614 return -EINVAL;
8615 }
8616
8617 invalidate_non_owning_refs(env);
8618 }
8619 return 0;
8620 }
8621
8622 /* Check if @regno is a pointer to a specific field in a map value */
check_map_field_pointer(struct bpf_verifier_env * env,u32 regno,enum btf_field_type field_type,struct bpf_map_desc * map_desc)8623 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno,
8624 enum btf_field_type field_type,
8625 struct bpf_map_desc *map_desc)
8626 {
8627 struct bpf_reg_state *reg = reg_state(env, regno);
8628 bool is_const = tnum_is_const(reg->var_off);
8629 struct bpf_map *map = reg->map_ptr;
8630 u64 val = reg->var_off.value;
8631 const char *struct_name = btf_field_type_name(field_type);
8632 int field_off = -1;
8633
8634 if (!is_const) {
8635 verbose(env,
8636 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
8637 regno, struct_name);
8638 return -EINVAL;
8639 }
8640 if (!map->btf) {
8641 verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name,
8642 struct_name);
8643 return -EINVAL;
8644 }
8645 if (!btf_record_has_field(map->record, field_type)) {
8646 verbose(env, "map '%s' has no valid %s\n", map->name, struct_name);
8647 return -EINVAL;
8648 }
8649 switch (field_type) {
8650 case BPF_TIMER:
8651 field_off = map->record->timer_off;
8652 break;
8653 case BPF_TASK_WORK:
8654 field_off = map->record->task_work_off;
8655 break;
8656 case BPF_WORKQUEUE:
8657 field_off = map->record->wq_off;
8658 break;
8659 default:
8660 verifier_bug(env, "unsupported BTF field type: %s\n", struct_name);
8661 return -EINVAL;
8662 }
8663 if (field_off != val + reg->off) {
8664 verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n",
8665 val + reg->off, struct_name, field_off);
8666 return -EINVAL;
8667 }
8668 if (map_desc->ptr) {
8669 verifier_bug(env, "Two map pointers in a %s helper", struct_name);
8670 return -EFAULT;
8671 }
8672 map_desc->uid = reg->map_uid;
8673 map_desc->ptr = map;
8674 return 0;
8675 }
8676
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_map_desc * map)8677 static int process_timer_func(struct bpf_verifier_env *env, int regno,
8678 struct bpf_map_desc *map)
8679 {
8680 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8681 verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n");
8682 return -EOPNOTSUPP;
8683 }
8684 return check_map_field_pointer(env, regno, BPF_TIMER, map);
8685 }
8686
process_timer_helper(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8687 static int process_timer_helper(struct bpf_verifier_env *env, int regno,
8688 struct bpf_call_arg_meta *meta)
8689 {
8690 return process_timer_func(env, regno, &meta->map);
8691 }
8692
process_timer_kfunc(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)8693 static int process_timer_kfunc(struct bpf_verifier_env *env, int regno,
8694 struct bpf_kfunc_call_arg_meta *meta)
8695 {
8696 return process_timer_func(env, regno, &meta->map);
8697 }
8698
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8699 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
8700 struct bpf_call_arg_meta *meta)
8701 {
8702 struct bpf_reg_state *reg = reg_state(env, regno);
8703 struct btf_field *kptr_field;
8704 struct bpf_map *map_ptr;
8705 struct btf_record *rec;
8706 u32 kptr_off;
8707
8708 if (type_is_ptr_alloc_obj(reg->type)) {
8709 rec = reg_btf_record(reg);
8710 } else { /* PTR_TO_MAP_VALUE */
8711 map_ptr = reg->map_ptr;
8712 if (!map_ptr->btf) {
8713 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8714 map_ptr->name);
8715 return -EINVAL;
8716 }
8717 rec = map_ptr->record;
8718 meta->map.ptr = map_ptr;
8719 }
8720
8721 if (!tnum_is_const(reg->var_off)) {
8722 verbose(env,
8723 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8724 regno);
8725 return -EINVAL;
8726 }
8727
8728 if (!btf_record_has_field(rec, BPF_KPTR)) {
8729 verbose(env, "R%d has no valid kptr\n", regno);
8730 return -EINVAL;
8731 }
8732
8733 kptr_off = reg->off + reg->var_off.value;
8734 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8735 if (!kptr_field) {
8736 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8737 return -EACCES;
8738 }
8739 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8740 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8741 return -EACCES;
8742 }
8743 meta->kptr_field = kptr_field;
8744 return 0;
8745 }
8746
8747 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8748 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8749 *
8750 * In both cases we deal with the first 8 bytes, but need to mark the next 8
8751 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8752 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8753 *
8754 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8755 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8756 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8757 * mutate the view of the dynptr and also possibly destroy it. In the latter
8758 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8759 * memory that dynptr points to.
8760 *
8761 * The verifier will keep track both levels of mutation (bpf_dynptr's in
8762 * reg->type and the memory's in reg->dynptr.type), but there is no support for
8763 * readonly dynptr view yet, hence only the first case is tracked and checked.
8764 *
8765 * This is consistent with how C applies the const modifier to a struct object,
8766 * where the pointer itself inside bpf_dynptr becomes const but not what it
8767 * points to.
8768 *
8769 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8770 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8771 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)8772 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8773 enum bpf_arg_type arg_type, int clone_ref_obj_id)
8774 {
8775 struct bpf_reg_state *reg = reg_state(env, regno);
8776 int err;
8777
8778 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8779 verbose(env,
8780 "arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8781 regno - 1);
8782 return -EINVAL;
8783 }
8784
8785 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8786 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8787 */
8788 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8789 verifier_bug(env, "misconfigured dynptr helper type flags");
8790 return -EFAULT;
8791 }
8792
8793 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
8794 * constructing a mutable bpf_dynptr object.
8795 *
8796 * Currently, this is only possible with PTR_TO_STACK
8797 * pointing to a region of at least 16 bytes which doesn't
8798 * contain an existing bpf_dynptr.
8799 *
8800 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8801 * mutated or destroyed. However, the memory it points to
8802 * may be mutated.
8803 *
8804 * None - Points to a initialized dynptr that can be mutated and
8805 * destroyed, including mutation of the memory it points
8806 * to.
8807 */
8808 if (arg_type & MEM_UNINIT) {
8809 int i;
8810
8811 if (!is_dynptr_reg_valid_uninit(env, reg)) {
8812 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8813 return -EINVAL;
8814 }
8815
8816 /* we write BPF_DW bits (8 bytes) at a time */
8817 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8818 err = check_mem_access(env, insn_idx, regno,
8819 i, BPF_DW, BPF_WRITE, -1, false, false);
8820 if (err)
8821 return err;
8822 }
8823
8824 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8825 } else /* MEM_RDONLY and None case from above */ {
8826 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8827 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8828 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8829 return -EINVAL;
8830 }
8831
8832 if (!is_dynptr_reg_valid_init(env, reg)) {
8833 verbose(env,
8834 "Expected an initialized dynptr as arg #%d\n",
8835 regno - 1);
8836 return -EINVAL;
8837 }
8838
8839 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8840 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8841 verbose(env,
8842 "Expected a dynptr of type %s as arg #%d\n",
8843 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8844 return -EINVAL;
8845 }
8846
8847 err = mark_dynptr_read(env, reg);
8848 }
8849 return err;
8850 }
8851
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)8852 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8853 {
8854 struct bpf_func_state *state = func(env, reg);
8855
8856 return state->stack[spi].spilled_ptr.ref_obj_id;
8857 }
8858
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)8859 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8860 {
8861 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8862 }
8863
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)8864 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8865 {
8866 return meta->kfunc_flags & KF_ITER_NEW;
8867 }
8868
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)8869 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8870 {
8871 return meta->kfunc_flags & KF_ITER_NEXT;
8872 }
8873
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)8874 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8875 {
8876 return meta->kfunc_flags & KF_ITER_DESTROY;
8877 }
8878
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg_idx,const struct btf_param * arg)8879 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8880 const struct btf_param *arg)
8881 {
8882 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
8883 * kfunc is iter state pointer
8884 */
8885 if (is_iter_kfunc(meta))
8886 return arg_idx == 0;
8887
8888 /* iter passed as an argument to a generic kfunc */
8889 return btf_param_match_suffix(meta->btf, arg, "__iter");
8890 }
8891
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8892 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8893 struct bpf_kfunc_call_arg_meta *meta)
8894 {
8895 struct bpf_reg_state *reg = reg_state(env, regno);
8896 const struct btf_type *t;
8897 int spi, err, i, nr_slots, btf_id;
8898
8899 if (reg->type != PTR_TO_STACK) {
8900 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8901 return -EINVAL;
8902 }
8903
8904 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8905 * ensures struct convention, so we wouldn't need to do any BTF
8906 * validation here. But given iter state can be passed as a parameter
8907 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8908 * conservative here.
8909 */
8910 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8911 if (btf_id < 0) {
8912 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8913 return -EINVAL;
8914 }
8915 t = btf_type_by_id(meta->btf, btf_id);
8916 nr_slots = t->size / BPF_REG_SIZE;
8917
8918 if (is_iter_new_kfunc(meta)) {
8919 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
8920 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8921 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8922 iter_type_str(meta->btf, btf_id), regno - 1);
8923 return -EINVAL;
8924 }
8925
8926 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8927 err = check_mem_access(env, insn_idx, regno,
8928 i, BPF_DW, BPF_WRITE, -1, false, false);
8929 if (err)
8930 return err;
8931 }
8932
8933 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8934 if (err)
8935 return err;
8936 } else {
8937 /* iter_next() or iter_destroy(), as well as any kfunc
8938 * accepting iter argument, expect initialized iter state
8939 */
8940 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8941 switch (err) {
8942 case 0:
8943 break;
8944 case -EINVAL:
8945 verbose(env, "expected an initialized iter_%s as arg #%d\n",
8946 iter_type_str(meta->btf, btf_id), regno - 1);
8947 return err;
8948 case -EPROTO:
8949 verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8950 return err;
8951 default:
8952 return err;
8953 }
8954
8955 spi = iter_get_spi(env, reg, nr_slots);
8956 if (spi < 0)
8957 return spi;
8958
8959 err = mark_iter_read(env, reg, spi, nr_slots);
8960 if (err)
8961 return err;
8962
8963 /* remember meta->iter info for process_iter_next_call() */
8964 meta->iter.spi = spi;
8965 meta->iter.frameno = reg->frameno;
8966 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8967
8968 if (is_iter_destroy_kfunc(meta)) {
8969 err = unmark_stack_slots_iter(env, reg, nr_slots);
8970 if (err)
8971 return err;
8972 }
8973 }
8974
8975 return 0;
8976 }
8977
8978 /* Look for a previous loop entry at insn_idx: nearest parent state
8979 * stopped at insn_idx with callsites matching those in cur->frame.
8980 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)8981 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8982 struct bpf_verifier_state *cur,
8983 int insn_idx)
8984 {
8985 struct bpf_verifier_state_list *sl;
8986 struct bpf_verifier_state *st;
8987 struct list_head *pos, *head;
8988
8989 /* Explored states are pushed in stack order, most recent states come first */
8990 head = explored_state(env, insn_idx);
8991 list_for_each(pos, head) {
8992 sl = container_of(pos, struct bpf_verifier_state_list, node);
8993 /* If st->branches != 0 state is a part of current DFS verification path,
8994 * hence cur & st for a loop.
8995 */
8996 st = &sl->state;
8997 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8998 st->dfs_depth < cur->dfs_depth)
8999 return st;
9000 }
9001
9002 return NULL;
9003 }
9004
9005 static void reset_idmap_scratch(struct bpf_verifier_env *env);
9006 static bool regs_exact(const struct bpf_reg_state *rold,
9007 const struct bpf_reg_state *rcur,
9008 struct bpf_idmap *idmap);
9009
9010 /*
9011 * Check if scalar registers are exact for the purpose of not widening.
9012 * More lenient than regs_exact()
9013 */
scalars_exact_for_widen(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur)9014 static bool scalars_exact_for_widen(const struct bpf_reg_state *rold,
9015 const struct bpf_reg_state *rcur)
9016 {
9017 return !memcmp(rold, rcur, offsetof(struct bpf_reg_state, id));
9018 }
9019
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur)9020 static void maybe_widen_reg(struct bpf_verifier_env *env,
9021 struct bpf_reg_state *rold, struct bpf_reg_state *rcur)
9022 {
9023 if (rold->type != SCALAR_VALUE)
9024 return;
9025 if (rold->type != rcur->type)
9026 return;
9027 if (rold->precise || rcur->precise || scalars_exact_for_widen(rold, rcur))
9028 return;
9029 __mark_reg_unknown(env, rcur);
9030 }
9031
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9032 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
9033 struct bpf_verifier_state *old,
9034 struct bpf_verifier_state *cur)
9035 {
9036 struct bpf_func_state *fold, *fcur;
9037 int i, fr, num_slots;
9038
9039 for (fr = old->curframe; fr >= 0; fr--) {
9040 fold = old->frame[fr];
9041 fcur = cur->frame[fr];
9042
9043 for (i = 0; i < MAX_BPF_REG; i++)
9044 maybe_widen_reg(env,
9045 &fold->regs[i],
9046 &fcur->regs[i]);
9047
9048 num_slots = min(fold->allocated_stack / BPF_REG_SIZE,
9049 fcur->allocated_stack / BPF_REG_SIZE);
9050 for (i = 0; i < num_slots; i++) {
9051 if (!is_spilled_reg(&fold->stack[i]) ||
9052 !is_spilled_reg(&fcur->stack[i]))
9053 continue;
9054
9055 maybe_widen_reg(env,
9056 &fold->stack[i].spilled_ptr,
9057 &fcur->stack[i].spilled_ptr);
9058 }
9059 }
9060 return 0;
9061 }
9062
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)9063 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
9064 struct bpf_kfunc_call_arg_meta *meta)
9065 {
9066 int iter_frameno = meta->iter.frameno;
9067 int iter_spi = meta->iter.spi;
9068
9069 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
9070 }
9071
9072 /* process_iter_next_call() is called when verifier gets to iterator's next
9073 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
9074 * to it as just "iter_next()" in comments below.
9075 *
9076 * BPF verifier relies on a crucial contract for any iter_next()
9077 * implementation: it should *eventually* return NULL, and once that happens
9078 * it should keep returning NULL. That is, once iterator exhausts elements to
9079 * iterate, it should never reset or spuriously return new elements.
9080 *
9081 * With the assumption of such contract, process_iter_next_call() simulates
9082 * a fork in the verifier state to validate loop logic correctness and safety
9083 * without having to simulate infinite amount of iterations.
9084 *
9085 * In current state, we first assume that iter_next() returned NULL and
9086 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
9087 * conditions we should not form an infinite loop and should eventually reach
9088 * exit.
9089 *
9090 * Besides that, we also fork current state and enqueue it for later
9091 * verification. In a forked state we keep iterator state as ACTIVE
9092 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
9093 * also bump iteration depth to prevent erroneous infinite loop detection
9094 * later on (see iter_active_depths_differ() comment for details). In this
9095 * state we assume that we'll eventually loop back to another iter_next()
9096 * calls (it could be in exactly same location or in some other instruction,
9097 * it doesn't matter, we don't make any unnecessary assumptions about this,
9098 * everything revolves around iterator state in a stack slot, not which
9099 * instruction is calling iter_next()). When that happens, we either will come
9100 * to iter_next() with equivalent state and can conclude that next iteration
9101 * will proceed in exactly the same way as we just verified, so it's safe to
9102 * assume that loop converges. If not, we'll go on another iteration
9103 * simulation with a different input state, until all possible starting states
9104 * are validated or we reach maximum number of instructions limit.
9105 *
9106 * This way, we will either exhaustively discover all possible input states
9107 * that iterator loop can start with and eventually will converge, or we'll
9108 * effectively regress into bounded loop simulation logic and either reach
9109 * maximum number of instructions if loop is not provably convergent, or there
9110 * is some statically known limit on number of iterations (e.g., if there is
9111 * an explicit `if n > 100 then break;` statement somewhere in the loop).
9112 *
9113 * Iteration convergence logic in is_state_visited() relies on exact
9114 * states comparison, which ignores read and precision marks.
9115 * This is necessary because read and precision marks are not finalized
9116 * while in the loop. Exact comparison might preclude convergence for
9117 * simple programs like below:
9118 *
9119 * i = 0;
9120 * while(iter_next(&it))
9121 * i++;
9122 *
9123 * At each iteration step i++ would produce a new distinct state and
9124 * eventually instruction processing limit would be reached.
9125 *
9126 * To avoid such behavior speculatively forget (widen) range for
9127 * imprecise scalar registers, if those registers were not precise at the
9128 * end of the previous iteration and do not match exactly.
9129 *
9130 * This is a conservative heuristic that allows to verify wide range of programs,
9131 * however it precludes verification of programs that conjure an
9132 * imprecise value on the first loop iteration and use it as precise on a second.
9133 * For example, the following safe program would fail to verify:
9134 *
9135 * struct bpf_num_iter it;
9136 * int arr[10];
9137 * int i = 0, a = 0;
9138 * bpf_iter_num_new(&it, 0, 10);
9139 * while (bpf_iter_num_next(&it)) {
9140 * if (a == 0) {
9141 * a = 1;
9142 * i = 7; // Because i changed verifier would forget
9143 * // it's range on second loop entry.
9144 * } else {
9145 * arr[i] = 42; // This would fail to verify.
9146 * }
9147 * }
9148 * bpf_iter_num_destroy(&it);
9149 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)9150 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
9151 struct bpf_kfunc_call_arg_meta *meta)
9152 {
9153 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
9154 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
9155 struct bpf_reg_state *cur_iter, *queued_iter;
9156
9157 BTF_TYPE_EMIT(struct bpf_iter);
9158
9159 cur_iter = get_iter_from_state(cur_st, meta);
9160
9161 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
9162 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
9163 verifier_bug(env, "unexpected iterator state %d (%s)",
9164 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
9165 return -EFAULT;
9166 }
9167
9168 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
9169 /* Because iter_next() call is a checkpoint is_state_visitied()
9170 * should guarantee parent state with same call sites and insn_idx.
9171 */
9172 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
9173 !same_callsites(cur_st->parent, cur_st)) {
9174 verifier_bug(env, "bad parent state for iter next call");
9175 return -EFAULT;
9176 }
9177 /* Note cur_st->parent in the call below, it is necessary to skip
9178 * checkpoint created for cur_st by is_state_visited()
9179 * right at this instruction.
9180 */
9181 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
9182 /* branch out active iter state */
9183 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
9184 if (IS_ERR(queued_st))
9185 return PTR_ERR(queued_st);
9186
9187 queued_iter = get_iter_from_state(queued_st, meta);
9188 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
9189 queued_iter->iter.depth++;
9190 if (prev_st)
9191 widen_imprecise_scalars(env, prev_st, queued_st);
9192
9193 queued_fr = queued_st->frame[queued_st->curframe];
9194 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
9195 }
9196
9197 /* switch to DRAINED state, but keep the depth unchanged */
9198 /* mark current iter state as drained and assume returned NULL */
9199 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
9200 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
9201
9202 return 0;
9203 }
9204
arg_type_is_mem_size(enum bpf_arg_type type)9205 static bool arg_type_is_mem_size(enum bpf_arg_type type)
9206 {
9207 return type == ARG_CONST_SIZE ||
9208 type == ARG_CONST_SIZE_OR_ZERO;
9209 }
9210
arg_type_is_raw_mem(enum bpf_arg_type type)9211 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
9212 {
9213 return base_type(type) == ARG_PTR_TO_MEM &&
9214 type & MEM_UNINIT;
9215 }
9216
arg_type_is_release(enum bpf_arg_type type)9217 static bool arg_type_is_release(enum bpf_arg_type type)
9218 {
9219 return type & OBJ_RELEASE;
9220 }
9221
arg_type_is_dynptr(enum bpf_arg_type type)9222 static bool arg_type_is_dynptr(enum bpf_arg_type type)
9223 {
9224 return base_type(type) == ARG_PTR_TO_DYNPTR;
9225 }
9226
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)9227 static int resolve_map_arg_type(struct bpf_verifier_env *env,
9228 const struct bpf_call_arg_meta *meta,
9229 enum bpf_arg_type *arg_type)
9230 {
9231 if (!meta->map.ptr) {
9232 /* kernel subsystem misconfigured verifier */
9233 verifier_bug(env, "invalid map_ptr to access map->type");
9234 return -EFAULT;
9235 }
9236
9237 switch (meta->map.ptr->map_type) {
9238 case BPF_MAP_TYPE_SOCKMAP:
9239 case BPF_MAP_TYPE_SOCKHASH:
9240 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
9241 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
9242 } else {
9243 verbose(env, "invalid arg_type for sockmap/sockhash\n");
9244 return -EINVAL;
9245 }
9246 break;
9247 case BPF_MAP_TYPE_BLOOM_FILTER:
9248 if (meta->func_id == BPF_FUNC_map_peek_elem)
9249 *arg_type = ARG_PTR_TO_MAP_VALUE;
9250 break;
9251 default:
9252 break;
9253 }
9254 return 0;
9255 }
9256
9257 struct bpf_reg_types {
9258 const enum bpf_reg_type types[10];
9259 u32 *btf_id;
9260 };
9261
9262 static const struct bpf_reg_types sock_types = {
9263 .types = {
9264 PTR_TO_SOCK_COMMON,
9265 PTR_TO_SOCKET,
9266 PTR_TO_TCP_SOCK,
9267 PTR_TO_XDP_SOCK,
9268 },
9269 };
9270
9271 #ifdef CONFIG_NET
9272 static const struct bpf_reg_types btf_id_sock_common_types = {
9273 .types = {
9274 PTR_TO_SOCK_COMMON,
9275 PTR_TO_SOCKET,
9276 PTR_TO_TCP_SOCK,
9277 PTR_TO_XDP_SOCK,
9278 PTR_TO_BTF_ID,
9279 PTR_TO_BTF_ID | PTR_TRUSTED,
9280 },
9281 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9282 };
9283 #endif
9284
9285 static const struct bpf_reg_types mem_types = {
9286 .types = {
9287 PTR_TO_STACK,
9288 PTR_TO_PACKET,
9289 PTR_TO_PACKET_META,
9290 PTR_TO_MAP_KEY,
9291 PTR_TO_MAP_VALUE,
9292 PTR_TO_MEM,
9293 PTR_TO_MEM | MEM_RINGBUF,
9294 PTR_TO_BUF,
9295 PTR_TO_BTF_ID | PTR_TRUSTED,
9296 },
9297 };
9298
9299 static const struct bpf_reg_types spin_lock_types = {
9300 .types = {
9301 PTR_TO_MAP_VALUE,
9302 PTR_TO_BTF_ID | MEM_ALLOC,
9303 }
9304 };
9305
9306 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
9307 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
9308 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
9309 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
9310 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
9311 static const struct bpf_reg_types btf_ptr_types = {
9312 .types = {
9313 PTR_TO_BTF_ID,
9314 PTR_TO_BTF_ID | PTR_TRUSTED,
9315 PTR_TO_BTF_ID | MEM_RCU,
9316 },
9317 };
9318 static const struct bpf_reg_types percpu_btf_ptr_types = {
9319 .types = {
9320 PTR_TO_BTF_ID | MEM_PERCPU,
9321 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
9322 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
9323 }
9324 };
9325 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
9326 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
9327 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
9328 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
9329 static const struct bpf_reg_types kptr_xchg_dest_types = {
9330 .types = {
9331 PTR_TO_MAP_VALUE,
9332 PTR_TO_BTF_ID | MEM_ALLOC
9333 }
9334 };
9335 static const struct bpf_reg_types dynptr_types = {
9336 .types = {
9337 PTR_TO_STACK,
9338 CONST_PTR_TO_DYNPTR,
9339 }
9340 };
9341
9342 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
9343 [ARG_PTR_TO_MAP_KEY] = &mem_types,
9344 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
9345 [ARG_CONST_SIZE] = &scalar_types,
9346 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
9347 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
9348 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
9349 [ARG_PTR_TO_CTX] = &context_types,
9350 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
9351 #ifdef CONFIG_NET
9352 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
9353 #endif
9354 [ARG_PTR_TO_SOCKET] = &fullsock_types,
9355 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
9356 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
9357 [ARG_PTR_TO_MEM] = &mem_types,
9358 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
9359 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
9360 [ARG_PTR_TO_FUNC] = &func_ptr_types,
9361 [ARG_PTR_TO_STACK] = &stack_ptr_types,
9362 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
9363 [ARG_PTR_TO_TIMER] = &timer_types,
9364 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types,
9365 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
9366 };
9367
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)9368 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
9369 enum bpf_arg_type arg_type,
9370 const u32 *arg_btf_id,
9371 struct bpf_call_arg_meta *meta)
9372 {
9373 struct bpf_reg_state *reg = reg_state(env, regno);
9374 enum bpf_reg_type expected, type = reg->type;
9375 const struct bpf_reg_types *compatible;
9376 int i, j;
9377
9378 compatible = compatible_reg_types[base_type(arg_type)];
9379 if (!compatible) {
9380 verifier_bug(env, "unsupported arg type %d", arg_type);
9381 return -EFAULT;
9382 }
9383
9384 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
9385 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
9386 *
9387 * Same for MAYBE_NULL:
9388 *
9389 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
9390 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
9391 *
9392 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
9393 *
9394 * Therefore we fold these flags depending on the arg_type before comparison.
9395 */
9396 if (arg_type & MEM_RDONLY)
9397 type &= ~MEM_RDONLY;
9398 if (arg_type & PTR_MAYBE_NULL)
9399 type &= ~PTR_MAYBE_NULL;
9400 if (base_type(arg_type) == ARG_PTR_TO_MEM)
9401 type &= ~DYNPTR_TYPE_FLAG_MASK;
9402
9403 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
9404 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
9405 type &= ~MEM_ALLOC;
9406 type &= ~MEM_PERCPU;
9407 }
9408
9409 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
9410 expected = compatible->types[i];
9411 if (expected == NOT_INIT)
9412 break;
9413
9414 if (type == expected)
9415 goto found;
9416 }
9417
9418 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
9419 for (j = 0; j + 1 < i; j++)
9420 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
9421 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
9422 return -EACCES;
9423
9424 found:
9425 if (base_type(reg->type) != PTR_TO_BTF_ID)
9426 return 0;
9427
9428 if (compatible == &mem_types) {
9429 if (!(arg_type & MEM_RDONLY)) {
9430 verbose(env,
9431 "%s() may write into memory pointed by R%d type=%s\n",
9432 func_id_name(meta->func_id),
9433 regno, reg_type_str(env, reg->type));
9434 return -EACCES;
9435 }
9436 return 0;
9437 }
9438
9439 switch ((int)reg->type) {
9440 case PTR_TO_BTF_ID:
9441 case PTR_TO_BTF_ID | PTR_TRUSTED:
9442 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
9443 case PTR_TO_BTF_ID | MEM_RCU:
9444 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
9445 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
9446 {
9447 /* For bpf_sk_release, it needs to match against first member
9448 * 'struct sock_common', hence make an exception for it. This
9449 * allows bpf_sk_release to work for multiple socket types.
9450 */
9451 bool strict_type_match = arg_type_is_release(arg_type) &&
9452 meta->func_id != BPF_FUNC_sk_release;
9453
9454 if (type_may_be_null(reg->type) &&
9455 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
9456 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
9457 return -EACCES;
9458 }
9459
9460 if (!arg_btf_id) {
9461 if (!compatible->btf_id) {
9462 verifier_bug(env, "missing arg compatible BTF ID");
9463 return -EFAULT;
9464 }
9465 arg_btf_id = compatible->btf_id;
9466 }
9467
9468 if (meta->func_id == BPF_FUNC_kptr_xchg) {
9469 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9470 return -EACCES;
9471 } else {
9472 if (arg_btf_id == BPF_PTR_POISON) {
9473 verbose(env, "verifier internal error:");
9474 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
9475 regno);
9476 return -EACCES;
9477 }
9478
9479 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
9480 btf_vmlinux, *arg_btf_id,
9481 strict_type_match)) {
9482 verbose(env, "R%d is of type %s but %s is expected\n",
9483 regno, btf_type_name(reg->btf, reg->btf_id),
9484 btf_type_name(btf_vmlinux, *arg_btf_id));
9485 return -EACCES;
9486 }
9487 }
9488 break;
9489 }
9490 case PTR_TO_BTF_ID | MEM_ALLOC:
9491 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
9492 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
9493 meta->func_id != BPF_FUNC_kptr_xchg) {
9494 verifier_bug(env, "unimplemented handling of MEM_ALLOC");
9495 return -EFAULT;
9496 }
9497 /* Check if local kptr in src arg matches kptr in dst arg */
9498 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
9499 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9500 return -EACCES;
9501 }
9502 break;
9503 case PTR_TO_BTF_ID | MEM_PERCPU:
9504 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
9505 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
9506 /* Handled by helper specific checks */
9507 break;
9508 default:
9509 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match");
9510 return -EFAULT;
9511 }
9512 return 0;
9513 }
9514
9515 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)9516 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
9517 {
9518 struct btf_field *field;
9519 struct btf_record *rec;
9520
9521 rec = reg_btf_record(reg);
9522 if (!rec)
9523 return NULL;
9524
9525 field = btf_record_find(rec, off, fields);
9526 if (!field)
9527 return NULL;
9528
9529 return field;
9530 }
9531
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)9532 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
9533 const struct bpf_reg_state *reg, int regno,
9534 enum bpf_arg_type arg_type)
9535 {
9536 u32 type = reg->type;
9537
9538 /* When referenced register is passed to release function, its fixed
9539 * offset must be 0.
9540 *
9541 * We will check arg_type_is_release reg has ref_obj_id when storing
9542 * meta->release_regno.
9543 */
9544 if (arg_type_is_release(arg_type)) {
9545 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
9546 * may not directly point to the object being released, but to
9547 * dynptr pointing to such object, which might be at some offset
9548 * on the stack. In that case, we simply to fallback to the
9549 * default handling.
9550 */
9551 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
9552 return 0;
9553
9554 /* Doing check_ptr_off_reg check for the offset will catch this
9555 * because fixed_off_ok is false, but checking here allows us
9556 * to give the user a better error message.
9557 */
9558 if (reg->off) {
9559 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
9560 regno);
9561 return -EINVAL;
9562 }
9563 return __check_ptr_off_reg(env, reg, regno, false);
9564 }
9565
9566 switch (type) {
9567 /* Pointer types where both fixed and variable offset is explicitly allowed: */
9568 case PTR_TO_STACK:
9569 case PTR_TO_PACKET:
9570 case PTR_TO_PACKET_META:
9571 case PTR_TO_MAP_KEY:
9572 case PTR_TO_MAP_VALUE:
9573 case PTR_TO_MEM:
9574 case PTR_TO_MEM | MEM_RDONLY:
9575 case PTR_TO_MEM | MEM_RINGBUF:
9576 case PTR_TO_BUF:
9577 case PTR_TO_BUF | MEM_RDONLY:
9578 case PTR_TO_ARENA:
9579 case SCALAR_VALUE:
9580 return 0;
9581 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
9582 * fixed offset.
9583 */
9584 case PTR_TO_BTF_ID:
9585 case PTR_TO_BTF_ID | MEM_ALLOC:
9586 case PTR_TO_BTF_ID | PTR_TRUSTED:
9587 case PTR_TO_BTF_ID | MEM_RCU:
9588 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
9589 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
9590 /* When referenced PTR_TO_BTF_ID is passed to release function,
9591 * its fixed offset must be 0. In the other cases, fixed offset
9592 * can be non-zero. This was already checked above. So pass
9593 * fixed_off_ok as true to allow fixed offset for all other
9594 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
9595 * still need to do checks instead of returning.
9596 */
9597 return __check_ptr_off_reg(env, reg, regno, true);
9598 default:
9599 return __check_ptr_off_reg(env, reg, regno, false);
9600 }
9601 }
9602
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)9603 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
9604 const struct bpf_func_proto *fn,
9605 struct bpf_reg_state *regs)
9606 {
9607 struct bpf_reg_state *state = NULL;
9608 int i;
9609
9610 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
9611 if (arg_type_is_dynptr(fn->arg_type[i])) {
9612 if (state) {
9613 verbose(env, "verifier internal error: multiple dynptr args\n");
9614 return NULL;
9615 }
9616 state = ®s[BPF_REG_1 + i];
9617 }
9618
9619 if (!state)
9620 verbose(env, "verifier internal error: no dynptr arg found\n");
9621
9622 return state;
9623 }
9624
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9625 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9626 {
9627 struct bpf_func_state *state = func(env, reg);
9628 int spi;
9629
9630 if (reg->type == CONST_PTR_TO_DYNPTR)
9631 return reg->id;
9632 spi = dynptr_get_spi(env, reg);
9633 if (spi < 0)
9634 return spi;
9635 return state->stack[spi].spilled_ptr.id;
9636 }
9637
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9638 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9639 {
9640 struct bpf_func_state *state = func(env, reg);
9641 int spi;
9642
9643 if (reg->type == CONST_PTR_TO_DYNPTR)
9644 return reg->ref_obj_id;
9645 spi = dynptr_get_spi(env, reg);
9646 if (spi < 0)
9647 return spi;
9648 return state->stack[spi].spilled_ptr.ref_obj_id;
9649 }
9650
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9651 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
9652 struct bpf_reg_state *reg)
9653 {
9654 struct bpf_func_state *state = func(env, reg);
9655 int spi;
9656
9657 if (reg->type == CONST_PTR_TO_DYNPTR)
9658 return reg->dynptr.type;
9659
9660 spi = __get_spi(reg->off);
9661 if (spi < 0) {
9662 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
9663 return BPF_DYNPTR_TYPE_INVALID;
9664 }
9665
9666 return state->stack[spi].spilled_ptr.dynptr.type;
9667 }
9668
check_reg_const_str(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)9669 static int check_reg_const_str(struct bpf_verifier_env *env,
9670 struct bpf_reg_state *reg, u32 regno)
9671 {
9672 struct bpf_map *map = reg->map_ptr;
9673 int err;
9674 int map_off;
9675 u64 map_addr;
9676 char *str_ptr;
9677
9678 if (reg->type != PTR_TO_MAP_VALUE)
9679 return -EINVAL;
9680
9681 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
9682 verbose(env, "R%d points to insn_array map which cannot be used as const string\n", regno);
9683 return -EACCES;
9684 }
9685
9686 if (!bpf_map_is_rdonly(map)) {
9687 verbose(env, "R%d does not point to a readonly map'\n", regno);
9688 return -EACCES;
9689 }
9690
9691 if (!tnum_is_const(reg->var_off)) {
9692 verbose(env, "R%d is not a constant address'\n", regno);
9693 return -EACCES;
9694 }
9695
9696 if (!map->ops->map_direct_value_addr) {
9697 verbose(env, "no direct value access support for this map type\n");
9698 return -EACCES;
9699 }
9700
9701 err = check_map_access(env, regno, reg->off,
9702 map->value_size - reg->off, false,
9703 ACCESS_HELPER);
9704 if (err)
9705 return err;
9706
9707 map_off = reg->off + reg->var_off.value;
9708 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
9709 if (err) {
9710 verbose(env, "direct value access on string failed\n");
9711 return err;
9712 }
9713
9714 str_ptr = (char *)(long)(map_addr);
9715 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
9716 verbose(env, "string is not zero-terminated\n");
9717 return -EINVAL;
9718 }
9719 return 0;
9720 }
9721
9722 /* Returns constant key value in `value` if possible, else negative error */
get_constant_map_key(struct bpf_verifier_env * env,struct bpf_reg_state * key,u32 key_size,s64 * value)9723 static int get_constant_map_key(struct bpf_verifier_env *env,
9724 struct bpf_reg_state *key,
9725 u32 key_size,
9726 s64 *value)
9727 {
9728 struct bpf_func_state *state = func(env, key);
9729 struct bpf_reg_state *reg;
9730 int slot, spi, off;
9731 int spill_size = 0;
9732 int zero_size = 0;
9733 int stack_off;
9734 int i, err;
9735 u8 *stype;
9736
9737 if (!env->bpf_capable)
9738 return -EOPNOTSUPP;
9739 if (key->type != PTR_TO_STACK)
9740 return -EOPNOTSUPP;
9741 if (!tnum_is_const(key->var_off))
9742 return -EOPNOTSUPP;
9743
9744 stack_off = key->off + key->var_off.value;
9745 slot = -stack_off - 1;
9746 spi = slot / BPF_REG_SIZE;
9747 off = slot % BPF_REG_SIZE;
9748 stype = state->stack[spi].slot_type;
9749
9750 /* First handle precisely tracked STACK_ZERO */
9751 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
9752 zero_size++;
9753 if (zero_size >= key_size) {
9754 *value = 0;
9755 return 0;
9756 }
9757
9758 /* Check that stack contains a scalar spill of expected size */
9759 if (!is_spilled_scalar_reg(&state->stack[spi]))
9760 return -EOPNOTSUPP;
9761 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
9762 spill_size++;
9763 if (spill_size != key_size)
9764 return -EOPNOTSUPP;
9765
9766 reg = &state->stack[spi].spilled_ptr;
9767 if (!tnum_is_const(reg->var_off))
9768 /* Stack value not statically known */
9769 return -EOPNOTSUPP;
9770
9771 /* We are relying on a constant value. So mark as precise
9772 * to prevent pruning on it.
9773 */
9774 bt_set_frame_slot(&env->bt, key->frameno, spi);
9775 err = mark_chain_precision_batch(env, env->cur_state);
9776 if (err < 0)
9777 return err;
9778
9779 *value = reg->var_off.value;
9780 return 0;
9781 }
9782
9783 static bool can_elide_value_nullness(enum bpf_map_type type);
9784
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)9785 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
9786 struct bpf_call_arg_meta *meta,
9787 const struct bpf_func_proto *fn,
9788 int insn_idx)
9789 {
9790 u32 regno = BPF_REG_1 + arg;
9791 struct bpf_reg_state *reg = reg_state(env, regno);
9792 enum bpf_arg_type arg_type = fn->arg_type[arg];
9793 enum bpf_reg_type type = reg->type;
9794 u32 *arg_btf_id = NULL;
9795 u32 key_size;
9796 int err = 0;
9797
9798 if (arg_type == ARG_DONTCARE)
9799 return 0;
9800
9801 err = check_reg_arg(env, regno, SRC_OP);
9802 if (err)
9803 return err;
9804
9805 if (arg_type == ARG_ANYTHING) {
9806 if (is_pointer_value(env, regno)) {
9807 verbose(env, "R%d leaks addr into helper function\n",
9808 regno);
9809 return -EACCES;
9810 }
9811 return 0;
9812 }
9813
9814 if (type_is_pkt_pointer(type) &&
9815 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9816 verbose(env, "helper access to the packet is not allowed\n");
9817 return -EACCES;
9818 }
9819
9820 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9821 err = resolve_map_arg_type(env, meta, &arg_type);
9822 if (err)
9823 return err;
9824 }
9825
9826 if (register_is_null(reg) && type_may_be_null(arg_type))
9827 /* A NULL register has a SCALAR_VALUE type, so skip
9828 * type checking.
9829 */
9830 goto skip_type_check;
9831
9832 /* arg_btf_id and arg_size are in a union. */
9833 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9834 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9835 arg_btf_id = fn->arg_btf_id[arg];
9836
9837 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9838 if (err)
9839 return err;
9840
9841 err = check_func_arg_reg_off(env, reg, regno, arg_type);
9842 if (err)
9843 return err;
9844
9845 skip_type_check:
9846 if (arg_type_is_release(arg_type)) {
9847 if (arg_type_is_dynptr(arg_type)) {
9848 struct bpf_func_state *state = func(env, reg);
9849 int spi;
9850
9851 /* Only dynptr created on stack can be released, thus
9852 * the get_spi and stack state checks for spilled_ptr
9853 * should only be done before process_dynptr_func for
9854 * PTR_TO_STACK.
9855 */
9856 if (reg->type == PTR_TO_STACK) {
9857 spi = dynptr_get_spi(env, reg);
9858 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9859 verbose(env, "arg %d is an unacquired reference\n", regno);
9860 return -EINVAL;
9861 }
9862 } else {
9863 verbose(env, "cannot release unowned const bpf_dynptr\n");
9864 return -EINVAL;
9865 }
9866 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
9867 verbose(env, "R%d must be referenced when passed to release function\n",
9868 regno);
9869 return -EINVAL;
9870 }
9871 if (meta->release_regno) {
9872 verifier_bug(env, "more than one release argument");
9873 return -EFAULT;
9874 }
9875 meta->release_regno = regno;
9876 }
9877
9878 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9879 if (meta->ref_obj_id) {
9880 verbose(env, "more than one arg with ref_obj_id R%d %u %u",
9881 regno, reg->ref_obj_id,
9882 meta->ref_obj_id);
9883 return -EACCES;
9884 }
9885 meta->ref_obj_id = reg->ref_obj_id;
9886 }
9887
9888 switch (base_type(arg_type)) {
9889 case ARG_CONST_MAP_PTR:
9890 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9891 if (meta->map.ptr) {
9892 /* Use map_uid (which is unique id of inner map) to reject:
9893 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9894 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9895 * if (inner_map1 && inner_map2) {
9896 * timer = bpf_map_lookup_elem(inner_map1);
9897 * if (timer)
9898 * // mismatch would have been allowed
9899 * bpf_timer_init(timer, inner_map2);
9900 * }
9901 *
9902 * Comparing map_ptr is enough to distinguish normal and outer maps.
9903 */
9904 if (meta->map.ptr != reg->map_ptr ||
9905 meta->map.uid != reg->map_uid) {
9906 verbose(env,
9907 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9908 meta->map.uid, reg->map_uid);
9909 return -EINVAL;
9910 }
9911 }
9912 meta->map.ptr = reg->map_ptr;
9913 meta->map.uid = reg->map_uid;
9914 break;
9915 case ARG_PTR_TO_MAP_KEY:
9916 /* bpf_map_xxx(..., map_ptr, ..., key) call:
9917 * check that [key, key + map->key_size) are within
9918 * stack limits and initialized
9919 */
9920 if (!meta->map.ptr) {
9921 /* in function declaration map_ptr must come before
9922 * map_key, so that it's verified and known before
9923 * we have to check map_key here. Otherwise it means
9924 * that kernel subsystem misconfigured verifier
9925 */
9926 verifier_bug(env, "invalid map_ptr to access map->key");
9927 return -EFAULT;
9928 }
9929 key_size = meta->map.ptr->key_size;
9930 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
9931 if (err)
9932 return err;
9933 if (can_elide_value_nullness(meta->map.ptr->map_type)) {
9934 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
9935 if (err < 0) {
9936 meta->const_map_key = -1;
9937 if (err == -EOPNOTSUPP)
9938 err = 0;
9939 else
9940 return err;
9941 }
9942 }
9943 break;
9944 case ARG_PTR_TO_MAP_VALUE:
9945 if (type_may_be_null(arg_type) && register_is_null(reg))
9946 return 0;
9947
9948 /* bpf_map_xxx(..., map_ptr, ..., value) call:
9949 * check [value, value + map->value_size) validity
9950 */
9951 if (!meta->map.ptr) {
9952 /* kernel subsystem misconfigured verifier */
9953 verifier_bug(env, "invalid map_ptr to access map->value");
9954 return -EFAULT;
9955 }
9956 meta->raw_mode = arg_type & MEM_UNINIT;
9957 err = check_helper_mem_access(env, regno, meta->map.ptr->value_size,
9958 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9959 false, meta);
9960 break;
9961 case ARG_PTR_TO_PERCPU_BTF_ID:
9962 if (!reg->btf_id) {
9963 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9964 return -EACCES;
9965 }
9966 meta->ret_btf = reg->btf;
9967 meta->ret_btf_id = reg->btf_id;
9968 break;
9969 case ARG_PTR_TO_SPIN_LOCK:
9970 if (in_rbtree_lock_required_cb(env)) {
9971 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9972 return -EACCES;
9973 }
9974 if (meta->func_id == BPF_FUNC_spin_lock) {
9975 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
9976 if (err)
9977 return err;
9978 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
9979 err = process_spin_lock(env, regno, 0);
9980 if (err)
9981 return err;
9982 } else {
9983 verifier_bug(env, "spin lock arg on unexpected helper");
9984 return -EFAULT;
9985 }
9986 break;
9987 case ARG_PTR_TO_TIMER:
9988 err = process_timer_helper(env, regno, meta);
9989 if (err)
9990 return err;
9991 break;
9992 case ARG_PTR_TO_FUNC:
9993 meta->subprogno = reg->subprogno;
9994 break;
9995 case ARG_PTR_TO_MEM:
9996 /* The access to this pointer is only checked when we hit the
9997 * next is_mem_size argument below.
9998 */
9999 meta->raw_mode = arg_type & MEM_UNINIT;
10000 if (arg_type & MEM_FIXED_SIZE) {
10001 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
10002 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
10003 false, meta);
10004 if (err)
10005 return err;
10006 if (arg_type & MEM_ALIGNED)
10007 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
10008 }
10009 break;
10010 case ARG_CONST_SIZE:
10011 err = check_mem_size_reg(env, reg, regno,
10012 fn->arg_type[arg - 1] & MEM_WRITE ?
10013 BPF_WRITE : BPF_READ,
10014 false, meta);
10015 break;
10016 case ARG_CONST_SIZE_OR_ZERO:
10017 err = check_mem_size_reg(env, reg, regno,
10018 fn->arg_type[arg - 1] & MEM_WRITE ?
10019 BPF_WRITE : BPF_READ,
10020 true, meta);
10021 break;
10022 case ARG_PTR_TO_DYNPTR:
10023 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
10024 if (err)
10025 return err;
10026 break;
10027 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
10028 if (!tnum_is_const(reg->var_off)) {
10029 verbose(env, "R%d is not a known constant'\n",
10030 regno);
10031 return -EACCES;
10032 }
10033 meta->mem_size = reg->var_off.value;
10034 err = mark_chain_precision(env, regno);
10035 if (err)
10036 return err;
10037 break;
10038 case ARG_PTR_TO_CONST_STR:
10039 {
10040 err = check_reg_const_str(env, reg, regno);
10041 if (err)
10042 return err;
10043 break;
10044 }
10045 case ARG_KPTR_XCHG_DEST:
10046 err = process_kptr_func(env, regno, meta);
10047 if (err)
10048 return err;
10049 break;
10050 }
10051
10052 return err;
10053 }
10054
may_update_sockmap(struct bpf_verifier_env * env,int func_id)10055 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
10056 {
10057 enum bpf_attach_type eatype = env->prog->expected_attach_type;
10058 enum bpf_prog_type type = resolve_prog_type(env->prog);
10059
10060 if (func_id != BPF_FUNC_map_update_elem &&
10061 func_id != BPF_FUNC_map_delete_elem)
10062 return false;
10063
10064 /* It's not possible to get access to a locked struct sock in these
10065 * contexts, so updating is safe.
10066 */
10067 switch (type) {
10068 case BPF_PROG_TYPE_TRACING:
10069 if (eatype == BPF_TRACE_ITER)
10070 return true;
10071 break;
10072 case BPF_PROG_TYPE_SOCK_OPS:
10073 /* map_update allowed only via dedicated helpers with event type checks */
10074 if (func_id == BPF_FUNC_map_delete_elem)
10075 return true;
10076 break;
10077 case BPF_PROG_TYPE_SOCKET_FILTER:
10078 case BPF_PROG_TYPE_SCHED_CLS:
10079 case BPF_PROG_TYPE_SCHED_ACT:
10080 case BPF_PROG_TYPE_XDP:
10081 case BPF_PROG_TYPE_SK_REUSEPORT:
10082 case BPF_PROG_TYPE_FLOW_DISSECTOR:
10083 case BPF_PROG_TYPE_SK_LOOKUP:
10084 return true;
10085 default:
10086 break;
10087 }
10088
10089 verbose(env, "cannot update sockmap in this context\n");
10090 return false;
10091 }
10092
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)10093 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
10094 {
10095 return env->prog->jit_requested &&
10096 bpf_jit_supports_subprog_tailcalls();
10097 }
10098
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)10099 static int check_map_func_compatibility(struct bpf_verifier_env *env,
10100 struct bpf_map *map, int func_id)
10101 {
10102 if (!map)
10103 return 0;
10104
10105 /* We need a two way check, first is from map perspective ... */
10106 switch (map->map_type) {
10107 case BPF_MAP_TYPE_PROG_ARRAY:
10108 if (func_id != BPF_FUNC_tail_call)
10109 goto error;
10110 break;
10111 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
10112 if (func_id != BPF_FUNC_perf_event_read &&
10113 func_id != BPF_FUNC_perf_event_output &&
10114 func_id != BPF_FUNC_skb_output &&
10115 func_id != BPF_FUNC_perf_event_read_value &&
10116 func_id != BPF_FUNC_xdp_output)
10117 goto error;
10118 break;
10119 case BPF_MAP_TYPE_RINGBUF:
10120 if (func_id != BPF_FUNC_ringbuf_output &&
10121 func_id != BPF_FUNC_ringbuf_reserve &&
10122 func_id != BPF_FUNC_ringbuf_query &&
10123 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
10124 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
10125 func_id != BPF_FUNC_ringbuf_discard_dynptr)
10126 goto error;
10127 break;
10128 case BPF_MAP_TYPE_USER_RINGBUF:
10129 if (func_id != BPF_FUNC_user_ringbuf_drain)
10130 goto error;
10131 break;
10132 case BPF_MAP_TYPE_STACK_TRACE:
10133 if (func_id != BPF_FUNC_get_stackid)
10134 goto error;
10135 break;
10136 case BPF_MAP_TYPE_CGROUP_ARRAY:
10137 if (func_id != BPF_FUNC_skb_under_cgroup &&
10138 func_id != BPF_FUNC_current_task_under_cgroup)
10139 goto error;
10140 break;
10141 case BPF_MAP_TYPE_CGROUP_STORAGE:
10142 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
10143 if (func_id != BPF_FUNC_get_local_storage)
10144 goto error;
10145 break;
10146 case BPF_MAP_TYPE_DEVMAP:
10147 case BPF_MAP_TYPE_DEVMAP_HASH:
10148 if (func_id != BPF_FUNC_redirect_map &&
10149 func_id != BPF_FUNC_map_lookup_elem)
10150 goto error;
10151 break;
10152 /* Restrict bpf side of cpumap and xskmap, open when use-cases
10153 * appear.
10154 */
10155 case BPF_MAP_TYPE_CPUMAP:
10156 if (func_id != BPF_FUNC_redirect_map)
10157 goto error;
10158 break;
10159 case BPF_MAP_TYPE_XSKMAP:
10160 if (func_id != BPF_FUNC_redirect_map &&
10161 func_id != BPF_FUNC_map_lookup_elem)
10162 goto error;
10163 break;
10164 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10165 case BPF_MAP_TYPE_HASH_OF_MAPS:
10166 if (func_id != BPF_FUNC_map_lookup_elem)
10167 goto error;
10168 break;
10169 case BPF_MAP_TYPE_SOCKMAP:
10170 if (func_id != BPF_FUNC_sk_redirect_map &&
10171 func_id != BPF_FUNC_sock_map_update &&
10172 func_id != BPF_FUNC_msg_redirect_map &&
10173 func_id != BPF_FUNC_sk_select_reuseport &&
10174 func_id != BPF_FUNC_map_lookup_elem &&
10175 !may_update_sockmap(env, func_id))
10176 goto error;
10177 break;
10178 case BPF_MAP_TYPE_SOCKHASH:
10179 if (func_id != BPF_FUNC_sk_redirect_hash &&
10180 func_id != BPF_FUNC_sock_hash_update &&
10181 func_id != BPF_FUNC_msg_redirect_hash &&
10182 func_id != BPF_FUNC_sk_select_reuseport &&
10183 func_id != BPF_FUNC_map_lookup_elem &&
10184 !may_update_sockmap(env, func_id))
10185 goto error;
10186 break;
10187 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
10188 if (func_id != BPF_FUNC_sk_select_reuseport)
10189 goto error;
10190 break;
10191 case BPF_MAP_TYPE_QUEUE:
10192 case BPF_MAP_TYPE_STACK:
10193 if (func_id != BPF_FUNC_map_peek_elem &&
10194 func_id != BPF_FUNC_map_pop_elem &&
10195 func_id != BPF_FUNC_map_push_elem)
10196 goto error;
10197 break;
10198 case BPF_MAP_TYPE_SK_STORAGE:
10199 if (func_id != BPF_FUNC_sk_storage_get &&
10200 func_id != BPF_FUNC_sk_storage_delete &&
10201 func_id != BPF_FUNC_kptr_xchg)
10202 goto error;
10203 break;
10204 case BPF_MAP_TYPE_INODE_STORAGE:
10205 if (func_id != BPF_FUNC_inode_storage_get &&
10206 func_id != BPF_FUNC_inode_storage_delete &&
10207 func_id != BPF_FUNC_kptr_xchg)
10208 goto error;
10209 break;
10210 case BPF_MAP_TYPE_TASK_STORAGE:
10211 if (func_id != BPF_FUNC_task_storage_get &&
10212 func_id != BPF_FUNC_task_storage_delete &&
10213 func_id != BPF_FUNC_kptr_xchg)
10214 goto error;
10215 break;
10216 case BPF_MAP_TYPE_CGRP_STORAGE:
10217 if (func_id != BPF_FUNC_cgrp_storage_get &&
10218 func_id != BPF_FUNC_cgrp_storage_delete &&
10219 func_id != BPF_FUNC_kptr_xchg)
10220 goto error;
10221 break;
10222 case BPF_MAP_TYPE_BLOOM_FILTER:
10223 if (func_id != BPF_FUNC_map_peek_elem &&
10224 func_id != BPF_FUNC_map_push_elem)
10225 goto error;
10226 break;
10227 case BPF_MAP_TYPE_INSN_ARRAY:
10228 goto error;
10229 default:
10230 break;
10231 }
10232
10233 /* ... and second from the function itself. */
10234 switch (func_id) {
10235 case BPF_FUNC_tail_call:
10236 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
10237 goto error;
10238 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
10239 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
10240 return -EINVAL;
10241 }
10242 break;
10243 case BPF_FUNC_perf_event_read:
10244 case BPF_FUNC_perf_event_output:
10245 case BPF_FUNC_perf_event_read_value:
10246 case BPF_FUNC_skb_output:
10247 case BPF_FUNC_xdp_output:
10248 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10249 goto error;
10250 break;
10251 case BPF_FUNC_ringbuf_output:
10252 case BPF_FUNC_ringbuf_reserve:
10253 case BPF_FUNC_ringbuf_query:
10254 case BPF_FUNC_ringbuf_reserve_dynptr:
10255 case BPF_FUNC_ringbuf_submit_dynptr:
10256 case BPF_FUNC_ringbuf_discard_dynptr:
10257 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
10258 goto error;
10259 break;
10260 case BPF_FUNC_user_ringbuf_drain:
10261 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
10262 goto error;
10263 break;
10264 case BPF_FUNC_get_stackid:
10265 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
10266 goto error;
10267 break;
10268 case BPF_FUNC_current_task_under_cgroup:
10269 case BPF_FUNC_skb_under_cgroup:
10270 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
10271 goto error;
10272 break;
10273 case BPF_FUNC_redirect_map:
10274 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
10275 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
10276 map->map_type != BPF_MAP_TYPE_CPUMAP &&
10277 map->map_type != BPF_MAP_TYPE_XSKMAP)
10278 goto error;
10279 break;
10280 case BPF_FUNC_sk_redirect_map:
10281 case BPF_FUNC_msg_redirect_map:
10282 case BPF_FUNC_sock_map_update:
10283 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
10284 goto error;
10285 break;
10286 case BPF_FUNC_sk_redirect_hash:
10287 case BPF_FUNC_msg_redirect_hash:
10288 case BPF_FUNC_sock_hash_update:
10289 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
10290 goto error;
10291 break;
10292 case BPF_FUNC_get_local_storage:
10293 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
10294 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
10295 goto error;
10296 break;
10297 case BPF_FUNC_sk_select_reuseport:
10298 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
10299 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
10300 map->map_type != BPF_MAP_TYPE_SOCKHASH)
10301 goto error;
10302 break;
10303 case BPF_FUNC_map_pop_elem:
10304 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10305 map->map_type != BPF_MAP_TYPE_STACK)
10306 goto error;
10307 break;
10308 case BPF_FUNC_map_peek_elem:
10309 case BPF_FUNC_map_push_elem:
10310 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10311 map->map_type != BPF_MAP_TYPE_STACK &&
10312 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
10313 goto error;
10314 break;
10315 case BPF_FUNC_map_lookup_percpu_elem:
10316 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
10317 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10318 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
10319 goto error;
10320 break;
10321 case BPF_FUNC_sk_storage_get:
10322 case BPF_FUNC_sk_storage_delete:
10323 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
10324 goto error;
10325 break;
10326 case BPF_FUNC_inode_storage_get:
10327 case BPF_FUNC_inode_storage_delete:
10328 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
10329 goto error;
10330 break;
10331 case BPF_FUNC_task_storage_get:
10332 case BPF_FUNC_task_storage_delete:
10333 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
10334 goto error;
10335 break;
10336 case BPF_FUNC_cgrp_storage_get:
10337 case BPF_FUNC_cgrp_storage_delete:
10338 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
10339 goto error;
10340 break;
10341 default:
10342 break;
10343 }
10344
10345 return 0;
10346 error:
10347 verbose(env, "cannot pass map_type %d into func %s#%d\n",
10348 map->map_type, func_id_name(func_id), func_id);
10349 return -EINVAL;
10350 }
10351
check_raw_mode_ok(const struct bpf_func_proto * fn)10352 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
10353 {
10354 int count = 0;
10355
10356 if (arg_type_is_raw_mem(fn->arg1_type))
10357 count++;
10358 if (arg_type_is_raw_mem(fn->arg2_type))
10359 count++;
10360 if (arg_type_is_raw_mem(fn->arg3_type))
10361 count++;
10362 if (arg_type_is_raw_mem(fn->arg4_type))
10363 count++;
10364 if (arg_type_is_raw_mem(fn->arg5_type))
10365 count++;
10366
10367 /* We only support one arg being in raw mode at the moment,
10368 * which is sufficient for the helper functions we have
10369 * right now.
10370 */
10371 return count <= 1;
10372 }
10373
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)10374 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
10375 {
10376 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
10377 bool has_size = fn->arg_size[arg] != 0;
10378 bool is_next_size = false;
10379
10380 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
10381 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
10382
10383 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
10384 return is_next_size;
10385
10386 return has_size == is_next_size || is_next_size == is_fixed;
10387 }
10388
check_arg_pair_ok(const struct bpf_func_proto * fn)10389 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
10390 {
10391 /* bpf_xxx(..., buf, len) call will access 'len'
10392 * bytes from memory 'buf'. Both arg types need
10393 * to be paired, so make sure there's no buggy
10394 * helper function specification.
10395 */
10396 if (arg_type_is_mem_size(fn->arg1_type) ||
10397 check_args_pair_invalid(fn, 0) ||
10398 check_args_pair_invalid(fn, 1) ||
10399 check_args_pair_invalid(fn, 2) ||
10400 check_args_pair_invalid(fn, 3) ||
10401 check_args_pair_invalid(fn, 4))
10402 return false;
10403
10404 return true;
10405 }
10406
check_btf_id_ok(const struct bpf_func_proto * fn)10407 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
10408 {
10409 int i;
10410
10411 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10412 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
10413 return !!fn->arg_btf_id[i];
10414 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
10415 return fn->arg_btf_id[i] == BPF_PTR_POISON;
10416 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
10417 /* arg_btf_id and arg_size are in a union. */
10418 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
10419 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
10420 return false;
10421 }
10422
10423 return true;
10424 }
10425
check_mem_arg_rw_flag_ok(const struct bpf_func_proto * fn)10426 static bool check_mem_arg_rw_flag_ok(const struct bpf_func_proto *fn)
10427 {
10428 int i;
10429
10430 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10431 enum bpf_arg_type arg_type = fn->arg_type[i];
10432
10433 if (base_type(arg_type) != ARG_PTR_TO_MEM)
10434 continue;
10435 if (!(arg_type & (MEM_WRITE | MEM_RDONLY)))
10436 return false;
10437 }
10438
10439 return true;
10440 }
10441
check_func_proto(const struct bpf_func_proto * fn)10442 static int check_func_proto(const struct bpf_func_proto *fn)
10443 {
10444 return check_raw_mode_ok(fn) &&
10445 check_arg_pair_ok(fn) &&
10446 check_mem_arg_rw_flag_ok(fn) &&
10447 check_btf_id_ok(fn) ? 0 : -EINVAL;
10448 }
10449
10450 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
10451 * are now invalid, so turn them into unknown SCALAR_VALUE.
10452 *
10453 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
10454 * since these slices point to packet data.
10455 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)10456 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
10457 {
10458 struct bpf_func_state *state;
10459 struct bpf_reg_state *reg;
10460
10461 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10462 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
10463 mark_reg_invalid(env, reg);
10464 }));
10465 }
10466
10467 enum {
10468 AT_PKT_END = -1,
10469 BEYOND_PKT_END = -2,
10470 };
10471
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)10472 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
10473 {
10474 struct bpf_func_state *state = vstate->frame[vstate->curframe];
10475 struct bpf_reg_state *reg = &state->regs[regn];
10476
10477 if (reg->type != PTR_TO_PACKET)
10478 /* PTR_TO_PACKET_META is not supported yet */
10479 return;
10480
10481 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
10482 * How far beyond pkt_end it goes is unknown.
10483 * if (!range_open) it's the case of pkt >= pkt_end
10484 * if (range_open) it's the case of pkt > pkt_end
10485 * hence this pointer is at least 1 byte bigger than pkt_end
10486 */
10487 if (range_open)
10488 reg->range = BEYOND_PKT_END;
10489 else
10490 reg->range = AT_PKT_END;
10491 }
10492
release_reference_nomark(struct bpf_verifier_state * state,int ref_obj_id)10493 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
10494 {
10495 int i;
10496
10497 for (i = 0; i < state->acquired_refs; i++) {
10498 if (state->refs[i].type != REF_TYPE_PTR)
10499 continue;
10500 if (state->refs[i].id == ref_obj_id) {
10501 release_reference_state(state, i);
10502 return 0;
10503 }
10504 }
10505 return -EINVAL;
10506 }
10507
10508 /* The pointer with the specified id has released its reference to kernel
10509 * resources. Identify all copies of the same pointer and clear the reference.
10510 *
10511 * This is the release function corresponding to acquire_reference(). Idempotent.
10512 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)10513 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
10514 {
10515 struct bpf_verifier_state *vstate = env->cur_state;
10516 struct bpf_func_state *state;
10517 struct bpf_reg_state *reg;
10518 int err;
10519
10520 err = release_reference_nomark(vstate, ref_obj_id);
10521 if (err)
10522 return err;
10523
10524 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10525 if (reg->ref_obj_id == ref_obj_id)
10526 mark_reg_invalid(env, reg);
10527 }));
10528
10529 return 0;
10530 }
10531
invalidate_non_owning_refs(struct bpf_verifier_env * env)10532 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
10533 {
10534 struct bpf_func_state *unused;
10535 struct bpf_reg_state *reg;
10536
10537 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10538 if (type_is_non_owning_ref(reg->type))
10539 mark_reg_invalid(env, reg);
10540 }));
10541 }
10542
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)10543 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
10544 struct bpf_reg_state *regs)
10545 {
10546 int i;
10547
10548 /* after the call registers r0 - r5 were scratched */
10549 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10550 mark_reg_not_init(env, regs, caller_saved[i]);
10551 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
10552 }
10553 }
10554
10555 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
10556 struct bpf_func_state *caller,
10557 struct bpf_func_state *callee,
10558 int insn_idx);
10559
10560 static int set_callee_state(struct bpf_verifier_env *env,
10561 struct bpf_func_state *caller,
10562 struct bpf_func_state *callee, int insn_idx);
10563
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)10564 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
10565 set_callee_state_fn set_callee_state_cb,
10566 struct bpf_verifier_state *state)
10567 {
10568 struct bpf_func_state *caller, *callee;
10569 int err;
10570
10571 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
10572 verbose(env, "the call stack of %d frames is too deep\n",
10573 state->curframe + 2);
10574 return -E2BIG;
10575 }
10576
10577 if (state->frame[state->curframe + 1]) {
10578 verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
10579 return -EFAULT;
10580 }
10581
10582 caller = state->frame[state->curframe];
10583 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT);
10584 if (!callee)
10585 return -ENOMEM;
10586 state->frame[state->curframe + 1] = callee;
10587
10588 /* callee cannot access r0, r6 - r9 for reading and has to write
10589 * into its own stack before reading from it.
10590 * callee can read/write into caller's stack
10591 */
10592 init_func_state(env, callee,
10593 /* remember the callsite, it will be used by bpf_exit */
10594 callsite,
10595 state->curframe + 1 /* frameno within this callchain */,
10596 subprog /* subprog number within this prog */);
10597 err = set_callee_state_cb(env, caller, callee, callsite);
10598 if (err)
10599 goto err_out;
10600
10601 /* only increment it after check_reg_arg() finished */
10602 state->curframe++;
10603
10604 return 0;
10605
10606 err_out:
10607 free_func_state(callee);
10608 state->frame[state->curframe + 1] = NULL;
10609 return err;
10610 }
10611
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,const struct btf * btf,struct bpf_reg_state * regs)10612 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
10613 const struct btf *btf,
10614 struct bpf_reg_state *regs)
10615 {
10616 struct bpf_subprog_info *sub = subprog_info(env, subprog);
10617 struct bpf_verifier_log *log = &env->log;
10618 u32 i;
10619 int ret;
10620
10621 ret = btf_prepare_func_args(env, subprog);
10622 if (ret)
10623 return ret;
10624
10625 /* check that BTF function arguments match actual types that the
10626 * verifier sees.
10627 */
10628 for (i = 0; i < sub->arg_cnt; i++) {
10629 u32 regno = i + 1;
10630 struct bpf_reg_state *reg = ®s[regno];
10631 struct bpf_subprog_arg_info *arg = &sub->args[i];
10632
10633 if (arg->arg_type == ARG_ANYTHING) {
10634 if (reg->type != SCALAR_VALUE) {
10635 bpf_log(log, "R%d is not a scalar\n", regno);
10636 return -EINVAL;
10637 }
10638 } else if (arg->arg_type & PTR_UNTRUSTED) {
10639 /*
10640 * Anything is allowed for untrusted arguments, as these are
10641 * read-only and probe read instructions would protect against
10642 * invalid memory access.
10643 */
10644 } else if (arg->arg_type == ARG_PTR_TO_CTX) {
10645 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10646 if (ret < 0)
10647 return ret;
10648 /* If function expects ctx type in BTF check that caller
10649 * is passing PTR_TO_CTX.
10650 */
10651 if (reg->type != PTR_TO_CTX) {
10652 bpf_log(log, "arg#%d expects pointer to ctx\n", i);
10653 return -EINVAL;
10654 }
10655 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
10656 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10657 if (ret < 0)
10658 return ret;
10659 if (check_mem_reg(env, reg, regno, arg->mem_size))
10660 return -EINVAL;
10661 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
10662 bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
10663 return -EINVAL;
10664 }
10665 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
10666 /*
10667 * Can pass any value and the kernel won't crash, but
10668 * only PTR_TO_ARENA or SCALAR make sense. Everything
10669 * else is a bug in the bpf program. Point it out to
10670 * the user at the verification time instead of
10671 * run-time debug nightmare.
10672 */
10673 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
10674 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
10675 return -EINVAL;
10676 }
10677 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
10678 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
10679 if (ret)
10680 return ret;
10681
10682 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
10683 if (ret)
10684 return ret;
10685 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
10686 struct bpf_call_arg_meta meta;
10687 int err;
10688
10689 if (register_is_null(reg) && type_may_be_null(arg->arg_type))
10690 continue;
10691
10692 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
10693 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
10694 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
10695 if (err)
10696 return err;
10697 } else {
10698 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
10699 return -EFAULT;
10700 }
10701 }
10702
10703 return 0;
10704 }
10705
10706 /* Compare BTF of a function call with given bpf_reg_state.
10707 * Returns:
10708 * EFAULT - there is a verifier bug. Abort verification.
10709 * EINVAL - there is a type mismatch or BTF is not available.
10710 * 0 - BTF matches with what bpf_reg_state expects.
10711 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
10712 */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)10713 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
10714 struct bpf_reg_state *regs)
10715 {
10716 struct bpf_prog *prog = env->prog;
10717 struct btf *btf = prog->aux->btf;
10718 u32 btf_id;
10719 int err;
10720
10721 if (!prog->aux->func_info)
10722 return -EINVAL;
10723
10724 btf_id = prog->aux->func_info[subprog].type_id;
10725 if (!btf_id)
10726 return -EFAULT;
10727
10728 if (prog->aux->func_info_aux[subprog].unreliable)
10729 return -EINVAL;
10730
10731 err = btf_check_func_arg_match(env, subprog, btf, regs);
10732 /* Compiler optimizations can remove arguments from static functions
10733 * or mismatched type can be passed into a global function.
10734 * In such cases mark the function as unreliable from BTF point of view.
10735 */
10736 if (err)
10737 prog->aux->func_info_aux[subprog].unreliable = true;
10738 return err;
10739 }
10740
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)10741 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10742 int insn_idx, int subprog,
10743 set_callee_state_fn set_callee_state_cb)
10744 {
10745 struct bpf_verifier_state *state = env->cur_state, *callback_state;
10746 struct bpf_func_state *caller, *callee;
10747 int err;
10748
10749 caller = state->frame[state->curframe];
10750 err = btf_check_subprog_call(env, subprog, caller->regs);
10751 if (err == -EFAULT)
10752 return err;
10753
10754 /* set_callee_state is used for direct subprog calls, but we are
10755 * interested in validating only BPF helpers that can call subprogs as
10756 * callbacks
10757 */
10758 env->subprog_info[subprog].is_cb = true;
10759 if (bpf_pseudo_kfunc_call(insn) &&
10760 !is_callback_calling_kfunc(insn->imm)) {
10761 verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
10762 func_id_name(insn->imm), insn->imm);
10763 return -EFAULT;
10764 } else if (!bpf_pseudo_kfunc_call(insn) &&
10765 !is_callback_calling_function(insn->imm)) { /* helper */
10766 verifier_bug(env, "helper %s#%d not marked as callback-calling",
10767 func_id_name(insn->imm), insn->imm);
10768 return -EFAULT;
10769 }
10770
10771 if (is_async_callback_calling_insn(insn)) {
10772 struct bpf_verifier_state *async_cb;
10773
10774 /* there is no real recursion here. timer and workqueue callbacks are async */
10775 env->subprog_info[subprog].is_async_cb = true;
10776 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
10777 insn_idx, subprog,
10778 is_async_cb_sleepable(env, insn));
10779 if (IS_ERR(async_cb))
10780 return PTR_ERR(async_cb);
10781 callee = async_cb->frame[0];
10782 callee->async_entry_cnt = caller->async_entry_cnt + 1;
10783
10784 /* Convert bpf_timer_set_callback() args into timer callback args */
10785 err = set_callee_state_cb(env, caller, callee, insn_idx);
10786 if (err)
10787 return err;
10788
10789 return 0;
10790 }
10791
10792 /* for callback functions enqueue entry to callback and
10793 * proceed with next instruction within current frame.
10794 */
10795 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
10796 if (IS_ERR(callback_state))
10797 return PTR_ERR(callback_state);
10798
10799 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
10800 callback_state);
10801 if (err)
10802 return err;
10803
10804 callback_state->callback_unroll_depth++;
10805 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
10806 caller->callback_depth = 0;
10807 return 0;
10808 }
10809
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10810 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10811 int *insn_idx)
10812 {
10813 struct bpf_verifier_state *state = env->cur_state;
10814 struct bpf_func_state *caller;
10815 int err, subprog, target_insn;
10816
10817 target_insn = *insn_idx + insn->imm + 1;
10818 subprog = find_subprog(env, target_insn);
10819 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
10820 target_insn))
10821 return -EFAULT;
10822
10823 caller = state->frame[state->curframe];
10824 err = btf_check_subprog_call(env, subprog, caller->regs);
10825 if (err == -EFAULT)
10826 return err;
10827 if (subprog_is_global(env, subprog)) {
10828 const char *sub_name = subprog_name(env, subprog);
10829
10830 if (env->cur_state->active_locks) {
10831 verbose(env, "global function calls are not allowed while holding a lock,\n"
10832 "use static function instead\n");
10833 return -EINVAL;
10834 }
10835
10836 if (env->subprog_info[subprog].might_sleep &&
10837 (env->cur_state->active_rcu_locks || env->cur_state->active_preempt_locks ||
10838 env->cur_state->active_irq_id || !in_sleepable(env))) {
10839 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
10840 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
10841 "a non-sleepable BPF program context\n");
10842 return -EINVAL;
10843 }
10844
10845 if (err) {
10846 verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10847 subprog, sub_name);
10848 return err;
10849 }
10850
10851 if (env->log.level & BPF_LOG_LEVEL)
10852 verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10853 subprog, sub_name);
10854 if (env->subprog_info[subprog].changes_pkt_data)
10855 clear_all_pkt_pointers(env);
10856 /* mark global subprog for verifying after main prog */
10857 subprog_aux(env, subprog)->called = true;
10858 clear_caller_saved_regs(env, caller->regs);
10859
10860 /* All global functions return a 64-bit SCALAR_VALUE */
10861 mark_reg_unknown(env, caller->regs, BPF_REG_0);
10862 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10863
10864 /* continue with next insn after call */
10865 return 0;
10866 }
10867
10868 /* for regular function entry setup new frame and continue
10869 * from that frame.
10870 */
10871 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10872 if (err)
10873 return err;
10874
10875 clear_caller_saved_regs(env, caller->regs);
10876
10877 /* and go analyze first insn of the callee */
10878 *insn_idx = env->subprog_info[subprog].start - 1;
10879
10880 bpf_reset_live_stack_callchain(env);
10881
10882 if (env->log.level & BPF_LOG_LEVEL) {
10883 verbose(env, "caller:\n");
10884 print_verifier_state(env, state, caller->frameno, true);
10885 verbose(env, "callee:\n");
10886 print_verifier_state(env, state, state->curframe, true);
10887 }
10888
10889 return 0;
10890 }
10891
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)10892 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10893 struct bpf_func_state *caller,
10894 struct bpf_func_state *callee)
10895 {
10896 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10897 * void *callback_ctx, u64 flags);
10898 * callback_fn(struct bpf_map *map, void *key, void *value,
10899 * void *callback_ctx);
10900 */
10901 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10902
10903 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10904 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10905 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10906
10907 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10908 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10909 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10910
10911 /* pointer to stack or null */
10912 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10913
10914 /* unused */
10915 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10916 return 0;
10917 }
10918
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10919 static int set_callee_state(struct bpf_verifier_env *env,
10920 struct bpf_func_state *caller,
10921 struct bpf_func_state *callee, int insn_idx)
10922 {
10923 int i;
10924
10925 /* copy r1 - r5 args that callee can access. The copy includes parent
10926 * pointers, which connects us up to the liveness chain
10927 */
10928 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10929 callee->regs[i] = caller->regs[i];
10930 return 0;
10931 }
10932
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10933 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10934 struct bpf_func_state *caller,
10935 struct bpf_func_state *callee,
10936 int insn_idx)
10937 {
10938 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10939 struct bpf_map *map;
10940 int err;
10941
10942 /* valid map_ptr and poison value does not matter */
10943 map = insn_aux->map_ptr_state.map_ptr;
10944 if (!map->ops->map_set_for_each_callback_args ||
10945 !map->ops->map_for_each_callback) {
10946 verbose(env, "callback function not allowed for map\n");
10947 return -ENOTSUPP;
10948 }
10949
10950 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10951 if (err)
10952 return err;
10953
10954 callee->in_callback_fn = true;
10955 callee->callback_ret_range = retval_range(0, 1);
10956 return 0;
10957 }
10958
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10959 static int set_loop_callback_state(struct bpf_verifier_env *env,
10960 struct bpf_func_state *caller,
10961 struct bpf_func_state *callee,
10962 int insn_idx)
10963 {
10964 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10965 * u64 flags);
10966 * callback_fn(u64 index, void *callback_ctx);
10967 */
10968 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10969 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10970
10971 /* unused */
10972 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10973 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10974 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10975
10976 callee->in_callback_fn = true;
10977 callee->callback_ret_range = retval_range(0, 1);
10978 return 0;
10979 }
10980
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10981 static int set_timer_callback_state(struct bpf_verifier_env *env,
10982 struct bpf_func_state *caller,
10983 struct bpf_func_state *callee,
10984 int insn_idx)
10985 {
10986 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10987
10988 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10989 * callback_fn(struct bpf_map *map, void *key, void *value);
10990 */
10991 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10992 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10993 callee->regs[BPF_REG_1].map_ptr = map_ptr;
10994
10995 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10996 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10997 callee->regs[BPF_REG_2].map_ptr = map_ptr;
10998
10999 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
11000 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
11001 callee->regs[BPF_REG_3].map_ptr = map_ptr;
11002
11003 /* unused */
11004 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11005 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11006 callee->in_async_callback_fn = true;
11007 callee->callback_ret_range = retval_range(0, 0);
11008 return 0;
11009 }
11010
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)11011 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
11012 struct bpf_func_state *caller,
11013 struct bpf_func_state *callee,
11014 int insn_idx)
11015 {
11016 /* bpf_find_vma(struct task_struct *task, u64 addr,
11017 * void *callback_fn, void *callback_ctx, u64 flags)
11018 * (callback_fn)(struct task_struct *task,
11019 * struct vm_area_struct *vma, void *callback_ctx);
11020 */
11021 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
11022
11023 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
11024 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
11025 callee->regs[BPF_REG_2].btf = btf_vmlinux;
11026 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
11027
11028 /* pointer to stack or null */
11029 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
11030
11031 /* unused */
11032 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11033 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11034 callee->in_callback_fn = true;
11035 callee->callback_ret_range = retval_range(0, 1);
11036 return 0;
11037 }
11038
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)11039 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
11040 struct bpf_func_state *caller,
11041 struct bpf_func_state *callee,
11042 int insn_idx)
11043 {
11044 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
11045 * callback_ctx, u64 flags);
11046 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
11047 */
11048 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
11049 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
11050 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
11051
11052 /* unused */
11053 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
11054 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11055 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11056
11057 callee->in_callback_fn = true;
11058 callee->callback_ret_range = retval_range(0, 1);
11059 return 0;
11060 }
11061
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)11062 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
11063 struct bpf_func_state *caller,
11064 struct bpf_func_state *callee,
11065 int insn_idx)
11066 {
11067 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
11068 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
11069 *
11070 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
11071 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
11072 * by this point, so look at 'root'
11073 */
11074 struct btf_field *field;
11075
11076 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
11077 BPF_RB_ROOT);
11078 if (!field || !field->graph_root.value_btf_id)
11079 return -EFAULT;
11080
11081 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
11082 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
11083 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
11084 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
11085
11086 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
11087 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11088 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11089 callee->in_callback_fn = true;
11090 callee->callback_ret_range = retval_range(0, 1);
11091 return 0;
11092 }
11093
set_task_work_schedule_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)11094 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env,
11095 struct bpf_func_state *caller,
11096 struct bpf_func_state *callee,
11097 int insn_idx)
11098 {
11099 struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr;
11100
11101 /*
11102 * callback_fn(struct bpf_map *map, void *key, void *value);
11103 */
11104 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
11105 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
11106 callee->regs[BPF_REG_1].map_ptr = map_ptr;
11107
11108 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
11109 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
11110 callee->regs[BPF_REG_2].map_ptr = map_ptr;
11111
11112 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
11113 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
11114 callee->regs[BPF_REG_3].map_ptr = map_ptr;
11115
11116 /* unused */
11117 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11118 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11119 callee->in_async_callback_fn = true;
11120 callee->callback_ret_range = retval_range(S32_MIN, S32_MAX);
11121 return 0;
11122 }
11123
11124 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
11125
11126 /* Are we currently verifying the callback for a rbtree helper that must
11127 * be called with lock held? If so, no need to complain about unreleased
11128 * lock
11129 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)11130 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
11131 {
11132 struct bpf_verifier_state *state = env->cur_state;
11133 struct bpf_insn *insn = env->prog->insnsi;
11134 struct bpf_func_state *callee;
11135 int kfunc_btf_id;
11136
11137 if (!state->curframe)
11138 return false;
11139
11140 callee = state->frame[state->curframe];
11141
11142 if (!callee->in_callback_fn)
11143 return false;
11144
11145 kfunc_btf_id = insn[callee->callsite].imm;
11146 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
11147 }
11148
retval_range_within(struct bpf_retval_range range,const struct bpf_reg_state * reg,bool return_32bit)11149 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
11150 bool return_32bit)
11151 {
11152 if (return_32bit)
11153 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
11154 else
11155 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
11156 }
11157
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)11158 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
11159 {
11160 struct bpf_verifier_state *state = env->cur_state, *prev_st;
11161 struct bpf_func_state *caller, *callee;
11162 struct bpf_reg_state *r0;
11163 bool in_callback_fn;
11164 int err;
11165
11166 err = bpf_update_live_stack(env);
11167 if (err)
11168 return err;
11169
11170 callee = state->frame[state->curframe];
11171 r0 = &callee->regs[BPF_REG_0];
11172 if (r0->type == PTR_TO_STACK) {
11173 /* technically it's ok to return caller's stack pointer
11174 * (or caller's caller's pointer) back to the caller,
11175 * since these pointers are valid. Only current stack
11176 * pointer will be invalid as soon as function exits,
11177 * but let's be conservative
11178 */
11179 verbose(env, "cannot return stack pointer to the caller\n");
11180 return -EINVAL;
11181 }
11182
11183 caller = state->frame[state->curframe - 1];
11184 if (callee->in_callback_fn) {
11185 if (r0->type != SCALAR_VALUE) {
11186 verbose(env, "R0 not a scalar value\n");
11187 return -EACCES;
11188 }
11189
11190 /* we are going to rely on register's precise value */
11191 err = mark_chain_precision(env, BPF_REG_0);
11192 if (err)
11193 return err;
11194
11195 /* enforce R0 return value range, and bpf_callback_t returns 64bit */
11196 if (!retval_range_within(callee->callback_ret_range, r0, false)) {
11197 verbose_invalid_scalar(env, r0, callee->callback_ret_range,
11198 "At callback return", "R0");
11199 return -EINVAL;
11200 }
11201 if (!bpf_calls_callback(env, callee->callsite)) {
11202 verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
11203 *insn_idx, callee->callsite);
11204 return -EFAULT;
11205 }
11206 } else {
11207 /* return to the caller whatever r0 had in the callee */
11208 caller->regs[BPF_REG_0] = *r0;
11209 }
11210
11211 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
11212 * there function call logic would reschedule callback visit. If iteration
11213 * converges is_state_visited() would prune that visit eventually.
11214 */
11215 in_callback_fn = callee->in_callback_fn;
11216 if (in_callback_fn)
11217 *insn_idx = callee->callsite;
11218 else
11219 *insn_idx = callee->callsite + 1;
11220
11221 if (env->log.level & BPF_LOG_LEVEL) {
11222 verbose(env, "returning from callee:\n");
11223 print_verifier_state(env, state, callee->frameno, true);
11224 verbose(env, "to caller at %d:\n", *insn_idx);
11225 print_verifier_state(env, state, caller->frameno, true);
11226 }
11227 /* clear everything in the callee. In case of exceptional exits using
11228 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
11229 free_func_state(callee);
11230 state->frame[state->curframe--] = NULL;
11231
11232 /* for callbacks widen imprecise scalars to make programs like below verify:
11233 *
11234 * struct ctx { int i; }
11235 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
11236 * ...
11237 * struct ctx = { .i = 0; }
11238 * bpf_loop(100, cb, &ctx, 0);
11239 *
11240 * This is similar to what is done in process_iter_next_call() for open
11241 * coded iterators.
11242 */
11243 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
11244 if (prev_st) {
11245 err = widen_imprecise_scalars(env, prev_st, state);
11246 if (err)
11247 return err;
11248 }
11249 return 0;
11250 }
11251
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)11252 static int do_refine_retval_range(struct bpf_verifier_env *env,
11253 struct bpf_reg_state *regs, int ret_type,
11254 int func_id,
11255 struct bpf_call_arg_meta *meta)
11256 {
11257 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
11258
11259 if (ret_type != RET_INTEGER)
11260 return 0;
11261
11262 switch (func_id) {
11263 case BPF_FUNC_get_stack:
11264 case BPF_FUNC_get_task_stack:
11265 case BPF_FUNC_probe_read_str:
11266 case BPF_FUNC_probe_read_kernel_str:
11267 case BPF_FUNC_probe_read_user_str:
11268 ret_reg->smax_value = meta->msize_max_value;
11269 ret_reg->s32_max_value = meta->msize_max_value;
11270 ret_reg->smin_value = -MAX_ERRNO;
11271 ret_reg->s32_min_value = -MAX_ERRNO;
11272 reg_bounds_sync(ret_reg);
11273 break;
11274 case BPF_FUNC_get_smp_processor_id:
11275 ret_reg->umax_value = nr_cpu_ids - 1;
11276 ret_reg->u32_max_value = nr_cpu_ids - 1;
11277 ret_reg->smax_value = nr_cpu_ids - 1;
11278 ret_reg->s32_max_value = nr_cpu_ids - 1;
11279 ret_reg->umin_value = 0;
11280 ret_reg->u32_min_value = 0;
11281 ret_reg->smin_value = 0;
11282 ret_reg->s32_min_value = 0;
11283 reg_bounds_sync(ret_reg);
11284 break;
11285 }
11286
11287 return reg_bounds_sanity_check(env, ret_reg, "retval");
11288 }
11289
11290 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)11291 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11292 int func_id, int insn_idx)
11293 {
11294 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11295 struct bpf_map *map = meta->map.ptr;
11296
11297 if (func_id != BPF_FUNC_tail_call &&
11298 func_id != BPF_FUNC_map_lookup_elem &&
11299 func_id != BPF_FUNC_map_update_elem &&
11300 func_id != BPF_FUNC_map_delete_elem &&
11301 func_id != BPF_FUNC_map_push_elem &&
11302 func_id != BPF_FUNC_map_pop_elem &&
11303 func_id != BPF_FUNC_map_peek_elem &&
11304 func_id != BPF_FUNC_for_each_map_elem &&
11305 func_id != BPF_FUNC_redirect_map &&
11306 func_id != BPF_FUNC_map_lookup_percpu_elem)
11307 return 0;
11308
11309 if (map == NULL) {
11310 verifier_bug(env, "expected map for helper call");
11311 return -EFAULT;
11312 }
11313
11314 /* In case of read-only, some additional restrictions
11315 * need to be applied in order to prevent altering the
11316 * state of the map from program side.
11317 */
11318 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
11319 (func_id == BPF_FUNC_map_delete_elem ||
11320 func_id == BPF_FUNC_map_update_elem ||
11321 func_id == BPF_FUNC_map_push_elem ||
11322 func_id == BPF_FUNC_map_pop_elem)) {
11323 verbose(env, "write into map forbidden\n");
11324 return -EACCES;
11325 }
11326
11327 if (!aux->map_ptr_state.map_ptr)
11328 bpf_map_ptr_store(aux, meta->map.ptr,
11329 !meta->map.ptr->bypass_spec_v1, false);
11330 else if (aux->map_ptr_state.map_ptr != meta->map.ptr)
11331 bpf_map_ptr_store(aux, meta->map.ptr,
11332 !meta->map.ptr->bypass_spec_v1, true);
11333 return 0;
11334 }
11335
11336 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)11337 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11338 int func_id, int insn_idx)
11339 {
11340 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11341 struct bpf_reg_state *reg;
11342 struct bpf_map *map = meta->map.ptr;
11343 u64 val, max;
11344 int err;
11345
11346 if (func_id != BPF_FUNC_tail_call)
11347 return 0;
11348 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
11349 verbose(env, "expected prog array map for tail call");
11350 return -EINVAL;
11351 }
11352
11353 reg = reg_state(env, BPF_REG_3);
11354 val = reg->var_off.value;
11355 max = map->max_entries;
11356
11357 if (!(is_reg_const(reg, false) && val < max)) {
11358 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11359 return 0;
11360 }
11361
11362 err = mark_chain_precision(env, BPF_REG_3);
11363 if (err)
11364 return err;
11365 if (bpf_map_key_unseen(aux))
11366 bpf_map_key_store(aux, val);
11367 else if (!bpf_map_key_poisoned(aux) &&
11368 bpf_map_key_immediate(aux) != val)
11369 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11370 return 0;
11371 }
11372
check_reference_leak(struct bpf_verifier_env * env,bool exception_exit)11373 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
11374 {
11375 struct bpf_verifier_state *state = env->cur_state;
11376 enum bpf_prog_type type = resolve_prog_type(env->prog);
11377 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
11378 bool refs_lingering = false;
11379 int i;
11380
11381 if (!exception_exit && cur_func(env)->frameno)
11382 return 0;
11383
11384 for (i = 0; i < state->acquired_refs; i++) {
11385 if (state->refs[i].type != REF_TYPE_PTR)
11386 continue;
11387 /* Allow struct_ops programs to return a referenced kptr back to
11388 * kernel. Type checks are performed later in check_return_code.
11389 */
11390 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
11391 reg->ref_obj_id == state->refs[i].id)
11392 continue;
11393 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
11394 state->refs[i].id, state->refs[i].insn_idx);
11395 refs_lingering = true;
11396 }
11397 return refs_lingering ? -EINVAL : 0;
11398 }
11399
check_resource_leak(struct bpf_verifier_env * env,bool exception_exit,bool check_lock,const char * prefix)11400 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
11401 {
11402 int err;
11403
11404 if (check_lock && env->cur_state->active_locks) {
11405 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
11406 return -EINVAL;
11407 }
11408
11409 err = check_reference_leak(env, exception_exit);
11410 if (err) {
11411 verbose(env, "%s would lead to reference leak\n", prefix);
11412 return err;
11413 }
11414
11415 if (check_lock && env->cur_state->active_irq_id) {
11416 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
11417 return -EINVAL;
11418 }
11419
11420 if (check_lock && env->cur_state->active_rcu_locks) {
11421 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
11422 return -EINVAL;
11423 }
11424
11425 if (check_lock && env->cur_state->active_preempt_locks) {
11426 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
11427 return -EINVAL;
11428 }
11429
11430 return 0;
11431 }
11432
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)11433 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
11434 struct bpf_reg_state *regs)
11435 {
11436 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
11437 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
11438 struct bpf_map *fmt_map = fmt_reg->map_ptr;
11439 struct bpf_bprintf_data data = {};
11440 int err, fmt_map_off, num_args;
11441 u64 fmt_addr;
11442 char *fmt;
11443
11444 /* data must be an array of u64 */
11445 if (data_len_reg->var_off.value % 8)
11446 return -EINVAL;
11447 num_args = data_len_reg->var_off.value / 8;
11448
11449 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
11450 * and map_direct_value_addr is set.
11451 */
11452 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
11453 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
11454 fmt_map_off);
11455 if (err) {
11456 verbose(env, "failed to retrieve map value address\n");
11457 return -EFAULT;
11458 }
11459 fmt = (char *)(long)fmt_addr + fmt_map_off;
11460
11461 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
11462 * can focus on validating the format specifiers.
11463 */
11464 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
11465 if (err < 0)
11466 verbose(env, "Invalid format string\n");
11467
11468 return err;
11469 }
11470
check_get_func_ip(struct bpf_verifier_env * env)11471 static int check_get_func_ip(struct bpf_verifier_env *env)
11472 {
11473 enum bpf_prog_type type = resolve_prog_type(env->prog);
11474 int func_id = BPF_FUNC_get_func_ip;
11475
11476 if (type == BPF_PROG_TYPE_TRACING) {
11477 if (!bpf_prog_has_trampoline(env->prog)) {
11478 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
11479 func_id_name(func_id), func_id);
11480 return -ENOTSUPP;
11481 }
11482 return 0;
11483 } else if (type == BPF_PROG_TYPE_KPROBE) {
11484 return 0;
11485 }
11486
11487 verbose(env, "func %s#%d not supported for program type %d\n",
11488 func_id_name(func_id), func_id, type);
11489 return -ENOTSUPP;
11490 }
11491
cur_aux(const struct bpf_verifier_env * env)11492 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env)
11493 {
11494 return &env->insn_aux_data[env->insn_idx];
11495 }
11496
loop_flag_is_zero(struct bpf_verifier_env * env)11497 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
11498 {
11499 struct bpf_reg_state *reg = reg_state(env, BPF_REG_4);
11500 bool reg_is_null = register_is_null(reg);
11501
11502 if (reg_is_null)
11503 mark_chain_precision(env, BPF_REG_4);
11504
11505 return reg_is_null;
11506 }
11507
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)11508 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
11509 {
11510 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
11511
11512 if (!state->initialized) {
11513 state->initialized = 1;
11514 state->fit_for_inline = loop_flag_is_zero(env);
11515 state->callback_subprogno = subprogno;
11516 return;
11517 }
11518
11519 if (!state->fit_for_inline)
11520 return;
11521
11522 state->fit_for_inline = (loop_flag_is_zero(env) &&
11523 state->callback_subprogno == subprogno);
11524 }
11525
11526 /* Returns whether or not the given map type can potentially elide
11527 * lookup return value nullness check. This is possible if the key
11528 * is statically known.
11529 */
can_elide_value_nullness(enum bpf_map_type type)11530 static bool can_elide_value_nullness(enum bpf_map_type type)
11531 {
11532 switch (type) {
11533 case BPF_MAP_TYPE_ARRAY:
11534 case BPF_MAP_TYPE_PERCPU_ARRAY:
11535 return true;
11536 default:
11537 return false;
11538 }
11539 }
11540
get_helper_proto(struct bpf_verifier_env * env,int func_id,const struct bpf_func_proto ** ptr)11541 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
11542 const struct bpf_func_proto **ptr)
11543 {
11544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
11545 return -ERANGE;
11546
11547 if (!env->ops->get_func_proto)
11548 return -EINVAL;
11549
11550 *ptr = env->ops->get_func_proto(func_id, env->prog);
11551 return *ptr && (*ptr)->func ? 0 : -EINVAL;
11552 }
11553
11554 /* Check if we're in a sleepable context. */
in_sleepable_context(struct bpf_verifier_env * env)11555 static inline bool in_sleepable_context(struct bpf_verifier_env *env)
11556 {
11557 return !env->cur_state->active_rcu_locks &&
11558 !env->cur_state->active_preempt_locks &&
11559 !env->cur_state->active_locks &&
11560 !env->cur_state->active_irq_id &&
11561 in_sleepable(env);
11562 }
11563
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11564 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11565 int *insn_idx_p)
11566 {
11567 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11568 bool returns_cpu_specific_alloc_ptr = false;
11569 const struct bpf_func_proto *fn = NULL;
11570 enum bpf_return_type ret_type;
11571 enum bpf_type_flag ret_flag;
11572 struct bpf_reg_state *regs;
11573 struct bpf_call_arg_meta meta;
11574 int insn_idx = *insn_idx_p;
11575 bool changes_data;
11576 int i, err, func_id;
11577
11578 /* find function prototype */
11579 func_id = insn->imm;
11580 err = get_helper_proto(env, insn->imm, &fn);
11581 if (err == -ERANGE) {
11582 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
11583 return -EINVAL;
11584 }
11585
11586 if (err) {
11587 verbose(env, "program of this type cannot use helper %s#%d\n",
11588 func_id_name(func_id), func_id);
11589 return err;
11590 }
11591
11592 /* eBPF programs must be GPL compatible to use GPL-ed functions */
11593 if (!env->prog->gpl_compatible && fn->gpl_only) {
11594 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
11595 return -EINVAL;
11596 }
11597
11598 if (fn->allowed && !fn->allowed(env->prog)) {
11599 verbose(env, "helper call is not allowed in probe\n");
11600 return -EINVAL;
11601 }
11602
11603 if (!in_sleepable(env) && fn->might_sleep) {
11604 verbose(env, "helper call might sleep in a non-sleepable prog\n");
11605 return -EINVAL;
11606 }
11607
11608 /* With LD_ABS/IND some JITs save/restore skb from r1. */
11609 changes_data = bpf_helper_changes_pkt_data(func_id);
11610 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
11611 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id);
11612 return -EFAULT;
11613 }
11614
11615 memset(&meta, 0, sizeof(meta));
11616 meta.pkt_access = fn->pkt_access;
11617
11618 err = check_func_proto(fn);
11619 if (err) {
11620 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id);
11621 return err;
11622 }
11623
11624 if (env->cur_state->active_rcu_locks) {
11625 if (fn->might_sleep) {
11626 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
11627 func_id_name(func_id), func_id);
11628 return -EINVAL;
11629 }
11630 }
11631
11632 if (env->cur_state->active_preempt_locks) {
11633 if (fn->might_sleep) {
11634 verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
11635 func_id_name(func_id), func_id);
11636 return -EINVAL;
11637 }
11638 }
11639
11640 if (env->cur_state->active_irq_id) {
11641 if (fn->might_sleep) {
11642 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
11643 func_id_name(func_id), func_id);
11644 return -EINVAL;
11645 }
11646 }
11647
11648 /* Track non-sleepable context for helpers. */
11649 if (!in_sleepable_context(env))
11650 env->insn_aux_data[insn_idx].non_sleepable = true;
11651
11652 meta.func_id = func_id;
11653 /* check args */
11654 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
11655 err = check_func_arg(env, i, &meta, fn, insn_idx);
11656 if (err)
11657 return err;
11658 }
11659
11660 err = record_func_map(env, &meta, func_id, insn_idx);
11661 if (err)
11662 return err;
11663
11664 err = record_func_key(env, &meta, func_id, insn_idx);
11665 if (err)
11666 return err;
11667
11668 /* Mark slots with STACK_MISC in case of raw mode, stack offset
11669 * is inferred from register state.
11670 */
11671 for (i = 0; i < meta.access_size; i++) {
11672 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
11673 BPF_WRITE, -1, false, false);
11674 if (err)
11675 return err;
11676 }
11677
11678 regs = cur_regs(env);
11679
11680 if (meta.release_regno) {
11681 err = -EINVAL;
11682 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
11683 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
11684 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
11685 u32 ref_obj_id = meta.ref_obj_id;
11686 bool in_rcu = in_rcu_cs(env);
11687 struct bpf_func_state *state;
11688 struct bpf_reg_state *reg;
11689
11690 err = release_reference_nomark(env->cur_state, ref_obj_id);
11691 if (!err) {
11692 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11693 if (reg->ref_obj_id == ref_obj_id) {
11694 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
11695 reg->ref_obj_id = 0;
11696 reg->type &= ~MEM_ALLOC;
11697 reg->type |= MEM_RCU;
11698 } else {
11699 mark_reg_invalid(env, reg);
11700 }
11701 }
11702 }));
11703 }
11704 } else if (meta.ref_obj_id) {
11705 err = release_reference(env, meta.ref_obj_id);
11706 } else if (register_is_null(®s[meta.release_regno])) {
11707 /* meta.ref_obj_id can only be 0 if register that is meant to be
11708 * released is NULL, which must be > R0.
11709 */
11710 err = 0;
11711 }
11712 if (err) {
11713 verbose(env, "func %s#%d reference has not been acquired before\n",
11714 func_id_name(func_id), func_id);
11715 return err;
11716 }
11717 }
11718
11719 switch (func_id) {
11720 case BPF_FUNC_tail_call:
11721 err = check_resource_leak(env, false, true, "tail_call");
11722 if (err)
11723 return err;
11724 break;
11725 case BPF_FUNC_get_local_storage:
11726 /* check that flags argument in get_local_storage(map, flags) is 0,
11727 * this is required because get_local_storage() can't return an error.
11728 */
11729 if (!register_is_null(®s[BPF_REG_2])) {
11730 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
11731 return -EINVAL;
11732 }
11733 break;
11734 case BPF_FUNC_for_each_map_elem:
11735 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11736 set_map_elem_callback_state);
11737 break;
11738 case BPF_FUNC_timer_set_callback:
11739 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11740 set_timer_callback_state);
11741 break;
11742 case BPF_FUNC_find_vma:
11743 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11744 set_find_vma_callback_state);
11745 break;
11746 case BPF_FUNC_snprintf:
11747 err = check_bpf_snprintf_call(env, regs);
11748 break;
11749 case BPF_FUNC_loop:
11750 update_loop_inline_state(env, meta.subprogno);
11751 /* Verifier relies on R1 value to determine if bpf_loop() iteration
11752 * is finished, thus mark it precise.
11753 */
11754 err = mark_chain_precision(env, BPF_REG_1);
11755 if (err)
11756 return err;
11757 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
11758 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11759 set_loop_callback_state);
11760 } else {
11761 cur_func(env)->callback_depth = 0;
11762 if (env->log.level & BPF_LOG_LEVEL2)
11763 verbose(env, "frame%d bpf_loop iteration limit reached\n",
11764 env->cur_state->curframe);
11765 }
11766 break;
11767 case BPF_FUNC_dynptr_from_mem:
11768 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
11769 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
11770 reg_type_str(env, regs[BPF_REG_1].type));
11771 return -EACCES;
11772 }
11773 break;
11774 case BPF_FUNC_set_retval:
11775 if (prog_type == BPF_PROG_TYPE_LSM &&
11776 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
11777 if (!env->prog->aux->attach_func_proto->type) {
11778 /* Make sure programs that attach to void
11779 * hooks don't try to modify return value.
11780 */
11781 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
11782 return -EINVAL;
11783 }
11784 }
11785 break;
11786 case BPF_FUNC_dynptr_data:
11787 {
11788 struct bpf_reg_state *reg;
11789 int id, ref_obj_id;
11790
11791 reg = get_dynptr_arg_reg(env, fn, regs);
11792 if (!reg)
11793 return -EFAULT;
11794
11795
11796 if (meta.dynptr_id) {
11797 verifier_bug(env, "meta.dynptr_id already set");
11798 return -EFAULT;
11799 }
11800 if (meta.ref_obj_id) {
11801 verifier_bug(env, "meta.ref_obj_id already set");
11802 return -EFAULT;
11803 }
11804
11805 id = dynptr_id(env, reg);
11806 if (id < 0) {
11807 verifier_bug(env, "failed to obtain dynptr id");
11808 return id;
11809 }
11810
11811 ref_obj_id = dynptr_ref_obj_id(env, reg);
11812 if (ref_obj_id < 0) {
11813 verifier_bug(env, "failed to obtain dynptr ref_obj_id");
11814 return ref_obj_id;
11815 }
11816
11817 meta.dynptr_id = id;
11818 meta.ref_obj_id = ref_obj_id;
11819
11820 break;
11821 }
11822 case BPF_FUNC_dynptr_write:
11823 {
11824 enum bpf_dynptr_type dynptr_type;
11825 struct bpf_reg_state *reg;
11826
11827 reg = get_dynptr_arg_reg(env, fn, regs);
11828 if (!reg)
11829 return -EFAULT;
11830
11831 dynptr_type = dynptr_get_type(env, reg);
11832 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
11833 return -EFAULT;
11834
11835 if (dynptr_type == BPF_DYNPTR_TYPE_SKB ||
11836 dynptr_type == BPF_DYNPTR_TYPE_SKB_META)
11837 /* this will trigger clear_all_pkt_pointers(), which will
11838 * invalidate all dynptr slices associated with the skb
11839 */
11840 changes_data = true;
11841
11842 break;
11843 }
11844 case BPF_FUNC_per_cpu_ptr:
11845 case BPF_FUNC_this_cpu_ptr:
11846 {
11847 struct bpf_reg_state *reg = ®s[BPF_REG_1];
11848 const struct btf_type *type;
11849
11850 if (reg->type & MEM_RCU) {
11851 type = btf_type_by_id(reg->btf, reg->btf_id);
11852 if (!type || !btf_type_is_struct(type)) {
11853 verbose(env, "Helper has invalid btf/btf_id in R1\n");
11854 return -EFAULT;
11855 }
11856 returns_cpu_specific_alloc_ptr = true;
11857 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
11858 }
11859 break;
11860 }
11861 case BPF_FUNC_user_ringbuf_drain:
11862 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11863 set_user_ringbuf_callback_state);
11864 break;
11865 }
11866
11867 if (err)
11868 return err;
11869
11870 /* reset caller saved regs */
11871 for (i = 0; i < CALLER_SAVED_REGS; i++) {
11872 mark_reg_not_init(env, regs, caller_saved[i]);
11873 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11874 }
11875
11876 /* helper call returns 64-bit value. */
11877 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
11878
11879 /* update return register (already marked as written above) */
11880 ret_type = fn->ret_type;
11881 ret_flag = type_flag(ret_type);
11882
11883 switch (base_type(ret_type)) {
11884 case RET_INTEGER:
11885 /* sets type to SCALAR_VALUE */
11886 mark_reg_unknown(env, regs, BPF_REG_0);
11887 break;
11888 case RET_VOID:
11889 regs[BPF_REG_0].type = NOT_INIT;
11890 break;
11891 case RET_PTR_TO_MAP_VALUE:
11892 /* There is no offset yet applied, variable or fixed */
11893 mark_reg_known_zero(env, regs, BPF_REG_0);
11894 /* remember map_ptr, so that check_map_access()
11895 * can check 'value_size' boundary of memory access
11896 * to map element returned from bpf_map_lookup_elem()
11897 */
11898 if (meta.map.ptr == NULL) {
11899 verifier_bug(env, "unexpected null map_ptr");
11900 return -EFAULT;
11901 }
11902
11903 if (func_id == BPF_FUNC_map_lookup_elem &&
11904 can_elide_value_nullness(meta.map.ptr->map_type) &&
11905 meta.const_map_key >= 0 &&
11906 meta.const_map_key < meta.map.ptr->max_entries)
11907 ret_flag &= ~PTR_MAYBE_NULL;
11908
11909 regs[BPF_REG_0].map_ptr = meta.map.ptr;
11910 regs[BPF_REG_0].map_uid = meta.map.uid;
11911 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11912 if (!type_may_be_null(ret_flag) &&
11913 btf_record_has_field(meta.map.ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
11914 regs[BPF_REG_0].id = ++env->id_gen;
11915 }
11916 break;
11917 case RET_PTR_TO_SOCKET:
11918 mark_reg_known_zero(env, regs, BPF_REG_0);
11919 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11920 break;
11921 case RET_PTR_TO_SOCK_COMMON:
11922 mark_reg_known_zero(env, regs, BPF_REG_0);
11923 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11924 break;
11925 case RET_PTR_TO_TCP_SOCK:
11926 mark_reg_known_zero(env, regs, BPF_REG_0);
11927 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11928 break;
11929 case RET_PTR_TO_MEM:
11930 mark_reg_known_zero(env, regs, BPF_REG_0);
11931 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11932 regs[BPF_REG_0].mem_size = meta.mem_size;
11933 break;
11934 case RET_PTR_TO_MEM_OR_BTF_ID:
11935 {
11936 const struct btf_type *t;
11937
11938 mark_reg_known_zero(env, regs, BPF_REG_0);
11939 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11940 if (!btf_type_is_struct(t)) {
11941 u32 tsize;
11942 const struct btf_type *ret;
11943 const char *tname;
11944
11945 /* resolve the type size of ksym. */
11946 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11947 if (IS_ERR(ret)) {
11948 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11949 verbose(env, "unable to resolve the size of type '%s': %ld\n",
11950 tname, PTR_ERR(ret));
11951 return -EINVAL;
11952 }
11953 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11954 regs[BPF_REG_0].mem_size = tsize;
11955 } else {
11956 if (returns_cpu_specific_alloc_ptr) {
11957 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11958 } else {
11959 /* MEM_RDONLY may be carried from ret_flag, but it
11960 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11961 * it will confuse the check of PTR_TO_BTF_ID in
11962 * check_mem_access().
11963 */
11964 ret_flag &= ~MEM_RDONLY;
11965 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11966 }
11967
11968 regs[BPF_REG_0].btf = meta.ret_btf;
11969 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11970 }
11971 break;
11972 }
11973 case RET_PTR_TO_BTF_ID:
11974 {
11975 struct btf *ret_btf;
11976 int ret_btf_id;
11977
11978 mark_reg_known_zero(env, regs, BPF_REG_0);
11979 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11980 if (func_id == BPF_FUNC_kptr_xchg) {
11981 ret_btf = meta.kptr_field->kptr.btf;
11982 ret_btf_id = meta.kptr_field->kptr.btf_id;
11983 if (!btf_is_kernel(ret_btf)) {
11984 regs[BPF_REG_0].type |= MEM_ALLOC;
11985 if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11986 regs[BPF_REG_0].type |= MEM_PERCPU;
11987 }
11988 } else {
11989 if (fn->ret_btf_id == BPF_PTR_POISON) {
11990 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type",
11991 func_id_name(func_id));
11992 return -EFAULT;
11993 }
11994 ret_btf = btf_vmlinux;
11995 ret_btf_id = *fn->ret_btf_id;
11996 }
11997 if (ret_btf_id == 0) {
11998 verbose(env, "invalid return type %u of func %s#%d\n",
11999 base_type(ret_type), func_id_name(func_id),
12000 func_id);
12001 return -EINVAL;
12002 }
12003 regs[BPF_REG_0].btf = ret_btf;
12004 regs[BPF_REG_0].btf_id = ret_btf_id;
12005 break;
12006 }
12007 default:
12008 verbose(env, "unknown return type %u of func %s#%d\n",
12009 base_type(ret_type), func_id_name(func_id), func_id);
12010 return -EINVAL;
12011 }
12012
12013 if (type_may_be_null(regs[BPF_REG_0].type))
12014 regs[BPF_REG_0].id = ++env->id_gen;
12015
12016 if (helper_multiple_ref_obj_use(func_id, meta.map.ptr)) {
12017 verifier_bug(env, "func %s#%d sets ref_obj_id more than once",
12018 func_id_name(func_id), func_id);
12019 return -EFAULT;
12020 }
12021
12022 if (is_dynptr_ref_function(func_id))
12023 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
12024
12025 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
12026 /* For release_reference() */
12027 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12028 } else if (is_acquire_function(func_id, meta.map.ptr)) {
12029 int id = acquire_reference(env, insn_idx);
12030
12031 if (id < 0)
12032 return id;
12033 /* For mark_ptr_or_null_reg() */
12034 regs[BPF_REG_0].id = id;
12035 /* For release_reference() */
12036 regs[BPF_REG_0].ref_obj_id = id;
12037 }
12038
12039 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
12040 if (err)
12041 return err;
12042
12043 err = check_map_func_compatibility(env, meta.map.ptr, func_id);
12044 if (err)
12045 return err;
12046
12047 if ((func_id == BPF_FUNC_get_stack ||
12048 func_id == BPF_FUNC_get_task_stack) &&
12049 !env->prog->has_callchain_buf) {
12050 const char *err_str;
12051
12052 #ifdef CONFIG_PERF_EVENTS
12053 err = get_callchain_buffers(sysctl_perf_event_max_stack);
12054 err_str = "cannot get callchain buffer for func %s#%d\n";
12055 #else
12056 err = -ENOTSUPP;
12057 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
12058 #endif
12059 if (err) {
12060 verbose(env, err_str, func_id_name(func_id), func_id);
12061 return err;
12062 }
12063
12064 env->prog->has_callchain_buf = true;
12065 }
12066
12067 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
12068 env->prog->call_get_stack = true;
12069
12070 if (func_id == BPF_FUNC_get_func_ip) {
12071 if (check_get_func_ip(env))
12072 return -ENOTSUPP;
12073 env->prog->call_get_func_ip = true;
12074 }
12075
12076 if (func_id == BPF_FUNC_tail_call) {
12077 if (env->cur_state->curframe) {
12078 struct bpf_verifier_state *branch;
12079
12080 mark_reg_scratched(env, BPF_REG_0);
12081 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
12082 if (IS_ERR(branch))
12083 return PTR_ERR(branch);
12084 clear_all_pkt_pointers(env);
12085 mark_reg_unknown(env, regs, BPF_REG_0);
12086 err = prepare_func_exit(env, &env->insn_idx);
12087 if (err)
12088 return err;
12089 env->insn_idx--;
12090 } else {
12091 changes_data = false;
12092 }
12093 }
12094
12095 if (changes_data)
12096 clear_all_pkt_pointers(env);
12097 return 0;
12098 }
12099
12100 /* mark_btf_func_reg_size() is used when the reg size is determined by
12101 * the BTF func_proto's return value size and argument.
12102 */
__mark_btf_func_reg_size(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,size_t reg_size)12103 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
12104 u32 regno, size_t reg_size)
12105 {
12106 struct bpf_reg_state *reg = ®s[regno];
12107
12108 if (regno == BPF_REG_0) {
12109 /* Function return value */
12110 reg->subreg_def = reg_size == sizeof(u64) ?
12111 DEF_NOT_SUBREG : env->insn_idx + 1;
12112 } else if (reg_size == sizeof(u64)) {
12113 /* Function argument */
12114 mark_insn_zext(env, reg);
12115 }
12116 }
12117
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)12118 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
12119 size_t reg_size)
12120 {
12121 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
12122 }
12123
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)12124 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
12125 {
12126 return meta->kfunc_flags & KF_ACQUIRE;
12127 }
12128
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)12129 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
12130 {
12131 return meta->kfunc_flags & KF_RELEASE;
12132 }
12133
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)12134 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
12135 {
12136 return meta->kfunc_flags & KF_SLEEPABLE;
12137 }
12138
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)12139 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
12140 {
12141 return meta->kfunc_flags & KF_DESTRUCTIVE;
12142 }
12143
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)12144 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
12145 {
12146 return meta->kfunc_flags & KF_RCU;
12147 }
12148
is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta * meta)12149 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
12150 {
12151 return meta->kfunc_flags & KF_RCU_PROTECTED;
12152 }
12153
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)12154 static bool is_kfunc_arg_mem_size(const struct btf *btf,
12155 const struct btf_param *arg,
12156 const struct bpf_reg_state *reg)
12157 {
12158 const struct btf_type *t;
12159
12160 t = btf_type_skip_modifiers(btf, arg->type, NULL);
12161 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
12162 return false;
12163
12164 return btf_param_match_suffix(btf, arg, "__sz");
12165 }
12166
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)12167 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
12168 const struct btf_param *arg,
12169 const struct bpf_reg_state *reg)
12170 {
12171 const struct btf_type *t;
12172
12173 t = btf_type_skip_modifiers(btf, arg->type, NULL);
12174 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
12175 return false;
12176
12177 return btf_param_match_suffix(btf, arg, "__szk");
12178 }
12179
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)12180 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
12181 {
12182 return btf_param_match_suffix(btf, arg, "__k");
12183 }
12184
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)12185 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
12186 {
12187 return btf_param_match_suffix(btf, arg, "__ign");
12188 }
12189
is_kfunc_arg_map(const struct btf * btf,const struct btf_param * arg)12190 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
12191 {
12192 return btf_param_match_suffix(btf, arg, "__map");
12193 }
12194
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)12195 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
12196 {
12197 return btf_param_match_suffix(btf, arg, "__alloc");
12198 }
12199
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)12200 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
12201 {
12202 return btf_param_match_suffix(btf, arg, "__uninit");
12203 }
12204
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)12205 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
12206 {
12207 return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
12208 }
12209
is_kfunc_arg_nullable(const struct btf * btf,const struct btf_param * arg)12210 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
12211 {
12212 return btf_param_match_suffix(btf, arg, "__nullable");
12213 }
12214
is_kfunc_arg_const_str(const struct btf * btf,const struct btf_param * arg)12215 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
12216 {
12217 return btf_param_match_suffix(btf, arg, "__str");
12218 }
12219
is_kfunc_arg_irq_flag(const struct btf * btf,const struct btf_param * arg)12220 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
12221 {
12222 return btf_param_match_suffix(btf, arg, "__irq_flag");
12223 }
12224
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)12225 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
12226 const struct btf_param *arg,
12227 const char *name)
12228 {
12229 int len, target_len = strlen(name);
12230 const char *param_name;
12231
12232 param_name = btf_name_by_offset(btf, arg->name_off);
12233 if (str_is_empty(param_name))
12234 return false;
12235 len = strlen(param_name);
12236 if (len != target_len)
12237 return false;
12238 if (strcmp(param_name, name))
12239 return false;
12240
12241 return true;
12242 }
12243
12244 enum {
12245 KF_ARG_DYNPTR_ID,
12246 KF_ARG_LIST_HEAD_ID,
12247 KF_ARG_LIST_NODE_ID,
12248 KF_ARG_RB_ROOT_ID,
12249 KF_ARG_RB_NODE_ID,
12250 KF_ARG_WORKQUEUE_ID,
12251 KF_ARG_RES_SPIN_LOCK_ID,
12252 KF_ARG_TASK_WORK_ID,
12253 KF_ARG_PROG_AUX_ID,
12254 KF_ARG_TIMER_ID
12255 };
12256
12257 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr)12258 BTF_ID(struct, bpf_dynptr)
12259 BTF_ID(struct, bpf_list_head)
12260 BTF_ID(struct, bpf_list_node)
12261 BTF_ID(struct, bpf_rb_root)
12262 BTF_ID(struct, bpf_rb_node)
12263 BTF_ID(struct, bpf_wq)
12264 BTF_ID(struct, bpf_res_spin_lock)
12265 BTF_ID(struct, bpf_task_work)
12266 BTF_ID(struct, bpf_prog_aux)
12267 BTF_ID(struct, bpf_timer)
12268
12269 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
12270 const struct btf_param *arg, int type)
12271 {
12272 const struct btf_type *t;
12273 u32 res_id;
12274
12275 t = btf_type_skip_modifiers(btf, arg->type, NULL);
12276 if (!t)
12277 return false;
12278 if (!btf_type_is_ptr(t))
12279 return false;
12280 t = btf_type_skip_modifiers(btf, t->type, &res_id);
12281 if (!t)
12282 return false;
12283 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
12284 }
12285
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)12286 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
12287 {
12288 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
12289 }
12290
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)12291 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
12292 {
12293 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
12294 }
12295
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)12296 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
12297 {
12298 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
12299 }
12300
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)12301 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
12302 {
12303 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
12304 }
12305
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)12306 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
12307 {
12308 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
12309 }
12310
is_kfunc_arg_timer(const struct btf * btf,const struct btf_param * arg)12311 static bool is_kfunc_arg_timer(const struct btf *btf, const struct btf_param *arg)
12312 {
12313 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TIMER_ID);
12314 }
12315
is_kfunc_arg_wq(const struct btf * btf,const struct btf_param * arg)12316 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
12317 {
12318 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
12319 }
12320
is_kfunc_arg_task_work(const struct btf * btf,const struct btf_param * arg)12321 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg)
12322 {
12323 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID);
12324 }
12325
is_kfunc_arg_res_spin_lock(const struct btf * btf,const struct btf_param * arg)12326 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
12327 {
12328 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
12329 }
12330
is_rbtree_node_type(const struct btf_type * t)12331 static bool is_rbtree_node_type(const struct btf_type *t)
12332 {
12333 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
12334 }
12335
is_list_node_type(const struct btf_type * t)12336 static bool is_list_node_type(const struct btf_type *t)
12337 {
12338 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
12339 }
12340
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)12341 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
12342 const struct btf_param *arg)
12343 {
12344 const struct btf_type *t;
12345
12346 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
12347 if (!t)
12348 return false;
12349
12350 return true;
12351 }
12352
is_kfunc_arg_prog_aux(const struct btf * btf,const struct btf_param * arg)12353 static bool is_kfunc_arg_prog_aux(const struct btf *btf, const struct btf_param *arg)
12354 {
12355 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_PROG_AUX_ID);
12356 }
12357
12358 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)12359 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
12360 const struct btf *btf,
12361 const struct btf_type *t, int rec)
12362 {
12363 const struct btf_type *member_type;
12364 const struct btf_member *member;
12365 u32 i;
12366
12367 if (!btf_type_is_struct(t))
12368 return false;
12369
12370 for_each_member(i, t, member) {
12371 const struct btf_array *array;
12372
12373 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
12374 if (btf_type_is_struct(member_type)) {
12375 if (rec >= 3) {
12376 verbose(env, "max struct nesting depth exceeded\n");
12377 return false;
12378 }
12379 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
12380 return false;
12381 continue;
12382 }
12383 if (btf_type_is_array(member_type)) {
12384 array = btf_array(member_type);
12385 if (!array->nelems)
12386 return false;
12387 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
12388 if (!btf_type_is_scalar(member_type))
12389 return false;
12390 continue;
12391 }
12392 if (!btf_type_is_scalar(member_type))
12393 return false;
12394 }
12395 return true;
12396 }
12397
12398 enum kfunc_ptr_arg_type {
12399 KF_ARG_PTR_TO_CTX,
12400 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
12401 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
12402 KF_ARG_PTR_TO_DYNPTR,
12403 KF_ARG_PTR_TO_ITER,
12404 KF_ARG_PTR_TO_LIST_HEAD,
12405 KF_ARG_PTR_TO_LIST_NODE,
12406 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
12407 KF_ARG_PTR_TO_MEM,
12408 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
12409 KF_ARG_PTR_TO_CALLBACK,
12410 KF_ARG_PTR_TO_RB_ROOT,
12411 KF_ARG_PTR_TO_RB_NODE,
12412 KF_ARG_PTR_TO_NULL,
12413 KF_ARG_PTR_TO_CONST_STR,
12414 KF_ARG_PTR_TO_MAP,
12415 KF_ARG_PTR_TO_TIMER,
12416 KF_ARG_PTR_TO_WORKQUEUE,
12417 KF_ARG_PTR_TO_IRQ_FLAG,
12418 KF_ARG_PTR_TO_RES_SPIN_LOCK,
12419 KF_ARG_PTR_TO_TASK_WORK,
12420 };
12421
12422 enum special_kfunc_type {
12423 KF_bpf_obj_new_impl,
12424 KF_bpf_obj_drop_impl,
12425 KF_bpf_refcount_acquire_impl,
12426 KF_bpf_list_push_front_impl,
12427 KF_bpf_list_push_back_impl,
12428 KF_bpf_list_pop_front,
12429 KF_bpf_list_pop_back,
12430 KF_bpf_list_front,
12431 KF_bpf_list_back,
12432 KF_bpf_cast_to_kern_ctx,
12433 KF_bpf_rdonly_cast,
12434 KF_bpf_rcu_read_lock,
12435 KF_bpf_rcu_read_unlock,
12436 KF_bpf_rbtree_remove,
12437 KF_bpf_rbtree_add_impl,
12438 KF_bpf_rbtree_first,
12439 KF_bpf_rbtree_root,
12440 KF_bpf_rbtree_left,
12441 KF_bpf_rbtree_right,
12442 KF_bpf_dynptr_from_skb,
12443 KF_bpf_dynptr_from_xdp,
12444 KF_bpf_dynptr_from_skb_meta,
12445 KF_bpf_xdp_pull_data,
12446 KF_bpf_dynptr_slice,
12447 KF_bpf_dynptr_slice_rdwr,
12448 KF_bpf_dynptr_clone,
12449 KF_bpf_percpu_obj_new_impl,
12450 KF_bpf_percpu_obj_drop_impl,
12451 KF_bpf_throw,
12452 KF_bpf_wq_set_callback,
12453 KF_bpf_preempt_disable,
12454 KF_bpf_preempt_enable,
12455 KF_bpf_iter_css_task_new,
12456 KF_bpf_session_cookie,
12457 KF_bpf_get_kmem_cache,
12458 KF_bpf_local_irq_save,
12459 KF_bpf_local_irq_restore,
12460 KF_bpf_iter_num_new,
12461 KF_bpf_iter_num_next,
12462 KF_bpf_iter_num_destroy,
12463 KF_bpf_set_dentry_xattr,
12464 KF_bpf_remove_dentry_xattr,
12465 KF_bpf_res_spin_lock,
12466 KF_bpf_res_spin_unlock,
12467 KF_bpf_res_spin_lock_irqsave,
12468 KF_bpf_res_spin_unlock_irqrestore,
12469 KF_bpf_dynptr_from_file,
12470 KF_bpf_dynptr_file_discard,
12471 KF___bpf_trap,
12472 KF_bpf_task_work_schedule_signal,
12473 KF_bpf_task_work_schedule_resume,
12474 KF_bpf_arena_alloc_pages,
12475 KF_bpf_arena_free_pages,
12476 KF_bpf_arena_reserve_pages,
12477 KF_bpf_session_is_return,
12478 KF_bpf_stream_vprintk,
12479 KF_bpf_stream_print_stack,
12480 };
12481
12482 BTF_ID_LIST(special_kfunc_list)
BTF_ID(func,bpf_obj_new_impl)12483 BTF_ID(func, bpf_obj_new_impl)
12484 BTF_ID(func, bpf_obj_drop_impl)
12485 BTF_ID(func, bpf_refcount_acquire_impl)
12486 BTF_ID(func, bpf_list_push_front_impl)
12487 BTF_ID(func, bpf_list_push_back_impl)
12488 BTF_ID(func, bpf_list_pop_front)
12489 BTF_ID(func, bpf_list_pop_back)
12490 BTF_ID(func, bpf_list_front)
12491 BTF_ID(func, bpf_list_back)
12492 BTF_ID(func, bpf_cast_to_kern_ctx)
12493 BTF_ID(func, bpf_rdonly_cast)
12494 BTF_ID(func, bpf_rcu_read_lock)
12495 BTF_ID(func, bpf_rcu_read_unlock)
12496 BTF_ID(func, bpf_rbtree_remove)
12497 BTF_ID(func, bpf_rbtree_add_impl)
12498 BTF_ID(func, bpf_rbtree_first)
12499 BTF_ID(func, bpf_rbtree_root)
12500 BTF_ID(func, bpf_rbtree_left)
12501 BTF_ID(func, bpf_rbtree_right)
12502 #ifdef CONFIG_NET
12503 BTF_ID(func, bpf_dynptr_from_skb)
12504 BTF_ID(func, bpf_dynptr_from_xdp)
12505 BTF_ID(func, bpf_dynptr_from_skb_meta)
12506 BTF_ID(func, bpf_xdp_pull_data)
12507 #else
12508 BTF_ID_UNUSED
12509 BTF_ID_UNUSED
12510 BTF_ID_UNUSED
12511 BTF_ID_UNUSED
12512 #endif
12513 BTF_ID(func, bpf_dynptr_slice)
12514 BTF_ID(func, bpf_dynptr_slice_rdwr)
12515 BTF_ID(func, bpf_dynptr_clone)
12516 BTF_ID(func, bpf_percpu_obj_new_impl)
12517 BTF_ID(func, bpf_percpu_obj_drop_impl)
12518 BTF_ID(func, bpf_throw)
12519 BTF_ID(func, bpf_wq_set_callback)
12520 BTF_ID(func, bpf_preempt_disable)
12521 BTF_ID(func, bpf_preempt_enable)
12522 #ifdef CONFIG_CGROUPS
12523 BTF_ID(func, bpf_iter_css_task_new)
12524 #else
12525 BTF_ID_UNUSED
12526 #endif
12527 #ifdef CONFIG_BPF_EVENTS
12528 BTF_ID(func, bpf_session_cookie)
12529 #else
12530 BTF_ID_UNUSED
12531 #endif
12532 BTF_ID(func, bpf_get_kmem_cache)
12533 BTF_ID(func, bpf_local_irq_save)
12534 BTF_ID(func, bpf_local_irq_restore)
12535 BTF_ID(func, bpf_iter_num_new)
12536 BTF_ID(func, bpf_iter_num_next)
12537 BTF_ID(func, bpf_iter_num_destroy)
12538 #ifdef CONFIG_BPF_LSM
12539 BTF_ID(func, bpf_set_dentry_xattr)
12540 BTF_ID(func, bpf_remove_dentry_xattr)
12541 #else
12542 BTF_ID_UNUSED
12543 BTF_ID_UNUSED
12544 #endif
12545 BTF_ID(func, bpf_res_spin_lock)
12546 BTF_ID(func, bpf_res_spin_unlock)
12547 BTF_ID(func, bpf_res_spin_lock_irqsave)
12548 BTF_ID(func, bpf_res_spin_unlock_irqrestore)
12549 BTF_ID(func, bpf_dynptr_from_file)
12550 BTF_ID(func, bpf_dynptr_file_discard)
12551 BTF_ID(func, __bpf_trap)
12552 BTF_ID(func, bpf_task_work_schedule_signal)
12553 BTF_ID(func, bpf_task_work_schedule_resume)
12554 BTF_ID(func, bpf_arena_alloc_pages)
12555 BTF_ID(func, bpf_arena_free_pages)
12556 BTF_ID(func, bpf_arena_reserve_pages)
12557 BTF_ID(func, bpf_session_is_return)
12558 BTF_ID(func, bpf_stream_vprintk)
12559 BTF_ID(func, bpf_stream_print_stack)
12560
12561 static bool is_task_work_add_kfunc(u32 func_id)
12562 {
12563 return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal] ||
12564 func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume];
12565 }
12566
is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta * meta)12567 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
12568 {
12569 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
12570 meta->arg_owning_ref) {
12571 return false;
12572 }
12573
12574 return meta->kfunc_flags & KF_RET_NULL;
12575 }
12576
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)12577 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
12578 {
12579 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
12580 }
12581
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)12582 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
12583 {
12584 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
12585 }
12586
is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta * meta)12587 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
12588 {
12589 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
12590 }
12591
is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta * meta)12592 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
12593 {
12594 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
12595 }
12596
is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta * meta)12597 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta)
12598 {
12599 return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data];
12600 }
12601
12602 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)12603 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
12604 struct bpf_kfunc_call_arg_meta *meta,
12605 const struct btf_type *t, const struct btf_type *ref_t,
12606 const char *ref_tname, const struct btf_param *args,
12607 int argno, int nargs)
12608 {
12609 u32 regno = argno + 1;
12610 struct bpf_reg_state *regs = cur_regs(env);
12611 struct bpf_reg_state *reg = ®s[regno];
12612 bool arg_mem_size = false;
12613
12614 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
12615 meta->func_id == special_kfunc_list[KF_bpf_session_is_return] ||
12616 meta->func_id == special_kfunc_list[KF_bpf_session_cookie])
12617 return KF_ARG_PTR_TO_CTX;
12618
12619 if (argno + 1 < nargs &&
12620 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
12621 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
12622 arg_mem_size = true;
12623
12624 /* In this function, we verify the kfunc's BTF as per the argument type,
12625 * leaving the rest of the verification with respect to the register
12626 * type to our caller. When a set of conditions hold in the BTF type of
12627 * arguments, we resolve it to a known kfunc_ptr_arg_type.
12628 */
12629 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
12630 return KF_ARG_PTR_TO_CTX;
12631
12632 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg) &&
12633 !arg_mem_size)
12634 return KF_ARG_PTR_TO_NULL;
12635
12636 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
12637 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
12638
12639 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
12640 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
12641
12642 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
12643 return KF_ARG_PTR_TO_DYNPTR;
12644
12645 if (is_kfunc_arg_iter(meta, argno, &args[argno]))
12646 return KF_ARG_PTR_TO_ITER;
12647
12648 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
12649 return KF_ARG_PTR_TO_LIST_HEAD;
12650
12651 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
12652 return KF_ARG_PTR_TO_LIST_NODE;
12653
12654 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
12655 return KF_ARG_PTR_TO_RB_ROOT;
12656
12657 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
12658 return KF_ARG_PTR_TO_RB_NODE;
12659
12660 if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
12661 return KF_ARG_PTR_TO_CONST_STR;
12662
12663 if (is_kfunc_arg_map(meta->btf, &args[argno]))
12664 return KF_ARG_PTR_TO_MAP;
12665
12666 if (is_kfunc_arg_wq(meta->btf, &args[argno]))
12667 return KF_ARG_PTR_TO_WORKQUEUE;
12668
12669 if (is_kfunc_arg_timer(meta->btf, &args[argno]))
12670 return KF_ARG_PTR_TO_TIMER;
12671
12672 if (is_kfunc_arg_task_work(meta->btf, &args[argno]))
12673 return KF_ARG_PTR_TO_TASK_WORK;
12674
12675 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
12676 return KF_ARG_PTR_TO_IRQ_FLAG;
12677
12678 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
12679 return KF_ARG_PTR_TO_RES_SPIN_LOCK;
12680
12681 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
12682 if (!btf_type_is_struct(ref_t)) {
12683 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
12684 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
12685 return -EINVAL;
12686 }
12687 return KF_ARG_PTR_TO_BTF_ID;
12688 }
12689
12690 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
12691 return KF_ARG_PTR_TO_CALLBACK;
12692
12693 /* This is the catch all argument type of register types supported by
12694 * check_helper_mem_access. However, we only allow when argument type is
12695 * pointer to scalar, or struct composed (recursively) of scalars. When
12696 * arg_mem_size is true, the pointer can be void *.
12697 */
12698 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
12699 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
12700 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
12701 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
12702 return -EINVAL;
12703 }
12704 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
12705 }
12706
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)12707 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
12708 struct bpf_reg_state *reg,
12709 const struct btf_type *ref_t,
12710 const char *ref_tname, u32 ref_id,
12711 struct bpf_kfunc_call_arg_meta *meta,
12712 int argno)
12713 {
12714 const struct btf_type *reg_ref_t;
12715 bool strict_type_match = false;
12716 const struct btf *reg_btf;
12717 const char *reg_ref_tname;
12718 bool taking_projection;
12719 bool struct_same;
12720 u32 reg_ref_id;
12721
12722 if (base_type(reg->type) == PTR_TO_BTF_ID) {
12723 reg_btf = reg->btf;
12724 reg_ref_id = reg->btf_id;
12725 } else {
12726 reg_btf = btf_vmlinux;
12727 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
12728 }
12729
12730 /* Enforce strict type matching for calls to kfuncs that are acquiring
12731 * or releasing a reference, or are no-cast aliases. We do _not_
12732 * enforce strict matching for kfuncs by default,
12733 * as we want to enable BPF programs to pass types that are bitwise
12734 * equivalent without forcing them to explicitly cast with something
12735 * like bpf_cast_to_kern_ctx().
12736 *
12737 * For example, say we had a type like the following:
12738 *
12739 * struct bpf_cpumask {
12740 * cpumask_t cpumask;
12741 * refcount_t usage;
12742 * };
12743 *
12744 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
12745 * to a struct cpumask, so it would be safe to pass a struct
12746 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
12747 *
12748 * The philosophy here is similar to how we allow scalars of different
12749 * types to be passed to kfuncs as long as the size is the same. The
12750 * only difference here is that we're simply allowing
12751 * btf_struct_ids_match() to walk the struct at the 0th offset, and
12752 * resolve types.
12753 */
12754 if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
12755 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
12756 strict_type_match = true;
12757
12758 WARN_ON_ONCE(is_kfunc_release(meta) &&
12759 (reg->off || !tnum_is_const(reg->var_off) ||
12760 reg->var_off.value));
12761
12762 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
12763 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
12764 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
12765 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
12766 * actually use it -- it must cast to the underlying type. So we allow
12767 * caller to pass in the underlying type.
12768 */
12769 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
12770 if (!taking_projection && !struct_same) {
12771 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
12772 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
12773 btf_type_str(reg_ref_t), reg_ref_tname);
12774 return -EINVAL;
12775 }
12776 return 0;
12777 }
12778
process_irq_flag(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)12779 static int process_irq_flag(struct bpf_verifier_env *env, int regno,
12780 struct bpf_kfunc_call_arg_meta *meta)
12781 {
12782 struct bpf_reg_state *reg = reg_state(env, regno);
12783 int err, kfunc_class = IRQ_NATIVE_KFUNC;
12784 bool irq_save;
12785
12786 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
12787 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
12788 irq_save = true;
12789 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
12790 kfunc_class = IRQ_LOCK_KFUNC;
12791 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
12792 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
12793 irq_save = false;
12794 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
12795 kfunc_class = IRQ_LOCK_KFUNC;
12796 } else {
12797 verifier_bug(env, "unknown irq flags kfunc");
12798 return -EFAULT;
12799 }
12800
12801 if (irq_save) {
12802 if (!is_irq_flag_reg_valid_uninit(env, reg)) {
12803 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
12804 return -EINVAL;
12805 }
12806
12807 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
12808 if (err)
12809 return err;
12810
12811 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
12812 if (err)
12813 return err;
12814 } else {
12815 err = is_irq_flag_reg_valid_init(env, reg);
12816 if (err) {
12817 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
12818 return err;
12819 }
12820
12821 err = mark_irq_flag_read(env, reg);
12822 if (err)
12823 return err;
12824
12825 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
12826 if (err)
12827 return err;
12828 }
12829 return 0;
12830 }
12831
12832
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12833 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12834 {
12835 struct btf_record *rec = reg_btf_record(reg);
12836
12837 if (!env->cur_state->active_locks) {
12838 verifier_bug(env, "%s w/o active lock", __func__);
12839 return -EFAULT;
12840 }
12841
12842 if (type_flag(reg->type) & NON_OWN_REF) {
12843 verifier_bug(env, "NON_OWN_REF already set");
12844 return -EFAULT;
12845 }
12846
12847 reg->type |= NON_OWN_REF;
12848 if (rec->refcount_off >= 0)
12849 reg->type |= MEM_RCU;
12850
12851 return 0;
12852 }
12853
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)12854 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
12855 {
12856 struct bpf_verifier_state *state = env->cur_state;
12857 struct bpf_func_state *unused;
12858 struct bpf_reg_state *reg;
12859 int i;
12860
12861 if (!ref_obj_id) {
12862 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion");
12863 return -EFAULT;
12864 }
12865
12866 for (i = 0; i < state->acquired_refs; i++) {
12867 if (state->refs[i].id != ref_obj_id)
12868 continue;
12869
12870 /* Clear ref_obj_id here so release_reference doesn't clobber
12871 * the whole reg
12872 */
12873 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
12874 if (reg->ref_obj_id == ref_obj_id) {
12875 reg->ref_obj_id = 0;
12876 ref_set_non_owning(env, reg);
12877 }
12878 }));
12879 return 0;
12880 }
12881
12882 verifier_bug(env, "ref state missing for ref_obj_id");
12883 return -EFAULT;
12884 }
12885
12886 /* Implementation details:
12887 *
12888 * Each register points to some region of memory, which we define as an
12889 * allocation. Each allocation may embed a bpf_spin_lock which protects any
12890 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
12891 * allocation. The lock and the data it protects are colocated in the same
12892 * memory region.
12893 *
12894 * Hence, everytime a register holds a pointer value pointing to such
12895 * allocation, the verifier preserves a unique reg->id for it.
12896 *
12897 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
12898 * bpf_spin_lock is called.
12899 *
12900 * To enable this, lock state in the verifier captures two values:
12901 * active_lock.ptr = Register's type specific pointer
12902 * active_lock.id = A unique ID for each register pointer value
12903 *
12904 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
12905 * supported register types.
12906 *
12907 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
12908 * allocated objects is the reg->btf pointer.
12909 *
12910 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
12911 * can establish the provenance of the map value statically for each distinct
12912 * lookup into such maps. They always contain a single map value hence unique
12913 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
12914 *
12915 * So, in case of global variables, they use array maps with max_entries = 1,
12916 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
12917 * into the same map value as max_entries is 1, as described above).
12918 *
12919 * In case of inner map lookups, the inner map pointer has same map_ptr as the
12920 * outer map pointer (in verifier context), but each lookup into an inner map
12921 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
12922 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
12923 * will get different reg->id assigned to each lookup, hence different
12924 * active_lock.id.
12925 *
12926 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
12927 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
12928 * returned from bpf_obj_new. Each allocation receives a new reg->id.
12929 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12930 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12931 {
12932 struct bpf_reference_state *s;
12933 void *ptr;
12934 u32 id;
12935
12936 switch ((int)reg->type) {
12937 case PTR_TO_MAP_VALUE:
12938 ptr = reg->map_ptr;
12939 break;
12940 case PTR_TO_BTF_ID | MEM_ALLOC:
12941 ptr = reg->btf;
12942 break;
12943 default:
12944 verifier_bug(env, "unknown reg type for lock check");
12945 return -EFAULT;
12946 }
12947 id = reg->id;
12948
12949 if (!env->cur_state->active_locks)
12950 return -EINVAL;
12951 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
12952 if (!s) {
12953 verbose(env, "held lock and object are not in the same allocation\n");
12954 return -EINVAL;
12955 }
12956 return 0;
12957 }
12958
is_bpf_list_api_kfunc(u32 btf_id)12959 static bool is_bpf_list_api_kfunc(u32 btf_id)
12960 {
12961 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12962 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12963 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12964 btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
12965 btf_id == special_kfunc_list[KF_bpf_list_front] ||
12966 btf_id == special_kfunc_list[KF_bpf_list_back];
12967 }
12968
is_bpf_rbtree_api_kfunc(u32 btf_id)12969 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
12970 {
12971 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12972 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12973 btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
12974 btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
12975 btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12976 btf_id == special_kfunc_list[KF_bpf_rbtree_right];
12977 }
12978
is_bpf_iter_num_api_kfunc(u32 btf_id)12979 static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
12980 {
12981 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
12982 btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
12983 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
12984 }
12985
is_bpf_graph_api_kfunc(u32 btf_id)12986 static bool is_bpf_graph_api_kfunc(u32 btf_id)
12987 {
12988 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
12989 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
12990 }
12991
is_bpf_res_spin_lock_kfunc(u32 btf_id)12992 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
12993 {
12994 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
12995 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
12996 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
12997 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
12998 }
12999
is_bpf_arena_kfunc(u32 btf_id)13000 static bool is_bpf_arena_kfunc(u32 btf_id)
13001 {
13002 return btf_id == special_kfunc_list[KF_bpf_arena_alloc_pages] ||
13003 btf_id == special_kfunc_list[KF_bpf_arena_free_pages] ||
13004 btf_id == special_kfunc_list[KF_bpf_arena_reserve_pages];
13005 }
13006
is_bpf_stream_kfunc(u32 btf_id)13007 static bool is_bpf_stream_kfunc(u32 btf_id)
13008 {
13009 return btf_id == special_kfunc_list[KF_bpf_stream_vprintk] ||
13010 btf_id == special_kfunc_list[KF_bpf_stream_print_stack];
13011 }
13012
kfunc_spin_allowed(u32 btf_id)13013 static bool kfunc_spin_allowed(u32 btf_id)
13014 {
13015 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
13016 is_bpf_res_spin_lock_kfunc(btf_id) || is_bpf_arena_kfunc(btf_id) ||
13017 is_bpf_stream_kfunc(btf_id);
13018 }
13019
is_sync_callback_calling_kfunc(u32 btf_id)13020 static bool is_sync_callback_calling_kfunc(u32 btf_id)
13021 {
13022 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
13023 }
13024
is_async_callback_calling_kfunc(u32 btf_id)13025 static bool is_async_callback_calling_kfunc(u32 btf_id)
13026 {
13027 return is_bpf_wq_set_callback_kfunc(btf_id) ||
13028 is_task_work_add_kfunc(btf_id);
13029 }
13030
is_bpf_throw_kfunc(struct bpf_insn * insn)13031 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
13032 {
13033 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
13034 insn->imm == special_kfunc_list[KF_bpf_throw];
13035 }
13036
is_bpf_wq_set_callback_kfunc(u32 btf_id)13037 static bool is_bpf_wq_set_callback_kfunc(u32 btf_id)
13038 {
13039 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback];
13040 }
13041
is_callback_calling_kfunc(u32 btf_id)13042 static bool is_callback_calling_kfunc(u32 btf_id)
13043 {
13044 return is_sync_callback_calling_kfunc(btf_id) ||
13045 is_async_callback_calling_kfunc(btf_id);
13046 }
13047
is_rbtree_lock_required_kfunc(u32 btf_id)13048 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
13049 {
13050 return is_bpf_rbtree_api_kfunc(btf_id);
13051 }
13052
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)13053 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
13054 enum btf_field_type head_field_type,
13055 u32 kfunc_btf_id)
13056 {
13057 bool ret;
13058
13059 switch (head_field_type) {
13060 case BPF_LIST_HEAD:
13061 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
13062 break;
13063 case BPF_RB_ROOT:
13064 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
13065 break;
13066 default:
13067 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
13068 btf_field_type_name(head_field_type));
13069 return false;
13070 }
13071
13072 if (!ret)
13073 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
13074 btf_field_type_name(head_field_type));
13075 return ret;
13076 }
13077
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)13078 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
13079 enum btf_field_type node_field_type,
13080 u32 kfunc_btf_id)
13081 {
13082 bool ret;
13083
13084 switch (node_field_type) {
13085 case BPF_LIST_NODE:
13086 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
13087 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
13088 break;
13089 case BPF_RB_NODE:
13090 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
13091 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
13092 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
13093 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
13094 break;
13095 default:
13096 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
13097 btf_field_type_name(node_field_type));
13098 return false;
13099 }
13100
13101 if (!ret)
13102 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
13103 btf_field_type_name(node_field_type));
13104 return ret;
13105 }
13106
13107 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)13108 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
13109 struct bpf_reg_state *reg, u32 regno,
13110 struct bpf_kfunc_call_arg_meta *meta,
13111 enum btf_field_type head_field_type,
13112 struct btf_field **head_field)
13113 {
13114 const char *head_type_name;
13115 struct btf_field *field;
13116 struct btf_record *rec;
13117 u32 head_off;
13118
13119 if (meta->btf != btf_vmlinux) {
13120 verifier_bug(env, "unexpected btf mismatch in kfunc call");
13121 return -EFAULT;
13122 }
13123
13124 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
13125 return -EFAULT;
13126
13127 head_type_name = btf_field_type_name(head_field_type);
13128 if (!tnum_is_const(reg->var_off)) {
13129 verbose(env,
13130 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
13131 regno, head_type_name);
13132 return -EINVAL;
13133 }
13134
13135 rec = reg_btf_record(reg);
13136 head_off = reg->off + reg->var_off.value;
13137 field = btf_record_find(rec, head_off, head_field_type);
13138 if (!field) {
13139 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
13140 return -EINVAL;
13141 }
13142
13143 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
13144 if (check_reg_allocation_locked(env, reg)) {
13145 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
13146 rec->spin_lock_off, head_type_name);
13147 return -EINVAL;
13148 }
13149
13150 if (*head_field) {
13151 verifier_bug(env, "repeating %s arg", head_type_name);
13152 return -EFAULT;
13153 }
13154 *head_field = field;
13155 return 0;
13156 }
13157
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13158 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
13159 struct bpf_reg_state *reg, u32 regno,
13160 struct bpf_kfunc_call_arg_meta *meta)
13161 {
13162 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
13163 &meta->arg_list_head.field);
13164 }
13165
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13166 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
13167 struct bpf_reg_state *reg, u32 regno,
13168 struct bpf_kfunc_call_arg_meta *meta)
13169 {
13170 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
13171 &meta->arg_rbtree_root.field);
13172 }
13173
13174 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)13175 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
13176 struct bpf_reg_state *reg, u32 regno,
13177 struct bpf_kfunc_call_arg_meta *meta,
13178 enum btf_field_type head_field_type,
13179 enum btf_field_type node_field_type,
13180 struct btf_field **node_field)
13181 {
13182 const char *node_type_name;
13183 const struct btf_type *et, *t;
13184 struct btf_field *field;
13185 u32 node_off;
13186
13187 if (meta->btf != btf_vmlinux) {
13188 verifier_bug(env, "unexpected btf mismatch in kfunc call");
13189 return -EFAULT;
13190 }
13191
13192 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
13193 return -EFAULT;
13194
13195 node_type_name = btf_field_type_name(node_field_type);
13196 if (!tnum_is_const(reg->var_off)) {
13197 verbose(env,
13198 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
13199 regno, node_type_name);
13200 return -EINVAL;
13201 }
13202
13203 node_off = reg->off + reg->var_off.value;
13204 field = reg_find_field_offset(reg, node_off, node_field_type);
13205 if (!field) {
13206 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
13207 return -EINVAL;
13208 }
13209
13210 field = *node_field;
13211
13212 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
13213 t = btf_type_by_id(reg->btf, reg->btf_id);
13214 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
13215 field->graph_root.value_btf_id, true)) {
13216 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
13217 "in struct %s, but arg is at offset=%d in struct %s\n",
13218 btf_field_type_name(head_field_type),
13219 btf_field_type_name(node_field_type),
13220 field->graph_root.node_offset,
13221 btf_name_by_offset(field->graph_root.btf, et->name_off),
13222 node_off, btf_name_by_offset(reg->btf, t->name_off));
13223 return -EINVAL;
13224 }
13225 meta->arg_btf = reg->btf;
13226 meta->arg_btf_id = reg->btf_id;
13227
13228 if (node_off != field->graph_root.node_offset) {
13229 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
13230 node_off, btf_field_type_name(node_field_type),
13231 field->graph_root.node_offset,
13232 btf_name_by_offset(field->graph_root.btf, et->name_off));
13233 return -EINVAL;
13234 }
13235
13236 return 0;
13237 }
13238
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13239 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
13240 struct bpf_reg_state *reg, u32 regno,
13241 struct bpf_kfunc_call_arg_meta *meta)
13242 {
13243 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13244 BPF_LIST_HEAD, BPF_LIST_NODE,
13245 &meta->arg_list_head.field);
13246 }
13247
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13248 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
13249 struct bpf_reg_state *reg, u32 regno,
13250 struct bpf_kfunc_call_arg_meta *meta)
13251 {
13252 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13253 BPF_RB_ROOT, BPF_RB_NODE,
13254 &meta->arg_rbtree_root.field);
13255 }
13256
13257 /*
13258 * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
13259 * LSM hooks and iters (both sleepable and non-sleepable) are safe.
13260 * Any sleepable progs are also safe since bpf_check_attach_target() enforce
13261 * them can only be attached to some specific hook points.
13262 */
check_css_task_iter_allowlist(struct bpf_verifier_env * env)13263 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
13264 {
13265 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13266
13267 switch (prog_type) {
13268 case BPF_PROG_TYPE_LSM:
13269 return true;
13270 case BPF_PROG_TYPE_TRACING:
13271 if (env->prog->expected_attach_type == BPF_TRACE_ITER)
13272 return true;
13273 fallthrough;
13274 default:
13275 return in_sleepable(env);
13276 }
13277 }
13278
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)13279 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13280 int insn_idx)
13281 {
13282 const char *func_name = meta->func_name, *ref_tname;
13283 const struct btf *btf = meta->btf;
13284 const struct btf_param *args;
13285 struct btf_record *rec;
13286 u32 i, nargs;
13287 int ret;
13288
13289 args = (const struct btf_param *)(meta->func_proto + 1);
13290 nargs = btf_type_vlen(meta->func_proto);
13291 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
13292 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
13293 MAX_BPF_FUNC_REG_ARGS);
13294 return -EINVAL;
13295 }
13296
13297 /* Check that BTF function arguments match actual types that the
13298 * verifier sees.
13299 */
13300 for (i = 0; i < nargs; i++) {
13301 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
13302 const struct btf_type *t, *ref_t, *resolve_ret;
13303 enum bpf_arg_type arg_type = ARG_DONTCARE;
13304 u32 regno = i + 1, ref_id, type_size;
13305 bool is_ret_buf_sz = false;
13306 int kf_arg_type;
13307
13308 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
13309
13310 if (is_kfunc_arg_ignore(btf, &args[i]))
13311 continue;
13312
13313 if (is_kfunc_arg_prog_aux(btf, &args[i])) {
13314 /* Reject repeated use bpf_prog_aux */
13315 if (meta->arg_prog) {
13316 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc");
13317 return -EFAULT;
13318 }
13319 meta->arg_prog = true;
13320 cur_aux(env)->arg_prog = regno;
13321 continue;
13322 }
13323
13324 if (btf_type_is_scalar(t)) {
13325 if (reg->type != SCALAR_VALUE) {
13326 verbose(env, "R%d is not a scalar\n", regno);
13327 return -EINVAL;
13328 }
13329
13330 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
13331 if (meta->arg_constant.found) {
13332 verifier_bug(env, "only one constant argument permitted");
13333 return -EFAULT;
13334 }
13335 if (!tnum_is_const(reg->var_off)) {
13336 verbose(env, "R%d must be a known constant\n", regno);
13337 return -EINVAL;
13338 }
13339 ret = mark_chain_precision(env, regno);
13340 if (ret < 0)
13341 return ret;
13342 meta->arg_constant.found = true;
13343 meta->arg_constant.value = reg->var_off.value;
13344 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
13345 meta->r0_rdonly = true;
13346 is_ret_buf_sz = true;
13347 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
13348 is_ret_buf_sz = true;
13349 }
13350
13351 if (is_ret_buf_sz) {
13352 if (meta->r0_size) {
13353 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
13354 return -EINVAL;
13355 }
13356
13357 if (!tnum_is_const(reg->var_off)) {
13358 verbose(env, "R%d is not a const\n", regno);
13359 return -EINVAL;
13360 }
13361
13362 meta->r0_size = reg->var_off.value;
13363 ret = mark_chain_precision(env, regno);
13364 if (ret)
13365 return ret;
13366 }
13367 continue;
13368 }
13369
13370 if (!btf_type_is_ptr(t)) {
13371 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
13372 return -EINVAL;
13373 }
13374
13375 if ((register_is_null(reg) || type_may_be_null(reg->type)) &&
13376 !is_kfunc_arg_nullable(meta->btf, &args[i])) {
13377 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
13378 return -EACCES;
13379 }
13380
13381 if (reg->ref_obj_id) {
13382 if (is_kfunc_release(meta) && meta->ref_obj_id) {
13383 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u",
13384 regno, reg->ref_obj_id,
13385 meta->ref_obj_id);
13386 return -EFAULT;
13387 }
13388 meta->ref_obj_id = reg->ref_obj_id;
13389 if (is_kfunc_release(meta))
13390 meta->release_regno = regno;
13391 }
13392
13393 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
13394 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13395
13396 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
13397 if (kf_arg_type < 0)
13398 return kf_arg_type;
13399
13400 switch (kf_arg_type) {
13401 case KF_ARG_PTR_TO_NULL:
13402 continue;
13403 case KF_ARG_PTR_TO_MAP:
13404 if (!reg->map_ptr) {
13405 verbose(env, "pointer in R%d isn't map pointer\n", regno);
13406 return -EINVAL;
13407 }
13408 if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 ||
13409 reg->map_ptr->record->task_work_off >= 0)) {
13410 /* Use map_uid (which is unique id of inner map) to reject:
13411 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
13412 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
13413 * if (inner_map1 && inner_map2) {
13414 * wq = bpf_map_lookup_elem(inner_map1);
13415 * if (wq)
13416 * // mismatch would have been allowed
13417 * bpf_wq_init(wq, inner_map2);
13418 * }
13419 *
13420 * Comparing map_ptr is enough to distinguish normal and outer maps.
13421 */
13422 if (meta->map.ptr != reg->map_ptr ||
13423 meta->map.uid != reg->map_uid) {
13424 if (reg->map_ptr->record->task_work_off >= 0) {
13425 verbose(env,
13426 "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n",
13427 meta->map.uid, reg->map_uid);
13428 return -EINVAL;
13429 }
13430 verbose(env,
13431 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
13432 meta->map.uid, reg->map_uid);
13433 return -EINVAL;
13434 }
13435 }
13436 meta->map.ptr = reg->map_ptr;
13437 meta->map.uid = reg->map_uid;
13438 fallthrough;
13439 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13440 case KF_ARG_PTR_TO_BTF_ID:
13441 if (!is_trusted_reg(reg)) {
13442 if (!is_kfunc_rcu(meta)) {
13443 verbose(env, "R%d must be referenced or trusted\n", regno);
13444 return -EINVAL;
13445 }
13446 if (!is_rcu_reg(reg)) {
13447 verbose(env, "R%d must be a rcu pointer\n", regno);
13448 return -EINVAL;
13449 }
13450 }
13451 fallthrough;
13452 case KF_ARG_PTR_TO_CTX:
13453 case KF_ARG_PTR_TO_DYNPTR:
13454 case KF_ARG_PTR_TO_ITER:
13455 case KF_ARG_PTR_TO_LIST_HEAD:
13456 case KF_ARG_PTR_TO_LIST_NODE:
13457 case KF_ARG_PTR_TO_RB_ROOT:
13458 case KF_ARG_PTR_TO_RB_NODE:
13459 case KF_ARG_PTR_TO_MEM:
13460 case KF_ARG_PTR_TO_MEM_SIZE:
13461 case KF_ARG_PTR_TO_CALLBACK:
13462 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13463 case KF_ARG_PTR_TO_CONST_STR:
13464 case KF_ARG_PTR_TO_WORKQUEUE:
13465 case KF_ARG_PTR_TO_TIMER:
13466 case KF_ARG_PTR_TO_TASK_WORK:
13467 case KF_ARG_PTR_TO_IRQ_FLAG:
13468 case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13469 break;
13470 default:
13471 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type);
13472 return -EFAULT;
13473 }
13474
13475 if (is_kfunc_release(meta) && reg->ref_obj_id)
13476 arg_type |= OBJ_RELEASE;
13477 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
13478 if (ret < 0)
13479 return ret;
13480
13481 switch (kf_arg_type) {
13482 case KF_ARG_PTR_TO_CTX:
13483 if (reg->type != PTR_TO_CTX) {
13484 verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
13485 i, reg_type_str(env, reg->type));
13486 return -EINVAL;
13487 }
13488
13489 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13490 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
13491 if (ret < 0)
13492 return -EINVAL;
13493 meta->ret_btf_id = ret;
13494 }
13495 break;
13496 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13497 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
13498 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
13499 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
13500 return -EINVAL;
13501 }
13502 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
13503 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13504 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
13505 return -EINVAL;
13506 }
13507 } else {
13508 verbose(env, "arg#%d expected pointer to allocated object\n", i);
13509 return -EINVAL;
13510 }
13511 if (!reg->ref_obj_id) {
13512 verbose(env, "allocated object must be referenced\n");
13513 return -EINVAL;
13514 }
13515 if (meta->btf == btf_vmlinux) {
13516 meta->arg_btf = reg->btf;
13517 meta->arg_btf_id = reg->btf_id;
13518 }
13519 break;
13520 case KF_ARG_PTR_TO_DYNPTR:
13521 {
13522 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
13523 int clone_ref_obj_id = 0;
13524
13525 if (reg->type == CONST_PTR_TO_DYNPTR)
13526 dynptr_arg_type |= MEM_RDONLY;
13527
13528 if (is_kfunc_arg_uninit(btf, &args[i]))
13529 dynptr_arg_type |= MEM_UNINIT;
13530
13531 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
13532 dynptr_arg_type |= DYNPTR_TYPE_SKB;
13533 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
13534 dynptr_arg_type |= DYNPTR_TYPE_XDP;
13535 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) {
13536 dynptr_arg_type |= DYNPTR_TYPE_SKB_META;
13537 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) {
13538 dynptr_arg_type |= DYNPTR_TYPE_FILE;
13539 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_file_discard]) {
13540 dynptr_arg_type |= DYNPTR_TYPE_FILE;
13541 meta->release_regno = regno;
13542 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
13543 (dynptr_arg_type & MEM_UNINIT)) {
13544 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
13545
13546 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
13547 verifier_bug(env, "no dynptr type for parent of clone");
13548 return -EFAULT;
13549 }
13550
13551 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
13552 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
13553 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
13554 verifier_bug(env, "missing ref obj id for parent of clone");
13555 return -EFAULT;
13556 }
13557 }
13558
13559 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
13560 if (ret < 0)
13561 return ret;
13562
13563 if (!(dynptr_arg_type & MEM_UNINIT)) {
13564 int id = dynptr_id(env, reg);
13565
13566 if (id < 0) {
13567 verifier_bug(env, "failed to obtain dynptr id");
13568 return id;
13569 }
13570 meta->initialized_dynptr.id = id;
13571 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
13572 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
13573 }
13574
13575 break;
13576 }
13577 case KF_ARG_PTR_TO_ITER:
13578 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
13579 if (!check_css_task_iter_allowlist(env)) {
13580 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
13581 return -EINVAL;
13582 }
13583 }
13584 ret = process_iter_arg(env, regno, insn_idx, meta);
13585 if (ret < 0)
13586 return ret;
13587 break;
13588 case KF_ARG_PTR_TO_LIST_HEAD:
13589 if (reg->type != PTR_TO_MAP_VALUE &&
13590 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13591 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13592 return -EINVAL;
13593 }
13594 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13595 verbose(env, "allocated object must be referenced\n");
13596 return -EINVAL;
13597 }
13598 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
13599 if (ret < 0)
13600 return ret;
13601 break;
13602 case KF_ARG_PTR_TO_RB_ROOT:
13603 if (reg->type != PTR_TO_MAP_VALUE &&
13604 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13605 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13606 return -EINVAL;
13607 }
13608 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13609 verbose(env, "allocated object must be referenced\n");
13610 return -EINVAL;
13611 }
13612 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
13613 if (ret < 0)
13614 return ret;
13615 break;
13616 case KF_ARG_PTR_TO_LIST_NODE:
13617 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13618 verbose(env, "arg#%d expected pointer to allocated object\n", i);
13619 return -EINVAL;
13620 }
13621 if (!reg->ref_obj_id) {
13622 verbose(env, "allocated object must be referenced\n");
13623 return -EINVAL;
13624 }
13625 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
13626 if (ret < 0)
13627 return ret;
13628 break;
13629 case KF_ARG_PTR_TO_RB_NODE:
13630 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13631 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13632 verbose(env, "arg#%d expected pointer to allocated object\n", i);
13633 return -EINVAL;
13634 }
13635 if (!reg->ref_obj_id) {
13636 verbose(env, "allocated object must be referenced\n");
13637 return -EINVAL;
13638 }
13639 } else {
13640 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
13641 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
13642 return -EINVAL;
13643 }
13644 if (in_rbtree_lock_required_cb(env)) {
13645 verbose(env, "%s not allowed in rbtree cb\n", func_name);
13646 return -EINVAL;
13647 }
13648 }
13649
13650 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
13651 if (ret < 0)
13652 return ret;
13653 break;
13654 case KF_ARG_PTR_TO_MAP:
13655 /* If argument has '__map' suffix expect 'struct bpf_map *' */
13656 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
13657 ref_t = btf_type_by_id(btf_vmlinux, ref_id);
13658 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13659 fallthrough;
13660 case KF_ARG_PTR_TO_BTF_ID:
13661 /* Only base_type is checked, further checks are done here */
13662 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
13663 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
13664 !reg2btf_ids[base_type(reg->type)]) {
13665 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
13666 verbose(env, "expected %s or socket\n",
13667 reg_type_str(env, base_type(reg->type) |
13668 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
13669 return -EINVAL;
13670 }
13671 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
13672 if (ret < 0)
13673 return ret;
13674 break;
13675 case KF_ARG_PTR_TO_MEM:
13676 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
13677 if (IS_ERR(resolve_ret)) {
13678 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
13679 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
13680 return -EINVAL;
13681 }
13682 ret = check_mem_reg(env, reg, regno, type_size);
13683 if (ret < 0)
13684 return ret;
13685 break;
13686 case KF_ARG_PTR_TO_MEM_SIZE:
13687 {
13688 struct bpf_reg_state *buff_reg = ®s[regno];
13689 const struct btf_param *buff_arg = &args[i];
13690 struct bpf_reg_state *size_reg = ®s[regno + 1];
13691 const struct btf_param *size_arg = &args[i + 1];
13692
13693 if (!register_is_null(buff_reg) || !is_kfunc_arg_nullable(meta->btf, buff_arg)) {
13694 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
13695 if (ret < 0) {
13696 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
13697 return ret;
13698 }
13699 }
13700
13701 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
13702 if (meta->arg_constant.found) {
13703 verifier_bug(env, "only one constant argument permitted");
13704 return -EFAULT;
13705 }
13706 if (!tnum_is_const(size_reg->var_off)) {
13707 verbose(env, "R%d must be a known constant\n", regno + 1);
13708 return -EINVAL;
13709 }
13710 meta->arg_constant.found = true;
13711 meta->arg_constant.value = size_reg->var_off.value;
13712 }
13713
13714 /* Skip next '__sz' or '__szk' argument */
13715 i++;
13716 break;
13717 }
13718 case KF_ARG_PTR_TO_CALLBACK:
13719 if (reg->type != PTR_TO_FUNC) {
13720 verbose(env, "arg%d expected pointer to func\n", i);
13721 return -EINVAL;
13722 }
13723 meta->subprogno = reg->subprogno;
13724 break;
13725 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13726 if (!type_is_ptr_alloc_obj(reg->type)) {
13727 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
13728 return -EINVAL;
13729 }
13730 if (!type_is_non_owning_ref(reg->type))
13731 meta->arg_owning_ref = true;
13732
13733 rec = reg_btf_record(reg);
13734 if (!rec) {
13735 verifier_bug(env, "Couldn't find btf_record");
13736 return -EFAULT;
13737 }
13738
13739 if (rec->refcount_off < 0) {
13740 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
13741 return -EINVAL;
13742 }
13743
13744 meta->arg_btf = reg->btf;
13745 meta->arg_btf_id = reg->btf_id;
13746 break;
13747 case KF_ARG_PTR_TO_CONST_STR:
13748 if (reg->type != PTR_TO_MAP_VALUE) {
13749 verbose(env, "arg#%d doesn't point to a const string\n", i);
13750 return -EINVAL;
13751 }
13752 ret = check_reg_const_str(env, reg, regno);
13753 if (ret)
13754 return ret;
13755 break;
13756 case KF_ARG_PTR_TO_WORKQUEUE:
13757 if (reg->type != PTR_TO_MAP_VALUE) {
13758 verbose(env, "arg#%d doesn't point to a map value\n", i);
13759 return -EINVAL;
13760 }
13761 ret = check_map_field_pointer(env, regno, BPF_WORKQUEUE, &meta->map);
13762 if (ret < 0)
13763 return ret;
13764 break;
13765 case KF_ARG_PTR_TO_TIMER:
13766 if (reg->type != PTR_TO_MAP_VALUE) {
13767 verbose(env, "arg#%d doesn't point to a map value\n", i);
13768 return -EINVAL;
13769 }
13770 ret = process_timer_kfunc(env, regno, meta);
13771 if (ret < 0)
13772 return ret;
13773 break;
13774 case KF_ARG_PTR_TO_TASK_WORK:
13775 if (reg->type != PTR_TO_MAP_VALUE) {
13776 verbose(env, "arg#%d doesn't point to a map value\n", i);
13777 return -EINVAL;
13778 }
13779 ret = check_map_field_pointer(env, regno, BPF_TASK_WORK, &meta->map);
13780 if (ret < 0)
13781 return ret;
13782 break;
13783 case KF_ARG_PTR_TO_IRQ_FLAG:
13784 if (reg->type != PTR_TO_STACK) {
13785 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
13786 return -EINVAL;
13787 }
13788 ret = process_irq_flag(env, regno, meta);
13789 if (ret < 0)
13790 return ret;
13791 break;
13792 case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13793 {
13794 int flags = PROCESS_RES_LOCK;
13795
13796 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13797 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
13798 return -EINVAL;
13799 }
13800
13801 if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
13802 return -EFAULT;
13803 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13804 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
13805 flags |= PROCESS_SPIN_LOCK;
13806 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
13807 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
13808 flags |= PROCESS_LOCK_IRQ;
13809 ret = process_spin_lock(env, regno, flags);
13810 if (ret < 0)
13811 return ret;
13812 break;
13813 }
13814 }
13815 }
13816
13817 if (is_kfunc_release(meta) && !meta->release_regno) {
13818 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
13819 func_name);
13820 return -EINVAL;
13821 }
13822
13823 return 0;
13824 }
13825
fetch_kfunc_arg_meta(struct bpf_verifier_env * env,s32 func_id,s16 offset,struct bpf_kfunc_call_arg_meta * meta)13826 static int fetch_kfunc_arg_meta(struct bpf_verifier_env *env,
13827 s32 func_id,
13828 s16 offset,
13829 struct bpf_kfunc_call_arg_meta *meta)
13830 {
13831 struct bpf_kfunc_meta kfunc;
13832 int err;
13833
13834 err = fetch_kfunc_meta(env, func_id, offset, &kfunc);
13835 if (err)
13836 return err;
13837
13838 memset(meta, 0, sizeof(*meta));
13839 meta->btf = kfunc.btf;
13840 meta->func_id = kfunc.id;
13841 meta->func_proto = kfunc.proto;
13842 meta->func_name = kfunc.name;
13843
13844 if (!kfunc.flags || !btf_kfunc_is_allowed(kfunc.btf, kfunc.id, env->prog))
13845 return -EACCES;
13846
13847 meta->kfunc_flags = *kfunc.flags;
13848
13849 return 0;
13850 }
13851
13852 /* check special kfuncs and return:
13853 * 1 - not fall-through to 'else' branch, continue verification
13854 * 0 - fall-through to 'else' branch
13855 * < 0 - not fall-through to 'else' branch, return error
13856 */
check_special_kfunc(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * regs,struct bpf_insn_aux_data * insn_aux,const struct btf_type * ptr_type,struct btf * desc_btf)13857 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13858 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
13859 const struct btf_type *ptr_type, struct btf *desc_btf)
13860 {
13861 const struct btf_type *ret_t;
13862 int err = 0;
13863
13864 if (meta->btf != btf_vmlinux)
13865 return 0;
13866
13867 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
13868 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13869 struct btf_struct_meta *struct_meta;
13870 struct btf *ret_btf;
13871 u32 ret_btf_id;
13872
13873 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
13874 return -ENOMEM;
13875
13876 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
13877 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
13878 return -EINVAL;
13879 }
13880
13881 ret_btf = env->prog->aux->btf;
13882 ret_btf_id = meta->arg_constant.value;
13883
13884 /* This may be NULL due to user not supplying a BTF */
13885 if (!ret_btf) {
13886 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
13887 return -EINVAL;
13888 }
13889
13890 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
13891 if (!ret_t || !__btf_type_is_struct(ret_t)) {
13892 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
13893 return -EINVAL;
13894 }
13895
13896 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13897 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
13898 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
13899 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
13900 return -EINVAL;
13901 }
13902
13903 if (!bpf_global_percpu_ma_set) {
13904 mutex_lock(&bpf_percpu_ma_lock);
13905 if (!bpf_global_percpu_ma_set) {
13906 /* Charge memory allocated with bpf_global_percpu_ma to
13907 * root memcg. The obj_cgroup for root memcg is NULL.
13908 */
13909 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
13910 if (!err)
13911 bpf_global_percpu_ma_set = true;
13912 }
13913 mutex_unlock(&bpf_percpu_ma_lock);
13914 if (err)
13915 return err;
13916 }
13917
13918 mutex_lock(&bpf_percpu_ma_lock);
13919 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
13920 mutex_unlock(&bpf_percpu_ma_lock);
13921 if (err)
13922 return err;
13923 }
13924
13925 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
13926 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13927 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
13928 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
13929 return -EINVAL;
13930 }
13931
13932 if (struct_meta) {
13933 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
13934 return -EINVAL;
13935 }
13936 }
13937
13938 mark_reg_known_zero(env, regs, BPF_REG_0);
13939 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13940 regs[BPF_REG_0].btf = ret_btf;
13941 regs[BPF_REG_0].btf_id = ret_btf_id;
13942 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
13943 regs[BPF_REG_0].type |= MEM_PERCPU;
13944
13945 insn_aux->obj_new_size = ret_t->size;
13946 insn_aux->kptr_struct_meta = struct_meta;
13947 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
13948 mark_reg_known_zero(env, regs, BPF_REG_0);
13949 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13950 regs[BPF_REG_0].btf = meta->arg_btf;
13951 regs[BPF_REG_0].btf_id = meta->arg_btf_id;
13952
13953 insn_aux->kptr_struct_meta =
13954 btf_find_struct_meta(meta->arg_btf,
13955 meta->arg_btf_id);
13956 } else if (is_list_node_type(ptr_type)) {
13957 struct btf_field *field = meta->arg_list_head.field;
13958
13959 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13960 } else if (is_rbtree_node_type(ptr_type)) {
13961 struct btf_field *field = meta->arg_rbtree_root.field;
13962
13963 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13964 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13965 mark_reg_known_zero(env, regs, BPF_REG_0);
13966 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
13967 regs[BPF_REG_0].btf = desc_btf;
13968 regs[BPF_REG_0].btf_id = meta->ret_btf_id;
13969 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
13970 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
13971 if (!ret_t) {
13972 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n",
13973 meta->arg_constant.value);
13974 return -EINVAL;
13975 } else if (btf_type_is_struct(ret_t)) {
13976 mark_reg_known_zero(env, regs, BPF_REG_0);
13977 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
13978 regs[BPF_REG_0].btf = desc_btf;
13979 regs[BPF_REG_0].btf_id = meta->arg_constant.value;
13980 } else if (btf_type_is_void(ret_t)) {
13981 mark_reg_known_zero(env, regs, BPF_REG_0);
13982 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
13983 regs[BPF_REG_0].mem_size = 0;
13984 } else {
13985 verbose(env,
13986 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n");
13987 return -EINVAL;
13988 }
13989 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13990 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13991 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
13992
13993 mark_reg_known_zero(env, regs, BPF_REG_0);
13994
13995 if (!meta->arg_constant.found) {
13996 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size");
13997 return -EFAULT;
13998 }
13999
14000 regs[BPF_REG_0].mem_size = meta->arg_constant.value;
14001
14002 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
14003 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
14004
14005 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
14006 regs[BPF_REG_0].type |= MEM_RDONLY;
14007 } else {
14008 /* this will set env->seen_direct_write to true */
14009 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
14010 verbose(env, "the prog does not allow writes to packet data\n");
14011 return -EINVAL;
14012 }
14013 }
14014
14015 if (!meta->initialized_dynptr.id) {
14016 verifier_bug(env, "no dynptr id");
14017 return -EFAULT;
14018 }
14019 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
14020
14021 /* we don't need to set BPF_REG_0's ref obj id
14022 * because packet slices are not refcounted (see
14023 * dynptr_type_refcounted)
14024 */
14025 } else {
14026 return 0;
14027 }
14028
14029 return 1;
14030 }
14031
14032 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
14033
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)14034 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
14035 int *insn_idx_p)
14036 {
14037 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
14038 u32 i, nargs, ptr_type_id, release_ref_obj_id;
14039 struct bpf_reg_state *regs = cur_regs(env);
14040 const char *func_name, *ptr_type_name;
14041 const struct btf_type *t, *ptr_type;
14042 struct bpf_kfunc_call_arg_meta meta;
14043 struct bpf_insn_aux_data *insn_aux;
14044 int err, insn_idx = *insn_idx_p;
14045 const struct btf_param *args;
14046 struct btf *desc_btf;
14047
14048 /* skip for now, but return error when we find this in fixup_kfunc_call */
14049 if (!insn->imm)
14050 return 0;
14051
14052 err = fetch_kfunc_arg_meta(env, insn->imm, insn->off, &meta);
14053 if (err == -EACCES && meta.func_name)
14054 verbose(env, "calling kernel function %s is not allowed\n", meta.func_name);
14055 if (err)
14056 return err;
14057 desc_btf = meta.btf;
14058 func_name = meta.func_name;
14059 insn_aux = &env->insn_aux_data[insn_idx];
14060
14061 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
14062
14063 if (!insn->off &&
14064 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
14065 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
14066 struct bpf_verifier_state *branch;
14067 struct bpf_reg_state *regs;
14068
14069 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
14070 if (IS_ERR(branch)) {
14071 verbose(env, "failed to push state for failed lock acquisition\n");
14072 return PTR_ERR(branch);
14073 }
14074
14075 regs = branch->frame[branch->curframe]->regs;
14076
14077 /* Clear r0-r5 registers in forked state */
14078 for (i = 0; i < CALLER_SAVED_REGS; i++)
14079 mark_reg_not_init(env, regs, caller_saved[i]);
14080
14081 mark_reg_unknown(env, regs, BPF_REG_0);
14082 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
14083 if (err) {
14084 verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
14085 return err;
14086 }
14087 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
14088 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
14089 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
14090 return -EFAULT;
14091 }
14092
14093 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
14094 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
14095 return -EACCES;
14096 }
14097
14098 sleepable = is_kfunc_sleepable(&meta);
14099 if (sleepable && !in_sleepable(env)) {
14100 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
14101 return -EACCES;
14102 }
14103
14104 /* Track non-sleepable context for kfuncs, same as for helpers. */
14105 if (!in_sleepable_context(env))
14106 insn_aux->non_sleepable = true;
14107
14108 /* Check the arguments */
14109 err = check_kfunc_args(env, &meta, insn_idx);
14110 if (err < 0)
14111 return err;
14112
14113 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
14114 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
14115 set_rbtree_add_callback_state);
14116 if (err) {
14117 verbose(env, "kfunc %s#%d failed callback verification\n",
14118 func_name, meta.func_id);
14119 return err;
14120 }
14121 }
14122
14123 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
14124 meta.r0_size = sizeof(u64);
14125 meta.r0_rdonly = false;
14126 }
14127
14128 if (is_bpf_wq_set_callback_kfunc(meta.func_id)) {
14129 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
14130 set_timer_callback_state);
14131 if (err) {
14132 verbose(env, "kfunc %s#%d failed callback verification\n",
14133 func_name, meta.func_id);
14134 return err;
14135 }
14136 }
14137
14138 if (is_task_work_add_kfunc(meta.func_id)) {
14139 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
14140 set_task_work_schedule_callback_state);
14141 if (err) {
14142 verbose(env, "kfunc %s#%d failed callback verification\n",
14143 func_name, meta.func_id);
14144 return err;
14145 }
14146 }
14147
14148 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
14149 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
14150
14151 preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
14152 preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
14153
14154 if (rcu_lock) {
14155 env->cur_state->active_rcu_locks++;
14156 } else if (rcu_unlock) {
14157 struct bpf_func_state *state;
14158 struct bpf_reg_state *reg;
14159 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
14160
14161 if (env->cur_state->active_rcu_locks == 0) {
14162 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
14163 return -EINVAL;
14164 }
14165 if (--env->cur_state->active_rcu_locks == 0) {
14166 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
14167 if (reg->type & MEM_RCU) {
14168 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
14169 reg->type |= PTR_UNTRUSTED;
14170 }
14171 }));
14172 }
14173 } else if (sleepable && env->cur_state->active_rcu_locks) {
14174 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
14175 return -EACCES;
14176 }
14177
14178 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
14179 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
14180 return -EACCES;
14181 }
14182
14183 if (env->cur_state->active_preempt_locks) {
14184 if (preempt_disable) {
14185 env->cur_state->active_preempt_locks++;
14186 } else if (preempt_enable) {
14187 env->cur_state->active_preempt_locks--;
14188 } else if (sleepable) {
14189 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
14190 return -EACCES;
14191 }
14192 } else if (preempt_disable) {
14193 env->cur_state->active_preempt_locks++;
14194 } else if (preempt_enable) {
14195 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
14196 return -EINVAL;
14197 }
14198
14199 if (env->cur_state->active_irq_id && sleepable) {
14200 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
14201 return -EACCES;
14202 }
14203
14204 if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) {
14205 verbose(env, "kernel func %s requires RCU critical section protection\n", func_name);
14206 return -EACCES;
14207 }
14208
14209 /* In case of release function, we get register number of refcounted
14210 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
14211 */
14212 if (meta.release_regno) {
14213 struct bpf_reg_state *reg = ®s[meta.release_regno];
14214
14215 if (meta.initialized_dynptr.ref_obj_id) {
14216 err = unmark_stack_slots_dynptr(env, reg);
14217 } else {
14218 err = release_reference(env, reg->ref_obj_id);
14219 if (err)
14220 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
14221 func_name, meta.func_id);
14222 }
14223 if (err)
14224 return err;
14225 }
14226
14227 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
14228 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
14229 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
14230 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
14231 insn_aux->insert_off = regs[BPF_REG_2].off;
14232 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
14233 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
14234 if (err) {
14235 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
14236 func_name, meta.func_id);
14237 return err;
14238 }
14239
14240 err = release_reference(env, release_ref_obj_id);
14241 if (err) {
14242 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
14243 func_name, meta.func_id);
14244 return err;
14245 }
14246 }
14247
14248 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
14249 if (!bpf_jit_supports_exceptions()) {
14250 verbose(env, "JIT does not support calling kfunc %s#%d\n",
14251 func_name, meta.func_id);
14252 return -ENOTSUPP;
14253 }
14254 env->seen_exception = true;
14255
14256 /* In the case of the default callback, the cookie value passed
14257 * to bpf_throw becomes the return value of the program.
14258 */
14259 if (!env->exception_callback_subprog) {
14260 err = check_return_code(env, BPF_REG_1, "R1");
14261 if (err < 0)
14262 return err;
14263 }
14264 }
14265
14266 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14267 u32 regno = caller_saved[i];
14268
14269 mark_reg_not_init(env, regs, regno);
14270 regs[regno].subreg_def = DEF_NOT_SUBREG;
14271 }
14272
14273 /* Check return type */
14274 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
14275
14276 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
14277 /* Only exception is bpf_obj_new_impl */
14278 if (meta.btf != btf_vmlinux ||
14279 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
14280 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
14281 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
14282 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
14283 return -EINVAL;
14284 }
14285 }
14286
14287 if (btf_type_is_scalar(t)) {
14288 mark_reg_unknown(env, regs, BPF_REG_0);
14289 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
14290 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
14291 __mark_reg_const_zero(env, ®s[BPF_REG_0]);
14292 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
14293 } else if (btf_type_is_ptr(t)) {
14294 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
14295 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
14296 if (err) {
14297 if (err < 0)
14298 return err;
14299 } else if (btf_type_is_void(ptr_type)) {
14300 /* kfunc returning 'void *' is equivalent to returning scalar */
14301 mark_reg_unknown(env, regs, BPF_REG_0);
14302 } else if (!__btf_type_is_struct(ptr_type)) {
14303 if (!meta.r0_size) {
14304 __u32 sz;
14305
14306 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
14307 meta.r0_size = sz;
14308 meta.r0_rdonly = true;
14309 }
14310 }
14311 if (!meta.r0_size) {
14312 ptr_type_name = btf_name_by_offset(desc_btf,
14313 ptr_type->name_off);
14314 verbose(env,
14315 "kernel function %s returns pointer type %s %s is not supported\n",
14316 func_name,
14317 btf_type_str(ptr_type),
14318 ptr_type_name);
14319 return -EINVAL;
14320 }
14321
14322 mark_reg_known_zero(env, regs, BPF_REG_0);
14323 regs[BPF_REG_0].type = PTR_TO_MEM;
14324 regs[BPF_REG_0].mem_size = meta.r0_size;
14325
14326 if (meta.r0_rdonly)
14327 regs[BPF_REG_0].type |= MEM_RDONLY;
14328
14329 /* Ensures we don't access the memory after a release_reference() */
14330 if (meta.ref_obj_id)
14331 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
14332
14333 if (is_kfunc_rcu_protected(&meta))
14334 regs[BPF_REG_0].type |= MEM_RCU;
14335 } else {
14336 enum bpf_reg_type type = PTR_TO_BTF_ID;
14337
14338 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
14339 type |= PTR_UNTRUSTED;
14340 else if (is_kfunc_rcu_protected(&meta) ||
14341 (is_iter_next_kfunc(&meta) &&
14342 (get_iter_from_state(env->cur_state, &meta)
14343 ->type & MEM_RCU))) {
14344 /*
14345 * If the iterator's constructor (the _new
14346 * function e.g., bpf_iter_task_new) has been
14347 * annotated with BPF kfunc flag
14348 * KF_RCU_PROTECTED and was called within a RCU
14349 * read-side critical section, also propagate
14350 * the MEM_RCU flag to the pointer returned from
14351 * the iterator's next function (e.g.,
14352 * bpf_iter_task_next).
14353 */
14354 type |= MEM_RCU;
14355 } else {
14356 /*
14357 * Any PTR_TO_BTF_ID that is returned from a BPF
14358 * kfunc should by default be treated as
14359 * implicitly trusted.
14360 */
14361 type |= PTR_TRUSTED;
14362 }
14363
14364 mark_reg_known_zero(env, regs, BPF_REG_0);
14365 regs[BPF_REG_0].btf = desc_btf;
14366 regs[BPF_REG_0].type = type;
14367 regs[BPF_REG_0].btf_id = ptr_type_id;
14368 }
14369
14370 if (is_kfunc_ret_null(&meta)) {
14371 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
14372 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
14373 regs[BPF_REG_0].id = ++env->id_gen;
14374 }
14375 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
14376 if (is_kfunc_acquire(&meta)) {
14377 int id = acquire_reference(env, insn_idx);
14378
14379 if (id < 0)
14380 return id;
14381 if (is_kfunc_ret_null(&meta))
14382 regs[BPF_REG_0].id = id;
14383 regs[BPF_REG_0].ref_obj_id = id;
14384 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
14385 ref_set_non_owning(env, ®s[BPF_REG_0]);
14386 }
14387
14388 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
14389 regs[BPF_REG_0].id = ++env->id_gen;
14390 } else if (btf_type_is_void(t)) {
14391 if (meta.btf == btf_vmlinux) {
14392 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
14393 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
14394 insn_aux->kptr_struct_meta =
14395 btf_find_struct_meta(meta.arg_btf,
14396 meta.arg_btf_id);
14397 }
14398 }
14399 }
14400
14401 if (is_kfunc_pkt_changing(&meta))
14402 clear_all_pkt_pointers(env);
14403
14404 nargs = btf_type_vlen(meta.func_proto);
14405 args = (const struct btf_param *)(meta.func_proto + 1);
14406 for (i = 0; i < nargs; i++) {
14407 u32 regno = i + 1;
14408
14409 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
14410 if (btf_type_is_ptr(t))
14411 mark_btf_func_reg_size(env, regno, sizeof(void *));
14412 else
14413 /* scalar. ensured by btf_check_kfunc_arg_match() */
14414 mark_btf_func_reg_size(env, regno, t->size);
14415 }
14416
14417 if (is_iter_next_kfunc(&meta)) {
14418 err = process_iter_next_call(env, insn_idx, &meta);
14419 if (err)
14420 return err;
14421 }
14422
14423 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie])
14424 env->prog->call_session_cookie = true;
14425
14426 return 0;
14427 }
14428
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)14429 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
14430 const struct bpf_reg_state *reg,
14431 enum bpf_reg_type type)
14432 {
14433 bool known = tnum_is_const(reg->var_off);
14434 s64 val = reg->var_off.value;
14435 s64 smin = reg->smin_value;
14436
14437 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
14438 verbose(env, "math between %s pointer and %lld is not allowed\n",
14439 reg_type_str(env, type), val);
14440 return false;
14441 }
14442
14443 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
14444 verbose(env, "%s pointer offset %d is not allowed\n",
14445 reg_type_str(env, type), reg->off);
14446 return false;
14447 }
14448
14449 if (smin == S64_MIN) {
14450 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
14451 reg_type_str(env, type));
14452 return false;
14453 }
14454
14455 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
14456 verbose(env, "value %lld makes %s pointer be out of bounds\n",
14457 smin, reg_type_str(env, type));
14458 return false;
14459 }
14460
14461 return true;
14462 }
14463
14464 enum {
14465 REASON_BOUNDS = -1,
14466 REASON_TYPE = -2,
14467 REASON_PATHS = -3,
14468 REASON_LIMIT = -4,
14469 REASON_STACK = -5,
14470 };
14471
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)14472 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
14473 u32 *alu_limit, bool mask_to_left)
14474 {
14475 u32 max = 0, ptr_limit = 0;
14476
14477 switch (ptr_reg->type) {
14478 case PTR_TO_STACK:
14479 /* Offset 0 is out-of-bounds, but acceptable start for the
14480 * left direction, see BPF_REG_FP. Also, unknown scalar
14481 * offset where we would need to deal with min/max bounds is
14482 * currently prohibited for unprivileged.
14483 */
14484 max = MAX_BPF_STACK + mask_to_left;
14485 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
14486 break;
14487 case PTR_TO_MAP_VALUE:
14488 max = ptr_reg->map_ptr->value_size;
14489 ptr_limit = (mask_to_left ?
14490 ptr_reg->smin_value :
14491 ptr_reg->umax_value) + ptr_reg->off;
14492 break;
14493 default:
14494 return REASON_TYPE;
14495 }
14496
14497 if (ptr_limit >= max)
14498 return REASON_LIMIT;
14499 *alu_limit = ptr_limit;
14500 return 0;
14501 }
14502
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)14503 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
14504 const struct bpf_insn *insn)
14505 {
14506 return env->bypass_spec_v1 ||
14507 BPF_SRC(insn->code) == BPF_K ||
14508 cur_aux(env)->nospec;
14509 }
14510
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)14511 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
14512 u32 alu_state, u32 alu_limit)
14513 {
14514 /* If we arrived here from different branches with different
14515 * state or limits to sanitize, then this won't work.
14516 */
14517 if (aux->alu_state &&
14518 (aux->alu_state != alu_state ||
14519 aux->alu_limit != alu_limit))
14520 return REASON_PATHS;
14521
14522 /* Corresponding fixup done in do_misc_fixups(). */
14523 aux->alu_state = alu_state;
14524 aux->alu_limit = alu_limit;
14525 return 0;
14526 }
14527
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)14528 static int sanitize_val_alu(struct bpf_verifier_env *env,
14529 struct bpf_insn *insn)
14530 {
14531 struct bpf_insn_aux_data *aux = cur_aux(env);
14532
14533 if (can_skip_alu_sanitation(env, insn))
14534 return 0;
14535
14536 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
14537 }
14538
sanitize_needed(u8 opcode)14539 static bool sanitize_needed(u8 opcode)
14540 {
14541 return opcode == BPF_ADD || opcode == BPF_SUB;
14542 }
14543
14544 struct bpf_sanitize_info {
14545 struct bpf_insn_aux_data aux;
14546 bool mask_to_left;
14547 };
14548
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)14549 static int sanitize_speculative_path(struct bpf_verifier_env *env,
14550 const struct bpf_insn *insn,
14551 u32 next_idx, u32 curr_idx)
14552 {
14553 struct bpf_verifier_state *branch;
14554 struct bpf_reg_state *regs;
14555
14556 branch = push_stack(env, next_idx, curr_idx, true);
14557 if (!IS_ERR(branch) && insn) {
14558 regs = branch->frame[branch->curframe]->regs;
14559 if (BPF_SRC(insn->code) == BPF_K) {
14560 mark_reg_unknown(env, regs, insn->dst_reg);
14561 } else if (BPF_SRC(insn->code) == BPF_X) {
14562 mark_reg_unknown(env, regs, insn->dst_reg);
14563 mark_reg_unknown(env, regs, insn->src_reg);
14564 }
14565 }
14566 return PTR_ERR_OR_ZERO(branch);
14567 }
14568
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)14569 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
14570 struct bpf_insn *insn,
14571 const struct bpf_reg_state *ptr_reg,
14572 const struct bpf_reg_state *off_reg,
14573 struct bpf_reg_state *dst_reg,
14574 struct bpf_sanitize_info *info,
14575 const bool commit_window)
14576 {
14577 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
14578 struct bpf_verifier_state *vstate = env->cur_state;
14579 bool off_is_imm = tnum_is_const(off_reg->var_off);
14580 bool off_is_neg = off_reg->smin_value < 0;
14581 bool ptr_is_dst_reg = ptr_reg == dst_reg;
14582 u8 opcode = BPF_OP(insn->code);
14583 u32 alu_state, alu_limit;
14584 struct bpf_reg_state tmp;
14585 int err;
14586
14587 if (can_skip_alu_sanitation(env, insn))
14588 return 0;
14589
14590 /* We already marked aux for masking from non-speculative
14591 * paths, thus we got here in the first place. We only care
14592 * to explore bad access from here.
14593 */
14594 if (vstate->speculative)
14595 goto do_sim;
14596
14597 if (!commit_window) {
14598 if (!tnum_is_const(off_reg->var_off) &&
14599 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
14600 return REASON_BOUNDS;
14601
14602 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
14603 (opcode == BPF_SUB && !off_is_neg);
14604 }
14605
14606 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
14607 if (err < 0)
14608 return err;
14609
14610 if (commit_window) {
14611 /* In commit phase we narrow the masking window based on
14612 * the observed pointer move after the simulated operation.
14613 */
14614 alu_state = info->aux.alu_state;
14615 alu_limit = abs(info->aux.alu_limit - alu_limit);
14616 } else {
14617 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
14618 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
14619 alu_state |= ptr_is_dst_reg ?
14620 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
14621
14622 /* Limit pruning on unknown scalars to enable deep search for
14623 * potential masking differences from other program paths.
14624 */
14625 if (!off_is_imm)
14626 env->explore_alu_limits = true;
14627 }
14628
14629 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
14630 if (err < 0)
14631 return err;
14632 do_sim:
14633 /* If we're in commit phase, we're done here given we already
14634 * pushed the truncated dst_reg into the speculative verification
14635 * stack.
14636 *
14637 * Also, when register is a known constant, we rewrite register-based
14638 * operation to immediate-based, and thus do not need masking (and as
14639 * a consequence, do not need to simulate the zero-truncation either).
14640 */
14641 if (commit_window || off_is_imm)
14642 return 0;
14643
14644 /* Simulate and find potential out-of-bounds access under
14645 * speculative execution from truncation as a result of
14646 * masking when off was not within expected range. If off
14647 * sits in dst, then we temporarily need to move ptr there
14648 * to simulate dst (== 0) +/-= ptr. Needed, for example,
14649 * for cases where we use K-based arithmetic in one direction
14650 * and truncated reg-based in the other in order to explore
14651 * bad access.
14652 */
14653 if (!ptr_is_dst_reg) {
14654 tmp = *dst_reg;
14655 copy_register_state(dst_reg, ptr_reg);
14656 }
14657 err = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx);
14658 if (err < 0)
14659 return REASON_STACK;
14660 if (!ptr_is_dst_reg)
14661 *dst_reg = tmp;
14662 return 0;
14663 }
14664
sanitize_mark_insn_seen(struct bpf_verifier_env * env)14665 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
14666 {
14667 struct bpf_verifier_state *vstate = env->cur_state;
14668
14669 /* If we simulate paths under speculation, we don't update the
14670 * insn as 'seen' such that when we verify unreachable paths in
14671 * the non-speculative domain, sanitize_dead_code() can still
14672 * rewrite/sanitize them.
14673 */
14674 if (!vstate->speculative)
14675 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
14676 }
14677
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)14678 static int sanitize_err(struct bpf_verifier_env *env,
14679 const struct bpf_insn *insn, int reason,
14680 const struct bpf_reg_state *off_reg,
14681 const struct bpf_reg_state *dst_reg)
14682 {
14683 static const char *err = "pointer arithmetic with it prohibited for !root";
14684 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
14685 u32 dst = insn->dst_reg, src = insn->src_reg;
14686
14687 switch (reason) {
14688 case REASON_BOUNDS:
14689 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
14690 off_reg == dst_reg ? dst : src, err);
14691 break;
14692 case REASON_TYPE:
14693 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
14694 off_reg == dst_reg ? src : dst, err);
14695 break;
14696 case REASON_PATHS:
14697 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
14698 dst, op, err);
14699 break;
14700 case REASON_LIMIT:
14701 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
14702 dst, op, err);
14703 break;
14704 case REASON_STACK:
14705 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
14706 dst, err);
14707 return -ENOMEM;
14708 default:
14709 verifier_bug(env, "unknown reason (%d)", reason);
14710 break;
14711 }
14712
14713 return -EACCES;
14714 }
14715
14716 /* check that stack access falls within stack limits and that 'reg' doesn't
14717 * have a variable offset.
14718 *
14719 * Variable offset is prohibited for unprivileged mode for simplicity since it
14720 * requires corresponding support in Spectre masking for stack ALU. See also
14721 * retrieve_ptr_limit().
14722 *
14723 *
14724 * 'off' includes 'reg->off'.
14725 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)14726 static int check_stack_access_for_ptr_arithmetic(
14727 struct bpf_verifier_env *env,
14728 int regno,
14729 const struct bpf_reg_state *reg,
14730 int off)
14731 {
14732 if (!tnum_is_const(reg->var_off)) {
14733 char tn_buf[48];
14734
14735 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
14736 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
14737 regno, tn_buf, off);
14738 return -EACCES;
14739 }
14740
14741 if (off >= 0 || off < -MAX_BPF_STACK) {
14742 verbose(env, "R%d stack pointer arithmetic goes out of range, "
14743 "prohibited for !root; off=%d\n", regno, off);
14744 return -EACCES;
14745 }
14746
14747 return 0;
14748 }
14749
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)14750 static int sanitize_check_bounds(struct bpf_verifier_env *env,
14751 const struct bpf_insn *insn,
14752 const struct bpf_reg_state *dst_reg)
14753 {
14754 u32 dst = insn->dst_reg;
14755
14756 /* For unprivileged we require that resulting offset must be in bounds
14757 * in order to be able to sanitize access later on.
14758 */
14759 if (env->bypass_spec_v1)
14760 return 0;
14761
14762 switch (dst_reg->type) {
14763 case PTR_TO_STACK:
14764 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
14765 dst_reg->off + dst_reg->var_off.value))
14766 return -EACCES;
14767 break;
14768 case PTR_TO_MAP_VALUE:
14769 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
14770 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
14771 "prohibited for !root\n", dst);
14772 return -EACCES;
14773 }
14774 break;
14775 default:
14776 return -EOPNOTSUPP;
14777 }
14778
14779 return 0;
14780 }
14781
14782 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
14783 * Caller should also handle BPF_MOV case separately.
14784 * If we return -EACCES, caller may want to try again treating pointer as a
14785 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
14786 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)14787 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
14788 struct bpf_insn *insn,
14789 const struct bpf_reg_state *ptr_reg,
14790 const struct bpf_reg_state *off_reg)
14791 {
14792 struct bpf_verifier_state *vstate = env->cur_state;
14793 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14794 struct bpf_reg_state *regs = state->regs, *dst_reg;
14795 bool known = tnum_is_const(off_reg->var_off);
14796 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
14797 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
14798 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
14799 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
14800 struct bpf_sanitize_info info = {};
14801 u8 opcode = BPF_OP(insn->code);
14802 u32 dst = insn->dst_reg;
14803 int ret, bounds_ret;
14804
14805 dst_reg = ®s[dst];
14806
14807 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
14808 smin_val > smax_val || umin_val > umax_val) {
14809 /* Taint dst register if offset had invalid bounds derived from
14810 * e.g. dead branches.
14811 */
14812 __mark_reg_unknown(env, dst_reg);
14813 return 0;
14814 }
14815
14816 if (BPF_CLASS(insn->code) != BPF_ALU64) {
14817 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
14818 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14819 __mark_reg_unknown(env, dst_reg);
14820 return 0;
14821 }
14822
14823 verbose(env,
14824 "R%d 32-bit pointer arithmetic prohibited\n",
14825 dst);
14826 return -EACCES;
14827 }
14828
14829 if (ptr_reg->type & PTR_MAYBE_NULL) {
14830 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
14831 dst, reg_type_str(env, ptr_reg->type));
14832 return -EACCES;
14833 }
14834
14835 /*
14836 * Accesses to untrusted PTR_TO_MEM are done through probe
14837 * instructions, hence no need to track offsets.
14838 */
14839 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED))
14840 return 0;
14841
14842 switch (base_type(ptr_reg->type)) {
14843 case PTR_TO_CTX:
14844 case PTR_TO_MAP_VALUE:
14845 case PTR_TO_MAP_KEY:
14846 case PTR_TO_STACK:
14847 case PTR_TO_PACKET_META:
14848 case PTR_TO_PACKET:
14849 case PTR_TO_TP_BUFFER:
14850 case PTR_TO_BTF_ID:
14851 case PTR_TO_MEM:
14852 case PTR_TO_BUF:
14853 case PTR_TO_FUNC:
14854 case CONST_PTR_TO_DYNPTR:
14855 break;
14856 case PTR_TO_FLOW_KEYS:
14857 if (known)
14858 break;
14859 fallthrough;
14860 case CONST_PTR_TO_MAP:
14861 /* smin_val represents the known value */
14862 if (known && smin_val == 0 && opcode == BPF_ADD)
14863 break;
14864 fallthrough;
14865 default:
14866 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
14867 dst, reg_type_str(env, ptr_reg->type));
14868 return -EACCES;
14869 }
14870
14871 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
14872 * The id may be overwritten later if we create a new variable offset.
14873 */
14874 dst_reg->type = ptr_reg->type;
14875 dst_reg->id = ptr_reg->id;
14876
14877 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
14878 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
14879 return -EINVAL;
14880
14881 /* pointer types do not carry 32-bit bounds at the moment. */
14882 __mark_reg32_unbounded(dst_reg);
14883
14884 if (sanitize_needed(opcode)) {
14885 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
14886 &info, false);
14887 if (ret < 0)
14888 return sanitize_err(env, insn, ret, off_reg, dst_reg);
14889 }
14890
14891 switch (opcode) {
14892 case BPF_ADD:
14893 /* We can take a fixed offset as long as it doesn't overflow
14894 * the s32 'off' field
14895 */
14896 if (known && (ptr_reg->off + smin_val ==
14897 (s64)(s32)(ptr_reg->off + smin_val))) {
14898 /* pointer += K. Accumulate it into fixed offset */
14899 dst_reg->smin_value = smin_ptr;
14900 dst_reg->smax_value = smax_ptr;
14901 dst_reg->umin_value = umin_ptr;
14902 dst_reg->umax_value = umax_ptr;
14903 dst_reg->var_off = ptr_reg->var_off;
14904 dst_reg->off = ptr_reg->off + smin_val;
14905 dst_reg->raw = ptr_reg->raw;
14906 break;
14907 }
14908 /* A new variable offset is created. Note that off_reg->off
14909 * == 0, since it's a scalar.
14910 * dst_reg gets the pointer type and since some positive
14911 * integer value was added to the pointer, give it a new 'id'
14912 * if it's a PTR_TO_PACKET.
14913 * this creates a new 'base' pointer, off_reg (variable) gets
14914 * added into the variable offset, and we copy the fixed offset
14915 * from ptr_reg.
14916 */
14917 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
14918 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
14919 dst_reg->smin_value = S64_MIN;
14920 dst_reg->smax_value = S64_MAX;
14921 }
14922 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
14923 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
14924 dst_reg->umin_value = 0;
14925 dst_reg->umax_value = U64_MAX;
14926 }
14927 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
14928 dst_reg->off = ptr_reg->off;
14929 dst_reg->raw = ptr_reg->raw;
14930 if (reg_is_pkt_pointer(ptr_reg)) {
14931 dst_reg->id = ++env->id_gen;
14932 /* something was added to pkt_ptr, set range to zero */
14933 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14934 }
14935 break;
14936 case BPF_SUB:
14937 if (dst_reg == off_reg) {
14938 /* scalar -= pointer. Creates an unknown scalar */
14939 verbose(env, "R%d tried to subtract pointer from scalar\n",
14940 dst);
14941 return -EACCES;
14942 }
14943 /* We don't allow subtraction from FP, because (according to
14944 * test_verifier.c test "invalid fp arithmetic", JITs might not
14945 * be able to deal with it.
14946 */
14947 if (ptr_reg->type == PTR_TO_STACK) {
14948 verbose(env, "R%d subtraction from stack pointer prohibited\n",
14949 dst);
14950 return -EACCES;
14951 }
14952 if (known && (ptr_reg->off - smin_val ==
14953 (s64)(s32)(ptr_reg->off - smin_val))) {
14954 /* pointer -= K. Subtract it from fixed offset */
14955 dst_reg->smin_value = smin_ptr;
14956 dst_reg->smax_value = smax_ptr;
14957 dst_reg->umin_value = umin_ptr;
14958 dst_reg->umax_value = umax_ptr;
14959 dst_reg->var_off = ptr_reg->var_off;
14960 dst_reg->id = ptr_reg->id;
14961 dst_reg->off = ptr_reg->off - smin_val;
14962 dst_reg->raw = ptr_reg->raw;
14963 break;
14964 }
14965 /* A new variable offset is created. If the subtrahend is known
14966 * nonnegative, then any reg->range we had before is still good.
14967 */
14968 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
14969 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
14970 /* Overflow possible, we know nothing */
14971 dst_reg->smin_value = S64_MIN;
14972 dst_reg->smax_value = S64_MAX;
14973 }
14974 if (umin_ptr < umax_val) {
14975 /* Overflow possible, we know nothing */
14976 dst_reg->umin_value = 0;
14977 dst_reg->umax_value = U64_MAX;
14978 } else {
14979 /* Cannot overflow (as long as bounds are consistent) */
14980 dst_reg->umin_value = umin_ptr - umax_val;
14981 dst_reg->umax_value = umax_ptr - umin_val;
14982 }
14983 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
14984 dst_reg->off = ptr_reg->off;
14985 dst_reg->raw = ptr_reg->raw;
14986 if (reg_is_pkt_pointer(ptr_reg)) {
14987 dst_reg->id = ++env->id_gen;
14988 /* something was added to pkt_ptr, set range to zero */
14989 if (smin_val < 0)
14990 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14991 }
14992 break;
14993 case BPF_AND:
14994 case BPF_OR:
14995 case BPF_XOR:
14996 /* bitwise ops on pointers are troublesome, prohibit. */
14997 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
14998 dst, bpf_alu_string[opcode >> 4]);
14999 return -EACCES;
15000 default:
15001 /* other operators (e.g. MUL,LSH) produce non-pointer results */
15002 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
15003 dst, bpf_alu_string[opcode >> 4]);
15004 return -EACCES;
15005 }
15006
15007 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
15008 return -EINVAL;
15009 reg_bounds_sync(dst_reg);
15010 bounds_ret = sanitize_check_bounds(env, insn, dst_reg);
15011 if (bounds_ret == -EACCES)
15012 return bounds_ret;
15013 if (sanitize_needed(opcode)) {
15014 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
15015 &info, true);
15016 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn)
15017 && !env->cur_state->speculative
15018 && bounds_ret
15019 && !ret,
15020 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) {
15021 return -EFAULT;
15022 }
15023 if (ret < 0)
15024 return sanitize_err(env, insn, ret, off_reg, dst_reg);
15025 }
15026
15027 return 0;
15028 }
15029
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15030 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
15031 struct bpf_reg_state *src_reg)
15032 {
15033 s32 *dst_smin = &dst_reg->s32_min_value;
15034 s32 *dst_smax = &dst_reg->s32_max_value;
15035 u32 *dst_umin = &dst_reg->u32_min_value;
15036 u32 *dst_umax = &dst_reg->u32_max_value;
15037 u32 umin_val = src_reg->u32_min_value;
15038 u32 umax_val = src_reg->u32_max_value;
15039 bool min_overflow, max_overflow;
15040
15041 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
15042 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
15043 *dst_smin = S32_MIN;
15044 *dst_smax = S32_MAX;
15045 }
15046
15047 /* If either all additions overflow or no additions overflow, then
15048 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
15049 * dst_umax + src_umax. Otherwise (some additions overflow), set
15050 * the output bounds to unbounded.
15051 */
15052 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
15053 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
15054
15055 if (!min_overflow && max_overflow) {
15056 *dst_umin = 0;
15057 *dst_umax = U32_MAX;
15058 }
15059 }
15060
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15061 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
15062 struct bpf_reg_state *src_reg)
15063 {
15064 s64 *dst_smin = &dst_reg->smin_value;
15065 s64 *dst_smax = &dst_reg->smax_value;
15066 u64 *dst_umin = &dst_reg->umin_value;
15067 u64 *dst_umax = &dst_reg->umax_value;
15068 u64 umin_val = src_reg->umin_value;
15069 u64 umax_val = src_reg->umax_value;
15070 bool min_overflow, max_overflow;
15071
15072 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
15073 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
15074 *dst_smin = S64_MIN;
15075 *dst_smax = S64_MAX;
15076 }
15077
15078 /* If either all additions overflow or no additions overflow, then
15079 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
15080 * dst_umax + src_umax. Otherwise (some additions overflow), set
15081 * the output bounds to unbounded.
15082 */
15083 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
15084 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
15085
15086 if (!min_overflow && max_overflow) {
15087 *dst_umin = 0;
15088 *dst_umax = U64_MAX;
15089 }
15090 }
15091
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15092 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
15093 struct bpf_reg_state *src_reg)
15094 {
15095 s32 *dst_smin = &dst_reg->s32_min_value;
15096 s32 *dst_smax = &dst_reg->s32_max_value;
15097 u32 *dst_umin = &dst_reg->u32_min_value;
15098 u32 *dst_umax = &dst_reg->u32_max_value;
15099 u32 umin_val = src_reg->u32_min_value;
15100 u32 umax_val = src_reg->u32_max_value;
15101 bool min_underflow, max_underflow;
15102
15103 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
15104 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
15105 /* Overflow possible, we know nothing */
15106 *dst_smin = S32_MIN;
15107 *dst_smax = S32_MAX;
15108 }
15109
15110 /* If either all subtractions underflow or no subtractions
15111 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
15112 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
15113 * underflow), set the output bounds to unbounded.
15114 */
15115 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
15116 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
15117
15118 if (min_underflow && !max_underflow) {
15119 *dst_umin = 0;
15120 *dst_umax = U32_MAX;
15121 }
15122 }
15123
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15124 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
15125 struct bpf_reg_state *src_reg)
15126 {
15127 s64 *dst_smin = &dst_reg->smin_value;
15128 s64 *dst_smax = &dst_reg->smax_value;
15129 u64 *dst_umin = &dst_reg->umin_value;
15130 u64 *dst_umax = &dst_reg->umax_value;
15131 u64 umin_val = src_reg->umin_value;
15132 u64 umax_val = src_reg->umax_value;
15133 bool min_underflow, max_underflow;
15134
15135 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
15136 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
15137 /* Overflow possible, we know nothing */
15138 *dst_smin = S64_MIN;
15139 *dst_smax = S64_MAX;
15140 }
15141
15142 /* If either all subtractions underflow or no subtractions
15143 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
15144 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
15145 * underflow), set the output bounds to unbounded.
15146 */
15147 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
15148 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
15149
15150 if (min_underflow && !max_underflow) {
15151 *dst_umin = 0;
15152 *dst_umax = U64_MAX;
15153 }
15154 }
15155
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15156 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
15157 struct bpf_reg_state *src_reg)
15158 {
15159 s32 *dst_smin = &dst_reg->s32_min_value;
15160 s32 *dst_smax = &dst_reg->s32_max_value;
15161 u32 *dst_umin = &dst_reg->u32_min_value;
15162 u32 *dst_umax = &dst_reg->u32_max_value;
15163 s32 tmp_prod[4];
15164
15165 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
15166 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
15167 /* Overflow possible, we know nothing */
15168 *dst_umin = 0;
15169 *dst_umax = U32_MAX;
15170 }
15171 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
15172 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
15173 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
15174 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
15175 /* Overflow possible, we know nothing */
15176 *dst_smin = S32_MIN;
15177 *dst_smax = S32_MAX;
15178 } else {
15179 *dst_smin = min_array(tmp_prod, 4);
15180 *dst_smax = max_array(tmp_prod, 4);
15181 }
15182 }
15183
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15184 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
15185 struct bpf_reg_state *src_reg)
15186 {
15187 s64 *dst_smin = &dst_reg->smin_value;
15188 s64 *dst_smax = &dst_reg->smax_value;
15189 u64 *dst_umin = &dst_reg->umin_value;
15190 u64 *dst_umax = &dst_reg->umax_value;
15191 s64 tmp_prod[4];
15192
15193 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
15194 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
15195 /* Overflow possible, we know nothing */
15196 *dst_umin = 0;
15197 *dst_umax = U64_MAX;
15198 }
15199 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
15200 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
15201 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
15202 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
15203 /* Overflow possible, we know nothing */
15204 *dst_smin = S64_MIN;
15205 *dst_smax = S64_MAX;
15206 } else {
15207 *dst_smin = min_array(tmp_prod, 4);
15208 *dst_smax = max_array(tmp_prod, 4);
15209 }
15210 }
15211
scalar32_min_max_udiv(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15212 static void scalar32_min_max_udiv(struct bpf_reg_state *dst_reg,
15213 struct bpf_reg_state *src_reg)
15214 {
15215 u32 *dst_umin = &dst_reg->u32_min_value;
15216 u32 *dst_umax = &dst_reg->u32_max_value;
15217 u32 src_val = src_reg->u32_min_value; /* non-zero, const divisor */
15218
15219 *dst_umin = *dst_umin / src_val;
15220 *dst_umax = *dst_umax / src_val;
15221
15222 /* Reset other ranges/tnum to unbounded/unknown. */
15223 dst_reg->s32_min_value = S32_MIN;
15224 dst_reg->s32_max_value = S32_MAX;
15225 reset_reg64_and_tnum(dst_reg);
15226 }
15227
scalar_min_max_udiv(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15228 static void scalar_min_max_udiv(struct bpf_reg_state *dst_reg,
15229 struct bpf_reg_state *src_reg)
15230 {
15231 u64 *dst_umin = &dst_reg->umin_value;
15232 u64 *dst_umax = &dst_reg->umax_value;
15233 u64 src_val = src_reg->umin_value; /* non-zero, const divisor */
15234
15235 *dst_umin = div64_u64(*dst_umin, src_val);
15236 *dst_umax = div64_u64(*dst_umax, src_val);
15237
15238 /* Reset other ranges/tnum to unbounded/unknown. */
15239 dst_reg->smin_value = S64_MIN;
15240 dst_reg->smax_value = S64_MAX;
15241 reset_reg32_and_tnum(dst_reg);
15242 }
15243
scalar32_min_max_sdiv(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15244 static void scalar32_min_max_sdiv(struct bpf_reg_state *dst_reg,
15245 struct bpf_reg_state *src_reg)
15246 {
15247 s32 *dst_smin = &dst_reg->s32_min_value;
15248 s32 *dst_smax = &dst_reg->s32_max_value;
15249 s32 src_val = src_reg->s32_min_value; /* non-zero, const divisor */
15250 s32 res1, res2;
15251
15252 /* BPF div specification: S32_MIN / -1 = S32_MIN */
15253 if (*dst_smin == S32_MIN && src_val == -1) {
15254 /*
15255 * If the dividend range contains more than just S32_MIN,
15256 * we cannot precisely track the result, so it becomes unbounded.
15257 * e.g., [S32_MIN, S32_MIN+10]/(-1),
15258 * = {S32_MIN} U [-(S32_MIN+10), -(S32_MIN+1)]
15259 * = {S32_MIN} U [S32_MAX-9, S32_MAX] = [S32_MIN, S32_MAX]
15260 * Otherwise (if dividend is exactly S32_MIN), result remains S32_MIN.
15261 */
15262 if (*dst_smax != S32_MIN) {
15263 *dst_smin = S32_MIN;
15264 *dst_smax = S32_MAX;
15265 }
15266 goto reset;
15267 }
15268
15269 res1 = *dst_smin / src_val;
15270 res2 = *dst_smax / src_val;
15271 *dst_smin = min(res1, res2);
15272 *dst_smax = max(res1, res2);
15273
15274 reset:
15275 /* Reset other ranges/tnum to unbounded/unknown. */
15276 dst_reg->u32_min_value = 0;
15277 dst_reg->u32_max_value = U32_MAX;
15278 reset_reg64_and_tnum(dst_reg);
15279 }
15280
scalar_min_max_sdiv(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15281 static void scalar_min_max_sdiv(struct bpf_reg_state *dst_reg,
15282 struct bpf_reg_state *src_reg)
15283 {
15284 s64 *dst_smin = &dst_reg->smin_value;
15285 s64 *dst_smax = &dst_reg->smax_value;
15286 s64 src_val = src_reg->smin_value; /* non-zero, const divisor */
15287 s64 res1, res2;
15288
15289 /* BPF div specification: S64_MIN / -1 = S64_MIN */
15290 if (*dst_smin == S64_MIN && src_val == -1) {
15291 /*
15292 * If the dividend range contains more than just S64_MIN,
15293 * we cannot precisely track the result, so it becomes unbounded.
15294 * e.g., [S64_MIN, S64_MIN+10]/(-1),
15295 * = {S64_MIN} U [-(S64_MIN+10), -(S64_MIN+1)]
15296 * = {S64_MIN} U [S64_MAX-9, S64_MAX] = [S64_MIN, S64_MAX]
15297 * Otherwise (if dividend is exactly S64_MIN), result remains S64_MIN.
15298 */
15299 if (*dst_smax != S64_MIN) {
15300 *dst_smin = S64_MIN;
15301 *dst_smax = S64_MAX;
15302 }
15303 goto reset;
15304 }
15305
15306 res1 = div64_s64(*dst_smin, src_val);
15307 res2 = div64_s64(*dst_smax, src_val);
15308 *dst_smin = min(res1, res2);
15309 *dst_smax = max(res1, res2);
15310
15311 reset:
15312 /* Reset other ranges/tnum to unbounded/unknown. */
15313 dst_reg->umin_value = 0;
15314 dst_reg->umax_value = U64_MAX;
15315 reset_reg32_and_tnum(dst_reg);
15316 }
15317
scalar32_min_max_umod(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15318 static void scalar32_min_max_umod(struct bpf_reg_state *dst_reg,
15319 struct bpf_reg_state *src_reg)
15320 {
15321 u32 *dst_umin = &dst_reg->u32_min_value;
15322 u32 *dst_umax = &dst_reg->u32_max_value;
15323 u32 src_val = src_reg->u32_min_value; /* non-zero, const divisor */
15324 u32 res_max = src_val - 1;
15325
15326 /*
15327 * If dst_umax <= res_max, the result remains unchanged.
15328 * e.g., [2, 5] % 10 = [2, 5].
15329 */
15330 if (*dst_umax <= res_max)
15331 return;
15332
15333 *dst_umin = 0;
15334 *dst_umax = min(*dst_umax, res_max);
15335
15336 /* Reset other ranges/tnum to unbounded/unknown. */
15337 dst_reg->s32_min_value = S32_MIN;
15338 dst_reg->s32_max_value = S32_MAX;
15339 reset_reg64_and_tnum(dst_reg);
15340 }
15341
scalar_min_max_umod(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15342 static void scalar_min_max_umod(struct bpf_reg_state *dst_reg,
15343 struct bpf_reg_state *src_reg)
15344 {
15345 u64 *dst_umin = &dst_reg->umin_value;
15346 u64 *dst_umax = &dst_reg->umax_value;
15347 u64 src_val = src_reg->umin_value; /* non-zero, const divisor */
15348 u64 res_max = src_val - 1;
15349
15350 /*
15351 * If dst_umax <= res_max, the result remains unchanged.
15352 * e.g., [2, 5] % 10 = [2, 5].
15353 */
15354 if (*dst_umax <= res_max)
15355 return;
15356
15357 *dst_umin = 0;
15358 *dst_umax = min(*dst_umax, res_max);
15359
15360 /* Reset other ranges/tnum to unbounded/unknown. */
15361 dst_reg->smin_value = S64_MIN;
15362 dst_reg->smax_value = S64_MAX;
15363 reset_reg32_and_tnum(dst_reg);
15364 }
15365
scalar32_min_max_smod(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15366 static void scalar32_min_max_smod(struct bpf_reg_state *dst_reg,
15367 struct bpf_reg_state *src_reg)
15368 {
15369 s32 *dst_smin = &dst_reg->s32_min_value;
15370 s32 *dst_smax = &dst_reg->s32_max_value;
15371 s32 src_val = src_reg->s32_min_value; /* non-zero, const divisor */
15372
15373 /*
15374 * Safe absolute value calculation:
15375 * If src_val == S32_MIN (-2147483648), src_abs becomes 2147483648.
15376 * Here use unsigned integer to avoid overflow.
15377 */
15378 u32 src_abs = (src_val > 0) ? (u32)src_val : -(u32)src_val;
15379
15380 /*
15381 * Calculate the maximum possible absolute value of the result.
15382 * Even if src_abs is 2147483648 (S32_MIN), subtracting 1 gives
15383 * 2147483647 (S32_MAX), which fits perfectly in s32.
15384 */
15385 s32 res_max_abs = src_abs - 1;
15386
15387 /*
15388 * If the dividend is already within the result range,
15389 * the result remains unchanged. e.g., [-2, 5] % 10 = [-2, 5].
15390 */
15391 if (*dst_smin >= -res_max_abs && *dst_smax <= res_max_abs)
15392 return;
15393
15394 /* General case: result has the same sign as the dividend. */
15395 if (*dst_smin >= 0) {
15396 *dst_smin = 0;
15397 *dst_smax = min(*dst_smax, res_max_abs);
15398 } else if (*dst_smax <= 0) {
15399 *dst_smax = 0;
15400 *dst_smin = max(*dst_smin, -res_max_abs);
15401 } else {
15402 *dst_smin = -res_max_abs;
15403 *dst_smax = res_max_abs;
15404 }
15405
15406 /* Reset other ranges/tnum to unbounded/unknown. */
15407 dst_reg->u32_min_value = 0;
15408 dst_reg->u32_max_value = U32_MAX;
15409 reset_reg64_and_tnum(dst_reg);
15410 }
15411
scalar_min_max_smod(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15412 static void scalar_min_max_smod(struct bpf_reg_state *dst_reg,
15413 struct bpf_reg_state *src_reg)
15414 {
15415 s64 *dst_smin = &dst_reg->smin_value;
15416 s64 *dst_smax = &dst_reg->smax_value;
15417 s64 src_val = src_reg->smin_value; /* non-zero, const divisor */
15418
15419 /*
15420 * Safe absolute value calculation:
15421 * If src_val == S64_MIN (-2^63), src_abs becomes 2^63.
15422 * Here use unsigned integer to avoid overflow.
15423 */
15424 u64 src_abs = (src_val > 0) ? (u64)src_val : -(u64)src_val;
15425
15426 /*
15427 * Calculate the maximum possible absolute value of the result.
15428 * Even if src_abs is 2^63 (S64_MIN), subtracting 1 gives
15429 * 2^63 - 1 (S64_MAX), which fits perfectly in s64.
15430 */
15431 s64 res_max_abs = src_abs - 1;
15432
15433 /*
15434 * If the dividend is already within the result range,
15435 * the result remains unchanged. e.g., [-2, 5] % 10 = [-2, 5].
15436 */
15437 if (*dst_smin >= -res_max_abs && *dst_smax <= res_max_abs)
15438 return;
15439
15440 /* General case: result has the same sign as the dividend. */
15441 if (*dst_smin >= 0) {
15442 *dst_smin = 0;
15443 *dst_smax = min(*dst_smax, res_max_abs);
15444 } else if (*dst_smax <= 0) {
15445 *dst_smax = 0;
15446 *dst_smin = max(*dst_smin, -res_max_abs);
15447 } else {
15448 *dst_smin = -res_max_abs;
15449 *dst_smax = res_max_abs;
15450 }
15451
15452 /* Reset other ranges/tnum to unbounded/unknown. */
15453 dst_reg->umin_value = 0;
15454 dst_reg->umax_value = U64_MAX;
15455 reset_reg32_and_tnum(dst_reg);
15456 }
15457
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15458 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
15459 struct bpf_reg_state *src_reg)
15460 {
15461 bool src_known = tnum_subreg_is_const(src_reg->var_off);
15462 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15463 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15464 u32 umax_val = src_reg->u32_max_value;
15465
15466 if (src_known && dst_known) {
15467 __mark_reg32_known(dst_reg, var32_off.value);
15468 return;
15469 }
15470
15471 /* We get our minimum from the var_off, since that's inherently
15472 * bitwise. Our maximum is the minimum of the operands' maxima.
15473 */
15474 dst_reg->u32_min_value = var32_off.value;
15475 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
15476
15477 /* Safe to set s32 bounds by casting u32 result into s32 when u32
15478 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15479 */
15480 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15481 dst_reg->s32_min_value = dst_reg->u32_min_value;
15482 dst_reg->s32_max_value = dst_reg->u32_max_value;
15483 } else {
15484 dst_reg->s32_min_value = S32_MIN;
15485 dst_reg->s32_max_value = S32_MAX;
15486 }
15487 }
15488
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15489 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
15490 struct bpf_reg_state *src_reg)
15491 {
15492 bool src_known = tnum_is_const(src_reg->var_off);
15493 bool dst_known = tnum_is_const(dst_reg->var_off);
15494 u64 umax_val = src_reg->umax_value;
15495
15496 if (src_known && dst_known) {
15497 __mark_reg_known(dst_reg, dst_reg->var_off.value);
15498 return;
15499 }
15500
15501 /* We get our minimum from the var_off, since that's inherently
15502 * bitwise. Our maximum is the minimum of the operands' maxima.
15503 */
15504 dst_reg->umin_value = dst_reg->var_off.value;
15505 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
15506
15507 /* Safe to set s64 bounds by casting u64 result into s64 when u64
15508 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15509 */
15510 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15511 dst_reg->smin_value = dst_reg->umin_value;
15512 dst_reg->smax_value = dst_reg->umax_value;
15513 } else {
15514 dst_reg->smin_value = S64_MIN;
15515 dst_reg->smax_value = S64_MAX;
15516 }
15517 /* We may learn something more from the var_off */
15518 __update_reg_bounds(dst_reg);
15519 }
15520
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15521 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
15522 struct bpf_reg_state *src_reg)
15523 {
15524 bool src_known = tnum_subreg_is_const(src_reg->var_off);
15525 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15526 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15527 u32 umin_val = src_reg->u32_min_value;
15528
15529 if (src_known && dst_known) {
15530 __mark_reg32_known(dst_reg, var32_off.value);
15531 return;
15532 }
15533
15534 /* We get our maximum from the var_off, and our minimum is the
15535 * maximum of the operands' minima
15536 */
15537 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
15538 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15539
15540 /* Safe to set s32 bounds by casting u32 result into s32 when u32
15541 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15542 */
15543 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15544 dst_reg->s32_min_value = dst_reg->u32_min_value;
15545 dst_reg->s32_max_value = dst_reg->u32_max_value;
15546 } else {
15547 dst_reg->s32_min_value = S32_MIN;
15548 dst_reg->s32_max_value = S32_MAX;
15549 }
15550 }
15551
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15552 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
15553 struct bpf_reg_state *src_reg)
15554 {
15555 bool src_known = tnum_is_const(src_reg->var_off);
15556 bool dst_known = tnum_is_const(dst_reg->var_off);
15557 u64 umin_val = src_reg->umin_value;
15558
15559 if (src_known && dst_known) {
15560 __mark_reg_known(dst_reg, dst_reg->var_off.value);
15561 return;
15562 }
15563
15564 /* We get our maximum from the var_off, and our minimum is the
15565 * maximum of the operands' minima
15566 */
15567 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
15568 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15569
15570 /* Safe to set s64 bounds by casting u64 result into s64 when u64
15571 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15572 */
15573 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15574 dst_reg->smin_value = dst_reg->umin_value;
15575 dst_reg->smax_value = dst_reg->umax_value;
15576 } else {
15577 dst_reg->smin_value = S64_MIN;
15578 dst_reg->smax_value = S64_MAX;
15579 }
15580 /* We may learn something more from the var_off */
15581 __update_reg_bounds(dst_reg);
15582 }
15583
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15584 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
15585 struct bpf_reg_state *src_reg)
15586 {
15587 bool src_known = tnum_subreg_is_const(src_reg->var_off);
15588 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15589 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15590
15591 if (src_known && dst_known) {
15592 __mark_reg32_known(dst_reg, var32_off.value);
15593 return;
15594 }
15595
15596 /* We get both minimum and maximum from the var32_off. */
15597 dst_reg->u32_min_value = var32_off.value;
15598 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15599
15600 /* Safe to set s32 bounds by casting u32 result into s32 when u32
15601 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15602 */
15603 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15604 dst_reg->s32_min_value = dst_reg->u32_min_value;
15605 dst_reg->s32_max_value = dst_reg->u32_max_value;
15606 } else {
15607 dst_reg->s32_min_value = S32_MIN;
15608 dst_reg->s32_max_value = S32_MAX;
15609 }
15610 }
15611
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15612 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
15613 struct bpf_reg_state *src_reg)
15614 {
15615 bool src_known = tnum_is_const(src_reg->var_off);
15616 bool dst_known = tnum_is_const(dst_reg->var_off);
15617
15618 if (src_known && dst_known) {
15619 /* dst_reg->var_off.value has been updated earlier */
15620 __mark_reg_known(dst_reg, dst_reg->var_off.value);
15621 return;
15622 }
15623
15624 /* We get both minimum and maximum from the var_off. */
15625 dst_reg->umin_value = dst_reg->var_off.value;
15626 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15627
15628 /* Safe to set s64 bounds by casting u64 result into s64 when u64
15629 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15630 */
15631 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15632 dst_reg->smin_value = dst_reg->umin_value;
15633 dst_reg->smax_value = dst_reg->umax_value;
15634 } else {
15635 dst_reg->smin_value = S64_MIN;
15636 dst_reg->smax_value = S64_MAX;
15637 }
15638
15639 __update_reg_bounds(dst_reg);
15640 }
15641
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)15642 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15643 u64 umin_val, u64 umax_val)
15644 {
15645 /* We lose all sign bit information (except what we can pick
15646 * up from var_off)
15647 */
15648 dst_reg->s32_min_value = S32_MIN;
15649 dst_reg->s32_max_value = S32_MAX;
15650 /* If we might shift our top bit out, then we know nothing */
15651 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
15652 dst_reg->u32_min_value = 0;
15653 dst_reg->u32_max_value = U32_MAX;
15654 } else {
15655 dst_reg->u32_min_value <<= umin_val;
15656 dst_reg->u32_max_value <<= umax_val;
15657 }
15658 }
15659
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15660 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15661 struct bpf_reg_state *src_reg)
15662 {
15663 u32 umax_val = src_reg->u32_max_value;
15664 u32 umin_val = src_reg->u32_min_value;
15665 /* u32 alu operation will zext upper bits */
15666 struct tnum subreg = tnum_subreg(dst_reg->var_off);
15667
15668 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15669 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
15670 /* Not required but being careful mark reg64 bounds as unknown so
15671 * that we are forced to pick them up from tnum and zext later and
15672 * if some path skips this step we are still safe.
15673 */
15674 __mark_reg64_unbounded(dst_reg);
15675 __update_reg32_bounds(dst_reg);
15676 }
15677
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)15678 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
15679 u64 umin_val, u64 umax_val)
15680 {
15681 /* Special case <<32 because it is a common compiler pattern to sign
15682 * extend subreg by doing <<32 s>>32. smin/smax assignments are correct
15683 * because s32 bounds don't flip sign when shifting to the left by
15684 * 32bits.
15685 */
15686 if (umin_val == 32 && umax_val == 32) {
15687 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
15688 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
15689 } else {
15690 dst_reg->smax_value = S64_MAX;
15691 dst_reg->smin_value = S64_MIN;
15692 }
15693
15694 /* If we might shift our top bit out, then we know nothing */
15695 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
15696 dst_reg->umin_value = 0;
15697 dst_reg->umax_value = U64_MAX;
15698 } else {
15699 dst_reg->umin_value <<= umin_val;
15700 dst_reg->umax_value <<= umax_val;
15701 }
15702 }
15703
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15704 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
15705 struct bpf_reg_state *src_reg)
15706 {
15707 u64 umax_val = src_reg->umax_value;
15708 u64 umin_val = src_reg->umin_value;
15709
15710 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
15711 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
15712 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15713
15714 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
15715 /* We may learn something more from the var_off */
15716 __update_reg_bounds(dst_reg);
15717 }
15718
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15719 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
15720 struct bpf_reg_state *src_reg)
15721 {
15722 struct tnum subreg = tnum_subreg(dst_reg->var_off);
15723 u32 umax_val = src_reg->u32_max_value;
15724 u32 umin_val = src_reg->u32_min_value;
15725
15726 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
15727 * be negative, then either:
15728 * 1) src_reg might be zero, so the sign bit of the result is
15729 * unknown, so we lose our signed bounds
15730 * 2) it's known negative, thus the unsigned bounds capture the
15731 * signed bounds
15732 * 3) the signed bounds cross zero, so they tell us nothing
15733 * about the result
15734 * If the value in dst_reg is known nonnegative, then again the
15735 * unsigned bounds capture the signed bounds.
15736 * Thus, in all cases it suffices to blow away our signed bounds
15737 * and rely on inferring new ones from the unsigned bounds and
15738 * var_off of the result.
15739 */
15740 dst_reg->s32_min_value = S32_MIN;
15741 dst_reg->s32_max_value = S32_MAX;
15742
15743 dst_reg->var_off = tnum_rshift(subreg, umin_val);
15744 dst_reg->u32_min_value >>= umax_val;
15745 dst_reg->u32_max_value >>= umin_val;
15746
15747 __mark_reg64_unbounded(dst_reg);
15748 __update_reg32_bounds(dst_reg);
15749 }
15750
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15751 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
15752 struct bpf_reg_state *src_reg)
15753 {
15754 u64 umax_val = src_reg->umax_value;
15755 u64 umin_val = src_reg->umin_value;
15756
15757 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
15758 * be negative, then either:
15759 * 1) src_reg might be zero, so the sign bit of the result is
15760 * unknown, so we lose our signed bounds
15761 * 2) it's known negative, thus the unsigned bounds capture the
15762 * signed bounds
15763 * 3) the signed bounds cross zero, so they tell us nothing
15764 * about the result
15765 * If the value in dst_reg is known nonnegative, then again the
15766 * unsigned bounds capture the signed bounds.
15767 * Thus, in all cases it suffices to blow away our signed bounds
15768 * and rely on inferring new ones from the unsigned bounds and
15769 * var_off of the result.
15770 */
15771 dst_reg->smin_value = S64_MIN;
15772 dst_reg->smax_value = S64_MAX;
15773 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
15774 dst_reg->umin_value >>= umax_val;
15775 dst_reg->umax_value >>= umin_val;
15776
15777 /* Its not easy to operate on alu32 bounds here because it depends
15778 * on bits being shifted in. Take easy way out and mark unbounded
15779 * so we can recalculate later from tnum.
15780 */
15781 __mark_reg32_unbounded(dst_reg);
15782 __update_reg_bounds(dst_reg);
15783 }
15784
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15785 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
15786 struct bpf_reg_state *src_reg)
15787 {
15788 u64 umin_val = src_reg->u32_min_value;
15789
15790 /* Upon reaching here, src_known is true and
15791 * umax_val is equal to umin_val.
15792 */
15793 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
15794 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
15795
15796 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
15797
15798 /* blow away the dst_reg umin_value/umax_value and rely on
15799 * dst_reg var_off to refine the result.
15800 */
15801 dst_reg->u32_min_value = 0;
15802 dst_reg->u32_max_value = U32_MAX;
15803
15804 __mark_reg64_unbounded(dst_reg);
15805 __update_reg32_bounds(dst_reg);
15806 }
15807
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15808 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
15809 struct bpf_reg_state *src_reg)
15810 {
15811 u64 umin_val = src_reg->umin_value;
15812
15813 /* Upon reaching here, src_known is true and umax_val is equal
15814 * to umin_val.
15815 */
15816 dst_reg->smin_value >>= umin_val;
15817 dst_reg->smax_value >>= umin_val;
15818
15819 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
15820
15821 /* blow away the dst_reg umin_value/umax_value and rely on
15822 * dst_reg var_off to refine the result.
15823 */
15824 dst_reg->umin_value = 0;
15825 dst_reg->umax_value = U64_MAX;
15826
15827 /* Its not easy to operate on alu32 bounds here because it depends
15828 * on bits being shifted in from upper 32-bits. Take easy way out
15829 * and mark unbounded so we can recalculate later from tnum.
15830 */
15831 __mark_reg32_unbounded(dst_reg);
15832 __update_reg_bounds(dst_reg);
15833 }
15834
scalar_byte_swap(struct bpf_reg_state * dst_reg,struct bpf_insn * insn)15835 static void scalar_byte_swap(struct bpf_reg_state *dst_reg, struct bpf_insn *insn)
15836 {
15837 /*
15838 * Byte swap operation - update var_off using tnum_bswap.
15839 * Three cases:
15840 * 1. bswap(16|32|64): opcode=0xd7 (BPF_END | BPF_ALU64 | BPF_TO_LE)
15841 * unconditional swap
15842 * 2. to_le(16|32|64): opcode=0xd4 (BPF_END | BPF_ALU | BPF_TO_LE)
15843 * swap on big-endian, truncation or no-op on little-endian
15844 * 3. to_be(16|32|64): opcode=0xdc (BPF_END | BPF_ALU | BPF_TO_BE)
15845 * swap on little-endian, truncation or no-op on big-endian
15846 */
15847
15848 bool alu64 = BPF_CLASS(insn->code) == BPF_ALU64;
15849 bool to_le = BPF_SRC(insn->code) == BPF_TO_LE;
15850 bool is_big_endian;
15851 #ifdef CONFIG_CPU_BIG_ENDIAN
15852 is_big_endian = true;
15853 #else
15854 is_big_endian = false;
15855 #endif
15856 /* Apply bswap if alu64 or switch between big-endian and little-endian machines */
15857 bool need_bswap = alu64 || (to_le == is_big_endian);
15858
15859 if (need_bswap) {
15860 if (insn->imm == 16)
15861 dst_reg->var_off = tnum_bswap16(dst_reg->var_off);
15862 else if (insn->imm == 32)
15863 dst_reg->var_off = tnum_bswap32(dst_reg->var_off);
15864 else if (insn->imm == 64)
15865 dst_reg->var_off = tnum_bswap64(dst_reg->var_off);
15866 /*
15867 * Byteswap scrambles the range, so we must reset bounds.
15868 * Bounds will be re-derived from the new tnum later.
15869 */
15870 __mark_reg_unbounded(dst_reg);
15871 }
15872 /* For bswap16/32, truncate dst register to match the swapped size */
15873 if (insn->imm == 16 || insn->imm == 32)
15874 coerce_reg_to_size(dst_reg, insn->imm / 8);
15875 }
15876
is_safe_to_compute_dst_reg_range(struct bpf_insn * insn,const struct bpf_reg_state * src_reg)15877 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
15878 const struct bpf_reg_state *src_reg)
15879 {
15880 bool src_is_const = false;
15881 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
15882
15883 if (insn_bitness == 32) {
15884 if (tnum_subreg_is_const(src_reg->var_off)
15885 && src_reg->s32_min_value == src_reg->s32_max_value
15886 && src_reg->u32_min_value == src_reg->u32_max_value)
15887 src_is_const = true;
15888 } else {
15889 if (tnum_is_const(src_reg->var_off)
15890 && src_reg->smin_value == src_reg->smax_value
15891 && src_reg->umin_value == src_reg->umax_value)
15892 src_is_const = true;
15893 }
15894
15895 switch (BPF_OP(insn->code)) {
15896 case BPF_ADD:
15897 case BPF_SUB:
15898 case BPF_NEG:
15899 case BPF_AND:
15900 case BPF_XOR:
15901 case BPF_OR:
15902 case BPF_MUL:
15903 case BPF_END:
15904 return true;
15905
15906 /*
15907 * Division and modulo operators range is only safe to compute when the
15908 * divisor is a constant.
15909 */
15910 case BPF_DIV:
15911 case BPF_MOD:
15912 return src_is_const;
15913
15914 /* Shift operators range is only computable if shift dimension operand
15915 * is a constant. Shifts greater than 31 or 63 are undefined. This
15916 * includes shifts by a negative number.
15917 */
15918 case BPF_LSH:
15919 case BPF_RSH:
15920 case BPF_ARSH:
15921 return (src_is_const && src_reg->umax_value < insn_bitness);
15922 default:
15923 return false;
15924 }
15925 }
15926
maybe_fork_scalars(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg)15927 static int maybe_fork_scalars(struct bpf_verifier_env *env, struct bpf_insn *insn,
15928 struct bpf_reg_state *dst_reg)
15929 {
15930 struct bpf_verifier_state *branch;
15931 struct bpf_reg_state *regs;
15932 bool alu32;
15933
15934 if (dst_reg->smin_value == -1 && dst_reg->smax_value == 0)
15935 alu32 = false;
15936 else if (dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0)
15937 alu32 = true;
15938 else
15939 return 0;
15940
15941 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
15942 if (IS_ERR(branch))
15943 return PTR_ERR(branch);
15944
15945 regs = branch->frame[branch->curframe]->regs;
15946 if (alu32) {
15947 __mark_reg32_known(®s[insn->dst_reg], 0);
15948 __mark_reg32_known(dst_reg, -1ull);
15949 } else {
15950 __mark_reg_known(®s[insn->dst_reg], 0);
15951 __mark_reg_known(dst_reg, -1ull);
15952 }
15953 return 0;
15954 }
15955
15956 /* WARNING: This function does calculations on 64-bit values, but the actual
15957 * execution may occur on 32-bit values. Therefore, things like bitshifts
15958 * need extra checks in the 32-bit case.
15959 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)15960 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
15961 struct bpf_insn *insn,
15962 struct bpf_reg_state *dst_reg,
15963 struct bpf_reg_state src_reg)
15964 {
15965 u8 opcode = BPF_OP(insn->code);
15966 s16 off = insn->off;
15967 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15968 int ret;
15969
15970 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
15971 __mark_reg_unknown(env, dst_reg);
15972 return 0;
15973 }
15974
15975 if (sanitize_needed(opcode)) {
15976 ret = sanitize_val_alu(env, insn);
15977 if (ret < 0)
15978 return sanitize_err(env, insn, ret, NULL, NULL);
15979 }
15980
15981 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
15982 * There are two classes of instructions: The first class we track both
15983 * alu32 and alu64 sign/unsigned bounds independently this provides the
15984 * greatest amount of precision when alu operations are mixed with jmp32
15985 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
15986 * and BPF_OR. This is possible because these ops have fairly easy to
15987 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
15988 * See alu32 verifier tests for examples. The second class of
15989 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
15990 * with regards to tracking sign/unsigned bounds because the bits may
15991 * cross subreg boundaries in the alu64 case. When this happens we mark
15992 * the reg unbounded in the subreg bound space and use the resulting
15993 * tnum to calculate an approximation of the sign/unsigned bounds.
15994 */
15995 switch (opcode) {
15996 case BPF_ADD:
15997 scalar32_min_max_add(dst_reg, &src_reg);
15998 scalar_min_max_add(dst_reg, &src_reg);
15999 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
16000 break;
16001 case BPF_SUB:
16002 scalar32_min_max_sub(dst_reg, &src_reg);
16003 scalar_min_max_sub(dst_reg, &src_reg);
16004 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
16005 break;
16006 case BPF_NEG:
16007 env->fake_reg[0] = *dst_reg;
16008 __mark_reg_known(dst_reg, 0);
16009 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]);
16010 scalar_min_max_sub(dst_reg, &env->fake_reg[0]);
16011 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off);
16012 break;
16013 case BPF_MUL:
16014 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
16015 scalar32_min_max_mul(dst_reg, &src_reg);
16016 scalar_min_max_mul(dst_reg, &src_reg);
16017 break;
16018 case BPF_DIV:
16019 /* BPF div specification: x / 0 = 0 */
16020 if ((alu32 && src_reg.u32_min_value == 0) || (!alu32 && src_reg.umin_value == 0)) {
16021 ___mark_reg_known(dst_reg, 0);
16022 break;
16023 }
16024 if (alu32)
16025 if (off == 1)
16026 scalar32_min_max_sdiv(dst_reg, &src_reg);
16027 else
16028 scalar32_min_max_udiv(dst_reg, &src_reg);
16029 else
16030 if (off == 1)
16031 scalar_min_max_sdiv(dst_reg, &src_reg);
16032 else
16033 scalar_min_max_udiv(dst_reg, &src_reg);
16034 break;
16035 case BPF_MOD:
16036 /* BPF mod specification: x % 0 = x */
16037 if ((alu32 && src_reg.u32_min_value == 0) || (!alu32 && src_reg.umin_value == 0))
16038 break;
16039 if (alu32)
16040 if (off == 1)
16041 scalar32_min_max_smod(dst_reg, &src_reg);
16042 else
16043 scalar32_min_max_umod(dst_reg, &src_reg);
16044 else
16045 if (off == 1)
16046 scalar_min_max_smod(dst_reg, &src_reg);
16047 else
16048 scalar_min_max_umod(dst_reg, &src_reg);
16049 break;
16050 case BPF_AND:
16051 if (tnum_is_const(src_reg.var_off)) {
16052 ret = maybe_fork_scalars(env, insn, dst_reg);
16053 if (ret)
16054 return ret;
16055 }
16056 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
16057 scalar32_min_max_and(dst_reg, &src_reg);
16058 scalar_min_max_and(dst_reg, &src_reg);
16059 break;
16060 case BPF_OR:
16061 if (tnum_is_const(src_reg.var_off)) {
16062 ret = maybe_fork_scalars(env, insn, dst_reg);
16063 if (ret)
16064 return ret;
16065 }
16066 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
16067 scalar32_min_max_or(dst_reg, &src_reg);
16068 scalar_min_max_or(dst_reg, &src_reg);
16069 break;
16070 case BPF_XOR:
16071 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
16072 scalar32_min_max_xor(dst_reg, &src_reg);
16073 scalar_min_max_xor(dst_reg, &src_reg);
16074 break;
16075 case BPF_LSH:
16076 if (alu32)
16077 scalar32_min_max_lsh(dst_reg, &src_reg);
16078 else
16079 scalar_min_max_lsh(dst_reg, &src_reg);
16080 break;
16081 case BPF_RSH:
16082 if (alu32)
16083 scalar32_min_max_rsh(dst_reg, &src_reg);
16084 else
16085 scalar_min_max_rsh(dst_reg, &src_reg);
16086 break;
16087 case BPF_ARSH:
16088 if (alu32)
16089 scalar32_min_max_arsh(dst_reg, &src_reg);
16090 else
16091 scalar_min_max_arsh(dst_reg, &src_reg);
16092 break;
16093 case BPF_END:
16094 scalar_byte_swap(dst_reg, insn);
16095 break;
16096 default:
16097 break;
16098 }
16099
16100 /*
16101 * ALU32 ops are zero extended into 64bit register.
16102 *
16103 * BPF_END is already handled inside the helper (truncation),
16104 * so skip zext here to avoid unexpected zero extension.
16105 * e.g., le64: opcode=(BPF_END|BPF_ALU|BPF_TO_LE), imm=0x40
16106 * This is a 64bit byte swap operation with alu32==true,
16107 * but we should not zero extend the result.
16108 */
16109 if (alu32 && opcode != BPF_END)
16110 zext_32_to_64(dst_reg);
16111 reg_bounds_sync(dst_reg);
16112 return 0;
16113 }
16114
16115 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
16116 * and var_off.
16117 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)16118 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
16119 struct bpf_insn *insn)
16120 {
16121 struct bpf_verifier_state *vstate = env->cur_state;
16122 struct bpf_func_state *state = vstate->frame[vstate->curframe];
16123 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
16124 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
16125 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
16126 u8 opcode = BPF_OP(insn->code);
16127 int err;
16128
16129 dst_reg = ®s[insn->dst_reg];
16130 src_reg = NULL;
16131
16132 if (dst_reg->type == PTR_TO_ARENA) {
16133 struct bpf_insn_aux_data *aux = cur_aux(env);
16134
16135 if (BPF_CLASS(insn->code) == BPF_ALU64)
16136 /*
16137 * 32-bit operations zero upper bits automatically.
16138 * 64-bit operations need to be converted to 32.
16139 */
16140 aux->needs_zext = true;
16141
16142 /* Any arithmetic operations are allowed on arena pointers */
16143 return 0;
16144 }
16145
16146 if (dst_reg->type != SCALAR_VALUE)
16147 ptr_reg = dst_reg;
16148
16149 if (BPF_SRC(insn->code) == BPF_X) {
16150 src_reg = ®s[insn->src_reg];
16151 if (src_reg->type != SCALAR_VALUE) {
16152 if (dst_reg->type != SCALAR_VALUE) {
16153 /* Combining two pointers by any ALU op yields
16154 * an arbitrary scalar. Disallow all math except
16155 * pointer subtraction
16156 */
16157 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
16158 mark_reg_unknown(env, regs, insn->dst_reg);
16159 return 0;
16160 }
16161 verbose(env, "R%d pointer %s pointer prohibited\n",
16162 insn->dst_reg,
16163 bpf_alu_string[opcode >> 4]);
16164 return -EACCES;
16165 } else {
16166 /* scalar += pointer
16167 * This is legal, but we have to reverse our
16168 * src/dest handling in computing the range
16169 */
16170 err = mark_chain_precision(env, insn->dst_reg);
16171 if (err)
16172 return err;
16173 return adjust_ptr_min_max_vals(env, insn,
16174 src_reg, dst_reg);
16175 }
16176 } else if (ptr_reg) {
16177 /* pointer += scalar */
16178 err = mark_chain_precision(env, insn->src_reg);
16179 if (err)
16180 return err;
16181 return adjust_ptr_min_max_vals(env, insn,
16182 dst_reg, src_reg);
16183 } else if (dst_reg->precise) {
16184 /* if dst_reg is precise, src_reg should be precise as well */
16185 err = mark_chain_precision(env, insn->src_reg);
16186 if (err)
16187 return err;
16188 }
16189 } else {
16190 /* Pretend the src is a reg with a known value, since we only
16191 * need to be able to read from this state.
16192 */
16193 off_reg.type = SCALAR_VALUE;
16194 __mark_reg_known(&off_reg, insn->imm);
16195 src_reg = &off_reg;
16196 if (ptr_reg) /* pointer += K */
16197 return adjust_ptr_min_max_vals(env, insn,
16198 ptr_reg, src_reg);
16199 }
16200
16201 /* Got here implies adding two SCALAR_VALUEs */
16202 if (WARN_ON_ONCE(ptr_reg)) {
16203 print_verifier_state(env, vstate, vstate->curframe, true);
16204 verbose(env, "verifier internal error: unexpected ptr_reg\n");
16205 return -EFAULT;
16206 }
16207 if (WARN_ON(!src_reg)) {
16208 print_verifier_state(env, vstate, vstate->curframe, true);
16209 verbose(env, "verifier internal error: no src_reg\n");
16210 return -EFAULT;
16211 }
16212 /*
16213 * For alu32 linked register tracking, we need to check dst_reg's
16214 * umax_value before the ALU operation. After adjust_scalar_min_max_vals(),
16215 * alu32 ops will have zero-extended the result, making umax_value <= U32_MAX.
16216 */
16217 u64 dst_umax = dst_reg->umax_value;
16218
16219 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
16220 if (err)
16221 return err;
16222 /*
16223 * Compilers can generate the code
16224 * r1 = r2
16225 * r1 += 0x1
16226 * if r2 < 1000 goto ...
16227 * use r1 in memory access
16228 * So remember constant delta between r2 and r1 and update r1 after
16229 * 'if' condition.
16230 */
16231 if (env->bpf_capable &&
16232 (BPF_OP(insn->code) == BPF_ADD || BPF_OP(insn->code) == BPF_SUB) &&
16233 dst_reg->id && is_reg_const(src_reg, alu32)) {
16234 u64 val = reg_const_value(src_reg, alu32);
16235 s32 off;
16236
16237 if (!alu32 && ((s64)val < S32_MIN || (s64)val > S32_MAX))
16238 goto clear_id;
16239
16240 if (alu32 && (dst_umax > U32_MAX))
16241 goto clear_id;
16242
16243 off = (s32)val;
16244
16245 if (BPF_OP(insn->code) == BPF_SUB) {
16246 /* Negating S32_MIN would overflow */
16247 if (off == S32_MIN)
16248 goto clear_id;
16249 off = -off;
16250 }
16251
16252 if (dst_reg->id & BPF_ADD_CONST) {
16253 /*
16254 * If the register already went through rX += val
16255 * we cannot accumulate another val into rx->off.
16256 */
16257 clear_id:
16258 dst_reg->off = 0;
16259 dst_reg->id = 0;
16260 } else {
16261 if (alu32)
16262 dst_reg->id |= BPF_ADD_CONST32;
16263 else
16264 dst_reg->id |= BPF_ADD_CONST64;
16265 dst_reg->off = off;
16266 }
16267 } else {
16268 /*
16269 * Make sure ID is cleared otherwise dst_reg min/max could be
16270 * incorrectly propagated into other registers by sync_linked_regs()
16271 */
16272 dst_reg->id = 0;
16273 }
16274 return 0;
16275 }
16276
16277 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)16278 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
16279 {
16280 struct bpf_reg_state *regs = cur_regs(env);
16281 u8 opcode = BPF_OP(insn->code);
16282 int err;
16283
16284 if (opcode == BPF_END || opcode == BPF_NEG) {
16285 if (opcode == BPF_NEG) {
16286 if (BPF_SRC(insn->code) != BPF_K ||
16287 insn->src_reg != BPF_REG_0 ||
16288 insn->off != 0 || insn->imm != 0) {
16289 verbose(env, "BPF_NEG uses reserved fields\n");
16290 return -EINVAL;
16291 }
16292 } else {
16293 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
16294 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
16295 (BPF_CLASS(insn->code) == BPF_ALU64 &&
16296 BPF_SRC(insn->code) != BPF_TO_LE)) {
16297 verbose(env, "BPF_END uses reserved fields\n");
16298 return -EINVAL;
16299 }
16300 }
16301
16302 /* check src operand */
16303 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16304 if (err)
16305 return err;
16306
16307 if (is_pointer_value(env, insn->dst_reg)) {
16308 verbose(env, "R%d pointer arithmetic prohibited\n",
16309 insn->dst_reg);
16310 return -EACCES;
16311 }
16312
16313 /* check dest operand */
16314 if ((opcode == BPF_NEG || opcode == BPF_END) &&
16315 regs[insn->dst_reg].type == SCALAR_VALUE) {
16316 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16317 err = err ?: adjust_scalar_min_max_vals(env, insn,
16318 ®s[insn->dst_reg],
16319 regs[insn->dst_reg]);
16320 } else {
16321 err = check_reg_arg(env, insn->dst_reg, DST_OP);
16322 }
16323 if (err)
16324 return err;
16325
16326 } else if (opcode == BPF_MOV) {
16327
16328 if (BPF_SRC(insn->code) == BPF_X) {
16329 if (BPF_CLASS(insn->code) == BPF_ALU) {
16330 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
16331 insn->imm) {
16332 verbose(env, "BPF_MOV uses reserved fields\n");
16333 return -EINVAL;
16334 }
16335 } else if (insn->off == BPF_ADDR_SPACE_CAST) {
16336 if (insn->imm != 1 && insn->imm != 1u << 16) {
16337 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
16338 return -EINVAL;
16339 }
16340 if (!env->prog->aux->arena) {
16341 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
16342 return -EINVAL;
16343 }
16344 } else {
16345 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
16346 insn->off != 32) || insn->imm) {
16347 verbose(env, "BPF_MOV uses reserved fields\n");
16348 return -EINVAL;
16349 }
16350 }
16351
16352 /* check src operand */
16353 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16354 if (err)
16355 return err;
16356 } else {
16357 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
16358 verbose(env, "BPF_MOV uses reserved fields\n");
16359 return -EINVAL;
16360 }
16361 }
16362
16363 /* check dest operand, mark as required later */
16364 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16365 if (err)
16366 return err;
16367
16368 if (BPF_SRC(insn->code) == BPF_X) {
16369 struct bpf_reg_state *src_reg = regs + insn->src_reg;
16370 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
16371
16372 if (BPF_CLASS(insn->code) == BPF_ALU64) {
16373 if (insn->imm) {
16374 /* off == BPF_ADDR_SPACE_CAST */
16375 mark_reg_unknown(env, regs, insn->dst_reg);
16376 if (insn->imm == 1) { /* cast from as(1) to as(0) */
16377 dst_reg->type = PTR_TO_ARENA;
16378 /* PTR_TO_ARENA is 32-bit */
16379 dst_reg->subreg_def = env->insn_idx + 1;
16380 }
16381 } else if (insn->off == 0) {
16382 /* case: R1 = R2
16383 * copy register state to dest reg
16384 */
16385 assign_scalar_id_before_mov(env, src_reg);
16386 copy_register_state(dst_reg, src_reg);
16387 dst_reg->subreg_def = DEF_NOT_SUBREG;
16388 } else {
16389 /* case: R1 = (s8, s16 s32)R2 */
16390 if (is_pointer_value(env, insn->src_reg)) {
16391 verbose(env,
16392 "R%d sign-extension part of pointer\n",
16393 insn->src_reg);
16394 return -EACCES;
16395 } else if (src_reg->type == SCALAR_VALUE) {
16396 bool no_sext;
16397
16398 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
16399 if (no_sext)
16400 assign_scalar_id_before_mov(env, src_reg);
16401 copy_register_state(dst_reg, src_reg);
16402 if (!no_sext)
16403 dst_reg->id = 0;
16404 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
16405 dst_reg->subreg_def = DEF_NOT_SUBREG;
16406 } else {
16407 mark_reg_unknown(env, regs, insn->dst_reg);
16408 }
16409 }
16410 } else {
16411 /* R1 = (u32) R2 */
16412 if (is_pointer_value(env, insn->src_reg)) {
16413 verbose(env,
16414 "R%d partial copy of pointer\n",
16415 insn->src_reg);
16416 return -EACCES;
16417 } else if (src_reg->type == SCALAR_VALUE) {
16418 if (insn->off == 0) {
16419 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
16420
16421 if (is_src_reg_u32)
16422 assign_scalar_id_before_mov(env, src_reg);
16423 copy_register_state(dst_reg, src_reg);
16424 /* Make sure ID is cleared if src_reg is not in u32
16425 * range otherwise dst_reg min/max could be incorrectly
16426 * propagated into src_reg by sync_linked_regs()
16427 */
16428 if (!is_src_reg_u32)
16429 dst_reg->id = 0;
16430 dst_reg->subreg_def = env->insn_idx + 1;
16431 } else {
16432 /* case: W1 = (s8, s16)W2 */
16433 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
16434
16435 if (no_sext)
16436 assign_scalar_id_before_mov(env, src_reg);
16437 copy_register_state(dst_reg, src_reg);
16438 if (!no_sext)
16439 dst_reg->id = 0;
16440 dst_reg->subreg_def = env->insn_idx + 1;
16441 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
16442 }
16443 } else {
16444 mark_reg_unknown(env, regs,
16445 insn->dst_reg);
16446 }
16447 zext_32_to_64(dst_reg);
16448 reg_bounds_sync(dst_reg);
16449 }
16450 } else {
16451 /* case: R = imm
16452 * remember the value we stored into this reg
16453 */
16454 /* clear any state __mark_reg_known doesn't set */
16455 mark_reg_unknown(env, regs, insn->dst_reg);
16456 regs[insn->dst_reg].type = SCALAR_VALUE;
16457 if (BPF_CLASS(insn->code) == BPF_ALU64) {
16458 __mark_reg_known(regs + insn->dst_reg,
16459 insn->imm);
16460 } else {
16461 __mark_reg_known(regs + insn->dst_reg,
16462 (u32)insn->imm);
16463 }
16464 }
16465
16466 } else if (opcode > BPF_END) {
16467 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
16468 return -EINVAL;
16469
16470 } else { /* all other ALU ops: and, sub, xor, add, ... */
16471
16472 if (BPF_SRC(insn->code) == BPF_X) {
16473 if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) ||
16474 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
16475 verbose(env, "BPF_ALU uses reserved fields\n");
16476 return -EINVAL;
16477 }
16478 /* check src1 operand */
16479 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16480 if (err)
16481 return err;
16482 } else {
16483 if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) ||
16484 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
16485 verbose(env, "BPF_ALU uses reserved fields\n");
16486 return -EINVAL;
16487 }
16488 }
16489
16490 /* check src2 operand */
16491 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16492 if (err)
16493 return err;
16494
16495 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
16496 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
16497 verbose(env, "div by zero\n");
16498 return -EINVAL;
16499 }
16500
16501 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
16502 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
16503 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
16504
16505 if (insn->imm < 0 || insn->imm >= size) {
16506 verbose(env, "invalid shift %d\n", insn->imm);
16507 return -EINVAL;
16508 }
16509 }
16510
16511 /* check dest operand */
16512 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16513 err = err ?: adjust_reg_min_max_vals(env, insn);
16514 if (err)
16515 return err;
16516 }
16517
16518 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu");
16519 }
16520
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)16521 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
16522 struct bpf_reg_state *dst_reg,
16523 enum bpf_reg_type type,
16524 bool range_right_open)
16525 {
16526 struct bpf_func_state *state;
16527 struct bpf_reg_state *reg;
16528 int new_range;
16529
16530 if (dst_reg->off < 0 ||
16531 (dst_reg->off == 0 && range_right_open))
16532 /* This doesn't give us any range */
16533 return;
16534
16535 if (dst_reg->umax_value > MAX_PACKET_OFF ||
16536 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
16537 /* Risk of overflow. For instance, ptr + (1<<63) may be less
16538 * than pkt_end, but that's because it's also less than pkt.
16539 */
16540 return;
16541
16542 new_range = dst_reg->off;
16543 if (range_right_open)
16544 new_range++;
16545
16546 /* Examples for register markings:
16547 *
16548 * pkt_data in dst register:
16549 *
16550 * r2 = r3;
16551 * r2 += 8;
16552 * if (r2 > pkt_end) goto <handle exception>
16553 * <access okay>
16554 *
16555 * r2 = r3;
16556 * r2 += 8;
16557 * if (r2 < pkt_end) goto <access okay>
16558 * <handle exception>
16559 *
16560 * Where:
16561 * r2 == dst_reg, pkt_end == src_reg
16562 * r2=pkt(id=n,off=8,r=0)
16563 * r3=pkt(id=n,off=0,r=0)
16564 *
16565 * pkt_data in src register:
16566 *
16567 * r2 = r3;
16568 * r2 += 8;
16569 * if (pkt_end >= r2) goto <access okay>
16570 * <handle exception>
16571 *
16572 * r2 = r3;
16573 * r2 += 8;
16574 * if (pkt_end <= r2) goto <handle exception>
16575 * <access okay>
16576 *
16577 * Where:
16578 * pkt_end == dst_reg, r2 == src_reg
16579 * r2=pkt(id=n,off=8,r=0)
16580 * r3=pkt(id=n,off=0,r=0)
16581 *
16582 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
16583 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
16584 * and [r3, r3 + 8-1) respectively is safe to access depending on
16585 * the check.
16586 */
16587
16588 /* If our ids match, then we must have the same max_value. And we
16589 * don't care about the other reg's fixed offset, since if it's too big
16590 * the range won't allow anything.
16591 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
16592 */
16593 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16594 if (reg->type == type && reg->id == dst_reg->id)
16595 /* keep the maximum range already checked */
16596 reg->range = max(reg->range, new_range);
16597 }));
16598 }
16599
16600 /*
16601 * <reg1> <op> <reg2>, currently assuming reg2 is a constant
16602 */
is_scalar_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16603 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16604 u8 opcode, bool is_jmp32)
16605 {
16606 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
16607 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
16608 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
16609 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
16610 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
16611 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
16612 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
16613 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
16614 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
16615 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
16616
16617 if (reg1 == reg2) {
16618 switch (opcode) {
16619 case BPF_JGE:
16620 case BPF_JLE:
16621 case BPF_JSGE:
16622 case BPF_JSLE:
16623 case BPF_JEQ:
16624 return 1;
16625 case BPF_JGT:
16626 case BPF_JLT:
16627 case BPF_JSGT:
16628 case BPF_JSLT:
16629 case BPF_JNE:
16630 return 0;
16631 case BPF_JSET:
16632 if (tnum_is_const(t1))
16633 return t1.value != 0;
16634 else
16635 return (smin1 <= 0 && smax1 >= 0) ? -1 : 1;
16636 default:
16637 return -1;
16638 }
16639 }
16640
16641 switch (opcode) {
16642 case BPF_JEQ:
16643 /* constants, umin/umax and smin/smax checks would be
16644 * redundant in this case because they all should match
16645 */
16646 if (tnum_is_const(t1) && tnum_is_const(t2))
16647 return t1.value == t2.value;
16648 if (!tnum_overlap(t1, t2))
16649 return 0;
16650 /* non-overlapping ranges */
16651 if (umin1 > umax2 || umax1 < umin2)
16652 return 0;
16653 if (smin1 > smax2 || smax1 < smin2)
16654 return 0;
16655 if (!is_jmp32) {
16656 /* if 64-bit ranges are inconclusive, see if we can
16657 * utilize 32-bit subrange knowledge to eliminate
16658 * branches that can't be taken a priori
16659 */
16660 if (reg1->u32_min_value > reg2->u32_max_value ||
16661 reg1->u32_max_value < reg2->u32_min_value)
16662 return 0;
16663 if (reg1->s32_min_value > reg2->s32_max_value ||
16664 reg1->s32_max_value < reg2->s32_min_value)
16665 return 0;
16666 }
16667 break;
16668 case BPF_JNE:
16669 /* constants, umin/umax and smin/smax checks would be
16670 * redundant in this case because they all should match
16671 */
16672 if (tnum_is_const(t1) && tnum_is_const(t2))
16673 return t1.value != t2.value;
16674 if (!tnum_overlap(t1, t2))
16675 return 1;
16676 /* non-overlapping ranges */
16677 if (umin1 > umax2 || umax1 < umin2)
16678 return 1;
16679 if (smin1 > smax2 || smax1 < smin2)
16680 return 1;
16681 if (!is_jmp32) {
16682 /* if 64-bit ranges are inconclusive, see if we can
16683 * utilize 32-bit subrange knowledge to eliminate
16684 * branches that can't be taken a priori
16685 */
16686 if (reg1->u32_min_value > reg2->u32_max_value ||
16687 reg1->u32_max_value < reg2->u32_min_value)
16688 return 1;
16689 if (reg1->s32_min_value > reg2->s32_max_value ||
16690 reg1->s32_max_value < reg2->s32_min_value)
16691 return 1;
16692 }
16693 break;
16694 case BPF_JSET:
16695 if (!is_reg_const(reg2, is_jmp32)) {
16696 swap(reg1, reg2);
16697 swap(t1, t2);
16698 }
16699 if (!is_reg_const(reg2, is_jmp32))
16700 return -1;
16701 if ((~t1.mask & t1.value) & t2.value)
16702 return 1;
16703 if (!((t1.mask | t1.value) & t2.value))
16704 return 0;
16705 break;
16706 case BPF_JGT:
16707 if (umin1 > umax2)
16708 return 1;
16709 else if (umax1 <= umin2)
16710 return 0;
16711 break;
16712 case BPF_JSGT:
16713 if (smin1 > smax2)
16714 return 1;
16715 else if (smax1 <= smin2)
16716 return 0;
16717 break;
16718 case BPF_JLT:
16719 if (umax1 < umin2)
16720 return 1;
16721 else if (umin1 >= umax2)
16722 return 0;
16723 break;
16724 case BPF_JSLT:
16725 if (smax1 < smin2)
16726 return 1;
16727 else if (smin1 >= smax2)
16728 return 0;
16729 break;
16730 case BPF_JGE:
16731 if (umin1 >= umax2)
16732 return 1;
16733 else if (umax1 < umin2)
16734 return 0;
16735 break;
16736 case BPF_JSGE:
16737 if (smin1 >= smax2)
16738 return 1;
16739 else if (smax1 < smin2)
16740 return 0;
16741 break;
16742 case BPF_JLE:
16743 if (umax1 <= umin2)
16744 return 1;
16745 else if (umin1 > umax2)
16746 return 0;
16747 break;
16748 case BPF_JSLE:
16749 if (smax1 <= smin2)
16750 return 1;
16751 else if (smin1 > smax2)
16752 return 0;
16753 break;
16754 }
16755
16756 return -1;
16757 }
16758
flip_opcode(u32 opcode)16759 static int flip_opcode(u32 opcode)
16760 {
16761 /* How can we transform "a <op> b" into "b <op> a"? */
16762 static const u8 opcode_flip[16] = {
16763 /* these stay the same */
16764 [BPF_JEQ >> 4] = BPF_JEQ,
16765 [BPF_JNE >> 4] = BPF_JNE,
16766 [BPF_JSET >> 4] = BPF_JSET,
16767 /* these swap "lesser" and "greater" (L and G in the opcodes) */
16768 [BPF_JGE >> 4] = BPF_JLE,
16769 [BPF_JGT >> 4] = BPF_JLT,
16770 [BPF_JLE >> 4] = BPF_JGE,
16771 [BPF_JLT >> 4] = BPF_JGT,
16772 [BPF_JSGE >> 4] = BPF_JSLE,
16773 [BPF_JSGT >> 4] = BPF_JSLT,
16774 [BPF_JSLE >> 4] = BPF_JSGE,
16775 [BPF_JSLT >> 4] = BPF_JSGT
16776 };
16777 return opcode_flip[opcode >> 4];
16778 }
16779
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)16780 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
16781 struct bpf_reg_state *src_reg,
16782 u8 opcode)
16783 {
16784 struct bpf_reg_state *pkt;
16785
16786 if (src_reg->type == PTR_TO_PACKET_END) {
16787 pkt = dst_reg;
16788 } else if (dst_reg->type == PTR_TO_PACKET_END) {
16789 pkt = src_reg;
16790 opcode = flip_opcode(opcode);
16791 } else {
16792 return -1;
16793 }
16794
16795 if (pkt->range >= 0)
16796 return -1;
16797
16798 switch (opcode) {
16799 case BPF_JLE:
16800 /* pkt <= pkt_end */
16801 fallthrough;
16802 case BPF_JGT:
16803 /* pkt > pkt_end */
16804 if (pkt->range == BEYOND_PKT_END)
16805 /* pkt has at last one extra byte beyond pkt_end */
16806 return opcode == BPF_JGT;
16807 break;
16808 case BPF_JLT:
16809 /* pkt < pkt_end */
16810 fallthrough;
16811 case BPF_JGE:
16812 /* pkt >= pkt_end */
16813 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
16814 return opcode == BPF_JGE;
16815 break;
16816 }
16817 return -1;
16818 }
16819
16820 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
16821 * and return:
16822 * 1 - branch will be taken and "goto target" will be executed
16823 * 0 - branch will not be taken and fall-through to next insn
16824 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
16825 * range [0,10]
16826 */
is_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16827 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16828 u8 opcode, bool is_jmp32)
16829 {
16830 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
16831 return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
16832
16833 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
16834 u64 val;
16835
16836 /* arrange that reg2 is a scalar, and reg1 is a pointer */
16837 if (!is_reg_const(reg2, is_jmp32)) {
16838 opcode = flip_opcode(opcode);
16839 swap(reg1, reg2);
16840 }
16841 /* and ensure that reg2 is a constant */
16842 if (!is_reg_const(reg2, is_jmp32))
16843 return -1;
16844
16845 if (!reg_not_null(reg1))
16846 return -1;
16847
16848 /* If pointer is valid tests against zero will fail so we can
16849 * use this to direct branch taken.
16850 */
16851 val = reg_const_value(reg2, is_jmp32);
16852 if (val != 0)
16853 return -1;
16854
16855 switch (opcode) {
16856 case BPF_JEQ:
16857 return 0;
16858 case BPF_JNE:
16859 return 1;
16860 default:
16861 return -1;
16862 }
16863 }
16864
16865 /* now deal with two scalars, but not necessarily constants */
16866 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
16867 }
16868
16869 /* Opcode that corresponds to a *false* branch condition.
16870 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
16871 */
rev_opcode(u8 opcode)16872 static u8 rev_opcode(u8 opcode)
16873 {
16874 switch (opcode) {
16875 case BPF_JEQ: return BPF_JNE;
16876 case BPF_JNE: return BPF_JEQ;
16877 /* JSET doesn't have it's reverse opcode in BPF, so add
16878 * BPF_X flag to denote the reverse of that operation
16879 */
16880 case BPF_JSET: return BPF_JSET | BPF_X;
16881 case BPF_JSET | BPF_X: return BPF_JSET;
16882 case BPF_JGE: return BPF_JLT;
16883 case BPF_JGT: return BPF_JLE;
16884 case BPF_JLE: return BPF_JGT;
16885 case BPF_JLT: return BPF_JGE;
16886 case BPF_JSGE: return BPF_JSLT;
16887 case BPF_JSGT: return BPF_JSLE;
16888 case BPF_JSLE: return BPF_JSGT;
16889 case BPF_JSLT: return BPF_JSGE;
16890 default: return 0;
16891 }
16892 }
16893
16894 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
regs_refine_cond_op(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16895 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16896 u8 opcode, bool is_jmp32)
16897 {
16898 struct tnum t;
16899 u64 val;
16900
16901 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
16902 switch (opcode) {
16903 case BPF_JGE:
16904 case BPF_JGT:
16905 case BPF_JSGE:
16906 case BPF_JSGT:
16907 opcode = flip_opcode(opcode);
16908 swap(reg1, reg2);
16909 break;
16910 default:
16911 break;
16912 }
16913
16914 switch (opcode) {
16915 case BPF_JEQ:
16916 if (is_jmp32) {
16917 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16918 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16919 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16920 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16921 reg2->u32_min_value = reg1->u32_min_value;
16922 reg2->u32_max_value = reg1->u32_max_value;
16923 reg2->s32_min_value = reg1->s32_min_value;
16924 reg2->s32_max_value = reg1->s32_max_value;
16925
16926 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
16927 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16928 reg2->var_off = tnum_with_subreg(reg2->var_off, t);
16929 } else {
16930 reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
16931 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16932 reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
16933 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16934 reg2->umin_value = reg1->umin_value;
16935 reg2->umax_value = reg1->umax_value;
16936 reg2->smin_value = reg1->smin_value;
16937 reg2->smax_value = reg1->smax_value;
16938
16939 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
16940 reg2->var_off = reg1->var_off;
16941 }
16942 break;
16943 case BPF_JNE:
16944 if (!is_reg_const(reg2, is_jmp32))
16945 swap(reg1, reg2);
16946 if (!is_reg_const(reg2, is_jmp32))
16947 break;
16948
16949 /* try to recompute the bound of reg1 if reg2 is a const and
16950 * is exactly the edge of reg1.
16951 */
16952 val = reg_const_value(reg2, is_jmp32);
16953 if (is_jmp32) {
16954 /* u32_min_value is not equal to 0xffffffff at this point,
16955 * because otherwise u32_max_value is 0xffffffff as well,
16956 * in such a case both reg1 and reg2 would be constants,
16957 * jump would be predicted and reg_set_min_max() won't
16958 * be called.
16959 *
16960 * Same reasoning works for all {u,s}{min,max}{32,64} cases
16961 * below.
16962 */
16963 if (reg1->u32_min_value == (u32)val)
16964 reg1->u32_min_value++;
16965 if (reg1->u32_max_value == (u32)val)
16966 reg1->u32_max_value--;
16967 if (reg1->s32_min_value == (s32)val)
16968 reg1->s32_min_value++;
16969 if (reg1->s32_max_value == (s32)val)
16970 reg1->s32_max_value--;
16971 } else {
16972 if (reg1->umin_value == (u64)val)
16973 reg1->umin_value++;
16974 if (reg1->umax_value == (u64)val)
16975 reg1->umax_value--;
16976 if (reg1->smin_value == (s64)val)
16977 reg1->smin_value++;
16978 if (reg1->smax_value == (s64)val)
16979 reg1->smax_value--;
16980 }
16981 break;
16982 case BPF_JSET:
16983 if (!is_reg_const(reg2, is_jmp32))
16984 swap(reg1, reg2);
16985 if (!is_reg_const(reg2, is_jmp32))
16986 break;
16987 val = reg_const_value(reg2, is_jmp32);
16988 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
16989 * requires single bit to learn something useful. E.g., if we
16990 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
16991 * are actually set? We can learn something definite only if
16992 * it's a single-bit value to begin with.
16993 *
16994 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
16995 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
16996 * bit 1 is set, which we can readily use in adjustments.
16997 */
16998 if (!is_power_of_2(val))
16999 break;
17000 if (is_jmp32) {
17001 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
17002 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
17003 } else {
17004 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
17005 }
17006 break;
17007 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
17008 if (!is_reg_const(reg2, is_jmp32))
17009 swap(reg1, reg2);
17010 if (!is_reg_const(reg2, is_jmp32))
17011 break;
17012 val = reg_const_value(reg2, is_jmp32);
17013 /* Forget the ranges before narrowing tnums, to avoid invariant
17014 * violations if we're on a dead branch.
17015 */
17016 __mark_reg_unbounded(reg1);
17017 if (is_jmp32) {
17018 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
17019 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
17020 } else {
17021 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
17022 }
17023 break;
17024 case BPF_JLE:
17025 if (is_jmp32) {
17026 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
17027 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
17028 } else {
17029 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
17030 reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
17031 }
17032 break;
17033 case BPF_JLT:
17034 if (is_jmp32) {
17035 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
17036 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
17037 } else {
17038 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
17039 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
17040 }
17041 break;
17042 case BPF_JSLE:
17043 if (is_jmp32) {
17044 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
17045 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
17046 } else {
17047 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
17048 reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
17049 }
17050 break;
17051 case BPF_JSLT:
17052 if (is_jmp32) {
17053 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
17054 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
17055 } else {
17056 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
17057 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
17058 }
17059 break;
17060 default:
17061 return;
17062 }
17063 }
17064
17065 /* Adjusts the register min/max values in the case that the dst_reg and
17066 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
17067 * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
17068 * Technically we can do similar adjustments for pointers to the same object,
17069 * but we don't support that right now.
17070 */
reg_set_min_max(struct bpf_verifier_env * env,struct bpf_reg_state * true_reg1,struct bpf_reg_state * true_reg2,struct bpf_reg_state * false_reg1,struct bpf_reg_state * false_reg2,u8 opcode,bool is_jmp32)17071 static int reg_set_min_max(struct bpf_verifier_env *env,
17072 struct bpf_reg_state *true_reg1,
17073 struct bpf_reg_state *true_reg2,
17074 struct bpf_reg_state *false_reg1,
17075 struct bpf_reg_state *false_reg2,
17076 u8 opcode, bool is_jmp32)
17077 {
17078 int err;
17079
17080 /* If either register is a pointer, we can't learn anything about its
17081 * variable offset from the compare (unless they were a pointer into
17082 * the same object, but we don't bother with that).
17083 */
17084 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
17085 return 0;
17086
17087 /* We compute branch direction for same SCALAR_VALUE registers in
17088 * is_scalar_branch_taken(). For unknown branch directions (e.g., BPF_JSET)
17089 * on the same registers, we don't need to adjust the min/max values.
17090 */
17091 if (false_reg1 == false_reg2)
17092 return 0;
17093
17094 /* fallthrough (FALSE) branch */
17095 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
17096 reg_bounds_sync(false_reg1);
17097 reg_bounds_sync(false_reg2);
17098
17099 /* jump (TRUE) branch */
17100 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
17101 reg_bounds_sync(true_reg1);
17102 reg_bounds_sync(true_reg2);
17103
17104 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
17105 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
17106 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
17107 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
17108 return err;
17109 }
17110
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)17111 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
17112 struct bpf_reg_state *reg, u32 id,
17113 bool is_null)
17114 {
17115 if (type_may_be_null(reg->type) && reg->id == id &&
17116 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
17117 /* Old offset (both fixed and variable parts) should have been
17118 * known-zero, because we don't allow pointer arithmetic on
17119 * pointers that might be NULL. If we see this happening, don't
17120 * convert the register.
17121 *
17122 * But in some cases, some helpers that return local kptrs
17123 * advance offset for the returned pointer. In those cases, it
17124 * is fine to expect to see reg->off.
17125 */
17126 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
17127 return;
17128 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
17129 WARN_ON_ONCE(reg->off))
17130 return;
17131
17132 if (is_null) {
17133 reg->type = SCALAR_VALUE;
17134 /* We don't need id and ref_obj_id from this point
17135 * onwards anymore, thus we should better reset it,
17136 * so that state pruning has chances to take effect.
17137 */
17138 reg->id = 0;
17139 reg->ref_obj_id = 0;
17140
17141 return;
17142 }
17143
17144 mark_ptr_not_null_reg(reg);
17145
17146 if (!reg_may_point_to_spin_lock(reg)) {
17147 /* For not-NULL ptr, reg->ref_obj_id will be reset
17148 * in release_reference().
17149 *
17150 * reg->id is still used by spin_lock ptr. Other
17151 * than spin_lock ptr type, reg->id can be reset.
17152 */
17153 reg->id = 0;
17154 }
17155 }
17156 }
17157
17158 /* The logic is similar to find_good_pkt_pointers(), both could eventually
17159 * be folded together at some point.
17160 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)17161 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
17162 bool is_null)
17163 {
17164 struct bpf_func_state *state = vstate->frame[vstate->curframe];
17165 struct bpf_reg_state *regs = state->regs, *reg;
17166 u32 ref_obj_id = regs[regno].ref_obj_id;
17167 u32 id = regs[regno].id;
17168
17169 if (ref_obj_id && ref_obj_id == id && is_null)
17170 /* regs[regno] is in the " == NULL" branch.
17171 * No one could have freed the reference state before
17172 * doing the NULL check.
17173 */
17174 WARN_ON_ONCE(release_reference_nomark(vstate, id));
17175
17176 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
17177 mark_ptr_or_null_reg(state, reg, id, is_null);
17178 }));
17179 }
17180
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)17181 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
17182 struct bpf_reg_state *dst_reg,
17183 struct bpf_reg_state *src_reg,
17184 struct bpf_verifier_state *this_branch,
17185 struct bpf_verifier_state *other_branch)
17186 {
17187 if (BPF_SRC(insn->code) != BPF_X)
17188 return false;
17189
17190 /* Pointers are always 64-bit. */
17191 if (BPF_CLASS(insn->code) == BPF_JMP32)
17192 return false;
17193
17194 switch (BPF_OP(insn->code)) {
17195 case BPF_JGT:
17196 if ((dst_reg->type == PTR_TO_PACKET &&
17197 src_reg->type == PTR_TO_PACKET_END) ||
17198 (dst_reg->type == PTR_TO_PACKET_META &&
17199 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
17200 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
17201 find_good_pkt_pointers(this_branch, dst_reg,
17202 dst_reg->type, false);
17203 mark_pkt_end(other_branch, insn->dst_reg, true);
17204 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
17205 src_reg->type == PTR_TO_PACKET) ||
17206 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
17207 src_reg->type == PTR_TO_PACKET_META)) {
17208 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
17209 find_good_pkt_pointers(other_branch, src_reg,
17210 src_reg->type, true);
17211 mark_pkt_end(this_branch, insn->src_reg, false);
17212 } else {
17213 return false;
17214 }
17215 break;
17216 case BPF_JLT:
17217 if ((dst_reg->type == PTR_TO_PACKET &&
17218 src_reg->type == PTR_TO_PACKET_END) ||
17219 (dst_reg->type == PTR_TO_PACKET_META &&
17220 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
17221 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
17222 find_good_pkt_pointers(other_branch, dst_reg,
17223 dst_reg->type, true);
17224 mark_pkt_end(this_branch, insn->dst_reg, false);
17225 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
17226 src_reg->type == PTR_TO_PACKET) ||
17227 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
17228 src_reg->type == PTR_TO_PACKET_META)) {
17229 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
17230 find_good_pkt_pointers(this_branch, src_reg,
17231 src_reg->type, false);
17232 mark_pkt_end(other_branch, insn->src_reg, true);
17233 } else {
17234 return false;
17235 }
17236 break;
17237 case BPF_JGE:
17238 if ((dst_reg->type == PTR_TO_PACKET &&
17239 src_reg->type == PTR_TO_PACKET_END) ||
17240 (dst_reg->type == PTR_TO_PACKET_META &&
17241 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
17242 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
17243 find_good_pkt_pointers(this_branch, dst_reg,
17244 dst_reg->type, true);
17245 mark_pkt_end(other_branch, insn->dst_reg, false);
17246 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
17247 src_reg->type == PTR_TO_PACKET) ||
17248 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
17249 src_reg->type == PTR_TO_PACKET_META)) {
17250 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
17251 find_good_pkt_pointers(other_branch, src_reg,
17252 src_reg->type, false);
17253 mark_pkt_end(this_branch, insn->src_reg, true);
17254 } else {
17255 return false;
17256 }
17257 break;
17258 case BPF_JLE:
17259 if ((dst_reg->type == PTR_TO_PACKET &&
17260 src_reg->type == PTR_TO_PACKET_END) ||
17261 (dst_reg->type == PTR_TO_PACKET_META &&
17262 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
17263 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
17264 find_good_pkt_pointers(other_branch, dst_reg,
17265 dst_reg->type, false);
17266 mark_pkt_end(this_branch, insn->dst_reg, true);
17267 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
17268 src_reg->type == PTR_TO_PACKET) ||
17269 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
17270 src_reg->type == PTR_TO_PACKET_META)) {
17271 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
17272 find_good_pkt_pointers(this_branch, src_reg,
17273 src_reg->type, true);
17274 mark_pkt_end(other_branch, insn->src_reg, false);
17275 } else {
17276 return false;
17277 }
17278 break;
17279 default:
17280 return false;
17281 }
17282
17283 return true;
17284 }
17285
__collect_linked_regs(struct linked_regs * reg_set,struct bpf_reg_state * reg,u32 id,u32 frameno,u32 spi_or_reg,bool is_reg)17286 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
17287 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
17288 {
17289 struct linked_reg *e;
17290
17291 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
17292 return;
17293
17294 e = linked_regs_push(reg_set);
17295 if (e) {
17296 e->frameno = frameno;
17297 e->is_reg = is_reg;
17298 e->regno = spi_or_reg;
17299 } else {
17300 reg->id = 0;
17301 }
17302 }
17303
17304 /* For all R being scalar registers or spilled scalar registers
17305 * in verifier state, save R in linked_regs if R->id == id.
17306 * If there are too many Rs sharing same id, reset id for leftover Rs.
17307 */
collect_linked_regs(struct bpf_verifier_state * vstate,u32 id,struct linked_regs * linked_regs)17308 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
17309 struct linked_regs *linked_regs)
17310 {
17311 struct bpf_func_state *func;
17312 struct bpf_reg_state *reg;
17313 int i, j;
17314
17315 id = id & ~BPF_ADD_CONST;
17316 for (i = vstate->curframe; i >= 0; i--) {
17317 func = vstate->frame[i];
17318 for (j = 0; j < BPF_REG_FP; j++) {
17319 reg = &func->regs[j];
17320 __collect_linked_regs(linked_regs, reg, id, i, j, true);
17321 }
17322 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
17323 if (!is_spilled_reg(&func->stack[j]))
17324 continue;
17325 reg = &func->stack[j].spilled_ptr;
17326 __collect_linked_regs(linked_regs, reg, id, i, j, false);
17327 }
17328 }
17329 }
17330
17331 /* For all R in linked_regs, copy known_reg range into R
17332 * if R->id == known_reg->id.
17333 */
sync_linked_regs(struct bpf_verifier_env * env,struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg,struct linked_regs * linked_regs)17334 static void sync_linked_regs(struct bpf_verifier_env *env, struct bpf_verifier_state *vstate,
17335 struct bpf_reg_state *known_reg, struct linked_regs *linked_regs)
17336 {
17337 struct bpf_reg_state fake_reg;
17338 struct bpf_reg_state *reg;
17339 struct linked_reg *e;
17340 int i;
17341
17342 for (i = 0; i < linked_regs->cnt; ++i) {
17343 e = &linked_regs->entries[i];
17344 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
17345 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
17346 if (reg->type != SCALAR_VALUE || reg == known_reg)
17347 continue;
17348 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
17349 continue;
17350 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
17351 reg->off == known_reg->off) {
17352 s32 saved_subreg_def = reg->subreg_def;
17353
17354 copy_register_state(reg, known_reg);
17355 reg->subreg_def = saved_subreg_def;
17356 } else {
17357 s32 saved_subreg_def = reg->subreg_def;
17358 s32 saved_off = reg->off;
17359 u32 saved_id = reg->id;
17360
17361 fake_reg.type = SCALAR_VALUE;
17362 __mark_reg_known(&fake_reg, (s64)reg->off - (s64)known_reg->off);
17363
17364 /* reg = known_reg; reg += delta */
17365 copy_register_state(reg, known_reg);
17366 /*
17367 * Must preserve off, id and subreg_def flag,
17368 * otherwise another sync_linked_regs() will be incorrect.
17369 */
17370 reg->off = saved_off;
17371 reg->id = saved_id;
17372 reg->subreg_def = saved_subreg_def;
17373
17374 scalar32_min_max_add(reg, &fake_reg);
17375 scalar_min_max_add(reg, &fake_reg);
17376 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
17377 if (known_reg->id & BPF_ADD_CONST32)
17378 zext_32_to_64(reg);
17379 reg_bounds_sync(reg);
17380 }
17381 if (e->is_reg)
17382 mark_reg_scratched(env, e->regno);
17383 else
17384 mark_stack_slot_scratched(env, e->spi);
17385 }
17386 }
17387
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)17388 static int check_cond_jmp_op(struct bpf_verifier_env *env,
17389 struct bpf_insn *insn, int *insn_idx)
17390 {
17391 struct bpf_verifier_state *this_branch = env->cur_state;
17392 struct bpf_verifier_state *other_branch;
17393 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
17394 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17395 struct bpf_reg_state *eq_branch_regs;
17396 struct linked_regs linked_regs = {};
17397 u8 opcode = BPF_OP(insn->code);
17398 int insn_flags = 0;
17399 bool is_jmp32;
17400 int pred = -1;
17401 int err;
17402
17403 /* Only conditional jumps are expected to reach here. */
17404 if (opcode == BPF_JA || opcode > BPF_JCOND) {
17405 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17406 return -EINVAL;
17407 }
17408
17409 if (opcode == BPF_JCOND) {
17410 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
17411 int idx = *insn_idx;
17412
17413 if (insn->code != (BPF_JMP | BPF_JCOND) ||
17414 insn->src_reg != BPF_MAY_GOTO ||
17415 insn->dst_reg || insn->imm) {
17416 verbose(env, "invalid may_goto imm %d\n", insn->imm);
17417 return -EINVAL;
17418 }
17419 prev_st = find_prev_entry(env, cur_st->parent, idx);
17420
17421 /* branch out 'fallthrough' insn as a new state to explore */
17422 queued_st = push_stack(env, idx + 1, idx, false);
17423 if (IS_ERR(queued_st))
17424 return PTR_ERR(queued_st);
17425
17426 queued_st->may_goto_depth++;
17427 if (prev_st)
17428 widen_imprecise_scalars(env, prev_st, queued_st);
17429 *insn_idx += insn->off;
17430 return 0;
17431 }
17432
17433 /* check src2 operand */
17434 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17435 if (err)
17436 return err;
17437
17438 dst_reg = ®s[insn->dst_reg];
17439 if (BPF_SRC(insn->code) == BPF_X) {
17440 if (insn->imm != 0) {
17441 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17442 return -EINVAL;
17443 }
17444
17445 /* check src1 operand */
17446 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17447 if (err)
17448 return err;
17449
17450 src_reg = ®s[insn->src_reg];
17451 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
17452 is_pointer_value(env, insn->src_reg)) {
17453 verbose(env, "R%d pointer comparison prohibited\n",
17454 insn->src_reg);
17455 return -EACCES;
17456 }
17457
17458 if (src_reg->type == PTR_TO_STACK)
17459 insn_flags |= INSN_F_SRC_REG_STACK;
17460 if (dst_reg->type == PTR_TO_STACK)
17461 insn_flags |= INSN_F_DST_REG_STACK;
17462 } else {
17463 if (insn->src_reg != BPF_REG_0) {
17464 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17465 return -EINVAL;
17466 }
17467 src_reg = &env->fake_reg[0];
17468 memset(src_reg, 0, sizeof(*src_reg));
17469 src_reg->type = SCALAR_VALUE;
17470 __mark_reg_known(src_reg, insn->imm);
17471
17472 if (dst_reg->type == PTR_TO_STACK)
17473 insn_flags |= INSN_F_DST_REG_STACK;
17474 }
17475
17476 if (insn_flags) {
17477 err = push_jmp_history(env, this_branch, insn_flags, 0);
17478 if (err)
17479 return err;
17480 }
17481
17482 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
17483 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
17484 if (pred >= 0) {
17485 /* If we get here with a dst_reg pointer type it is because
17486 * above is_branch_taken() special cased the 0 comparison.
17487 */
17488 if (!__is_pointer_value(false, dst_reg))
17489 err = mark_chain_precision(env, insn->dst_reg);
17490 if (BPF_SRC(insn->code) == BPF_X && !err &&
17491 !__is_pointer_value(false, src_reg))
17492 err = mark_chain_precision(env, insn->src_reg);
17493 if (err)
17494 return err;
17495 }
17496
17497 if (pred == 1) {
17498 /* Only follow the goto, ignore fall-through. If needed, push
17499 * the fall-through branch for simulation under speculative
17500 * execution.
17501 */
17502 if (!env->bypass_spec_v1) {
17503 err = sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx);
17504 if (err < 0)
17505 return err;
17506 }
17507 if (env->log.level & BPF_LOG_LEVEL)
17508 print_insn_state(env, this_branch, this_branch->curframe);
17509 *insn_idx += insn->off;
17510 return 0;
17511 } else if (pred == 0) {
17512 /* Only follow the fall-through branch, since that's where the
17513 * program will go. If needed, push the goto branch for
17514 * simulation under speculative execution.
17515 */
17516 if (!env->bypass_spec_v1) {
17517 err = sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1,
17518 *insn_idx);
17519 if (err < 0)
17520 return err;
17521 }
17522 if (env->log.level & BPF_LOG_LEVEL)
17523 print_insn_state(env, this_branch, this_branch->curframe);
17524 return 0;
17525 }
17526
17527 /* Push scalar registers sharing same ID to jump history,
17528 * do this before creating 'other_branch', so that both
17529 * 'this_branch' and 'other_branch' share this history
17530 * if parent state is created.
17531 */
17532 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
17533 collect_linked_regs(this_branch, src_reg->id, &linked_regs);
17534 if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
17535 collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
17536 if (linked_regs.cnt > 1) {
17537 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
17538 if (err)
17539 return err;
17540 }
17541
17542 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false);
17543 if (IS_ERR(other_branch))
17544 return PTR_ERR(other_branch);
17545 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17546
17547 if (BPF_SRC(insn->code) == BPF_X) {
17548 err = reg_set_min_max(env,
17549 &other_branch_regs[insn->dst_reg],
17550 &other_branch_regs[insn->src_reg],
17551 dst_reg, src_reg, opcode, is_jmp32);
17552 } else /* BPF_SRC(insn->code) == BPF_K */ {
17553 /* reg_set_min_max() can mangle the fake_reg. Make a copy
17554 * so that these are two different memory locations. The
17555 * src_reg is not used beyond here in context of K.
17556 */
17557 memcpy(&env->fake_reg[1], &env->fake_reg[0],
17558 sizeof(env->fake_reg[0]));
17559 err = reg_set_min_max(env,
17560 &other_branch_regs[insn->dst_reg],
17561 &env->fake_reg[0],
17562 dst_reg, &env->fake_reg[1],
17563 opcode, is_jmp32);
17564 }
17565 if (err)
17566 return err;
17567
17568 if (BPF_SRC(insn->code) == BPF_X &&
17569 src_reg->type == SCALAR_VALUE && src_reg->id &&
17570 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
17571 sync_linked_regs(env, this_branch, src_reg, &linked_regs);
17572 sync_linked_regs(env, other_branch, &other_branch_regs[insn->src_reg],
17573 &linked_regs);
17574 }
17575 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
17576 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
17577 sync_linked_regs(env, this_branch, dst_reg, &linked_regs);
17578 sync_linked_regs(env, other_branch, &other_branch_regs[insn->dst_reg],
17579 &linked_regs);
17580 }
17581
17582 /* if one pointer register is compared to another pointer
17583 * register check if PTR_MAYBE_NULL could be lifted.
17584 * E.g. register A - maybe null
17585 * register B - not null
17586 * for JNE A, B, ... - A is not null in the false branch;
17587 * for JEQ A, B, ... - A is not null in the true branch.
17588 *
17589 * Since PTR_TO_BTF_ID points to a kernel struct that does
17590 * not need to be null checked by the BPF program, i.e.,
17591 * could be null even without PTR_MAYBE_NULL marking, so
17592 * only propagate nullness when neither reg is that type.
17593 */
17594 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
17595 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
17596 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
17597 base_type(src_reg->type) != PTR_TO_BTF_ID &&
17598 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
17599 eq_branch_regs = NULL;
17600 switch (opcode) {
17601 case BPF_JEQ:
17602 eq_branch_regs = other_branch_regs;
17603 break;
17604 case BPF_JNE:
17605 eq_branch_regs = regs;
17606 break;
17607 default:
17608 /* do nothing */
17609 break;
17610 }
17611 if (eq_branch_regs) {
17612 if (type_may_be_null(src_reg->type))
17613 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
17614 else
17615 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
17616 }
17617 }
17618
17619 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
17620 * NOTE: these optimizations below are related with pointer comparison
17621 * which will never be JMP32.
17622 */
17623 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
17624 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
17625 type_may_be_null(dst_reg->type)) {
17626 /* Mark all identical registers in each branch as either
17627 * safe or unknown depending R == 0 or R != 0 conditional.
17628 */
17629 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
17630 opcode == BPF_JNE);
17631 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
17632 opcode == BPF_JEQ);
17633 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
17634 this_branch, other_branch) &&
17635 is_pointer_value(env, insn->dst_reg)) {
17636 verbose(env, "R%d pointer comparison prohibited\n",
17637 insn->dst_reg);
17638 return -EACCES;
17639 }
17640 if (env->log.level & BPF_LOG_LEVEL)
17641 print_insn_state(env, this_branch, this_branch->curframe);
17642 return 0;
17643 }
17644
17645 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)17646 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17647 {
17648 struct bpf_insn_aux_data *aux = cur_aux(env);
17649 struct bpf_reg_state *regs = cur_regs(env);
17650 struct bpf_reg_state *dst_reg;
17651 struct bpf_map *map;
17652 int err;
17653
17654 if (BPF_SIZE(insn->code) != BPF_DW) {
17655 verbose(env, "invalid BPF_LD_IMM insn\n");
17656 return -EINVAL;
17657 }
17658 if (insn->off != 0) {
17659 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17660 return -EINVAL;
17661 }
17662
17663 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17664 if (err)
17665 return err;
17666
17667 dst_reg = ®s[insn->dst_reg];
17668 if (insn->src_reg == 0) {
17669 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
17670
17671 dst_reg->type = SCALAR_VALUE;
17672 __mark_reg_known(®s[insn->dst_reg], imm);
17673 return 0;
17674 }
17675
17676 /* All special src_reg cases are listed below. From this point onwards
17677 * we either succeed and assign a corresponding dst_reg->type after
17678 * zeroing the offset, or fail and reject the program.
17679 */
17680 mark_reg_known_zero(env, regs, insn->dst_reg);
17681
17682 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
17683 dst_reg->type = aux->btf_var.reg_type;
17684 switch (base_type(dst_reg->type)) {
17685 case PTR_TO_MEM:
17686 dst_reg->mem_size = aux->btf_var.mem_size;
17687 break;
17688 case PTR_TO_BTF_ID:
17689 dst_reg->btf = aux->btf_var.btf;
17690 dst_reg->btf_id = aux->btf_var.btf_id;
17691 break;
17692 default:
17693 verifier_bug(env, "pseudo btf id: unexpected dst reg type");
17694 return -EFAULT;
17695 }
17696 return 0;
17697 }
17698
17699 if (insn->src_reg == BPF_PSEUDO_FUNC) {
17700 struct bpf_prog_aux *aux = env->prog->aux;
17701 u32 subprogno = find_subprog(env,
17702 env->insn_idx + insn->imm + 1);
17703
17704 if (!aux->func_info) {
17705 verbose(env, "missing btf func_info\n");
17706 return -EINVAL;
17707 }
17708 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
17709 verbose(env, "callback function not static\n");
17710 return -EINVAL;
17711 }
17712
17713 dst_reg->type = PTR_TO_FUNC;
17714 dst_reg->subprogno = subprogno;
17715 return 0;
17716 }
17717
17718 map = env->used_maps[aux->map_index];
17719 dst_reg->map_ptr = map;
17720
17721 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
17722 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
17723 if (map->map_type == BPF_MAP_TYPE_ARENA) {
17724 __mark_reg_unknown(env, dst_reg);
17725 return 0;
17726 }
17727 dst_reg->type = PTR_TO_MAP_VALUE;
17728 dst_reg->off = aux->map_off;
17729 WARN_ON_ONCE(map->map_type != BPF_MAP_TYPE_INSN_ARRAY &&
17730 map->max_entries != 1);
17731 /* We want reg->id to be same (0) as map_value is not distinct */
17732 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
17733 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
17734 dst_reg->type = CONST_PTR_TO_MAP;
17735 } else {
17736 verifier_bug(env, "unexpected src reg value for ldimm64");
17737 return -EFAULT;
17738 }
17739
17740 return 0;
17741 }
17742
may_access_skb(enum bpf_prog_type type)17743 static bool may_access_skb(enum bpf_prog_type type)
17744 {
17745 switch (type) {
17746 case BPF_PROG_TYPE_SOCKET_FILTER:
17747 case BPF_PROG_TYPE_SCHED_CLS:
17748 case BPF_PROG_TYPE_SCHED_ACT:
17749 return true;
17750 default:
17751 return false;
17752 }
17753 }
17754
17755 /* verify safety of LD_ABS|LD_IND instructions:
17756 * - they can only appear in the programs where ctx == skb
17757 * - since they are wrappers of function calls, they scratch R1-R5 registers,
17758 * preserve R6-R9, and store return value into R0
17759 *
17760 * Implicit input:
17761 * ctx == skb == R6 == CTX
17762 *
17763 * Explicit input:
17764 * SRC == any register
17765 * IMM == 32-bit immediate
17766 *
17767 * Output:
17768 * R0 - 8/16/32-bit skb data converted to cpu endianness
17769 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)17770 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
17771 {
17772 struct bpf_reg_state *regs = cur_regs(env);
17773 static const int ctx_reg = BPF_REG_6;
17774 u8 mode = BPF_MODE(insn->code);
17775 int i, err;
17776
17777 if (!may_access_skb(resolve_prog_type(env->prog))) {
17778 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
17779 return -EINVAL;
17780 }
17781
17782 if (!env->ops->gen_ld_abs) {
17783 verifier_bug(env, "gen_ld_abs is null");
17784 return -EFAULT;
17785 }
17786
17787 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
17788 BPF_SIZE(insn->code) == BPF_DW ||
17789 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
17790 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
17791 return -EINVAL;
17792 }
17793
17794 /* check whether implicit source operand (register R6) is readable */
17795 err = check_reg_arg(env, ctx_reg, SRC_OP);
17796 if (err)
17797 return err;
17798
17799 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
17800 * gen_ld_abs() may terminate the program at runtime, leading to
17801 * reference leak.
17802 */
17803 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
17804 if (err)
17805 return err;
17806
17807 if (regs[ctx_reg].type != PTR_TO_CTX) {
17808 verbose(env,
17809 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
17810 return -EINVAL;
17811 }
17812
17813 if (mode == BPF_IND) {
17814 /* check explicit source operand */
17815 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17816 if (err)
17817 return err;
17818 }
17819
17820 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
17821 if (err < 0)
17822 return err;
17823
17824 /* reset caller saved regs to unreadable */
17825 for (i = 0; i < CALLER_SAVED_REGS; i++) {
17826 mark_reg_not_init(env, regs, caller_saved[i]);
17827 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
17828 }
17829
17830 /* mark destination R0 register as readable, since it contains
17831 * the value fetched from the packet.
17832 * Already marked as written above.
17833 */
17834 mark_reg_unknown(env, regs, BPF_REG_0);
17835 /* ld_abs load up to 32-bit skb data. */
17836 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
17837 return 0;
17838 }
17839
check_return_code(struct bpf_verifier_env * env,int regno,const char * reg_name)17840 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
17841 {
17842 const char *exit_ctx = "At program exit";
17843 struct tnum enforce_attach_type_range = tnum_unknown;
17844 const struct bpf_prog *prog = env->prog;
17845 struct bpf_reg_state *reg = reg_state(env, regno);
17846 struct bpf_retval_range range = retval_range(0, 1);
17847 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17848 int err;
17849 struct bpf_func_state *frame = env->cur_state->frame[0];
17850 const bool is_subprog = frame->subprogno;
17851 bool return_32bit = false;
17852 const struct btf_type *reg_type, *ret_type = NULL;
17853
17854 /* LSM and struct_ops func-ptr's return type could be "void" */
17855 if (!is_subprog || frame->in_exception_callback_fn) {
17856 switch (prog_type) {
17857 case BPF_PROG_TYPE_LSM:
17858 if (prog->expected_attach_type == BPF_LSM_CGROUP)
17859 /* See below, can be 0 or 0-1 depending on hook. */
17860 break;
17861 if (!prog->aux->attach_func_proto->type)
17862 return 0;
17863 break;
17864 case BPF_PROG_TYPE_STRUCT_OPS:
17865 if (!prog->aux->attach_func_proto->type)
17866 return 0;
17867
17868 if (frame->in_exception_callback_fn)
17869 break;
17870
17871 /* Allow a struct_ops program to return a referenced kptr if it
17872 * matches the operator's return type and is in its unmodified
17873 * form. A scalar zero (i.e., a null pointer) is also allowed.
17874 */
17875 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
17876 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
17877 prog->aux->attach_func_proto->type,
17878 NULL);
17879 if (ret_type && ret_type == reg_type && reg->ref_obj_id)
17880 return __check_ptr_off_reg(env, reg, regno, false);
17881 break;
17882 default:
17883 break;
17884 }
17885 }
17886
17887 /* eBPF calling convention is such that R0 is used
17888 * to return the value from eBPF program.
17889 * Make sure that it's readable at this time
17890 * of bpf_exit, which means that program wrote
17891 * something into it earlier
17892 */
17893 err = check_reg_arg(env, regno, SRC_OP);
17894 if (err)
17895 return err;
17896
17897 if (is_pointer_value(env, regno)) {
17898 verbose(env, "R%d leaks addr as return value\n", regno);
17899 return -EACCES;
17900 }
17901
17902 if (frame->in_async_callback_fn) {
17903 exit_ctx = "At async callback return";
17904 range = frame->callback_ret_range;
17905 goto enforce_retval;
17906 }
17907
17908 if (is_subprog && !frame->in_exception_callback_fn) {
17909 if (reg->type != SCALAR_VALUE) {
17910 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
17911 regno, reg_type_str(env, reg->type));
17912 return -EINVAL;
17913 }
17914 return 0;
17915 }
17916
17917 switch (prog_type) {
17918 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
17919 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
17920 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
17921 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
17922 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
17923 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
17924 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
17925 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
17926 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
17927 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
17928 range = retval_range(1, 1);
17929 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
17930 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
17931 range = retval_range(0, 3);
17932 break;
17933 case BPF_PROG_TYPE_CGROUP_SKB:
17934 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
17935 range = retval_range(0, 3);
17936 enforce_attach_type_range = tnum_range(2, 3);
17937 }
17938 break;
17939 case BPF_PROG_TYPE_CGROUP_SOCK:
17940 case BPF_PROG_TYPE_SOCK_OPS:
17941 case BPF_PROG_TYPE_CGROUP_DEVICE:
17942 case BPF_PROG_TYPE_CGROUP_SYSCTL:
17943 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
17944 break;
17945 case BPF_PROG_TYPE_RAW_TRACEPOINT:
17946 if (!env->prog->aux->attach_btf_id)
17947 return 0;
17948 range = retval_range(0, 0);
17949 break;
17950 case BPF_PROG_TYPE_TRACING:
17951 switch (env->prog->expected_attach_type) {
17952 case BPF_TRACE_FENTRY:
17953 case BPF_TRACE_FEXIT:
17954 case BPF_TRACE_FSESSION:
17955 range = retval_range(0, 0);
17956 break;
17957 case BPF_TRACE_RAW_TP:
17958 case BPF_MODIFY_RETURN:
17959 return 0;
17960 case BPF_TRACE_ITER:
17961 break;
17962 default:
17963 return -ENOTSUPP;
17964 }
17965 break;
17966 case BPF_PROG_TYPE_KPROBE:
17967 switch (env->prog->expected_attach_type) {
17968 case BPF_TRACE_KPROBE_SESSION:
17969 case BPF_TRACE_UPROBE_SESSION:
17970 range = retval_range(0, 1);
17971 break;
17972 default:
17973 return 0;
17974 }
17975 break;
17976 case BPF_PROG_TYPE_SK_LOOKUP:
17977 range = retval_range(SK_DROP, SK_PASS);
17978 break;
17979
17980 case BPF_PROG_TYPE_LSM:
17981 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
17982 /* no range found, any return value is allowed */
17983 if (!get_func_retval_range(env->prog, &range))
17984 return 0;
17985 /* no restricted range, any return value is allowed */
17986 if (range.minval == S32_MIN && range.maxval == S32_MAX)
17987 return 0;
17988 return_32bit = true;
17989 } else if (!env->prog->aux->attach_func_proto->type) {
17990 /* Make sure programs that attach to void
17991 * hooks don't try to modify return value.
17992 */
17993 range = retval_range(1, 1);
17994 }
17995 break;
17996
17997 case BPF_PROG_TYPE_NETFILTER:
17998 range = retval_range(NF_DROP, NF_ACCEPT);
17999 break;
18000 case BPF_PROG_TYPE_STRUCT_OPS:
18001 if (!ret_type)
18002 return 0;
18003 range = retval_range(0, 0);
18004 break;
18005 case BPF_PROG_TYPE_EXT:
18006 /* freplace program can return anything as its return value
18007 * depends on the to-be-replaced kernel func or bpf program.
18008 */
18009 default:
18010 return 0;
18011 }
18012
18013 enforce_retval:
18014 if (reg->type != SCALAR_VALUE) {
18015 verbose(env, "%s the register R%d is not a known value (%s)\n",
18016 exit_ctx, regno, reg_type_str(env, reg->type));
18017 return -EINVAL;
18018 }
18019
18020 err = mark_chain_precision(env, regno);
18021 if (err)
18022 return err;
18023
18024 if (!retval_range_within(range, reg, return_32bit)) {
18025 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
18026 if (!is_subprog &&
18027 prog->expected_attach_type == BPF_LSM_CGROUP &&
18028 prog_type == BPF_PROG_TYPE_LSM &&
18029 !prog->aux->attach_func_proto->type)
18030 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
18031 return -EINVAL;
18032 }
18033
18034 if (!tnum_is_unknown(enforce_attach_type_range) &&
18035 tnum_in(enforce_attach_type_range, reg->var_off))
18036 env->prog->enforce_expected_attach_type = 1;
18037 return 0;
18038 }
18039
mark_subprog_changes_pkt_data(struct bpf_verifier_env * env,int off)18040 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
18041 {
18042 struct bpf_subprog_info *subprog;
18043
18044 subprog = bpf_find_containing_subprog(env, off);
18045 subprog->changes_pkt_data = true;
18046 }
18047
mark_subprog_might_sleep(struct bpf_verifier_env * env,int off)18048 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
18049 {
18050 struct bpf_subprog_info *subprog;
18051
18052 subprog = bpf_find_containing_subprog(env, off);
18053 subprog->might_sleep = true;
18054 }
18055
18056 /* 't' is an index of a call-site.
18057 * 'w' is a callee entry point.
18058 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
18059 * Rely on DFS traversal order and absence of recursive calls to guarantee that
18060 * callee's change_pkt_data marks would be correct at that moment.
18061 */
merge_callee_effects(struct bpf_verifier_env * env,int t,int w)18062 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
18063 {
18064 struct bpf_subprog_info *caller, *callee;
18065
18066 caller = bpf_find_containing_subprog(env, t);
18067 callee = bpf_find_containing_subprog(env, w);
18068 caller->changes_pkt_data |= callee->changes_pkt_data;
18069 caller->might_sleep |= callee->might_sleep;
18070 }
18071
18072 /* non-recursive DFS pseudo code
18073 * 1 procedure DFS-iterative(G,v):
18074 * 2 label v as discovered
18075 * 3 let S be a stack
18076 * 4 S.push(v)
18077 * 5 while S is not empty
18078 * 6 t <- S.peek()
18079 * 7 if t is what we're looking for:
18080 * 8 return t
18081 * 9 for all edges e in G.adjacentEdges(t) do
18082 * 10 if edge e is already labelled
18083 * 11 continue with the next edge
18084 * 12 w <- G.adjacentVertex(t,e)
18085 * 13 if vertex w is not discovered and not explored
18086 * 14 label e as tree-edge
18087 * 15 label w as discovered
18088 * 16 S.push(w)
18089 * 17 continue at 5
18090 * 18 else if vertex w is discovered
18091 * 19 label e as back-edge
18092 * 20 else
18093 * 21 // vertex w is explored
18094 * 22 label e as forward- or cross-edge
18095 * 23 label t as explored
18096 * 24 S.pop()
18097 *
18098 * convention:
18099 * 0x10 - discovered
18100 * 0x11 - discovered and fall-through edge labelled
18101 * 0x12 - discovered and fall-through and branch edges labelled
18102 * 0x20 - explored
18103 */
18104
18105 enum {
18106 DISCOVERED = 0x10,
18107 EXPLORED = 0x20,
18108 FALLTHROUGH = 1,
18109 BRANCH = 2,
18110 };
18111
mark_prune_point(struct bpf_verifier_env * env,int idx)18112 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
18113 {
18114 env->insn_aux_data[idx].prune_point = true;
18115 }
18116
is_prune_point(struct bpf_verifier_env * env,int insn_idx)18117 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
18118 {
18119 return env->insn_aux_data[insn_idx].prune_point;
18120 }
18121
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)18122 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
18123 {
18124 env->insn_aux_data[idx].force_checkpoint = true;
18125 }
18126
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)18127 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
18128 {
18129 return env->insn_aux_data[insn_idx].force_checkpoint;
18130 }
18131
mark_calls_callback(struct bpf_verifier_env * env,int idx)18132 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
18133 {
18134 env->insn_aux_data[idx].calls_callback = true;
18135 }
18136
bpf_calls_callback(struct bpf_verifier_env * env,int insn_idx)18137 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx)
18138 {
18139 return env->insn_aux_data[insn_idx].calls_callback;
18140 }
18141
18142 enum {
18143 DONE_EXPLORING = 0,
18144 KEEP_EXPLORING = 1,
18145 };
18146
18147 /* t, w, e - match pseudo-code above:
18148 * t - index of current instruction
18149 * w - next instruction
18150 * e - edge
18151 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)18152 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
18153 {
18154 int *insn_stack = env->cfg.insn_stack;
18155 int *insn_state = env->cfg.insn_state;
18156
18157 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
18158 return DONE_EXPLORING;
18159
18160 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
18161 return DONE_EXPLORING;
18162
18163 if (w < 0 || w >= env->prog->len) {
18164 verbose_linfo(env, t, "%d: ", t);
18165 verbose(env, "jump out of range from insn %d to %d\n", t, w);
18166 return -EINVAL;
18167 }
18168
18169 if (e == BRANCH) {
18170 /* mark branch target for state pruning */
18171 mark_prune_point(env, w);
18172 mark_jmp_point(env, w);
18173 }
18174
18175 if (insn_state[w] == 0) {
18176 /* tree-edge */
18177 insn_state[t] = DISCOVERED | e;
18178 insn_state[w] = DISCOVERED;
18179 if (env->cfg.cur_stack >= env->prog->len)
18180 return -E2BIG;
18181 insn_stack[env->cfg.cur_stack++] = w;
18182 return KEEP_EXPLORING;
18183 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
18184 if (env->bpf_capable)
18185 return DONE_EXPLORING;
18186 verbose_linfo(env, t, "%d: ", t);
18187 verbose_linfo(env, w, "%d: ", w);
18188 verbose(env, "back-edge from insn %d to %d\n", t, w);
18189 return -EINVAL;
18190 } else if (insn_state[w] == EXPLORED) {
18191 /* forward- or cross-edge */
18192 insn_state[t] = DISCOVERED | e;
18193 } else {
18194 verifier_bug(env, "insn state internal bug");
18195 return -EFAULT;
18196 }
18197 return DONE_EXPLORING;
18198 }
18199
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)18200 static int visit_func_call_insn(int t, struct bpf_insn *insns,
18201 struct bpf_verifier_env *env,
18202 bool visit_callee)
18203 {
18204 int ret, insn_sz;
18205 int w;
18206
18207 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
18208 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
18209 if (ret)
18210 return ret;
18211
18212 mark_prune_point(env, t + insn_sz);
18213 /* when we exit from subprog, we need to record non-linear history */
18214 mark_jmp_point(env, t + insn_sz);
18215
18216 if (visit_callee) {
18217 w = t + insns[t].imm + 1;
18218 mark_prune_point(env, t);
18219 merge_callee_effects(env, t, w);
18220 ret = push_insn(t, w, BRANCH, env);
18221 }
18222 return ret;
18223 }
18224
18225 /* Bitmask with 1s for all caller saved registers */
18226 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
18227
18228 /* True if do_misc_fixups() replaces calls to helper number 'imm',
18229 * replacement patch is presumed to follow bpf_fastcall contract
18230 * (see mark_fastcall_pattern_for_call() below).
18231 */
verifier_inlines_helper_call(struct bpf_verifier_env * env,s32 imm)18232 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
18233 {
18234 switch (imm) {
18235 #ifdef CONFIG_X86_64
18236 case BPF_FUNC_get_smp_processor_id:
18237 #ifdef CONFIG_SMP
18238 case BPF_FUNC_get_current_task_btf:
18239 case BPF_FUNC_get_current_task:
18240 #endif
18241 return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
18242 #endif
18243 default:
18244 return false;
18245 }
18246 }
18247
18248 struct call_summary {
18249 u8 num_params;
18250 bool is_void;
18251 bool fastcall;
18252 };
18253
18254 /* If @call is a kfunc or helper call, fills @cs and returns true,
18255 * otherwise returns false.
18256 */
get_call_summary(struct bpf_verifier_env * env,struct bpf_insn * call,struct call_summary * cs)18257 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
18258 struct call_summary *cs)
18259 {
18260 struct bpf_kfunc_call_arg_meta meta;
18261 const struct bpf_func_proto *fn;
18262 int i;
18263
18264 if (bpf_helper_call(call)) {
18265
18266 if (get_helper_proto(env, call->imm, &fn) < 0)
18267 /* error would be reported later */
18268 return false;
18269 cs->fastcall = fn->allow_fastcall &&
18270 (verifier_inlines_helper_call(env, call->imm) ||
18271 bpf_jit_inlines_helper_call(call->imm));
18272 cs->is_void = fn->ret_type == RET_VOID;
18273 cs->num_params = 0;
18274 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
18275 if (fn->arg_type[i] == ARG_DONTCARE)
18276 break;
18277 cs->num_params++;
18278 }
18279 return true;
18280 }
18281
18282 if (bpf_pseudo_kfunc_call(call)) {
18283 int err;
18284
18285 err = fetch_kfunc_arg_meta(env, call->imm, call->off, &meta);
18286 if (err < 0)
18287 /* error would be reported later */
18288 return false;
18289 cs->num_params = btf_type_vlen(meta.func_proto);
18290 cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
18291 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
18292 return true;
18293 }
18294
18295 return false;
18296 }
18297
18298 /* LLVM define a bpf_fastcall function attribute.
18299 * This attribute means that function scratches only some of
18300 * the caller saved registers defined by ABI.
18301 * For BPF the set of such registers could be defined as follows:
18302 * - R0 is scratched only if function is non-void;
18303 * - R1-R5 are scratched only if corresponding parameter type is defined
18304 * in the function prototype.
18305 *
18306 * The contract between kernel and clang allows to simultaneously use
18307 * such functions and maintain backwards compatibility with old
18308 * kernels that don't understand bpf_fastcall calls:
18309 *
18310 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
18311 * registers are not scratched by the call;
18312 *
18313 * - as a post-processing step, clang visits each bpf_fastcall call and adds
18314 * spill/fill for every live r0-r5;
18315 *
18316 * - stack offsets used for the spill/fill are allocated as lowest
18317 * stack offsets in whole function and are not used for any other
18318 * purposes;
18319 *
18320 * - when kernel loads a program, it looks for such patterns
18321 * (bpf_fastcall function surrounded by spills/fills) and checks if
18322 * spill/fill stack offsets are used exclusively in fastcall patterns;
18323 *
18324 * - if so, and if verifier or current JIT inlines the call to the
18325 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
18326 * spill/fill pairs;
18327 *
18328 * - when old kernel loads a program, presence of spill/fill pairs
18329 * keeps BPF program valid, albeit slightly less efficient.
18330 *
18331 * For example:
18332 *
18333 * r1 = 1;
18334 * r2 = 2;
18335 * *(u64 *)(r10 - 8) = r1; r1 = 1;
18336 * *(u64 *)(r10 - 16) = r2; r2 = 2;
18337 * call %[to_be_inlined] --> call %[to_be_inlined]
18338 * r2 = *(u64 *)(r10 - 16); r0 = r1;
18339 * r1 = *(u64 *)(r10 - 8); r0 += r2;
18340 * r0 = r1; exit;
18341 * r0 += r2;
18342 * exit;
18343 *
18344 * The purpose of mark_fastcall_pattern_for_call is to:
18345 * - look for such patterns;
18346 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
18347 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
18348 * - update env->subprog_info[*]->fastcall_stack_off to find an offset
18349 * at which bpf_fastcall spill/fill stack slots start;
18350 * - update env->subprog_info[*]->keep_fastcall_stack.
18351 *
18352 * The .fastcall_pattern and .fastcall_stack_off are used by
18353 * check_fastcall_stack_contract() to check if every stack access to
18354 * fastcall spill/fill stack slot originates from spill/fill
18355 * instructions, members of fastcall patterns.
18356 *
18357 * If such condition holds true for a subprogram, fastcall patterns could
18358 * be rewritten by remove_fastcall_spills_fills().
18359 * Otherwise bpf_fastcall patterns are not changed in the subprogram
18360 * (code, presumably, generated by an older clang version).
18361 *
18362 * For example, it is *not* safe to remove spill/fill below:
18363 *
18364 * r1 = 1;
18365 * *(u64 *)(r10 - 8) = r1; r1 = 1;
18366 * call %[to_be_inlined] --> call %[to_be_inlined]
18367 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!!
18368 * r0 = *(u64 *)(r10 - 8); r0 += r1;
18369 * r0 += r1; exit;
18370 * exit;
18371 */
mark_fastcall_pattern_for_call(struct bpf_verifier_env * env,struct bpf_subprog_info * subprog,int insn_idx,s16 lowest_off)18372 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
18373 struct bpf_subprog_info *subprog,
18374 int insn_idx, s16 lowest_off)
18375 {
18376 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
18377 struct bpf_insn *call = &env->prog->insnsi[insn_idx];
18378 u32 clobbered_regs_mask;
18379 struct call_summary cs;
18380 u32 expected_regs_mask;
18381 s16 off;
18382 int i;
18383
18384 if (!get_call_summary(env, call, &cs))
18385 return;
18386
18387 /* A bitmask specifying which caller saved registers are clobbered
18388 * by a call to a helper/kfunc *as if* this helper/kfunc follows
18389 * bpf_fastcall contract:
18390 * - includes R0 if function is non-void;
18391 * - includes R1-R5 if corresponding parameter has is described
18392 * in the function prototype.
18393 */
18394 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
18395 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
18396 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
18397
18398 /* match pairs of form:
18399 *
18400 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0)
18401 * ...
18402 * call %[to_be_inlined]
18403 * ...
18404 * rX = *(u64 *)(r10 - Y)
18405 */
18406 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
18407 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
18408 break;
18409 stx = &insns[insn_idx - i];
18410 ldx = &insns[insn_idx + i];
18411 /* must be a stack spill/fill pair */
18412 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
18413 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
18414 stx->dst_reg != BPF_REG_10 ||
18415 ldx->src_reg != BPF_REG_10)
18416 break;
18417 /* must be a spill/fill for the same reg */
18418 if (stx->src_reg != ldx->dst_reg)
18419 break;
18420 /* must be one of the previously unseen registers */
18421 if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
18422 break;
18423 /* must be a spill/fill for the same expected offset,
18424 * no need to check offset alignment, BPF_DW stack access
18425 * is always 8-byte aligned.
18426 */
18427 if (stx->off != off || ldx->off != off)
18428 break;
18429 expected_regs_mask &= ~BIT(stx->src_reg);
18430 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
18431 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
18432 }
18433 if (i == 1)
18434 return;
18435
18436 /* Conditionally set 'fastcall_spills_num' to allow forward
18437 * compatibility when more helper functions are marked as
18438 * bpf_fastcall at compile time than current kernel supports, e.g:
18439 *
18440 * 1: *(u64 *)(r10 - 8) = r1
18441 * 2: call A ;; assume A is bpf_fastcall for current kernel
18442 * 3: r1 = *(u64 *)(r10 - 8)
18443 * 4: *(u64 *)(r10 - 8) = r1
18444 * 5: call B ;; assume B is not bpf_fastcall for current kernel
18445 * 6: r1 = *(u64 *)(r10 - 8)
18446 *
18447 * There is no need to block bpf_fastcall rewrite for such program.
18448 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
18449 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
18450 * does not remove spill/fill pair {4,6}.
18451 */
18452 if (cs.fastcall)
18453 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
18454 else
18455 subprog->keep_fastcall_stack = 1;
18456 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
18457 }
18458
mark_fastcall_patterns(struct bpf_verifier_env * env)18459 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
18460 {
18461 struct bpf_subprog_info *subprog = env->subprog_info;
18462 struct bpf_insn *insn;
18463 s16 lowest_off;
18464 int s, i;
18465
18466 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
18467 /* find lowest stack spill offset used in this subprog */
18468 lowest_off = 0;
18469 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
18470 insn = env->prog->insnsi + i;
18471 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
18472 insn->dst_reg != BPF_REG_10)
18473 continue;
18474 lowest_off = min(lowest_off, insn->off);
18475 }
18476 /* use this offset to find fastcall patterns */
18477 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
18478 insn = env->prog->insnsi + i;
18479 if (insn->code != (BPF_JMP | BPF_CALL))
18480 continue;
18481 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
18482 }
18483 }
18484 return 0;
18485 }
18486
iarray_realloc(struct bpf_iarray * old,size_t n_elem)18487 static struct bpf_iarray *iarray_realloc(struct bpf_iarray *old, size_t n_elem)
18488 {
18489 size_t new_size = sizeof(struct bpf_iarray) + n_elem * sizeof(old->items[0]);
18490 struct bpf_iarray *new;
18491
18492 new = kvrealloc(old, new_size, GFP_KERNEL_ACCOUNT);
18493 if (!new) {
18494 /* this is what callers always want, so simplify the call site */
18495 kvfree(old);
18496 return NULL;
18497 }
18498
18499 new->cnt = n_elem;
18500 return new;
18501 }
18502
copy_insn_array(struct bpf_map * map,u32 start,u32 end,u32 * items)18503 static int copy_insn_array(struct bpf_map *map, u32 start, u32 end, u32 *items)
18504 {
18505 struct bpf_insn_array_value *value;
18506 u32 i;
18507
18508 for (i = start; i <= end; i++) {
18509 value = map->ops->map_lookup_elem(map, &i);
18510 /*
18511 * map_lookup_elem of an array map will never return an error,
18512 * but not checking it makes some static analysers to worry
18513 */
18514 if (IS_ERR(value))
18515 return PTR_ERR(value);
18516 else if (!value)
18517 return -EINVAL;
18518 items[i - start] = value->xlated_off;
18519 }
18520 return 0;
18521 }
18522
cmp_ptr_to_u32(const void * a,const void * b)18523 static int cmp_ptr_to_u32(const void *a, const void *b)
18524 {
18525 return *(u32 *)a - *(u32 *)b;
18526 }
18527
sort_insn_array_uniq(u32 * items,int cnt)18528 static int sort_insn_array_uniq(u32 *items, int cnt)
18529 {
18530 int unique = 1;
18531 int i;
18532
18533 sort(items, cnt, sizeof(items[0]), cmp_ptr_to_u32, NULL);
18534
18535 for (i = 1; i < cnt; i++)
18536 if (items[i] != items[unique - 1])
18537 items[unique++] = items[i];
18538
18539 return unique;
18540 }
18541
18542 /*
18543 * sort_unique({map[start], ..., map[end]}) into off
18544 */
copy_insn_array_uniq(struct bpf_map * map,u32 start,u32 end,u32 * off)18545 static int copy_insn_array_uniq(struct bpf_map *map, u32 start, u32 end, u32 *off)
18546 {
18547 u32 n = end - start + 1;
18548 int err;
18549
18550 err = copy_insn_array(map, start, end, off);
18551 if (err)
18552 return err;
18553
18554 return sort_insn_array_uniq(off, n);
18555 }
18556
18557 /*
18558 * Copy all unique offsets from the map
18559 */
jt_from_map(struct bpf_map * map)18560 static struct bpf_iarray *jt_from_map(struct bpf_map *map)
18561 {
18562 struct bpf_iarray *jt;
18563 int err;
18564 int n;
18565
18566 jt = iarray_realloc(NULL, map->max_entries);
18567 if (!jt)
18568 return ERR_PTR(-ENOMEM);
18569
18570 n = copy_insn_array_uniq(map, 0, map->max_entries - 1, jt->items);
18571 if (n < 0) {
18572 err = n;
18573 goto err_free;
18574 }
18575 if (n == 0) {
18576 err = -EINVAL;
18577 goto err_free;
18578 }
18579 jt->cnt = n;
18580 return jt;
18581
18582 err_free:
18583 kvfree(jt);
18584 return ERR_PTR(err);
18585 }
18586
18587 /*
18588 * Find and collect all maps which fit in the subprog. Return the result as one
18589 * combined jump table in jt->items (allocated with kvcalloc)
18590 */
jt_from_subprog(struct bpf_verifier_env * env,int subprog_start,int subprog_end)18591 static struct bpf_iarray *jt_from_subprog(struct bpf_verifier_env *env,
18592 int subprog_start, int subprog_end)
18593 {
18594 struct bpf_iarray *jt = NULL;
18595 struct bpf_map *map;
18596 struct bpf_iarray *jt_cur;
18597 int i;
18598
18599 for (i = 0; i < env->insn_array_map_cnt; i++) {
18600 /*
18601 * TODO (when needed): collect only jump tables, not static keys
18602 * or maps for indirect calls
18603 */
18604 map = env->insn_array_maps[i];
18605
18606 jt_cur = jt_from_map(map);
18607 if (IS_ERR(jt_cur)) {
18608 kvfree(jt);
18609 return jt_cur;
18610 }
18611
18612 /*
18613 * This is enough to check one element. The full table is
18614 * checked to fit inside the subprog later in create_jt()
18615 */
18616 if (jt_cur->items[0] >= subprog_start && jt_cur->items[0] < subprog_end) {
18617 u32 old_cnt = jt ? jt->cnt : 0;
18618 jt = iarray_realloc(jt, old_cnt + jt_cur->cnt);
18619 if (!jt) {
18620 kvfree(jt_cur);
18621 return ERR_PTR(-ENOMEM);
18622 }
18623 memcpy(jt->items + old_cnt, jt_cur->items, jt_cur->cnt << 2);
18624 }
18625
18626 kvfree(jt_cur);
18627 }
18628
18629 if (!jt) {
18630 verbose(env, "no jump tables found for subprog starting at %u\n", subprog_start);
18631 return ERR_PTR(-EINVAL);
18632 }
18633
18634 jt->cnt = sort_insn_array_uniq(jt->items, jt->cnt);
18635 return jt;
18636 }
18637
18638 static struct bpf_iarray *
create_jt(int t,struct bpf_verifier_env * env)18639 create_jt(int t, struct bpf_verifier_env *env)
18640 {
18641 static struct bpf_subprog_info *subprog;
18642 int subprog_start, subprog_end;
18643 struct bpf_iarray *jt;
18644 int i;
18645
18646 subprog = bpf_find_containing_subprog(env, t);
18647 subprog_start = subprog->start;
18648 subprog_end = (subprog + 1)->start;
18649 jt = jt_from_subprog(env, subprog_start, subprog_end);
18650 if (IS_ERR(jt))
18651 return jt;
18652
18653 /* Check that the every element of the jump table fits within the given subprogram */
18654 for (i = 0; i < jt->cnt; i++) {
18655 if (jt->items[i] < subprog_start || jt->items[i] >= subprog_end) {
18656 verbose(env, "jump table for insn %d points outside of the subprog [%u,%u]\n",
18657 t, subprog_start, subprog_end);
18658 kvfree(jt);
18659 return ERR_PTR(-EINVAL);
18660 }
18661 }
18662
18663 return jt;
18664 }
18665
18666 /* "conditional jump with N edges" */
visit_gotox_insn(int t,struct bpf_verifier_env * env)18667 static int visit_gotox_insn(int t, struct bpf_verifier_env *env)
18668 {
18669 int *insn_stack = env->cfg.insn_stack;
18670 int *insn_state = env->cfg.insn_state;
18671 bool keep_exploring = false;
18672 struct bpf_iarray *jt;
18673 int i, w;
18674
18675 jt = env->insn_aux_data[t].jt;
18676 if (!jt) {
18677 jt = create_jt(t, env);
18678 if (IS_ERR(jt))
18679 return PTR_ERR(jt);
18680
18681 env->insn_aux_data[t].jt = jt;
18682 }
18683
18684 mark_prune_point(env, t);
18685 for (i = 0; i < jt->cnt; i++) {
18686 w = jt->items[i];
18687 if (w < 0 || w >= env->prog->len) {
18688 verbose(env, "indirect jump out of range from insn %d to %d\n", t, w);
18689 return -EINVAL;
18690 }
18691
18692 mark_jmp_point(env, w);
18693
18694 /* EXPLORED || DISCOVERED */
18695 if (insn_state[w])
18696 continue;
18697
18698 if (env->cfg.cur_stack >= env->prog->len)
18699 return -E2BIG;
18700
18701 insn_stack[env->cfg.cur_stack++] = w;
18702 insn_state[w] |= DISCOVERED;
18703 keep_exploring = true;
18704 }
18705
18706 return keep_exploring ? KEEP_EXPLORING : DONE_EXPLORING;
18707 }
18708
visit_tailcall_insn(struct bpf_verifier_env * env,int t)18709 static int visit_tailcall_insn(struct bpf_verifier_env *env, int t)
18710 {
18711 static struct bpf_subprog_info *subprog;
18712 struct bpf_iarray *jt;
18713
18714 if (env->insn_aux_data[t].jt)
18715 return 0;
18716
18717 jt = iarray_realloc(NULL, 2);
18718 if (!jt)
18719 return -ENOMEM;
18720
18721 subprog = bpf_find_containing_subprog(env, t);
18722 jt->items[0] = t + 1;
18723 jt->items[1] = subprog->exit_idx;
18724 env->insn_aux_data[t].jt = jt;
18725 return 0;
18726 }
18727
18728 /* Visits the instruction at index t and returns one of the following:
18729 * < 0 - an error occurred
18730 * DONE_EXPLORING - the instruction was fully explored
18731 * KEEP_EXPLORING - there is still work to be done before it is fully explored
18732 */
visit_insn(int t,struct bpf_verifier_env * env)18733 static int visit_insn(int t, struct bpf_verifier_env *env)
18734 {
18735 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
18736 int ret, off, insn_sz;
18737
18738 if (bpf_pseudo_func(insn))
18739 return visit_func_call_insn(t, insns, env, true);
18740
18741 /* All non-branch instructions have a single fall-through edge. */
18742 if (BPF_CLASS(insn->code) != BPF_JMP &&
18743 BPF_CLASS(insn->code) != BPF_JMP32) {
18744 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
18745 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
18746 }
18747
18748 switch (BPF_OP(insn->code)) {
18749 case BPF_EXIT:
18750 return DONE_EXPLORING;
18751
18752 case BPF_CALL:
18753 if (is_async_callback_calling_insn(insn))
18754 /* Mark this call insn as a prune point to trigger
18755 * is_state_visited() check before call itself is
18756 * processed by __check_func_call(). Otherwise new
18757 * async state will be pushed for further exploration.
18758 */
18759 mark_prune_point(env, t);
18760 /* For functions that invoke callbacks it is not known how many times
18761 * callback would be called. Verifier models callback calling functions
18762 * by repeatedly visiting callback bodies and returning to origin call
18763 * instruction.
18764 * In order to stop such iteration verifier needs to identify when a
18765 * state identical some state from a previous iteration is reached.
18766 * Check below forces creation of checkpoint before callback calling
18767 * instruction to allow search for such identical states.
18768 */
18769 if (is_sync_callback_calling_insn(insn)) {
18770 mark_calls_callback(env, t);
18771 mark_force_checkpoint(env, t);
18772 mark_prune_point(env, t);
18773 mark_jmp_point(env, t);
18774 }
18775 if (bpf_helper_call(insn)) {
18776 const struct bpf_func_proto *fp;
18777
18778 ret = get_helper_proto(env, insn->imm, &fp);
18779 /* If called in a non-sleepable context program will be
18780 * rejected anyway, so we should end up with precise
18781 * sleepable marks on subprogs, except for dead code
18782 * elimination.
18783 */
18784 if (ret == 0 && fp->might_sleep)
18785 mark_subprog_might_sleep(env, t);
18786 if (bpf_helper_changes_pkt_data(insn->imm))
18787 mark_subprog_changes_pkt_data(env, t);
18788 if (insn->imm == BPF_FUNC_tail_call)
18789 visit_tailcall_insn(env, t);
18790 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18791 struct bpf_kfunc_call_arg_meta meta;
18792
18793 ret = fetch_kfunc_arg_meta(env, insn->imm, insn->off, &meta);
18794 if (ret == 0 && is_iter_next_kfunc(&meta)) {
18795 mark_prune_point(env, t);
18796 /* Checking and saving state checkpoints at iter_next() call
18797 * is crucial for fast convergence of open-coded iterator loop
18798 * logic, so we need to force it. If we don't do that,
18799 * is_state_visited() might skip saving a checkpoint, causing
18800 * unnecessarily long sequence of not checkpointed
18801 * instructions and jumps, leading to exhaustion of jump
18802 * history buffer, and potentially other undesired outcomes.
18803 * It is expected that with correct open-coded iterators
18804 * convergence will happen quickly, so we don't run a risk of
18805 * exhausting memory.
18806 */
18807 mark_force_checkpoint(env, t);
18808 }
18809 /* Same as helpers, if called in a non-sleepable context
18810 * program will be rejected anyway, so we should end up
18811 * with precise sleepable marks on subprogs, except for
18812 * dead code elimination.
18813 */
18814 if (ret == 0 && is_kfunc_sleepable(&meta))
18815 mark_subprog_might_sleep(env, t);
18816 if (ret == 0 && is_kfunc_pkt_changing(&meta))
18817 mark_subprog_changes_pkt_data(env, t);
18818 }
18819 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
18820
18821 case BPF_JA:
18822 if (BPF_SRC(insn->code) == BPF_X)
18823 return visit_gotox_insn(t, env);
18824
18825 if (BPF_CLASS(insn->code) == BPF_JMP)
18826 off = insn->off;
18827 else
18828 off = insn->imm;
18829
18830 /* unconditional jump with single edge */
18831 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
18832 if (ret)
18833 return ret;
18834
18835 mark_prune_point(env, t + off + 1);
18836 mark_jmp_point(env, t + off + 1);
18837
18838 return ret;
18839
18840 default:
18841 /* conditional jump with two edges */
18842 mark_prune_point(env, t);
18843 if (is_may_goto_insn(insn))
18844 mark_force_checkpoint(env, t);
18845
18846 ret = push_insn(t, t + 1, FALLTHROUGH, env);
18847 if (ret)
18848 return ret;
18849
18850 return push_insn(t, t + insn->off + 1, BRANCH, env);
18851 }
18852 }
18853
18854 /* non-recursive depth-first-search to detect loops in BPF program
18855 * loop == back-edge in directed graph
18856 */
check_cfg(struct bpf_verifier_env * env)18857 static int check_cfg(struct bpf_verifier_env *env)
18858 {
18859 int insn_cnt = env->prog->len;
18860 int *insn_stack, *insn_state;
18861 int ex_insn_beg, i, ret = 0;
18862
18863 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
18864 if (!insn_state)
18865 return -ENOMEM;
18866
18867 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
18868 if (!insn_stack) {
18869 kvfree(insn_state);
18870 return -ENOMEM;
18871 }
18872
18873 ex_insn_beg = env->exception_callback_subprog
18874 ? env->subprog_info[env->exception_callback_subprog].start
18875 : 0;
18876
18877 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
18878 insn_stack[0] = 0; /* 0 is the first instruction */
18879 env->cfg.cur_stack = 1;
18880
18881 walk_cfg:
18882 while (env->cfg.cur_stack > 0) {
18883 int t = insn_stack[env->cfg.cur_stack - 1];
18884
18885 ret = visit_insn(t, env);
18886 switch (ret) {
18887 case DONE_EXPLORING:
18888 insn_state[t] = EXPLORED;
18889 env->cfg.cur_stack--;
18890 break;
18891 case KEEP_EXPLORING:
18892 break;
18893 default:
18894 if (ret > 0) {
18895 verifier_bug(env, "visit_insn internal bug");
18896 ret = -EFAULT;
18897 }
18898 goto err_free;
18899 }
18900 }
18901
18902 if (env->cfg.cur_stack < 0) {
18903 verifier_bug(env, "pop stack internal bug");
18904 ret = -EFAULT;
18905 goto err_free;
18906 }
18907
18908 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
18909 insn_state[ex_insn_beg] = DISCOVERED;
18910 insn_stack[0] = ex_insn_beg;
18911 env->cfg.cur_stack = 1;
18912 goto walk_cfg;
18913 }
18914
18915 for (i = 0; i < insn_cnt; i++) {
18916 struct bpf_insn *insn = &env->prog->insnsi[i];
18917
18918 if (insn_state[i] != EXPLORED) {
18919 verbose(env, "unreachable insn %d\n", i);
18920 ret = -EINVAL;
18921 goto err_free;
18922 }
18923 if (bpf_is_ldimm64(insn)) {
18924 if (insn_state[i + 1] != 0) {
18925 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
18926 ret = -EINVAL;
18927 goto err_free;
18928 }
18929 i++; /* skip second half of ldimm64 */
18930 }
18931 }
18932 ret = 0; /* cfg looks good */
18933 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
18934 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
18935
18936 err_free:
18937 kvfree(insn_state);
18938 kvfree(insn_stack);
18939 env->cfg.insn_state = env->cfg.insn_stack = NULL;
18940 return ret;
18941 }
18942
18943 /*
18944 * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range
18945 * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start)
18946 * with indices of 'i' instructions in postorder.
18947 */
compute_postorder(struct bpf_verifier_env * env)18948 static int compute_postorder(struct bpf_verifier_env *env)
18949 {
18950 u32 cur_postorder, i, top, stack_sz, s;
18951 int *stack = NULL, *postorder = NULL, *state = NULL;
18952 struct bpf_iarray *succ;
18953
18954 postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18955 state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18956 stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18957 if (!postorder || !state || !stack) {
18958 kvfree(postorder);
18959 kvfree(state);
18960 kvfree(stack);
18961 return -ENOMEM;
18962 }
18963 cur_postorder = 0;
18964 for (i = 0; i < env->subprog_cnt; i++) {
18965 env->subprog_info[i].postorder_start = cur_postorder;
18966 stack[0] = env->subprog_info[i].start;
18967 stack_sz = 1;
18968 do {
18969 top = stack[stack_sz - 1];
18970 state[top] |= DISCOVERED;
18971 if (state[top] & EXPLORED) {
18972 postorder[cur_postorder++] = top;
18973 stack_sz--;
18974 continue;
18975 }
18976 succ = bpf_insn_successors(env, top);
18977 for (s = 0; s < succ->cnt; ++s) {
18978 if (!state[succ->items[s]]) {
18979 stack[stack_sz++] = succ->items[s];
18980 state[succ->items[s]] |= DISCOVERED;
18981 }
18982 }
18983 state[top] |= EXPLORED;
18984 } while (stack_sz);
18985 }
18986 env->subprog_info[i].postorder_start = cur_postorder;
18987 env->cfg.insn_postorder = postorder;
18988 env->cfg.cur_postorder = cur_postorder;
18989 kvfree(stack);
18990 kvfree(state);
18991 return 0;
18992 }
18993
check_abnormal_return(struct bpf_verifier_env * env)18994 static int check_abnormal_return(struct bpf_verifier_env *env)
18995 {
18996 int i;
18997
18998 for (i = 1; i < env->subprog_cnt; i++) {
18999 if (env->subprog_info[i].has_ld_abs) {
19000 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
19001 return -EINVAL;
19002 }
19003 if (env->subprog_info[i].has_tail_call) {
19004 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
19005 return -EINVAL;
19006 }
19007 }
19008 return 0;
19009 }
19010
19011 /* The minimum supported BTF func info size */
19012 #define MIN_BPF_FUNCINFO_SIZE 8
19013 #define MAX_FUNCINFO_REC_SIZE 252
19014
check_btf_func_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)19015 static int check_btf_func_early(struct bpf_verifier_env *env,
19016 const union bpf_attr *attr,
19017 bpfptr_t uattr)
19018 {
19019 u32 krec_size = sizeof(struct bpf_func_info);
19020 const struct btf_type *type, *func_proto;
19021 u32 i, nfuncs, urec_size, min_size;
19022 struct bpf_func_info *krecord;
19023 struct bpf_prog *prog;
19024 const struct btf *btf;
19025 u32 prev_offset = 0;
19026 bpfptr_t urecord;
19027 int ret = -ENOMEM;
19028
19029 nfuncs = attr->func_info_cnt;
19030 if (!nfuncs) {
19031 if (check_abnormal_return(env))
19032 return -EINVAL;
19033 return 0;
19034 }
19035
19036 urec_size = attr->func_info_rec_size;
19037 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
19038 urec_size > MAX_FUNCINFO_REC_SIZE ||
19039 urec_size % sizeof(u32)) {
19040 verbose(env, "invalid func info rec size %u\n", urec_size);
19041 return -EINVAL;
19042 }
19043
19044 prog = env->prog;
19045 btf = prog->aux->btf;
19046
19047 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
19048 min_size = min_t(u32, krec_size, urec_size);
19049
19050 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
19051 if (!krecord)
19052 return -ENOMEM;
19053
19054 for (i = 0; i < nfuncs; i++) {
19055 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
19056 if (ret) {
19057 if (ret == -E2BIG) {
19058 verbose(env, "nonzero tailing record in func info");
19059 /* set the size kernel expects so loader can zero
19060 * out the rest of the record.
19061 */
19062 if (copy_to_bpfptr_offset(uattr,
19063 offsetof(union bpf_attr, func_info_rec_size),
19064 &min_size, sizeof(min_size)))
19065 ret = -EFAULT;
19066 }
19067 goto err_free;
19068 }
19069
19070 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
19071 ret = -EFAULT;
19072 goto err_free;
19073 }
19074
19075 /* check insn_off */
19076 ret = -EINVAL;
19077 if (i == 0) {
19078 if (krecord[i].insn_off) {
19079 verbose(env,
19080 "nonzero insn_off %u for the first func info record",
19081 krecord[i].insn_off);
19082 goto err_free;
19083 }
19084 } else if (krecord[i].insn_off <= prev_offset) {
19085 verbose(env,
19086 "same or smaller insn offset (%u) than previous func info record (%u)",
19087 krecord[i].insn_off, prev_offset);
19088 goto err_free;
19089 }
19090
19091 /* check type_id */
19092 type = btf_type_by_id(btf, krecord[i].type_id);
19093 if (!type || !btf_type_is_func(type)) {
19094 verbose(env, "invalid type id %d in func info",
19095 krecord[i].type_id);
19096 goto err_free;
19097 }
19098
19099 func_proto = btf_type_by_id(btf, type->type);
19100 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
19101 /* btf_func_check() already verified it during BTF load */
19102 goto err_free;
19103
19104 prev_offset = krecord[i].insn_off;
19105 bpfptr_add(&urecord, urec_size);
19106 }
19107
19108 prog->aux->func_info = krecord;
19109 prog->aux->func_info_cnt = nfuncs;
19110 return 0;
19111
19112 err_free:
19113 kvfree(krecord);
19114 return ret;
19115 }
19116
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)19117 static int check_btf_func(struct bpf_verifier_env *env,
19118 const union bpf_attr *attr,
19119 bpfptr_t uattr)
19120 {
19121 const struct btf_type *type, *func_proto, *ret_type;
19122 u32 i, nfuncs, urec_size;
19123 struct bpf_func_info *krecord;
19124 struct bpf_func_info_aux *info_aux = NULL;
19125 struct bpf_prog *prog;
19126 const struct btf *btf;
19127 bpfptr_t urecord;
19128 bool scalar_return;
19129 int ret = -ENOMEM;
19130
19131 nfuncs = attr->func_info_cnt;
19132 if (!nfuncs) {
19133 if (check_abnormal_return(env))
19134 return -EINVAL;
19135 return 0;
19136 }
19137 if (nfuncs != env->subprog_cnt) {
19138 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
19139 return -EINVAL;
19140 }
19141
19142 urec_size = attr->func_info_rec_size;
19143
19144 prog = env->prog;
19145 btf = prog->aux->btf;
19146
19147 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
19148
19149 krecord = prog->aux->func_info;
19150 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
19151 if (!info_aux)
19152 return -ENOMEM;
19153
19154 for (i = 0; i < nfuncs; i++) {
19155 /* check insn_off */
19156 ret = -EINVAL;
19157
19158 if (env->subprog_info[i].start != krecord[i].insn_off) {
19159 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
19160 goto err_free;
19161 }
19162
19163 /* Already checked type_id */
19164 type = btf_type_by_id(btf, krecord[i].type_id);
19165 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
19166 /* Already checked func_proto */
19167 func_proto = btf_type_by_id(btf, type->type);
19168
19169 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
19170 scalar_return =
19171 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
19172 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
19173 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
19174 goto err_free;
19175 }
19176 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
19177 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
19178 goto err_free;
19179 }
19180
19181 bpfptr_add(&urecord, urec_size);
19182 }
19183
19184 prog->aux->func_info_aux = info_aux;
19185 return 0;
19186
19187 err_free:
19188 kfree(info_aux);
19189 return ret;
19190 }
19191
adjust_btf_func(struct bpf_verifier_env * env)19192 static void adjust_btf_func(struct bpf_verifier_env *env)
19193 {
19194 struct bpf_prog_aux *aux = env->prog->aux;
19195 int i;
19196
19197 if (!aux->func_info)
19198 return;
19199
19200 /* func_info is not available for hidden subprogs */
19201 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
19202 aux->func_info[i].insn_off = env->subprog_info[i].start;
19203 }
19204
19205 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
19206 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
19207
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)19208 static int check_btf_line(struct bpf_verifier_env *env,
19209 const union bpf_attr *attr,
19210 bpfptr_t uattr)
19211 {
19212 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
19213 struct bpf_subprog_info *sub;
19214 struct bpf_line_info *linfo;
19215 struct bpf_prog *prog;
19216 const struct btf *btf;
19217 bpfptr_t ulinfo;
19218 int err;
19219
19220 nr_linfo = attr->line_info_cnt;
19221 if (!nr_linfo)
19222 return 0;
19223 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
19224 return -EINVAL;
19225
19226 rec_size = attr->line_info_rec_size;
19227 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
19228 rec_size > MAX_LINEINFO_REC_SIZE ||
19229 rec_size & (sizeof(u32) - 1))
19230 return -EINVAL;
19231
19232 /* Need to zero it in case the userspace may
19233 * pass in a smaller bpf_line_info object.
19234 */
19235 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
19236 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
19237 if (!linfo)
19238 return -ENOMEM;
19239
19240 prog = env->prog;
19241 btf = prog->aux->btf;
19242
19243 s = 0;
19244 sub = env->subprog_info;
19245 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
19246 expected_size = sizeof(struct bpf_line_info);
19247 ncopy = min_t(u32, expected_size, rec_size);
19248 for (i = 0; i < nr_linfo; i++) {
19249 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
19250 if (err) {
19251 if (err == -E2BIG) {
19252 verbose(env, "nonzero tailing record in line_info");
19253 if (copy_to_bpfptr_offset(uattr,
19254 offsetof(union bpf_attr, line_info_rec_size),
19255 &expected_size, sizeof(expected_size)))
19256 err = -EFAULT;
19257 }
19258 goto err_free;
19259 }
19260
19261 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
19262 err = -EFAULT;
19263 goto err_free;
19264 }
19265
19266 /*
19267 * Check insn_off to ensure
19268 * 1) strictly increasing AND
19269 * 2) bounded by prog->len
19270 *
19271 * The linfo[0].insn_off == 0 check logically falls into
19272 * the later "missing bpf_line_info for func..." case
19273 * because the first linfo[0].insn_off must be the
19274 * first sub also and the first sub must have
19275 * subprog_info[0].start == 0.
19276 */
19277 if ((i && linfo[i].insn_off <= prev_offset) ||
19278 linfo[i].insn_off >= prog->len) {
19279 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
19280 i, linfo[i].insn_off, prev_offset,
19281 prog->len);
19282 err = -EINVAL;
19283 goto err_free;
19284 }
19285
19286 if (!prog->insnsi[linfo[i].insn_off].code) {
19287 verbose(env,
19288 "Invalid insn code at line_info[%u].insn_off\n",
19289 i);
19290 err = -EINVAL;
19291 goto err_free;
19292 }
19293
19294 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
19295 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
19296 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
19297 err = -EINVAL;
19298 goto err_free;
19299 }
19300
19301 if (s != env->subprog_cnt) {
19302 if (linfo[i].insn_off == sub[s].start) {
19303 sub[s].linfo_idx = i;
19304 s++;
19305 } else if (sub[s].start < linfo[i].insn_off) {
19306 verbose(env, "missing bpf_line_info for func#%u\n", s);
19307 err = -EINVAL;
19308 goto err_free;
19309 }
19310 }
19311
19312 prev_offset = linfo[i].insn_off;
19313 bpfptr_add(&ulinfo, rec_size);
19314 }
19315
19316 if (s != env->subprog_cnt) {
19317 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
19318 env->subprog_cnt - s, s);
19319 err = -EINVAL;
19320 goto err_free;
19321 }
19322
19323 prog->aux->linfo = linfo;
19324 prog->aux->nr_linfo = nr_linfo;
19325
19326 return 0;
19327
19328 err_free:
19329 kvfree(linfo);
19330 return err;
19331 }
19332
19333 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
19334 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
19335
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)19336 static int check_core_relo(struct bpf_verifier_env *env,
19337 const union bpf_attr *attr,
19338 bpfptr_t uattr)
19339 {
19340 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
19341 struct bpf_core_relo core_relo = {};
19342 struct bpf_prog *prog = env->prog;
19343 const struct btf *btf = prog->aux->btf;
19344 struct bpf_core_ctx ctx = {
19345 .log = &env->log,
19346 .btf = btf,
19347 };
19348 bpfptr_t u_core_relo;
19349 int err;
19350
19351 nr_core_relo = attr->core_relo_cnt;
19352 if (!nr_core_relo)
19353 return 0;
19354 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
19355 return -EINVAL;
19356
19357 rec_size = attr->core_relo_rec_size;
19358 if (rec_size < MIN_CORE_RELO_SIZE ||
19359 rec_size > MAX_CORE_RELO_SIZE ||
19360 rec_size % sizeof(u32))
19361 return -EINVAL;
19362
19363 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
19364 expected_size = sizeof(struct bpf_core_relo);
19365 ncopy = min_t(u32, expected_size, rec_size);
19366
19367 /* Unlike func_info and line_info, copy and apply each CO-RE
19368 * relocation record one at a time.
19369 */
19370 for (i = 0; i < nr_core_relo; i++) {
19371 /* future proofing when sizeof(bpf_core_relo) changes */
19372 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
19373 if (err) {
19374 if (err == -E2BIG) {
19375 verbose(env, "nonzero tailing record in core_relo");
19376 if (copy_to_bpfptr_offset(uattr,
19377 offsetof(union bpf_attr, core_relo_rec_size),
19378 &expected_size, sizeof(expected_size)))
19379 err = -EFAULT;
19380 }
19381 break;
19382 }
19383
19384 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
19385 err = -EFAULT;
19386 break;
19387 }
19388
19389 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
19390 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
19391 i, core_relo.insn_off, prog->len);
19392 err = -EINVAL;
19393 break;
19394 }
19395
19396 err = bpf_core_apply(&ctx, &core_relo, i,
19397 &prog->insnsi[core_relo.insn_off / 8]);
19398 if (err)
19399 break;
19400 bpfptr_add(&u_core_relo, rec_size);
19401 }
19402 return err;
19403 }
19404
check_btf_info_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)19405 static int check_btf_info_early(struct bpf_verifier_env *env,
19406 const union bpf_attr *attr,
19407 bpfptr_t uattr)
19408 {
19409 struct btf *btf;
19410 int err;
19411
19412 if (!attr->func_info_cnt && !attr->line_info_cnt) {
19413 if (check_abnormal_return(env))
19414 return -EINVAL;
19415 return 0;
19416 }
19417
19418 btf = btf_get_by_fd(attr->prog_btf_fd);
19419 if (IS_ERR(btf))
19420 return PTR_ERR(btf);
19421 if (btf_is_kernel(btf)) {
19422 btf_put(btf);
19423 return -EACCES;
19424 }
19425 env->prog->aux->btf = btf;
19426
19427 err = check_btf_func_early(env, attr, uattr);
19428 if (err)
19429 return err;
19430 return 0;
19431 }
19432
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)19433 static int check_btf_info(struct bpf_verifier_env *env,
19434 const union bpf_attr *attr,
19435 bpfptr_t uattr)
19436 {
19437 int err;
19438
19439 if (!attr->func_info_cnt && !attr->line_info_cnt) {
19440 if (check_abnormal_return(env))
19441 return -EINVAL;
19442 return 0;
19443 }
19444
19445 err = check_btf_func(env, attr, uattr);
19446 if (err)
19447 return err;
19448
19449 err = check_btf_line(env, attr, uattr);
19450 if (err)
19451 return err;
19452
19453 err = check_core_relo(env, attr, uattr);
19454 if (err)
19455 return err;
19456
19457 return 0;
19458 }
19459
19460 /* check %cur's range satisfies %old's */
range_within(const struct bpf_reg_state * old,const struct bpf_reg_state * cur)19461 static bool range_within(const struct bpf_reg_state *old,
19462 const struct bpf_reg_state *cur)
19463 {
19464 return old->umin_value <= cur->umin_value &&
19465 old->umax_value >= cur->umax_value &&
19466 old->smin_value <= cur->smin_value &&
19467 old->smax_value >= cur->smax_value &&
19468 old->u32_min_value <= cur->u32_min_value &&
19469 old->u32_max_value >= cur->u32_max_value &&
19470 old->s32_min_value <= cur->s32_min_value &&
19471 old->s32_max_value >= cur->s32_max_value;
19472 }
19473
19474 /* If in the old state two registers had the same id, then they need to have
19475 * the same id in the new state as well. But that id could be different from
19476 * the old state, so we need to track the mapping from old to new ids.
19477 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
19478 * regs with old id 5 must also have new id 9 for the new state to be safe. But
19479 * regs with a different old id could still have new id 9, we don't care about
19480 * that.
19481 * So we look through our idmap to see if this old id has been seen before. If
19482 * so, we require the new id to match; otherwise, we add the id pair to the map.
19483 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)19484 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
19485 {
19486 struct bpf_id_pair *map = idmap->map;
19487 unsigned int i;
19488
19489 /* either both IDs should be set or both should be zero */
19490 if (!!old_id != !!cur_id)
19491 return false;
19492
19493 if (old_id == 0) /* cur_id == 0 as well */
19494 return true;
19495
19496 for (i = 0; i < idmap->cnt; i++) {
19497 if (map[i].old == old_id)
19498 return map[i].cur == cur_id;
19499 if (map[i].cur == cur_id)
19500 return false;
19501 }
19502
19503 /* Reached the end of known mappings; haven't seen this id before */
19504 if (idmap->cnt < BPF_ID_MAP_SIZE) {
19505 map[idmap->cnt].old = old_id;
19506 map[idmap->cnt].cur = cur_id;
19507 idmap->cnt++;
19508 return true;
19509 }
19510
19511 /* We ran out of idmap slots, which should be impossible */
19512 WARN_ON_ONCE(1);
19513 return false;
19514 }
19515
19516 /*
19517 * Compare scalar register IDs for state equivalence.
19518 *
19519 * When old_id == 0, the old register is independent - not linked to any
19520 * other register. Any linking in the current state only adds constraints,
19521 * making it more restrictive. Since the old state didn't rely on any ID
19522 * relationships for this register, it's always safe to accept cur regardless
19523 * of its ID. Hence, return true immediately.
19524 *
19525 * When old_id != 0 but cur_id == 0, we need to ensure that different
19526 * independent registers in cur don't incorrectly satisfy the ID matching
19527 * requirements of linked registers in old.
19528 *
19529 * Example: if old has r6.id=X and r7.id=X (linked), but cur has r6.id=0
19530 * and r7.id=0 (both independent), without temp IDs both would map old_id=X
19531 * to cur_id=0 and pass. With temp IDs: r6 maps X->temp1, r7 tries to map
19532 * X->temp2, but X is already mapped to temp1, so the check fails correctly.
19533 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)19534 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
19535 {
19536 if (!old_id)
19537 return true;
19538
19539 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
19540
19541 return check_ids(old_id, cur_id, idmap);
19542 }
19543
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st,u32 ip)19544 static void clean_func_state(struct bpf_verifier_env *env,
19545 struct bpf_func_state *st,
19546 u32 ip)
19547 {
19548 u16 live_regs = env->insn_aux_data[ip].live_regs_before;
19549 int i, j;
19550
19551 for (i = 0; i < BPF_REG_FP; i++) {
19552 /* liveness must not touch this register anymore */
19553 if (!(live_regs & BIT(i)))
19554 /* since the register is unused, clear its state
19555 * to make further comparison simpler
19556 */
19557 __mark_reg_not_init(env, &st->regs[i]);
19558 }
19559
19560 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
19561 if (!bpf_stack_slot_alive(env, st->frameno, i)) {
19562 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
19563 for (j = 0; j < BPF_REG_SIZE; j++)
19564 st->stack[i].slot_type[j] = STACK_INVALID;
19565 }
19566 }
19567 }
19568
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)19569 static void clean_verifier_state(struct bpf_verifier_env *env,
19570 struct bpf_verifier_state *st)
19571 {
19572 int i, ip;
19573
19574 bpf_live_stack_query_init(env, st);
19575 st->cleaned = true;
19576 for (i = 0; i <= st->curframe; i++) {
19577 ip = frame_insn_idx(st, i);
19578 clean_func_state(env, st->frame[i], ip);
19579 }
19580 }
19581
19582 /* the parentage chains form a tree.
19583 * the verifier states are added to state lists at given insn and
19584 * pushed into state stack for future exploration.
19585 * when the verifier reaches bpf_exit insn some of the verifier states
19586 * stored in the state lists have their final liveness state already,
19587 * but a lot of states will get revised from liveness point of view when
19588 * the verifier explores other branches.
19589 * Example:
19590 * 1: *(u64)(r10 - 8) = 1
19591 * 2: if r1 == 100 goto pc+1
19592 * 3: *(u64)(r10 - 8) = 2
19593 * 4: r0 = *(u64)(r10 - 8)
19594 * 5: exit
19595 * when the verifier reaches exit insn the stack slot -8 in the state list of
19596 * insn 2 is not yet marked alive. Then the verifier pops the other_branch
19597 * of insn 2 and goes exploring further. After the insn 4 read, liveness
19598 * analysis would propagate read mark for -8 at insn 2.
19599 *
19600 * Since the verifier pushes the branch states as it sees them while exploring
19601 * the program the condition of walking the branch instruction for the second
19602 * time means that all states below this branch were already explored and
19603 * their final liveness marks are already propagated.
19604 * Hence when the verifier completes the search of state list in is_state_visited()
19605 * we can call this clean_live_states() function to clear dead the registers and stack
19606 * slots to simplify state merging.
19607 *
19608 * Important note here that walking the same branch instruction in the callee
19609 * doesn't meant that the states are DONE. The verifier has to compare
19610 * the callsites
19611 */
19612
19613 /* Find id in idset and increment its count, or add new entry */
idset_cnt_inc(struct bpf_idset * idset,u32 id)19614 static void idset_cnt_inc(struct bpf_idset *idset, u32 id)
19615 {
19616 u32 i;
19617
19618 for (i = 0; i < idset->num_ids; i++) {
19619 if (idset->entries[i].id == id) {
19620 idset->entries[i].cnt++;
19621 return;
19622 }
19623 }
19624 /* New id */
19625 if (idset->num_ids < BPF_ID_MAP_SIZE) {
19626 idset->entries[idset->num_ids].id = id;
19627 idset->entries[idset->num_ids].cnt = 1;
19628 idset->num_ids++;
19629 }
19630 }
19631
19632 /* Find id in idset and return its count, or 0 if not found */
idset_cnt_get(struct bpf_idset * idset,u32 id)19633 static u32 idset_cnt_get(struct bpf_idset *idset, u32 id)
19634 {
19635 u32 i;
19636
19637 for (i = 0; i < idset->num_ids; i++) {
19638 if (idset->entries[i].id == id)
19639 return idset->entries[i].cnt;
19640 }
19641 return 0;
19642 }
19643
19644 /*
19645 * Clear singular scalar ids in a state.
19646 * A register with a non-zero id is called singular if no other register shares
19647 * the same base id. Such registers can be treated as independent (id=0).
19648 */
clear_singular_ids(struct bpf_verifier_env * env,struct bpf_verifier_state * st)19649 static void clear_singular_ids(struct bpf_verifier_env *env,
19650 struct bpf_verifier_state *st)
19651 {
19652 struct bpf_idset *idset = &env->idset_scratch;
19653 struct bpf_func_state *func;
19654 struct bpf_reg_state *reg;
19655
19656 idset->num_ids = 0;
19657
19658 bpf_for_each_reg_in_vstate(st, func, reg, ({
19659 if (reg->type != SCALAR_VALUE)
19660 continue;
19661 if (!reg->id)
19662 continue;
19663 idset_cnt_inc(idset, reg->id & ~BPF_ADD_CONST);
19664 }));
19665
19666 bpf_for_each_reg_in_vstate(st, func, reg, ({
19667 if (reg->type != SCALAR_VALUE)
19668 continue;
19669 if (!reg->id)
19670 continue;
19671 if (idset_cnt_get(idset, reg->id & ~BPF_ADD_CONST) == 1) {
19672 reg->id = 0;
19673 reg->off = 0;
19674 }
19675 }));
19676 }
19677
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)19678 static void clean_live_states(struct bpf_verifier_env *env, int insn,
19679 struct bpf_verifier_state *cur)
19680 {
19681 struct bpf_verifier_state_list *sl;
19682 struct list_head *pos, *head;
19683
19684 head = explored_state(env, insn);
19685 list_for_each(pos, head) {
19686 sl = container_of(pos, struct bpf_verifier_state_list, node);
19687 if (sl->state.branches)
19688 continue;
19689 if (sl->state.insn_idx != insn ||
19690 !same_callsites(&sl->state, cur))
19691 continue;
19692 if (sl->state.cleaned)
19693 /* all regs in this state in all frames were already marked */
19694 continue;
19695 if (incomplete_read_marks(env, &sl->state))
19696 continue;
19697 clean_verifier_state(env, &sl->state);
19698 }
19699 }
19700
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)19701 static bool regs_exact(const struct bpf_reg_state *rold,
19702 const struct bpf_reg_state *rcur,
19703 struct bpf_idmap *idmap)
19704 {
19705 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
19706 check_ids(rold->id, rcur->id, idmap) &&
19707 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
19708 }
19709
19710 enum exact_level {
19711 NOT_EXACT,
19712 EXACT,
19713 RANGE_WITHIN
19714 };
19715
19716 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,enum exact_level exact)19717 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
19718 struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
19719 enum exact_level exact)
19720 {
19721 if (exact == EXACT)
19722 return regs_exact(rold, rcur, idmap);
19723
19724 if (rold->type == NOT_INIT)
19725 /* explored state can't have used this */
19726 return true;
19727
19728 /* Enforce that register types have to match exactly, including their
19729 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
19730 * rule.
19731 *
19732 * One can make a point that using a pointer register as unbounded
19733 * SCALAR would be technically acceptable, but this could lead to
19734 * pointer leaks because scalars are allowed to leak while pointers
19735 * are not. We could make this safe in special cases if root is
19736 * calling us, but it's probably not worth the hassle.
19737 *
19738 * Also, register types that are *not* MAYBE_NULL could technically be
19739 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
19740 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
19741 * to the same map).
19742 * However, if the old MAYBE_NULL register then got NULL checked,
19743 * doing so could have affected others with the same id, and we can't
19744 * check for that because we lost the id when we converted to
19745 * a non-MAYBE_NULL variant.
19746 * So, as a general rule we don't allow mixing MAYBE_NULL and
19747 * non-MAYBE_NULL registers as well.
19748 */
19749 if (rold->type != rcur->type)
19750 return false;
19751
19752 switch (base_type(rold->type)) {
19753 case SCALAR_VALUE:
19754 if (env->explore_alu_limits) {
19755 /* explore_alu_limits disables tnum_in() and range_within()
19756 * logic and requires everything to be strict
19757 */
19758 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
19759 check_scalar_ids(rold->id, rcur->id, idmap);
19760 }
19761 if (!rold->precise && exact == NOT_EXACT)
19762 return true;
19763 /*
19764 * Linked register tracking uses rold->id to detect relationships.
19765 * When rold->id == 0, the register is independent and any linking
19766 * in rcur only adds constraints. When rold->id != 0, we must verify
19767 * id mapping and (for BPF_ADD_CONST) offset consistency.
19768 *
19769 * +------------------+-----------+------------------+---------------+
19770 * | | rold->id | rold + ADD_CONST | rold->id == 0 |
19771 * |------------------+-----------+------------------+---------------|
19772 * | rcur->id | range,ids | false | range |
19773 * | rcur + ADD_CONST | false | range,ids,off | range |
19774 * | rcur->id == 0 | range,ids | false | range |
19775 * +------------------+-----------+------------------+---------------+
19776 *
19777 * Why check_ids() for scalar registers?
19778 *
19779 * Consider the following BPF code:
19780 * 1: r6 = ... unbound scalar, ID=a ...
19781 * 2: r7 = ... unbound scalar, ID=b ...
19782 * 3: if (r6 > r7) goto +1
19783 * 4: r6 = r7
19784 * 5: if (r6 > X) goto ...
19785 * 6: ... memory operation using r7 ...
19786 *
19787 * First verification path is [1-6]:
19788 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
19789 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
19790 * r7 <= X, because r6 and r7 share same id.
19791 * Next verification path is [1-4, 6].
19792 *
19793 * Instruction (6) would be reached in two states:
19794 * I. r6{.id=b}, r7{.id=b} via path 1-6;
19795 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
19796 *
19797 * Use check_ids() to distinguish these states.
19798 * ---
19799 * Also verify that new value satisfies old value range knowledge.
19800 */
19801
19802 /* ADD_CONST mismatch: different linking semantics */
19803 if ((rold->id & BPF_ADD_CONST) && !(rcur->id & BPF_ADD_CONST))
19804 return false;
19805
19806 if (rold->id && !(rold->id & BPF_ADD_CONST) && (rcur->id & BPF_ADD_CONST))
19807 return false;
19808
19809 /* Both have offset linkage: offsets must match */
19810 if ((rold->id & BPF_ADD_CONST) && rold->off != rcur->off)
19811 return false;
19812
19813 if (!check_scalar_ids(rold->id, rcur->id, idmap))
19814 return false;
19815
19816 return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off);
19817 case PTR_TO_MAP_KEY:
19818 case PTR_TO_MAP_VALUE:
19819 case PTR_TO_MEM:
19820 case PTR_TO_BUF:
19821 case PTR_TO_TP_BUFFER:
19822 /* If the new min/max/var_off satisfy the old ones and
19823 * everything else matches, we are OK.
19824 */
19825 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
19826 range_within(rold, rcur) &&
19827 tnum_in(rold->var_off, rcur->var_off) &&
19828 check_ids(rold->id, rcur->id, idmap) &&
19829 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
19830 case PTR_TO_PACKET_META:
19831 case PTR_TO_PACKET:
19832 /* We must have at least as much range as the old ptr
19833 * did, so that any accesses which were safe before are
19834 * still safe. This is true even if old range < old off,
19835 * since someone could have accessed through (ptr - k), or
19836 * even done ptr -= k in a register, to get a safe access.
19837 */
19838 if (rold->range > rcur->range)
19839 return false;
19840 /* If the offsets don't match, we can't trust our alignment;
19841 * nor can we be sure that we won't fall out of range.
19842 */
19843 if (rold->off != rcur->off)
19844 return false;
19845 /* id relations must be preserved */
19846 if (!check_ids(rold->id, rcur->id, idmap))
19847 return false;
19848 /* new val must satisfy old val knowledge */
19849 return range_within(rold, rcur) &&
19850 tnum_in(rold->var_off, rcur->var_off);
19851 case PTR_TO_STACK:
19852 /* two stack pointers are equal only if they're pointing to
19853 * the same stack frame, since fp-8 in foo != fp-8 in bar
19854 */
19855 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
19856 case PTR_TO_ARENA:
19857 return true;
19858 case PTR_TO_INSN:
19859 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
19860 rold->off == rcur->off && range_within(rold, rcur) &&
19861 tnum_in(rold->var_off, rcur->var_off);
19862 default:
19863 return regs_exact(rold, rcur, idmap);
19864 }
19865 }
19866
19867 static struct bpf_reg_state unbound_reg;
19868
unbound_reg_init(void)19869 static __init int unbound_reg_init(void)
19870 {
19871 __mark_reg_unknown_imprecise(&unbound_reg);
19872 return 0;
19873 }
19874 late_initcall(unbound_reg_init);
19875
is_stack_all_misc(struct bpf_verifier_env * env,struct bpf_stack_state * stack)19876 static bool is_stack_all_misc(struct bpf_verifier_env *env,
19877 struct bpf_stack_state *stack)
19878 {
19879 u32 i;
19880
19881 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
19882 if ((stack->slot_type[i] == STACK_MISC) ||
19883 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
19884 continue;
19885 return false;
19886 }
19887
19888 return true;
19889 }
19890
scalar_reg_for_stack(struct bpf_verifier_env * env,struct bpf_stack_state * stack)19891 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
19892 struct bpf_stack_state *stack)
19893 {
19894 if (is_spilled_scalar_reg64(stack))
19895 return &stack->spilled_ptr;
19896
19897 if (is_stack_all_misc(env, stack))
19898 return &unbound_reg;
19899
19900 return NULL;
19901 }
19902
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,enum exact_level exact)19903 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
19904 struct bpf_func_state *cur, struct bpf_idmap *idmap,
19905 enum exact_level exact)
19906 {
19907 int i, spi;
19908
19909 /* walk slots of the explored stack and ignore any additional
19910 * slots in the current stack, since explored(safe) state
19911 * didn't use them
19912 */
19913 for (i = 0; i < old->allocated_stack; i++) {
19914 struct bpf_reg_state *old_reg, *cur_reg;
19915
19916 spi = i / BPF_REG_SIZE;
19917
19918 if (exact == EXACT &&
19919 (i >= cur->allocated_stack ||
19920 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
19921 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
19922 return false;
19923
19924 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
19925 continue;
19926
19927 if (env->allow_uninit_stack &&
19928 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
19929 continue;
19930
19931 /* explored stack has more populated slots than current stack
19932 * and these slots were used
19933 */
19934 if (i >= cur->allocated_stack)
19935 return false;
19936
19937 /* 64-bit scalar spill vs all slots MISC and vice versa.
19938 * Load from all slots MISC produces unbound scalar.
19939 * Construct a fake register for such stack and call
19940 * regsafe() to ensure scalar ids are compared.
19941 */
19942 old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
19943 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
19944 if (old_reg && cur_reg) {
19945 if (!regsafe(env, old_reg, cur_reg, idmap, exact))
19946 return false;
19947 i += BPF_REG_SIZE - 1;
19948 continue;
19949 }
19950
19951 /* if old state was safe with misc data in the stack
19952 * it will be safe with zero-initialized stack.
19953 * The opposite is not true
19954 */
19955 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
19956 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
19957 continue;
19958 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
19959 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
19960 /* Ex: old explored (safe) state has STACK_SPILL in
19961 * this stack slot, but current has STACK_MISC ->
19962 * this verifier states are not equivalent,
19963 * return false to continue verification of this path
19964 */
19965 return false;
19966 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
19967 continue;
19968 /* Both old and cur are having same slot_type */
19969 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
19970 case STACK_SPILL:
19971 /* when explored and current stack slot are both storing
19972 * spilled registers, check that stored pointers types
19973 * are the same as well.
19974 * Ex: explored safe path could have stored
19975 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
19976 * but current path has stored:
19977 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
19978 * such verifier states are not equivalent.
19979 * return false to continue verification of this path
19980 */
19981 if (!regsafe(env, &old->stack[spi].spilled_ptr,
19982 &cur->stack[spi].spilled_ptr, idmap, exact))
19983 return false;
19984 break;
19985 case STACK_DYNPTR:
19986 old_reg = &old->stack[spi].spilled_ptr;
19987 cur_reg = &cur->stack[spi].spilled_ptr;
19988 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
19989 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
19990 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
19991 return false;
19992 break;
19993 case STACK_ITER:
19994 old_reg = &old->stack[spi].spilled_ptr;
19995 cur_reg = &cur->stack[spi].spilled_ptr;
19996 /* iter.depth is not compared between states as it
19997 * doesn't matter for correctness and would otherwise
19998 * prevent convergence; we maintain it only to prevent
19999 * infinite loop check triggering, see
20000 * iter_active_depths_differ()
20001 */
20002 if (old_reg->iter.btf != cur_reg->iter.btf ||
20003 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
20004 old_reg->iter.state != cur_reg->iter.state ||
20005 /* ignore {old_reg,cur_reg}->iter.depth, see above */
20006 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
20007 return false;
20008 break;
20009 case STACK_IRQ_FLAG:
20010 old_reg = &old->stack[spi].spilled_ptr;
20011 cur_reg = &cur->stack[spi].spilled_ptr;
20012 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
20013 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
20014 return false;
20015 break;
20016 case STACK_MISC:
20017 case STACK_ZERO:
20018 case STACK_INVALID:
20019 continue;
20020 /* Ensure that new unhandled slot types return false by default */
20021 default:
20022 return false;
20023 }
20024 }
20025 return true;
20026 }
20027
refsafe(struct bpf_verifier_state * old,struct bpf_verifier_state * cur,struct bpf_idmap * idmap)20028 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
20029 struct bpf_idmap *idmap)
20030 {
20031 int i;
20032
20033 if (old->acquired_refs != cur->acquired_refs)
20034 return false;
20035
20036 if (old->active_locks != cur->active_locks)
20037 return false;
20038
20039 if (old->active_preempt_locks != cur->active_preempt_locks)
20040 return false;
20041
20042 if (old->active_rcu_locks != cur->active_rcu_locks)
20043 return false;
20044
20045 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
20046 return false;
20047
20048 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
20049 old->active_lock_ptr != cur->active_lock_ptr)
20050 return false;
20051
20052 for (i = 0; i < old->acquired_refs; i++) {
20053 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
20054 old->refs[i].type != cur->refs[i].type)
20055 return false;
20056 switch (old->refs[i].type) {
20057 case REF_TYPE_PTR:
20058 case REF_TYPE_IRQ:
20059 break;
20060 case REF_TYPE_LOCK:
20061 case REF_TYPE_RES_LOCK:
20062 case REF_TYPE_RES_LOCK_IRQ:
20063 if (old->refs[i].ptr != cur->refs[i].ptr)
20064 return false;
20065 break;
20066 default:
20067 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
20068 return false;
20069 }
20070 }
20071
20072 return true;
20073 }
20074
20075 /* compare two verifier states
20076 *
20077 * all states stored in state_list are known to be valid, since
20078 * verifier reached 'bpf_exit' instruction through them
20079 *
20080 * this function is called when verifier exploring different branches of
20081 * execution popped from the state stack. If it sees an old state that has
20082 * more strict register state and more strict stack state then this execution
20083 * branch doesn't need to be explored further, since verifier already
20084 * concluded that more strict state leads to valid finish.
20085 *
20086 * Therefore two states are equivalent if register state is more conservative
20087 * and explored stack state is more conservative than the current one.
20088 * Example:
20089 * explored current
20090 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
20091 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
20092 *
20093 * In other words if current stack state (one being explored) has more
20094 * valid slots than old one that already passed validation, it means
20095 * the verifier can stop exploring and conclude that current state is valid too
20096 *
20097 * Similarly with registers. If explored state has register type as invalid
20098 * whereas register type in current state is meaningful, it means that
20099 * the current state will reach 'bpf_exit' instruction safely
20100 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,u32 insn_idx,enum exact_level exact)20101 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
20102 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
20103 {
20104 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
20105 u16 i;
20106
20107 if (old->callback_depth > cur->callback_depth)
20108 return false;
20109
20110 for (i = 0; i < MAX_BPF_REG; i++)
20111 if (((1 << i) & live_regs) &&
20112 !regsafe(env, &old->regs[i], &cur->regs[i],
20113 &env->idmap_scratch, exact))
20114 return false;
20115
20116 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
20117 return false;
20118
20119 return true;
20120 }
20121
reset_idmap_scratch(struct bpf_verifier_env * env)20122 static void reset_idmap_scratch(struct bpf_verifier_env *env)
20123 {
20124 struct bpf_idmap *idmap = &env->idmap_scratch;
20125
20126 idmap->tmp_id_gen = env->id_gen;
20127 idmap->cnt = 0;
20128 }
20129
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,enum exact_level exact)20130 static bool states_equal(struct bpf_verifier_env *env,
20131 struct bpf_verifier_state *old,
20132 struct bpf_verifier_state *cur,
20133 enum exact_level exact)
20134 {
20135 u32 insn_idx;
20136 int i;
20137
20138 if (old->curframe != cur->curframe)
20139 return false;
20140
20141 reset_idmap_scratch(env);
20142
20143 /* Verification state from speculative execution simulation
20144 * must never prune a non-speculative execution one.
20145 */
20146 if (old->speculative && !cur->speculative)
20147 return false;
20148
20149 if (old->in_sleepable != cur->in_sleepable)
20150 return false;
20151
20152 if (!refsafe(old, cur, &env->idmap_scratch))
20153 return false;
20154
20155 /* for states to be equal callsites have to be the same
20156 * and all frame states need to be equivalent
20157 */
20158 for (i = 0; i <= old->curframe; i++) {
20159 insn_idx = frame_insn_idx(old, i);
20160 if (old->frame[i]->callsite != cur->frame[i]->callsite)
20161 return false;
20162 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
20163 return false;
20164 }
20165 return true;
20166 }
20167
20168 /* find precise scalars in the previous equivalent state and
20169 * propagate them into the current state
20170 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool * changed)20171 static int propagate_precision(struct bpf_verifier_env *env,
20172 const struct bpf_verifier_state *old,
20173 struct bpf_verifier_state *cur,
20174 bool *changed)
20175 {
20176 struct bpf_reg_state *state_reg;
20177 struct bpf_func_state *state;
20178 int i, err = 0, fr;
20179 bool first;
20180
20181 for (fr = old->curframe; fr >= 0; fr--) {
20182 state = old->frame[fr];
20183 state_reg = state->regs;
20184 first = true;
20185 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
20186 if (state_reg->type != SCALAR_VALUE ||
20187 !state_reg->precise)
20188 continue;
20189 if (env->log.level & BPF_LOG_LEVEL2) {
20190 if (first)
20191 verbose(env, "frame %d: propagating r%d", fr, i);
20192 else
20193 verbose(env, ",r%d", i);
20194 }
20195 bt_set_frame_reg(&env->bt, fr, i);
20196 first = false;
20197 }
20198
20199 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
20200 if (!is_spilled_reg(&state->stack[i]))
20201 continue;
20202 state_reg = &state->stack[i].spilled_ptr;
20203 if (state_reg->type != SCALAR_VALUE ||
20204 !state_reg->precise)
20205 continue;
20206 if (env->log.level & BPF_LOG_LEVEL2) {
20207 if (first)
20208 verbose(env, "frame %d: propagating fp%d",
20209 fr, (-i - 1) * BPF_REG_SIZE);
20210 else
20211 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
20212 }
20213 bt_set_frame_slot(&env->bt, fr, i);
20214 first = false;
20215 }
20216 if (!first && (env->log.level & BPF_LOG_LEVEL2))
20217 verbose(env, "\n");
20218 }
20219
20220 err = __mark_chain_precision(env, cur, -1, changed);
20221 if (err < 0)
20222 return err;
20223
20224 return 0;
20225 }
20226
20227 #define MAX_BACKEDGE_ITERS 64
20228
20229 /* Propagate read and precision marks from visit->backedges[*].state->equal_state
20230 * to corresponding parent states of visit->backedges[*].state until fixed point is reached,
20231 * then free visit->backedges.
20232 * After execution of this function incomplete_read_marks() will return false
20233 * for all states corresponding to @visit->callchain.
20234 */
propagate_backedges(struct bpf_verifier_env * env,struct bpf_scc_visit * visit)20235 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit)
20236 {
20237 struct bpf_scc_backedge *backedge;
20238 struct bpf_verifier_state *st;
20239 bool changed;
20240 int i, err;
20241
20242 i = 0;
20243 do {
20244 if (i++ > MAX_BACKEDGE_ITERS) {
20245 if (env->log.level & BPF_LOG_LEVEL2)
20246 verbose(env, "%s: too many iterations\n", __func__);
20247 for (backedge = visit->backedges; backedge; backedge = backedge->next)
20248 mark_all_scalars_precise(env, &backedge->state);
20249 break;
20250 }
20251 changed = false;
20252 for (backedge = visit->backedges; backedge; backedge = backedge->next) {
20253 st = &backedge->state;
20254 err = propagate_precision(env, st->equal_state, st, &changed);
20255 if (err)
20256 return err;
20257 }
20258 } while (changed);
20259
20260 free_backedges(visit);
20261 return 0;
20262 }
20263
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)20264 static bool states_maybe_looping(struct bpf_verifier_state *old,
20265 struct bpf_verifier_state *cur)
20266 {
20267 struct bpf_func_state *fold, *fcur;
20268 int i, fr = cur->curframe;
20269
20270 if (old->curframe != fr)
20271 return false;
20272
20273 fold = old->frame[fr];
20274 fcur = cur->frame[fr];
20275 for (i = 0; i < MAX_BPF_REG; i++)
20276 if (memcmp(&fold->regs[i], &fcur->regs[i],
20277 offsetof(struct bpf_reg_state, frameno)))
20278 return false;
20279 return true;
20280 }
20281
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)20282 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
20283 {
20284 return env->insn_aux_data[insn_idx].is_iter_next;
20285 }
20286
20287 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
20288 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
20289 * states to match, which otherwise would look like an infinite loop. So while
20290 * iter_next() calls are taken care of, we still need to be careful and
20291 * prevent erroneous and too eager declaration of "infinite loop", when
20292 * iterators are involved.
20293 *
20294 * Here's a situation in pseudo-BPF assembly form:
20295 *
20296 * 0: again: ; set up iter_next() call args
20297 * 1: r1 = &it ; <CHECKPOINT HERE>
20298 * 2: call bpf_iter_num_next ; this is iter_next() call
20299 * 3: if r0 == 0 goto done
20300 * 4: ... something useful here ...
20301 * 5: goto again ; another iteration
20302 * 6: done:
20303 * 7: r1 = &it
20304 * 8: call bpf_iter_num_destroy ; clean up iter state
20305 * 9: exit
20306 *
20307 * This is a typical loop. Let's assume that we have a prune point at 1:,
20308 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
20309 * again`, assuming other heuristics don't get in a way).
20310 *
20311 * When we first time come to 1:, let's say we have some state X. We proceed
20312 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
20313 * Now we come back to validate that forked ACTIVE state. We proceed through
20314 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
20315 * are converging. But the problem is that we don't know that yet, as this
20316 * convergence has to happen at iter_next() call site only. So if nothing is
20317 * done, at 1: verifier will use bounded loop logic and declare infinite
20318 * looping (and would be *technically* correct, if not for iterator's
20319 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
20320 * don't want that. So what we do in process_iter_next_call() when we go on
20321 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
20322 * a different iteration. So when we suspect an infinite loop, we additionally
20323 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
20324 * pretend we are not looping and wait for next iter_next() call.
20325 *
20326 * This only applies to ACTIVE state. In DRAINED state we don't expect to
20327 * loop, because that would actually mean infinite loop, as DRAINED state is
20328 * "sticky", and so we'll keep returning into the same instruction with the
20329 * same state (at least in one of possible code paths).
20330 *
20331 * This approach allows to keep infinite loop heuristic even in the face of
20332 * active iterator. E.g., C snippet below is and will be detected as
20333 * infinitely looping:
20334 *
20335 * struct bpf_iter_num it;
20336 * int *p, x;
20337 *
20338 * bpf_iter_num_new(&it, 0, 10);
20339 * while ((p = bpf_iter_num_next(&t))) {
20340 * x = p;
20341 * while (x--) {} // <<-- infinite loop here
20342 * }
20343 *
20344 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)20345 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
20346 {
20347 struct bpf_reg_state *slot, *cur_slot;
20348 struct bpf_func_state *state;
20349 int i, fr;
20350
20351 for (fr = old->curframe; fr >= 0; fr--) {
20352 state = old->frame[fr];
20353 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
20354 if (state->stack[i].slot_type[0] != STACK_ITER)
20355 continue;
20356
20357 slot = &state->stack[i].spilled_ptr;
20358 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
20359 continue;
20360
20361 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
20362 if (cur_slot->iter.depth != slot->iter.depth)
20363 return true;
20364 }
20365 }
20366 return false;
20367 }
20368
is_state_visited(struct bpf_verifier_env * env,int insn_idx)20369 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
20370 {
20371 struct bpf_verifier_state_list *new_sl;
20372 struct bpf_verifier_state_list *sl;
20373 struct bpf_verifier_state *cur = env->cur_state, *new;
20374 bool force_new_state, add_new_state, loop;
20375 int n, err, states_cnt = 0;
20376 struct list_head *pos, *tmp, *head;
20377
20378 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
20379 /* Avoid accumulating infinitely long jmp history */
20380 cur->jmp_history_cnt > 40;
20381
20382 /* bpf progs typically have pruning point every 4 instructions
20383 * http://vger.kernel.org/bpfconf2019.html#session-1
20384 * Do not add new state for future pruning if the verifier hasn't seen
20385 * at least 2 jumps and at least 8 instructions.
20386 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
20387 * In tests that amounts to up to 50% reduction into total verifier
20388 * memory consumption and 20% verifier time speedup.
20389 */
20390 add_new_state = force_new_state;
20391 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
20392 env->insn_processed - env->prev_insn_processed >= 8)
20393 add_new_state = true;
20394
20395 clean_live_states(env, insn_idx, cur);
20396
20397 loop = false;
20398 head = explored_state(env, insn_idx);
20399 list_for_each_safe(pos, tmp, head) {
20400 sl = container_of(pos, struct bpf_verifier_state_list, node);
20401 states_cnt++;
20402 if (sl->state.insn_idx != insn_idx)
20403 continue;
20404
20405 if (sl->state.branches) {
20406 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
20407
20408 if (frame->in_async_callback_fn &&
20409 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
20410 /* Different async_entry_cnt means that the verifier is
20411 * processing another entry into async callback.
20412 * Seeing the same state is not an indication of infinite
20413 * loop or infinite recursion.
20414 * But finding the same state doesn't mean that it's safe
20415 * to stop processing the current state. The previous state
20416 * hasn't yet reached bpf_exit, since state.branches > 0.
20417 * Checking in_async_callback_fn alone is not enough either.
20418 * Since the verifier still needs to catch infinite loops
20419 * inside async callbacks.
20420 */
20421 goto skip_inf_loop_check;
20422 }
20423 /* BPF open-coded iterators loop detection is special.
20424 * states_maybe_looping() logic is too simplistic in detecting
20425 * states that *might* be equivalent, because it doesn't know
20426 * about ID remapping, so don't even perform it.
20427 * See process_iter_next_call() and iter_active_depths_differ()
20428 * for overview of the logic. When current and one of parent
20429 * states are detected as equivalent, it's a good thing: we prove
20430 * convergence and can stop simulating further iterations.
20431 * It's safe to assume that iterator loop will finish, taking into
20432 * account iter_next() contract of eventually returning
20433 * sticky NULL result.
20434 *
20435 * Note, that states have to be compared exactly in this case because
20436 * read and precision marks might not be finalized inside the loop.
20437 * E.g. as in the program below:
20438 *
20439 * 1. r7 = -16
20440 * 2. r6 = bpf_get_prandom_u32()
20441 * 3. while (bpf_iter_num_next(&fp[-8])) {
20442 * 4. if (r6 != 42) {
20443 * 5. r7 = -32
20444 * 6. r6 = bpf_get_prandom_u32()
20445 * 7. continue
20446 * 8. }
20447 * 9. r0 = r10
20448 * 10. r0 += r7
20449 * 11. r8 = *(u64 *)(r0 + 0)
20450 * 12. r6 = bpf_get_prandom_u32()
20451 * 13. }
20452 *
20453 * Here verifier would first visit path 1-3, create a checkpoint at 3
20454 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
20455 * not have read or precision mark for r7 yet, thus inexact states
20456 * comparison would discard current state with r7=-32
20457 * => unsafe memory access at 11 would not be caught.
20458 */
20459 if (is_iter_next_insn(env, insn_idx)) {
20460 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
20461 struct bpf_func_state *cur_frame;
20462 struct bpf_reg_state *iter_state, *iter_reg;
20463 int spi;
20464
20465 cur_frame = cur->frame[cur->curframe];
20466 /* btf_check_iter_kfuncs() enforces that
20467 * iter state pointer is always the first arg
20468 */
20469 iter_reg = &cur_frame->regs[BPF_REG_1];
20470 /* current state is valid due to states_equal(),
20471 * so we can assume valid iter and reg state,
20472 * no need for extra (re-)validations
20473 */
20474 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
20475 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
20476 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
20477 loop = true;
20478 goto hit;
20479 }
20480 }
20481 goto skip_inf_loop_check;
20482 }
20483 if (is_may_goto_insn_at(env, insn_idx)) {
20484 if (sl->state.may_goto_depth != cur->may_goto_depth &&
20485 states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
20486 loop = true;
20487 goto hit;
20488 }
20489 }
20490 if (bpf_calls_callback(env, insn_idx)) {
20491 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
20492 loop = true;
20493 goto hit;
20494 }
20495 goto skip_inf_loop_check;
20496 }
20497 /* attempt to detect infinite loop to avoid unnecessary doomed work */
20498 if (states_maybe_looping(&sl->state, cur) &&
20499 states_equal(env, &sl->state, cur, EXACT) &&
20500 !iter_active_depths_differ(&sl->state, cur) &&
20501 sl->state.may_goto_depth == cur->may_goto_depth &&
20502 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
20503 verbose_linfo(env, insn_idx, "; ");
20504 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
20505 verbose(env, "cur state:");
20506 print_verifier_state(env, cur, cur->curframe, true);
20507 verbose(env, "old state:");
20508 print_verifier_state(env, &sl->state, cur->curframe, true);
20509 return -EINVAL;
20510 }
20511 /* if the verifier is processing a loop, avoid adding new state
20512 * too often, since different loop iterations have distinct
20513 * states and may not help future pruning.
20514 * This threshold shouldn't be too low to make sure that
20515 * a loop with large bound will be rejected quickly.
20516 * The most abusive loop will be:
20517 * r1 += 1
20518 * if r1 < 1000000 goto pc-2
20519 * 1M insn_procssed limit / 100 == 10k peak states.
20520 * This threshold shouldn't be too high either, since states
20521 * at the end of the loop are likely to be useful in pruning.
20522 */
20523 skip_inf_loop_check:
20524 if (!force_new_state &&
20525 env->jmps_processed - env->prev_jmps_processed < 20 &&
20526 env->insn_processed - env->prev_insn_processed < 100)
20527 add_new_state = false;
20528 goto miss;
20529 }
20530 /* See comments for mark_all_regs_read_and_precise() */
20531 loop = incomplete_read_marks(env, &sl->state);
20532 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
20533 hit:
20534 sl->hit_cnt++;
20535
20536 /* if previous state reached the exit with precision and
20537 * current state is equivalent to it (except precision marks)
20538 * the precision needs to be propagated back in
20539 * the current state.
20540 */
20541 err = 0;
20542 if (is_jmp_point(env, env->insn_idx))
20543 err = push_jmp_history(env, cur, 0, 0);
20544 err = err ? : propagate_precision(env, &sl->state, cur, NULL);
20545 if (err)
20546 return err;
20547 /* When processing iterator based loops above propagate_liveness and
20548 * propagate_precision calls are not sufficient to transfer all relevant
20549 * read and precision marks. E.g. consider the following case:
20550 *
20551 * .-> A --. Assume the states are visited in the order A, B, C.
20552 * | | | Assume that state B reaches a state equivalent to state A.
20553 * | v v At this point, state C is not processed yet, so state A
20554 * '-- B C has not received any read or precision marks from C.
20555 * Thus, marks propagated from A to B are incomplete.
20556 *
20557 * The verifier mitigates this by performing the following steps:
20558 *
20559 * - Prior to the main verification pass, strongly connected components
20560 * (SCCs) are computed over the program's control flow graph,
20561 * intraprocedurally.
20562 *
20563 * - During the main verification pass, `maybe_enter_scc()` checks
20564 * whether the current verifier state is entering an SCC. If so, an
20565 * instance of a `bpf_scc_visit` object is created, and the state
20566 * entering the SCC is recorded as the entry state.
20567 *
20568 * - This instance is associated not with the SCC itself, but with a
20569 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to
20570 * the SCC and the SCC id. See `compute_scc_callchain()`.
20571 *
20572 * - When a verification path encounters a `states_equal(...,
20573 * RANGE_WITHIN)` condition, there exists a call chain describing the
20574 * current state and a corresponding `bpf_scc_visit` instance. A copy
20575 * of the current state is created and added to
20576 * `bpf_scc_visit->backedges`.
20577 *
20578 * - When a verification path terminates, `maybe_exit_scc()` is called
20579 * from `update_branch_counts()`. For states with `branches == 0`, it
20580 * checks whether the state is the entry state of any `bpf_scc_visit`
20581 * instance. If it is, this indicates that all paths originating from
20582 * this SCC visit have been explored. `propagate_backedges()` is then
20583 * called, which propagates read and precision marks through the
20584 * backedges until a fixed point is reached.
20585 * (In the earlier example, this would propagate marks from A to B,
20586 * from C to A, and then again from A to B.)
20587 *
20588 * A note on callchains
20589 * --------------------
20590 *
20591 * Consider the following example:
20592 *
20593 * void foo() { loop { ... SCC#1 ... } }
20594 * void main() {
20595 * A: foo();
20596 * B: ...
20597 * C: foo();
20598 * }
20599 *
20600 * Here, there are two distinct callchains leading to SCC#1:
20601 * - (A, SCC#1)
20602 * - (C, SCC#1)
20603 *
20604 * Each callchain identifies a separate `bpf_scc_visit` instance that
20605 * accumulates backedge states. The `propagate_{liveness,precision}()`
20606 * functions traverse the parent state of each backedge state, which
20607 * means these parent states must remain valid (i.e., not freed) while
20608 * the corresponding `bpf_scc_visit` instance exists.
20609 *
20610 * Associating `bpf_scc_visit` instances directly with SCCs instead of
20611 * callchains would break this invariant:
20612 * - States explored during `C: foo()` would contribute backedges to
20613 * SCC#1, but SCC#1 would only be exited once the exploration of
20614 * `A: foo()` completes.
20615 * - By that time, the states explored between `A: foo()` and `C: foo()`
20616 * (i.e., `B: ...`) may have already been freed, causing the parent
20617 * links for states from `C: foo()` to become invalid.
20618 */
20619 if (loop) {
20620 struct bpf_scc_backedge *backedge;
20621
20622 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT);
20623 if (!backedge)
20624 return -ENOMEM;
20625 err = copy_verifier_state(&backedge->state, cur);
20626 backedge->state.equal_state = &sl->state;
20627 backedge->state.insn_idx = insn_idx;
20628 err = err ?: add_scc_backedge(env, &sl->state, backedge);
20629 if (err) {
20630 free_verifier_state(&backedge->state, false);
20631 kfree(backedge);
20632 return err;
20633 }
20634 }
20635 return 1;
20636 }
20637 miss:
20638 /* when new state is not going to be added do not increase miss count.
20639 * Otherwise several loop iterations will remove the state
20640 * recorded earlier. The goal of these heuristics is to have
20641 * states from some iterations of the loop (some in the beginning
20642 * and some at the end) to help pruning.
20643 */
20644 if (add_new_state)
20645 sl->miss_cnt++;
20646 /* heuristic to determine whether this state is beneficial
20647 * to keep checking from state equivalence point of view.
20648 * Higher numbers increase max_states_per_insn and verification time,
20649 * but do not meaningfully decrease insn_processed.
20650 * 'n' controls how many times state could miss before eviction.
20651 * Use bigger 'n' for checkpoints because evicting checkpoint states
20652 * too early would hinder iterator convergence.
20653 */
20654 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
20655 if (sl->miss_cnt > sl->hit_cnt * n + n) {
20656 /* the state is unlikely to be useful. Remove it to
20657 * speed up verification
20658 */
20659 sl->in_free_list = true;
20660 list_del(&sl->node);
20661 list_add(&sl->node, &env->free_list);
20662 env->free_list_size++;
20663 env->explored_states_size--;
20664 maybe_free_verifier_state(env, sl);
20665 }
20666 }
20667
20668 if (env->max_states_per_insn < states_cnt)
20669 env->max_states_per_insn = states_cnt;
20670
20671 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
20672 return 0;
20673
20674 if (!add_new_state)
20675 return 0;
20676
20677 /* There were no equivalent states, remember the current one.
20678 * Technically the current state is not proven to be safe yet,
20679 * but it will either reach outer most bpf_exit (which means it's safe)
20680 * or it will be rejected. When there are no loops the verifier won't be
20681 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
20682 * again on the way to bpf_exit.
20683 * When looping the sl->state.branches will be > 0 and this state
20684 * will not be considered for equivalence until branches == 0.
20685 */
20686 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT);
20687 if (!new_sl)
20688 return -ENOMEM;
20689 env->total_states++;
20690 env->explored_states_size++;
20691 update_peak_states(env);
20692 env->prev_jmps_processed = env->jmps_processed;
20693 env->prev_insn_processed = env->insn_processed;
20694
20695 /* forget precise markings we inherited, see __mark_chain_precision */
20696 if (env->bpf_capable)
20697 mark_all_scalars_imprecise(env, cur);
20698
20699 clear_singular_ids(env, cur);
20700
20701 /* add new state to the head of linked list */
20702 new = &new_sl->state;
20703 err = copy_verifier_state(new, cur);
20704 if (err) {
20705 free_verifier_state(new, false);
20706 kfree(new_sl);
20707 return err;
20708 }
20709 new->insn_idx = insn_idx;
20710 verifier_bug_if(new->branches != 1, env,
20711 "%s:branches_to_explore=%d insn %d",
20712 __func__, new->branches, insn_idx);
20713 err = maybe_enter_scc(env, new);
20714 if (err) {
20715 free_verifier_state(new, false);
20716 kfree(new_sl);
20717 return err;
20718 }
20719
20720 cur->parent = new;
20721 cur->first_insn_idx = insn_idx;
20722 cur->dfs_depth = new->dfs_depth + 1;
20723 clear_jmp_history(cur);
20724 list_add(&new_sl->node, head);
20725 return 0;
20726 }
20727
20728 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)20729 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
20730 {
20731 switch (base_type(type)) {
20732 case PTR_TO_CTX:
20733 case PTR_TO_SOCKET:
20734 case PTR_TO_SOCK_COMMON:
20735 case PTR_TO_TCP_SOCK:
20736 case PTR_TO_XDP_SOCK:
20737 case PTR_TO_BTF_ID:
20738 case PTR_TO_ARENA:
20739 return false;
20740 default:
20741 return true;
20742 }
20743 }
20744
20745 /* If an instruction was previously used with particular pointer types, then we
20746 * need to be careful to avoid cases such as the below, where it may be ok
20747 * for one branch accessing the pointer, but not ok for the other branch:
20748 *
20749 * R1 = sock_ptr
20750 * goto X;
20751 * ...
20752 * R1 = some_other_valid_ptr;
20753 * goto X;
20754 * ...
20755 * R2 = *(u32 *)(R1 + 0);
20756 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)20757 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
20758 {
20759 return src != prev && (!reg_type_mismatch_ok(src) ||
20760 !reg_type_mismatch_ok(prev));
20761 }
20762
is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)20763 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)
20764 {
20765 switch (base_type(type)) {
20766 case PTR_TO_MEM:
20767 case PTR_TO_BTF_ID:
20768 return true;
20769 default:
20770 return false;
20771 }
20772 }
20773
is_ptr_to_mem(enum bpf_reg_type type)20774 static bool is_ptr_to_mem(enum bpf_reg_type type)
20775 {
20776 return base_type(type) == PTR_TO_MEM;
20777 }
20778
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_mismatch)20779 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
20780 bool allow_trust_mismatch)
20781 {
20782 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
20783 enum bpf_reg_type merged_type;
20784
20785 if (*prev_type == NOT_INIT) {
20786 /* Saw a valid insn
20787 * dst_reg = *(u32 *)(src_reg + off)
20788 * save type to validate intersecting paths
20789 */
20790 *prev_type = type;
20791 } else if (reg_type_mismatch(type, *prev_type)) {
20792 /* Abuser program is trying to use the same insn
20793 * dst_reg = *(u32*) (src_reg + off)
20794 * with different pointer types:
20795 * src_reg == ctx in one branch and
20796 * src_reg == stack|map in some other branch.
20797 * Reject it.
20798 */
20799 if (allow_trust_mismatch &&
20800 is_ptr_to_mem_or_btf_id(type) &&
20801 is_ptr_to_mem_or_btf_id(*prev_type)) {
20802 /*
20803 * Have to support a use case when one path through
20804 * the program yields TRUSTED pointer while another
20805 * is UNTRUSTED. Fallback to UNTRUSTED to generate
20806 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
20807 * Same behavior of MEM_RDONLY flag.
20808 */
20809 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type))
20810 merged_type = PTR_TO_MEM;
20811 else
20812 merged_type = PTR_TO_BTF_ID;
20813 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED))
20814 merged_type |= PTR_UNTRUSTED;
20815 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY))
20816 merged_type |= MEM_RDONLY;
20817 *prev_type = merged_type;
20818 } else {
20819 verbose(env, "same insn cannot be used with different pointers\n");
20820 return -EINVAL;
20821 }
20822 }
20823
20824 return 0;
20825 }
20826
20827 enum {
20828 PROCESS_BPF_EXIT = 1
20829 };
20830
process_bpf_exit_full(struct bpf_verifier_env * env,bool * do_print_state,bool exception_exit)20831 static int process_bpf_exit_full(struct bpf_verifier_env *env,
20832 bool *do_print_state,
20833 bool exception_exit)
20834 {
20835 /* We must do check_reference_leak here before
20836 * prepare_func_exit to handle the case when
20837 * state->curframe > 0, it may be a callback function,
20838 * for which reference_state must match caller reference
20839 * state when it exits.
20840 */
20841 int err = check_resource_leak(env, exception_exit,
20842 !env->cur_state->curframe,
20843 "BPF_EXIT instruction in main prog");
20844 if (err)
20845 return err;
20846
20847 /* The side effect of the prepare_func_exit which is
20848 * being skipped is that it frees bpf_func_state.
20849 * Typically, process_bpf_exit will only be hit with
20850 * outermost exit. copy_verifier_state in pop_stack will
20851 * handle freeing of any extra bpf_func_state left over
20852 * from not processing all nested function exits. We
20853 * also skip return code checks as they are not needed
20854 * for exceptional exits.
20855 */
20856 if (exception_exit)
20857 return PROCESS_BPF_EXIT;
20858
20859 if (env->cur_state->curframe) {
20860 /* exit from nested function */
20861 err = prepare_func_exit(env, &env->insn_idx);
20862 if (err)
20863 return err;
20864 *do_print_state = true;
20865 return 0;
20866 }
20867
20868 err = check_return_code(env, BPF_REG_0, "R0");
20869 if (err)
20870 return err;
20871 return PROCESS_BPF_EXIT;
20872 }
20873
indirect_jump_min_max_index(struct bpf_verifier_env * env,int regno,struct bpf_map * map,u32 * pmin_index,u32 * pmax_index)20874 static int indirect_jump_min_max_index(struct bpf_verifier_env *env,
20875 int regno,
20876 struct bpf_map *map,
20877 u32 *pmin_index, u32 *pmax_index)
20878 {
20879 struct bpf_reg_state *reg = reg_state(env, regno);
20880 u64 min_index, max_index;
20881 const u32 size = 8;
20882
20883 if (check_add_overflow(reg->umin_value, reg->off, &min_index) ||
20884 (min_index > (u64) U32_MAX * size)) {
20885 verbose(env, "the sum of R%u umin_value %llu and off %u is too big\n",
20886 regno, reg->umin_value, reg->off);
20887 return -ERANGE;
20888 }
20889 if (check_add_overflow(reg->umax_value, reg->off, &max_index) ||
20890 (max_index > (u64) U32_MAX * size)) {
20891 verbose(env, "the sum of R%u umax_value %llu and off %u is too big\n",
20892 regno, reg->umax_value, reg->off);
20893 return -ERANGE;
20894 }
20895
20896 min_index /= size;
20897 max_index /= size;
20898
20899 if (max_index >= map->max_entries) {
20900 verbose(env, "R%u points to outside of jump table: [%llu,%llu] max_entries %u\n",
20901 regno, min_index, max_index, map->max_entries);
20902 return -EINVAL;
20903 }
20904
20905 *pmin_index = min_index;
20906 *pmax_index = max_index;
20907 return 0;
20908 }
20909
20910 /* gotox *dst_reg */
check_indirect_jump(struct bpf_verifier_env * env,struct bpf_insn * insn)20911 static int check_indirect_jump(struct bpf_verifier_env *env, struct bpf_insn *insn)
20912 {
20913 struct bpf_verifier_state *other_branch;
20914 struct bpf_reg_state *dst_reg;
20915 struct bpf_map *map;
20916 u32 min_index, max_index;
20917 int err = 0;
20918 int n;
20919 int i;
20920
20921 dst_reg = reg_state(env, insn->dst_reg);
20922 if (dst_reg->type != PTR_TO_INSN) {
20923 verbose(env, "R%d has type %s, expected PTR_TO_INSN\n",
20924 insn->dst_reg, reg_type_str(env, dst_reg->type));
20925 return -EINVAL;
20926 }
20927
20928 map = dst_reg->map_ptr;
20929 if (verifier_bug_if(!map, env, "R%d has an empty map pointer", insn->dst_reg))
20930 return -EFAULT;
20931
20932 if (verifier_bug_if(map->map_type != BPF_MAP_TYPE_INSN_ARRAY, env,
20933 "R%d has incorrect map type %d", insn->dst_reg, map->map_type))
20934 return -EFAULT;
20935
20936 err = indirect_jump_min_max_index(env, insn->dst_reg, map, &min_index, &max_index);
20937 if (err)
20938 return err;
20939
20940 /* Ensure that the buffer is large enough */
20941 if (!env->gotox_tmp_buf || env->gotox_tmp_buf->cnt < max_index - min_index + 1) {
20942 env->gotox_tmp_buf = iarray_realloc(env->gotox_tmp_buf,
20943 max_index - min_index + 1);
20944 if (!env->gotox_tmp_buf)
20945 return -ENOMEM;
20946 }
20947
20948 n = copy_insn_array_uniq(map, min_index, max_index, env->gotox_tmp_buf->items);
20949 if (n < 0)
20950 return n;
20951 if (n == 0) {
20952 verbose(env, "register R%d doesn't point to any offset in map id=%d\n",
20953 insn->dst_reg, map->id);
20954 return -EINVAL;
20955 }
20956
20957 for (i = 0; i < n - 1; i++) {
20958 other_branch = push_stack(env, env->gotox_tmp_buf->items[i],
20959 env->insn_idx, env->cur_state->speculative);
20960 if (IS_ERR(other_branch))
20961 return PTR_ERR(other_branch);
20962 }
20963 env->insn_idx = env->gotox_tmp_buf->items[n-1];
20964 return 0;
20965 }
20966
do_check_insn(struct bpf_verifier_env * env,bool * do_print_state)20967 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state)
20968 {
20969 int err;
20970 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx];
20971 u8 class = BPF_CLASS(insn->code);
20972
20973 if (class == BPF_ALU || class == BPF_ALU64) {
20974 err = check_alu_op(env, insn);
20975 if (err)
20976 return err;
20977
20978 } else if (class == BPF_LDX) {
20979 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
20980
20981 /* Check for reserved fields is already done in
20982 * resolve_pseudo_ldimm64().
20983 */
20984 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx");
20985 if (err)
20986 return err;
20987 } else if (class == BPF_STX) {
20988 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
20989 err = check_atomic(env, insn);
20990 if (err)
20991 return err;
20992 env->insn_idx++;
20993 return 0;
20994 }
20995
20996 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
20997 verbose(env, "BPF_STX uses reserved fields\n");
20998 return -EINVAL;
20999 }
21000
21001 err = check_store_reg(env, insn, false);
21002 if (err)
21003 return err;
21004 } else if (class == BPF_ST) {
21005 enum bpf_reg_type dst_reg_type;
21006
21007 if (BPF_MODE(insn->code) != BPF_MEM ||
21008 insn->src_reg != BPF_REG_0) {
21009 verbose(env, "BPF_ST uses reserved fields\n");
21010 return -EINVAL;
21011 }
21012 /* check src operand */
21013 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
21014 if (err)
21015 return err;
21016
21017 dst_reg_type = cur_regs(env)[insn->dst_reg].type;
21018
21019 /* check that memory (dst_reg + off) is writeable */
21020 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
21021 insn->off, BPF_SIZE(insn->code),
21022 BPF_WRITE, -1, false, false);
21023 if (err)
21024 return err;
21025
21026 err = save_aux_ptr_type(env, dst_reg_type, false);
21027 if (err)
21028 return err;
21029 } else if (class == BPF_JMP || class == BPF_JMP32) {
21030 u8 opcode = BPF_OP(insn->code);
21031
21032 env->jmps_processed++;
21033 if (opcode == BPF_CALL) {
21034 if (BPF_SRC(insn->code) != BPF_K ||
21035 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL &&
21036 insn->off != 0) ||
21037 (insn->src_reg != BPF_REG_0 &&
21038 insn->src_reg != BPF_PSEUDO_CALL &&
21039 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
21040 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) {
21041 verbose(env, "BPF_CALL uses reserved fields\n");
21042 return -EINVAL;
21043 }
21044
21045 if (env->cur_state->active_locks) {
21046 if ((insn->src_reg == BPF_REG_0 &&
21047 insn->imm != BPF_FUNC_spin_unlock) ||
21048 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
21049 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
21050 verbose(env,
21051 "function calls are not allowed while holding a lock\n");
21052 return -EINVAL;
21053 }
21054 }
21055 if (insn->src_reg == BPF_PSEUDO_CALL) {
21056 err = check_func_call(env, insn, &env->insn_idx);
21057 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
21058 err = check_kfunc_call(env, insn, &env->insn_idx);
21059 if (!err && is_bpf_throw_kfunc(insn))
21060 return process_bpf_exit_full(env, do_print_state, true);
21061 } else {
21062 err = check_helper_call(env, insn, &env->insn_idx);
21063 }
21064 if (err)
21065 return err;
21066
21067 mark_reg_scratched(env, BPF_REG_0);
21068 } else if (opcode == BPF_JA) {
21069 if (BPF_SRC(insn->code) == BPF_X) {
21070 if (insn->src_reg != BPF_REG_0 ||
21071 insn->imm != 0 || insn->off != 0) {
21072 verbose(env, "BPF_JA|BPF_X uses reserved fields\n");
21073 return -EINVAL;
21074 }
21075 return check_indirect_jump(env, insn);
21076 }
21077
21078 if (BPF_SRC(insn->code) != BPF_K ||
21079 insn->src_reg != BPF_REG_0 ||
21080 insn->dst_reg != BPF_REG_0 ||
21081 (class == BPF_JMP && insn->imm != 0) ||
21082 (class == BPF_JMP32 && insn->off != 0)) {
21083 verbose(env, "BPF_JA uses reserved fields\n");
21084 return -EINVAL;
21085 }
21086
21087 if (class == BPF_JMP)
21088 env->insn_idx += insn->off + 1;
21089 else
21090 env->insn_idx += insn->imm + 1;
21091 return 0;
21092 } else if (opcode == BPF_EXIT) {
21093 if (BPF_SRC(insn->code) != BPF_K ||
21094 insn->imm != 0 ||
21095 insn->src_reg != BPF_REG_0 ||
21096 insn->dst_reg != BPF_REG_0 ||
21097 class == BPF_JMP32) {
21098 verbose(env, "BPF_EXIT uses reserved fields\n");
21099 return -EINVAL;
21100 }
21101 return process_bpf_exit_full(env, do_print_state, false);
21102 } else {
21103 err = check_cond_jmp_op(env, insn, &env->insn_idx);
21104 if (err)
21105 return err;
21106 }
21107 } else if (class == BPF_LD) {
21108 u8 mode = BPF_MODE(insn->code);
21109
21110 if (mode == BPF_ABS || mode == BPF_IND) {
21111 err = check_ld_abs(env, insn);
21112 if (err)
21113 return err;
21114
21115 } else if (mode == BPF_IMM) {
21116 err = check_ld_imm(env, insn);
21117 if (err)
21118 return err;
21119
21120 env->insn_idx++;
21121 sanitize_mark_insn_seen(env);
21122 } else {
21123 verbose(env, "invalid BPF_LD mode\n");
21124 return -EINVAL;
21125 }
21126 } else {
21127 verbose(env, "unknown insn class %d\n", class);
21128 return -EINVAL;
21129 }
21130
21131 env->insn_idx++;
21132 return 0;
21133 }
21134
do_check(struct bpf_verifier_env * env)21135 static int do_check(struct bpf_verifier_env *env)
21136 {
21137 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21138 struct bpf_verifier_state *state = env->cur_state;
21139 struct bpf_insn *insns = env->prog->insnsi;
21140 int insn_cnt = env->prog->len;
21141 bool do_print_state = false;
21142 int prev_insn_idx = -1;
21143
21144 for (;;) {
21145 struct bpf_insn *insn;
21146 struct bpf_insn_aux_data *insn_aux;
21147 int err, marks_err;
21148
21149 /* reset current history entry on each new instruction */
21150 env->cur_hist_ent = NULL;
21151
21152 env->prev_insn_idx = prev_insn_idx;
21153 if (env->insn_idx >= insn_cnt) {
21154 verbose(env, "invalid insn idx %d insn_cnt %d\n",
21155 env->insn_idx, insn_cnt);
21156 return -EFAULT;
21157 }
21158
21159 insn = &insns[env->insn_idx];
21160 insn_aux = &env->insn_aux_data[env->insn_idx];
21161
21162 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
21163 verbose(env,
21164 "BPF program is too large. Processed %d insn\n",
21165 env->insn_processed);
21166 return -E2BIG;
21167 }
21168
21169 state->last_insn_idx = env->prev_insn_idx;
21170 state->insn_idx = env->insn_idx;
21171
21172 if (is_prune_point(env, env->insn_idx)) {
21173 err = is_state_visited(env, env->insn_idx);
21174 if (err < 0)
21175 return err;
21176 if (err == 1) {
21177 /* found equivalent state, can prune the search */
21178 if (env->log.level & BPF_LOG_LEVEL) {
21179 if (do_print_state)
21180 verbose(env, "\nfrom %d to %d%s: safe\n",
21181 env->prev_insn_idx, env->insn_idx,
21182 env->cur_state->speculative ?
21183 " (speculative execution)" : "");
21184 else
21185 verbose(env, "%d: safe\n", env->insn_idx);
21186 }
21187 goto process_bpf_exit;
21188 }
21189 }
21190
21191 if (is_jmp_point(env, env->insn_idx)) {
21192 err = push_jmp_history(env, state, 0, 0);
21193 if (err)
21194 return err;
21195 }
21196
21197 if (signal_pending(current))
21198 return -EAGAIN;
21199
21200 if (need_resched())
21201 cond_resched();
21202
21203 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
21204 verbose(env, "\nfrom %d to %d%s:",
21205 env->prev_insn_idx, env->insn_idx,
21206 env->cur_state->speculative ?
21207 " (speculative execution)" : "");
21208 print_verifier_state(env, state, state->curframe, true);
21209 do_print_state = false;
21210 }
21211
21212 if (env->log.level & BPF_LOG_LEVEL) {
21213 if (verifier_state_scratched(env))
21214 print_insn_state(env, state, state->curframe);
21215
21216 verbose_linfo(env, env->insn_idx, "; ");
21217 env->prev_log_pos = env->log.end_pos;
21218 verbose(env, "%d: ", env->insn_idx);
21219 verbose_insn(env, insn);
21220 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
21221 env->prev_log_pos = env->log.end_pos;
21222 }
21223
21224 if (bpf_prog_is_offloaded(env->prog->aux)) {
21225 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
21226 env->prev_insn_idx);
21227 if (err)
21228 return err;
21229 }
21230
21231 sanitize_mark_insn_seen(env);
21232 prev_insn_idx = env->insn_idx;
21233
21234 /* Reduce verification complexity by stopping speculative path
21235 * verification when a nospec is encountered.
21236 */
21237 if (state->speculative && insn_aux->nospec)
21238 goto process_bpf_exit;
21239
21240 err = bpf_reset_stack_write_marks(env, env->insn_idx);
21241 if (err)
21242 return err;
21243 err = do_check_insn(env, &do_print_state);
21244 if (err >= 0 || error_recoverable_with_nospec(err)) {
21245 marks_err = bpf_commit_stack_write_marks(env);
21246 if (marks_err)
21247 return marks_err;
21248 }
21249 if (error_recoverable_with_nospec(err) && state->speculative) {
21250 /* Prevent this speculative path from ever reaching the
21251 * insn that would have been unsafe to execute.
21252 */
21253 insn_aux->nospec = true;
21254 /* If it was an ADD/SUB insn, potentially remove any
21255 * markings for alu sanitization.
21256 */
21257 insn_aux->alu_state = 0;
21258 goto process_bpf_exit;
21259 } else if (err < 0) {
21260 return err;
21261 } else if (err == PROCESS_BPF_EXIT) {
21262 goto process_bpf_exit;
21263 }
21264 WARN_ON_ONCE(err);
21265
21266 if (state->speculative && insn_aux->nospec_result) {
21267 /* If we are on a path that performed a jump-op, this
21268 * may skip a nospec patched-in after the jump. This can
21269 * currently never happen because nospec_result is only
21270 * used for the write-ops
21271 * `*(size*)(dst_reg+off)=src_reg|imm32` and helper
21272 * calls. These must never skip the following insn
21273 * (i.e., bpf_insn_successors()'s opcode_info.can_jump
21274 * is false). Still, add a warning to document this in
21275 * case nospec_result is used elsewhere in the future.
21276 *
21277 * All non-branch instructions have a single
21278 * fall-through edge. For these, nospec_result should
21279 * already work.
21280 */
21281 if (verifier_bug_if((BPF_CLASS(insn->code) == BPF_JMP ||
21282 BPF_CLASS(insn->code) == BPF_JMP32) &&
21283 BPF_OP(insn->code) != BPF_CALL, env,
21284 "speculation barrier after jump instruction may not have the desired effect"))
21285 return -EFAULT;
21286 process_bpf_exit:
21287 mark_verifier_state_scratched(env);
21288 err = update_branch_counts(env, env->cur_state);
21289 if (err)
21290 return err;
21291 err = bpf_update_live_stack(env);
21292 if (err)
21293 return err;
21294 err = pop_stack(env, &prev_insn_idx, &env->insn_idx,
21295 pop_log);
21296 if (err < 0) {
21297 if (err != -ENOENT)
21298 return err;
21299 break;
21300 } else {
21301 do_print_state = true;
21302 continue;
21303 }
21304 }
21305 }
21306
21307 return 0;
21308 }
21309
find_btf_percpu_datasec(struct btf * btf)21310 static int find_btf_percpu_datasec(struct btf *btf)
21311 {
21312 const struct btf_type *t;
21313 const char *tname;
21314 int i, n;
21315
21316 /*
21317 * Both vmlinux and module each have their own ".data..percpu"
21318 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
21319 * types to look at only module's own BTF types.
21320 */
21321 n = btf_nr_types(btf);
21322 for (i = btf_named_start_id(btf, true); i < n; i++) {
21323 t = btf_type_by_id(btf, i);
21324 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
21325 continue;
21326
21327 tname = btf_name_by_offset(btf, t->name_off);
21328 if (!strcmp(tname, ".data..percpu"))
21329 return i;
21330 }
21331
21332 return -ENOENT;
21333 }
21334
21335 /*
21336 * Add btf to the env->used_btfs array. If needed, refcount the
21337 * corresponding kernel module. To simplify caller's logic
21338 * in case of error or if btf was added before the function
21339 * decreases the btf refcount.
21340 */
__add_used_btf(struct bpf_verifier_env * env,struct btf * btf)21341 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
21342 {
21343 struct btf_mod_pair *btf_mod;
21344 int ret = 0;
21345 int i;
21346
21347 /* check whether we recorded this BTF (and maybe module) already */
21348 for (i = 0; i < env->used_btf_cnt; i++)
21349 if (env->used_btfs[i].btf == btf)
21350 goto ret_put;
21351
21352 if (env->used_btf_cnt >= MAX_USED_BTFS) {
21353 verbose(env, "The total number of btfs per program has reached the limit of %u\n",
21354 MAX_USED_BTFS);
21355 ret = -E2BIG;
21356 goto ret_put;
21357 }
21358
21359 btf_mod = &env->used_btfs[env->used_btf_cnt];
21360 btf_mod->btf = btf;
21361 btf_mod->module = NULL;
21362
21363 /* if we reference variables from kernel module, bump its refcount */
21364 if (btf_is_module(btf)) {
21365 btf_mod->module = btf_try_get_module(btf);
21366 if (!btf_mod->module) {
21367 ret = -ENXIO;
21368 goto ret_put;
21369 }
21370 }
21371
21372 env->used_btf_cnt++;
21373 return 0;
21374
21375 ret_put:
21376 /* Either error or this BTF was already added */
21377 btf_put(btf);
21378 return ret;
21379 }
21380
21381 /* replace pseudo btf_id with kernel symbol address */
__check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux,struct btf * btf)21382 static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
21383 struct bpf_insn *insn,
21384 struct bpf_insn_aux_data *aux,
21385 struct btf *btf)
21386 {
21387 const struct btf_var_secinfo *vsi;
21388 const struct btf_type *datasec;
21389 const struct btf_type *t;
21390 const char *sym_name;
21391 bool percpu = false;
21392 u32 type, id = insn->imm;
21393 s32 datasec_id;
21394 u64 addr;
21395 int i;
21396
21397 t = btf_type_by_id(btf, id);
21398 if (!t) {
21399 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
21400 return -ENOENT;
21401 }
21402
21403 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
21404 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
21405 return -EINVAL;
21406 }
21407
21408 sym_name = btf_name_by_offset(btf, t->name_off);
21409 addr = kallsyms_lookup_name(sym_name);
21410 if (!addr) {
21411 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
21412 sym_name);
21413 return -ENOENT;
21414 }
21415 insn[0].imm = (u32)addr;
21416 insn[1].imm = addr >> 32;
21417
21418 if (btf_type_is_func(t)) {
21419 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
21420 aux->btf_var.mem_size = 0;
21421 return 0;
21422 }
21423
21424 datasec_id = find_btf_percpu_datasec(btf);
21425 if (datasec_id > 0) {
21426 datasec = btf_type_by_id(btf, datasec_id);
21427 for_each_vsi(i, datasec, vsi) {
21428 if (vsi->type == id) {
21429 percpu = true;
21430 break;
21431 }
21432 }
21433 }
21434
21435 type = t->type;
21436 t = btf_type_skip_modifiers(btf, type, NULL);
21437 if (percpu) {
21438 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
21439 aux->btf_var.btf = btf;
21440 aux->btf_var.btf_id = type;
21441 } else if (!btf_type_is_struct(t)) {
21442 const struct btf_type *ret;
21443 const char *tname;
21444 u32 tsize;
21445
21446 /* resolve the type size of ksym. */
21447 ret = btf_resolve_size(btf, t, &tsize);
21448 if (IS_ERR(ret)) {
21449 tname = btf_name_by_offset(btf, t->name_off);
21450 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
21451 tname, PTR_ERR(ret));
21452 return -EINVAL;
21453 }
21454 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
21455 aux->btf_var.mem_size = tsize;
21456 } else {
21457 aux->btf_var.reg_type = PTR_TO_BTF_ID;
21458 aux->btf_var.btf = btf;
21459 aux->btf_var.btf_id = type;
21460 }
21461
21462 return 0;
21463 }
21464
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)21465 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
21466 struct bpf_insn *insn,
21467 struct bpf_insn_aux_data *aux)
21468 {
21469 struct btf *btf;
21470 int btf_fd;
21471 int err;
21472
21473 btf_fd = insn[1].imm;
21474 if (btf_fd) {
21475 btf = btf_get_by_fd(btf_fd);
21476 if (IS_ERR(btf)) {
21477 verbose(env, "invalid module BTF object FD specified.\n");
21478 return -EINVAL;
21479 }
21480 } else {
21481 if (!btf_vmlinux) {
21482 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
21483 return -EINVAL;
21484 }
21485 btf_get(btf_vmlinux);
21486 btf = btf_vmlinux;
21487 }
21488
21489 err = __check_pseudo_btf_id(env, insn, aux, btf);
21490 if (err) {
21491 btf_put(btf);
21492 return err;
21493 }
21494
21495 return __add_used_btf(env, btf);
21496 }
21497
is_tracing_prog_type(enum bpf_prog_type type)21498 static bool is_tracing_prog_type(enum bpf_prog_type type)
21499 {
21500 switch (type) {
21501 case BPF_PROG_TYPE_KPROBE:
21502 case BPF_PROG_TYPE_TRACEPOINT:
21503 case BPF_PROG_TYPE_PERF_EVENT:
21504 case BPF_PROG_TYPE_RAW_TRACEPOINT:
21505 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
21506 return true;
21507 default:
21508 return false;
21509 }
21510 }
21511
bpf_map_is_cgroup_storage(struct bpf_map * map)21512 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
21513 {
21514 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
21515 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
21516 }
21517
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)21518 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
21519 struct bpf_map *map,
21520 struct bpf_prog *prog)
21521
21522 {
21523 enum bpf_prog_type prog_type = resolve_prog_type(prog);
21524
21525 if (map->excl_prog_sha &&
21526 memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) {
21527 verbose(env, "program's hash doesn't match map's excl_prog_hash\n");
21528 return -EACCES;
21529 }
21530
21531 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
21532 btf_record_has_field(map->record, BPF_RB_ROOT)) {
21533 if (is_tracing_prog_type(prog_type)) {
21534 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
21535 return -EINVAL;
21536 }
21537 }
21538
21539 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
21540 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
21541 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
21542 return -EINVAL;
21543 }
21544
21545 if (is_tracing_prog_type(prog_type)) {
21546 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
21547 return -EINVAL;
21548 }
21549 }
21550
21551 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
21552 !bpf_offload_prog_map_match(prog, map)) {
21553 verbose(env, "offload device mismatch between prog and map\n");
21554 return -EINVAL;
21555 }
21556
21557 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
21558 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
21559 return -EINVAL;
21560 }
21561
21562 if (prog->sleepable)
21563 switch (map->map_type) {
21564 case BPF_MAP_TYPE_HASH:
21565 case BPF_MAP_TYPE_LRU_HASH:
21566 case BPF_MAP_TYPE_ARRAY:
21567 case BPF_MAP_TYPE_PERCPU_HASH:
21568 case BPF_MAP_TYPE_PERCPU_ARRAY:
21569 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
21570 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
21571 case BPF_MAP_TYPE_HASH_OF_MAPS:
21572 case BPF_MAP_TYPE_RINGBUF:
21573 case BPF_MAP_TYPE_USER_RINGBUF:
21574 case BPF_MAP_TYPE_INODE_STORAGE:
21575 case BPF_MAP_TYPE_SK_STORAGE:
21576 case BPF_MAP_TYPE_TASK_STORAGE:
21577 case BPF_MAP_TYPE_CGRP_STORAGE:
21578 case BPF_MAP_TYPE_QUEUE:
21579 case BPF_MAP_TYPE_STACK:
21580 case BPF_MAP_TYPE_ARENA:
21581 case BPF_MAP_TYPE_INSN_ARRAY:
21582 case BPF_MAP_TYPE_PROG_ARRAY:
21583 break;
21584 default:
21585 verbose(env,
21586 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
21587 return -EINVAL;
21588 }
21589
21590 if (bpf_map_is_cgroup_storage(map) &&
21591 bpf_cgroup_storage_assign(env->prog->aux, map)) {
21592 verbose(env, "only one cgroup storage of each type is allowed\n");
21593 return -EBUSY;
21594 }
21595
21596 if (map->map_type == BPF_MAP_TYPE_ARENA) {
21597 if (env->prog->aux->arena) {
21598 verbose(env, "Only one arena per program\n");
21599 return -EBUSY;
21600 }
21601 if (!env->allow_ptr_leaks || !env->bpf_capable) {
21602 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
21603 return -EPERM;
21604 }
21605 if (!env->prog->jit_requested) {
21606 verbose(env, "JIT is required to use arena\n");
21607 return -EOPNOTSUPP;
21608 }
21609 if (!bpf_jit_supports_arena()) {
21610 verbose(env, "JIT doesn't support arena\n");
21611 return -EOPNOTSUPP;
21612 }
21613 env->prog->aux->arena = (void *)map;
21614 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
21615 verbose(env, "arena's user address must be set via map_extra or mmap()\n");
21616 return -EINVAL;
21617 }
21618 }
21619
21620 return 0;
21621 }
21622
__add_used_map(struct bpf_verifier_env * env,struct bpf_map * map)21623 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
21624 {
21625 int i, err;
21626
21627 /* check whether we recorded this map already */
21628 for (i = 0; i < env->used_map_cnt; i++)
21629 if (env->used_maps[i] == map)
21630 return i;
21631
21632 if (env->used_map_cnt >= MAX_USED_MAPS) {
21633 verbose(env, "The total number of maps per program has reached the limit of %u\n",
21634 MAX_USED_MAPS);
21635 return -E2BIG;
21636 }
21637
21638 err = check_map_prog_compatibility(env, map, env->prog);
21639 if (err)
21640 return err;
21641
21642 if (env->prog->sleepable)
21643 atomic64_inc(&map->sleepable_refcnt);
21644
21645 /* hold the map. If the program is rejected by verifier,
21646 * the map will be released by release_maps() or it
21647 * will be used by the valid program until it's unloaded
21648 * and all maps are released in bpf_free_used_maps()
21649 */
21650 bpf_map_inc(map);
21651
21652 env->used_maps[env->used_map_cnt++] = map;
21653
21654 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
21655 err = bpf_insn_array_init(map, env->prog);
21656 if (err) {
21657 verbose(env, "Failed to properly initialize insn array\n");
21658 return err;
21659 }
21660 env->insn_array_maps[env->insn_array_map_cnt++] = map;
21661 }
21662
21663 return env->used_map_cnt - 1;
21664 }
21665
21666 /* Add map behind fd to used maps list, if it's not already there, and return
21667 * its index.
21668 * Returns <0 on error, or >= 0 index, on success.
21669 */
add_used_map(struct bpf_verifier_env * env,int fd)21670 static int add_used_map(struct bpf_verifier_env *env, int fd)
21671 {
21672 struct bpf_map *map;
21673 CLASS(fd, f)(fd);
21674
21675 map = __bpf_map_get(f);
21676 if (IS_ERR(map)) {
21677 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
21678 return PTR_ERR(map);
21679 }
21680
21681 return __add_used_map(env, map);
21682 }
21683
21684 /* find and rewrite pseudo imm in ld_imm64 instructions:
21685 *
21686 * 1. if it accesses map FD, replace it with actual map pointer.
21687 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
21688 *
21689 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
21690 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)21691 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
21692 {
21693 struct bpf_insn *insn = env->prog->insnsi;
21694 int insn_cnt = env->prog->len;
21695 int i, err;
21696
21697 err = bpf_prog_calc_tag(env->prog);
21698 if (err)
21699 return err;
21700
21701 for (i = 0; i < insn_cnt; i++, insn++) {
21702 if (BPF_CLASS(insn->code) == BPF_LDX &&
21703 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
21704 insn->imm != 0)) {
21705 verbose(env, "BPF_LDX uses reserved fields\n");
21706 return -EINVAL;
21707 }
21708
21709 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
21710 struct bpf_insn_aux_data *aux;
21711 struct bpf_map *map;
21712 int map_idx;
21713 u64 addr;
21714 u32 fd;
21715
21716 if (i == insn_cnt - 1 || insn[1].code != 0 ||
21717 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
21718 insn[1].off != 0) {
21719 verbose(env, "invalid bpf_ld_imm64 insn\n");
21720 return -EINVAL;
21721 }
21722
21723 if (insn[0].src_reg == 0)
21724 /* valid generic load 64-bit imm */
21725 goto next_insn;
21726
21727 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
21728 aux = &env->insn_aux_data[i];
21729 err = check_pseudo_btf_id(env, insn, aux);
21730 if (err)
21731 return err;
21732 goto next_insn;
21733 }
21734
21735 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
21736 aux = &env->insn_aux_data[i];
21737 aux->ptr_type = PTR_TO_FUNC;
21738 goto next_insn;
21739 }
21740
21741 /* In final convert_pseudo_ld_imm64() step, this is
21742 * converted into regular 64-bit imm load insn.
21743 */
21744 switch (insn[0].src_reg) {
21745 case BPF_PSEUDO_MAP_VALUE:
21746 case BPF_PSEUDO_MAP_IDX_VALUE:
21747 break;
21748 case BPF_PSEUDO_MAP_FD:
21749 case BPF_PSEUDO_MAP_IDX:
21750 if (insn[1].imm == 0)
21751 break;
21752 fallthrough;
21753 default:
21754 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
21755 return -EINVAL;
21756 }
21757
21758 switch (insn[0].src_reg) {
21759 case BPF_PSEUDO_MAP_IDX_VALUE:
21760 case BPF_PSEUDO_MAP_IDX:
21761 if (bpfptr_is_null(env->fd_array)) {
21762 verbose(env, "fd_idx without fd_array is invalid\n");
21763 return -EPROTO;
21764 }
21765 if (copy_from_bpfptr_offset(&fd, env->fd_array,
21766 insn[0].imm * sizeof(fd),
21767 sizeof(fd)))
21768 return -EFAULT;
21769 break;
21770 default:
21771 fd = insn[0].imm;
21772 break;
21773 }
21774
21775 map_idx = add_used_map(env, fd);
21776 if (map_idx < 0)
21777 return map_idx;
21778 map = env->used_maps[map_idx];
21779
21780 aux = &env->insn_aux_data[i];
21781 aux->map_index = map_idx;
21782
21783 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
21784 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
21785 addr = (unsigned long)map;
21786 } else {
21787 u32 off = insn[1].imm;
21788
21789 if (!map->ops->map_direct_value_addr) {
21790 verbose(env, "no direct value access support for this map type\n");
21791 return -EINVAL;
21792 }
21793
21794 err = map->ops->map_direct_value_addr(map, &addr, off);
21795 if (err) {
21796 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
21797 map->value_size, off);
21798 return err;
21799 }
21800
21801 aux->map_off = off;
21802 addr += off;
21803 }
21804
21805 insn[0].imm = (u32)addr;
21806 insn[1].imm = addr >> 32;
21807
21808 next_insn:
21809 insn++;
21810 i++;
21811 continue;
21812 }
21813
21814 /* Basic sanity check before we invest more work here. */
21815 if (!bpf_opcode_in_insntable(insn->code)) {
21816 verbose(env, "unknown opcode %02x\n", insn->code);
21817 return -EINVAL;
21818 }
21819 }
21820
21821 /* now all pseudo BPF_LD_IMM64 instructions load valid
21822 * 'struct bpf_map *' into a register instead of user map_fd.
21823 * These pointers will be used later by verifier to validate map access.
21824 */
21825 return 0;
21826 }
21827
21828 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)21829 static void release_maps(struct bpf_verifier_env *env)
21830 {
21831 __bpf_free_used_maps(env->prog->aux, env->used_maps,
21832 env->used_map_cnt);
21833 }
21834
21835 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)21836 static void release_btfs(struct bpf_verifier_env *env)
21837 {
21838 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
21839 }
21840
21841 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)21842 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
21843 {
21844 struct bpf_insn *insn = env->prog->insnsi;
21845 int insn_cnt = env->prog->len;
21846 int i;
21847
21848 for (i = 0; i < insn_cnt; i++, insn++) {
21849 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
21850 continue;
21851 if (insn->src_reg == BPF_PSEUDO_FUNC)
21852 continue;
21853 insn->src_reg = 0;
21854 }
21855 }
21856
21857 /* single env->prog->insni[off] instruction was replaced with the range
21858 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
21859 * [0, off) and [off, end) to new locations, so the patched range stays zero
21860 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_prog * new_prog,u32 off,u32 cnt)21861 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
21862 struct bpf_prog *new_prog, u32 off, u32 cnt)
21863 {
21864 struct bpf_insn_aux_data *data = env->insn_aux_data;
21865 struct bpf_insn *insn = new_prog->insnsi;
21866 u32 old_seen = data[off].seen;
21867 u32 prog_len;
21868 int i;
21869
21870 /* aux info at OFF always needs adjustment, no matter fast path
21871 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
21872 * original insn at old prog.
21873 */
21874 data[off].zext_dst = insn_has_def32(insn + off + cnt - 1);
21875
21876 if (cnt == 1)
21877 return;
21878 prog_len = new_prog->len;
21879
21880 memmove(data + off + cnt - 1, data + off,
21881 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
21882 memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1));
21883 for (i = off; i < off + cnt - 1; i++) {
21884 /* Expand insni[off]'s seen count to the patched range. */
21885 data[i].seen = old_seen;
21886 data[i].zext_dst = insn_has_def32(insn + i);
21887 }
21888 }
21889
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)21890 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
21891 {
21892 int i;
21893
21894 if (len == 1)
21895 return;
21896 /* NOTE: fake 'exit' subprog should be updated as well. */
21897 for (i = 0; i <= env->subprog_cnt; i++) {
21898 if (env->subprog_info[i].start <= off)
21899 continue;
21900 env->subprog_info[i].start += len - 1;
21901 }
21902 }
21903
release_insn_arrays(struct bpf_verifier_env * env)21904 static void release_insn_arrays(struct bpf_verifier_env *env)
21905 {
21906 int i;
21907
21908 for (i = 0; i < env->insn_array_map_cnt; i++)
21909 bpf_insn_array_release(env->insn_array_maps[i]);
21910 }
21911
adjust_insn_arrays(struct bpf_verifier_env * env,u32 off,u32 len)21912 static void adjust_insn_arrays(struct bpf_verifier_env *env, u32 off, u32 len)
21913 {
21914 int i;
21915
21916 if (len == 1)
21917 return;
21918
21919 for (i = 0; i < env->insn_array_map_cnt; i++)
21920 bpf_insn_array_adjust(env->insn_array_maps[i], off, len);
21921 }
21922
adjust_insn_arrays_after_remove(struct bpf_verifier_env * env,u32 off,u32 len)21923 static void adjust_insn_arrays_after_remove(struct bpf_verifier_env *env, u32 off, u32 len)
21924 {
21925 int i;
21926
21927 for (i = 0; i < env->insn_array_map_cnt; i++)
21928 bpf_insn_array_adjust_after_remove(env->insn_array_maps[i], off, len);
21929 }
21930
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)21931 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
21932 {
21933 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
21934 int i, sz = prog->aux->size_poke_tab;
21935 struct bpf_jit_poke_descriptor *desc;
21936
21937 for (i = 0; i < sz; i++) {
21938 desc = &tab[i];
21939 if (desc->insn_idx <= off)
21940 continue;
21941 desc->insn_idx += len - 1;
21942 }
21943 }
21944
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)21945 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
21946 const struct bpf_insn *patch, u32 len)
21947 {
21948 struct bpf_prog *new_prog;
21949 struct bpf_insn_aux_data *new_data = NULL;
21950
21951 if (len > 1) {
21952 new_data = vrealloc(env->insn_aux_data,
21953 array_size(env->prog->len + len - 1,
21954 sizeof(struct bpf_insn_aux_data)),
21955 GFP_KERNEL_ACCOUNT | __GFP_ZERO);
21956 if (!new_data)
21957 return NULL;
21958
21959 env->insn_aux_data = new_data;
21960 }
21961
21962 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
21963 if (IS_ERR(new_prog)) {
21964 if (PTR_ERR(new_prog) == -ERANGE)
21965 verbose(env,
21966 "insn %d cannot be patched due to 16-bit range\n",
21967 env->insn_aux_data[off].orig_idx);
21968 return NULL;
21969 }
21970 adjust_insn_aux_data(env, new_prog, off, len);
21971 adjust_subprog_starts(env, off, len);
21972 adjust_insn_arrays(env, off, len);
21973 adjust_poke_descs(new_prog, off, len);
21974 return new_prog;
21975 }
21976
21977 /*
21978 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
21979 * jump offset by 'delta'.
21980 */
adjust_jmp_off(struct bpf_prog * prog,u32 tgt_idx,u32 delta)21981 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
21982 {
21983 struct bpf_insn *insn = prog->insnsi;
21984 u32 insn_cnt = prog->len, i;
21985 s32 imm;
21986 s16 off;
21987
21988 for (i = 0; i < insn_cnt; i++, insn++) {
21989 u8 code = insn->code;
21990
21991 if (tgt_idx <= i && i < tgt_idx + delta)
21992 continue;
21993
21994 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
21995 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
21996 continue;
21997
21998 if (insn->code == (BPF_JMP32 | BPF_JA)) {
21999 if (i + 1 + insn->imm != tgt_idx)
22000 continue;
22001 if (check_add_overflow(insn->imm, delta, &imm))
22002 return -ERANGE;
22003 insn->imm = imm;
22004 } else {
22005 if (i + 1 + insn->off != tgt_idx)
22006 continue;
22007 if (check_add_overflow(insn->off, delta, &off))
22008 return -ERANGE;
22009 insn->off = off;
22010 }
22011 }
22012 return 0;
22013 }
22014
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)22015 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
22016 u32 off, u32 cnt)
22017 {
22018 int i, j;
22019
22020 /* find first prog starting at or after off (first to remove) */
22021 for (i = 0; i < env->subprog_cnt; i++)
22022 if (env->subprog_info[i].start >= off)
22023 break;
22024 /* find first prog starting at or after off + cnt (first to stay) */
22025 for (j = i; j < env->subprog_cnt; j++)
22026 if (env->subprog_info[j].start >= off + cnt)
22027 break;
22028 /* if j doesn't start exactly at off + cnt, we are just removing
22029 * the front of previous prog
22030 */
22031 if (env->subprog_info[j].start != off + cnt)
22032 j--;
22033
22034 if (j > i) {
22035 struct bpf_prog_aux *aux = env->prog->aux;
22036 int move;
22037
22038 /* move fake 'exit' subprog as well */
22039 move = env->subprog_cnt + 1 - j;
22040
22041 memmove(env->subprog_info + i,
22042 env->subprog_info + j,
22043 sizeof(*env->subprog_info) * move);
22044 env->subprog_cnt -= j - i;
22045
22046 /* remove func_info */
22047 if (aux->func_info) {
22048 move = aux->func_info_cnt - j;
22049
22050 memmove(aux->func_info + i,
22051 aux->func_info + j,
22052 sizeof(*aux->func_info) * move);
22053 aux->func_info_cnt -= j - i;
22054 /* func_info->insn_off is set after all code rewrites,
22055 * in adjust_btf_func() - no need to adjust
22056 */
22057 }
22058 } else {
22059 /* convert i from "first prog to remove" to "first to adjust" */
22060 if (env->subprog_info[i].start == off)
22061 i++;
22062 }
22063
22064 /* update fake 'exit' subprog as well */
22065 for (; i <= env->subprog_cnt; i++)
22066 env->subprog_info[i].start -= cnt;
22067
22068 return 0;
22069 }
22070
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)22071 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
22072 u32 cnt)
22073 {
22074 struct bpf_prog *prog = env->prog;
22075 u32 i, l_off, l_cnt, nr_linfo;
22076 struct bpf_line_info *linfo;
22077
22078 nr_linfo = prog->aux->nr_linfo;
22079 if (!nr_linfo)
22080 return 0;
22081
22082 linfo = prog->aux->linfo;
22083
22084 /* find first line info to remove, count lines to be removed */
22085 for (i = 0; i < nr_linfo; i++)
22086 if (linfo[i].insn_off >= off)
22087 break;
22088
22089 l_off = i;
22090 l_cnt = 0;
22091 for (; i < nr_linfo; i++)
22092 if (linfo[i].insn_off < off + cnt)
22093 l_cnt++;
22094 else
22095 break;
22096
22097 /* First live insn doesn't match first live linfo, it needs to "inherit"
22098 * last removed linfo. prog is already modified, so prog->len == off
22099 * means no live instructions after (tail of the program was removed).
22100 */
22101 if (prog->len != off && l_cnt &&
22102 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
22103 l_cnt--;
22104 linfo[--i].insn_off = off + cnt;
22105 }
22106
22107 /* remove the line info which refer to the removed instructions */
22108 if (l_cnt) {
22109 memmove(linfo + l_off, linfo + i,
22110 sizeof(*linfo) * (nr_linfo - i));
22111
22112 prog->aux->nr_linfo -= l_cnt;
22113 nr_linfo = prog->aux->nr_linfo;
22114 }
22115
22116 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
22117 for (i = l_off; i < nr_linfo; i++)
22118 linfo[i].insn_off -= cnt;
22119
22120 /* fix up all subprogs (incl. 'exit') which start >= off */
22121 for (i = 0; i <= env->subprog_cnt; i++)
22122 if (env->subprog_info[i].linfo_idx > l_off) {
22123 /* program may have started in the removed region but
22124 * may not be fully removed
22125 */
22126 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
22127 env->subprog_info[i].linfo_idx -= l_cnt;
22128 else
22129 env->subprog_info[i].linfo_idx = l_off;
22130 }
22131
22132 return 0;
22133 }
22134
22135 /*
22136 * Clean up dynamically allocated fields of aux data for instructions [start, ...]
22137 */
clear_insn_aux_data(struct bpf_verifier_env * env,int start,int len)22138 static void clear_insn_aux_data(struct bpf_verifier_env *env, int start, int len)
22139 {
22140 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
22141 struct bpf_insn *insns = env->prog->insnsi;
22142 int end = start + len;
22143 int i;
22144
22145 for (i = start; i < end; i++) {
22146 if (aux_data[i].jt) {
22147 kvfree(aux_data[i].jt);
22148 aux_data[i].jt = NULL;
22149 }
22150
22151 if (bpf_is_ldimm64(&insns[i]))
22152 i++;
22153 }
22154 }
22155
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)22156 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
22157 {
22158 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
22159 unsigned int orig_prog_len = env->prog->len;
22160 int err;
22161
22162 if (bpf_prog_is_offloaded(env->prog->aux))
22163 bpf_prog_offload_remove_insns(env, off, cnt);
22164
22165 /* Should be called before bpf_remove_insns, as it uses prog->insnsi */
22166 clear_insn_aux_data(env, off, cnt);
22167
22168 err = bpf_remove_insns(env->prog, off, cnt);
22169 if (err)
22170 return err;
22171
22172 err = adjust_subprog_starts_after_remove(env, off, cnt);
22173 if (err)
22174 return err;
22175
22176 err = bpf_adj_linfo_after_remove(env, off, cnt);
22177 if (err)
22178 return err;
22179
22180 adjust_insn_arrays_after_remove(env, off, cnt);
22181
22182 memmove(aux_data + off, aux_data + off + cnt,
22183 sizeof(*aux_data) * (orig_prog_len - off - cnt));
22184
22185 return 0;
22186 }
22187
22188 /* The verifier does more data flow analysis than llvm and will not
22189 * explore branches that are dead at run time. Malicious programs can
22190 * have dead code too. Therefore replace all dead at-run-time code
22191 * with 'ja -1'.
22192 *
22193 * Just nops are not optimal, e.g. if they would sit at the end of the
22194 * program and through another bug we would manage to jump there, then
22195 * we'd execute beyond program memory otherwise. Returning exception
22196 * code also wouldn't work since we can have subprogs where the dead
22197 * code could be located.
22198 */
sanitize_dead_code(struct bpf_verifier_env * env)22199 static void sanitize_dead_code(struct bpf_verifier_env *env)
22200 {
22201 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
22202 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
22203 struct bpf_insn *insn = env->prog->insnsi;
22204 const int insn_cnt = env->prog->len;
22205 int i;
22206
22207 for (i = 0; i < insn_cnt; i++) {
22208 if (aux_data[i].seen)
22209 continue;
22210 memcpy(insn + i, &trap, sizeof(trap));
22211 aux_data[i].zext_dst = false;
22212 }
22213 }
22214
insn_is_cond_jump(u8 code)22215 static bool insn_is_cond_jump(u8 code)
22216 {
22217 u8 op;
22218
22219 op = BPF_OP(code);
22220 if (BPF_CLASS(code) == BPF_JMP32)
22221 return op != BPF_JA;
22222
22223 if (BPF_CLASS(code) != BPF_JMP)
22224 return false;
22225
22226 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
22227 }
22228
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)22229 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
22230 {
22231 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
22232 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
22233 struct bpf_insn *insn = env->prog->insnsi;
22234 const int insn_cnt = env->prog->len;
22235 int i;
22236
22237 for (i = 0; i < insn_cnt; i++, insn++) {
22238 if (!insn_is_cond_jump(insn->code))
22239 continue;
22240
22241 if (!aux_data[i + 1].seen)
22242 ja.off = insn->off;
22243 else if (!aux_data[i + 1 + insn->off].seen)
22244 ja.off = 0;
22245 else
22246 continue;
22247
22248 if (bpf_prog_is_offloaded(env->prog->aux))
22249 bpf_prog_offload_replace_insn(env, i, &ja);
22250
22251 memcpy(insn, &ja, sizeof(ja));
22252 }
22253 }
22254
opt_remove_dead_code(struct bpf_verifier_env * env)22255 static int opt_remove_dead_code(struct bpf_verifier_env *env)
22256 {
22257 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
22258 int insn_cnt = env->prog->len;
22259 int i, err;
22260
22261 for (i = 0; i < insn_cnt; i++) {
22262 int j;
22263
22264 j = 0;
22265 while (i + j < insn_cnt && !aux_data[i + j].seen)
22266 j++;
22267 if (!j)
22268 continue;
22269
22270 err = verifier_remove_insns(env, i, j);
22271 if (err)
22272 return err;
22273 insn_cnt = env->prog->len;
22274 }
22275
22276 return 0;
22277 }
22278
22279 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
22280 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
22281
opt_remove_nops(struct bpf_verifier_env * env)22282 static int opt_remove_nops(struct bpf_verifier_env *env)
22283 {
22284 struct bpf_insn *insn = env->prog->insnsi;
22285 int insn_cnt = env->prog->len;
22286 bool is_may_goto_0, is_ja;
22287 int i, err;
22288
22289 for (i = 0; i < insn_cnt; i++) {
22290 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
22291 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
22292
22293 if (!is_may_goto_0 && !is_ja)
22294 continue;
22295
22296 err = verifier_remove_insns(env, i, 1);
22297 if (err)
22298 return err;
22299 insn_cnt--;
22300 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */
22301 i -= (is_may_goto_0 && i > 0) ? 2 : 1;
22302 }
22303
22304 return 0;
22305 }
22306
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)22307 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
22308 const union bpf_attr *attr)
22309 {
22310 struct bpf_insn *patch;
22311 /* use env->insn_buf as two independent buffers */
22312 struct bpf_insn *zext_patch = env->insn_buf;
22313 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2];
22314 struct bpf_insn_aux_data *aux = env->insn_aux_data;
22315 int i, patch_len, delta = 0, len = env->prog->len;
22316 struct bpf_insn *insns = env->prog->insnsi;
22317 struct bpf_prog *new_prog;
22318 bool rnd_hi32;
22319
22320 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
22321 zext_patch[1] = BPF_ZEXT_REG(0);
22322 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
22323 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
22324 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
22325 for (i = 0; i < len; i++) {
22326 int adj_idx = i + delta;
22327 struct bpf_insn insn;
22328 int load_reg;
22329
22330 insn = insns[adj_idx];
22331 load_reg = insn_def_regno(&insn);
22332 if (!aux[adj_idx].zext_dst) {
22333 u8 code, class;
22334 u32 imm_rnd;
22335
22336 if (!rnd_hi32)
22337 continue;
22338
22339 code = insn.code;
22340 class = BPF_CLASS(code);
22341 if (load_reg == -1)
22342 continue;
22343
22344 /* NOTE: arg "reg" (the fourth one) is only used for
22345 * BPF_STX + SRC_OP, so it is safe to pass NULL
22346 * here.
22347 */
22348 if (is_reg64(&insn, load_reg, NULL, DST_OP)) {
22349 if (class == BPF_LD &&
22350 BPF_MODE(code) == BPF_IMM)
22351 i++;
22352 continue;
22353 }
22354
22355 /* ctx load could be transformed into wider load. */
22356 if (class == BPF_LDX &&
22357 aux[adj_idx].ptr_type == PTR_TO_CTX)
22358 continue;
22359
22360 imm_rnd = get_random_u32();
22361 rnd_hi32_patch[0] = insn;
22362 rnd_hi32_patch[1].imm = imm_rnd;
22363 rnd_hi32_patch[3].dst_reg = load_reg;
22364 patch = rnd_hi32_patch;
22365 patch_len = 4;
22366 goto apply_patch_buffer;
22367 }
22368
22369 /* Add in an zero-extend instruction if a) the JIT has requested
22370 * it or b) it's a CMPXCHG.
22371 *
22372 * The latter is because: BPF_CMPXCHG always loads a value into
22373 * R0, therefore always zero-extends. However some archs'
22374 * equivalent instruction only does this load when the
22375 * comparison is successful. This detail of CMPXCHG is
22376 * orthogonal to the general zero-extension behaviour of the
22377 * CPU, so it's treated independently of bpf_jit_needs_zext.
22378 */
22379 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
22380 continue;
22381
22382 /* Zero-extension is done by the caller. */
22383 if (bpf_pseudo_kfunc_call(&insn))
22384 continue;
22385
22386 if (verifier_bug_if(load_reg == -1, env,
22387 "zext_dst is set, but no reg is defined"))
22388 return -EFAULT;
22389
22390 zext_patch[0] = insn;
22391 zext_patch[1].dst_reg = load_reg;
22392 zext_patch[1].src_reg = load_reg;
22393 patch = zext_patch;
22394 patch_len = 2;
22395 apply_patch_buffer:
22396 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
22397 if (!new_prog)
22398 return -ENOMEM;
22399 env->prog = new_prog;
22400 insns = new_prog->insnsi;
22401 aux = env->insn_aux_data;
22402 delta += patch_len - 1;
22403 }
22404
22405 return 0;
22406 }
22407
22408 /* convert load instructions that access fields of a context type into a
22409 * sequence of instructions that access fields of the underlying structure:
22410 * struct __sk_buff -> struct sk_buff
22411 * struct bpf_sock_ops -> struct sock
22412 */
convert_ctx_accesses(struct bpf_verifier_env * env)22413 static int convert_ctx_accesses(struct bpf_verifier_env *env)
22414 {
22415 struct bpf_subprog_info *subprogs = env->subprog_info;
22416 const struct bpf_verifier_ops *ops = env->ops;
22417 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
22418 const int insn_cnt = env->prog->len;
22419 struct bpf_insn *epilogue_buf = env->epilogue_buf;
22420 struct bpf_insn *insn_buf = env->insn_buf;
22421 struct bpf_insn *insn;
22422 u32 target_size, size_default, off;
22423 struct bpf_prog *new_prog;
22424 enum bpf_access_type type;
22425 bool is_narrower_load;
22426 int epilogue_idx = 0;
22427
22428 if (ops->gen_epilogue) {
22429 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
22430 -(subprogs[0].stack_depth + 8));
22431 if (epilogue_cnt >= INSN_BUF_SIZE) {
22432 verifier_bug(env, "epilogue is too long");
22433 return -EFAULT;
22434 } else if (epilogue_cnt) {
22435 /* Save the ARG_PTR_TO_CTX for the epilogue to use */
22436 cnt = 0;
22437 subprogs[0].stack_depth += 8;
22438 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
22439 -subprogs[0].stack_depth);
22440 insn_buf[cnt++] = env->prog->insnsi[0];
22441 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
22442 if (!new_prog)
22443 return -ENOMEM;
22444 env->prog = new_prog;
22445 delta += cnt - 1;
22446
22447 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
22448 if (ret < 0)
22449 return ret;
22450 }
22451 }
22452
22453 if (ops->gen_prologue || env->seen_direct_write) {
22454 if (!ops->gen_prologue) {
22455 verifier_bug(env, "gen_prologue is null");
22456 return -EFAULT;
22457 }
22458 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
22459 env->prog);
22460 if (cnt >= INSN_BUF_SIZE) {
22461 verifier_bug(env, "prologue is too long");
22462 return -EFAULT;
22463 } else if (cnt) {
22464 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
22465 if (!new_prog)
22466 return -ENOMEM;
22467
22468 env->prog = new_prog;
22469 delta += cnt - 1;
22470
22471 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
22472 if (ret < 0)
22473 return ret;
22474 }
22475 }
22476
22477 if (delta)
22478 WARN_ON(adjust_jmp_off(env->prog, 0, delta));
22479
22480 if (bpf_prog_is_offloaded(env->prog->aux))
22481 return 0;
22482
22483 insn = env->prog->insnsi + delta;
22484
22485 for (i = 0; i < insn_cnt; i++, insn++) {
22486 bpf_convert_ctx_access_t convert_ctx_access;
22487 u8 mode;
22488
22489 if (env->insn_aux_data[i + delta].nospec) {
22490 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state);
22491 struct bpf_insn *patch = insn_buf;
22492
22493 *patch++ = BPF_ST_NOSPEC();
22494 *patch++ = *insn;
22495 cnt = patch - insn_buf;
22496 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22497 if (!new_prog)
22498 return -ENOMEM;
22499
22500 delta += cnt - 1;
22501 env->prog = new_prog;
22502 insn = new_prog->insnsi + i + delta;
22503 /* This can not be easily merged with the
22504 * nospec_result-case, because an insn may require a
22505 * nospec before and after itself. Therefore also do not
22506 * 'continue' here but potentially apply further
22507 * patching to insn. *insn should equal patch[1] now.
22508 */
22509 }
22510
22511 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
22512 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
22513 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
22514 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
22515 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
22516 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
22517 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
22518 type = BPF_READ;
22519 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
22520 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
22521 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
22522 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
22523 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
22524 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
22525 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
22526 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
22527 type = BPF_WRITE;
22528 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
22529 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
22530 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
22531 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
22532 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
22533 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
22534 env->prog->aux->num_exentries++;
22535 continue;
22536 } else if (insn->code == (BPF_JMP | BPF_EXIT) &&
22537 epilogue_cnt &&
22538 i + delta < subprogs[1].start) {
22539 /* Generate epilogue for the main prog */
22540 if (epilogue_idx) {
22541 /* jump back to the earlier generated epilogue */
22542 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
22543 cnt = 1;
22544 } else {
22545 memcpy(insn_buf, epilogue_buf,
22546 epilogue_cnt * sizeof(*epilogue_buf));
22547 cnt = epilogue_cnt;
22548 /* epilogue_idx cannot be 0. It must have at
22549 * least one ctx ptr saving insn before the
22550 * epilogue.
22551 */
22552 epilogue_idx = i + delta;
22553 }
22554 goto patch_insn_buf;
22555 } else {
22556 continue;
22557 }
22558
22559 if (type == BPF_WRITE &&
22560 env->insn_aux_data[i + delta].nospec_result) {
22561 /* nospec_result is only used to mitigate Spectre v4 and
22562 * to limit verification-time for Spectre v1.
22563 */
22564 struct bpf_insn *patch = insn_buf;
22565
22566 *patch++ = *insn;
22567 *patch++ = BPF_ST_NOSPEC();
22568 cnt = patch - insn_buf;
22569 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22570 if (!new_prog)
22571 return -ENOMEM;
22572
22573 delta += cnt - 1;
22574 env->prog = new_prog;
22575 insn = new_prog->insnsi + i + delta;
22576 continue;
22577 }
22578
22579 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
22580 case PTR_TO_CTX:
22581 if (!ops->convert_ctx_access)
22582 continue;
22583 convert_ctx_access = ops->convert_ctx_access;
22584 break;
22585 case PTR_TO_SOCKET:
22586 case PTR_TO_SOCK_COMMON:
22587 convert_ctx_access = bpf_sock_convert_ctx_access;
22588 break;
22589 case PTR_TO_TCP_SOCK:
22590 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
22591 break;
22592 case PTR_TO_XDP_SOCK:
22593 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
22594 break;
22595 case PTR_TO_BTF_ID:
22596 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
22597 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
22598 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
22599 * be said once it is marked PTR_UNTRUSTED, hence we must handle
22600 * any faults for loads into such types. BPF_WRITE is disallowed
22601 * for this case.
22602 */
22603 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
22604 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED:
22605 if (type == BPF_READ) {
22606 if (BPF_MODE(insn->code) == BPF_MEM)
22607 insn->code = BPF_LDX | BPF_PROBE_MEM |
22608 BPF_SIZE((insn)->code);
22609 else
22610 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
22611 BPF_SIZE((insn)->code);
22612 env->prog->aux->num_exentries++;
22613 }
22614 continue;
22615 case PTR_TO_ARENA:
22616 if (BPF_MODE(insn->code) == BPF_MEMSX) {
22617 if (!bpf_jit_supports_insn(insn, true)) {
22618 verbose(env, "sign extending loads from arena are not supported yet\n");
22619 return -EOPNOTSUPP;
22620 }
22621 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code);
22622 } else {
22623 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
22624 }
22625 env->prog->aux->num_exentries++;
22626 continue;
22627 default:
22628 continue;
22629 }
22630
22631 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
22632 size = BPF_LDST_BYTES(insn);
22633 mode = BPF_MODE(insn->code);
22634
22635 /* If the read access is a narrower load of the field,
22636 * convert to a 4/8-byte load, to minimum program type specific
22637 * convert_ctx_access changes. If conversion is successful,
22638 * we will apply proper mask to the result.
22639 */
22640 is_narrower_load = size < ctx_field_size;
22641 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
22642 off = insn->off;
22643 if (is_narrower_load) {
22644 u8 size_code;
22645
22646 if (type == BPF_WRITE) {
22647 verifier_bug(env, "narrow ctx access misconfigured");
22648 return -EFAULT;
22649 }
22650
22651 size_code = BPF_H;
22652 if (ctx_field_size == 4)
22653 size_code = BPF_W;
22654 else if (ctx_field_size == 8)
22655 size_code = BPF_DW;
22656
22657 insn->off = off & ~(size_default - 1);
22658 insn->code = BPF_LDX | BPF_MEM | size_code;
22659 }
22660
22661 target_size = 0;
22662 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
22663 &target_size);
22664 if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
22665 (ctx_field_size && !target_size)) {
22666 verifier_bug(env, "error during ctx access conversion (%d)", cnt);
22667 return -EFAULT;
22668 }
22669
22670 if (is_narrower_load && size < target_size) {
22671 u8 shift = bpf_ctx_narrow_access_offset(
22672 off, size, size_default) * 8;
22673 if (shift && cnt + 1 >= INSN_BUF_SIZE) {
22674 verifier_bug(env, "narrow ctx load misconfigured");
22675 return -EFAULT;
22676 }
22677 if (ctx_field_size <= 4) {
22678 if (shift)
22679 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
22680 insn->dst_reg,
22681 shift);
22682 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
22683 (1 << size * 8) - 1);
22684 } else {
22685 if (shift)
22686 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
22687 insn->dst_reg,
22688 shift);
22689 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
22690 (1ULL << size * 8) - 1);
22691 }
22692 }
22693 if (mode == BPF_MEMSX)
22694 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
22695 insn->dst_reg, insn->dst_reg,
22696 size * 8, 0);
22697
22698 patch_insn_buf:
22699 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22700 if (!new_prog)
22701 return -ENOMEM;
22702
22703 delta += cnt - 1;
22704
22705 /* keep walking new program and skip insns we just inserted */
22706 env->prog = new_prog;
22707 insn = new_prog->insnsi + i + delta;
22708 }
22709
22710 return 0;
22711 }
22712
jit_subprogs(struct bpf_verifier_env * env)22713 static int jit_subprogs(struct bpf_verifier_env *env)
22714 {
22715 struct bpf_prog *prog = env->prog, **func, *tmp;
22716 int i, j, subprog_start, subprog_end = 0, len, subprog;
22717 struct bpf_map *map_ptr;
22718 struct bpf_insn *insn;
22719 void *old_bpf_func;
22720 int err, num_exentries;
22721 int old_len, subprog_start_adjustment = 0;
22722
22723 if (env->subprog_cnt <= 1)
22724 return 0;
22725
22726 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
22727 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
22728 continue;
22729
22730 /* Upon error here we cannot fall back to interpreter but
22731 * need a hard reject of the program. Thus -EFAULT is
22732 * propagated in any case.
22733 */
22734 subprog = find_subprog(env, i + insn->imm + 1);
22735 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
22736 i + insn->imm + 1))
22737 return -EFAULT;
22738 /* temporarily remember subprog id inside insn instead of
22739 * aux_data, since next loop will split up all insns into funcs
22740 */
22741 insn->off = subprog;
22742 /* remember original imm in case JIT fails and fallback
22743 * to interpreter will be needed
22744 */
22745 env->insn_aux_data[i].call_imm = insn->imm;
22746 /* point imm to __bpf_call_base+1 from JITs point of view */
22747 insn->imm = 1;
22748 if (bpf_pseudo_func(insn)) {
22749 #if defined(MODULES_VADDR)
22750 u64 addr = MODULES_VADDR;
22751 #else
22752 u64 addr = VMALLOC_START;
22753 #endif
22754 /* jit (e.g. x86_64) may emit fewer instructions
22755 * if it learns a u32 imm is the same as a u64 imm.
22756 * Set close enough to possible prog address.
22757 */
22758 insn[0].imm = (u32)addr;
22759 insn[1].imm = addr >> 32;
22760 }
22761 }
22762
22763 err = bpf_prog_alloc_jited_linfo(prog);
22764 if (err)
22765 goto out_undo_insn;
22766
22767 err = -ENOMEM;
22768 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
22769 if (!func)
22770 goto out_undo_insn;
22771
22772 for (i = 0; i < env->subprog_cnt; i++) {
22773 subprog_start = subprog_end;
22774 subprog_end = env->subprog_info[i + 1].start;
22775
22776 len = subprog_end - subprog_start;
22777 /* bpf_prog_run() doesn't call subprogs directly,
22778 * hence main prog stats include the runtime of subprogs.
22779 * subprogs don't have IDs and not reachable via prog_get_next_id
22780 * func[i]->stats will never be accessed and stays NULL
22781 */
22782 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
22783 if (!func[i])
22784 goto out_free;
22785 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
22786 len * sizeof(struct bpf_insn));
22787 func[i]->type = prog->type;
22788 func[i]->len = len;
22789 if (bpf_prog_calc_tag(func[i]))
22790 goto out_free;
22791 func[i]->is_func = 1;
22792 func[i]->sleepable = prog->sleepable;
22793 func[i]->aux->func_idx = i;
22794 /* Below members will be freed only at prog->aux */
22795 func[i]->aux->btf = prog->aux->btf;
22796 func[i]->aux->subprog_start = subprog_start + subprog_start_adjustment;
22797 func[i]->aux->func_info = prog->aux->func_info;
22798 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
22799 func[i]->aux->poke_tab = prog->aux->poke_tab;
22800 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
22801 func[i]->aux->main_prog_aux = prog->aux;
22802
22803 for (j = 0; j < prog->aux->size_poke_tab; j++) {
22804 struct bpf_jit_poke_descriptor *poke;
22805
22806 poke = &prog->aux->poke_tab[j];
22807 if (poke->insn_idx < subprog_end &&
22808 poke->insn_idx >= subprog_start)
22809 poke->aux = func[i]->aux;
22810 }
22811
22812 func[i]->aux->name[0] = 'F';
22813 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
22814 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
22815 func[i]->aux->jits_use_priv_stack = true;
22816
22817 func[i]->jit_requested = 1;
22818 func[i]->blinding_requested = prog->blinding_requested;
22819 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
22820 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
22821 func[i]->aux->linfo = prog->aux->linfo;
22822 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
22823 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
22824 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
22825 func[i]->aux->arena = prog->aux->arena;
22826 func[i]->aux->used_maps = env->used_maps;
22827 func[i]->aux->used_map_cnt = env->used_map_cnt;
22828 num_exentries = 0;
22829 insn = func[i]->insnsi;
22830 for (j = 0; j < func[i]->len; j++, insn++) {
22831 if (BPF_CLASS(insn->code) == BPF_LDX &&
22832 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
22833 BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
22834 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX ||
22835 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
22836 num_exentries++;
22837 if ((BPF_CLASS(insn->code) == BPF_STX ||
22838 BPF_CLASS(insn->code) == BPF_ST) &&
22839 BPF_MODE(insn->code) == BPF_PROBE_MEM32)
22840 num_exentries++;
22841 if (BPF_CLASS(insn->code) == BPF_STX &&
22842 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
22843 num_exentries++;
22844 }
22845 func[i]->aux->num_exentries = num_exentries;
22846 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
22847 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
22848 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
22849 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
22850 if (!i)
22851 func[i]->aux->exception_boundary = env->seen_exception;
22852
22853 /*
22854 * To properly pass the absolute subprog start to jit
22855 * all instruction adjustments should be accumulated
22856 */
22857 old_len = func[i]->len;
22858 func[i] = bpf_int_jit_compile(func[i]);
22859 subprog_start_adjustment += func[i]->len - old_len;
22860
22861 if (!func[i]->jited) {
22862 err = -ENOTSUPP;
22863 goto out_free;
22864 }
22865 cond_resched();
22866 }
22867
22868 /* at this point all bpf functions were successfully JITed
22869 * now populate all bpf_calls with correct addresses and
22870 * run last pass of JIT
22871 */
22872 for (i = 0; i < env->subprog_cnt; i++) {
22873 insn = func[i]->insnsi;
22874 for (j = 0; j < func[i]->len; j++, insn++) {
22875 if (bpf_pseudo_func(insn)) {
22876 subprog = insn->off;
22877 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
22878 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
22879 continue;
22880 }
22881 if (!bpf_pseudo_call(insn))
22882 continue;
22883 subprog = insn->off;
22884 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
22885 }
22886
22887 /* we use the aux data to keep a list of the start addresses
22888 * of the JITed images for each function in the program
22889 *
22890 * for some architectures, such as powerpc64, the imm field
22891 * might not be large enough to hold the offset of the start
22892 * address of the callee's JITed image from __bpf_call_base
22893 *
22894 * in such cases, we can lookup the start address of a callee
22895 * by using its subprog id, available from the off field of
22896 * the call instruction, as an index for this list
22897 */
22898 func[i]->aux->func = func;
22899 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
22900 func[i]->aux->real_func_cnt = env->subprog_cnt;
22901 }
22902 for (i = 0; i < env->subprog_cnt; i++) {
22903 old_bpf_func = func[i]->bpf_func;
22904 tmp = bpf_int_jit_compile(func[i]);
22905 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
22906 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
22907 err = -ENOTSUPP;
22908 goto out_free;
22909 }
22910 cond_resched();
22911 }
22912
22913 /*
22914 * Cleanup func[i]->aux fields which aren't required
22915 * or can become invalid in future
22916 */
22917 for (i = 0; i < env->subprog_cnt; i++) {
22918 func[i]->aux->used_maps = NULL;
22919 func[i]->aux->used_map_cnt = 0;
22920 }
22921
22922 /* finally lock prog and jit images for all functions and
22923 * populate kallsysm. Begin at the first subprogram, since
22924 * bpf_prog_load will add the kallsyms for the main program.
22925 */
22926 for (i = 1; i < env->subprog_cnt; i++) {
22927 err = bpf_prog_lock_ro(func[i]);
22928 if (err)
22929 goto out_free;
22930 }
22931
22932 for (i = 1; i < env->subprog_cnt; i++)
22933 bpf_prog_kallsyms_add(func[i]);
22934
22935 /* Last step: make now unused interpreter insns from main
22936 * prog consistent for later dump requests, so they can
22937 * later look the same as if they were interpreted only.
22938 */
22939 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
22940 if (bpf_pseudo_func(insn)) {
22941 insn[0].imm = env->insn_aux_data[i].call_imm;
22942 insn[1].imm = insn->off;
22943 insn->off = 0;
22944 continue;
22945 }
22946 if (!bpf_pseudo_call(insn))
22947 continue;
22948 insn->off = env->insn_aux_data[i].call_imm;
22949 subprog = find_subprog(env, i + insn->off + 1);
22950 insn->imm = subprog;
22951 }
22952
22953 prog->jited = 1;
22954 prog->bpf_func = func[0]->bpf_func;
22955 prog->jited_len = func[0]->jited_len;
22956 prog->aux->extable = func[0]->aux->extable;
22957 prog->aux->num_exentries = func[0]->aux->num_exentries;
22958 prog->aux->func = func;
22959 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
22960 prog->aux->real_func_cnt = env->subprog_cnt;
22961 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
22962 prog->aux->exception_boundary = func[0]->aux->exception_boundary;
22963 bpf_prog_jit_attempt_done(prog);
22964 return 0;
22965 out_free:
22966 /* We failed JIT'ing, so at this point we need to unregister poke
22967 * descriptors from subprogs, so that kernel is not attempting to
22968 * patch it anymore as we're freeing the subprog JIT memory.
22969 */
22970 for (i = 0; i < prog->aux->size_poke_tab; i++) {
22971 map_ptr = prog->aux->poke_tab[i].tail_call.map;
22972 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
22973 }
22974 /* At this point we're guaranteed that poke descriptors are not
22975 * live anymore. We can just unlink its descriptor table as it's
22976 * released with the main prog.
22977 */
22978 for (i = 0; i < env->subprog_cnt; i++) {
22979 if (!func[i])
22980 continue;
22981 func[i]->aux->poke_tab = NULL;
22982 bpf_jit_free(func[i]);
22983 }
22984 kfree(func);
22985 out_undo_insn:
22986 /* cleanup main prog to be interpreted */
22987 prog->jit_requested = 0;
22988 prog->blinding_requested = 0;
22989 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
22990 if (!bpf_pseudo_call(insn))
22991 continue;
22992 insn->off = 0;
22993 insn->imm = env->insn_aux_data[i].call_imm;
22994 }
22995 bpf_prog_jit_attempt_done(prog);
22996 return err;
22997 }
22998
fixup_call_args(struct bpf_verifier_env * env)22999 static int fixup_call_args(struct bpf_verifier_env *env)
23000 {
23001 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
23002 struct bpf_prog *prog = env->prog;
23003 struct bpf_insn *insn = prog->insnsi;
23004 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
23005 int i, depth;
23006 #endif
23007 int err = 0;
23008
23009 if (env->prog->jit_requested &&
23010 !bpf_prog_is_offloaded(env->prog->aux)) {
23011 err = jit_subprogs(env);
23012 if (err == 0)
23013 return 0;
23014 if (err == -EFAULT)
23015 return err;
23016 }
23017 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
23018 if (has_kfunc_call) {
23019 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
23020 return -EINVAL;
23021 }
23022 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
23023 /* When JIT fails the progs with bpf2bpf calls and tail_calls
23024 * have to be rejected, since interpreter doesn't support them yet.
23025 */
23026 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
23027 return -EINVAL;
23028 }
23029 for (i = 0; i < prog->len; i++, insn++) {
23030 if (bpf_pseudo_func(insn)) {
23031 /* When JIT fails the progs with callback calls
23032 * have to be rejected, since interpreter doesn't support them yet.
23033 */
23034 verbose(env, "callbacks are not allowed in non-JITed programs\n");
23035 return -EINVAL;
23036 }
23037
23038 if (!bpf_pseudo_call(insn))
23039 continue;
23040 depth = get_callee_stack_depth(env, insn, i);
23041 if (depth < 0)
23042 return depth;
23043 bpf_patch_call_args(insn, depth);
23044 }
23045 err = 0;
23046 #endif
23047 return err;
23048 }
23049
23050 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,struct bpf_kfunc_desc * desc,int insn_idx)23051 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, int insn_idx)
23052 {
23053 struct bpf_prog *prog = env->prog;
23054 bool seen_direct_write;
23055 void *xdp_kfunc;
23056 bool is_rdonly;
23057 u32 func_id = desc->func_id;
23058 u16 offset = desc->offset;
23059 unsigned long addr = desc->addr;
23060
23061 if (offset) /* return if module BTF is used */
23062 return 0;
23063
23064 if (bpf_dev_bound_kfunc_id(func_id)) {
23065 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
23066 if (xdp_kfunc)
23067 addr = (unsigned long)xdp_kfunc;
23068 /* fallback to default kfunc when not supported by netdev */
23069 } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
23070 seen_direct_write = env->seen_direct_write;
23071 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
23072
23073 if (is_rdonly)
23074 addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
23075
23076 /* restore env->seen_direct_write to its original value, since
23077 * may_access_direct_pkt_data mutates it
23078 */
23079 env->seen_direct_write = seen_direct_write;
23080 } else if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr]) {
23081 if (bpf_lsm_has_d_inode_locked(prog))
23082 addr = (unsigned long)bpf_set_dentry_xattr_locked;
23083 } else if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr]) {
23084 if (bpf_lsm_has_d_inode_locked(prog))
23085 addr = (unsigned long)bpf_remove_dentry_xattr_locked;
23086 } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) {
23087 if (!env->insn_aux_data[insn_idx].non_sleepable)
23088 addr = (unsigned long)bpf_dynptr_from_file_sleepable;
23089 } else if (func_id == special_kfunc_list[KF_bpf_arena_alloc_pages]) {
23090 if (env->insn_aux_data[insn_idx].non_sleepable)
23091 addr = (unsigned long)bpf_arena_alloc_pages_non_sleepable;
23092 } else if (func_id == special_kfunc_list[KF_bpf_arena_free_pages]) {
23093 if (env->insn_aux_data[insn_idx].non_sleepable)
23094 addr = (unsigned long)bpf_arena_free_pages_non_sleepable;
23095 }
23096 desc->addr = addr;
23097 return 0;
23098 }
23099
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)23100 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
23101 u16 struct_meta_reg,
23102 u16 node_offset_reg,
23103 struct bpf_insn *insn,
23104 struct bpf_insn *insn_buf,
23105 int *cnt)
23106 {
23107 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
23108 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
23109
23110 insn_buf[0] = addr[0];
23111 insn_buf[1] = addr[1];
23112 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
23113 insn_buf[3] = *insn;
23114 *cnt = 4;
23115 }
23116
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)23117 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
23118 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
23119 {
23120 struct bpf_kfunc_desc *desc;
23121 int err;
23122
23123 if (!insn->imm) {
23124 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
23125 return -EINVAL;
23126 }
23127
23128 *cnt = 0;
23129
23130 /* insn->imm has the btf func_id. Replace it with an offset relative to
23131 * __bpf_call_base, unless the JIT needs to call functions that are
23132 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
23133 */
23134 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
23135 if (!desc) {
23136 verifier_bug(env, "kernel function descriptor not found for func_id %u",
23137 insn->imm);
23138 return -EFAULT;
23139 }
23140
23141 err = specialize_kfunc(env, desc, insn_idx);
23142 if (err)
23143 return err;
23144
23145 if (!bpf_jit_supports_far_kfunc_call())
23146 insn->imm = BPF_CALL_IMM(desc->addr);
23147
23148 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
23149 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
23150 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
23151 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
23152 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
23153
23154 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
23155 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
23156 insn_idx);
23157 return -EFAULT;
23158 }
23159
23160 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
23161 insn_buf[1] = addr[0];
23162 insn_buf[2] = addr[1];
23163 insn_buf[3] = *insn;
23164 *cnt = 4;
23165 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
23166 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
23167 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
23168 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
23169 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
23170
23171 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
23172 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
23173 insn_idx);
23174 return -EFAULT;
23175 }
23176
23177 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
23178 !kptr_struct_meta) {
23179 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
23180 insn_idx);
23181 return -EFAULT;
23182 }
23183
23184 insn_buf[0] = addr[0];
23185 insn_buf[1] = addr[1];
23186 insn_buf[2] = *insn;
23187 *cnt = 3;
23188 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
23189 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
23190 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
23191 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
23192 int struct_meta_reg = BPF_REG_3;
23193 int node_offset_reg = BPF_REG_4;
23194
23195 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
23196 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
23197 struct_meta_reg = BPF_REG_4;
23198 node_offset_reg = BPF_REG_5;
23199 }
23200
23201 if (!kptr_struct_meta) {
23202 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
23203 insn_idx);
23204 return -EFAULT;
23205 }
23206
23207 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
23208 node_offset_reg, insn, insn_buf, cnt);
23209 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
23210 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
23211 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
23212 *cnt = 1;
23213 } else if (desc->func_id == special_kfunc_list[KF_bpf_session_is_return] &&
23214 env->prog->expected_attach_type == BPF_TRACE_FSESSION) {
23215 /*
23216 * inline the bpf_session_is_return() for fsession:
23217 * bool bpf_session_is_return(void *ctx)
23218 * {
23219 * return (((u64 *)ctx)[-1] >> BPF_TRAMP_IS_RETURN_SHIFT) & 1;
23220 * }
23221 */
23222 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
23223 insn_buf[1] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_0, BPF_TRAMP_IS_RETURN_SHIFT);
23224 insn_buf[2] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1);
23225 *cnt = 3;
23226 } else if (desc->func_id == special_kfunc_list[KF_bpf_session_cookie] &&
23227 env->prog->expected_attach_type == BPF_TRACE_FSESSION) {
23228 /*
23229 * inline bpf_session_cookie() for fsession:
23230 * __u64 *bpf_session_cookie(void *ctx)
23231 * {
23232 * u64 off = (((u64 *)ctx)[-1] >> BPF_TRAMP_COOKIE_INDEX_SHIFT) & 0xFF;
23233 * return &((u64 *)ctx)[-off];
23234 * }
23235 */
23236 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
23237 insn_buf[1] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_0, BPF_TRAMP_COOKIE_INDEX_SHIFT);
23238 insn_buf[2] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF);
23239 insn_buf[3] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
23240 insn_buf[4] = BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1);
23241 insn_buf[5] = BPF_ALU64_IMM(BPF_NEG, BPF_REG_0, 0);
23242 *cnt = 6;
23243 }
23244
23245 if (env->insn_aux_data[insn_idx].arg_prog) {
23246 u32 regno = env->insn_aux_data[insn_idx].arg_prog;
23247 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
23248 int idx = *cnt;
23249
23250 insn_buf[idx++] = ld_addrs[0];
23251 insn_buf[idx++] = ld_addrs[1];
23252 insn_buf[idx++] = *insn;
23253 *cnt = idx;
23254 }
23255 return 0;
23256 }
23257
23258 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
add_hidden_subprog(struct bpf_verifier_env * env,struct bpf_insn * patch,int len)23259 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
23260 {
23261 struct bpf_subprog_info *info = env->subprog_info;
23262 int cnt = env->subprog_cnt;
23263 struct bpf_prog *prog;
23264
23265 /* We only reserve one slot for hidden subprogs in subprog_info. */
23266 if (env->hidden_subprog_cnt) {
23267 verifier_bug(env, "only one hidden subprog supported");
23268 return -EFAULT;
23269 }
23270 /* We're not patching any existing instruction, just appending the new
23271 * ones for the hidden subprog. Hence all of the adjustment operations
23272 * in bpf_patch_insn_data are no-ops.
23273 */
23274 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
23275 if (!prog)
23276 return -ENOMEM;
23277 env->prog = prog;
23278 info[cnt + 1].start = info[cnt].start;
23279 info[cnt].start = prog->len - len + 1;
23280 env->subprog_cnt++;
23281 env->hidden_subprog_cnt++;
23282 return 0;
23283 }
23284
23285 /* Do various post-verification rewrites in a single program pass.
23286 * These rewrites simplify JIT and interpreter implementations.
23287 */
do_misc_fixups(struct bpf_verifier_env * env)23288 static int do_misc_fixups(struct bpf_verifier_env *env)
23289 {
23290 struct bpf_prog *prog = env->prog;
23291 enum bpf_attach_type eatype = prog->expected_attach_type;
23292 enum bpf_prog_type prog_type = resolve_prog_type(prog);
23293 struct bpf_insn *insn = prog->insnsi;
23294 const struct bpf_func_proto *fn;
23295 const int insn_cnt = prog->len;
23296 const struct bpf_map_ops *ops;
23297 struct bpf_insn_aux_data *aux;
23298 struct bpf_insn *insn_buf = env->insn_buf;
23299 struct bpf_prog *new_prog;
23300 struct bpf_map *map_ptr;
23301 int i, ret, cnt, delta = 0, cur_subprog = 0;
23302 struct bpf_subprog_info *subprogs = env->subprog_info;
23303 u16 stack_depth = subprogs[cur_subprog].stack_depth;
23304 u16 stack_depth_extra = 0;
23305
23306 if (env->seen_exception && !env->exception_callback_subprog) {
23307 struct bpf_insn *patch = insn_buf;
23308
23309 *patch++ = env->prog->insnsi[insn_cnt - 1];
23310 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
23311 *patch++ = BPF_EXIT_INSN();
23312 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf);
23313 if (ret < 0)
23314 return ret;
23315 prog = env->prog;
23316 insn = prog->insnsi;
23317
23318 env->exception_callback_subprog = env->subprog_cnt - 1;
23319 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */
23320 mark_subprog_exc_cb(env, env->exception_callback_subprog);
23321 }
23322
23323 for (i = 0; i < insn_cnt;) {
23324 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
23325 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
23326 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
23327 /* convert to 32-bit mov that clears upper 32-bit */
23328 insn->code = BPF_ALU | BPF_MOV | BPF_X;
23329 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
23330 insn->off = 0;
23331 insn->imm = 0;
23332 } /* cast from as(0) to as(1) should be handled by JIT */
23333 goto next_insn;
23334 }
23335
23336 if (env->insn_aux_data[i + delta].needs_zext)
23337 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
23338 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
23339
23340 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */
23341 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
23342 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
23343 insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
23344 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
23345 insn->off == 1 && insn->imm == -1) {
23346 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
23347 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
23348 struct bpf_insn *patch = insn_buf;
23349
23350 if (isdiv)
23351 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
23352 BPF_NEG | BPF_K, insn->dst_reg,
23353 0, 0, 0);
23354 else
23355 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
23356
23357 cnt = patch - insn_buf;
23358
23359 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23360 if (!new_prog)
23361 return -ENOMEM;
23362
23363 delta += cnt - 1;
23364 env->prog = prog = new_prog;
23365 insn = new_prog->insnsi + i + delta;
23366 goto next_insn;
23367 }
23368
23369 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
23370 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
23371 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
23372 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
23373 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
23374 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
23375 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
23376 bool is_sdiv = isdiv && insn->off == 1;
23377 bool is_smod = !isdiv && insn->off == 1;
23378 struct bpf_insn *patch = insn_buf;
23379
23380 if (is_sdiv) {
23381 /* [R,W]x sdiv 0 -> 0
23382 * LLONG_MIN sdiv -1 -> LLONG_MIN
23383 * INT_MIN sdiv -1 -> INT_MIN
23384 */
23385 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
23386 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
23387 BPF_ADD | BPF_K, BPF_REG_AX,
23388 0, 0, 1);
23389 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
23390 BPF_JGT | BPF_K, BPF_REG_AX,
23391 0, 4, 1);
23392 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
23393 BPF_JEQ | BPF_K, BPF_REG_AX,
23394 0, 1, 0);
23395 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
23396 BPF_MOV | BPF_K, insn->dst_reg,
23397 0, 0, 0);
23398 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
23399 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
23400 BPF_NEG | BPF_K, insn->dst_reg,
23401 0, 0, 0);
23402 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
23403 *patch++ = *insn;
23404 cnt = patch - insn_buf;
23405 } else if (is_smod) {
23406 /* [R,W]x mod 0 -> [R,W]x */
23407 /* [R,W]x mod -1 -> 0 */
23408 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
23409 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
23410 BPF_ADD | BPF_K, BPF_REG_AX,
23411 0, 0, 1);
23412 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
23413 BPF_JGT | BPF_K, BPF_REG_AX,
23414 0, 3, 1);
23415 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
23416 BPF_JEQ | BPF_K, BPF_REG_AX,
23417 0, 3 + (is64 ? 0 : 1), 1);
23418 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
23419 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
23420 *patch++ = *insn;
23421
23422 if (!is64) {
23423 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
23424 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
23425 }
23426 cnt = patch - insn_buf;
23427 } else if (isdiv) {
23428 /* [R,W]x div 0 -> 0 */
23429 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
23430 BPF_JNE | BPF_K, insn->src_reg,
23431 0, 2, 0);
23432 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg);
23433 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
23434 *patch++ = *insn;
23435 cnt = patch - insn_buf;
23436 } else {
23437 /* [R,W]x mod 0 -> [R,W]x */
23438 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
23439 BPF_JEQ | BPF_K, insn->src_reg,
23440 0, 1 + (is64 ? 0 : 1), 0);
23441 *patch++ = *insn;
23442
23443 if (!is64) {
23444 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
23445 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
23446 }
23447 cnt = patch - insn_buf;
23448 }
23449
23450 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23451 if (!new_prog)
23452 return -ENOMEM;
23453
23454 delta += cnt - 1;
23455 env->prog = prog = new_prog;
23456 insn = new_prog->insnsi + i + delta;
23457 goto next_insn;
23458 }
23459
23460 /* Make it impossible to de-reference a userspace address */
23461 if (BPF_CLASS(insn->code) == BPF_LDX &&
23462 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
23463 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
23464 struct bpf_insn *patch = insn_buf;
23465 u64 uaddress_limit = bpf_arch_uaddress_limit();
23466
23467 if (!uaddress_limit)
23468 goto next_insn;
23469
23470 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
23471 if (insn->off)
23472 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
23473 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
23474 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
23475 *patch++ = *insn;
23476 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
23477 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
23478
23479 cnt = patch - insn_buf;
23480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23481 if (!new_prog)
23482 return -ENOMEM;
23483
23484 delta += cnt - 1;
23485 env->prog = prog = new_prog;
23486 insn = new_prog->insnsi + i + delta;
23487 goto next_insn;
23488 }
23489
23490 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
23491 if (BPF_CLASS(insn->code) == BPF_LD &&
23492 (BPF_MODE(insn->code) == BPF_ABS ||
23493 BPF_MODE(insn->code) == BPF_IND)) {
23494 cnt = env->ops->gen_ld_abs(insn, insn_buf);
23495 if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
23496 verifier_bug(env, "%d insns generated for ld_abs", cnt);
23497 return -EFAULT;
23498 }
23499
23500 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23501 if (!new_prog)
23502 return -ENOMEM;
23503
23504 delta += cnt - 1;
23505 env->prog = prog = new_prog;
23506 insn = new_prog->insnsi + i + delta;
23507 goto next_insn;
23508 }
23509
23510 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
23511 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
23512 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
23513 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
23514 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
23515 struct bpf_insn *patch = insn_buf;
23516 bool issrc, isneg, isimm;
23517 u32 off_reg;
23518
23519 aux = &env->insn_aux_data[i + delta];
23520 if (!aux->alu_state ||
23521 aux->alu_state == BPF_ALU_NON_POINTER)
23522 goto next_insn;
23523
23524 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
23525 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
23526 BPF_ALU_SANITIZE_SRC;
23527 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
23528
23529 off_reg = issrc ? insn->src_reg : insn->dst_reg;
23530 if (isimm) {
23531 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
23532 } else {
23533 if (isneg)
23534 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
23535 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
23536 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
23537 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
23538 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
23539 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
23540 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
23541 }
23542 if (!issrc)
23543 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
23544 insn->src_reg = BPF_REG_AX;
23545 if (isneg)
23546 insn->code = insn->code == code_add ?
23547 code_sub : code_add;
23548 *patch++ = *insn;
23549 if (issrc && isneg && !isimm)
23550 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
23551 cnt = patch - insn_buf;
23552
23553 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23554 if (!new_prog)
23555 return -ENOMEM;
23556
23557 delta += cnt - 1;
23558 env->prog = prog = new_prog;
23559 insn = new_prog->insnsi + i + delta;
23560 goto next_insn;
23561 }
23562
23563 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
23564 int stack_off_cnt = -stack_depth - 16;
23565
23566 /*
23567 * Two 8 byte slots, depth-16 stores the count, and
23568 * depth-8 stores the start timestamp of the loop.
23569 *
23570 * The starting value of count is BPF_MAX_TIMED_LOOPS
23571 * (0xffff). Every iteration loads it and subs it by 1,
23572 * until the value becomes 0 in AX (thus, 1 in stack),
23573 * after which we call arch_bpf_timed_may_goto, which
23574 * either sets AX to 0xffff to keep looping, or to 0
23575 * upon timeout. AX is then stored into the stack. In
23576 * the next iteration, we either see 0 and break out, or
23577 * continue iterating until the next time value is 0
23578 * after subtraction, rinse and repeat.
23579 */
23580 stack_depth_extra = 16;
23581 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
23582 if (insn->off >= 0)
23583 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
23584 else
23585 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
23586 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
23587 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
23588 /*
23589 * AX is used as an argument to pass in stack_off_cnt
23590 * (to add to r10/fp), and also as the return value of
23591 * the call to arch_bpf_timed_may_goto.
23592 */
23593 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
23594 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
23595 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
23596 cnt = 7;
23597
23598 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23599 if (!new_prog)
23600 return -ENOMEM;
23601
23602 delta += cnt - 1;
23603 env->prog = prog = new_prog;
23604 insn = new_prog->insnsi + i + delta;
23605 goto next_insn;
23606 } else if (is_may_goto_insn(insn)) {
23607 int stack_off = -stack_depth - 8;
23608
23609 stack_depth_extra = 8;
23610 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
23611 if (insn->off >= 0)
23612 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
23613 else
23614 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
23615 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
23616 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
23617 cnt = 4;
23618
23619 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23620 if (!new_prog)
23621 return -ENOMEM;
23622
23623 delta += cnt - 1;
23624 env->prog = prog = new_prog;
23625 insn = new_prog->insnsi + i + delta;
23626 goto next_insn;
23627 }
23628
23629 if (insn->code != (BPF_JMP | BPF_CALL))
23630 goto next_insn;
23631 if (insn->src_reg == BPF_PSEUDO_CALL)
23632 goto next_insn;
23633 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
23634 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
23635 if (ret)
23636 return ret;
23637 if (cnt == 0)
23638 goto next_insn;
23639
23640 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23641 if (!new_prog)
23642 return -ENOMEM;
23643
23644 delta += cnt - 1;
23645 env->prog = prog = new_prog;
23646 insn = new_prog->insnsi + i + delta;
23647 goto next_insn;
23648 }
23649
23650 /* Skip inlining the helper call if the JIT does it. */
23651 if (bpf_jit_inlines_helper_call(insn->imm))
23652 goto next_insn;
23653
23654 if (insn->imm == BPF_FUNC_get_route_realm)
23655 prog->dst_needed = 1;
23656 if (insn->imm == BPF_FUNC_get_prandom_u32)
23657 bpf_user_rnd_init_once();
23658 if (insn->imm == BPF_FUNC_override_return)
23659 prog->kprobe_override = 1;
23660 if (insn->imm == BPF_FUNC_tail_call) {
23661 /* If we tail call into other programs, we
23662 * cannot make any assumptions since they can
23663 * be replaced dynamically during runtime in
23664 * the program array.
23665 */
23666 prog->cb_access = 1;
23667 if (!allow_tail_call_in_subprogs(env))
23668 prog->aux->stack_depth = MAX_BPF_STACK;
23669 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
23670
23671 /* mark bpf_tail_call as different opcode to avoid
23672 * conditional branch in the interpreter for every normal
23673 * call and to prevent accidental JITing by JIT compiler
23674 * that doesn't support bpf_tail_call yet
23675 */
23676 insn->imm = 0;
23677 insn->code = BPF_JMP | BPF_TAIL_CALL;
23678
23679 aux = &env->insn_aux_data[i + delta];
23680 if (env->bpf_capable && !prog->blinding_requested &&
23681 prog->jit_requested &&
23682 !bpf_map_key_poisoned(aux) &&
23683 !bpf_map_ptr_poisoned(aux) &&
23684 !bpf_map_ptr_unpriv(aux)) {
23685 struct bpf_jit_poke_descriptor desc = {
23686 .reason = BPF_POKE_REASON_TAIL_CALL,
23687 .tail_call.map = aux->map_ptr_state.map_ptr,
23688 .tail_call.key = bpf_map_key_immediate(aux),
23689 .insn_idx = i + delta,
23690 };
23691
23692 ret = bpf_jit_add_poke_descriptor(prog, &desc);
23693 if (ret < 0) {
23694 verbose(env, "adding tail call poke descriptor failed\n");
23695 return ret;
23696 }
23697
23698 insn->imm = ret + 1;
23699 goto next_insn;
23700 }
23701
23702 if (!bpf_map_ptr_unpriv(aux))
23703 goto next_insn;
23704
23705 /* instead of changing every JIT dealing with tail_call
23706 * emit two extra insns:
23707 * if (index >= max_entries) goto out;
23708 * index &= array->index_mask;
23709 * to avoid out-of-bounds cpu speculation
23710 */
23711 if (bpf_map_ptr_poisoned(aux)) {
23712 verbose(env, "tail_call abusing map_ptr\n");
23713 return -EINVAL;
23714 }
23715
23716 map_ptr = aux->map_ptr_state.map_ptr;
23717 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
23718 map_ptr->max_entries, 2);
23719 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
23720 container_of(map_ptr,
23721 struct bpf_array,
23722 map)->index_mask);
23723 insn_buf[2] = *insn;
23724 cnt = 3;
23725 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23726 if (!new_prog)
23727 return -ENOMEM;
23728
23729 delta += cnt - 1;
23730 env->prog = prog = new_prog;
23731 insn = new_prog->insnsi + i + delta;
23732 goto next_insn;
23733 }
23734
23735 if (insn->imm == BPF_FUNC_timer_set_callback) {
23736 /* The verifier will process callback_fn as many times as necessary
23737 * with different maps and the register states prepared by
23738 * set_timer_callback_state will be accurate.
23739 *
23740 * The following use case is valid:
23741 * map1 is shared by prog1, prog2, prog3.
23742 * prog1 calls bpf_timer_init for some map1 elements
23743 * prog2 calls bpf_timer_set_callback for some map1 elements.
23744 * Those that were not bpf_timer_init-ed will return -EINVAL.
23745 * prog3 calls bpf_timer_start for some map1 elements.
23746 * Those that were not both bpf_timer_init-ed and
23747 * bpf_timer_set_callback-ed will return -EINVAL.
23748 */
23749 struct bpf_insn ld_addrs[2] = {
23750 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
23751 };
23752
23753 insn_buf[0] = ld_addrs[0];
23754 insn_buf[1] = ld_addrs[1];
23755 insn_buf[2] = *insn;
23756 cnt = 3;
23757
23758 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23759 if (!new_prog)
23760 return -ENOMEM;
23761
23762 delta += cnt - 1;
23763 env->prog = prog = new_prog;
23764 insn = new_prog->insnsi + i + delta;
23765 goto patch_call_imm;
23766 }
23767
23768 if (is_storage_get_function(insn->imm)) {
23769 if (env->insn_aux_data[i + delta].non_sleepable)
23770 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
23771 else
23772 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
23773 insn_buf[1] = *insn;
23774 cnt = 2;
23775
23776 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23777 if (!new_prog)
23778 return -ENOMEM;
23779
23780 delta += cnt - 1;
23781 env->prog = prog = new_prog;
23782 insn = new_prog->insnsi + i + delta;
23783 goto patch_call_imm;
23784 }
23785
23786 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
23787 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
23788 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
23789 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
23790 */
23791 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
23792 insn_buf[1] = *insn;
23793 cnt = 2;
23794
23795 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23796 if (!new_prog)
23797 return -ENOMEM;
23798
23799 delta += cnt - 1;
23800 env->prog = prog = new_prog;
23801 insn = new_prog->insnsi + i + delta;
23802 goto patch_call_imm;
23803 }
23804
23805 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
23806 * and other inlining handlers are currently limited to 64 bit
23807 * only.
23808 */
23809 if (prog->jit_requested && BITS_PER_LONG == 64 &&
23810 (insn->imm == BPF_FUNC_map_lookup_elem ||
23811 insn->imm == BPF_FUNC_map_update_elem ||
23812 insn->imm == BPF_FUNC_map_delete_elem ||
23813 insn->imm == BPF_FUNC_map_push_elem ||
23814 insn->imm == BPF_FUNC_map_pop_elem ||
23815 insn->imm == BPF_FUNC_map_peek_elem ||
23816 insn->imm == BPF_FUNC_redirect_map ||
23817 insn->imm == BPF_FUNC_for_each_map_elem ||
23818 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
23819 aux = &env->insn_aux_data[i + delta];
23820 if (bpf_map_ptr_poisoned(aux))
23821 goto patch_call_imm;
23822
23823 map_ptr = aux->map_ptr_state.map_ptr;
23824 ops = map_ptr->ops;
23825 if (insn->imm == BPF_FUNC_map_lookup_elem &&
23826 ops->map_gen_lookup) {
23827 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
23828 if (cnt == -EOPNOTSUPP)
23829 goto patch_map_ops_generic;
23830 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
23831 verifier_bug(env, "%d insns generated for map lookup", cnt);
23832 return -EFAULT;
23833 }
23834
23835 new_prog = bpf_patch_insn_data(env, i + delta,
23836 insn_buf, cnt);
23837 if (!new_prog)
23838 return -ENOMEM;
23839
23840 delta += cnt - 1;
23841 env->prog = prog = new_prog;
23842 insn = new_prog->insnsi + i + delta;
23843 goto next_insn;
23844 }
23845
23846 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
23847 (void *(*)(struct bpf_map *map, void *key))NULL));
23848 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
23849 (long (*)(struct bpf_map *map, void *key))NULL));
23850 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
23851 (long (*)(struct bpf_map *map, void *key, void *value,
23852 u64 flags))NULL));
23853 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
23854 (long (*)(struct bpf_map *map, void *value,
23855 u64 flags))NULL));
23856 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
23857 (long (*)(struct bpf_map *map, void *value))NULL));
23858 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
23859 (long (*)(struct bpf_map *map, void *value))NULL));
23860 BUILD_BUG_ON(!__same_type(ops->map_redirect,
23861 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
23862 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
23863 (long (*)(struct bpf_map *map,
23864 bpf_callback_t callback_fn,
23865 void *callback_ctx,
23866 u64 flags))NULL));
23867 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
23868 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
23869
23870 patch_map_ops_generic:
23871 switch (insn->imm) {
23872 case BPF_FUNC_map_lookup_elem:
23873 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
23874 goto next_insn;
23875 case BPF_FUNC_map_update_elem:
23876 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
23877 goto next_insn;
23878 case BPF_FUNC_map_delete_elem:
23879 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
23880 goto next_insn;
23881 case BPF_FUNC_map_push_elem:
23882 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
23883 goto next_insn;
23884 case BPF_FUNC_map_pop_elem:
23885 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
23886 goto next_insn;
23887 case BPF_FUNC_map_peek_elem:
23888 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
23889 goto next_insn;
23890 case BPF_FUNC_redirect_map:
23891 insn->imm = BPF_CALL_IMM(ops->map_redirect);
23892 goto next_insn;
23893 case BPF_FUNC_for_each_map_elem:
23894 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
23895 goto next_insn;
23896 case BPF_FUNC_map_lookup_percpu_elem:
23897 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
23898 goto next_insn;
23899 }
23900
23901 goto patch_call_imm;
23902 }
23903
23904 /* Implement bpf_jiffies64 inline. */
23905 if (prog->jit_requested && BITS_PER_LONG == 64 &&
23906 insn->imm == BPF_FUNC_jiffies64) {
23907 struct bpf_insn ld_jiffies_addr[2] = {
23908 BPF_LD_IMM64(BPF_REG_0,
23909 (unsigned long)&jiffies),
23910 };
23911
23912 insn_buf[0] = ld_jiffies_addr[0];
23913 insn_buf[1] = ld_jiffies_addr[1];
23914 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
23915 BPF_REG_0, 0);
23916 cnt = 3;
23917
23918 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
23919 cnt);
23920 if (!new_prog)
23921 return -ENOMEM;
23922
23923 delta += cnt - 1;
23924 env->prog = prog = new_prog;
23925 insn = new_prog->insnsi + i + delta;
23926 goto next_insn;
23927 }
23928
23929 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
23930 /* Implement bpf_get_smp_processor_id() inline. */
23931 if (insn->imm == BPF_FUNC_get_smp_processor_id &&
23932 verifier_inlines_helper_call(env, insn->imm)) {
23933 /* BPF_FUNC_get_smp_processor_id inlining is an
23934 * optimization, so if cpu_number is ever
23935 * changed in some incompatible and hard to support
23936 * way, it's fine to back out this inlining logic
23937 */
23938 #ifdef CONFIG_SMP
23939 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
23940 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
23941 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
23942 cnt = 3;
23943 #else
23944 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
23945 cnt = 1;
23946 #endif
23947 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23948 if (!new_prog)
23949 return -ENOMEM;
23950
23951 delta += cnt - 1;
23952 env->prog = prog = new_prog;
23953 insn = new_prog->insnsi + i + delta;
23954 goto next_insn;
23955 }
23956
23957 /* Implement bpf_get_current_task() and bpf_get_current_task_btf() inline. */
23958 if ((insn->imm == BPF_FUNC_get_current_task || insn->imm == BPF_FUNC_get_current_task_btf) &&
23959 verifier_inlines_helper_call(env, insn->imm)) {
23960 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)¤t_task);
23961 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
23962 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0);
23963 cnt = 3;
23964
23965 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23966 if (!new_prog)
23967 return -ENOMEM;
23968
23969 delta += cnt - 1;
23970 env->prog = prog = new_prog;
23971 insn = new_prog->insnsi + i + delta;
23972 goto next_insn;
23973 }
23974 #endif
23975 /* Implement bpf_get_func_arg inline. */
23976 if (prog_type == BPF_PROG_TYPE_TRACING &&
23977 insn->imm == BPF_FUNC_get_func_arg) {
23978 if (eatype == BPF_TRACE_RAW_TP) {
23979 int nr_args = btf_type_vlen(prog->aux->attach_func_proto);
23980
23981 /* skip 'void *__data' in btf_trace_##name() and save to reg0 */
23982 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, nr_args - 1);
23983 cnt = 1;
23984 } else {
23985 /* Load nr_args from ctx - 8 */
23986 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
23987 insn_buf[1] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF);
23988 cnt = 2;
23989 }
23990 insn_buf[cnt++] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
23991 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
23992 insn_buf[cnt++] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
23993 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
23994 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
23995 insn_buf[cnt++] = BPF_MOV64_IMM(BPF_REG_0, 0);
23996 insn_buf[cnt++] = BPF_JMP_A(1);
23997 insn_buf[cnt++] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
23998
23999 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
24000 if (!new_prog)
24001 return -ENOMEM;
24002
24003 delta += cnt - 1;
24004 env->prog = prog = new_prog;
24005 insn = new_prog->insnsi + i + delta;
24006 goto next_insn;
24007 }
24008
24009 /* Implement bpf_get_func_ret inline. */
24010 if (prog_type == BPF_PROG_TYPE_TRACING &&
24011 insn->imm == BPF_FUNC_get_func_ret) {
24012 if (eatype == BPF_TRACE_FEXIT ||
24013 eatype == BPF_TRACE_FSESSION ||
24014 eatype == BPF_MODIFY_RETURN) {
24015 /* Load nr_args from ctx - 8 */
24016 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
24017 insn_buf[1] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF);
24018 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
24019 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
24020 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
24021 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
24022 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
24023 cnt = 7;
24024 } else {
24025 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
24026 cnt = 1;
24027 }
24028
24029 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
24030 if (!new_prog)
24031 return -ENOMEM;
24032
24033 delta += cnt - 1;
24034 env->prog = prog = new_prog;
24035 insn = new_prog->insnsi + i + delta;
24036 goto next_insn;
24037 }
24038
24039 /* Implement get_func_arg_cnt inline. */
24040 if (prog_type == BPF_PROG_TYPE_TRACING &&
24041 insn->imm == BPF_FUNC_get_func_arg_cnt) {
24042 if (eatype == BPF_TRACE_RAW_TP) {
24043 int nr_args = btf_type_vlen(prog->aux->attach_func_proto);
24044
24045 /* skip 'void *__data' in btf_trace_##name() and save to reg0 */
24046 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, nr_args - 1);
24047 cnt = 1;
24048 } else {
24049 /* Load nr_args from ctx - 8 */
24050 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
24051 insn_buf[1] = BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xFF);
24052 cnt = 2;
24053 }
24054
24055 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
24056 if (!new_prog)
24057 return -ENOMEM;
24058
24059 delta += cnt - 1;
24060 env->prog = prog = new_prog;
24061 insn = new_prog->insnsi + i + delta;
24062 goto next_insn;
24063 }
24064
24065 /* Implement bpf_get_func_ip inline. */
24066 if (prog_type == BPF_PROG_TYPE_TRACING &&
24067 insn->imm == BPF_FUNC_get_func_ip) {
24068 /* Load IP address from ctx - 16 */
24069 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
24070
24071 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
24072 if (!new_prog)
24073 return -ENOMEM;
24074
24075 env->prog = prog = new_prog;
24076 insn = new_prog->insnsi + i + delta;
24077 goto next_insn;
24078 }
24079
24080 /* Implement bpf_get_branch_snapshot inline. */
24081 if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
24082 prog->jit_requested && BITS_PER_LONG == 64 &&
24083 insn->imm == BPF_FUNC_get_branch_snapshot) {
24084 /* We are dealing with the following func protos:
24085 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
24086 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
24087 */
24088 const u32 br_entry_size = sizeof(struct perf_branch_entry);
24089
24090 /* struct perf_branch_entry is part of UAPI and is
24091 * used as an array element, so extremely unlikely to
24092 * ever grow or shrink
24093 */
24094 BUILD_BUG_ON(br_entry_size != 24);
24095
24096 /* if (unlikely(flags)) return -EINVAL */
24097 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
24098
24099 /* Transform size (bytes) into number of entries (cnt = size / 24).
24100 * But to avoid expensive division instruction, we implement
24101 * divide-by-3 through multiplication, followed by further
24102 * division by 8 through 3-bit right shift.
24103 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
24104 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
24105 *
24106 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
24107 */
24108 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
24109 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
24110 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
24111
24112 /* call perf_snapshot_branch_stack implementation */
24113 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
24114 /* if (entry_cnt == 0) return -ENOENT */
24115 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
24116 /* return entry_cnt * sizeof(struct perf_branch_entry) */
24117 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
24118 insn_buf[7] = BPF_JMP_A(3);
24119 /* return -EINVAL; */
24120 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
24121 insn_buf[9] = BPF_JMP_A(1);
24122 /* return -ENOENT; */
24123 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
24124 cnt = 11;
24125
24126 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
24127 if (!new_prog)
24128 return -ENOMEM;
24129
24130 delta += cnt - 1;
24131 env->prog = prog = new_prog;
24132 insn = new_prog->insnsi + i + delta;
24133 goto next_insn;
24134 }
24135
24136 /* Implement bpf_kptr_xchg inline */
24137 if (prog->jit_requested && BITS_PER_LONG == 64 &&
24138 insn->imm == BPF_FUNC_kptr_xchg &&
24139 bpf_jit_supports_ptr_xchg()) {
24140 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
24141 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
24142 cnt = 2;
24143
24144 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
24145 if (!new_prog)
24146 return -ENOMEM;
24147
24148 delta += cnt - 1;
24149 env->prog = prog = new_prog;
24150 insn = new_prog->insnsi + i + delta;
24151 goto next_insn;
24152 }
24153 patch_call_imm:
24154 fn = env->ops->get_func_proto(insn->imm, env->prog);
24155 /* all functions that have prototype and verifier allowed
24156 * programs to call them, must be real in-kernel functions
24157 */
24158 if (!fn->func) {
24159 verifier_bug(env,
24160 "not inlined functions %s#%d is missing func",
24161 func_id_name(insn->imm), insn->imm);
24162 return -EFAULT;
24163 }
24164 insn->imm = fn->func - __bpf_call_base;
24165 next_insn:
24166 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
24167 subprogs[cur_subprog].stack_depth += stack_depth_extra;
24168 subprogs[cur_subprog].stack_extra = stack_depth_extra;
24169
24170 stack_depth = subprogs[cur_subprog].stack_depth;
24171 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
24172 verbose(env, "stack size %d(extra %d) is too large\n",
24173 stack_depth, stack_depth_extra);
24174 return -EINVAL;
24175 }
24176 cur_subprog++;
24177 stack_depth = subprogs[cur_subprog].stack_depth;
24178 stack_depth_extra = 0;
24179 }
24180 i++;
24181 insn++;
24182 }
24183
24184 env->prog->aux->stack_depth = subprogs[0].stack_depth;
24185 for (i = 0; i < env->subprog_cnt; i++) {
24186 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
24187 int subprog_start = subprogs[i].start;
24188 int stack_slots = subprogs[i].stack_extra / 8;
24189 int slots = delta, cnt = 0;
24190
24191 if (!stack_slots)
24192 continue;
24193 /* We need two slots in case timed may_goto is supported. */
24194 if (stack_slots > slots) {
24195 verifier_bug(env, "stack_slots supports may_goto only");
24196 return -EFAULT;
24197 }
24198
24199 stack_depth = subprogs[i].stack_depth;
24200 if (bpf_jit_supports_timed_may_goto()) {
24201 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
24202 BPF_MAX_TIMED_LOOPS);
24203 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
24204 } else {
24205 /* Add ST insn to subprog prologue to init extra stack */
24206 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
24207 BPF_MAX_LOOPS);
24208 }
24209 /* Copy first actual insn to preserve it */
24210 insn_buf[cnt++] = env->prog->insnsi[subprog_start];
24211
24212 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
24213 if (!new_prog)
24214 return -ENOMEM;
24215 env->prog = prog = new_prog;
24216 /*
24217 * If may_goto is a first insn of a prog there could be a jmp
24218 * insn that points to it, hence adjust all such jmps to point
24219 * to insn after BPF_ST that inits may_goto count.
24220 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
24221 */
24222 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
24223 }
24224
24225 /* Since poke tab is now finalized, publish aux to tracker. */
24226 for (i = 0; i < prog->aux->size_poke_tab; i++) {
24227 map_ptr = prog->aux->poke_tab[i].tail_call.map;
24228 if (!map_ptr->ops->map_poke_track ||
24229 !map_ptr->ops->map_poke_untrack ||
24230 !map_ptr->ops->map_poke_run) {
24231 verifier_bug(env, "poke tab is misconfigured");
24232 return -EFAULT;
24233 }
24234
24235 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
24236 if (ret < 0) {
24237 verbose(env, "tracking tail call prog failed\n");
24238 return ret;
24239 }
24240 }
24241
24242 ret = sort_kfunc_descs_by_imm_off(env);
24243 if (ret)
24244 return ret;
24245
24246 return 0;
24247 }
24248
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * total_cnt)24249 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
24250 int position,
24251 s32 stack_base,
24252 u32 callback_subprogno,
24253 u32 *total_cnt)
24254 {
24255 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
24256 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
24257 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
24258 int reg_loop_max = BPF_REG_6;
24259 int reg_loop_cnt = BPF_REG_7;
24260 int reg_loop_ctx = BPF_REG_8;
24261
24262 struct bpf_insn *insn_buf = env->insn_buf;
24263 struct bpf_prog *new_prog;
24264 u32 callback_start;
24265 u32 call_insn_offset;
24266 s32 callback_offset;
24267 u32 cnt = 0;
24268
24269 /* This represents an inlined version of bpf_iter.c:bpf_loop,
24270 * be careful to modify this code in sync.
24271 */
24272
24273 /* Return error and jump to the end of the patch if
24274 * expected number of iterations is too big.
24275 */
24276 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
24277 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
24278 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
24279 /* spill R6, R7, R8 to use these as loop vars */
24280 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
24281 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
24282 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
24283 /* initialize loop vars */
24284 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
24285 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
24286 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
24287 /* loop header,
24288 * if reg_loop_cnt >= reg_loop_max skip the loop body
24289 */
24290 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
24291 /* callback call,
24292 * correct callback offset would be set after patching
24293 */
24294 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
24295 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
24296 insn_buf[cnt++] = BPF_CALL_REL(0);
24297 /* increment loop counter */
24298 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
24299 /* jump to loop header if callback returned 0 */
24300 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
24301 /* return value of bpf_loop,
24302 * set R0 to the number of iterations
24303 */
24304 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
24305 /* restore original values of R6, R7, R8 */
24306 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
24307 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
24308 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
24309
24310 *total_cnt = cnt;
24311 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
24312 if (!new_prog)
24313 return new_prog;
24314
24315 /* callback start is known only after patching */
24316 callback_start = env->subprog_info[callback_subprogno].start;
24317 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
24318 call_insn_offset = position + 12;
24319 callback_offset = callback_start - call_insn_offset - 1;
24320 new_prog->insnsi[call_insn_offset].imm = callback_offset;
24321
24322 return new_prog;
24323 }
24324
is_bpf_loop_call(struct bpf_insn * insn)24325 static bool is_bpf_loop_call(struct bpf_insn *insn)
24326 {
24327 return insn->code == (BPF_JMP | BPF_CALL) &&
24328 insn->src_reg == 0 &&
24329 insn->imm == BPF_FUNC_loop;
24330 }
24331
24332 /* For all sub-programs in the program (including main) check
24333 * insn_aux_data to see if there are bpf_loop calls that require
24334 * inlining. If such calls are found the calls are replaced with a
24335 * sequence of instructions produced by `inline_bpf_loop` function and
24336 * subprog stack_depth is increased by the size of 3 registers.
24337 * This stack space is used to spill values of the R6, R7, R8. These
24338 * registers are used to store the loop bound, counter and context
24339 * variables.
24340 */
optimize_bpf_loop(struct bpf_verifier_env * env)24341 static int optimize_bpf_loop(struct bpf_verifier_env *env)
24342 {
24343 struct bpf_subprog_info *subprogs = env->subprog_info;
24344 int i, cur_subprog = 0, cnt, delta = 0;
24345 struct bpf_insn *insn = env->prog->insnsi;
24346 int insn_cnt = env->prog->len;
24347 u16 stack_depth = subprogs[cur_subprog].stack_depth;
24348 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
24349 u16 stack_depth_extra = 0;
24350
24351 for (i = 0; i < insn_cnt; i++, insn++) {
24352 struct bpf_loop_inline_state *inline_state =
24353 &env->insn_aux_data[i + delta].loop_inline_state;
24354
24355 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
24356 struct bpf_prog *new_prog;
24357
24358 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
24359 new_prog = inline_bpf_loop(env,
24360 i + delta,
24361 -(stack_depth + stack_depth_extra),
24362 inline_state->callback_subprogno,
24363 &cnt);
24364 if (!new_prog)
24365 return -ENOMEM;
24366
24367 delta += cnt - 1;
24368 env->prog = new_prog;
24369 insn = new_prog->insnsi + i + delta;
24370 }
24371
24372 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
24373 subprogs[cur_subprog].stack_depth += stack_depth_extra;
24374 cur_subprog++;
24375 stack_depth = subprogs[cur_subprog].stack_depth;
24376 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
24377 stack_depth_extra = 0;
24378 }
24379 }
24380
24381 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
24382
24383 return 0;
24384 }
24385
24386 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
24387 * adjust subprograms stack depth when possible.
24388 */
remove_fastcall_spills_fills(struct bpf_verifier_env * env)24389 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
24390 {
24391 struct bpf_subprog_info *subprog = env->subprog_info;
24392 struct bpf_insn_aux_data *aux = env->insn_aux_data;
24393 struct bpf_insn *insn = env->prog->insnsi;
24394 int insn_cnt = env->prog->len;
24395 u32 spills_num;
24396 bool modified = false;
24397 int i, j;
24398
24399 for (i = 0; i < insn_cnt; i++, insn++) {
24400 if (aux[i].fastcall_spills_num > 0) {
24401 spills_num = aux[i].fastcall_spills_num;
24402 /* NOPs would be removed by opt_remove_nops() */
24403 for (j = 1; j <= spills_num; ++j) {
24404 *(insn - j) = NOP;
24405 *(insn + j) = NOP;
24406 }
24407 modified = true;
24408 }
24409 if ((subprog + 1)->start == i + 1) {
24410 if (modified && !subprog->keep_fastcall_stack)
24411 subprog->stack_depth = -subprog->fastcall_stack_off;
24412 subprog++;
24413 modified = false;
24414 }
24415 }
24416
24417 return 0;
24418 }
24419
free_states(struct bpf_verifier_env * env)24420 static void free_states(struct bpf_verifier_env *env)
24421 {
24422 struct bpf_verifier_state_list *sl;
24423 struct list_head *head, *pos, *tmp;
24424 struct bpf_scc_info *info;
24425 int i, j;
24426
24427 free_verifier_state(env->cur_state, true);
24428 env->cur_state = NULL;
24429 while (!pop_stack(env, NULL, NULL, false));
24430
24431 list_for_each_safe(pos, tmp, &env->free_list) {
24432 sl = container_of(pos, struct bpf_verifier_state_list, node);
24433 free_verifier_state(&sl->state, false);
24434 kfree(sl);
24435 }
24436 INIT_LIST_HEAD(&env->free_list);
24437
24438 for (i = 0; i < env->scc_cnt; ++i) {
24439 info = env->scc_info[i];
24440 if (!info)
24441 continue;
24442 for (j = 0; j < info->num_visits; j++)
24443 free_backedges(&info->visits[j]);
24444 kvfree(info);
24445 env->scc_info[i] = NULL;
24446 }
24447
24448 if (!env->explored_states)
24449 return;
24450
24451 for (i = 0; i < state_htab_size(env); i++) {
24452 head = &env->explored_states[i];
24453
24454 list_for_each_safe(pos, tmp, head) {
24455 sl = container_of(pos, struct bpf_verifier_state_list, node);
24456 free_verifier_state(&sl->state, false);
24457 kfree(sl);
24458 }
24459 INIT_LIST_HEAD(&env->explored_states[i]);
24460 }
24461 }
24462
do_check_common(struct bpf_verifier_env * env,int subprog)24463 static int do_check_common(struct bpf_verifier_env *env, int subprog)
24464 {
24465 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
24466 struct bpf_subprog_info *sub = subprog_info(env, subprog);
24467 struct bpf_prog_aux *aux = env->prog->aux;
24468 struct bpf_verifier_state *state;
24469 struct bpf_reg_state *regs;
24470 int ret, i;
24471
24472 env->prev_linfo = NULL;
24473 env->pass_cnt++;
24474
24475 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT);
24476 if (!state)
24477 return -ENOMEM;
24478 state->curframe = 0;
24479 state->speculative = false;
24480 state->branches = 1;
24481 state->in_sleepable = env->prog->sleepable;
24482 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT);
24483 if (!state->frame[0]) {
24484 kfree(state);
24485 return -ENOMEM;
24486 }
24487 env->cur_state = state;
24488 init_func_state(env, state->frame[0],
24489 BPF_MAIN_FUNC /* callsite */,
24490 0 /* frameno */,
24491 subprog);
24492 state->first_insn_idx = env->subprog_info[subprog].start;
24493 state->last_insn_idx = -1;
24494
24495 regs = state->frame[state->curframe]->regs;
24496 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
24497 const char *sub_name = subprog_name(env, subprog);
24498 struct bpf_subprog_arg_info *arg;
24499 struct bpf_reg_state *reg;
24500
24501 if (env->log.level & BPF_LOG_LEVEL)
24502 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
24503 ret = btf_prepare_func_args(env, subprog);
24504 if (ret)
24505 goto out;
24506
24507 if (subprog_is_exc_cb(env, subprog)) {
24508 state->frame[0]->in_exception_callback_fn = true;
24509 /* We have already ensured that the callback returns an integer, just
24510 * like all global subprogs. We need to determine it only has a single
24511 * scalar argument.
24512 */
24513 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
24514 verbose(env, "exception cb only supports single integer argument\n");
24515 ret = -EINVAL;
24516 goto out;
24517 }
24518 }
24519 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
24520 arg = &sub->args[i - BPF_REG_1];
24521 reg = ®s[i];
24522
24523 if (arg->arg_type == ARG_PTR_TO_CTX) {
24524 reg->type = PTR_TO_CTX;
24525 mark_reg_known_zero(env, regs, i);
24526 } else if (arg->arg_type == ARG_ANYTHING) {
24527 reg->type = SCALAR_VALUE;
24528 mark_reg_unknown(env, regs, i);
24529 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
24530 /* assume unspecial LOCAL dynptr type */
24531 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
24532 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
24533 reg->type = PTR_TO_MEM;
24534 reg->type |= arg->arg_type &
24535 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY);
24536 mark_reg_known_zero(env, regs, i);
24537 reg->mem_size = arg->mem_size;
24538 if (arg->arg_type & PTR_MAYBE_NULL)
24539 reg->id = ++env->id_gen;
24540 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
24541 reg->type = PTR_TO_BTF_ID;
24542 if (arg->arg_type & PTR_MAYBE_NULL)
24543 reg->type |= PTR_MAYBE_NULL;
24544 if (arg->arg_type & PTR_UNTRUSTED)
24545 reg->type |= PTR_UNTRUSTED;
24546 if (arg->arg_type & PTR_TRUSTED)
24547 reg->type |= PTR_TRUSTED;
24548 mark_reg_known_zero(env, regs, i);
24549 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
24550 reg->btf_id = arg->btf_id;
24551 reg->id = ++env->id_gen;
24552 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
24553 /* caller can pass either PTR_TO_ARENA or SCALAR */
24554 mark_reg_unknown(env, regs, i);
24555 } else {
24556 verifier_bug(env, "unhandled arg#%d type %d",
24557 i - BPF_REG_1, arg->arg_type);
24558 ret = -EFAULT;
24559 goto out;
24560 }
24561 }
24562 } else {
24563 /* if main BPF program has associated BTF info, validate that
24564 * it's matching expected signature, and otherwise mark BTF
24565 * info for main program as unreliable
24566 */
24567 if (env->prog->aux->func_info_aux) {
24568 ret = btf_prepare_func_args(env, 0);
24569 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
24570 env->prog->aux->func_info_aux[0].unreliable = true;
24571 }
24572
24573 /* 1st arg to a function */
24574 regs[BPF_REG_1].type = PTR_TO_CTX;
24575 mark_reg_known_zero(env, regs, BPF_REG_1);
24576 }
24577
24578 /* Acquire references for struct_ops program arguments tagged with "__ref" */
24579 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
24580 for (i = 0; i < aux->ctx_arg_info_size; i++)
24581 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
24582 acquire_reference(env, 0) : 0;
24583 }
24584
24585 ret = do_check(env);
24586 out:
24587 if (!ret && pop_log)
24588 bpf_vlog_reset(&env->log, 0);
24589 free_states(env);
24590 return ret;
24591 }
24592
24593 /* Lazily verify all global functions based on their BTF, if they are called
24594 * from main BPF program or any of subprograms transitively.
24595 * BPF global subprogs called from dead code are not validated.
24596 * All callable global functions must pass verification.
24597 * Otherwise the whole program is rejected.
24598 * Consider:
24599 * int bar(int);
24600 * int foo(int f)
24601 * {
24602 * return bar(f);
24603 * }
24604 * int bar(int b)
24605 * {
24606 * ...
24607 * }
24608 * foo() will be verified first for R1=any_scalar_value. During verification it
24609 * will be assumed that bar() already verified successfully and call to bar()
24610 * from foo() will be checked for type match only. Later bar() will be verified
24611 * independently to check that it's safe for R1=any_scalar_value.
24612 */
do_check_subprogs(struct bpf_verifier_env * env)24613 static int do_check_subprogs(struct bpf_verifier_env *env)
24614 {
24615 struct bpf_prog_aux *aux = env->prog->aux;
24616 struct bpf_func_info_aux *sub_aux;
24617 int i, ret, new_cnt;
24618
24619 if (!aux->func_info)
24620 return 0;
24621
24622 /* exception callback is presumed to be always called */
24623 if (env->exception_callback_subprog)
24624 subprog_aux(env, env->exception_callback_subprog)->called = true;
24625
24626 again:
24627 new_cnt = 0;
24628 for (i = 1; i < env->subprog_cnt; i++) {
24629 if (!subprog_is_global(env, i))
24630 continue;
24631
24632 sub_aux = subprog_aux(env, i);
24633 if (!sub_aux->called || sub_aux->verified)
24634 continue;
24635
24636 env->insn_idx = env->subprog_info[i].start;
24637 WARN_ON_ONCE(env->insn_idx == 0);
24638 ret = do_check_common(env, i);
24639 if (ret) {
24640 return ret;
24641 } else if (env->log.level & BPF_LOG_LEVEL) {
24642 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
24643 i, subprog_name(env, i));
24644 }
24645
24646 /* We verified new global subprog, it might have called some
24647 * more global subprogs that we haven't verified yet, so we
24648 * need to do another pass over subprogs to verify those.
24649 */
24650 sub_aux->verified = true;
24651 new_cnt++;
24652 }
24653
24654 /* We can't loop forever as we verify at least one global subprog on
24655 * each pass.
24656 */
24657 if (new_cnt)
24658 goto again;
24659
24660 return 0;
24661 }
24662
do_check_main(struct bpf_verifier_env * env)24663 static int do_check_main(struct bpf_verifier_env *env)
24664 {
24665 int ret;
24666
24667 env->insn_idx = 0;
24668 ret = do_check_common(env, 0);
24669 if (!ret)
24670 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
24671 return ret;
24672 }
24673
24674
print_verification_stats(struct bpf_verifier_env * env)24675 static void print_verification_stats(struct bpf_verifier_env *env)
24676 {
24677 int i;
24678
24679 if (env->log.level & BPF_LOG_STATS) {
24680 verbose(env, "verification time %lld usec\n",
24681 div_u64(env->verification_time, 1000));
24682 verbose(env, "stack depth ");
24683 for (i = 0; i < env->subprog_cnt; i++) {
24684 u32 depth = env->subprog_info[i].stack_depth;
24685
24686 verbose(env, "%d", depth);
24687 if (i + 1 < env->subprog_cnt)
24688 verbose(env, "+");
24689 }
24690 verbose(env, "\n");
24691 }
24692 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
24693 "total_states %d peak_states %d mark_read %d\n",
24694 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
24695 env->max_states_per_insn, env->total_states,
24696 env->peak_states, env->longest_mark_read_walk);
24697 }
24698
bpf_prog_ctx_arg_info_init(struct bpf_prog * prog,const struct bpf_ctx_arg_aux * info,u32 cnt)24699 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
24700 const struct bpf_ctx_arg_aux *info, u32 cnt)
24701 {
24702 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT);
24703 prog->aux->ctx_arg_info_size = cnt;
24704
24705 return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
24706 }
24707
check_struct_ops_btf_id(struct bpf_verifier_env * env)24708 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
24709 {
24710 const struct btf_type *t, *func_proto;
24711 const struct bpf_struct_ops_desc *st_ops_desc;
24712 const struct bpf_struct_ops *st_ops;
24713 const struct btf_member *member;
24714 struct bpf_prog *prog = env->prog;
24715 bool has_refcounted_arg = false;
24716 u32 btf_id, member_idx, member_off;
24717 struct btf *btf;
24718 const char *mname;
24719 int i, err;
24720
24721 if (!prog->gpl_compatible) {
24722 verbose(env, "struct ops programs must have a GPL compatible license\n");
24723 return -EINVAL;
24724 }
24725
24726 if (!prog->aux->attach_btf_id)
24727 return -ENOTSUPP;
24728
24729 btf = prog->aux->attach_btf;
24730 if (btf_is_module(btf)) {
24731 /* Make sure st_ops is valid through the lifetime of env */
24732 env->attach_btf_mod = btf_try_get_module(btf);
24733 if (!env->attach_btf_mod) {
24734 verbose(env, "struct_ops module %s is not found\n",
24735 btf_get_name(btf));
24736 return -ENOTSUPP;
24737 }
24738 }
24739
24740 btf_id = prog->aux->attach_btf_id;
24741 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
24742 if (!st_ops_desc) {
24743 verbose(env, "attach_btf_id %u is not a supported struct\n",
24744 btf_id);
24745 return -ENOTSUPP;
24746 }
24747 st_ops = st_ops_desc->st_ops;
24748
24749 t = st_ops_desc->type;
24750 member_idx = prog->expected_attach_type;
24751 if (member_idx >= btf_type_vlen(t)) {
24752 verbose(env, "attach to invalid member idx %u of struct %s\n",
24753 member_idx, st_ops->name);
24754 return -EINVAL;
24755 }
24756
24757 member = &btf_type_member(t)[member_idx];
24758 mname = btf_name_by_offset(btf, member->name_off);
24759 func_proto = btf_type_resolve_func_ptr(btf, member->type,
24760 NULL);
24761 if (!func_proto) {
24762 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
24763 mname, member_idx, st_ops->name);
24764 return -EINVAL;
24765 }
24766
24767 member_off = __btf_member_bit_offset(t, member) / 8;
24768 err = bpf_struct_ops_supported(st_ops, member_off);
24769 if (err) {
24770 verbose(env, "attach to unsupported member %s of struct %s\n",
24771 mname, st_ops->name);
24772 return err;
24773 }
24774
24775 if (st_ops->check_member) {
24776 err = st_ops->check_member(t, member, prog);
24777
24778 if (err) {
24779 verbose(env, "attach to unsupported member %s of struct %s\n",
24780 mname, st_ops->name);
24781 return err;
24782 }
24783 }
24784
24785 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
24786 verbose(env, "Private stack not supported by jit\n");
24787 return -EACCES;
24788 }
24789
24790 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
24791 if (st_ops_desc->arg_info[member_idx].info->refcounted) {
24792 has_refcounted_arg = true;
24793 break;
24794 }
24795 }
24796
24797 /* Tail call is not allowed for programs with refcounted arguments since we
24798 * cannot guarantee that valid refcounted kptrs will be passed to the callee.
24799 */
24800 for (i = 0; i < env->subprog_cnt; i++) {
24801 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
24802 verbose(env, "program with __ref argument cannot tail call\n");
24803 return -EINVAL;
24804 }
24805 }
24806
24807 prog->aux->st_ops = st_ops;
24808 prog->aux->attach_st_ops_member_off = member_off;
24809
24810 prog->aux->attach_func_proto = func_proto;
24811 prog->aux->attach_func_name = mname;
24812 env->ops = st_ops->verifier_ops;
24813
24814 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
24815 st_ops_desc->arg_info[member_idx].cnt);
24816 }
24817 #define SECURITY_PREFIX "security_"
24818
check_attach_modify_return(unsigned long addr,const char * func_name)24819 static int check_attach_modify_return(unsigned long addr, const char *func_name)
24820 {
24821 if (within_error_injection_list(addr) ||
24822 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
24823 return 0;
24824
24825 return -EINVAL;
24826 }
24827
24828 /* list of non-sleepable functions that are otherwise on
24829 * ALLOW_ERROR_INJECTION list
24830 */
24831 BTF_SET_START(btf_non_sleepable_error_inject)
24832 /* Three functions below can be called from sleepable and non-sleepable context.
24833 * Assume non-sleepable from bpf safety point of view.
24834 */
BTF_ID(func,__filemap_add_folio)24835 BTF_ID(func, __filemap_add_folio)
24836 #ifdef CONFIG_FAIL_PAGE_ALLOC
24837 BTF_ID(func, should_fail_alloc_page)
24838 #endif
24839 #ifdef CONFIG_FAILSLAB
24840 BTF_ID(func, should_failslab)
24841 #endif
24842 BTF_SET_END(btf_non_sleepable_error_inject)
24843
24844 static int check_non_sleepable_error_inject(u32 btf_id)
24845 {
24846 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
24847 }
24848
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)24849 int bpf_check_attach_target(struct bpf_verifier_log *log,
24850 const struct bpf_prog *prog,
24851 const struct bpf_prog *tgt_prog,
24852 u32 btf_id,
24853 struct bpf_attach_target_info *tgt_info)
24854 {
24855 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
24856 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
24857 char trace_symbol[KSYM_SYMBOL_LEN];
24858 const char prefix[] = "btf_trace_";
24859 struct bpf_raw_event_map *btp;
24860 int ret = 0, subprog = -1, i;
24861 const struct btf_type *t;
24862 bool conservative = true;
24863 const char *tname, *fname;
24864 struct btf *btf;
24865 long addr = 0;
24866 struct module *mod = NULL;
24867
24868 if (!btf_id) {
24869 bpf_log(log, "Tracing programs must provide btf_id\n");
24870 return -EINVAL;
24871 }
24872 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
24873 if (!btf) {
24874 bpf_log(log,
24875 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
24876 return -EINVAL;
24877 }
24878 t = btf_type_by_id(btf, btf_id);
24879 if (!t) {
24880 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
24881 return -EINVAL;
24882 }
24883 tname = btf_name_by_offset(btf, t->name_off);
24884 if (!tname) {
24885 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
24886 return -EINVAL;
24887 }
24888 if (tgt_prog) {
24889 struct bpf_prog_aux *aux = tgt_prog->aux;
24890 bool tgt_changes_pkt_data;
24891 bool tgt_might_sleep;
24892
24893 if (bpf_prog_is_dev_bound(prog->aux) &&
24894 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
24895 bpf_log(log, "Target program bound device mismatch");
24896 return -EINVAL;
24897 }
24898
24899 for (i = 0; i < aux->func_info_cnt; i++)
24900 if (aux->func_info[i].type_id == btf_id) {
24901 subprog = i;
24902 break;
24903 }
24904 if (subprog == -1) {
24905 bpf_log(log, "Subprog %s doesn't exist\n", tname);
24906 return -EINVAL;
24907 }
24908 if (aux->func && aux->func[subprog]->aux->exception_cb) {
24909 bpf_log(log,
24910 "%s programs cannot attach to exception callback\n",
24911 prog_extension ? "Extension" : "FENTRY/FEXIT");
24912 return -EINVAL;
24913 }
24914 conservative = aux->func_info_aux[subprog].unreliable;
24915 if (prog_extension) {
24916 if (conservative) {
24917 bpf_log(log,
24918 "Cannot replace static functions\n");
24919 return -EINVAL;
24920 }
24921 if (!prog->jit_requested) {
24922 bpf_log(log,
24923 "Extension programs should be JITed\n");
24924 return -EINVAL;
24925 }
24926 tgt_changes_pkt_data = aux->func
24927 ? aux->func[subprog]->aux->changes_pkt_data
24928 : aux->changes_pkt_data;
24929 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
24930 bpf_log(log,
24931 "Extension program changes packet data, while original does not\n");
24932 return -EINVAL;
24933 }
24934
24935 tgt_might_sleep = aux->func
24936 ? aux->func[subprog]->aux->might_sleep
24937 : aux->might_sleep;
24938 if (prog->aux->might_sleep && !tgt_might_sleep) {
24939 bpf_log(log,
24940 "Extension program may sleep, while original does not\n");
24941 return -EINVAL;
24942 }
24943 }
24944 if (!tgt_prog->jited) {
24945 bpf_log(log, "Can attach to only JITed progs\n");
24946 return -EINVAL;
24947 }
24948 if (prog_tracing) {
24949 if (aux->attach_tracing_prog) {
24950 /*
24951 * Target program is an fentry/fexit which is already attached
24952 * to another tracing program. More levels of nesting
24953 * attachment are not allowed.
24954 */
24955 bpf_log(log, "Cannot nest tracing program attach more than once\n");
24956 return -EINVAL;
24957 }
24958 } else if (tgt_prog->type == prog->type) {
24959 /*
24960 * To avoid potential call chain cycles, prevent attaching of a
24961 * program extension to another extension. It's ok to attach
24962 * fentry/fexit to extension program.
24963 */
24964 bpf_log(log, "Cannot recursively attach\n");
24965 return -EINVAL;
24966 }
24967 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
24968 prog_extension &&
24969 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
24970 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT ||
24971 tgt_prog->expected_attach_type == BPF_TRACE_FSESSION)) {
24972 /* Program extensions can extend all program types
24973 * except fentry/fexit. The reason is the following.
24974 * The fentry/fexit programs are used for performance
24975 * analysis, stats and can be attached to any program
24976 * type. When extension program is replacing XDP function
24977 * it is necessary to allow performance analysis of all
24978 * functions. Both original XDP program and its program
24979 * extension. Hence attaching fentry/fexit to
24980 * BPF_PROG_TYPE_EXT is allowed. If extending of
24981 * fentry/fexit was allowed it would be possible to create
24982 * long call chain fentry->extension->fentry->extension
24983 * beyond reasonable stack size. Hence extending fentry
24984 * is not allowed.
24985 */
24986 bpf_log(log, "Cannot extend fentry/fexit/fsession\n");
24987 return -EINVAL;
24988 }
24989 } else {
24990 if (prog_extension) {
24991 bpf_log(log, "Cannot replace kernel functions\n");
24992 return -EINVAL;
24993 }
24994 }
24995
24996 switch (prog->expected_attach_type) {
24997 case BPF_TRACE_RAW_TP:
24998 if (tgt_prog) {
24999 bpf_log(log,
25000 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
25001 return -EINVAL;
25002 }
25003 if (!btf_type_is_typedef(t)) {
25004 bpf_log(log, "attach_btf_id %u is not a typedef\n",
25005 btf_id);
25006 return -EINVAL;
25007 }
25008 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
25009 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
25010 btf_id, tname);
25011 return -EINVAL;
25012 }
25013 tname += sizeof(prefix) - 1;
25014
25015 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument
25016 * names. Thus using bpf_raw_event_map to get argument names.
25017 */
25018 btp = bpf_get_raw_tracepoint(tname);
25019 if (!btp)
25020 return -EINVAL;
25021 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
25022 trace_symbol);
25023 bpf_put_raw_tracepoint(btp);
25024
25025 if (fname)
25026 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
25027
25028 if (!fname || ret < 0) {
25029 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
25030 prefix, tname);
25031 t = btf_type_by_id(btf, t->type);
25032 if (!btf_type_is_ptr(t))
25033 /* should never happen in valid vmlinux build */
25034 return -EINVAL;
25035 } else {
25036 t = btf_type_by_id(btf, ret);
25037 if (!btf_type_is_func(t))
25038 /* should never happen in valid vmlinux build */
25039 return -EINVAL;
25040 }
25041
25042 t = btf_type_by_id(btf, t->type);
25043 if (!btf_type_is_func_proto(t))
25044 /* should never happen in valid vmlinux build */
25045 return -EINVAL;
25046
25047 break;
25048 case BPF_TRACE_ITER:
25049 if (!btf_type_is_func(t)) {
25050 bpf_log(log, "attach_btf_id %u is not a function\n",
25051 btf_id);
25052 return -EINVAL;
25053 }
25054 t = btf_type_by_id(btf, t->type);
25055 if (!btf_type_is_func_proto(t))
25056 return -EINVAL;
25057 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
25058 if (ret)
25059 return ret;
25060 break;
25061 default:
25062 if (!prog_extension)
25063 return -EINVAL;
25064 fallthrough;
25065 case BPF_MODIFY_RETURN:
25066 case BPF_LSM_MAC:
25067 case BPF_LSM_CGROUP:
25068 case BPF_TRACE_FENTRY:
25069 case BPF_TRACE_FEXIT:
25070 case BPF_TRACE_FSESSION:
25071 if (prog->expected_attach_type == BPF_TRACE_FSESSION &&
25072 !bpf_jit_supports_fsession()) {
25073 bpf_log(log, "JIT does not support fsession\n");
25074 return -EOPNOTSUPP;
25075 }
25076 if (!btf_type_is_func(t)) {
25077 bpf_log(log, "attach_btf_id %u is not a function\n",
25078 btf_id);
25079 return -EINVAL;
25080 }
25081 if (prog_extension &&
25082 btf_check_type_match(log, prog, btf, t))
25083 return -EINVAL;
25084 t = btf_type_by_id(btf, t->type);
25085 if (!btf_type_is_func_proto(t))
25086 return -EINVAL;
25087
25088 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
25089 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
25090 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
25091 return -EINVAL;
25092
25093 if (tgt_prog && conservative)
25094 t = NULL;
25095
25096 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
25097 if (ret < 0)
25098 return ret;
25099
25100 if (tgt_prog) {
25101 if (subprog == 0)
25102 addr = (long) tgt_prog->bpf_func;
25103 else
25104 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
25105 } else {
25106 if (btf_is_module(btf)) {
25107 mod = btf_try_get_module(btf);
25108 if (mod)
25109 addr = find_kallsyms_symbol_value(mod, tname);
25110 else
25111 addr = 0;
25112 } else {
25113 addr = kallsyms_lookup_name(tname);
25114 }
25115 if (!addr) {
25116 module_put(mod);
25117 bpf_log(log,
25118 "The address of function %s cannot be found\n",
25119 tname);
25120 return -ENOENT;
25121 }
25122 }
25123
25124 if (prog->sleepable) {
25125 ret = -EINVAL;
25126 switch (prog->type) {
25127 case BPF_PROG_TYPE_TRACING:
25128
25129 /* fentry/fexit/fmod_ret progs can be sleepable if they are
25130 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
25131 */
25132 if (!check_non_sleepable_error_inject(btf_id) &&
25133 within_error_injection_list(addr))
25134 ret = 0;
25135 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
25136 * in the fmodret id set with the KF_SLEEPABLE flag.
25137 */
25138 else {
25139 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
25140 prog);
25141
25142 if (flags && (*flags & KF_SLEEPABLE))
25143 ret = 0;
25144 }
25145 break;
25146 case BPF_PROG_TYPE_LSM:
25147 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
25148 * Only some of them are sleepable.
25149 */
25150 if (bpf_lsm_is_sleepable_hook(btf_id))
25151 ret = 0;
25152 break;
25153 default:
25154 break;
25155 }
25156 if (ret) {
25157 module_put(mod);
25158 bpf_log(log, "%s is not sleepable\n", tname);
25159 return ret;
25160 }
25161 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
25162 if (tgt_prog) {
25163 module_put(mod);
25164 bpf_log(log, "can't modify return codes of BPF programs\n");
25165 return -EINVAL;
25166 }
25167 ret = -EINVAL;
25168 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
25169 !check_attach_modify_return(addr, tname))
25170 ret = 0;
25171 if (ret) {
25172 module_put(mod);
25173 bpf_log(log, "%s() is not modifiable\n", tname);
25174 return ret;
25175 }
25176 }
25177
25178 break;
25179 }
25180 tgt_info->tgt_addr = addr;
25181 tgt_info->tgt_name = tname;
25182 tgt_info->tgt_type = t;
25183 tgt_info->tgt_mod = mod;
25184 return 0;
25185 }
25186
BTF_SET_START(btf_id_deny)25187 BTF_SET_START(btf_id_deny)
25188 BTF_ID_UNUSED
25189 #ifdef CONFIG_SMP
25190 BTF_ID(func, ___migrate_enable)
25191 BTF_ID(func, migrate_disable)
25192 BTF_ID(func, migrate_enable)
25193 #endif
25194 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
25195 BTF_ID(func, rcu_read_unlock_strict)
25196 #endif
25197 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
25198 BTF_ID(func, preempt_count_add)
25199 BTF_ID(func, preempt_count_sub)
25200 #endif
25201 #ifdef CONFIG_PREEMPT_RCU
25202 BTF_ID(func, __rcu_read_lock)
25203 BTF_ID(func, __rcu_read_unlock)
25204 #endif
25205 BTF_SET_END(btf_id_deny)
25206
25207 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
25208 * Currently, we must manually list all __noreturn functions here. Once a more
25209 * robust solution is implemented, this workaround can be removed.
25210 */
25211 BTF_SET_START(noreturn_deny)
25212 #ifdef CONFIG_IA32_EMULATION
25213 BTF_ID(func, __ia32_sys_exit)
25214 BTF_ID(func, __ia32_sys_exit_group)
25215 #endif
25216 #ifdef CONFIG_KUNIT
25217 BTF_ID(func, __kunit_abort)
25218 BTF_ID(func, kunit_try_catch_throw)
25219 #endif
25220 #ifdef CONFIG_MODULES
25221 BTF_ID(func, __module_put_and_kthread_exit)
25222 #endif
25223 #ifdef CONFIG_X86_64
25224 BTF_ID(func, __x64_sys_exit)
25225 BTF_ID(func, __x64_sys_exit_group)
25226 #endif
25227 BTF_ID(func, do_exit)
25228 BTF_ID(func, do_group_exit)
25229 BTF_ID(func, kthread_complete_and_exit)
25230 BTF_ID(func, kthread_exit)
25231 BTF_ID(func, make_task_dead)
25232 BTF_SET_END(noreturn_deny)
25233
25234 static bool can_be_sleepable(struct bpf_prog *prog)
25235 {
25236 if (prog->type == BPF_PROG_TYPE_TRACING) {
25237 switch (prog->expected_attach_type) {
25238 case BPF_TRACE_FENTRY:
25239 case BPF_TRACE_FEXIT:
25240 case BPF_MODIFY_RETURN:
25241 case BPF_TRACE_ITER:
25242 case BPF_TRACE_FSESSION:
25243 return true;
25244 default:
25245 return false;
25246 }
25247 }
25248 return prog->type == BPF_PROG_TYPE_LSM ||
25249 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
25250 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
25251 }
25252
check_attach_btf_id(struct bpf_verifier_env * env)25253 static int check_attach_btf_id(struct bpf_verifier_env *env)
25254 {
25255 struct bpf_prog *prog = env->prog;
25256 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
25257 struct bpf_attach_target_info tgt_info = {};
25258 u32 btf_id = prog->aux->attach_btf_id;
25259 struct bpf_trampoline *tr;
25260 int ret;
25261 u64 key;
25262
25263 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
25264 if (prog->sleepable)
25265 /* attach_btf_id checked to be zero already */
25266 return 0;
25267 verbose(env, "Syscall programs can only be sleepable\n");
25268 return -EINVAL;
25269 }
25270
25271 if (prog->sleepable && !can_be_sleepable(prog)) {
25272 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
25273 return -EINVAL;
25274 }
25275
25276 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
25277 return check_struct_ops_btf_id(env);
25278
25279 if (prog->type != BPF_PROG_TYPE_TRACING &&
25280 prog->type != BPF_PROG_TYPE_LSM &&
25281 prog->type != BPF_PROG_TYPE_EXT)
25282 return 0;
25283
25284 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
25285 if (ret)
25286 return ret;
25287
25288 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
25289 /* to make freplace equivalent to their targets, they need to
25290 * inherit env->ops and expected_attach_type for the rest of the
25291 * verification
25292 */
25293 env->ops = bpf_verifier_ops[tgt_prog->type];
25294 prog->expected_attach_type = tgt_prog->expected_attach_type;
25295 }
25296
25297 /* store info about the attachment target that will be used later */
25298 prog->aux->attach_func_proto = tgt_info.tgt_type;
25299 prog->aux->attach_func_name = tgt_info.tgt_name;
25300 prog->aux->mod = tgt_info.tgt_mod;
25301
25302 if (tgt_prog) {
25303 prog->aux->saved_dst_prog_type = tgt_prog->type;
25304 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
25305 }
25306
25307 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
25308 prog->aux->attach_btf_trace = true;
25309 return 0;
25310 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
25311 return bpf_iter_prog_supported(prog);
25312 }
25313
25314 if (prog->type == BPF_PROG_TYPE_LSM) {
25315 ret = bpf_lsm_verify_prog(&env->log, prog);
25316 if (ret < 0)
25317 return ret;
25318 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
25319 btf_id_set_contains(&btf_id_deny, btf_id)) {
25320 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n",
25321 tgt_info.tgt_name);
25322 return -EINVAL;
25323 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
25324 prog->expected_attach_type == BPF_TRACE_FSESSION ||
25325 prog->expected_attach_type == BPF_MODIFY_RETURN) &&
25326 btf_id_set_contains(&noreturn_deny, btf_id)) {
25327 verbose(env, "Attaching fexit/fsession/fmod_ret to __noreturn function '%s' is rejected.\n",
25328 tgt_info.tgt_name);
25329 return -EINVAL;
25330 }
25331
25332 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
25333 tr = bpf_trampoline_get(key, &tgt_info);
25334 if (!tr)
25335 return -ENOMEM;
25336
25337 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
25338 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
25339
25340 prog->aux->dst_trampoline = tr;
25341 return 0;
25342 }
25343
bpf_get_btf_vmlinux(void)25344 struct btf *bpf_get_btf_vmlinux(void)
25345 {
25346 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
25347 mutex_lock(&bpf_verifier_lock);
25348 if (!btf_vmlinux)
25349 btf_vmlinux = btf_parse_vmlinux();
25350 mutex_unlock(&bpf_verifier_lock);
25351 }
25352 return btf_vmlinux;
25353 }
25354
25355 /*
25356 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
25357 * this case expect that every file descriptor in the array is either a map or
25358 * a BTF. Everything else is considered to be trash.
25359 */
add_fd_from_fd_array(struct bpf_verifier_env * env,int fd)25360 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
25361 {
25362 struct bpf_map *map;
25363 struct btf *btf;
25364 CLASS(fd, f)(fd);
25365 int err;
25366
25367 map = __bpf_map_get(f);
25368 if (!IS_ERR(map)) {
25369 err = __add_used_map(env, map);
25370 if (err < 0)
25371 return err;
25372 return 0;
25373 }
25374
25375 btf = __btf_get_by_fd(f);
25376 if (!IS_ERR(btf)) {
25377 btf_get(btf);
25378 return __add_used_btf(env, btf);
25379 }
25380
25381 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
25382 return PTR_ERR(map);
25383 }
25384
process_fd_array(struct bpf_verifier_env * env,union bpf_attr * attr,bpfptr_t uattr)25385 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
25386 {
25387 size_t size = sizeof(int);
25388 int ret;
25389 int fd;
25390 u32 i;
25391
25392 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
25393
25394 /*
25395 * The only difference between old (no fd_array_cnt is given) and new
25396 * APIs is that in the latter case the fd_array is expected to be
25397 * continuous and is scanned for map fds right away
25398 */
25399 if (!attr->fd_array_cnt)
25400 return 0;
25401
25402 /* Check for integer overflow */
25403 if (attr->fd_array_cnt >= (U32_MAX / size)) {
25404 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
25405 return -EINVAL;
25406 }
25407
25408 for (i = 0; i < attr->fd_array_cnt; i++) {
25409 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
25410 return -EFAULT;
25411
25412 ret = add_fd_from_fd_array(env, fd);
25413 if (ret)
25414 return ret;
25415 }
25416
25417 return 0;
25418 }
25419
25420 /* Each field is a register bitmask */
25421 struct insn_live_regs {
25422 u16 use; /* registers read by instruction */
25423 u16 def; /* registers written by instruction */
25424 u16 in; /* registers that may be alive before instruction */
25425 u16 out; /* registers that may be alive after instruction */
25426 };
25427
25428 /* Bitmask with 1s for all caller saved registers */
25429 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
25430
25431 /* Compute info->{use,def} fields for the instruction */
compute_insn_live_regs(struct bpf_verifier_env * env,struct bpf_insn * insn,struct insn_live_regs * info)25432 static void compute_insn_live_regs(struct bpf_verifier_env *env,
25433 struct bpf_insn *insn,
25434 struct insn_live_regs *info)
25435 {
25436 struct call_summary cs;
25437 u8 class = BPF_CLASS(insn->code);
25438 u8 code = BPF_OP(insn->code);
25439 u8 mode = BPF_MODE(insn->code);
25440 u16 src = BIT(insn->src_reg);
25441 u16 dst = BIT(insn->dst_reg);
25442 u16 r0 = BIT(0);
25443 u16 def = 0;
25444 u16 use = 0xffff;
25445
25446 switch (class) {
25447 case BPF_LD:
25448 switch (mode) {
25449 case BPF_IMM:
25450 if (BPF_SIZE(insn->code) == BPF_DW) {
25451 def = dst;
25452 use = 0;
25453 }
25454 break;
25455 case BPF_LD | BPF_ABS:
25456 case BPF_LD | BPF_IND:
25457 /* stick with defaults */
25458 break;
25459 }
25460 break;
25461 case BPF_LDX:
25462 switch (mode) {
25463 case BPF_MEM:
25464 case BPF_MEMSX:
25465 def = dst;
25466 use = src;
25467 break;
25468 }
25469 break;
25470 case BPF_ST:
25471 switch (mode) {
25472 case BPF_MEM:
25473 def = 0;
25474 use = dst;
25475 break;
25476 }
25477 break;
25478 case BPF_STX:
25479 switch (mode) {
25480 case BPF_MEM:
25481 def = 0;
25482 use = dst | src;
25483 break;
25484 case BPF_ATOMIC:
25485 switch (insn->imm) {
25486 case BPF_CMPXCHG:
25487 use = r0 | dst | src;
25488 def = r0;
25489 break;
25490 case BPF_LOAD_ACQ:
25491 def = dst;
25492 use = src;
25493 break;
25494 case BPF_STORE_REL:
25495 def = 0;
25496 use = dst | src;
25497 break;
25498 default:
25499 use = dst | src;
25500 if (insn->imm & BPF_FETCH)
25501 def = src;
25502 else
25503 def = 0;
25504 }
25505 break;
25506 }
25507 break;
25508 case BPF_ALU:
25509 case BPF_ALU64:
25510 switch (code) {
25511 case BPF_END:
25512 use = dst;
25513 def = dst;
25514 break;
25515 case BPF_MOV:
25516 def = dst;
25517 if (BPF_SRC(insn->code) == BPF_K)
25518 use = 0;
25519 else
25520 use = src;
25521 break;
25522 default:
25523 def = dst;
25524 if (BPF_SRC(insn->code) == BPF_K)
25525 use = dst;
25526 else
25527 use = dst | src;
25528 }
25529 break;
25530 case BPF_JMP:
25531 case BPF_JMP32:
25532 switch (code) {
25533 case BPF_JA:
25534 def = 0;
25535 if (BPF_SRC(insn->code) == BPF_X)
25536 use = dst;
25537 else
25538 use = 0;
25539 break;
25540 case BPF_JCOND:
25541 def = 0;
25542 use = 0;
25543 break;
25544 case BPF_EXIT:
25545 def = 0;
25546 use = r0;
25547 break;
25548 case BPF_CALL:
25549 def = ALL_CALLER_SAVED_REGS;
25550 use = def & ~BIT(BPF_REG_0);
25551 if (get_call_summary(env, insn, &cs))
25552 use = GENMASK(cs.num_params, 1);
25553 break;
25554 default:
25555 def = 0;
25556 if (BPF_SRC(insn->code) == BPF_K)
25557 use = dst;
25558 else
25559 use = dst | src;
25560 }
25561 break;
25562 }
25563
25564 info->def = def;
25565 info->use = use;
25566 }
25567
25568 /* Compute may-live registers after each instruction in the program.
25569 * The register is live after the instruction I if it is read by some
25570 * instruction S following I during program execution and is not
25571 * overwritten between I and S.
25572 *
25573 * Store result in env->insn_aux_data[i].live_regs.
25574 */
compute_live_registers(struct bpf_verifier_env * env)25575 static int compute_live_registers(struct bpf_verifier_env *env)
25576 {
25577 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
25578 struct bpf_insn *insns = env->prog->insnsi;
25579 struct insn_live_regs *state;
25580 int insn_cnt = env->prog->len;
25581 int err = 0, i, j;
25582 bool changed;
25583
25584 /* Use the following algorithm:
25585 * - define the following:
25586 * - I.use : a set of all registers read by instruction I;
25587 * - I.def : a set of all registers written by instruction I;
25588 * - I.in : a set of all registers that may be alive before I execution;
25589 * - I.out : a set of all registers that may be alive after I execution;
25590 * - insn_successors(I): a set of instructions S that might immediately
25591 * follow I for some program execution;
25592 * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
25593 * - visit each instruction in a postorder and update
25594 * state[i].in, state[i].out as follows:
25595 *
25596 * state[i].out = U [state[s].in for S in insn_successors(i)]
25597 * state[i].in = (state[i].out / state[i].def) U state[i].use
25598 *
25599 * (where U stands for set union, / stands for set difference)
25600 * - repeat the computation while {in,out} fields changes for
25601 * any instruction.
25602 */
25603 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT);
25604 if (!state) {
25605 err = -ENOMEM;
25606 goto out;
25607 }
25608
25609 for (i = 0; i < insn_cnt; ++i)
25610 compute_insn_live_regs(env, &insns[i], &state[i]);
25611
25612 changed = true;
25613 while (changed) {
25614 changed = false;
25615 for (i = 0; i < env->cfg.cur_postorder; ++i) {
25616 int insn_idx = env->cfg.insn_postorder[i];
25617 struct insn_live_regs *live = &state[insn_idx];
25618 struct bpf_iarray *succ;
25619 u16 new_out = 0;
25620 u16 new_in = 0;
25621
25622 succ = bpf_insn_successors(env, insn_idx);
25623 for (int s = 0; s < succ->cnt; ++s)
25624 new_out |= state[succ->items[s]].in;
25625 new_in = (new_out & ~live->def) | live->use;
25626 if (new_out != live->out || new_in != live->in) {
25627 live->in = new_in;
25628 live->out = new_out;
25629 changed = true;
25630 }
25631 }
25632 }
25633
25634 for (i = 0; i < insn_cnt; ++i)
25635 insn_aux[i].live_regs_before = state[i].in;
25636
25637 if (env->log.level & BPF_LOG_LEVEL2) {
25638 verbose(env, "Live regs before insn:\n");
25639 for (i = 0; i < insn_cnt; ++i) {
25640 if (env->insn_aux_data[i].scc)
25641 verbose(env, "%3d ", env->insn_aux_data[i].scc);
25642 else
25643 verbose(env, " ");
25644 verbose(env, "%3d: ", i);
25645 for (j = BPF_REG_0; j < BPF_REG_10; ++j)
25646 if (insn_aux[i].live_regs_before & BIT(j))
25647 verbose(env, "%d", j);
25648 else
25649 verbose(env, ".");
25650 verbose(env, " ");
25651 verbose_insn(env, &insns[i]);
25652 if (bpf_is_ldimm64(&insns[i]))
25653 i++;
25654 }
25655 }
25656
25657 out:
25658 kvfree(state);
25659 return err;
25660 }
25661
25662 /*
25663 * Compute strongly connected components (SCCs) on the CFG.
25664 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc.
25665 * If instruction is a sole member of its SCC and there are no self edges,
25666 * assign it SCC number of zero.
25667 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation.
25668 */
compute_scc(struct bpf_verifier_env * env)25669 static int compute_scc(struct bpf_verifier_env *env)
25670 {
25671 const u32 NOT_ON_STACK = U32_MAX;
25672
25673 struct bpf_insn_aux_data *aux = env->insn_aux_data;
25674 const u32 insn_cnt = env->prog->len;
25675 int stack_sz, dfs_sz, err = 0;
25676 u32 *stack, *pre, *low, *dfs;
25677 u32 i, j, t, w;
25678 u32 next_preorder_num;
25679 u32 next_scc_id;
25680 bool assign_scc;
25681 struct bpf_iarray *succ;
25682
25683 next_preorder_num = 1;
25684 next_scc_id = 1;
25685 /*
25686 * - 'stack' accumulates vertices in DFS order, see invariant comment below;
25687 * - 'pre[t] == p' => preorder number of vertex 't' is 'p';
25688 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n';
25689 * - 'dfs' DFS traversal stack, used to emulate explicit recursion.
25690 */
25691 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
25692 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
25693 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
25694 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT);
25695 if (!stack || !pre || !low || !dfs) {
25696 err = -ENOMEM;
25697 goto exit;
25698 }
25699 /*
25700 * References:
25701 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms"
25702 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components"
25703 *
25704 * The algorithm maintains the following invariant:
25705 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]';
25706 * - then, vertex 'u' remains on stack while vertex 'v' is on stack.
25707 *
25708 * Consequently:
25709 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u',
25710 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack,
25711 * and thus there is an SCC (loop) containing both 'u' and 'v'.
25712 * - If 'low[v] == pre[v]', loops containing 'v' have been explored,
25713 * and 'v' can be considered the root of some SCC.
25714 *
25715 * Here is a pseudo-code for an explicitly recursive version of the algorithm:
25716 *
25717 * NOT_ON_STACK = insn_cnt + 1
25718 * pre = [0] * insn_cnt
25719 * low = [0] * insn_cnt
25720 * scc = [0] * insn_cnt
25721 * stack = []
25722 *
25723 * next_preorder_num = 1
25724 * next_scc_id = 1
25725 *
25726 * def recur(w):
25727 * nonlocal next_preorder_num
25728 * nonlocal next_scc_id
25729 *
25730 * pre[w] = next_preorder_num
25731 * low[w] = next_preorder_num
25732 * next_preorder_num += 1
25733 * stack.append(w)
25734 * for s in successors(w):
25735 * # Note: for classic algorithm the block below should look as:
25736 * #
25737 * # if pre[s] == 0:
25738 * # recur(s)
25739 * # low[w] = min(low[w], low[s])
25740 * # elif low[s] != NOT_ON_STACK:
25741 * # low[w] = min(low[w], pre[s])
25742 * #
25743 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])'
25744 * # does not break the invariant and makes itartive version of the algorithm
25745 * # simpler. See 'Algorithm #3' from [2].
25746 *
25747 * # 's' not yet visited
25748 * if pre[s] == 0:
25749 * recur(s)
25750 * # if 's' is on stack, pick lowest reachable preorder number from it;
25751 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]',
25752 * # so 'min' would be a noop.
25753 * low[w] = min(low[w], low[s])
25754 *
25755 * if low[w] == pre[w]:
25756 * # 'w' is the root of an SCC, pop all vertices
25757 * # below 'w' on stack and assign same SCC to them.
25758 * while True:
25759 * t = stack.pop()
25760 * low[t] = NOT_ON_STACK
25761 * scc[t] = next_scc_id
25762 * if t == w:
25763 * break
25764 * next_scc_id += 1
25765 *
25766 * for i in range(0, insn_cnt):
25767 * if pre[i] == 0:
25768 * recur(i)
25769 *
25770 * Below implementation replaces explicit recursion with array 'dfs'.
25771 */
25772 for (i = 0; i < insn_cnt; i++) {
25773 if (pre[i])
25774 continue;
25775 stack_sz = 0;
25776 dfs_sz = 1;
25777 dfs[0] = i;
25778 dfs_continue:
25779 while (dfs_sz) {
25780 w = dfs[dfs_sz - 1];
25781 if (pre[w] == 0) {
25782 low[w] = next_preorder_num;
25783 pre[w] = next_preorder_num;
25784 next_preorder_num++;
25785 stack[stack_sz++] = w;
25786 }
25787 /* Visit 'w' successors */
25788 succ = bpf_insn_successors(env, w);
25789 for (j = 0; j < succ->cnt; ++j) {
25790 if (pre[succ->items[j]]) {
25791 low[w] = min(low[w], low[succ->items[j]]);
25792 } else {
25793 dfs[dfs_sz++] = succ->items[j];
25794 goto dfs_continue;
25795 }
25796 }
25797 /*
25798 * Preserve the invariant: if some vertex above in the stack
25799 * is reachable from 'w', keep 'w' on the stack.
25800 */
25801 if (low[w] < pre[w]) {
25802 dfs_sz--;
25803 goto dfs_continue;
25804 }
25805 /*
25806 * Assign SCC number only if component has two or more elements,
25807 * or if component has a self reference, or if instruction is a
25808 * callback calling function (implicit loop).
25809 */
25810 assign_scc = stack[stack_sz - 1] != w; /* two or more elements? */
25811 for (j = 0; j < succ->cnt; ++j) { /* self reference? */
25812 if (succ->items[j] == w) {
25813 assign_scc = true;
25814 break;
25815 }
25816 }
25817 if (bpf_calls_callback(env, w)) /* implicit loop? */
25818 assign_scc = true;
25819 /* Pop component elements from stack */
25820 do {
25821 t = stack[--stack_sz];
25822 low[t] = NOT_ON_STACK;
25823 if (assign_scc)
25824 aux[t].scc = next_scc_id;
25825 } while (t != w);
25826 if (assign_scc)
25827 next_scc_id++;
25828 dfs_sz--;
25829 }
25830 }
25831 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT);
25832 if (!env->scc_info) {
25833 err = -ENOMEM;
25834 goto exit;
25835 }
25836 env->scc_cnt = next_scc_id;
25837 exit:
25838 kvfree(stack);
25839 kvfree(pre);
25840 kvfree(low);
25841 kvfree(dfs);
25842 return err;
25843 }
25844
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)25845 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
25846 {
25847 u64 start_time = ktime_get_ns();
25848 struct bpf_verifier_env *env;
25849 int i, len, ret = -EINVAL, err;
25850 u32 log_true_size;
25851 bool is_priv;
25852
25853 BTF_TYPE_EMIT(enum bpf_features);
25854
25855 /* no program is valid */
25856 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
25857 return -EINVAL;
25858
25859 /* 'struct bpf_verifier_env' can be global, but since it's not small,
25860 * allocate/free it every time bpf_check() is called
25861 */
25862 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT);
25863 if (!env)
25864 return -ENOMEM;
25865
25866 env->bt.env = env;
25867
25868 len = (*prog)->len;
25869 env->insn_aux_data =
25870 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
25871 ret = -ENOMEM;
25872 if (!env->insn_aux_data)
25873 goto err_free_env;
25874 for (i = 0; i < len; i++)
25875 env->insn_aux_data[i].orig_idx = i;
25876 env->succ = iarray_realloc(NULL, 2);
25877 if (!env->succ)
25878 goto err_free_env;
25879 env->prog = *prog;
25880 env->ops = bpf_verifier_ops[env->prog->type];
25881
25882 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
25883 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
25884 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
25885 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
25886 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
25887
25888 bpf_get_btf_vmlinux();
25889
25890 /* grab the mutex to protect few globals used by verifier */
25891 if (!is_priv)
25892 mutex_lock(&bpf_verifier_lock);
25893
25894 /* user could have requested verbose verifier output
25895 * and supplied buffer to store the verification trace
25896 */
25897 ret = bpf_vlog_init(&env->log, attr->log_level,
25898 (char __user *) (unsigned long) attr->log_buf,
25899 attr->log_size);
25900 if (ret)
25901 goto err_unlock;
25902
25903 ret = process_fd_array(env, attr, uattr);
25904 if (ret)
25905 goto skip_full_check;
25906
25907 mark_verifier_state_clean(env);
25908
25909 if (IS_ERR(btf_vmlinux)) {
25910 /* Either gcc or pahole or kernel are broken. */
25911 verbose(env, "in-kernel BTF is malformed\n");
25912 ret = PTR_ERR(btf_vmlinux);
25913 goto skip_full_check;
25914 }
25915
25916 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
25917 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
25918 env->strict_alignment = true;
25919 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
25920 env->strict_alignment = false;
25921
25922 if (is_priv)
25923 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
25924 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
25925
25926 env->explored_states = kvcalloc(state_htab_size(env),
25927 sizeof(struct list_head),
25928 GFP_KERNEL_ACCOUNT);
25929 ret = -ENOMEM;
25930 if (!env->explored_states)
25931 goto skip_full_check;
25932
25933 for (i = 0; i < state_htab_size(env); i++)
25934 INIT_LIST_HEAD(&env->explored_states[i]);
25935 INIT_LIST_HEAD(&env->free_list);
25936
25937 ret = check_btf_info_early(env, attr, uattr);
25938 if (ret < 0)
25939 goto skip_full_check;
25940
25941 ret = add_subprog_and_kfunc(env);
25942 if (ret < 0)
25943 goto skip_full_check;
25944
25945 ret = check_subprogs(env);
25946 if (ret < 0)
25947 goto skip_full_check;
25948
25949 ret = check_btf_info(env, attr, uattr);
25950 if (ret < 0)
25951 goto skip_full_check;
25952
25953 ret = resolve_pseudo_ldimm64(env);
25954 if (ret < 0)
25955 goto skip_full_check;
25956
25957 if (bpf_prog_is_offloaded(env->prog->aux)) {
25958 ret = bpf_prog_offload_verifier_prep(env->prog);
25959 if (ret)
25960 goto skip_full_check;
25961 }
25962
25963 ret = check_cfg(env);
25964 if (ret < 0)
25965 goto skip_full_check;
25966
25967 ret = compute_postorder(env);
25968 if (ret < 0)
25969 goto skip_full_check;
25970
25971 ret = bpf_stack_liveness_init(env);
25972 if (ret)
25973 goto skip_full_check;
25974
25975 ret = check_attach_btf_id(env);
25976 if (ret)
25977 goto skip_full_check;
25978
25979 ret = compute_scc(env);
25980 if (ret < 0)
25981 goto skip_full_check;
25982
25983 ret = compute_live_registers(env);
25984 if (ret < 0)
25985 goto skip_full_check;
25986
25987 ret = mark_fastcall_patterns(env);
25988 if (ret < 0)
25989 goto skip_full_check;
25990
25991 ret = do_check_main(env);
25992 ret = ret ?: do_check_subprogs(env);
25993
25994 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
25995 ret = bpf_prog_offload_finalize(env);
25996
25997 skip_full_check:
25998 kvfree(env->explored_states);
25999
26000 /* might decrease stack depth, keep it before passes that
26001 * allocate additional slots.
26002 */
26003 if (ret == 0)
26004 ret = remove_fastcall_spills_fills(env);
26005
26006 if (ret == 0)
26007 ret = check_max_stack_depth(env);
26008
26009 /* instruction rewrites happen after this point */
26010 if (ret == 0)
26011 ret = optimize_bpf_loop(env);
26012
26013 if (is_priv) {
26014 if (ret == 0)
26015 opt_hard_wire_dead_code_branches(env);
26016 if (ret == 0)
26017 ret = opt_remove_dead_code(env);
26018 if (ret == 0)
26019 ret = opt_remove_nops(env);
26020 } else {
26021 if (ret == 0)
26022 sanitize_dead_code(env);
26023 }
26024
26025 if (ret == 0)
26026 /* program is valid, convert *(u32*)(ctx + off) accesses */
26027 ret = convert_ctx_accesses(env);
26028
26029 if (ret == 0)
26030 ret = do_misc_fixups(env);
26031
26032 /* do 32-bit optimization after insn patching has done so those patched
26033 * insns could be handled correctly.
26034 */
26035 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
26036 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
26037 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
26038 : false;
26039 }
26040
26041 if (ret == 0)
26042 ret = fixup_call_args(env);
26043
26044 env->verification_time = ktime_get_ns() - start_time;
26045 print_verification_stats(env);
26046 env->prog->aux->verified_insns = env->insn_processed;
26047
26048 /* preserve original error even if log finalization is successful */
26049 err = bpf_vlog_finalize(&env->log, &log_true_size);
26050 if (err)
26051 ret = err;
26052
26053 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
26054 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
26055 &log_true_size, sizeof(log_true_size))) {
26056 ret = -EFAULT;
26057 goto err_release_maps;
26058 }
26059
26060 if (ret)
26061 goto err_release_maps;
26062
26063 if (env->used_map_cnt) {
26064 /* if program passed verifier, update used_maps in bpf_prog_info */
26065 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
26066 sizeof(env->used_maps[0]),
26067 GFP_KERNEL_ACCOUNT);
26068
26069 if (!env->prog->aux->used_maps) {
26070 ret = -ENOMEM;
26071 goto err_release_maps;
26072 }
26073
26074 memcpy(env->prog->aux->used_maps, env->used_maps,
26075 sizeof(env->used_maps[0]) * env->used_map_cnt);
26076 env->prog->aux->used_map_cnt = env->used_map_cnt;
26077 }
26078 if (env->used_btf_cnt) {
26079 /* if program passed verifier, update used_btfs in bpf_prog_aux */
26080 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
26081 sizeof(env->used_btfs[0]),
26082 GFP_KERNEL_ACCOUNT);
26083 if (!env->prog->aux->used_btfs) {
26084 ret = -ENOMEM;
26085 goto err_release_maps;
26086 }
26087
26088 memcpy(env->prog->aux->used_btfs, env->used_btfs,
26089 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
26090 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
26091 }
26092 if (env->used_map_cnt || env->used_btf_cnt) {
26093 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
26094 * bpf_ld_imm64 instructions
26095 */
26096 convert_pseudo_ld_imm64(env);
26097 }
26098
26099 adjust_btf_func(env);
26100
26101 err_release_maps:
26102 if (ret)
26103 release_insn_arrays(env);
26104 if (!env->prog->aux->used_maps)
26105 /* if we didn't copy map pointers into bpf_prog_info, release
26106 * them now. Otherwise free_used_maps() will release them.
26107 */
26108 release_maps(env);
26109 if (!env->prog->aux->used_btfs)
26110 release_btfs(env);
26111
26112 /* extension progs temporarily inherit the attach_type of their targets
26113 for verification purposes, so set it back to zero before returning
26114 */
26115 if (env->prog->type == BPF_PROG_TYPE_EXT)
26116 env->prog->expected_attach_type = 0;
26117
26118 *prog = env->prog;
26119
26120 module_put(env->attach_btf_mod);
26121 err_unlock:
26122 if (!is_priv)
26123 mutex_unlock(&bpf_verifier_lock);
26124 clear_insn_aux_data(env, 0, env->prog->len);
26125 vfree(env->insn_aux_data);
26126 err_free_env:
26127 bpf_stack_liveness_free(env);
26128 kvfree(env->cfg.insn_postorder);
26129 kvfree(env->scc_info);
26130 kvfree(env->succ);
26131 kvfree(env->gotox_tmp_buf);
26132 kvfree(env);
26133 return ret;
26134 }
26135