1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4
5 #include <linux/kvm_host.h>
6 #include <asm/fpu/xstate.h>
7 #include <asm/mce.h>
8 #include <asm/pvclock.h>
9 #include "kvm_cache_regs.h"
10 #include "kvm_emulate.h"
11 #include "cpuid.h"
12
13 #define KVM_MAX_MCE_BANKS 32
14
15 struct kvm_caps {
16 /* control of guest tsc rate supported? */
17 bool has_tsc_control;
18 /* maximum supported tsc_khz for guests */
19 u32 max_guest_tsc_khz;
20 /* number of bits of the fractional part of the TSC scaling ratio */
21 u8 tsc_scaling_ratio_frac_bits;
22 /* maximum allowed value of TSC scaling ratio */
23 u64 max_tsc_scaling_ratio;
24 /* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */
25 u64 default_tsc_scaling_ratio;
26 /* bus lock detection supported? */
27 bool has_bus_lock_exit;
28 /* notify VM exit supported? */
29 bool has_notify_vmexit;
30 /* bit mask of VM types */
31 u32 supported_vm_types;
32
33 u64 supported_mce_cap;
34 u64 supported_xcr0;
35 u64 supported_xss;
36 u64 supported_perf_cap;
37
38 u64 supported_quirks;
39 u64 inapplicable_quirks;
40 };
41
42 struct kvm_host_values {
43 /*
44 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical
45 * address bits irrespective of features that repurpose legal bits,
46 * e.g. MKTME.
47 */
48 u8 maxphyaddr;
49
50 u64 efer;
51 u64 xcr0;
52 u64 xss;
53 u64 s_cet;
54 u64 arch_capabilities;
55 };
56
57 void kvm_spurious_fault(void);
58
59 #define SIZE_OF_MEMSLOTS_HASHTABLE \
60 (sizeof(((struct kvm_memslots *)0)->id_hash) * 2 * KVM_MAX_NR_ADDRESS_SPACES)
61
62 /* Sanity check the size of the memslot hash tables. */
63 static_assert(SIZE_OF_MEMSLOTS_HASHTABLE ==
64 (1024 * (1 + IS_ENABLED(CONFIG_X86_64)) * (1 + IS_ENABLED(CONFIG_KVM_SMM))));
65
66 /*
67 * Assert that "struct kvm_{svm,vmx,tdx}" is an order-0 or order-1 allocation.
68 * Spilling over to an order-2 allocation isn't fundamentally problematic, but
69 * isn't expected to happen in the foreseeable future (O(years)). Assert that
70 * the size is an order-0 allocation when ignoring the memslot hash tables, to
71 * help detect and debug unexpected size increases.
72 */
73 #define KVM_SANITY_CHECK_VM_STRUCT_SIZE(x) \
74 do { \
75 BUILD_BUG_ON(get_order(sizeof(struct x) - SIZE_OF_MEMSLOTS_HASHTABLE) && \
76 !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \
77 BUILD_BUG_ON(get_order(sizeof(struct x)) > 1 && \
78 !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \
79 } while (0)
80
81 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \
82 ({ \
83 bool failed = (consistency_check); \
84 if (failed) \
85 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
86 failed; \
87 })
88
89 /*
90 * The first...last VMX feature MSRs that are emulated by KVM. This may or may
91 * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an
92 * associated feature that KVM supports for nested virtualization.
93 */
94 #define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC
95 #define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC
96
97 #define KVM_DEFAULT_PLE_GAP 128
98 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
99 #define KVM_DEFAULT_PLE_WINDOW_GROW 2
100 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0
101 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX
102 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX
103 #define KVM_SVM_DEFAULT_PLE_WINDOW 3000
104
105 /*
106 * KVM's internal, non-ABI indices for synthetic MSRs. The values themselves
107 * are arbitrary and have no meaning, the only requirement is that they don't
108 * conflict with "real" MSRs that KVM supports. Use values at the upper end
109 * of KVM's reserved paravirtual MSR range to minimize churn, i.e. these values
110 * will be usable until KVM exhausts its supply of paravirtual MSR indices.
111 */
112
113 #define MSR_KVM_INTERNAL_GUEST_SSP 0x4b564dff
114
__grow_ple_window(unsigned int val,unsigned int base,unsigned int modifier,unsigned int max)115 static inline unsigned int __grow_ple_window(unsigned int val,
116 unsigned int base, unsigned int modifier, unsigned int max)
117 {
118 u64 ret = val;
119
120 if (modifier < 1)
121 return base;
122
123 if (modifier < base)
124 ret *= modifier;
125 else
126 ret += modifier;
127
128 return min(ret, (u64)max);
129 }
130
__shrink_ple_window(unsigned int val,unsigned int base,unsigned int modifier,unsigned int min)131 static inline unsigned int __shrink_ple_window(unsigned int val,
132 unsigned int base, unsigned int modifier, unsigned int min)
133 {
134 if (modifier < 1)
135 return base;
136
137 if (modifier < base)
138 val /= modifier;
139 else
140 val -= modifier;
141
142 return max(val, min);
143 }
144
145 #define MSR_IA32_CR_PAT_DEFAULT \
146 PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC)
147
148 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu);
149 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
150
151 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)152 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu)
153 {
154 kvm_x86_ops.nested_ops->leave_nested(vcpu);
155 }
156
157 /*
158 * If IBRS is advertised to the vCPU, KVM must flush the indirect branch
159 * predictors when transitioning from L2 to L1, as L1 expects hardware (KVM in
160 * this case) to provide separate predictor modes. Bare metal isolates the host
161 * from the guest, but doesn't isolate different guests from one another (in
162 * this case L1 and L2). The exception is if bare metal supports same mode IBRS,
163 * which offers protection within the same mode, and hence protects L1 from L2.
164 */
kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu * vcpu)165 static inline void kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu *vcpu)
166 {
167 if (cpu_feature_enabled(X86_FEATURE_AMD_IBRS_SAME_MODE))
168 return;
169
170 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
171 guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS))
172 indirect_branch_prediction_barrier();
173 }
174
kvm_vcpu_has_run(struct kvm_vcpu * vcpu)175 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
176 {
177 return vcpu->arch.last_vmentry_cpu != -1;
178 }
179
kvm_set_mp_state(struct kvm_vcpu * vcpu,int mp_state)180 static inline void kvm_set_mp_state(struct kvm_vcpu *vcpu, int mp_state)
181 {
182 vcpu->arch.mp_state = mp_state;
183 if (mp_state == KVM_MP_STATE_RUNNABLE)
184 vcpu->arch.pv.pv_unhalted = false;
185 }
186
kvm_is_exception_pending(struct kvm_vcpu * vcpu)187 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu)
188 {
189 return vcpu->arch.exception.pending ||
190 vcpu->arch.exception_vmexit.pending ||
191 kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
192 }
193
kvm_clear_exception_queue(struct kvm_vcpu * vcpu)194 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
195 {
196 vcpu->arch.exception.pending = false;
197 vcpu->arch.exception.injected = false;
198 vcpu->arch.exception_vmexit.pending = false;
199 }
200
kvm_queue_interrupt(struct kvm_vcpu * vcpu,u8 vector,bool soft)201 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
202 bool soft)
203 {
204 vcpu->arch.interrupt.injected = true;
205 vcpu->arch.interrupt.soft = soft;
206 vcpu->arch.interrupt.nr = vector;
207 }
208
kvm_clear_interrupt_queue(struct kvm_vcpu * vcpu)209 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
210 {
211 vcpu->arch.interrupt.injected = false;
212 }
213
kvm_event_needs_reinjection(struct kvm_vcpu * vcpu)214 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
215 {
216 return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
217 vcpu->arch.nmi_injected;
218 }
219
kvm_exception_is_soft(unsigned int nr)220 static inline bool kvm_exception_is_soft(unsigned int nr)
221 {
222 return (nr == BP_VECTOR) || (nr == OF_VECTOR);
223 }
224
is_protmode(struct kvm_vcpu * vcpu)225 static inline bool is_protmode(struct kvm_vcpu *vcpu)
226 {
227 return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE);
228 }
229
is_long_mode(struct kvm_vcpu * vcpu)230 static inline bool is_long_mode(struct kvm_vcpu *vcpu)
231 {
232 #ifdef CONFIG_X86_64
233 return !!(vcpu->arch.efer & EFER_LMA);
234 #else
235 return false;
236 #endif
237 }
238
is_64_bit_mode(struct kvm_vcpu * vcpu)239 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
240 {
241 int cs_db, cs_l;
242
243 WARN_ON_ONCE(vcpu->arch.guest_state_protected);
244
245 if (!is_long_mode(vcpu))
246 return false;
247 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
248 return cs_l;
249 }
250
is_64_bit_hypercall(struct kvm_vcpu * vcpu)251 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
252 {
253 /*
254 * If running with protected guest state, the CS register is not
255 * accessible. The hypercall register values will have had to been
256 * provided in 64-bit mode, so assume the guest is in 64-bit.
257 */
258 return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
259 }
260
x86_exception_has_error_code(unsigned int vector)261 static inline bool x86_exception_has_error_code(unsigned int vector)
262 {
263 static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
264 BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
265 BIT(PF_VECTOR) | BIT(AC_VECTOR);
266
267 return (1U << vector) & exception_has_error_code;
268 }
269
mmu_is_nested(struct kvm_vcpu * vcpu)270 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
271 {
272 return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
273 }
274
is_pae(struct kvm_vcpu * vcpu)275 static inline bool is_pae(struct kvm_vcpu *vcpu)
276 {
277 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE);
278 }
279
is_pse(struct kvm_vcpu * vcpu)280 static inline bool is_pse(struct kvm_vcpu *vcpu)
281 {
282 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE);
283 }
284
is_paging(struct kvm_vcpu * vcpu)285 static inline bool is_paging(struct kvm_vcpu *vcpu)
286 {
287 return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG));
288 }
289
is_pae_paging(struct kvm_vcpu * vcpu)290 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
291 {
292 return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
293 }
294
vcpu_virt_addr_bits(struct kvm_vcpu * vcpu)295 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
296 {
297 return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48;
298 }
299
max_host_virt_addr_bits(void)300 static inline u8 max_host_virt_addr_bits(void)
301 {
302 return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48;
303 }
304
305 /*
306 * x86 MSRs which contain linear addresses, x86 hidden segment bases, and
307 * IDT/GDT bases have static canonicality checks, the size of which depends
308 * only on the CPU's support for 5-level paging, rather than on the state of
309 * CR4.LA57. This applies to both WRMSR and to other instructions that set
310 * their values, e.g. SGDT.
311 *
312 * KVM passes through most of these MSRS and also doesn't intercept the
313 * instructions that set the hidden segment bases.
314 *
315 * Because of this, to be consistent with hardware, even if the guest doesn't
316 * have LA57 enabled in its CPUID, perform canonicality checks based on *host*
317 * support for 5 level paging.
318 *
319 * Finally, instructions which are related to MMU invalidation of a given
320 * linear address, also have a similar static canonical check on address.
321 * This allows for example to invalidate 5-level addresses of a guest from a
322 * host which uses 4-level paging.
323 */
is_noncanonical_address(u64 la,struct kvm_vcpu * vcpu,unsigned int flags)324 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu,
325 unsigned int flags)
326 {
327 if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD))
328 return !__is_canonical_address(la, max_host_virt_addr_bits());
329 else
330 return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu));
331 }
332
is_noncanonical_msr_address(u64 la,struct kvm_vcpu * vcpu)333 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu)
334 {
335 return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR);
336 }
337
is_noncanonical_base_address(u64 la,struct kvm_vcpu * vcpu)338 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu)
339 {
340 return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD);
341 }
342
is_noncanonical_invlpg_address(u64 la,struct kvm_vcpu * vcpu)343 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu)
344 {
345 return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG);
346 }
347
vcpu_cache_mmio_info(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,unsigned access)348 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
349 gva_t gva, gfn_t gfn, unsigned access)
350 {
351 u64 gen = kvm_memslots(vcpu->kvm)->generation;
352
353 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
354 return;
355
356 /*
357 * If this is a shadow nested page table, the "GVA" is
358 * actually a nGPA.
359 */
360 vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
361 vcpu->arch.mmio_access = access;
362 vcpu->arch.mmio_gfn = gfn;
363 vcpu->arch.mmio_gen = gen;
364 }
365
vcpu_match_mmio_gen(struct kvm_vcpu * vcpu)366 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
367 {
368 return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
369 }
370
371 /*
372 * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
373 * clear all mmio cache info.
374 */
375 #define MMIO_GVA_ANY (~(gva_t)0)
376
vcpu_clear_mmio_info(struct kvm_vcpu * vcpu,gva_t gva)377 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
378 {
379 if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
380 return;
381
382 vcpu->arch.mmio_gva = 0;
383 }
384
vcpu_match_mmio_gva(struct kvm_vcpu * vcpu,unsigned long gva)385 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
386 {
387 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
388 vcpu->arch.mmio_gva == (gva & PAGE_MASK))
389 return true;
390
391 return false;
392 }
393
vcpu_match_mmio_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)394 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
395 {
396 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
397 vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
398 return true;
399
400 return false;
401 }
402
kvm_register_read(struct kvm_vcpu * vcpu,int reg)403 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
404 {
405 unsigned long val = kvm_register_read_raw(vcpu, reg);
406
407 return is_64_bit_mode(vcpu) ? val : (u32)val;
408 }
409
kvm_register_write(struct kvm_vcpu * vcpu,int reg,unsigned long val)410 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
411 int reg, unsigned long val)
412 {
413 if (!is_64_bit_mode(vcpu))
414 val = (u32)val;
415 return kvm_register_write_raw(vcpu, reg, val);
416 }
417
kvm_check_has_quirk(struct kvm * kvm,u64 quirk)418 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
419 {
420 return !(kvm->arch.disabled_quirks & quirk);
421 }
422
423 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
424
425 u64 get_kvmclock_ns(struct kvm *kvm);
426 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm);
427 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp);
428 int kvm_guest_time_update(struct kvm_vcpu *v);
429
430 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
431 gva_t addr, void *val, unsigned int bytes,
432 struct x86_exception *exception);
433
434 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
435 gva_t addr, void *val, unsigned int bytes,
436 struct x86_exception *exception);
437
438 int handle_ud(struct kvm_vcpu *vcpu);
439
440 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
441 struct kvm_queued_exception *ex);
442
443 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
444 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
445 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
446 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
447 void *insn, int insn_len);
448 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
449 int emulation_type, void *insn, int insn_len);
450 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu);
451 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
452 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu);
453 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu);
454
455 extern struct kvm_caps kvm_caps;
456 extern struct kvm_host_values kvm_host;
457
458 extern bool enable_pmu;
459
460 /*
461 * Get a filtered version of KVM's supported XCR0 that strips out dynamic
462 * features for which the current process doesn't (yet) have permission to use.
463 * This is intended to be used only when enumerating support to userspace,
464 * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be
465 * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if
466 * userspace attempts to enable unpermitted features.
467 */
kvm_get_filtered_xcr0(void)468 static inline u64 kvm_get_filtered_xcr0(void)
469 {
470 u64 permitted_xcr0 = kvm_caps.supported_xcr0;
471
472 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
473
474 if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) {
475 permitted_xcr0 &= xstate_get_guest_group_perm();
476
477 /*
478 * Treat XTILE_CFG as unsupported if the current process isn't
479 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in
480 * XCR0 without setting XTILE_DATA is architecturally illegal.
481 */
482 if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA))
483 permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG;
484 }
485 return permitted_xcr0;
486 }
487
kvm_mpx_supported(void)488 static inline bool kvm_mpx_supported(void)
489 {
490 return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
491 == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
492 }
493
494 extern unsigned int min_timer_period_us;
495
496 extern bool enable_vmware_backdoor;
497
498 extern int pi_inject_timer;
499
500 extern bool report_ignored_msrs;
501
502 extern bool eager_page_split;
503
kvm_pr_unimpl_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)504 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
505 {
506 if (report_ignored_msrs)
507 vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data);
508 }
509
kvm_pr_unimpl_rdmsr(struct kvm_vcpu * vcpu,u32 msr)510 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr)
511 {
512 if (report_ignored_msrs)
513 vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr);
514 }
515
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)516 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
517 {
518 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
519 vcpu->arch.virtual_tsc_shift);
520 }
521
522 /* Same "calling convention" as do_div:
523 * - divide (n << 32) by base
524 * - put result in n
525 * - return remainder
526 */
527 #define do_shl32_div32(n, base) \
528 ({ \
529 u32 __quot, __rem; \
530 asm("divl %2" : "=a" (__quot), "=d" (__rem) \
531 : "rm" (base), "0" (0), "1" ((u32) n)); \
532 n = __quot; \
533 __rem; \
534 })
535
kvm_disable_exits(struct kvm * kvm,u64 mask)536 static inline void kvm_disable_exits(struct kvm *kvm, u64 mask)
537 {
538 kvm->arch.disabled_exits |= mask;
539 }
540
kvm_mwait_in_guest(struct kvm * kvm)541 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
542 {
543 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_MWAIT;
544 }
545
kvm_hlt_in_guest(struct kvm * kvm)546 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
547 {
548 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_HLT;
549 }
550
kvm_pause_in_guest(struct kvm * kvm)551 static inline bool kvm_pause_in_guest(struct kvm *kvm)
552 {
553 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_PAUSE;
554 }
555
kvm_cstate_in_guest(struct kvm * kvm)556 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
557 {
558 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_CSTATE;
559 }
560
kvm_aperfmperf_in_guest(struct kvm * kvm)561 static inline bool kvm_aperfmperf_in_guest(struct kvm *kvm)
562 {
563 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_APERFMPERF;
564 }
565
kvm_notify_vmexit_enabled(struct kvm * kvm)566 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm)
567 {
568 return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED;
569 }
570
kvm_before_interrupt(struct kvm_vcpu * vcpu,enum kvm_intr_type intr)571 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu,
572 enum kvm_intr_type intr)
573 {
574 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr);
575 }
576
kvm_after_interrupt(struct kvm_vcpu * vcpu)577 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
578 {
579 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0);
580 }
581
kvm_handling_nmi_from_guest(struct kvm_vcpu * vcpu)582 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu)
583 {
584 return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI;
585 }
586
kvm_pat_valid(u64 data)587 static inline bool kvm_pat_valid(u64 data)
588 {
589 if (data & 0xF8F8F8F8F8F8F8F8ull)
590 return false;
591 /* 0, 1, 4, 5, 6, 7 are valid values. */
592 return (data | ((data & 0x0202020202020202ull) << 1)) == data;
593 }
594
kvm_dr7_valid(u64 data)595 static inline bool kvm_dr7_valid(u64 data)
596 {
597 /* Bits [63:32] are reserved */
598 return !(data >> 32);
599 }
kvm_dr6_valid(u64 data)600 static inline bool kvm_dr6_valid(u64 data)
601 {
602 /* Bits [63:32] are reserved */
603 return !(data >> 32);
604 }
605
606 /*
607 * Trigger machine check on the host. We assume all the MSRs are already set up
608 * by the CPU and that we still run on the same CPU as the MCE occurred on.
609 * We pass a fake environment to the machine check handler because we want
610 * the guest to be always treated like user space, no matter what context
611 * it used internally.
612 */
kvm_machine_check(void)613 static inline void kvm_machine_check(void)
614 {
615 #if defined(CONFIG_X86_MCE)
616 struct pt_regs regs = {
617 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
618 .flags = X86_EFLAGS_IF,
619 };
620
621 do_machine_check(®s);
622 #endif
623 }
624
625 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
626 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
627 int kvm_spec_ctrl_test_value(u64 value);
628 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
629 struct x86_exception *e);
630 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
631 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
632
633 enum kvm_msr_access {
634 MSR_TYPE_R = BIT(0),
635 MSR_TYPE_W = BIT(1),
636 MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W,
637 };
638
639 /*
640 * Internal error codes that are used to indicate that MSR emulation encountered
641 * an error that should result in #GP in the guest, unless userspace handles it.
642 * Note, '1', '0', and negative numbers are off limits, as they are used by KVM
643 * as part of KVM's lightly documented internal KVM_RUN return codes.
644 *
645 * UNSUPPORTED - The MSR isn't supported, either because it is completely
646 * unknown to KVM, or because the MSR should not exist according
647 * to the vCPU model.
648 *
649 * FILTERED - Access to the MSR is denied by a userspace MSR filter.
650 */
651 #define KVM_MSR_RET_UNSUPPORTED 2
652 #define KVM_MSR_RET_FILTERED 3
653
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)654 static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
655 {
656 return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits);
657 }
658
659 #define __cr4_reserved_bits(__cpu_has, __c) \
660 ({ \
661 u64 __reserved_bits = CR4_RESERVED_BITS; \
662 \
663 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
664 __reserved_bits |= X86_CR4_OSXSAVE; \
665 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
666 __reserved_bits |= X86_CR4_SMEP; \
667 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
668 __reserved_bits |= X86_CR4_SMAP; \
669 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
670 __reserved_bits |= X86_CR4_FSGSBASE; \
671 if (!__cpu_has(__c, X86_FEATURE_PKU)) \
672 __reserved_bits |= X86_CR4_PKE; \
673 if (!__cpu_has(__c, X86_FEATURE_LA57)) \
674 __reserved_bits |= X86_CR4_LA57; \
675 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \
676 __reserved_bits |= X86_CR4_UMIP; \
677 if (!__cpu_has(__c, X86_FEATURE_VMX)) \
678 __reserved_bits |= X86_CR4_VMXE; \
679 if (!__cpu_has(__c, X86_FEATURE_PCID)) \
680 __reserved_bits |= X86_CR4_PCIDE; \
681 if (!__cpu_has(__c, X86_FEATURE_LAM)) \
682 __reserved_bits |= X86_CR4_LAM_SUP; \
683 if (!__cpu_has(__c, X86_FEATURE_SHSTK) && \
684 !__cpu_has(__c, X86_FEATURE_IBT)) \
685 __reserved_bits |= X86_CR4_CET; \
686 __reserved_bits; \
687 })
688
689 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
690 void *dst);
691 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
692 void *dst);
693 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
694 unsigned int port, void *data, unsigned int count,
695 int in);
696
user_exit_on_hypercall(struct kvm * kvm,unsigned long hc_nr)697 static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr)
698 {
699 return kvm->arch.hypercall_exit_enabled & BIT(hc_nr);
700 }
701
702 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
703 int (*complete_hypercall)(struct kvm_vcpu *));
704
705 #define __kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall) \
706 ({ \
707 int __ret; \
708 __ret = ____kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall); \
709 \
710 if (__ret > 0) \
711 __ret = complete_hypercall(_vcpu); \
712 __ret; \
713 })
714
715 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
716
717 #define CET_US_RESERVED_BITS GENMASK(9, 6)
718 #define CET_US_SHSTK_MASK_BITS GENMASK(1, 0)
719 #define CET_US_IBT_MASK_BITS (GENMASK_ULL(5, 2) | GENMASK_ULL(63, 10))
720 #define CET_US_LEGACY_BITMAP_BASE(data) ((data) >> 12)
721
kvm_is_valid_u_s_cet(struct kvm_vcpu * vcpu,u64 data)722 static inline bool kvm_is_valid_u_s_cet(struct kvm_vcpu *vcpu, u64 data)
723 {
724 if (data & CET_US_RESERVED_BITS)
725 return false;
726 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
727 (data & CET_US_SHSTK_MASK_BITS))
728 return false;
729 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
730 (data & CET_US_IBT_MASK_BITS))
731 return false;
732 if (!IS_ALIGNED(CET_US_LEGACY_BITMAP_BASE(data), 4))
733 return false;
734 /* IBT can be suppressed iff the TRACKER isn't WAIT_ENDBR. */
735 if ((data & CET_SUPPRESS) && (data & CET_WAIT_ENDBR))
736 return false;
737
738 return true;
739 }
740 #endif
741