1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/memory-tiers.h>
39 #include <linux/compat.h>
40 #include <linux/pgalloc_tag.h>
41 #include <linux/pagewalk.h>
42
43 #include <asm/tlb.h>
44 #include <asm/pgalloc.h>
45 #include "internal.h"
46 #include "swap.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50
51 /*
52 * By default, transparent hugepage support is disabled in order to avoid
53 * risking an increased memory footprint for applications that are not
54 * guaranteed to benefit from it. When transparent hugepage support is
55 * enabled, it is for all mappings, and khugepaged scans all mappings.
56 * Defrag is invoked by khugepaged hugepage allocations and by page faults
57 * for all hugepage allocations.
58 */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 struct shrink_control *sc);
75 static bool split_underused_thp = true;
76
77 static atomic_t huge_zero_refcount;
78 struct folio *huge_zero_folio __read_mostly;
79 unsigned long huge_zero_pfn __read_mostly = ~0UL;
80 unsigned long huge_anon_orders_always __read_mostly;
81 unsigned long huge_anon_orders_madvise __read_mostly;
82 unsigned long huge_anon_orders_inherit __read_mostly;
83 static bool anon_orders_configured __initdata;
84
file_thp_enabled(struct vm_area_struct * vma)85 static inline bool file_thp_enabled(struct vm_area_struct *vma)
86 {
87 struct inode *inode;
88
89 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 return false;
91
92 if (!vma->vm_file)
93 return false;
94
95 inode = file_inode(vma->vm_file);
96
97 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98 }
99
__thp_vma_allowable_orders(struct vm_area_struct * vma,vm_flags_t vm_flags,enum tva_type type,unsigned long orders)100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101 vm_flags_t vm_flags,
102 enum tva_type type,
103 unsigned long orders)
104 {
105 const bool smaps = type == TVA_SMAPS;
106 const bool in_pf = type == TVA_PAGEFAULT;
107 const bool forced_collapse = type == TVA_FORCED_COLLAPSE;
108 unsigned long supported_orders;
109
110 /* Check the intersection of requested and supported orders. */
111 if (vma_is_anonymous(vma))
112 supported_orders = THP_ORDERS_ALL_ANON;
113 else if (vma_is_special_huge(vma))
114 supported_orders = THP_ORDERS_ALL_SPECIAL;
115 else
116 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117
118 orders &= supported_orders;
119 if (!orders)
120 return 0;
121
122 if (!vma->vm_mm) /* vdso */
123 return 0;
124
125 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse))
126 return 0;
127
128 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129 if (vma_is_dax(vma))
130 return in_pf ? orders : 0;
131
132 /*
133 * khugepaged special VMA and hugetlb VMA.
134 * Must be checked after dax since some dax mappings may have
135 * VM_MIXEDMAP set.
136 */
137 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138 return 0;
139
140 /*
141 * Check alignment for file vma and size for both file and anon vma by
142 * filtering out the unsuitable orders.
143 *
144 * Skip the check for page fault. Huge fault does the check in fault
145 * handlers.
146 */
147 if (!in_pf) {
148 int order = highest_order(orders);
149 unsigned long addr;
150
151 while (orders) {
152 addr = vma->vm_end - (PAGE_SIZE << order);
153 if (thp_vma_suitable_order(vma, addr, order))
154 break;
155 order = next_order(&orders, order);
156 }
157
158 if (!orders)
159 return 0;
160 }
161
162 /*
163 * Enabled via shmem mount options or sysfs settings.
164 * Must be done before hugepage flags check since shmem has its
165 * own flags.
166 */
167 if (!in_pf && shmem_file(vma->vm_file))
168 return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169 vma, vma->vm_pgoff, 0,
170 forced_collapse);
171
172 if (!vma_is_anonymous(vma)) {
173 /*
174 * Enforce THP collapse requirements as necessary. Anonymous vmas
175 * were already handled in thp_vma_allowable_orders().
176 */
177 if (!forced_collapse &&
178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179 !hugepage_global_always())))
180 return 0;
181
182 /*
183 * Trust that ->huge_fault() handlers know what they are doing
184 * in fault path.
185 */
186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187 return orders;
188 /* Only regular file is valid in collapse path */
189 if (((!in_pf || smaps)) && file_thp_enabled(vma))
190 return orders;
191 return 0;
192 }
193
194 if (vma_is_temporary_stack(vma))
195 return 0;
196
197 /*
198 * THPeligible bit of smaps should show 1 for proper VMAs even
199 * though anon_vma is not initialized yet.
200 *
201 * Allow page fault since anon_vma may be not initialized until
202 * the first page fault.
203 */
204 if (!vma->anon_vma)
205 return (smaps || in_pf) ? orders : 0;
206
207 return orders;
208 }
209
get_huge_zero_folio(void)210 static bool get_huge_zero_folio(void)
211 {
212 struct folio *zero_folio;
213 retry:
214 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 return true;
216
217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO | __GFP_ZEROTAGS) &
218 ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_folio) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return false;
223 }
224 /* Ensure zero folio won't have large_rmappable flag set. */
225 folio_clear_large_rmappable(zero_folio);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 preempt_enable();
229 folio_put(zero_folio);
230 goto retry;
231 }
232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233
234 /* We take additional reference here. It will be put back by shrinker */
235 atomic_set(&huge_zero_refcount, 2);
236 preempt_enable();
237 count_vm_event(THP_ZERO_PAGE_ALLOC);
238 return true;
239 }
240
put_huge_zero_folio(void)241 static void put_huge_zero_folio(void)
242 {
243 /*
244 * Counter should never go to zero here. Only shrinker can put
245 * last reference.
246 */
247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249
mm_get_huge_zero_folio(struct mm_struct * mm)250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
253 return huge_zero_folio;
254
255 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
256 return READ_ONCE(huge_zero_folio);
257
258 if (!get_huge_zero_folio())
259 return NULL;
260
261 if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm))
262 put_huge_zero_folio();
263
264 return READ_ONCE(huge_zero_folio);
265 }
266
mm_put_huge_zero_folio(struct mm_struct * mm)267 void mm_put_huge_zero_folio(struct mm_struct *mm)
268 {
269 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
270 return;
271
272 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
273 put_huge_zero_folio();
274 }
275
shrink_huge_zero_folio_count(struct shrinker * shrink,struct shrink_control * sc)276 static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink,
277 struct shrink_control *sc)
278 {
279 /* we can free zero page only if last reference remains */
280 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
281 }
282
shrink_huge_zero_folio_scan(struct shrinker * shrink,struct shrink_control * sc)283 static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink,
284 struct shrink_control *sc)
285 {
286 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
287 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
288 BUG_ON(zero_folio == NULL);
289 WRITE_ONCE(huge_zero_pfn, ~0UL);
290 folio_put(zero_folio);
291 return HPAGE_PMD_NR;
292 }
293
294 return 0;
295 }
296
297 static struct shrinker *huge_zero_folio_shrinker;
298
299 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)300 static ssize_t enabled_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302 {
303 const char *output;
304
305 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
306 output = "[always] madvise never";
307 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
308 &transparent_hugepage_flags))
309 output = "always [madvise] never";
310 else
311 output = "always madvise [never]";
312
313 return sysfs_emit(buf, "%s\n", output);
314 }
315
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)316 static ssize_t enabled_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count)
319 {
320 ssize_t ret = count;
321
322 if (sysfs_streq(buf, "always")) {
323 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
324 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
325 } else if (sysfs_streq(buf, "madvise")) {
326 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
327 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
328 } else if (sysfs_streq(buf, "never")) {
329 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
330 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
331 } else
332 ret = -EINVAL;
333
334 if (ret > 0) {
335 int err = start_stop_khugepaged();
336 if (err)
337 ret = err;
338 }
339 return ret;
340 }
341
342 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
343
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)344 ssize_t single_hugepage_flag_show(struct kobject *kobj,
345 struct kobj_attribute *attr, char *buf,
346 enum transparent_hugepage_flag flag)
347 {
348 return sysfs_emit(buf, "%d\n",
349 !!test_bit(flag, &transparent_hugepage_flags));
350 }
351
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)352 ssize_t single_hugepage_flag_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count,
355 enum transparent_hugepage_flag flag)
356 {
357 unsigned long value;
358 int ret;
359
360 ret = kstrtoul(buf, 10, &value);
361 if (ret < 0)
362 return ret;
363 if (value > 1)
364 return -EINVAL;
365
366 if (value)
367 set_bit(flag, &transparent_hugepage_flags);
368 else
369 clear_bit(flag, &transparent_hugepage_flags);
370
371 return count;
372 }
373
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)374 static ssize_t defrag_show(struct kobject *kobj,
375 struct kobj_attribute *attr, char *buf)
376 {
377 const char *output;
378
379 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
380 &transparent_hugepage_flags))
381 output = "[always] defer defer+madvise madvise never";
382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
383 &transparent_hugepage_flags))
384 output = "always [defer] defer+madvise madvise never";
385 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
386 &transparent_hugepage_flags))
387 output = "always defer [defer+madvise] madvise never";
388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
389 &transparent_hugepage_flags))
390 output = "always defer defer+madvise [madvise] never";
391 else
392 output = "always defer defer+madvise madvise [never]";
393
394 return sysfs_emit(buf, "%s\n", output);
395 }
396
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)397 static ssize_t defrag_store(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 const char *buf, size_t count)
400 {
401 if (sysfs_streq(buf, "always")) {
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
405 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
406 } else if (sysfs_streq(buf, "defer+madvise")) {
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
409 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
410 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
411 } else if (sysfs_streq(buf, "defer")) {
412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
416 } else if (sysfs_streq(buf, "madvise")) {
417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
420 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
421 } else if (sysfs_streq(buf, "never")) {
422 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
423 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
424 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
425 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
426 } else
427 return -EINVAL;
428
429 return count;
430 }
431 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
432
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)433 static ssize_t use_zero_page_show(struct kobject *kobj,
434 struct kobj_attribute *attr, char *buf)
435 {
436 return single_hugepage_flag_show(kobj, attr, buf,
437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)439 static ssize_t use_zero_page_store(struct kobject *kobj,
440 struct kobj_attribute *attr, const char *buf, size_t count)
441 {
442 return single_hugepage_flag_store(kobj, attr, buf, count,
443 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
444 }
445 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
446
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)447 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
448 struct kobj_attribute *attr, char *buf)
449 {
450 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
451 }
452 static struct kobj_attribute hpage_pmd_size_attr =
453 __ATTR_RO(hpage_pmd_size);
454
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)455 static ssize_t split_underused_thp_show(struct kobject *kobj,
456 struct kobj_attribute *attr, char *buf)
457 {
458 return sysfs_emit(buf, "%d\n", split_underused_thp);
459 }
460
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)461 static ssize_t split_underused_thp_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464 {
465 int err = kstrtobool(buf, &split_underused_thp);
466
467 if (err < 0)
468 return err;
469
470 return count;
471 }
472
473 static struct kobj_attribute split_underused_thp_attr = __ATTR(
474 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
475
476 static struct attribute *hugepage_attr[] = {
477 &enabled_attr.attr,
478 &defrag_attr.attr,
479 &use_zero_page_attr.attr,
480 &hpage_pmd_size_attr.attr,
481 #ifdef CONFIG_SHMEM
482 &shmem_enabled_attr.attr,
483 #endif
484 &split_underused_thp_attr.attr,
485 NULL,
486 };
487
488 static const struct attribute_group hugepage_attr_group = {
489 .attrs = hugepage_attr,
490 };
491
492 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
493 static void thpsize_release(struct kobject *kobj);
494 static DEFINE_SPINLOCK(huge_anon_orders_lock);
495 static LIST_HEAD(thpsize_list);
496
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)497 static ssize_t anon_enabled_show(struct kobject *kobj,
498 struct kobj_attribute *attr, char *buf)
499 {
500 int order = to_thpsize(kobj)->order;
501 const char *output;
502
503 if (test_bit(order, &huge_anon_orders_always))
504 output = "[always] inherit madvise never";
505 else if (test_bit(order, &huge_anon_orders_inherit))
506 output = "always [inherit] madvise never";
507 else if (test_bit(order, &huge_anon_orders_madvise))
508 output = "always inherit [madvise] never";
509 else
510 output = "always inherit madvise [never]";
511
512 return sysfs_emit(buf, "%s\n", output);
513 }
514
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)515 static ssize_t anon_enabled_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
518 {
519 int order = to_thpsize(kobj)->order;
520 ssize_t ret = count;
521
522 if (sysfs_streq(buf, "always")) {
523 spin_lock(&huge_anon_orders_lock);
524 clear_bit(order, &huge_anon_orders_inherit);
525 clear_bit(order, &huge_anon_orders_madvise);
526 set_bit(order, &huge_anon_orders_always);
527 spin_unlock(&huge_anon_orders_lock);
528 } else if (sysfs_streq(buf, "inherit")) {
529 spin_lock(&huge_anon_orders_lock);
530 clear_bit(order, &huge_anon_orders_always);
531 clear_bit(order, &huge_anon_orders_madvise);
532 set_bit(order, &huge_anon_orders_inherit);
533 spin_unlock(&huge_anon_orders_lock);
534 } else if (sysfs_streq(buf, "madvise")) {
535 spin_lock(&huge_anon_orders_lock);
536 clear_bit(order, &huge_anon_orders_always);
537 clear_bit(order, &huge_anon_orders_inherit);
538 set_bit(order, &huge_anon_orders_madvise);
539 spin_unlock(&huge_anon_orders_lock);
540 } else if (sysfs_streq(buf, "never")) {
541 spin_lock(&huge_anon_orders_lock);
542 clear_bit(order, &huge_anon_orders_always);
543 clear_bit(order, &huge_anon_orders_inherit);
544 clear_bit(order, &huge_anon_orders_madvise);
545 spin_unlock(&huge_anon_orders_lock);
546 } else
547 ret = -EINVAL;
548
549 if (ret > 0) {
550 int err;
551
552 err = start_stop_khugepaged();
553 if (err)
554 ret = err;
555 }
556 return ret;
557 }
558
559 static struct kobj_attribute anon_enabled_attr =
560 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
561
562 static struct attribute *anon_ctrl_attrs[] = {
563 &anon_enabled_attr.attr,
564 NULL,
565 };
566
567 static const struct attribute_group anon_ctrl_attr_grp = {
568 .attrs = anon_ctrl_attrs,
569 };
570
571 static struct attribute *file_ctrl_attrs[] = {
572 #ifdef CONFIG_SHMEM
573 &thpsize_shmem_enabled_attr.attr,
574 #endif
575 NULL,
576 };
577
578 static const struct attribute_group file_ctrl_attr_grp = {
579 .attrs = file_ctrl_attrs,
580 };
581
582 static struct attribute *any_ctrl_attrs[] = {
583 NULL,
584 };
585
586 static const struct attribute_group any_ctrl_attr_grp = {
587 .attrs = any_ctrl_attrs,
588 };
589
590 static const struct kobj_type thpsize_ktype = {
591 .release = &thpsize_release,
592 .sysfs_ops = &kobj_sysfs_ops,
593 };
594
595 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
596
sum_mthp_stat(int order,enum mthp_stat_item item)597 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
598 {
599 unsigned long sum = 0;
600 int cpu;
601
602 for_each_possible_cpu(cpu) {
603 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
604
605 sum += this->stats[order][item];
606 }
607
608 return sum;
609 }
610
611 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \
612 static ssize_t _name##_show(struct kobject *kobj, \
613 struct kobj_attribute *attr, char *buf) \
614 { \
615 int order = to_thpsize(kobj)->order; \
616 \
617 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
618 } \
619 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
620
621 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
622 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
623 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
624 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
625 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
626 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
628 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
629 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
630 #ifdef CONFIG_SHMEM
631 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
632 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
633 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
634 #endif
635 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
636 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
637 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
638 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
639 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
640
641 static struct attribute *anon_stats_attrs[] = {
642 &anon_fault_alloc_attr.attr,
643 &anon_fault_fallback_attr.attr,
644 &anon_fault_fallback_charge_attr.attr,
645 #ifndef CONFIG_SHMEM
646 &zswpout_attr.attr,
647 &swpin_attr.attr,
648 &swpin_fallback_attr.attr,
649 &swpin_fallback_charge_attr.attr,
650 &swpout_attr.attr,
651 &swpout_fallback_attr.attr,
652 #endif
653 &split_deferred_attr.attr,
654 &nr_anon_attr.attr,
655 &nr_anon_partially_mapped_attr.attr,
656 NULL,
657 };
658
659 static struct attribute_group anon_stats_attr_grp = {
660 .name = "stats",
661 .attrs = anon_stats_attrs,
662 };
663
664 static struct attribute *file_stats_attrs[] = {
665 #ifdef CONFIG_SHMEM
666 &shmem_alloc_attr.attr,
667 &shmem_fallback_attr.attr,
668 &shmem_fallback_charge_attr.attr,
669 #endif
670 NULL,
671 };
672
673 static struct attribute_group file_stats_attr_grp = {
674 .name = "stats",
675 .attrs = file_stats_attrs,
676 };
677
678 static struct attribute *any_stats_attrs[] = {
679 #ifdef CONFIG_SHMEM
680 &zswpout_attr.attr,
681 &swpin_attr.attr,
682 &swpin_fallback_attr.attr,
683 &swpin_fallback_charge_attr.attr,
684 &swpout_attr.attr,
685 &swpout_fallback_attr.attr,
686 #endif
687 &split_attr.attr,
688 &split_failed_attr.attr,
689 NULL,
690 };
691
692 static struct attribute_group any_stats_attr_grp = {
693 .name = "stats",
694 .attrs = any_stats_attrs,
695 };
696
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)697 static int sysfs_add_group(struct kobject *kobj,
698 const struct attribute_group *grp)
699 {
700 int ret = -ENOENT;
701
702 /*
703 * If the group is named, try to merge first, assuming the subdirectory
704 * was already created. This avoids the warning emitted by
705 * sysfs_create_group() if the directory already exists.
706 */
707 if (grp->name)
708 ret = sysfs_merge_group(kobj, grp);
709 if (ret)
710 ret = sysfs_create_group(kobj, grp);
711
712 return ret;
713 }
714
thpsize_create(int order,struct kobject * parent)715 static struct thpsize *thpsize_create(int order, struct kobject *parent)
716 {
717 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
718 struct thpsize *thpsize;
719 int ret = -ENOMEM;
720
721 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
722 if (!thpsize)
723 goto err;
724
725 thpsize->order = order;
726
727 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
728 "hugepages-%lukB", size);
729 if (ret) {
730 kfree(thpsize);
731 goto err;
732 }
733
734
735 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
736 if (ret)
737 goto err_put;
738
739 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
740 if (ret)
741 goto err_put;
742
743 if (BIT(order) & THP_ORDERS_ALL_ANON) {
744 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
745 if (ret)
746 goto err_put;
747
748 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
749 if (ret)
750 goto err_put;
751 }
752
753 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
754 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
755 if (ret)
756 goto err_put;
757
758 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
759 if (ret)
760 goto err_put;
761 }
762
763 return thpsize;
764 err_put:
765 kobject_put(&thpsize->kobj);
766 err:
767 return ERR_PTR(ret);
768 }
769
thpsize_release(struct kobject * kobj)770 static void thpsize_release(struct kobject *kobj)
771 {
772 kfree(to_thpsize(kobj));
773 }
774
hugepage_init_sysfs(struct kobject ** hugepage_kobj)775 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
776 {
777 int err;
778 struct thpsize *thpsize;
779 unsigned long orders;
780 int order;
781
782 /*
783 * Default to setting PMD-sized THP to inherit the global setting and
784 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
785 * constant so we have to do this here.
786 */
787 if (!anon_orders_configured)
788 huge_anon_orders_inherit = BIT(PMD_ORDER);
789
790 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
791 if (unlikely(!*hugepage_kobj)) {
792 pr_err("failed to create transparent hugepage kobject\n");
793 return -ENOMEM;
794 }
795
796 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
797 if (err) {
798 pr_err("failed to register transparent hugepage group\n");
799 goto delete_obj;
800 }
801
802 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
803 if (err) {
804 pr_err("failed to register transparent hugepage group\n");
805 goto remove_hp_group;
806 }
807
808 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
809 order = highest_order(orders);
810 while (orders) {
811 thpsize = thpsize_create(order, *hugepage_kobj);
812 if (IS_ERR(thpsize)) {
813 pr_err("failed to create thpsize for order %d\n", order);
814 err = PTR_ERR(thpsize);
815 goto remove_all;
816 }
817 list_add(&thpsize->node, &thpsize_list);
818 order = next_order(&orders, order);
819 }
820
821 return 0;
822
823 remove_all:
824 hugepage_exit_sysfs(*hugepage_kobj);
825 return err;
826 remove_hp_group:
827 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
828 delete_obj:
829 kobject_put(*hugepage_kobj);
830 return err;
831 }
832
hugepage_exit_sysfs(struct kobject * hugepage_kobj)833 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
834 {
835 struct thpsize *thpsize, *tmp;
836
837 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
838 list_del(&thpsize->node);
839 kobject_put(&thpsize->kobj);
840 }
841
842 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
843 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
844 kobject_put(hugepage_kobj);
845 }
846 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)847 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
848 {
849 return 0;
850 }
851
hugepage_exit_sysfs(struct kobject * hugepage_kobj)852 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
853 {
854 }
855 #endif /* CONFIG_SYSFS */
856
thp_shrinker_init(void)857 static int __init thp_shrinker_init(void)
858 {
859 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
860 SHRINKER_MEMCG_AWARE |
861 SHRINKER_NONSLAB,
862 "thp-deferred_split");
863 if (!deferred_split_shrinker)
864 return -ENOMEM;
865
866 deferred_split_shrinker->count_objects = deferred_split_count;
867 deferred_split_shrinker->scan_objects = deferred_split_scan;
868 shrinker_register(deferred_split_shrinker);
869
870 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) {
871 /*
872 * Bump the reference of the huge_zero_folio and do not
873 * initialize the shrinker.
874 *
875 * huge_zero_folio will always be NULL on failure. We assume
876 * that get_huge_zero_folio() will most likely not fail as
877 * thp_shrinker_init() is invoked early on during boot.
878 */
879 if (!get_huge_zero_folio())
880 pr_warn("Allocating persistent huge zero folio failed\n");
881 return 0;
882 }
883
884 huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero");
885 if (!huge_zero_folio_shrinker) {
886 shrinker_free(deferred_split_shrinker);
887 return -ENOMEM;
888 }
889
890 huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count;
891 huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan;
892 shrinker_register(huge_zero_folio_shrinker);
893
894 return 0;
895 }
896
thp_shrinker_exit(void)897 static void __init thp_shrinker_exit(void)
898 {
899 shrinker_free(huge_zero_folio_shrinker);
900 shrinker_free(deferred_split_shrinker);
901 }
902
hugepage_init(void)903 static int __init hugepage_init(void)
904 {
905 int err;
906 struct kobject *hugepage_kobj;
907
908 if (!has_transparent_hugepage()) {
909 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
910 return -EINVAL;
911 }
912
913 /*
914 * hugepages can't be allocated by the buddy allocator
915 */
916 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
917
918 err = hugepage_init_sysfs(&hugepage_kobj);
919 if (err)
920 goto err_sysfs;
921
922 err = khugepaged_init();
923 if (err)
924 goto err_slab;
925
926 err = thp_shrinker_init();
927 if (err)
928 goto err_shrinker;
929
930 /*
931 * By default disable transparent hugepages on smaller systems,
932 * where the extra memory used could hurt more than TLB overhead
933 * is likely to save. The admin can still enable it through /sys.
934 */
935 if (totalram_pages() < MB_TO_PAGES(512)) {
936 transparent_hugepage_flags = 0;
937 return 0;
938 }
939
940 err = start_stop_khugepaged();
941 if (err)
942 goto err_khugepaged;
943
944 return 0;
945 err_khugepaged:
946 thp_shrinker_exit();
947 err_shrinker:
948 khugepaged_destroy();
949 err_slab:
950 hugepage_exit_sysfs(hugepage_kobj);
951 err_sysfs:
952 return err;
953 }
954 subsys_initcall(hugepage_init);
955
setup_transparent_hugepage(char * str)956 static int __init setup_transparent_hugepage(char *str)
957 {
958 int ret = 0;
959 if (!str)
960 goto out;
961 if (!strcmp(str, "always")) {
962 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
963 &transparent_hugepage_flags);
964 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
965 &transparent_hugepage_flags);
966 ret = 1;
967 } else if (!strcmp(str, "madvise")) {
968 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
969 &transparent_hugepage_flags);
970 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
971 &transparent_hugepage_flags);
972 ret = 1;
973 } else if (!strcmp(str, "never")) {
974 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
975 &transparent_hugepage_flags);
976 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
977 &transparent_hugepage_flags);
978 ret = 1;
979 }
980 out:
981 if (!ret)
982 pr_warn("transparent_hugepage= cannot parse, ignored\n");
983 return ret;
984 }
985 __setup("transparent_hugepage=", setup_transparent_hugepage);
986
987 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)988 static int __init setup_thp_anon(char *str)
989 {
990 char *token, *range, *policy, *subtoken;
991 unsigned long always, inherit, madvise;
992 char *start_size, *end_size;
993 int start, end, nr;
994 char *p;
995
996 if (!str || strlen(str) + 1 > PAGE_SIZE)
997 goto err;
998 strscpy(str_dup, str);
999
1000 always = huge_anon_orders_always;
1001 madvise = huge_anon_orders_madvise;
1002 inherit = huge_anon_orders_inherit;
1003 p = str_dup;
1004 while ((token = strsep(&p, ";")) != NULL) {
1005 range = strsep(&token, ":");
1006 policy = token;
1007
1008 if (!policy)
1009 goto err;
1010
1011 while ((subtoken = strsep(&range, ",")) != NULL) {
1012 if (strchr(subtoken, '-')) {
1013 start_size = strsep(&subtoken, "-");
1014 end_size = subtoken;
1015
1016 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
1017 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
1018 } else {
1019 start_size = end_size = subtoken;
1020 start = end = get_order_from_str(subtoken,
1021 THP_ORDERS_ALL_ANON);
1022 }
1023
1024 if (start == -EINVAL) {
1025 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1026 goto err;
1027 }
1028
1029 if (end == -EINVAL) {
1030 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1031 goto err;
1032 }
1033
1034 if (start < 0 || end < 0 || start > end)
1035 goto err;
1036
1037 nr = end - start + 1;
1038 if (!strcmp(policy, "always")) {
1039 bitmap_set(&always, start, nr);
1040 bitmap_clear(&inherit, start, nr);
1041 bitmap_clear(&madvise, start, nr);
1042 } else if (!strcmp(policy, "madvise")) {
1043 bitmap_set(&madvise, start, nr);
1044 bitmap_clear(&inherit, start, nr);
1045 bitmap_clear(&always, start, nr);
1046 } else if (!strcmp(policy, "inherit")) {
1047 bitmap_set(&inherit, start, nr);
1048 bitmap_clear(&madvise, start, nr);
1049 bitmap_clear(&always, start, nr);
1050 } else if (!strcmp(policy, "never")) {
1051 bitmap_clear(&inherit, start, nr);
1052 bitmap_clear(&madvise, start, nr);
1053 bitmap_clear(&always, start, nr);
1054 } else {
1055 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1056 goto err;
1057 }
1058 }
1059 }
1060
1061 huge_anon_orders_always = always;
1062 huge_anon_orders_madvise = madvise;
1063 huge_anon_orders_inherit = inherit;
1064 anon_orders_configured = true;
1065 return 1;
1066
1067 err:
1068 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1069 return 0;
1070 }
1071 __setup("thp_anon=", setup_thp_anon);
1072
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1073 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1074 {
1075 if (likely(vma->vm_flags & VM_WRITE))
1076 pmd = pmd_mkwrite(pmd, vma);
1077 return pmd;
1078 }
1079
1080 #ifdef CONFIG_MEMCG
1081 static inline
get_deferred_split_queue(struct folio * folio)1082 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1083 {
1084 struct mem_cgroup *memcg = folio_memcg(folio);
1085 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1086
1087 if (memcg)
1088 return &memcg->deferred_split_queue;
1089 else
1090 return &pgdat->deferred_split_queue;
1091 }
1092 #else
1093 static inline
get_deferred_split_queue(struct folio * folio)1094 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1095 {
1096 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1097
1098 return &pgdat->deferred_split_queue;
1099 }
1100 #endif
1101
is_transparent_hugepage(const struct folio * folio)1102 static inline bool is_transparent_hugepage(const struct folio *folio)
1103 {
1104 if (!folio_test_large(folio))
1105 return false;
1106
1107 return is_huge_zero_folio(folio) ||
1108 folio_test_large_rmappable(folio);
1109 }
1110
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1111 static unsigned long __thp_get_unmapped_area(struct file *filp,
1112 unsigned long addr, unsigned long len,
1113 loff_t off, unsigned long flags, unsigned long size,
1114 vm_flags_t vm_flags)
1115 {
1116 loff_t off_end = off + len;
1117 loff_t off_align = round_up(off, size);
1118 unsigned long len_pad, ret, off_sub;
1119
1120 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1121 return 0;
1122
1123 if (off_end <= off_align || (off_end - off_align) < size)
1124 return 0;
1125
1126 len_pad = len + size;
1127 if (len_pad < len || (off + len_pad) < off)
1128 return 0;
1129
1130 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1131 off >> PAGE_SHIFT, flags, vm_flags);
1132
1133 /*
1134 * The failure might be due to length padding. The caller will retry
1135 * without the padding.
1136 */
1137 if (IS_ERR_VALUE(ret))
1138 return 0;
1139
1140 /*
1141 * Do not try to align to THP boundary if allocation at the address
1142 * hint succeeds.
1143 */
1144 if (ret == addr)
1145 return addr;
1146
1147 off_sub = (off - ret) & (size - 1);
1148
1149 if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub)
1150 return ret + size;
1151
1152 ret += off_sub;
1153 return ret;
1154 }
1155
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1156 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1157 unsigned long len, unsigned long pgoff, unsigned long flags,
1158 vm_flags_t vm_flags)
1159 {
1160 unsigned long ret;
1161 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1162
1163 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1164 if (ret)
1165 return ret;
1166
1167 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1168 vm_flags);
1169 }
1170
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1171 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1172 unsigned long len, unsigned long pgoff, unsigned long flags)
1173 {
1174 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1175 }
1176 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1177
vma_alloc_anon_folio_pmd(struct vm_area_struct * vma,unsigned long addr)1178 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1179 unsigned long addr)
1180 {
1181 gfp_t gfp = vma_thp_gfp_mask(vma);
1182 const int order = HPAGE_PMD_ORDER;
1183 struct folio *folio;
1184
1185 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1186
1187 if (unlikely(!folio)) {
1188 count_vm_event(THP_FAULT_FALLBACK);
1189 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1190 return NULL;
1191 }
1192
1193 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1194 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1195 folio_put(folio);
1196 count_vm_event(THP_FAULT_FALLBACK);
1197 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1198 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1199 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1200 return NULL;
1201 }
1202 folio_throttle_swaprate(folio, gfp);
1203
1204 /*
1205 * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1206 * or user folios require special handling, folio_zero_user() is used to
1207 * make sure that the page corresponding to the faulting address will be
1208 * hot in the cache after zeroing.
1209 */
1210 if (user_alloc_needs_zeroing())
1211 folio_zero_user(folio, addr);
1212 /*
1213 * The memory barrier inside __folio_mark_uptodate makes sure that
1214 * folio_zero_user writes become visible before the set_pmd_at()
1215 * write.
1216 */
1217 __folio_mark_uptodate(folio);
1218 return folio;
1219 }
1220
map_anon_folio_pmd(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1221 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1222 struct vm_area_struct *vma, unsigned long haddr)
1223 {
1224 pmd_t entry;
1225
1226 entry = folio_mk_pmd(folio, vma->vm_page_prot);
1227 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1228 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1229 folio_add_lru_vma(folio, vma);
1230 set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1231 update_mmu_cache_pmd(vma, haddr, pmd);
1232 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1233 count_vm_event(THP_FAULT_ALLOC);
1234 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1235 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1236 }
1237
__do_huge_pmd_anonymous_page(struct vm_fault * vmf)1238 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1239 {
1240 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1241 struct vm_area_struct *vma = vmf->vma;
1242 struct folio *folio;
1243 pgtable_t pgtable;
1244 vm_fault_t ret = 0;
1245
1246 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1247 if (unlikely(!folio))
1248 return VM_FAULT_FALLBACK;
1249
1250 pgtable = pte_alloc_one(vma->vm_mm);
1251 if (unlikely(!pgtable)) {
1252 ret = VM_FAULT_OOM;
1253 goto release;
1254 }
1255
1256 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1257 if (unlikely(!pmd_none(*vmf->pmd))) {
1258 goto unlock_release;
1259 } else {
1260 ret = check_stable_address_space(vma->vm_mm);
1261 if (ret)
1262 goto unlock_release;
1263
1264 /* Deliver the page fault to userland */
1265 if (userfaultfd_missing(vma)) {
1266 spin_unlock(vmf->ptl);
1267 folio_put(folio);
1268 pte_free(vma->vm_mm, pgtable);
1269 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1270 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1271 return ret;
1272 }
1273 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1274 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1275 mm_inc_nr_ptes(vma->vm_mm);
1276 deferred_split_folio(folio, false);
1277 spin_unlock(vmf->ptl);
1278 }
1279
1280 return 0;
1281 unlock_release:
1282 spin_unlock(vmf->ptl);
1283 release:
1284 if (pgtable)
1285 pte_free(vma->vm_mm, pgtable);
1286 folio_put(folio);
1287 return ret;
1288
1289 }
1290
1291 /*
1292 * always: directly stall for all thp allocations
1293 * defer: wake kswapd and fail if not immediately available
1294 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1295 * fail if not immediately available
1296 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1297 * available
1298 * never: never stall for any thp allocation
1299 */
vma_thp_gfp_mask(struct vm_area_struct * vma)1300 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1301 {
1302 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1303
1304 /* Always do synchronous compaction */
1305 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1306 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1307
1308 /* Kick kcompactd and fail quickly */
1309 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1310 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1311
1312 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1313 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1314 return GFP_TRANSHUGE_LIGHT |
1315 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1316 __GFP_KSWAPD_RECLAIM);
1317
1318 /* Only do synchronous compaction if madvised */
1319 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1320 return GFP_TRANSHUGE_LIGHT |
1321 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1322
1323 return GFP_TRANSHUGE_LIGHT;
1324 }
1325
1326 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1327 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1328 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1329 struct folio *zero_folio)
1330 {
1331 pmd_t entry;
1332 entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1333 entry = pmd_mkspecial(entry);
1334 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1335 set_pmd_at(mm, haddr, pmd, entry);
1336 mm_inc_nr_ptes(mm);
1337 }
1338
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1339 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1340 {
1341 struct vm_area_struct *vma = vmf->vma;
1342 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1343 vm_fault_t ret;
1344
1345 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1346 return VM_FAULT_FALLBACK;
1347 ret = vmf_anon_prepare(vmf);
1348 if (ret)
1349 return ret;
1350 khugepaged_enter_vma(vma, vma->vm_flags);
1351
1352 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1353 !mm_forbids_zeropage(vma->vm_mm) &&
1354 transparent_hugepage_use_zero_page()) {
1355 pgtable_t pgtable;
1356 struct folio *zero_folio;
1357 vm_fault_t ret;
1358
1359 pgtable = pte_alloc_one(vma->vm_mm);
1360 if (unlikely(!pgtable))
1361 return VM_FAULT_OOM;
1362 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1363 if (unlikely(!zero_folio)) {
1364 pte_free(vma->vm_mm, pgtable);
1365 count_vm_event(THP_FAULT_FALLBACK);
1366 return VM_FAULT_FALLBACK;
1367 }
1368 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1369 ret = 0;
1370 if (pmd_none(*vmf->pmd)) {
1371 ret = check_stable_address_space(vma->vm_mm);
1372 if (ret) {
1373 spin_unlock(vmf->ptl);
1374 pte_free(vma->vm_mm, pgtable);
1375 } else if (userfaultfd_missing(vma)) {
1376 spin_unlock(vmf->ptl);
1377 pte_free(vma->vm_mm, pgtable);
1378 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1379 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1380 } else {
1381 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1382 haddr, vmf->pmd, zero_folio);
1383 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1384 spin_unlock(vmf->ptl);
1385 }
1386 } else {
1387 spin_unlock(vmf->ptl);
1388 pte_free(vma->vm_mm, pgtable);
1389 }
1390 return ret;
1391 }
1392
1393 return __do_huge_pmd_anonymous_page(vmf);
1394 }
1395
1396 struct folio_or_pfn {
1397 union {
1398 struct folio *folio;
1399 unsigned long pfn;
1400 };
1401 bool is_folio;
1402 };
1403
insert_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,struct folio_or_pfn fop,pgprot_t prot,bool write)1404 static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1405 pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1406 bool write)
1407 {
1408 struct mm_struct *mm = vma->vm_mm;
1409 pgtable_t pgtable = NULL;
1410 spinlock_t *ptl;
1411 pmd_t entry;
1412
1413 if (addr < vma->vm_start || addr >= vma->vm_end)
1414 return VM_FAULT_SIGBUS;
1415
1416 if (arch_needs_pgtable_deposit()) {
1417 pgtable = pte_alloc_one(vma->vm_mm);
1418 if (!pgtable)
1419 return VM_FAULT_OOM;
1420 }
1421
1422 ptl = pmd_lock(mm, pmd);
1423 if (!pmd_none(*pmd)) {
1424 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1425 fop.pfn;
1426
1427 if (write) {
1428 if (pmd_pfn(*pmd) != pfn) {
1429 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1430 goto out_unlock;
1431 }
1432 entry = pmd_mkyoung(*pmd);
1433 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1434 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1435 update_mmu_cache_pmd(vma, addr, pmd);
1436 }
1437 goto out_unlock;
1438 }
1439
1440 if (fop.is_folio) {
1441 entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1442
1443 if (is_huge_zero_folio(fop.folio)) {
1444 entry = pmd_mkspecial(entry);
1445 } else {
1446 folio_get(fop.folio);
1447 folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1448 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1449 }
1450 } else {
1451 entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1452 entry = pmd_mkspecial(entry);
1453 }
1454 if (write) {
1455 entry = pmd_mkyoung(pmd_mkdirty(entry));
1456 entry = maybe_pmd_mkwrite(entry, vma);
1457 }
1458
1459 if (pgtable) {
1460 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1461 mm_inc_nr_ptes(mm);
1462 pgtable = NULL;
1463 }
1464
1465 set_pmd_at(mm, addr, pmd, entry);
1466 update_mmu_cache_pmd(vma, addr, pmd);
1467
1468 out_unlock:
1469 spin_unlock(ptl);
1470 if (pgtable)
1471 pte_free(mm, pgtable);
1472 return VM_FAULT_NOPAGE;
1473 }
1474
1475 /**
1476 * vmf_insert_pfn_pmd - insert a pmd size pfn
1477 * @vmf: Structure describing the fault
1478 * @pfn: pfn to insert
1479 * @write: whether it's a write fault
1480 *
1481 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1482 *
1483 * Return: vm_fault_t value.
1484 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,unsigned long pfn,bool write)1485 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1486 bool write)
1487 {
1488 unsigned long addr = vmf->address & PMD_MASK;
1489 struct vm_area_struct *vma = vmf->vma;
1490 pgprot_t pgprot = vma->vm_page_prot;
1491 struct folio_or_pfn fop = {
1492 .pfn = pfn,
1493 };
1494
1495 /*
1496 * If we had pmd_special, we could avoid all these restrictions,
1497 * but we need to be consistent with PTEs and architectures that
1498 * can't support a 'special' bit.
1499 */
1500 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1501 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1502 (VM_PFNMAP|VM_MIXEDMAP));
1503 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1504
1505 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1506
1507 return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write);
1508 }
1509 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1510
vmf_insert_folio_pmd(struct vm_fault * vmf,struct folio * folio,bool write)1511 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1512 bool write)
1513 {
1514 struct vm_area_struct *vma = vmf->vma;
1515 unsigned long addr = vmf->address & PMD_MASK;
1516 struct folio_or_pfn fop = {
1517 .folio = folio,
1518 .is_folio = true,
1519 };
1520
1521 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1522 return VM_FAULT_SIGBUS;
1523
1524 return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write);
1525 }
1526 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1527
1528 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1529 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1530 {
1531 if (likely(vma->vm_flags & VM_WRITE))
1532 pud = pud_mkwrite(pud);
1533 return pud;
1534 }
1535
insert_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,struct folio_or_pfn fop,pgprot_t prot,bool write)1536 static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr,
1537 pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1538 {
1539 struct mm_struct *mm = vma->vm_mm;
1540 spinlock_t *ptl;
1541 pud_t entry;
1542
1543 if (addr < vma->vm_start || addr >= vma->vm_end)
1544 return VM_FAULT_SIGBUS;
1545
1546 ptl = pud_lock(mm, pud);
1547 if (!pud_none(*pud)) {
1548 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1549 fop.pfn;
1550
1551 if (write) {
1552 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1553 goto out_unlock;
1554 entry = pud_mkyoung(*pud);
1555 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1556 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1557 update_mmu_cache_pud(vma, addr, pud);
1558 }
1559 goto out_unlock;
1560 }
1561
1562 if (fop.is_folio) {
1563 entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1564
1565 folio_get(fop.folio);
1566 folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1567 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1568 } else {
1569 entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1570 entry = pud_mkspecial(entry);
1571 }
1572 if (write) {
1573 entry = pud_mkyoung(pud_mkdirty(entry));
1574 entry = maybe_pud_mkwrite(entry, vma);
1575 }
1576 set_pud_at(mm, addr, pud, entry);
1577 update_mmu_cache_pud(vma, addr, pud);
1578 out_unlock:
1579 spin_unlock(ptl);
1580 return VM_FAULT_NOPAGE;
1581 }
1582
1583 /**
1584 * vmf_insert_pfn_pud - insert a pud size pfn
1585 * @vmf: Structure describing the fault
1586 * @pfn: pfn to insert
1587 * @write: whether it's a write fault
1588 *
1589 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1590 *
1591 * Return: vm_fault_t value.
1592 */
vmf_insert_pfn_pud(struct vm_fault * vmf,unsigned long pfn,bool write)1593 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1594 bool write)
1595 {
1596 unsigned long addr = vmf->address & PUD_MASK;
1597 struct vm_area_struct *vma = vmf->vma;
1598 pgprot_t pgprot = vma->vm_page_prot;
1599 struct folio_or_pfn fop = {
1600 .pfn = pfn,
1601 };
1602
1603 /*
1604 * If we had pud_special, we could avoid all these restrictions,
1605 * but we need to be consistent with PTEs and architectures that
1606 * can't support a 'special' bit.
1607 */
1608 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1609 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1610 (VM_PFNMAP|VM_MIXEDMAP));
1611 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1612
1613 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1614
1615 return insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1616 }
1617 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1618
1619 /**
1620 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1621 * @vmf: Structure describing the fault
1622 * @folio: folio to insert
1623 * @write: whether it's a write fault
1624 *
1625 * Return: vm_fault_t value.
1626 */
vmf_insert_folio_pud(struct vm_fault * vmf,struct folio * folio,bool write)1627 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1628 bool write)
1629 {
1630 struct vm_area_struct *vma = vmf->vma;
1631 unsigned long addr = vmf->address & PUD_MASK;
1632 struct folio_or_pfn fop = {
1633 .folio = folio,
1634 .is_folio = true,
1635 };
1636
1637 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1638 return VM_FAULT_SIGBUS;
1639
1640 return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1641 }
1642 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1643 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1644
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1645 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1646 pmd_t *pmd, bool write)
1647 {
1648 pmd_t _pmd;
1649
1650 _pmd = pmd_mkyoung(*pmd);
1651 if (write)
1652 _pmd = pmd_mkdirty(_pmd);
1653 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1654 pmd, _pmd, write))
1655 update_mmu_cache_pmd(vma, addr, pmd);
1656 }
1657
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1658 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1659 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1660 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1661 {
1662 spinlock_t *dst_ptl, *src_ptl;
1663 struct page *src_page;
1664 struct folio *src_folio;
1665 pmd_t pmd;
1666 pgtable_t pgtable = NULL;
1667 int ret = -ENOMEM;
1668
1669 pmd = pmdp_get_lockless(src_pmd);
1670 if (unlikely(pmd_present(pmd) && pmd_special(pmd) &&
1671 !is_huge_zero_pmd(pmd))) {
1672 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1673 src_ptl = pmd_lockptr(src_mm, src_pmd);
1674 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1675 /*
1676 * No need to recheck the pmd, it can't change with write
1677 * mmap lock held here.
1678 *
1679 * Meanwhile, making sure it's not a CoW VMA with writable
1680 * mapping, otherwise it means either the anon page wrongly
1681 * applied special bit, or we made the PRIVATE mapping be
1682 * able to wrongly write to the backend MMIO.
1683 */
1684 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1685 goto set_pmd;
1686 }
1687
1688 /* Skip if can be re-fill on fault */
1689 if (!vma_is_anonymous(dst_vma))
1690 return 0;
1691
1692 pgtable = pte_alloc_one(dst_mm);
1693 if (unlikely(!pgtable))
1694 goto out;
1695
1696 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1697 src_ptl = pmd_lockptr(src_mm, src_pmd);
1698 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1699
1700 ret = -EAGAIN;
1701 pmd = *src_pmd;
1702
1703 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1704 if (unlikely(is_swap_pmd(pmd))) {
1705 swp_entry_t entry = pmd_to_swp_entry(pmd);
1706
1707 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1708 if (!is_readable_migration_entry(entry)) {
1709 entry = make_readable_migration_entry(
1710 swp_offset(entry));
1711 pmd = swp_entry_to_pmd(entry);
1712 if (pmd_swp_soft_dirty(*src_pmd))
1713 pmd = pmd_swp_mksoft_dirty(pmd);
1714 if (pmd_swp_uffd_wp(*src_pmd))
1715 pmd = pmd_swp_mkuffd_wp(pmd);
1716 set_pmd_at(src_mm, addr, src_pmd, pmd);
1717 }
1718 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1719 mm_inc_nr_ptes(dst_mm);
1720 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1721 if (!userfaultfd_wp(dst_vma))
1722 pmd = pmd_swp_clear_uffd_wp(pmd);
1723 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1724 ret = 0;
1725 goto out_unlock;
1726 }
1727 #endif
1728
1729 if (unlikely(!pmd_trans_huge(pmd))) {
1730 pte_free(dst_mm, pgtable);
1731 goto out_unlock;
1732 }
1733 /*
1734 * When page table lock is held, the huge zero pmd should not be
1735 * under splitting since we don't split the page itself, only pmd to
1736 * a page table.
1737 */
1738 if (is_huge_zero_pmd(pmd)) {
1739 /*
1740 * mm_get_huge_zero_folio() will never allocate a new
1741 * folio here, since we already have a zero page to
1742 * copy. It just takes a reference.
1743 */
1744 mm_get_huge_zero_folio(dst_mm);
1745 goto out_zero_page;
1746 }
1747
1748 src_page = pmd_page(pmd);
1749 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1750 src_folio = page_folio(src_page);
1751
1752 folio_get(src_folio);
1753 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1754 /* Page maybe pinned: split and retry the fault on PTEs. */
1755 folio_put(src_folio);
1756 pte_free(dst_mm, pgtable);
1757 spin_unlock(src_ptl);
1758 spin_unlock(dst_ptl);
1759 __split_huge_pmd(src_vma, src_pmd, addr, false);
1760 return -EAGAIN;
1761 }
1762 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1763 out_zero_page:
1764 mm_inc_nr_ptes(dst_mm);
1765 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1766 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1767 if (!userfaultfd_wp(dst_vma))
1768 pmd = pmd_clear_uffd_wp(pmd);
1769 pmd = pmd_wrprotect(pmd);
1770 set_pmd:
1771 pmd = pmd_mkold(pmd);
1772 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1773
1774 ret = 0;
1775 out_unlock:
1776 spin_unlock(src_ptl);
1777 spin_unlock(dst_ptl);
1778 out:
1779 return ret;
1780 }
1781
1782 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1783 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1784 pud_t *pud, bool write)
1785 {
1786 pud_t _pud;
1787
1788 _pud = pud_mkyoung(*pud);
1789 if (write)
1790 _pud = pud_mkdirty(_pud);
1791 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1792 pud, _pud, write))
1793 update_mmu_cache_pud(vma, addr, pud);
1794 }
1795
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1796 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1797 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1798 struct vm_area_struct *vma)
1799 {
1800 spinlock_t *dst_ptl, *src_ptl;
1801 pud_t pud;
1802 int ret;
1803
1804 dst_ptl = pud_lock(dst_mm, dst_pud);
1805 src_ptl = pud_lockptr(src_mm, src_pud);
1806 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1807
1808 ret = -EAGAIN;
1809 pud = *src_pud;
1810 if (unlikely(!pud_trans_huge(pud)))
1811 goto out_unlock;
1812
1813 /*
1814 * TODO: once we support anonymous pages, use
1815 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1816 */
1817 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1818 pudp_set_wrprotect(src_mm, addr, src_pud);
1819 pud = pud_wrprotect(pud);
1820 }
1821 pud = pud_mkold(pud);
1822 set_pud_at(dst_mm, addr, dst_pud, pud);
1823
1824 ret = 0;
1825 out_unlock:
1826 spin_unlock(src_ptl);
1827 spin_unlock(dst_ptl);
1828 return ret;
1829 }
1830
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1831 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1832 {
1833 bool write = vmf->flags & FAULT_FLAG_WRITE;
1834
1835 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1836 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1837 goto unlock;
1838
1839 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1840 unlock:
1841 spin_unlock(vmf->ptl);
1842 }
1843 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1844
huge_pmd_set_accessed(struct vm_fault * vmf)1845 void huge_pmd_set_accessed(struct vm_fault *vmf)
1846 {
1847 bool write = vmf->flags & FAULT_FLAG_WRITE;
1848
1849 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1850 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1851 goto unlock;
1852
1853 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1854
1855 unlock:
1856 spin_unlock(vmf->ptl);
1857 }
1858
do_huge_zero_wp_pmd(struct vm_fault * vmf)1859 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1860 {
1861 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1862 struct vm_area_struct *vma = vmf->vma;
1863 struct mmu_notifier_range range;
1864 struct folio *folio;
1865 vm_fault_t ret = 0;
1866
1867 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1868 if (unlikely(!folio))
1869 return VM_FAULT_FALLBACK;
1870
1871 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1872 haddr + HPAGE_PMD_SIZE);
1873 mmu_notifier_invalidate_range_start(&range);
1874 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1875 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1876 goto release;
1877 ret = check_stable_address_space(vma->vm_mm);
1878 if (ret)
1879 goto release;
1880 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1881 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1882 goto unlock;
1883 release:
1884 folio_put(folio);
1885 unlock:
1886 spin_unlock(vmf->ptl);
1887 mmu_notifier_invalidate_range_end(&range);
1888 return ret;
1889 }
1890
do_huge_pmd_wp_page(struct vm_fault * vmf)1891 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1892 {
1893 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1894 struct vm_area_struct *vma = vmf->vma;
1895 struct folio *folio;
1896 struct page *page;
1897 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1898 pmd_t orig_pmd = vmf->orig_pmd;
1899
1900 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1901 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1902
1903 if (is_huge_zero_pmd(orig_pmd)) {
1904 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1905
1906 if (!(ret & VM_FAULT_FALLBACK))
1907 return ret;
1908
1909 /* Fallback to splitting PMD if THP cannot be allocated */
1910 goto fallback;
1911 }
1912
1913 spin_lock(vmf->ptl);
1914
1915 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1916 spin_unlock(vmf->ptl);
1917 return 0;
1918 }
1919
1920 page = pmd_page(orig_pmd);
1921 folio = page_folio(page);
1922 VM_BUG_ON_PAGE(!PageHead(page), page);
1923
1924 /* Early check when only holding the PT lock. */
1925 if (PageAnonExclusive(page))
1926 goto reuse;
1927
1928 if (!folio_trylock(folio)) {
1929 folio_get(folio);
1930 spin_unlock(vmf->ptl);
1931 folio_lock(folio);
1932 spin_lock(vmf->ptl);
1933 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1934 spin_unlock(vmf->ptl);
1935 folio_unlock(folio);
1936 folio_put(folio);
1937 return 0;
1938 }
1939 folio_put(folio);
1940 }
1941
1942 /* Recheck after temporarily dropping the PT lock. */
1943 if (PageAnonExclusive(page)) {
1944 folio_unlock(folio);
1945 goto reuse;
1946 }
1947
1948 /*
1949 * See do_wp_page(): we can only reuse the folio exclusively if
1950 * there are no additional references. Note that we always drain
1951 * the LRU cache immediately after adding a THP.
1952 */
1953 if (folio_ref_count(folio) >
1954 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1955 goto unlock_fallback;
1956 if (folio_test_swapcache(folio))
1957 folio_free_swap(folio);
1958 if (folio_ref_count(folio) == 1) {
1959 pmd_t entry;
1960
1961 folio_move_anon_rmap(folio, vma);
1962 SetPageAnonExclusive(page);
1963 folio_unlock(folio);
1964 reuse:
1965 if (unlikely(unshare)) {
1966 spin_unlock(vmf->ptl);
1967 return 0;
1968 }
1969 entry = pmd_mkyoung(orig_pmd);
1970 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1971 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1972 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1973 spin_unlock(vmf->ptl);
1974 return 0;
1975 }
1976
1977 unlock_fallback:
1978 folio_unlock(folio);
1979 spin_unlock(vmf->ptl);
1980 fallback:
1981 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
1982 return VM_FAULT_FALLBACK;
1983 }
1984
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1985 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1986 unsigned long addr, pmd_t pmd)
1987 {
1988 struct page *page;
1989
1990 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1991 return false;
1992
1993 /* Don't touch entries that are not even readable (NUMA hinting). */
1994 if (pmd_protnone(pmd))
1995 return false;
1996
1997 /* Do we need write faults for softdirty tracking? */
1998 if (pmd_needs_soft_dirty_wp(vma, pmd))
1999 return false;
2000
2001 /* Do we need write faults for uffd-wp tracking? */
2002 if (userfaultfd_huge_pmd_wp(vma, pmd))
2003 return false;
2004
2005 if (!(vma->vm_flags & VM_SHARED)) {
2006 /* See can_change_pte_writable(). */
2007 page = vm_normal_page_pmd(vma, addr, pmd);
2008 return page && PageAnon(page) && PageAnonExclusive(page);
2009 }
2010
2011 /* See can_change_pte_writable(). */
2012 return pmd_dirty(pmd);
2013 }
2014
2015 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)2016 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2017 {
2018 struct vm_area_struct *vma = vmf->vma;
2019 struct folio *folio;
2020 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2021 int nid = NUMA_NO_NODE;
2022 int target_nid, last_cpupid;
2023 pmd_t pmd, old_pmd;
2024 bool writable = false;
2025 int flags = 0;
2026
2027 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2028 old_pmd = pmdp_get(vmf->pmd);
2029
2030 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2031 spin_unlock(vmf->ptl);
2032 return 0;
2033 }
2034
2035 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2036
2037 /*
2038 * Detect now whether the PMD could be writable; this information
2039 * is only valid while holding the PT lock.
2040 */
2041 writable = pmd_write(pmd);
2042 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2043 can_change_pmd_writable(vma, vmf->address, pmd))
2044 writable = true;
2045
2046 folio = vm_normal_folio_pmd(vma, haddr, pmd);
2047 if (!folio)
2048 goto out_map;
2049
2050 nid = folio_nid(folio);
2051
2052 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2053 &last_cpupid);
2054 if (target_nid == NUMA_NO_NODE)
2055 goto out_map;
2056 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2057 flags |= TNF_MIGRATE_FAIL;
2058 goto out_map;
2059 }
2060 /* The folio is isolated and isolation code holds a folio reference. */
2061 spin_unlock(vmf->ptl);
2062 writable = false;
2063
2064 if (!migrate_misplaced_folio(folio, target_nid)) {
2065 flags |= TNF_MIGRATED;
2066 nid = target_nid;
2067 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2068 return 0;
2069 }
2070
2071 flags |= TNF_MIGRATE_FAIL;
2072 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2073 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2074 spin_unlock(vmf->ptl);
2075 return 0;
2076 }
2077 out_map:
2078 /* Restore the PMD */
2079 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2080 pmd = pmd_mkyoung(pmd);
2081 if (writable)
2082 pmd = pmd_mkwrite(pmd, vma);
2083 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2084 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2085 spin_unlock(vmf->ptl);
2086
2087 if (nid != NUMA_NO_NODE)
2088 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2089 return 0;
2090 }
2091
2092 /*
2093 * Return true if we do MADV_FREE successfully on entire pmd page.
2094 * Otherwise, return false.
2095 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)2096 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2097 pmd_t *pmd, unsigned long addr, unsigned long next)
2098 {
2099 spinlock_t *ptl;
2100 pmd_t orig_pmd;
2101 struct folio *folio;
2102 struct mm_struct *mm = tlb->mm;
2103 bool ret = false;
2104
2105 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2106
2107 ptl = pmd_trans_huge_lock(pmd, vma);
2108 if (!ptl)
2109 goto out_unlocked;
2110
2111 orig_pmd = *pmd;
2112 if (is_huge_zero_pmd(orig_pmd))
2113 goto out;
2114
2115 if (unlikely(!pmd_present(orig_pmd))) {
2116 VM_BUG_ON(thp_migration_supported() &&
2117 !is_pmd_migration_entry(orig_pmd));
2118 goto out;
2119 }
2120
2121 folio = pmd_folio(orig_pmd);
2122 /*
2123 * If other processes are mapping this folio, we couldn't discard
2124 * the folio unless they all do MADV_FREE so let's skip the folio.
2125 */
2126 if (folio_maybe_mapped_shared(folio))
2127 goto out;
2128
2129 if (!folio_trylock(folio))
2130 goto out;
2131
2132 /*
2133 * If user want to discard part-pages of THP, split it so MADV_FREE
2134 * will deactivate only them.
2135 */
2136 if (next - addr != HPAGE_PMD_SIZE) {
2137 folio_get(folio);
2138 spin_unlock(ptl);
2139 split_folio(folio);
2140 folio_unlock(folio);
2141 folio_put(folio);
2142 goto out_unlocked;
2143 }
2144
2145 if (folio_test_dirty(folio))
2146 folio_clear_dirty(folio);
2147 folio_unlock(folio);
2148
2149 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2150 pmdp_invalidate(vma, addr, pmd);
2151 orig_pmd = pmd_mkold(orig_pmd);
2152 orig_pmd = pmd_mkclean(orig_pmd);
2153
2154 set_pmd_at(mm, addr, pmd, orig_pmd);
2155 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2156 }
2157
2158 folio_mark_lazyfree(folio);
2159 ret = true;
2160 out:
2161 spin_unlock(ptl);
2162 out_unlocked:
2163 return ret;
2164 }
2165
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2166 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2167 {
2168 pgtable_t pgtable;
2169
2170 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2171 pte_free(mm, pgtable);
2172 mm_dec_nr_ptes(mm);
2173 }
2174
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2175 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2176 pmd_t *pmd, unsigned long addr)
2177 {
2178 pmd_t orig_pmd;
2179 spinlock_t *ptl;
2180
2181 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2182
2183 ptl = __pmd_trans_huge_lock(pmd, vma);
2184 if (!ptl)
2185 return 0;
2186 /*
2187 * For architectures like ppc64 we look at deposited pgtable
2188 * when calling pmdp_huge_get_and_clear. So do the
2189 * pgtable_trans_huge_withdraw after finishing pmdp related
2190 * operations.
2191 */
2192 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2193 tlb->fullmm);
2194 arch_check_zapped_pmd(vma, orig_pmd);
2195 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2196 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2197 if (arch_needs_pgtable_deposit())
2198 zap_deposited_table(tlb->mm, pmd);
2199 spin_unlock(ptl);
2200 } else if (is_huge_zero_pmd(orig_pmd)) {
2201 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2202 zap_deposited_table(tlb->mm, pmd);
2203 spin_unlock(ptl);
2204 } else {
2205 struct folio *folio = NULL;
2206 int flush_needed = 1;
2207
2208 if (pmd_present(orig_pmd)) {
2209 struct page *page = pmd_page(orig_pmd);
2210
2211 folio = page_folio(page);
2212 folio_remove_rmap_pmd(folio, page, vma);
2213 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2214 VM_BUG_ON_PAGE(!PageHead(page), page);
2215 } else if (thp_migration_supported()) {
2216 swp_entry_t entry;
2217
2218 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2219 entry = pmd_to_swp_entry(orig_pmd);
2220 folio = pfn_swap_entry_folio(entry);
2221 flush_needed = 0;
2222 } else
2223 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2224
2225 if (folio_test_anon(folio)) {
2226 zap_deposited_table(tlb->mm, pmd);
2227 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2228 } else {
2229 if (arch_needs_pgtable_deposit())
2230 zap_deposited_table(tlb->mm, pmd);
2231 add_mm_counter(tlb->mm, mm_counter_file(folio),
2232 -HPAGE_PMD_NR);
2233
2234 /*
2235 * Use flush_needed to indicate whether the PMD entry
2236 * is present, instead of checking pmd_present() again.
2237 */
2238 if (flush_needed && pmd_young(orig_pmd) &&
2239 likely(vma_has_recency(vma)))
2240 folio_mark_accessed(folio);
2241 }
2242
2243 spin_unlock(ptl);
2244 if (flush_needed)
2245 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2246 }
2247 return 1;
2248 }
2249
2250 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2251 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2252 spinlock_t *old_pmd_ptl,
2253 struct vm_area_struct *vma)
2254 {
2255 /*
2256 * With split pmd lock we also need to move preallocated
2257 * PTE page table if new_pmd is on different PMD page table.
2258 *
2259 * We also don't deposit and withdraw tables for file pages.
2260 */
2261 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2262 }
2263 #endif
2264
move_soft_dirty_pmd(pmd_t pmd)2265 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2266 {
2267 #ifdef CONFIG_MEM_SOFT_DIRTY
2268 if (unlikely(is_pmd_migration_entry(pmd)))
2269 pmd = pmd_swp_mksoft_dirty(pmd);
2270 else if (pmd_present(pmd))
2271 pmd = pmd_mksoft_dirty(pmd);
2272 #endif
2273 return pmd;
2274 }
2275
clear_uffd_wp_pmd(pmd_t pmd)2276 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2277 {
2278 if (pmd_present(pmd))
2279 pmd = pmd_clear_uffd_wp(pmd);
2280 else if (is_swap_pmd(pmd))
2281 pmd = pmd_swp_clear_uffd_wp(pmd);
2282
2283 return pmd;
2284 }
2285
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2286 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2287 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2288 {
2289 spinlock_t *old_ptl, *new_ptl;
2290 pmd_t pmd;
2291 struct mm_struct *mm = vma->vm_mm;
2292 bool force_flush = false;
2293
2294 /*
2295 * The destination pmd shouldn't be established, free_pgtables()
2296 * should have released it; but move_page_tables() might have already
2297 * inserted a page table, if racing against shmem/file collapse.
2298 */
2299 if (!pmd_none(*new_pmd)) {
2300 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2301 return false;
2302 }
2303
2304 /*
2305 * We don't have to worry about the ordering of src and dst
2306 * ptlocks because exclusive mmap_lock prevents deadlock.
2307 */
2308 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2309 if (old_ptl) {
2310 new_ptl = pmd_lockptr(mm, new_pmd);
2311 if (new_ptl != old_ptl)
2312 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2313 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2314 if (pmd_present(pmd))
2315 force_flush = true;
2316 VM_BUG_ON(!pmd_none(*new_pmd));
2317
2318 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2319 pgtable_t pgtable;
2320 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2321 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2322 }
2323 pmd = move_soft_dirty_pmd(pmd);
2324 if (vma_has_uffd_without_event_remap(vma))
2325 pmd = clear_uffd_wp_pmd(pmd);
2326 set_pmd_at(mm, new_addr, new_pmd, pmd);
2327 if (force_flush)
2328 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2329 if (new_ptl != old_ptl)
2330 spin_unlock(new_ptl);
2331 spin_unlock(old_ptl);
2332 return true;
2333 }
2334 return false;
2335 }
2336
2337 /*
2338 * Returns
2339 * - 0 if PMD could not be locked
2340 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2341 * or if prot_numa but THP migration is not supported
2342 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2343 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2344 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2345 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2346 unsigned long cp_flags)
2347 {
2348 struct mm_struct *mm = vma->vm_mm;
2349 spinlock_t *ptl;
2350 pmd_t oldpmd, entry;
2351 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2352 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2353 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2354 int ret = 1;
2355
2356 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2357
2358 if (prot_numa && !thp_migration_supported())
2359 return 1;
2360
2361 ptl = __pmd_trans_huge_lock(pmd, vma);
2362 if (!ptl)
2363 return 0;
2364
2365 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2366 if (is_swap_pmd(*pmd)) {
2367 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2368 struct folio *folio = pfn_swap_entry_folio(entry);
2369 pmd_t newpmd;
2370
2371 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2372 if (is_writable_migration_entry(entry)) {
2373 /*
2374 * A protection check is difficult so
2375 * just be safe and disable write
2376 */
2377 if (folio_test_anon(folio))
2378 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2379 else
2380 entry = make_readable_migration_entry(swp_offset(entry));
2381 newpmd = swp_entry_to_pmd(entry);
2382 if (pmd_swp_soft_dirty(*pmd))
2383 newpmd = pmd_swp_mksoft_dirty(newpmd);
2384 } else {
2385 newpmd = *pmd;
2386 }
2387
2388 if (uffd_wp)
2389 newpmd = pmd_swp_mkuffd_wp(newpmd);
2390 else if (uffd_wp_resolve)
2391 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2392 if (!pmd_same(*pmd, newpmd))
2393 set_pmd_at(mm, addr, pmd, newpmd);
2394 goto unlock;
2395 }
2396 #endif
2397
2398 if (prot_numa) {
2399 struct folio *folio;
2400 bool toptier;
2401 /*
2402 * Avoid trapping faults against the zero page. The read-only
2403 * data is likely to be read-cached on the local CPU and
2404 * local/remote hits to the zero page are not interesting.
2405 */
2406 if (is_huge_zero_pmd(*pmd))
2407 goto unlock;
2408
2409 if (pmd_protnone(*pmd))
2410 goto unlock;
2411
2412 folio = pmd_folio(*pmd);
2413 toptier = node_is_toptier(folio_nid(folio));
2414 /*
2415 * Skip scanning top tier node if normal numa
2416 * balancing is disabled
2417 */
2418 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2419 toptier)
2420 goto unlock;
2421
2422 if (folio_use_access_time(folio))
2423 folio_xchg_access_time(folio,
2424 jiffies_to_msecs(jiffies));
2425 }
2426 /*
2427 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2428 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2429 * which is also under mmap_read_lock(mm):
2430 *
2431 * CPU0: CPU1:
2432 * change_huge_pmd(prot_numa=1)
2433 * pmdp_huge_get_and_clear_notify()
2434 * madvise_dontneed()
2435 * zap_pmd_range()
2436 * pmd_trans_huge(*pmd) == 0 (without ptl)
2437 * // skip the pmd
2438 * set_pmd_at();
2439 * // pmd is re-established
2440 *
2441 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2442 * which may break userspace.
2443 *
2444 * pmdp_invalidate_ad() is required to make sure we don't miss
2445 * dirty/young flags set by hardware.
2446 */
2447 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2448
2449 entry = pmd_modify(oldpmd, newprot);
2450 if (uffd_wp)
2451 entry = pmd_mkuffd_wp(entry);
2452 else if (uffd_wp_resolve)
2453 /*
2454 * Leave the write bit to be handled by PF interrupt
2455 * handler, then things like COW could be properly
2456 * handled.
2457 */
2458 entry = pmd_clear_uffd_wp(entry);
2459
2460 /* See change_pte_range(). */
2461 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2462 can_change_pmd_writable(vma, addr, entry))
2463 entry = pmd_mkwrite(entry, vma);
2464
2465 ret = HPAGE_PMD_NR;
2466 set_pmd_at(mm, addr, pmd, entry);
2467
2468 if (huge_pmd_needs_flush(oldpmd, entry))
2469 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2470 unlock:
2471 spin_unlock(ptl);
2472 return ret;
2473 }
2474
2475 /*
2476 * Returns:
2477 *
2478 * - 0: if pud leaf changed from under us
2479 * - 1: if pud can be skipped
2480 * - HPAGE_PUD_NR: if pud was successfully processed
2481 */
2482 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2483 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2484 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2485 unsigned long cp_flags)
2486 {
2487 struct mm_struct *mm = vma->vm_mm;
2488 pud_t oldpud, entry;
2489 spinlock_t *ptl;
2490
2491 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2492
2493 /* NUMA balancing doesn't apply to dax */
2494 if (cp_flags & MM_CP_PROT_NUMA)
2495 return 1;
2496
2497 /*
2498 * Huge entries on userfault-wp only works with anonymous, while we
2499 * don't have anonymous PUDs yet.
2500 */
2501 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2502 return 1;
2503
2504 ptl = __pud_trans_huge_lock(pudp, vma);
2505 if (!ptl)
2506 return 0;
2507
2508 /*
2509 * Can't clear PUD or it can race with concurrent zapping. See
2510 * change_huge_pmd().
2511 */
2512 oldpud = pudp_invalidate(vma, addr, pudp);
2513 entry = pud_modify(oldpud, newprot);
2514 set_pud_at(mm, addr, pudp, entry);
2515 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2516
2517 spin_unlock(ptl);
2518 return HPAGE_PUD_NR;
2519 }
2520 #endif
2521
2522 #ifdef CONFIG_USERFAULTFD
2523 /*
2524 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2525 * the caller, but it must return after releasing the page_table_lock.
2526 * Just move the page from src_pmd to dst_pmd if possible.
2527 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2528 * repeated by the caller, or other errors in case of failure.
2529 */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2530 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2531 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2532 unsigned long dst_addr, unsigned long src_addr)
2533 {
2534 pmd_t _dst_pmd, src_pmdval;
2535 struct page *src_page;
2536 struct folio *src_folio;
2537 struct anon_vma *src_anon_vma;
2538 spinlock_t *src_ptl, *dst_ptl;
2539 pgtable_t src_pgtable;
2540 struct mmu_notifier_range range;
2541 int err = 0;
2542
2543 src_pmdval = *src_pmd;
2544 src_ptl = pmd_lockptr(mm, src_pmd);
2545
2546 lockdep_assert_held(src_ptl);
2547 vma_assert_locked(src_vma);
2548 vma_assert_locked(dst_vma);
2549
2550 /* Sanity checks before the operation */
2551 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2552 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2553 spin_unlock(src_ptl);
2554 return -EINVAL;
2555 }
2556
2557 if (!pmd_trans_huge(src_pmdval)) {
2558 spin_unlock(src_ptl);
2559 if (is_pmd_migration_entry(src_pmdval)) {
2560 pmd_migration_entry_wait(mm, &src_pmdval);
2561 return -EAGAIN;
2562 }
2563 return -ENOENT;
2564 }
2565
2566 src_page = pmd_page(src_pmdval);
2567
2568 if (!is_huge_zero_pmd(src_pmdval)) {
2569 if (unlikely(!PageAnonExclusive(src_page))) {
2570 spin_unlock(src_ptl);
2571 return -EBUSY;
2572 }
2573
2574 src_folio = page_folio(src_page);
2575 folio_get(src_folio);
2576 } else
2577 src_folio = NULL;
2578
2579 spin_unlock(src_ptl);
2580
2581 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2582 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2583 src_addr + HPAGE_PMD_SIZE);
2584 mmu_notifier_invalidate_range_start(&range);
2585
2586 if (src_folio) {
2587 folio_lock(src_folio);
2588
2589 /*
2590 * split_huge_page walks the anon_vma chain without the page
2591 * lock. Serialize against it with the anon_vma lock, the page
2592 * lock is not enough.
2593 */
2594 src_anon_vma = folio_get_anon_vma(src_folio);
2595 if (!src_anon_vma) {
2596 err = -EAGAIN;
2597 goto unlock_folio;
2598 }
2599 anon_vma_lock_write(src_anon_vma);
2600 } else
2601 src_anon_vma = NULL;
2602
2603 dst_ptl = pmd_lockptr(mm, dst_pmd);
2604 double_pt_lock(src_ptl, dst_ptl);
2605 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2606 !pmd_same(*dst_pmd, dst_pmdval))) {
2607 err = -EAGAIN;
2608 goto unlock_ptls;
2609 }
2610 if (src_folio) {
2611 if (folio_maybe_dma_pinned(src_folio) ||
2612 !PageAnonExclusive(&src_folio->page)) {
2613 err = -EBUSY;
2614 goto unlock_ptls;
2615 }
2616
2617 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2618 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2619 err = -EBUSY;
2620 goto unlock_ptls;
2621 }
2622
2623 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2624 /* Folio got pinned from under us. Put it back and fail the move. */
2625 if (folio_maybe_dma_pinned(src_folio)) {
2626 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2627 err = -EBUSY;
2628 goto unlock_ptls;
2629 }
2630
2631 folio_move_anon_rmap(src_folio, dst_vma);
2632 src_folio->index = linear_page_index(dst_vma, dst_addr);
2633
2634 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2635 /* Follow mremap() behavior and treat the entry dirty after the move */
2636 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2637 } else {
2638 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2639 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2640 }
2641 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2642
2643 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2644 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2645 unlock_ptls:
2646 double_pt_unlock(src_ptl, dst_ptl);
2647 if (src_anon_vma) {
2648 anon_vma_unlock_write(src_anon_vma);
2649 put_anon_vma(src_anon_vma);
2650 }
2651 unlock_folio:
2652 /* unblock rmap walks */
2653 if (src_folio)
2654 folio_unlock(src_folio);
2655 mmu_notifier_invalidate_range_end(&range);
2656 if (src_folio)
2657 folio_put(src_folio);
2658 return err;
2659 }
2660 #endif /* CONFIG_USERFAULTFD */
2661
2662 /*
2663 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2664 *
2665 * Note that if it returns page table lock pointer, this routine returns without
2666 * unlocking page table lock. So callers must unlock it.
2667 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2668 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2669 {
2670 spinlock_t *ptl;
2671 ptl = pmd_lock(vma->vm_mm, pmd);
2672 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)))
2673 return ptl;
2674 spin_unlock(ptl);
2675 return NULL;
2676 }
2677
2678 /*
2679 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2680 *
2681 * Note that if it returns page table lock pointer, this routine returns without
2682 * unlocking page table lock. So callers must unlock it.
2683 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2684 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2685 {
2686 spinlock_t *ptl;
2687
2688 ptl = pud_lock(vma->vm_mm, pud);
2689 if (likely(pud_trans_huge(*pud)))
2690 return ptl;
2691 spin_unlock(ptl);
2692 return NULL;
2693 }
2694
2695 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2696 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2697 pud_t *pud, unsigned long addr)
2698 {
2699 spinlock_t *ptl;
2700 pud_t orig_pud;
2701
2702 ptl = __pud_trans_huge_lock(pud, vma);
2703 if (!ptl)
2704 return 0;
2705
2706 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2707 arch_check_zapped_pud(vma, orig_pud);
2708 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2709 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2710 spin_unlock(ptl);
2711 /* No zero page support yet */
2712 } else {
2713 struct page *page = NULL;
2714 struct folio *folio;
2715
2716 /* No support for anonymous PUD pages or migration yet */
2717 VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2718 !pud_present(orig_pud));
2719
2720 page = pud_page(orig_pud);
2721 folio = page_folio(page);
2722 folio_remove_rmap_pud(folio, page, vma);
2723 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2724
2725 spin_unlock(ptl);
2726 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2727 }
2728 return 1;
2729 }
2730
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2731 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2732 unsigned long haddr)
2733 {
2734 struct folio *folio;
2735 struct page *page;
2736 pud_t old_pud;
2737
2738 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2739 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2740 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2741 VM_BUG_ON(!pud_trans_huge(*pud));
2742
2743 count_vm_event(THP_SPLIT_PUD);
2744
2745 old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2746
2747 if (!vma_is_dax(vma))
2748 return;
2749
2750 page = pud_page(old_pud);
2751 folio = page_folio(page);
2752
2753 if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2754 folio_mark_dirty(folio);
2755 if (!folio_test_referenced(folio) && pud_young(old_pud))
2756 folio_set_referenced(folio);
2757 folio_remove_rmap_pud(folio, page, vma);
2758 folio_put(folio);
2759 add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2760 -HPAGE_PUD_NR);
2761 }
2762
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2763 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2764 unsigned long address)
2765 {
2766 spinlock_t *ptl;
2767 struct mmu_notifier_range range;
2768
2769 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2770 address & HPAGE_PUD_MASK,
2771 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2772 mmu_notifier_invalidate_range_start(&range);
2773 ptl = pud_lock(vma->vm_mm, pud);
2774 if (unlikely(!pud_trans_huge(*pud)))
2775 goto out;
2776 __split_huge_pud_locked(vma, pud, range.start);
2777
2778 out:
2779 spin_unlock(ptl);
2780 mmu_notifier_invalidate_range_end(&range);
2781 }
2782 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2783 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2784 unsigned long address)
2785 {
2786 }
2787 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2788
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2789 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2790 unsigned long haddr, pmd_t *pmd)
2791 {
2792 struct mm_struct *mm = vma->vm_mm;
2793 pgtable_t pgtable;
2794 pmd_t _pmd, old_pmd;
2795 unsigned long addr;
2796 pte_t *pte;
2797 int i;
2798
2799 /*
2800 * Leave pmd empty until pte is filled note that it is fine to delay
2801 * notification until mmu_notifier_invalidate_range_end() as we are
2802 * replacing a zero pmd write protected page with a zero pte write
2803 * protected page.
2804 *
2805 * See Documentation/mm/mmu_notifier.rst
2806 */
2807 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2808
2809 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2810 pmd_populate(mm, &_pmd, pgtable);
2811
2812 pte = pte_offset_map(&_pmd, haddr);
2813 VM_BUG_ON(!pte);
2814 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2815 pte_t entry;
2816
2817 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2818 entry = pte_mkspecial(entry);
2819 if (pmd_uffd_wp(old_pmd))
2820 entry = pte_mkuffd_wp(entry);
2821 VM_BUG_ON(!pte_none(ptep_get(pte)));
2822 set_pte_at(mm, addr, pte, entry);
2823 pte++;
2824 }
2825 pte_unmap(pte - 1);
2826 smp_wmb(); /* make pte visible before pmd */
2827 pmd_populate(mm, pmd, pgtable);
2828 }
2829
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2830 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2831 unsigned long haddr, bool freeze)
2832 {
2833 struct mm_struct *mm = vma->vm_mm;
2834 struct folio *folio;
2835 struct page *page;
2836 pgtable_t pgtable;
2837 pmd_t old_pmd, _pmd;
2838 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2839 bool anon_exclusive = false, dirty = false;
2840 unsigned long addr;
2841 pte_t *pte;
2842 int i;
2843
2844 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2845 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2846 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2847 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd));
2848
2849 count_vm_event(THP_SPLIT_PMD);
2850
2851 if (!vma_is_anonymous(vma)) {
2852 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2853 /*
2854 * We are going to unmap this huge page. So
2855 * just go ahead and zap it
2856 */
2857 if (arch_needs_pgtable_deposit())
2858 zap_deposited_table(mm, pmd);
2859 if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2860 return;
2861 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2862 swp_entry_t entry;
2863
2864 entry = pmd_to_swp_entry(old_pmd);
2865 folio = pfn_swap_entry_folio(entry);
2866 } else if (is_huge_zero_pmd(old_pmd)) {
2867 return;
2868 } else {
2869 page = pmd_page(old_pmd);
2870 folio = page_folio(page);
2871 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2872 folio_mark_dirty(folio);
2873 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2874 folio_set_referenced(folio);
2875 folio_remove_rmap_pmd(folio, page, vma);
2876 folio_put(folio);
2877 }
2878 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2879 return;
2880 }
2881
2882 if (is_huge_zero_pmd(*pmd)) {
2883 /*
2884 * FIXME: Do we want to invalidate secondary mmu by calling
2885 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2886 * inside __split_huge_pmd() ?
2887 *
2888 * We are going from a zero huge page write protected to zero
2889 * small page also write protected so it does not seems useful
2890 * to invalidate secondary mmu at this time.
2891 */
2892 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2893 }
2894
2895 pmd_migration = is_pmd_migration_entry(*pmd);
2896 if (unlikely(pmd_migration)) {
2897 swp_entry_t entry;
2898
2899 old_pmd = *pmd;
2900 entry = pmd_to_swp_entry(old_pmd);
2901 page = pfn_swap_entry_to_page(entry);
2902 write = is_writable_migration_entry(entry);
2903 if (PageAnon(page))
2904 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2905 young = is_migration_entry_young(entry);
2906 dirty = is_migration_entry_dirty(entry);
2907 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2908 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2909 } else {
2910 /*
2911 * Up to this point the pmd is present and huge and userland has
2912 * the whole access to the hugepage during the split (which
2913 * happens in place). If we overwrite the pmd with the not-huge
2914 * version pointing to the pte here (which of course we could if
2915 * all CPUs were bug free), userland could trigger a small page
2916 * size TLB miss on the small sized TLB while the hugepage TLB
2917 * entry is still established in the huge TLB. Some CPU doesn't
2918 * like that. See
2919 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2920 * 383 on page 105. Intel should be safe but is also warns that
2921 * it's only safe if the permission and cache attributes of the
2922 * two entries loaded in the two TLB is identical (which should
2923 * be the case here). But it is generally safer to never allow
2924 * small and huge TLB entries for the same virtual address to be
2925 * loaded simultaneously. So instead of doing "pmd_populate();
2926 * flush_pmd_tlb_range();" we first mark the current pmd
2927 * notpresent (atomically because here the pmd_trans_huge must
2928 * remain set at all times on the pmd until the split is
2929 * complete for this pmd), then we flush the SMP TLB and finally
2930 * we write the non-huge version of the pmd entry with
2931 * pmd_populate.
2932 */
2933 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2934 page = pmd_page(old_pmd);
2935 folio = page_folio(page);
2936 if (pmd_dirty(old_pmd)) {
2937 dirty = true;
2938 folio_set_dirty(folio);
2939 }
2940 write = pmd_write(old_pmd);
2941 young = pmd_young(old_pmd);
2942 soft_dirty = pmd_soft_dirty(old_pmd);
2943 uffd_wp = pmd_uffd_wp(old_pmd);
2944
2945 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2946 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2947
2948 /*
2949 * Without "freeze", we'll simply split the PMD, propagating the
2950 * PageAnonExclusive() flag for each PTE by setting it for
2951 * each subpage -- no need to (temporarily) clear.
2952 *
2953 * With "freeze" we want to replace mapped pages by
2954 * migration entries right away. This is only possible if we
2955 * managed to clear PageAnonExclusive() -- see
2956 * set_pmd_migration_entry().
2957 *
2958 * In case we cannot clear PageAnonExclusive(), split the PMD
2959 * only and let try_to_migrate_one() fail later.
2960 *
2961 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2962 */
2963 anon_exclusive = PageAnonExclusive(page);
2964 if (freeze && anon_exclusive &&
2965 folio_try_share_anon_rmap_pmd(folio, page))
2966 freeze = false;
2967 if (!freeze) {
2968 rmap_t rmap_flags = RMAP_NONE;
2969
2970 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2971 if (anon_exclusive)
2972 rmap_flags |= RMAP_EXCLUSIVE;
2973 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2974 vma, haddr, rmap_flags);
2975 }
2976 }
2977
2978 /*
2979 * Withdraw the table only after we mark the pmd entry invalid.
2980 * This's critical for some architectures (Power).
2981 */
2982 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2983 pmd_populate(mm, &_pmd, pgtable);
2984
2985 pte = pte_offset_map(&_pmd, haddr);
2986 VM_BUG_ON(!pte);
2987
2988 /*
2989 * Note that NUMA hinting access restrictions are not transferred to
2990 * avoid any possibility of altering permissions across VMAs.
2991 */
2992 if (freeze || pmd_migration) {
2993 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2994 pte_t entry;
2995 swp_entry_t swp_entry;
2996
2997 if (write)
2998 swp_entry = make_writable_migration_entry(
2999 page_to_pfn(page + i));
3000 else if (anon_exclusive)
3001 swp_entry = make_readable_exclusive_migration_entry(
3002 page_to_pfn(page + i));
3003 else
3004 swp_entry = make_readable_migration_entry(
3005 page_to_pfn(page + i));
3006 if (young)
3007 swp_entry = make_migration_entry_young(swp_entry);
3008 if (dirty)
3009 swp_entry = make_migration_entry_dirty(swp_entry);
3010 entry = swp_entry_to_pte(swp_entry);
3011 if (soft_dirty)
3012 entry = pte_swp_mksoft_dirty(entry);
3013 if (uffd_wp)
3014 entry = pte_swp_mkuffd_wp(entry);
3015
3016 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3017 set_pte_at(mm, addr, pte + i, entry);
3018 }
3019 } else {
3020 pte_t entry;
3021
3022 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3023 if (write)
3024 entry = pte_mkwrite(entry, vma);
3025 if (!young)
3026 entry = pte_mkold(entry);
3027 /* NOTE: this may set soft-dirty too on some archs */
3028 if (dirty)
3029 entry = pte_mkdirty(entry);
3030 if (soft_dirty)
3031 entry = pte_mksoft_dirty(entry);
3032 if (uffd_wp)
3033 entry = pte_mkuffd_wp(entry);
3034
3035 for (i = 0; i < HPAGE_PMD_NR; i++)
3036 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3037
3038 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3039 }
3040 pte_unmap(pte);
3041
3042 if (!pmd_migration)
3043 folio_remove_rmap_pmd(folio, page, vma);
3044 if (freeze)
3045 put_page(page);
3046
3047 smp_wmb(); /* make pte visible before pmd */
3048 pmd_populate(mm, pmd, pgtable);
3049 }
3050
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze)3051 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3052 pmd_t *pmd, bool freeze)
3053 {
3054 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3055 if (pmd_trans_huge(*pmd) || is_pmd_migration_entry(*pmd))
3056 __split_huge_pmd_locked(vma, pmd, address, freeze);
3057 }
3058
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze)3059 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3060 unsigned long address, bool freeze)
3061 {
3062 spinlock_t *ptl;
3063 struct mmu_notifier_range range;
3064
3065 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3066 address & HPAGE_PMD_MASK,
3067 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3068 mmu_notifier_invalidate_range_start(&range);
3069 ptl = pmd_lock(vma->vm_mm, pmd);
3070 split_huge_pmd_locked(vma, range.start, pmd, freeze);
3071 spin_unlock(ptl);
3072 mmu_notifier_invalidate_range_end(&range);
3073 }
3074
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze)3075 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3076 bool freeze)
3077 {
3078 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3079
3080 if (!pmd)
3081 return;
3082
3083 __split_huge_pmd(vma, pmd, address, freeze);
3084 }
3085
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)3086 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3087 {
3088 /*
3089 * If the new address isn't hpage aligned and it could previously
3090 * contain an hugepage: check if we need to split an huge pmd.
3091 */
3092 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3093 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3094 ALIGN(address, HPAGE_PMD_SIZE)))
3095 split_huge_pmd_address(vma, address, false);
3096 }
3097
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)3098 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3099 unsigned long start,
3100 unsigned long end,
3101 struct vm_area_struct *next)
3102 {
3103 /* Check if we need to split start first. */
3104 split_huge_pmd_if_needed(vma, start);
3105
3106 /* Check if we need to split end next. */
3107 split_huge_pmd_if_needed(vma, end);
3108
3109 /* If we're incrementing next->vm_start, we might need to split it. */
3110 if (next)
3111 split_huge_pmd_if_needed(next, end);
3112 }
3113
unmap_folio(struct folio * folio)3114 static void unmap_folio(struct folio *folio)
3115 {
3116 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3117 TTU_BATCH_FLUSH;
3118
3119 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3120
3121 if (folio_test_pmd_mappable(folio))
3122 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3123
3124 /*
3125 * Anon pages need migration entries to preserve them, but file
3126 * pages can simply be left unmapped, then faulted back on demand.
3127 * If that is ever changed (perhaps for mlock), update remap_page().
3128 */
3129 if (folio_test_anon(folio))
3130 try_to_migrate(folio, ttu_flags);
3131 else
3132 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3133
3134 try_to_unmap_flush();
3135 }
3136
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3137 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3138 unsigned long addr, pmd_t *pmdp,
3139 struct folio *folio)
3140 {
3141 struct mm_struct *mm = vma->vm_mm;
3142 int ref_count, map_count;
3143 pmd_t orig_pmd = *pmdp;
3144
3145 if (pmd_dirty(orig_pmd))
3146 folio_set_dirty(folio);
3147 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3148 folio_set_swapbacked(folio);
3149 return false;
3150 }
3151
3152 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3153
3154 /*
3155 * Syncing against concurrent GUP-fast:
3156 * - clear PMD; barrier; read refcount
3157 * - inc refcount; barrier; read PMD
3158 */
3159 smp_mb();
3160
3161 ref_count = folio_ref_count(folio);
3162 map_count = folio_mapcount(folio);
3163
3164 /*
3165 * Order reads for folio refcount and dirty flag
3166 * (see comments in __remove_mapping()).
3167 */
3168 smp_rmb();
3169
3170 /*
3171 * If the folio or its PMD is redirtied at this point, or if there
3172 * are unexpected references, we will give up to discard this folio
3173 * and remap it.
3174 *
3175 * The only folio refs must be one from isolation plus the rmap(s).
3176 */
3177 if (pmd_dirty(orig_pmd))
3178 folio_set_dirty(folio);
3179 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3180 folio_set_swapbacked(folio);
3181 set_pmd_at(mm, addr, pmdp, orig_pmd);
3182 return false;
3183 }
3184
3185 if (ref_count != map_count + 1) {
3186 set_pmd_at(mm, addr, pmdp, orig_pmd);
3187 return false;
3188 }
3189
3190 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3191 zap_deposited_table(mm, pmdp);
3192 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3193 if (vma->vm_flags & VM_LOCKED)
3194 mlock_drain_local();
3195 folio_put(folio);
3196
3197 return true;
3198 }
3199
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3200 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3201 pmd_t *pmdp, struct folio *folio)
3202 {
3203 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3204 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3205 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3206 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3207 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3208
3209 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3210 }
3211
remap_page(struct folio * folio,unsigned long nr,int flags)3212 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3213 {
3214 int i = 0;
3215
3216 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3217 if (!folio_test_anon(folio))
3218 return;
3219 for (;;) {
3220 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3221 i += folio_nr_pages(folio);
3222 if (i >= nr)
3223 break;
3224 folio = folio_next(folio);
3225 }
3226 }
3227
lru_add_split_folio(struct folio * folio,struct folio * new_folio,struct lruvec * lruvec,struct list_head * list)3228 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3229 struct lruvec *lruvec, struct list_head *list)
3230 {
3231 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3232 lockdep_assert_held(&lruvec->lru_lock);
3233
3234 if (list) {
3235 /* page reclaim is reclaiming a huge page */
3236 VM_WARN_ON(folio_test_lru(folio));
3237 folio_get(new_folio);
3238 list_add_tail(&new_folio->lru, list);
3239 } else {
3240 /* head is still on lru (and we have it frozen) */
3241 VM_WARN_ON(!folio_test_lru(folio));
3242 if (folio_test_unevictable(folio))
3243 new_folio->mlock_count = 0;
3244 else
3245 list_add_tail(&new_folio->lru, &folio->lru);
3246 folio_set_lru(new_folio);
3247 }
3248 }
3249
3250 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3251 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3252 {
3253 int extra_pins;
3254
3255 /* Additional pins from page cache */
3256 if (folio_test_anon(folio))
3257 extra_pins = folio_test_swapcache(folio) ?
3258 folio_nr_pages(folio) : 0;
3259 else
3260 extra_pins = folio_nr_pages(folio);
3261 if (pextra_pins)
3262 *pextra_pins = extra_pins;
3263 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3264 caller_pins;
3265 }
3266
page_range_has_hwpoisoned(struct page * page,long nr_pages)3267 static bool page_range_has_hwpoisoned(struct page *page, long nr_pages)
3268 {
3269 for (; nr_pages; page++, nr_pages--)
3270 if (PageHWPoison(page))
3271 return true;
3272 return false;
3273 }
3274
3275 /*
3276 * It splits @folio into @new_order folios and copies the @folio metadata to
3277 * all the resulting folios.
3278 */
__split_folio_to_order(struct folio * folio,int old_order,int new_order)3279 static void __split_folio_to_order(struct folio *folio, int old_order,
3280 int new_order)
3281 {
3282 /* Scan poisoned pages when split a poisoned folio to large folios */
3283 const bool handle_hwpoison = folio_test_has_hwpoisoned(folio) && new_order;
3284 long new_nr_pages = 1 << new_order;
3285 long nr_pages = 1 << old_order;
3286 long i;
3287
3288 folio_clear_has_hwpoisoned(folio);
3289
3290 /* Check first new_nr_pages since the loop below skips them */
3291 if (handle_hwpoison &&
3292 page_range_has_hwpoisoned(folio_page(folio, 0), new_nr_pages))
3293 folio_set_has_hwpoisoned(folio);
3294 /*
3295 * Skip the first new_nr_pages, since the new folio from them have all
3296 * the flags from the original folio.
3297 */
3298 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3299 struct page *new_head = &folio->page + i;
3300 /*
3301 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3302 * Don't pass it around before clear_compound_head().
3303 */
3304 struct folio *new_folio = (struct folio *)new_head;
3305
3306 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3307
3308 /*
3309 * Clone page flags before unfreezing refcount.
3310 *
3311 * After successful get_page_unless_zero() might follow flags change,
3312 * for example lock_page() which set PG_waiters.
3313 *
3314 * Note that for mapped sub-pages of an anonymous THP,
3315 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3316 * the migration entry instead from where remap_page() will restore it.
3317 * We can still have PG_anon_exclusive set on effectively unmapped and
3318 * unreferenced sub-pages of an anonymous THP: we can simply drop
3319 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3320 */
3321 new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
3322 new_folio->flags.f |= (folio->flags.f &
3323 ((1L << PG_referenced) |
3324 (1L << PG_swapbacked) |
3325 (1L << PG_swapcache) |
3326 (1L << PG_mlocked) |
3327 (1L << PG_uptodate) |
3328 (1L << PG_active) |
3329 (1L << PG_workingset) |
3330 (1L << PG_locked) |
3331 (1L << PG_unevictable) |
3332 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3333 (1L << PG_arch_2) |
3334 #endif
3335 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3336 (1L << PG_arch_3) |
3337 #endif
3338 (1L << PG_dirty) |
3339 LRU_GEN_MASK | LRU_REFS_MASK));
3340
3341 if (handle_hwpoison &&
3342 page_range_has_hwpoisoned(new_head, new_nr_pages))
3343 folio_set_has_hwpoisoned(new_folio);
3344
3345 new_folio->mapping = folio->mapping;
3346 new_folio->index = folio->index + i;
3347
3348 /*
3349 * page->private should not be set in tail pages. Fix up and warn once
3350 * if private is unexpectedly set.
3351 */
3352 if (unlikely(new_folio->private)) {
3353 VM_WARN_ON_ONCE_PAGE(true, new_head);
3354 new_folio->private = NULL;
3355 }
3356
3357 if (folio_test_swapcache(folio))
3358 new_folio->swap.val = folio->swap.val + i;
3359
3360 /* Page flags must be visible before we make the page non-compound. */
3361 smp_wmb();
3362
3363 /*
3364 * Clear PageTail before unfreezing page refcount.
3365 *
3366 * After successful get_page_unless_zero() might follow put_page()
3367 * which needs correct compound_head().
3368 */
3369 clear_compound_head(new_head);
3370 if (new_order) {
3371 prep_compound_page(new_head, new_order);
3372 folio_set_large_rmappable(new_folio);
3373 }
3374
3375 if (folio_test_young(folio))
3376 folio_set_young(new_folio);
3377 if (folio_test_idle(folio))
3378 folio_set_idle(new_folio);
3379 #ifdef CONFIG_MEMCG
3380 new_folio->memcg_data = folio->memcg_data;
3381 #endif
3382
3383 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3384 }
3385
3386 if (new_order)
3387 folio_set_order(folio, new_order);
3388 else
3389 ClearPageCompound(&folio->page);
3390 }
3391
3392 /*
3393 * It splits an unmapped @folio to lower order smaller folios in two ways.
3394 * @folio: the to-be-split folio
3395 * @new_order: the smallest order of the after split folios (since buddy
3396 * allocator like split generates folios with orders from @folio's
3397 * order - 1 to new_order).
3398 * @split_at: in buddy allocator like split, the folio containing @split_at
3399 * will be split until its order becomes @new_order.
3400 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3401 * @mapping: @folio->mapping
3402 * @uniform_split: if the split is uniform or not (buddy allocator like split)
3403 *
3404 *
3405 * 1. uniform split: the given @folio into multiple @new_order small folios,
3406 * where all small folios have the same order. This is done when
3407 * uniform_split is true.
3408 * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3409 * half and one of the half (containing the given page) is split into half
3410 * until the given @page's order becomes @new_order. This is done when
3411 * uniform_split is false.
3412 *
3413 * The high level flow for these two methods are:
3414 * 1. uniform split: a single __split_folio_to_order() is called to split the
3415 * @folio into @new_order, then we traverse all the resulting folios one by
3416 * one in PFN ascending order and perform stats, unfreeze, adding to list,
3417 * and file mapping index operations.
3418 * 2. non-uniform split: in general, folio_order - @new_order calls to
3419 * __split_folio_to_order() are made in a for loop to split the @folio
3420 * to one lower order at a time. The resulting small folios are processed
3421 * like what is done during the traversal in 1, except the one containing
3422 * @page, which is split in next for loop.
3423 *
3424 * After splitting, the caller's folio reference will be transferred to the
3425 * folio containing @page. The caller needs to unlock and/or free after-split
3426 * folios if necessary.
3427 *
3428 * For !uniform_split, when -ENOMEM is returned, the original folio might be
3429 * split. The caller needs to check the input folio.
3430 */
__split_unmapped_folio(struct folio * folio,int new_order,struct page * split_at,struct xa_state * xas,struct address_space * mapping,bool uniform_split)3431 static int __split_unmapped_folio(struct folio *folio, int new_order,
3432 struct page *split_at, struct xa_state *xas,
3433 struct address_space *mapping, bool uniform_split)
3434 {
3435 int order = folio_order(folio);
3436 int start_order = uniform_split ? new_order : order - 1;
3437 bool stop_split = false;
3438 struct folio *next;
3439 int split_order;
3440 int ret = 0;
3441
3442 if (folio_test_anon(folio))
3443 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3444
3445 /*
3446 * split to new_order one order at a time. For uniform split,
3447 * folio is split to new_order directly.
3448 */
3449 for (split_order = start_order;
3450 split_order >= new_order && !stop_split;
3451 split_order--) {
3452 struct folio *end_folio = folio_next(folio);
3453 int old_order = folio_order(folio);
3454 struct folio *new_folio;
3455
3456 /* order-1 anonymous folio is not supported */
3457 if (folio_test_anon(folio) && split_order == 1)
3458 continue;
3459 if (uniform_split && split_order != new_order)
3460 continue;
3461
3462 if (mapping) {
3463 /*
3464 * uniform split has xas_split_alloc() called before
3465 * irq is disabled to allocate enough memory, whereas
3466 * non-uniform split can handle ENOMEM.
3467 */
3468 if (uniform_split)
3469 xas_split(xas, folio, old_order);
3470 else {
3471 xas_set_order(xas, folio->index, split_order);
3472 xas_try_split(xas, folio, old_order);
3473 if (xas_error(xas)) {
3474 ret = xas_error(xas);
3475 stop_split = true;
3476 }
3477 }
3478 }
3479
3480 if (!stop_split) {
3481 folio_split_memcg_refs(folio, old_order, split_order);
3482 split_page_owner(&folio->page, old_order, split_order);
3483 pgalloc_tag_split(folio, old_order, split_order);
3484
3485 __split_folio_to_order(folio, old_order, split_order);
3486 }
3487
3488 /*
3489 * Iterate through after-split folios and update folio stats.
3490 * But in buddy allocator like split, the folio
3491 * containing the specified page is skipped until its order
3492 * is new_order, since the folio will be worked on in next
3493 * iteration.
3494 */
3495 for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3496 next = folio_next(new_folio);
3497 /*
3498 * for buddy allocator like split, new_folio containing
3499 * @split_at page could be split again, thus do not
3500 * change stats yet. Wait until new_folio's order is
3501 * @new_order or stop_split is set to true by the above
3502 * xas_split() failure.
3503 */
3504 if (new_folio == page_folio(split_at)) {
3505 folio = new_folio;
3506 if (split_order != new_order && !stop_split)
3507 continue;
3508 }
3509 if (folio_test_anon(new_folio))
3510 mod_mthp_stat(folio_order(new_folio),
3511 MTHP_STAT_NR_ANON, 1);
3512 }
3513 }
3514
3515 return ret;
3516 }
3517
non_uniform_split_supported(struct folio * folio,unsigned int new_order,bool warns)3518 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3519 bool warns)
3520 {
3521 if (folio_test_anon(folio)) {
3522 /* order-1 is not supported for anonymous THP. */
3523 VM_WARN_ONCE(warns && new_order == 1,
3524 "Cannot split to order-1 folio");
3525 return new_order != 1;
3526 } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3527 !mapping_large_folio_support(folio->mapping)) {
3528 /*
3529 * No split if the file system does not support large folio.
3530 * Note that we might still have THPs in such mappings due to
3531 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3532 * does not actually support large folios properly.
3533 */
3534 VM_WARN_ONCE(warns,
3535 "Cannot split file folio to non-0 order");
3536 return false;
3537 }
3538
3539 /* Only swapping a whole PMD-mapped folio is supported */
3540 if (folio_test_swapcache(folio)) {
3541 VM_WARN_ONCE(warns,
3542 "Cannot split swapcache folio to non-0 order");
3543 return false;
3544 }
3545
3546 return true;
3547 }
3548
3549 /* See comments in non_uniform_split_supported() */
uniform_split_supported(struct folio * folio,unsigned int new_order,bool warns)3550 bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3551 bool warns)
3552 {
3553 if (folio_test_anon(folio)) {
3554 VM_WARN_ONCE(warns && new_order == 1,
3555 "Cannot split to order-1 folio");
3556 return new_order != 1;
3557 } else if (new_order) {
3558 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3559 !mapping_large_folio_support(folio->mapping)) {
3560 VM_WARN_ONCE(warns,
3561 "Cannot split file folio to non-0 order");
3562 return false;
3563 }
3564 }
3565
3566 if (new_order && folio_test_swapcache(folio)) {
3567 VM_WARN_ONCE(warns,
3568 "Cannot split swapcache folio to non-0 order");
3569 return false;
3570 }
3571
3572 return true;
3573 }
3574
3575 /*
3576 * __folio_split: split a folio at @split_at to a @new_order folio
3577 * @folio: folio to split
3578 * @new_order: the order of the new folio
3579 * @split_at: a page within the new folio
3580 * @lock_at: a page within @folio to be left locked to caller
3581 * @list: after-split folios will be put on it if non NULL
3582 * @uniform_split: perform uniform split or not (non-uniform split)
3583 *
3584 * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3585 * It is in charge of checking whether the split is supported or not and
3586 * preparing @folio for __split_unmapped_folio().
3587 *
3588 * After splitting, the after-split folio containing @lock_at remains locked
3589 * and others are unlocked:
3590 * 1. for uniform split, @lock_at points to one of @folio's subpages;
3591 * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3592 *
3593 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3594 * split but not to @new_order, the caller needs to check)
3595 */
__folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct page * lock_at,struct list_head * list,bool uniform_split)3596 static int __folio_split(struct folio *folio, unsigned int new_order,
3597 struct page *split_at, struct page *lock_at,
3598 struct list_head *list, bool uniform_split)
3599 {
3600 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3601 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3602 struct folio *end_folio = folio_next(folio);
3603 bool is_anon = folio_test_anon(folio);
3604 struct address_space *mapping = NULL;
3605 struct anon_vma *anon_vma = NULL;
3606 int order = folio_order(folio);
3607 struct folio *new_folio, *next;
3608 int nr_shmem_dropped = 0;
3609 int remap_flags = 0;
3610 int extra_pins, ret;
3611 pgoff_t end;
3612 bool is_hzp;
3613
3614 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3615 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3616
3617 if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3618 return -EINVAL;
3619
3620 if (new_order >= folio_order(folio))
3621 return -EINVAL;
3622
3623 if (uniform_split && !uniform_split_supported(folio, new_order, true))
3624 return -EINVAL;
3625
3626 if (!uniform_split &&
3627 !non_uniform_split_supported(folio, new_order, true))
3628 return -EINVAL;
3629
3630 is_hzp = is_huge_zero_folio(folio);
3631 if (is_hzp) {
3632 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3633 return -EBUSY;
3634 }
3635
3636 if (folio_test_writeback(folio))
3637 return -EBUSY;
3638
3639 if (is_anon) {
3640 /*
3641 * The caller does not necessarily hold an mmap_lock that would
3642 * prevent the anon_vma disappearing so we first we take a
3643 * reference to it and then lock the anon_vma for write. This
3644 * is similar to folio_lock_anon_vma_read except the write lock
3645 * is taken to serialise against parallel split or collapse
3646 * operations.
3647 */
3648 anon_vma = folio_get_anon_vma(folio);
3649 if (!anon_vma) {
3650 ret = -EBUSY;
3651 goto out;
3652 }
3653 mapping = NULL;
3654 anon_vma_lock_write(anon_vma);
3655 } else {
3656 unsigned int min_order;
3657 gfp_t gfp;
3658
3659 mapping = folio->mapping;
3660
3661 /* Truncated ? */
3662 /*
3663 * TODO: add support for large shmem folio in swap cache.
3664 * When shmem is in swap cache, mapping is NULL and
3665 * folio_test_swapcache() is true.
3666 */
3667 if (!mapping) {
3668 ret = -EBUSY;
3669 goto out;
3670 }
3671
3672 min_order = mapping_min_folio_order(folio->mapping);
3673 if (new_order < min_order) {
3674 ret = -EINVAL;
3675 goto out;
3676 }
3677
3678 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3679 GFP_RECLAIM_MASK);
3680
3681 if (!filemap_release_folio(folio, gfp)) {
3682 ret = -EBUSY;
3683 goto out;
3684 }
3685
3686 if (uniform_split) {
3687 xas_set_order(&xas, folio->index, new_order);
3688 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3689 if (xas_error(&xas)) {
3690 ret = xas_error(&xas);
3691 goto out;
3692 }
3693 }
3694
3695 anon_vma = NULL;
3696 i_mmap_lock_read(mapping);
3697
3698 /*
3699 *__split_unmapped_folio() may need to trim off pages beyond
3700 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3701 * seqlock, which cannot be nested inside the page tree lock.
3702 * So note end now: i_size itself may be changed at any moment,
3703 * but folio lock is good enough to serialize the trimming.
3704 */
3705 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3706 if (shmem_mapping(mapping))
3707 end = shmem_fallocend(mapping->host, end);
3708 }
3709
3710 /*
3711 * Racy check if we can split the page, before unmap_folio() will
3712 * split PMDs
3713 */
3714 if (!can_split_folio(folio, 1, &extra_pins)) {
3715 ret = -EAGAIN;
3716 goto out_unlock;
3717 }
3718
3719 unmap_folio(folio);
3720
3721 /* block interrupt reentry in xa_lock and spinlock */
3722 local_irq_disable();
3723 if (mapping) {
3724 /*
3725 * Check if the folio is present in page cache.
3726 * We assume all tail are present too, if folio is there.
3727 */
3728 xas_lock(&xas);
3729 xas_reset(&xas);
3730 if (xas_load(&xas) != folio) {
3731 ret = -EAGAIN;
3732 goto fail;
3733 }
3734 }
3735
3736 /* Prevent deferred_split_scan() touching ->_refcount */
3737 spin_lock(&ds_queue->split_queue_lock);
3738 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3739 struct swap_cluster_info *ci = NULL;
3740 struct lruvec *lruvec;
3741 int expected_refs;
3742
3743 if (folio_order(folio) > 1 &&
3744 !list_empty(&folio->_deferred_list)) {
3745 ds_queue->split_queue_len--;
3746 if (folio_test_partially_mapped(folio)) {
3747 folio_clear_partially_mapped(folio);
3748 mod_mthp_stat(folio_order(folio),
3749 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3750 }
3751 /*
3752 * Reinitialize page_deferred_list after removing the
3753 * page from the split_queue, otherwise a subsequent
3754 * split will see list corruption when checking the
3755 * page_deferred_list.
3756 */
3757 list_del_init(&folio->_deferred_list);
3758 }
3759 spin_unlock(&ds_queue->split_queue_lock);
3760 if (mapping) {
3761 int nr = folio_nr_pages(folio);
3762
3763 if (folio_test_pmd_mappable(folio) &&
3764 new_order < HPAGE_PMD_ORDER) {
3765 if (folio_test_swapbacked(folio)) {
3766 __lruvec_stat_mod_folio(folio,
3767 NR_SHMEM_THPS, -nr);
3768 } else {
3769 __lruvec_stat_mod_folio(folio,
3770 NR_FILE_THPS, -nr);
3771 filemap_nr_thps_dec(mapping);
3772 }
3773 }
3774 }
3775
3776 if (folio_test_swapcache(folio)) {
3777 if (mapping) {
3778 VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3779 ret = -EINVAL;
3780 goto fail;
3781 }
3782
3783 ci = swap_cluster_get_and_lock(folio);
3784 }
3785
3786 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3787 lruvec = folio_lruvec_lock(folio);
3788
3789 ret = __split_unmapped_folio(folio, new_order, split_at, &xas,
3790 mapping, uniform_split);
3791
3792 /*
3793 * Unfreeze after-split folios and put them back to the right
3794 * list. @folio should be kept frozon until page cache
3795 * entries are updated with all the other after-split folios
3796 * to prevent others seeing stale page cache entries.
3797 * As a result, new_folio starts from the next folio of
3798 * @folio.
3799 */
3800 for (new_folio = folio_next(folio); new_folio != end_folio;
3801 new_folio = next) {
3802 unsigned long nr_pages = folio_nr_pages(new_folio);
3803
3804 next = folio_next(new_folio);
3805
3806 expected_refs = folio_expected_ref_count(new_folio) + 1;
3807 folio_ref_unfreeze(new_folio, expected_refs);
3808
3809 lru_add_split_folio(folio, new_folio, lruvec, list);
3810
3811 /*
3812 * Anonymous folio with swap cache.
3813 * NOTE: shmem in swap cache is not supported yet.
3814 */
3815 if (ci) {
3816 __swap_cache_replace_folio(ci, folio, new_folio);
3817 continue;
3818 }
3819
3820 /* Anonymous folio without swap cache */
3821 if (!mapping)
3822 continue;
3823
3824 /* Add the new folio to the page cache. */
3825 if (new_folio->index < end) {
3826 __xa_store(&mapping->i_pages, new_folio->index,
3827 new_folio, 0);
3828 continue;
3829 }
3830
3831 /* Drop folio beyond EOF: ->index >= end */
3832 if (shmem_mapping(mapping))
3833 nr_shmem_dropped += nr_pages;
3834 else if (folio_test_clear_dirty(new_folio))
3835 folio_account_cleaned(
3836 new_folio, inode_to_wb(mapping->host));
3837 __filemap_remove_folio(new_folio, NULL);
3838 folio_put_refs(new_folio, nr_pages);
3839 }
3840 /*
3841 * Unfreeze @folio only after all page cache entries, which
3842 * used to point to it, have been updated with new folios.
3843 * Otherwise, a parallel folio_try_get() can grab @folio
3844 * and its caller can see stale page cache entries.
3845 */
3846 expected_refs = folio_expected_ref_count(folio) + 1;
3847 folio_ref_unfreeze(folio, expected_refs);
3848
3849 unlock_page_lruvec(lruvec);
3850
3851 if (ci)
3852 swap_cluster_unlock(ci);
3853 } else {
3854 spin_unlock(&ds_queue->split_queue_lock);
3855 ret = -EAGAIN;
3856 }
3857 fail:
3858 if (mapping)
3859 xas_unlock(&xas);
3860
3861 local_irq_enable();
3862
3863 if (nr_shmem_dropped)
3864 shmem_uncharge(mapping->host, nr_shmem_dropped);
3865
3866 if (!ret && is_anon)
3867 remap_flags = RMP_USE_SHARED_ZEROPAGE;
3868 remap_page(folio, 1 << order, remap_flags);
3869
3870 /*
3871 * Unlock all after-split folios except the one containing
3872 * @lock_at page. If @folio is not split, it will be kept locked.
3873 */
3874 for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3875 next = folio_next(new_folio);
3876 if (new_folio == page_folio(lock_at))
3877 continue;
3878
3879 folio_unlock(new_folio);
3880 /*
3881 * Subpages may be freed if there wasn't any mapping
3882 * like if add_to_swap() is running on a lru page that
3883 * had its mapping zapped. And freeing these pages
3884 * requires taking the lru_lock so we do the put_page
3885 * of the tail pages after the split is complete.
3886 */
3887 free_folio_and_swap_cache(new_folio);
3888 }
3889
3890 out_unlock:
3891 if (anon_vma) {
3892 anon_vma_unlock_write(anon_vma);
3893 put_anon_vma(anon_vma);
3894 }
3895 if (mapping)
3896 i_mmap_unlock_read(mapping);
3897 out:
3898 xas_destroy(&xas);
3899 if (order == HPAGE_PMD_ORDER)
3900 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3901 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3902 return ret;
3903 }
3904
3905 /*
3906 * This function splits a large folio into smaller folios of order @new_order.
3907 * @page can point to any page of the large folio to split. The split operation
3908 * does not change the position of @page.
3909 *
3910 * Prerequisites:
3911 *
3912 * 1) The caller must hold a reference on the @page's owning folio, also known
3913 * as the large folio.
3914 *
3915 * 2) The large folio must be locked.
3916 *
3917 * 3) The folio must not be pinned. Any unexpected folio references, including
3918 * GUP pins, will result in the folio not getting split; instead, the caller
3919 * will receive an -EAGAIN.
3920 *
3921 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3922 * supported for non-file-backed folios, because folio->_deferred_list, which
3923 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3924 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3925 * since they do not use _deferred_list.
3926 *
3927 * After splitting, the caller's folio reference will be transferred to @page,
3928 * resulting in a raised refcount of @page after this call. The other pages may
3929 * be freed if they are not mapped.
3930 *
3931 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3932 *
3933 * Pages in @new_order will inherit the mapping, flags, and so on from the
3934 * huge page.
3935 *
3936 * Returns 0 if the huge page was split successfully.
3937 *
3938 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3939 * the folio was concurrently removed from the page cache.
3940 *
3941 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3942 * under writeback, if fs-specific folio metadata cannot currently be
3943 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3944 * truncation).
3945 *
3946 * Callers should ensure that the order respects the address space mapping
3947 * min-order if one is set for non-anonymous folios.
3948 *
3949 * Returns -EINVAL when trying to split to an order that is incompatible
3950 * with the folio. Splitting to order 0 is compatible with all folios.
3951 */
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)3952 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3953 unsigned int new_order)
3954 {
3955 struct folio *folio = page_folio(page);
3956
3957 return __folio_split(folio, new_order, &folio->page, page, list, true);
3958 }
3959
3960 /*
3961 * folio_split: split a folio at @split_at to a @new_order folio
3962 * @folio: folio to split
3963 * @new_order: the order of the new folio
3964 * @split_at: a page within the new folio
3965 *
3966 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3967 * split but not to @new_order, the caller needs to check)
3968 *
3969 * It has the same prerequisites and returns as
3970 * split_huge_page_to_list_to_order().
3971 *
3972 * Split a folio at @split_at to a new_order folio, leave the
3973 * remaining subpages of the original folio as large as possible. For example,
3974 * in the case of splitting an order-9 folio at its third order-3 subpages to
3975 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3976 * After the split, there will be a group of folios with different orders and
3977 * the new folio containing @split_at is marked in bracket:
3978 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
3979 *
3980 * After split, folio is left locked for caller.
3981 */
folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct list_head * list)3982 int folio_split(struct folio *folio, unsigned int new_order,
3983 struct page *split_at, struct list_head *list)
3984 {
3985 return __folio_split(folio, new_order, split_at, &folio->page, list,
3986 false);
3987 }
3988
min_order_for_split(struct folio * folio)3989 int min_order_for_split(struct folio *folio)
3990 {
3991 if (folio_test_anon(folio))
3992 return 0;
3993
3994 if (!folio->mapping) {
3995 if (folio_test_pmd_mappable(folio))
3996 count_vm_event(THP_SPLIT_PAGE_FAILED);
3997 return -EBUSY;
3998 }
3999
4000 return mapping_min_folio_order(folio->mapping);
4001 }
4002
split_folio_to_list(struct folio * folio,struct list_head * list)4003 int split_folio_to_list(struct folio *folio, struct list_head *list)
4004 {
4005 return split_huge_page_to_list_to_order(&folio->page, list, 0);
4006 }
4007
4008 /*
4009 * __folio_unqueue_deferred_split() is not to be called directly:
4010 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4011 * limits its calls to those folios which may have a _deferred_list for
4012 * queueing THP splits, and that list is (racily observed to be) non-empty.
4013 *
4014 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4015 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4016 * might be in use on deferred_split_scan()'s unlocked on-stack list.
4017 *
4018 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4019 * therefore important to unqueue deferred split before changing folio memcg.
4020 */
__folio_unqueue_deferred_split(struct folio * folio)4021 bool __folio_unqueue_deferred_split(struct folio *folio)
4022 {
4023 struct deferred_split *ds_queue;
4024 unsigned long flags;
4025 bool unqueued = false;
4026
4027 WARN_ON_ONCE(folio_ref_count(folio));
4028 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4029
4030 ds_queue = get_deferred_split_queue(folio);
4031 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4032 if (!list_empty(&folio->_deferred_list)) {
4033 ds_queue->split_queue_len--;
4034 if (folio_test_partially_mapped(folio)) {
4035 folio_clear_partially_mapped(folio);
4036 mod_mthp_stat(folio_order(folio),
4037 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4038 }
4039 list_del_init(&folio->_deferred_list);
4040 unqueued = true;
4041 }
4042 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4043
4044 return unqueued; /* useful for debug warnings */
4045 }
4046
4047 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)4048 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4049 {
4050 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4051 #ifdef CONFIG_MEMCG
4052 struct mem_cgroup *memcg = folio_memcg(folio);
4053 #endif
4054 unsigned long flags;
4055
4056 /*
4057 * Order 1 folios have no space for a deferred list, but we also
4058 * won't waste much memory by not adding them to the deferred list.
4059 */
4060 if (folio_order(folio) <= 1)
4061 return;
4062
4063 if (!partially_mapped && !split_underused_thp)
4064 return;
4065
4066 /*
4067 * Exclude swapcache: originally to avoid a corrupt deferred split
4068 * queue. Nowadays that is fully prevented by memcg1_swapout();
4069 * but if page reclaim is already handling the same folio, it is
4070 * unnecessary to handle it again in the shrinker, so excluding
4071 * swapcache here may still be a useful optimization.
4072 */
4073 if (folio_test_swapcache(folio))
4074 return;
4075
4076 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4077 if (partially_mapped) {
4078 if (!folio_test_partially_mapped(folio)) {
4079 folio_set_partially_mapped(folio);
4080 if (folio_test_pmd_mappable(folio))
4081 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4082 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4083 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4084
4085 }
4086 } else {
4087 /* partially mapped folios cannot become non-partially mapped */
4088 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4089 }
4090 if (list_empty(&folio->_deferred_list)) {
4091 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4092 ds_queue->split_queue_len++;
4093 #ifdef CONFIG_MEMCG
4094 if (memcg)
4095 set_shrinker_bit(memcg, folio_nid(folio),
4096 deferred_split_shrinker->id);
4097 #endif
4098 }
4099 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4100 }
4101
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)4102 static unsigned long deferred_split_count(struct shrinker *shrink,
4103 struct shrink_control *sc)
4104 {
4105 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4106 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4107
4108 #ifdef CONFIG_MEMCG
4109 if (sc->memcg)
4110 ds_queue = &sc->memcg->deferred_split_queue;
4111 #endif
4112 return READ_ONCE(ds_queue->split_queue_len);
4113 }
4114
thp_underused(struct folio * folio)4115 static bool thp_underused(struct folio *folio)
4116 {
4117 int num_zero_pages = 0, num_filled_pages = 0;
4118 int i;
4119
4120 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4121 return false;
4122
4123 if (folio_contain_hwpoisoned_page(folio))
4124 return false;
4125
4126 for (i = 0; i < folio_nr_pages(folio); i++) {
4127 if (pages_identical(folio_page(folio, i), ZERO_PAGE(0))) {
4128 if (++num_zero_pages > khugepaged_max_ptes_none)
4129 return true;
4130 } else {
4131 /*
4132 * Another path for early exit once the number
4133 * of non-zero filled pages exceeds threshold.
4134 */
4135 if (++num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none)
4136 return false;
4137 }
4138 }
4139 return false;
4140 }
4141
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)4142 static unsigned long deferred_split_scan(struct shrinker *shrink,
4143 struct shrink_control *sc)
4144 {
4145 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4146 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4147 unsigned long flags;
4148 LIST_HEAD(list);
4149 struct folio *folio, *next, *prev = NULL;
4150 int split = 0, removed = 0;
4151
4152 #ifdef CONFIG_MEMCG
4153 if (sc->memcg)
4154 ds_queue = &sc->memcg->deferred_split_queue;
4155 #endif
4156
4157 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4158 /* Take pin on all head pages to avoid freeing them under us */
4159 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4160 _deferred_list) {
4161 if (folio_try_get(folio)) {
4162 list_move(&folio->_deferred_list, &list);
4163 } else {
4164 /* We lost race with folio_put() */
4165 if (folio_test_partially_mapped(folio)) {
4166 folio_clear_partially_mapped(folio);
4167 mod_mthp_stat(folio_order(folio),
4168 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4169 }
4170 list_del_init(&folio->_deferred_list);
4171 ds_queue->split_queue_len--;
4172 }
4173 if (!--sc->nr_to_scan)
4174 break;
4175 }
4176 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4177
4178 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4179 bool did_split = false;
4180 bool underused = false;
4181
4182 if (!folio_test_partially_mapped(folio)) {
4183 /*
4184 * See try_to_map_unused_to_zeropage(): we cannot
4185 * optimize zero-filled pages after splitting an
4186 * mlocked folio.
4187 */
4188 if (folio_test_mlocked(folio))
4189 goto next;
4190 underused = thp_underused(folio);
4191 if (!underused)
4192 goto next;
4193 }
4194 if (!folio_trylock(folio))
4195 goto next;
4196 if (!split_folio(folio)) {
4197 did_split = true;
4198 if (underused)
4199 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4200 split++;
4201 }
4202 folio_unlock(folio);
4203 next:
4204 /*
4205 * split_folio() removes folio from list on success.
4206 * Only add back to the queue if folio is partially mapped.
4207 * If thp_underused returns false, or if split_folio fails
4208 * in the case it was underused, then consider it used and
4209 * don't add it back to split_queue.
4210 */
4211 if (did_split) {
4212 ; /* folio already removed from list */
4213 } else if (!folio_test_partially_mapped(folio)) {
4214 list_del_init(&folio->_deferred_list);
4215 removed++;
4216 } else {
4217 /*
4218 * That unlocked list_del_init() above would be unsafe,
4219 * unless its folio is separated from any earlier folios
4220 * left on the list (which may be concurrently unqueued)
4221 * by one safe folio with refcount still raised.
4222 */
4223 swap(folio, prev);
4224 }
4225 if (folio)
4226 folio_put(folio);
4227 }
4228
4229 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4230 list_splice_tail(&list, &ds_queue->split_queue);
4231 ds_queue->split_queue_len -= removed;
4232 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4233
4234 if (prev)
4235 folio_put(prev);
4236
4237 /*
4238 * Stop shrinker if we didn't split any page, but the queue is empty.
4239 * This can happen if pages were freed under us.
4240 */
4241 if (!split && list_empty(&ds_queue->split_queue))
4242 return SHRINK_STOP;
4243 return split;
4244 }
4245
4246 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)4247 static void split_huge_pages_all(void)
4248 {
4249 struct zone *zone;
4250 struct page *page;
4251 struct folio *folio;
4252 unsigned long pfn, max_zone_pfn;
4253 unsigned long total = 0, split = 0;
4254
4255 pr_debug("Split all THPs\n");
4256 for_each_zone(zone) {
4257 if (!managed_zone(zone))
4258 continue;
4259 max_zone_pfn = zone_end_pfn(zone);
4260 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4261 int nr_pages;
4262
4263 page = pfn_to_online_page(pfn);
4264 if (!page || PageTail(page))
4265 continue;
4266 folio = page_folio(page);
4267 if (!folio_try_get(folio))
4268 continue;
4269
4270 if (unlikely(page_folio(page) != folio))
4271 goto next;
4272
4273 if (zone != folio_zone(folio))
4274 goto next;
4275
4276 if (!folio_test_large(folio)
4277 || folio_test_hugetlb(folio)
4278 || !folio_test_lru(folio))
4279 goto next;
4280
4281 total++;
4282 folio_lock(folio);
4283 nr_pages = folio_nr_pages(folio);
4284 if (!split_folio(folio))
4285 split++;
4286 pfn += nr_pages - 1;
4287 folio_unlock(folio);
4288 next:
4289 folio_put(folio);
4290 cond_resched();
4291 }
4292 }
4293
4294 pr_debug("%lu of %lu THP split\n", split, total);
4295 }
4296
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)4297 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4298 {
4299 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4300 is_vm_hugetlb_page(vma);
4301 }
4302
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order,long in_folio_offset)4303 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4304 unsigned long vaddr_end, unsigned int new_order,
4305 long in_folio_offset)
4306 {
4307 int ret = 0;
4308 struct task_struct *task;
4309 struct mm_struct *mm;
4310 unsigned long total = 0, split = 0;
4311 unsigned long addr;
4312
4313 vaddr_start &= PAGE_MASK;
4314 vaddr_end &= PAGE_MASK;
4315
4316 task = find_get_task_by_vpid(pid);
4317 if (!task) {
4318 ret = -ESRCH;
4319 goto out;
4320 }
4321
4322 /* Find the mm_struct */
4323 mm = get_task_mm(task);
4324 put_task_struct(task);
4325
4326 if (!mm) {
4327 ret = -EINVAL;
4328 goto out;
4329 }
4330
4331 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4332 pid, vaddr_start, vaddr_end, new_order, in_folio_offset);
4333
4334 mmap_read_lock(mm);
4335 /*
4336 * always increase addr by PAGE_SIZE, since we could have a PTE page
4337 * table filled with PTE-mapped THPs, each of which is distinct.
4338 */
4339 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4340 struct vm_area_struct *vma = vma_lookup(mm, addr);
4341 struct folio_walk fw;
4342 struct folio *folio;
4343 struct address_space *mapping;
4344 unsigned int target_order = new_order;
4345
4346 if (!vma)
4347 break;
4348
4349 /* skip special VMA and hugetlb VMA */
4350 if (vma_not_suitable_for_thp_split(vma)) {
4351 addr = vma->vm_end;
4352 continue;
4353 }
4354
4355 folio = folio_walk_start(&fw, vma, addr, 0);
4356 if (!folio)
4357 continue;
4358
4359 if (!is_transparent_hugepage(folio))
4360 goto next;
4361
4362 if (!folio_test_anon(folio)) {
4363 mapping = folio->mapping;
4364 target_order = max(new_order,
4365 mapping_min_folio_order(mapping));
4366 }
4367
4368 if (target_order >= folio_order(folio))
4369 goto next;
4370
4371 total++;
4372 /*
4373 * For folios with private, split_huge_page_to_list_to_order()
4374 * will try to drop it before split and then check if the folio
4375 * can be split or not. So skip the check here.
4376 */
4377 if (!folio_test_private(folio) &&
4378 !can_split_folio(folio, 0, NULL))
4379 goto next;
4380
4381 if (!folio_trylock(folio))
4382 goto next;
4383 folio_get(folio);
4384 folio_walk_end(&fw, vma);
4385
4386 if (!folio_test_anon(folio) && folio->mapping != mapping)
4387 goto unlock;
4388
4389 if (in_folio_offset < 0 ||
4390 in_folio_offset >= folio_nr_pages(folio)) {
4391 if (!split_folio_to_order(folio, target_order))
4392 split++;
4393 } else {
4394 struct page *split_at = folio_page(folio,
4395 in_folio_offset);
4396 if (!folio_split(folio, target_order, split_at, NULL))
4397 split++;
4398 }
4399
4400 unlock:
4401
4402 folio_unlock(folio);
4403 folio_put(folio);
4404
4405 cond_resched();
4406 continue;
4407 next:
4408 folio_walk_end(&fw, vma);
4409 cond_resched();
4410 }
4411 mmap_read_unlock(mm);
4412 mmput(mm);
4413
4414 pr_debug("%lu of %lu THP split\n", split, total);
4415
4416 out:
4417 return ret;
4418 }
4419
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order,long in_folio_offset)4420 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4421 pgoff_t off_end, unsigned int new_order,
4422 long in_folio_offset)
4423 {
4424 struct filename *file;
4425 struct file *candidate;
4426 struct address_space *mapping;
4427 int ret = -EINVAL;
4428 pgoff_t index;
4429 int nr_pages = 1;
4430 unsigned long total = 0, split = 0;
4431 unsigned int min_order;
4432 unsigned int target_order;
4433
4434 file = getname_kernel(file_path);
4435 if (IS_ERR(file))
4436 return ret;
4437
4438 candidate = file_open_name(file, O_RDONLY, 0);
4439 if (IS_ERR(candidate))
4440 goto out;
4441
4442 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4443 file_path, off_start, off_end, new_order, in_folio_offset);
4444
4445 mapping = candidate->f_mapping;
4446 min_order = mapping_min_folio_order(mapping);
4447 target_order = max(new_order, min_order);
4448
4449 for (index = off_start; index < off_end; index += nr_pages) {
4450 struct folio *folio = filemap_get_folio(mapping, index);
4451
4452 nr_pages = 1;
4453 if (IS_ERR(folio))
4454 continue;
4455
4456 if (!folio_test_large(folio))
4457 goto next;
4458
4459 total++;
4460 nr_pages = folio_nr_pages(folio);
4461
4462 if (target_order >= folio_order(folio))
4463 goto next;
4464
4465 if (!folio_trylock(folio))
4466 goto next;
4467
4468 if (folio->mapping != mapping)
4469 goto unlock;
4470
4471 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4472 if (!split_folio_to_order(folio, target_order))
4473 split++;
4474 } else {
4475 struct page *split_at = folio_page(folio,
4476 in_folio_offset);
4477 if (!folio_split(folio, target_order, split_at, NULL))
4478 split++;
4479 }
4480
4481 unlock:
4482 folio_unlock(folio);
4483 next:
4484 folio_put(folio);
4485 cond_resched();
4486 }
4487
4488 filp_close(candidate, NULL);
4489 ret = 0;
4490
4491 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4492 out:
4493 putname(file);
4494 return ret;
4495 }
4496
4497 #define MAX_INPUT_BUF_SZ 255
4498
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4499 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4500 size_t count, loff_t *ppops)
4501 {
4502 static DEFINE_MUTEX(split_debug_mutex);
4503 ssize_t ret;
4504 /*
4505 * hold pid, start_vaddr, end_vaddr, new_order or
4506 * file_path, off_start, off_end, new_order
4507 */
4508 char input_buf[MAX_INPUT_BUF_SZ];
4509 int pid;
4510 unsigned long vaddr_start, vaddr_end;
4511 unsigned int new_order = 0;
4512 long in_folio_offset = -1;
4513
4514 ret = mutex_lock_interruptible(&split_debug_mutex);
4515 if (ret)
4516 return ret;
4517
4518 ret = -EFAULT;
4519
4520 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4521 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4522 goto out;
4523
4524 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4525
4526 if (input_buf[0] == '/') {
4527 char *tok;
4528 char *tok_buf = input_buf;
4529 char file_path[MAX_INPUT_BUF_SZ];
4530 pgoff_t off_start = 0, off_end = 0;
4531 size_t input_len = strlen(input_buf);
4532
4533 tok = strsep(&tok_buf, ",");
4534 if (tok && tok_buf) {
4535 strscpy(file_path, tok);
4536 } else {
4537 ret = -EINVAL;
4538 goto out;
4539 }
4540
4541 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4542 &new_order, &in_folio_offset);
4543 if (ret != 2 && ret != 3 && ret != 4) {
4544 ret = -EINVAL;
4545 goto out;
4546 }
4547 ret = split_huge_pages_in_file(file_path, off_start, off_end,
4548 new_order, in_folio_offset);
4549 if (!ret)
4550 ret = input_len;
4551
4552 goto out;
4553 }
4554
4555 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4556 &vaddr_end, &new_order, &in_folio_offset);
4557 if (ret == 1 && pid == 1) {
4558 split_huge_pages_all();
4559 ret = strlen(input_buf);
4560 goto out;
4561 } else if (ret != 3 && ret != 4 && ret != 5) {
4562 ret = -EINVAL;
4563 goto out;
4564 }
4565
4566 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4567 in_folio_offset);
4568 if (!ret)
4569 ret = strlen(input_buf);
4570 out:
4571 mutex_unlock(&split_debug_mutex);
4572 return ret;
4573
4574 }
4575
4576 static const struct file_operations split_huge_pages_fops = {
4577 .owner = THIS_MODULE,
4578 .write = split_huge_pages_write,
4579 };
4580
split_huge_pages_debugfs(void)4581 static int __init split_huge_pages_debugfs(void)
4582 {
4583 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4584 &split_huge_pages_fops);
4585 return 0;
4586 }
4587 late_initcall(split_huge_pages_debugfs);
4588 #endif
4589
4590 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4591 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4592 struct page *page)
4593 {
4594 struct folio *folio = page_folio(page);
4595 struct vm_area_struct *vma = pvmw->vma;
4596 struct mm_struct *mm = vma->vm_mm;
4597 unsigned long address = pvmw->address;
4598 bool anon_exclusive;
4599 pmd_t pmdval;
4600 swp_entry_t entry;
4601 pmd_t pmdswp;
4602
4603 if (!(pvmw->pmd && !pvmw->pte))
4604 return 0;
4605
4606 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4607 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4608
4609 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4610 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4611 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4612 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4613 return -EBUSY;
4614 }
4615
4616 if (pmd_dirty(pmdval))
4617 folio_mark_dirty(folio);
4618 if (pmd_write(pmdval))
4619 entry = make_writable_migration_entry(page_to_pfn(page));
4620 else if (anon_exclusive)
4621 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4622 else
4623 entry = make_readable_migration_entry(page_to_pfn(page));
4624 if (pmd_young(pmdval))
4625 entry = make_migration_entry_young(entry);
4626 if (pmd_dirty(pmdval))
4627 entry = make_migration_entry_dirty(entry);
4628 pmdswp = swp_entry_to_pmd(entry);
4629 if (pmd_soft_dirty(pmdval))
4630 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4631 if (pmd_uffd_wp(pmdval))
4632 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4633 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4634 folio_remove_rmap_pmd(folio, page, vma);
4635 folio_put(folio);
4636 trace_set_migration_pmd(address, pmd_val(pmdswp));
4637
4638 return 0;
4639 }
4640
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4641 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4642 {
4643 struct folio *folio = page_folio(new);
4644 struct vm_area_struct *vma = pvmw->vma;
4645 struct mm_struct *mm = vma->vm_mm;
4646 unsigned long address = pvmw->address;
4647 unsigned long haddr = address & HPAGE_PMD_MASK;
4648 pmd_t pmde;
4649 swp_entry_t entry;
4650
4651 if (!(pvmw->pmd && !pvmw->pte))
4652 return;
4653
4654 entry = pmd_to_swp_entry(*pvmw->pmd);
4655 folio_get(folio);
4656 pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4657 if (pmd_swp_soft_dirty(*pvmw->pmd))
4658 pmde = pmd_mksoft_dirty(pmde);
4659 if (is_writable_migration_entry(entry))
4660 pmde = pmd_mkwrite(pmde, vma);
4661 if (pmd_swp_uffd_wp(*pvmw->pmd))
4662 pmde = pmd_mkuffd_wp(pmde);
4663 if (!is_migration_entry_young(entry))
4664 pmde = pmd_mkold(pmde);
4665 /* NOTE: this may contain setting soft-dirty on some archs */
4666 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4667 pmde = pmd_mkdirty(pmde);
4668
4669 if (folio_test_anon(folio)) {
4670 rmap_t rmap_flags = RMAP_NONE;
4671
4672 if (!is_readable_migration_entry(entry))
4673 rmap_flags |= RMAP_EXCLUSIVE;
4674
4675 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4676 } else {
4677 folio_add_file_rmap_pmd(folio, new, vma);
4678 }
4679 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4680 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4681
4682 /* No need to invalidate - it was non-present before */
4683 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4684 trace_remove_migration_pmd(address, pmd_val(pmde));
4685 }
4686 #endif
4687