xref: /linux/arch/x86/kvm/svm/nested.c (revision bf2c3138ae3694d4687cbe451c774c288ae2ad06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 
21 #include <asm/msr-index.h>
22 #include <asm/debugreg.h>
23 
24 #include "kvm_emulate.h"
25 #include "trace.h"
26 #include "mmu.h"
27 #include "x86.h"
28 #include "smm.h"
29 #include "cpuid.h"
30 #include "lapic.h"
31 #include "svm.h"
32 #include "hyperv.h"
33 
34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
35 
36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
37 				       struct x86_exception *fault)
38 {
39 	struct vcpu_svm *svm = to_svm(vcpu);
40 	struct vmcb *vmcb = svm->vmcb;
41 
42 	if (vmcb->control.exit_code != SVM_EXIT_NPF) {
43 		/*
44 		 * TODO: track the cause of the nested page fault, and
45 		 * correctly fill in the high bits of exit_info_1.
46 		 */
47 		vmcb->control.exit_code = SVM_EXIT_NPF;
48 		vmcb->control.exit_info_1 = (1ULL << 32);
49 		vmcb->control.exit_info_2 = fault->address;
50 	}
51 
52 	vmcb->control.exit_info_1 &= ~0xffffffffULL;
53 	vmcb->control.exit_info_1 |= fault->error_code;
54 
55 	nested_svm_vmexit(svm);
56 }
57 
58 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
59 {
60 	struct vcpu_svm *svm = to_svm(vcpu);
61 	u64 cr3 = svm->nested.ctl.nested_cr3;
62 	u64 pdpte;
63 	int ret;
64 
65 	/*
66 	 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores
67 	 * nCR3[4:0] when loading PDPTEs from memory.
68 	 */
69 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
70 				       (cr3 & GENMASK(11, 5)) + index * 8, 8);
71 	if (ret)
72 		return 0;
73 	return pdpte;
74 }
75 
76 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
77 {
78 	struct vcpu_svm *svm = to_svm(vcpu);
79 
80 	return svm->nested.ctl.nested_cr3;
81 }
82 
83 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
84 {
85 	struct vcpu_svm *svm = to_svm(vcpu);
86 
87 	WARN_ON(mmu_is_nested(vcpu));
88 
89 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
90 
91 	/*
92 	 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01.  Note,
93 	 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current
94 	 * vCPU state.  CR0.WP is explicitly ignored, while CR0.PG is required.
95 	 */
96 	kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4,
97 				svm->vmcb01.ptr->save.efer,
98 				svm->nested.ctl.nested_cr3);
99 	vcpu->arch.mmu->get_guest_pgd     = nested_svm_get_tdp_cr3;
100 	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
101 	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
102 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
103 }
104 
105 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
106 {
107 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
108 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
109 }
110 
111 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm)
112 {
113 	if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD))
114 		return true;
115 
116 	if (!nested_npt_enabled(svm))
117 		return true;
118 
119 	if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK))
120 		return true;
121 
122 	return false;
123 }
124 
125 void recalc_intercepts(struct vcpu_svm *svm)
126 {
127 	struct vmcb_control_area *c, *h;
128 	struct vmcb_ctrl_area_cached *g;
129 	unsigned int i;
130 
131 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
132 
133 	if (!is_guest_mode(&svm->vcpu))
134 		return;
135 
136 	c = &svm->vmcb->control;
137 	h = &svm->vmcb01.ptr->control;
138 	g = &svm->nested.ctl;
139 
140 	for (i = 0; i < MAX_INTERCEPT; i++)
141 		c->intercepts[i] = h->intercepts[i];
142 
143 	if (g->int_ctl & V_INTR_MASKING_MASK) {
144 		/*
145 		 * If L2 is active and V_INTR_MASKING is enabled in vmcb12,
146 		 * disable intercept of CR8 writes as L2's CR8 does not affect
147 		 * any interrupt KVM may want to inject.
148 		 *
149 		 * Similarly, disable intercept of virtual interrupts (used to
150 		 * detect interrupt windows) if the saved RFLAGS.IF is '0', as
151 		 * the effective RFLAGS.IF for L1 interrupts will never be set
152 		 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs).
153 		 */
154 		vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE);
155 		if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF))
156 			vmcb_clr_intercept(c, INTERCEPT_VINTR);
157 	}
158 
159 	/*
160 	 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB
161 	 * flush feature is enabled.
162 	 */
163 	if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu))
164 		vmcb_clr_intercept(c, INTERCEPT_VMMCALL);
165 
166 	for (i = 0; i < MAX_INTERCEPT; i++)
167 		c->intercepts[i] |= g->intercepts[i];
168 
169 	/* If SMI is not intercepted, ignore guest SMI intercept as well  */
170 	if (!intercept_smi)
171 		vmcb_clr_intercept(c, INTERCEPT_SMI);
172 
173 	if (nested_vmcb_needs_vls_intercept(svm)) {
174 		/*
175 		 * If the virtual VMLOAD/VMSAVE is not enabled for the L2,
176 		 * we must intercept these instructions to correctly
177 		 * emulate them in case L1 doesn't intercept them.
178 		 */
179 		vmcb_set_intercept(c, INTERCEPT_VMLOAD);
180 		vmcb_set_intercept(c, INTERCEPT_VMSAVE);
181 	} else {
182 		WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK));
183 	}
184 }
185 
186 /*
187  * This array (and its actual size) holds the set of offsets (indexing by chunk
188  * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM.  Note, the
189  * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g.
190  * based on CPUID features.  This array only tracks MSRs that *might* be passed
191  * through to the guest.
192  *
193  * Hardcode the capacity of the array based on the maximum number of _offsets_.
194  * MSRs are batched together, so there are fewer offsets than MSRs.
195  */
196 static int nested_svm_msrpm_merge_offsets[10] __ro_after_init;
197 static int nested_svm_nr_msrpm_merge_offsets __ro_after_init;
198 typedef unsigned long nsvm_msrpm_merge_t;
199 
200 int __init nested_svm_init_msrpm_merge_offsets(void)
201 {
202 	static const u32 merge_msrs[] __initconst = {
203 		MSR_STAR,
204 		MSR_IA32_SYSENTER_CS,
205 		MSR_IA32_SYSENTER_EIP,
206 		MSR_IA32_SYSENTER_ESP,
207 	#ifdef CONFIG_X86_64
208 		MSR_GS_BASE,
209 		MSR_FS_BASE,
210 		MSR_KERNEL_GS_BASE,
211 		MSR_LSTAR,
212 		MSR_CSTAR,
213 		MSR_SYSCALL_MASK,
214 	#endif
215 		MSR_IA32_SPEC_CTRL,
216 		MSR_IA32_PRED_CMD,
217 		MSR_IA32_FLUSH_CMD,
218 		MSR_IA32_APERF,
219 		MSR_IA32_MPERF,
220 		MSR_IA32_LASTBRANCHFROMIP,
221 		MSR_IA32_LASTBRANCHTOIP,
222 		MSR_IA32_LASTINTFROMIP,
223 		MSR_IA32_LASTINTTOIP,
224 
225 		MSR_K7_PERFCTR0,
226 		MSR_K7_PERFCTR1,
227 		MSR_K7_PERFCTR2,
228 		MSR_K7_PERFCTR3,
229 		MSR_F15H_PERF_CTR0,
230 		MSR_F15H_PERF_CTR1,
231 		MSR_F15H_PERF_CTR2,
232 		MSR_F15H_PERF_CTR3,
233 		MSR_F15H_PERF_CTR4,
234 		MSR_F15H_PERF_CTR5,
235 
236 		MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
237 		MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
238 		MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
239 		MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
240 	};
241 	int i, j;
242 
243 	for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) {
244 		int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]);
245 		u32 offset;
246 
247 		if (WARN_ON(bit_nr < 0))
248 			return -EIO;
249 
250 		/*
251 		 * Merging is done in chunks to reduce the number of accesses
252 		 * to L1's bitmap.
253 		 */
254 		offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t);
255 
256 		for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) {
257 			if (nested_svm_msrpm_merge_offsets[j] == offset)
258 				break;
259 		}
260 
261 		if (j < nested_svm_nr_msrpm_merge_offsets)
262 			continue;
263 
264 		if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets)))
265 			return -EIO;
266 
267 		nested_svm_msrpm_merge_offsets[j] = offset;
268 		nested_svm_nr_msrpm_merge_offsets++;
269 	}
270 
271 	return 0;
272 }
273 
274 /*
275  * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function
276  * is optimized in that it only merges the parts where KVM MSR permission bitmap
277  * may contain zero bits.
278  */
279 static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu)
280 {
281 	struct vcpu_svm *svm = to_svm(vcpu);
282 	nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm;
283 	nsvm_msrpm_merge_t *msrpm01 = svm->msrpm;
284 	int i;
285 
286 	/*
287 	 * MSR bitmap update can be skipped when:
288 	 * - MSR bitmap for L1 hasn't changed.
289 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
290 	 *   before.
291 	 * - Nested hypervisor (L1) is using Hyper-V emulation interface and
292 	 * tells KVM (L0) there were no changes in MSR bitmap for L2.
293 	 */
294 #ifdef CONFIG_KVM_HYPERV
295 	if (!svm->nested.force_msr_bitmap_recalc) {
296 		struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments;
297 
298 		if (kvm_hv_hypercall_enabled(vcpu) &&
299 		    hve->hv_enlightenments_control.msr_bitmap &&
300 		    (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS)))
301 			goto set_msrpm_base_pa;
302 	}
303 #endif
304 
305 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
306 		return true;
307 
308 	for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) {
309 		const int p = nested_svm_msrpm_merge_offsets[i];
310 		nsvm_msrpm_merge_t l1_val;
311 		gpa_t gpa;
312 
313 		gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val));
314 
315 		if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val)))
316 			return false;
317 
318 		msrpm02[p] = msrpm01[p] | l1_val;
319 	}
320 
321 	svm->nested.force_msr_bitmap_recalc = false;
322 
323 #ifdef CONFIG_KVM_HYPERV
324 set_msrpm_base_pa:
325 #endif
326 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
327 
328 	return true;
329 }
330 
331 /*
332  * Bits 11:0 of bitmap address are ignored by hardware
333  */
334 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size)
335 {
336 	u64 addr = PAGE_ALIGN(pa);
337 
338 	return kvm_vcpu_is_legal_gpa(vcpu, addr) &&
339 	    kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1);
340 }
341 
342 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu,
343 					 struct vmcb_ctrl_area_cached *control)
344 {
345 	if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN)))
346 		return false;
347 
348 	if (CC(control->asid == 0))
349 		return false;
350 
351 	if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled))
352 		return false;
353 
354 	if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa,
355 					   MSRPM_SIZE)))
356 		return false;
357 	if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa,
358 					   IOPM_SIZE)))
359 		return false;
360 
361 	if (CC((control->int_ctl & V_NMI_ENABLE_MASK) &&
362 	       !vmcb12_is_intercept(control, INTERCEPT_NMI))) {
363 		return false;
364 	}
365 
366 	return true;
367 }
368 
369 /* Common checks that apply to both L1 and L2 state.  */
370 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu,
371 				     struct vmcb_save_area_cached *save)
372 {
373 	if (CC(!(save->efer & EFER_SVME)))
374 		return false;
375 
376 	if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) ||
377 	    CC(save->cr0 & ~0xffffffffULL))
378 		return false;
379 
380 	if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7)))
381 		return false;
382 
383 	/*
384 	 * These checks are also performed by KVM_SET_SREGS,
385 	 * except that EFER.LMA is not checked by SVM against
386 	 * CR0.PG && EFER.LME.
387 	 */
388 	if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) {
389 		if (CC(!(save->cr4 & X86_CR4_PAE)) ||
390 		    CC(!(save->cr0 & X86_CR0_PE)) ||
391 		    CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3)))
392 			return false;
393 	}
394 
395 	/* Note, SVM doesn't have any additional restrictions on CR4. */
396 	if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4)))
397 		return false;
398 
399 	if (CC(!kvm_valid_efer(vcpu, save->efer)))
400 		return false;
401 
402 	return true;
403 }
404 
405 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu)
406 {
407 	struct vcpu_svm *svm = to_svm(vcpu);
408 	struct vmcb_save_area_cached *save = &svm->nested.save;
409 
410 	return __nested_vmcb_check_save(vcpu, save);
411 }
412 
413 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu)
414 {
415 	struct vcpu_svm *svm = to_svm(vcpu);
416 	struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl;
417 
418 	return __nested_vmcb_check_controls(vcpu, ctl);
419 }
420 
421 /*
422  * If a feature is not advertised to L1, clear the corresponding vmcb12
423  * intercept.
424  */
425 #define __nested_svm_sanitize_intercept(__vcpu, __control, fname, iname)	\
426 do {										\
427 	if (!guest_cpu_cap_has(__vcpu, X86_FEATURE_##fname))			\
428 		vmcb12_clr_intercept(__control, INTERCEPT_##iname);		\
429 } while (0)
430 
431 #define nested_svm_sanitize_intercept(__vcpu, __control, name)			\
432 	__nested_svm_sanitize_intercept(__vcpu, __control, name, name)
433 
434 static
435 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu,
436 					 struct vmcb_ctrl_area_cached *to,
437 					 struct vmcb_control_area *from)
438 {
439 	unsigned int i;
440 
441 	for (i = 0; i < MAX_INTERCEPT; i++)
442 		to->intercepts[i] = from->intercepts[i];
443 
444 	__nested_svm_sanitize_intercept(vcpu, to, XSAVE, XSETBV);
445 	nested_svm_sanitize_intercept(vcpu, to, INVPCID);
446 	nested_svm_sanitize_intercept(vcpu, to, RDTSCP);
447 	nested_svm_sanitize_intercept(vcpu, to, SKINIT);
448 	nested_svm_sanitize_intercept(vcpu, to, RDPRU);
449 
450 	to->iopm_base_pa        = from->iopm_base_pa;
451 	to->msrpm_base_pa       = from->msrpm_base_pa;
452 	to->tsc_offset          = from->tsc_offset;
453 	to->tlb_ctl             = from->tlb_ctl;
454 	to->erap_ctl            = from->erap_ctl;
455 	to->int_ctl             = from->int_ctl;
456 	to->int_vector          = from->int_vector;
457 	to->int_state           = from->int_state;
458 	to->exit_code           = from->exit_code;
459 	to->exit_info_1         = from->exit_info_1;
460 	to->exit_info_2         = from->exit_info_2;
461 	to->exit_int_info       = from->exit_int_info;
462 	to->exit_int_info_err   = from->exit_int_info_err;
463 	to->nested_ctl          = from->nested_ctl;
464 	to->event_inj           = from->event_inj;
465 	to->event_inj_err       = from->event_inj_err;
466 	to->next_rip            = from->next_rip;
467 	to->nested_cr3          = from->nested_cr3;
468 	to->virt_ext            = from->virt_ext;
469 	to->pause_filter_count  = from->pause_filter_count;
470 	to->pause_filter_thresh = from->pause_filter_thresh;
471 
472 	/* Copy asid here because nested_vmcb_check_controls will check it.  */
473 	to->asid           = from->asid;
474 	to->msrpm_base_pa &= ~0x0fffULL;
475 	to->iopm_base_pa  &= ~0x0fffULL;
476 
477 #ifdef CONFIG_KVM_HYPERV
478 	/* Hyper-V extensions (Enlightened VMCB) */
479 	if (kvm_hv_hypercall_enabled(vcpu)) {
480 		to->clean = from->clean;
481 		memcpy(&to->hv_enlightenments, &from->hv_enlightenments,
482 		       sizeof(to->hv_enlightenments));
483 	}
484 #endif
485 }
486 
487 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
488 				       struct vmcb_control_area *control)
489 {
490 	__nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control);
491 }
492 
493 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to,
494 					     struct vmcb_save_area *from)
495 {
496 	/*
497 	 * Copy only fields that are validated, as we need them
498 	 * to avoid TOC/TOU races.
499 	 */
500 	to->efer = from->efer;
501 	to->cr0 = from->cr0;
502 	to->cr3 = from->cr3;
503 	to->cr4 = from->cr4;
504 
505 	to->dr6 = from->dr6;
506 	to->dr7 = from->dr7;
507 }
508 
509 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
510 				    struct vmcb_save_area *save)
511 {
512 	__nested_copy_vmcb_save_to_cache(&svm->nested.save, save);
513 }
514 
515 /*
516  * Synchronize fields that are written by the processor, so that
517  * they can be copied back into the vmcb12.
518  */
519 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm)
520 {
521 	u32 mask;
522 	svm->nested.ctl.event_inj      = svm->vmcb->control.event_inj;
523 	svm->nested.ctl.event_inj_err  = svm->vmcb->control.event_inj_err;
524 
525 	/* Only a few fields of int_ctl are written by the processor.  */
526 	mask = V_IRQ_MASK | V_TPR_MASK;
527 	/*
528 	 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting
529 	 * virtual interrupts in order to request an interrupt window, as KVM
530 	 * has usurped vmcb02's int_ctl.  If an interrupt window opens before
531 	 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl.
532 	 * If no window opens, V_IRQ will be correctly preserved in vmcb12's
533 	 * int_ctl (because it was never recognized while L2 was running).
534 	 */
535 	if (svm_is_intercept(svm, INTERCEPT_VINTR) &&
536 	    !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts))
537 		mask &= ~V_IRQ_MASK;
538 
539 	if (nested_vgif_enabled(svm))
540 		mask |= V_GIF_MASK;
541 
542 	if (nested_vnmi_enabled(svm))
543 		mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK;
544 
545 	svm->nested.ctl.int_ctl        &= ~mask;
546 	svm->nested.ctl.int_ctl        |= svm->vmcb->control.int_ctl & mask;
547 }
548 
549 /*
550  * Transfer any event that L0 or L1 wanted to inject into L2 to
551  * EXIT_INT_INFO.
552  */
553 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm,
554 						struct vmcb *vmcb12)
555 {
556 	struct kvm_vcpu *vcpu = &svm->vcpu;
557 	u32 exit_int_info = 0;
558 	unsigned int nr;
559 
560 	if (vcpu->arch.exception.injected) {
561 		nr = vcpu->arch.exception.vector;
562 		exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT;
563 
564 		if (vcpu->arch.exception.has_error_code) {
565 			exit_int_info |= SVM_EVTINJ_VALID_ERR;
566 			vmcb12->control.exit_int_info_err =
567 				vcpu->arch.exception.error_code;
568 		}
569 
570 	} else if (vcpu->arch.nmi_injected) {
571 		exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
572 
573 	} else if (vcpu->arch.interrupt.injected) {
574 		nr = vcpu->arch.interrupt.nr;
575 		exit_int_info = nr | SVM_EVTINJ_VALID;
576 
577 		if (vcpu->arch.interrupt.soft)
578 			exit_int_info |= SVM_EVTINJ_TYPE_SOFT;
579 		else
580 			exit_int_info |= SVM_EVTINJ_TYPE_INTR;
581 	}
582 
583 	vmcb12->control.exit_int_info = exit_int_info;
584 }
585 
586 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu)
587 {
588 	/* Handle pending Hyper-V TLB flush requests */
589 	kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled);
590 
591 	/*
592 	 * TODO: optimize unconditional TLB flush/MMU sync.  A partial list of
593 	 * things to fix before this can be conditional:
594 	 *
595 	 *  - Flush TLBs for both L1 and L2 remote TLB flush
596 	 *  - Honor L1's request to flush an ASID on nested VMRUN
597 	 *  - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*]
598 	 *  - Don't crush a pending TLB flush in vmcb02 on nested VMRUN
599 	 *  - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST
600 	 *
601 	 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested
602 	 *     NPT guest-physical mappings on VMRUN.
603 	 */
604 	kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
605 	kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
606 }
607 
608 /*
609  * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true
610  * if we are emulating VM-Entry into a guest with NPT enabled.
611  */
612 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
613 			       bool nested_npt, bool reload_pdptrs)
614 {
615 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3)))
616 		return -EINVAL;
617 
618 	if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) &&
619 	    CC(!load_pdptrs(vcpu, cr3)))
620 		return -EINVAL;
621 
622 	vcpu->arch.cr3 = cr3;
623 
624 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
625 	kvm_init_mmu(vcpu);
626 
627 	if (!nested_npt)
628 		kvm_mmu_new_pgd(vcpu, cr3);
629 
630 	return 0;
631 }
632 
633 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm)
634 {
635 	if (!svm->nested.vmcb02.ptr)
636 		return;
637 
638 	/* FIXME: merge g_pat from vmcb01 and vmcb12.  */
639 	svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat;
640 }
641 
642 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
643 {
644 	bool new_vmcb12 = false;
645 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
646 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
647 	struct kvm_vcpu *vcpu = &svm->vcpu;
648 
649 	nested_vmcb02_compute_g_pat(svm);
650 	vmcb_mark_dirty(vmcb02, VMCB_NPT);
651 
652 	/* Load the nested guest state */
653 	if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) {
654 		new_vmcb12 = true;
655 		svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa;
656 		svm->nested.force_msr_bitmap_recalc = true;
657 	}
658 
659 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) {
660 		vmcb02->save.es = vmcb12->save.es;
661 		vmcb02->save.cs = vmcb12->save.cs;
662 		vmcb02->save.ss = vmcb12->save.ss;
663 		vmcb02->save.ds = vmcb12->save.ds;
664 		vmcb02->save.cpl = vmcb12->save.cpl;
665 		vmcb_mark_dirty(vmcb02, VMCB_SEG);
666 	}
667 
668 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) {
669 		vmcb02->save.gdtr = vmcb12->save.gdtr;
670 		vmcb02->save.idtr = vmcb12->save.idtr;
671 		vmcb_mark_dirty(vmcb02, VMCB_DT);
672 	}
673 
674 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
675 	    (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_CET)))) {
676 		vmcb02->save.s_cet  = vmcb12->save.s_cet;
677 		vmcb02->save.isst_addr = vmcb12->save.isst_addr;
678 		vmcb02->save.ssp = vmcb12->save.ssp;
679 		vmcb_mark_dirty(vmcb02, VMCB_CET);
680 	}
681 
682 	kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED);
683 
684 	svm_set_efer(vcpu, svm->nested.save.efer);
685 
686 	svm_set_cr0(vcpu, svm->nested.save.cr0);
687 	svm_set_cr4(vcpu, svm->nested.save.cr4);
688 
689 	svm->vcpu.arch.cr2 = vmcb12->save.cr2;
690 
691 	kvm_rax_write(vcpu, vmcb12->save.rax);
692 	kvm_rsp_write(vcpu, vmcb12->save.rsp);
693 	kvm_rip_write(vcpu, vmcb12->save.rip);
694 
695 	/* In case we don't even reach vcpu_run, the fields are not updated */
696 	vmcb02->save.rax = vmcb12->save.rax;
697 	vmcb02->save.rsp = vmcb12->save.rsp;
698 	vmcb02->save.rip = vmcb12->save.rip;
699 
700 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) {
701 		vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1;
702 		svm->vcpu.arch.dr6  = svm->nested.save.dr6 | DR6_ACTIVE_LOW;
703 		vmcb_mark_dirty(vmcb02, VMCB_DR);
704 	}
705 
706 	if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
707 		     (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
708 		/*
709 		 * Reserved bits of DEBUGCTL are ignored.  Be consistent with
710 		 * svm_set_msr's definition of reserved bits.
711 		 */
712 		svm_copy_lbrs(vmcb02, vmcb12);
713 		vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS;
714 	} else {
715 		svm_copy_lbrs(vmcb02, vmcb01);
716 	}
717 	svm_update_lbrv(&svm->vcpu);
718 }
719 
720 static inline bool is_evtinj_soft(u32 evtinj)
721 {
722 	u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
723 	u8 vector = evtinj & SVM_EVTINJ_VEC_MASK;
724 
725 	if (!(evtinj & SVM_EVTINJ_VALID))
726 		return false;
727 
728 	if (type == SVM_EVTINJ_TYPE_SOFT)
729 		return true;
730 
731 	return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector);
732 }
733 
734 static bool is_evtinj_nmi(u32 evtinj)
735 {
736 	u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
737 
738 	if (!(evtinj & SVM_EVTINJ_VALID))
739 		return false;
740 
741 	return type == SVM_EVTINJ_TYPE_NMI;
742 }
743 
744 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
745 					  unsigned long vmcb12_rip,
746 					  unsigned long vmcb12_csbase)
747 {
748 	u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK;
749 	u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK;
750 
751 	struct kvm_vcpu *vcpu = &svm->vcpu;
752 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
753 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
754 	u32 pause_count12;
755 	u32 pause_thresh12;
756 
757 	nested_svm_transition_tlb_flush(vcpu);
758 
759 	/* Enter Guest-Mode */
760 	enter_guest_mode(vcpu);
761 
762 	/*
763 	 * Filled at exit: exit_code, exit_info_1, exit_info_2, exit_int_info,
764 	 * exit_int_info_err, next_rip, insn_len, insn_bytes.
765 	 */
766 
767 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) &&
768 	    (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK))
769 		int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
770 	else
771 		int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
772 
773 	if (vnmi) {
774 		if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) {
775 			svm->vcpu.arch.nmi_pending++;
776 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
777 		}
778 		if (nested_vnmi_enabled(svm))
779 			int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK |
780 						V_NMI_ENABLE_MASK |
781 						V_NMI_BLOCKING_MASK);
782 	}
783 
784 	/* Copied from vmcb01.  msrpm_base can be overwritten later.  */
785 	vmcb02->control.nested_ctl = vmcb01->control.nested_ctl;
786 	vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa;
787 	vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa;
788 	vmcb_mark_dirty(vmcb02, VMCB_PERM_MAP);
789 
790 	/*
791 	 * Stash vmcb02's counter if the guest hasn't moved past the guilty
792 	 * instruction; otherwise, reset the counter to '0'.
793 	 *
794 	 * In order to detect if L2 has made forward progress or not, track the
795 	 * RIP at which a bus lock has occurred on a per-vmcb12 basis.  If RIP
796 	 * is changed, guest has clearly made forward progress, bus_lock_counter
797 	 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the
798 	 * scenario, where a buslock happened in L1 before VMRUN, the bus lock
799 	 * firmly happened on an instruction in the past. Even if vmcb01's
800 	 * counter is still '1', (because the guilty instruction got patched),
801 	 * the vCPU has clearly made forward progress and so KVM should reset
802 	 * vmcb02's counter to '0'.
803 	 *
804 	 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN
805 	 * to prevent the same guilty instruction from triggering a VM-Exit. Eg.
806 	 * if userspace rate-limits the vCPU, then it's entirely possible that
807 	 * L1's tick interrupt is pending by the time userspace re-runs the
808 	 * vCPU.  If KVM unconditionally clears the counter on VMRUN, then when
809 	 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the
810 	 * entire cycle start over.
811 	 */
812 	if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip))
813 		vmcb02->control.bus_lock_counter = 1;
814 	else
815 		vmcb02->control.bus_lock_counter = 0;
816 
817 	/* Done at vmrun: asid.  */
818 
819 	/* Also overwritten later if necessary.  */
820 	vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
821 
822 	/* nested_cr3.  */
823 	if (nested_npt_enabled(svm))
824 		nested_svm_init_mmu_context(vcpu);
825 
826 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
827 			vcpu->arch.l1_tsc_offset,
828 			svm->nested.ctl.tsc_offset,
829 			svm->tsc_ratio_msr);
830 
831 	vmcb02->control.tsc_offset = vcpu->arch.tsc_offset;
832 
833 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
834 	    svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio)
835 		nested_svm_update_tsc_ratio_msr(vcpu);
836 
837 	vmcb02->control.int_ctl             =
838 		(svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) |
839 		(vmcb01->control.int_ctl & int_ctl_vmcb01_bits);
840 
841 	vmcb02->control.int_vector          = svm->nested.ctl.int_vector;
842 	vmcb02->control.int_state           = svm->nested.ctl.int_state;
843 	vmcb02->control.event_inj           = svm->nested.ctl.event_inj;
844 	vmcb02->control.event_inj_err       = svm->nested.ctl.event_inj_err;
845 
846 	/*
847 	 * next_rip is consumed on VMRUN as the return address pushed on the
848 	 * stack for injected soft exceptions/interrupts.  If nrips is exposed
849 	 * to L1, take it verbatim from vmcb12.  If nrips is supported in
850 	 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate
851 	 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP
852 	 * prior to injecting the event).
853 	 */
854 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
855 		vmcb02->control.next_rip    = svm->nested.ctl.next_rip;
856 	else if (boot_cpu_has(X86_FEATURE_NRIPS))
857 		vmcb02->control.next_rip    = vmcb12_rip;
858 
859 	svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj);
860 	if (is_evtinj_soft(vmcb02->control.event_inj)) {
861 		svm->soft_int_injected = true;
862 		svm->soft_int_csbase = vmcb12_csbase;
863 		svm->soft_int_old_rip = vmcb12_rip;
864 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
865 			svm->soft_int_next_rip = svm->nested.ctl.next_rip;
866 		else
867 			svm->soft_int_next_rip = vmcb12_rip;
868 	}
869 
870 	/* LBR_CTL_ENABLE_MASK is controlled by svm_update_lbrv() */
871 
872 	if (!nested_vmcb_needs_vls_intercept(svm))
873 		vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
874 
875 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER))
876 		pause_count12 = svm->nested.ctl.pause_filter_count;
877 	else
878 		pause_count12 = 0;
879 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD))
880 		pause_thresh12 = svm->nested.ctl.pause_filter_thresh;
881 	else
882 		pause_thresh12 = 0;
883 	if (kvm_pause_in_guest(svm->vcpu.kvm)) {
884 		/* use guest values since host doesn't intercept PAUSE */
885 		vmcb02->control.pause_filter_count = pause_count12;
886 		vmcb02->control.pause_filter_thresh = pause_thresh12;
887 
888 	} else {
889 		/* start from host values otherwise */
890 		vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count;
891 		vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh;
892 
893 		/* ... but ensure filtering is disabled if so requested.  */
894 		if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) {
895 			if (!pause_count12)
896 				vmcb02->control.pause_filter_count = 0;
897 			if (!pause_thresh12)
898 				vmcb02->control.pause_filter_thresh = 0;
899 		}
900 	}
901 
902 	/*
903 	 * Take ALLOW_LARGER_RAP from vmcb12 even though it should be safe to
904 	 * let L2 use a larger RAP since KVM will emulate the necessary clears,
905 	 * as it's possible L1 deliberately wants to restrict L2 to the legacy
906 	 * RAP size.  Unconditionally clear the RAP on nested VMRUN, as KVM is
907 	 * responsible for emulating the host vs. guest tags (L1 is the "host",
908 	 * L2 is the "guest").
909 	 */
910 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_ERAPS))
911 		vmcb02->control.erap_ctl = (svm->nested.ctl.erap_ctl &
912 					    ERAP_CONTROL_ALLOW_LARGER_RAP) |
913 					   ERAP_CONTROL_CLEAR_RAP;
914 
915 	/*
916 	 * Merge guest and host intercepts - must be called with vcpu in
917 	 * guest-mode to take effect.
918 	 */
919 	recalc_intercepts(svm);
920 }
921 
922 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
923 {
924 	/*
925 	 * Some VMCB state is shared between L1 and L2 and thus has to be
926 	 * moved at the time of nested vmrun and vmexit.
927 	 *
928 	 * VMLOAD/VMSAVE state would also belong in this category, but KVM
929 	 * always performs VMLOAD and VMSAVE from the VMCB01.
930 	 */
931 	to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl;
932 }
933 
934 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa,
935 			 struct vmcb *vmcb12, bool from_vmrun)
936 {
937 	struct vcpu_svm *svm = to_svm(vcpu);
938 	int ret;
939 
940 	trace_kvm_nested_vmenter(svm->vmcb->save.rip,
941 				 vmcb12_gpa,
942 				 vmcb12->save.rip,
943 				 vmcb12->control.int_ctl,
944 				 vmcb12->control.event_inj,
945 				 vmcb12->control.nested_ctl,
946 				 vmcb12->control.nested_cr3,
947 				 vmcb12->save.cr3,
948 				 KVM_ISA_SVM);
949 
950 	trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff,
951 				    vmcb12->control.intercepts[INTERCEPT_CR] >> 16,
952 				    vmcb12->control.intercepts[INTERCEPT_EXCEPTION],
953 				    vmcb12->control.intercepts[INTERCEPT_WORD3],
954 				    vmcb12->control.intercepts[INTERCEPT_WORD4],
955 				    vmcb12->control.intercepts[INTERCEPT_WORD5]);
956 
957 
958 	svm->nested.vmcb12_gpa = vmcb12_gpa;
959 
960 	WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr);
961 
962 	nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr);
963 
964 	svm_switch_vmcb(svm, &svm->nested.vmcb02);
965 	nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base);
966 	nested_vmcb02_prepare_save(svm, vmcb12);
967 
968 	ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3,
969 				  nested_npt_enabled(svm), from_vmrun);
970 	if (ret)
971 		return ret;
972 
973 	if (!from_vmrun)
974 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
975 
976 	svm_set_gif(svm, true);
977 
978 	if (kvm_vcpu_apicv_active(vcpu))
979 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
980 
981 	nested_svm_hv_update_vm_vp_ids(vcpu);
982 
983 	return 0;
984 }
985 
986 int nested_svm_vmrun(struct kvm_vcpu *vcpu)
987 {
988 	struct vcpu_svm *svm = to_svm(vcpu);
989 	int ret;
990 	struct vmcb *vmcb12;
991 	struct kvm_host_map map;
992 	u64 vmcb12_gpa;
993 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
994 
995 	if (!svm->nested.hsave_msr) {
996 		kvm_inject_gp(vcpu, 0);
997 		return 1;
998 	}
999 
1000 	if (is_smm(vcpu)) {
1001 		kvm_queue_exception(vcpu, UD_VECTOR);
1002 		return 1;
1003 	}
1004 
1005 	/* This fails when VP assist page is enabled but the supplied GPA is bogus */
1006 	ret = kvm_hv_verify_vp_assist(vcpu);
1007 	if (ret) {
1008 		kvm_inject_gp(vcpu, 0);
1009 		return ret;
1010 	}
1011 
1012 	vmcb12_gpa = svm->vmcb->save.rax;
1013 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map);
1014 	if (ret == -EINVAL) {
1015 		kvm_inject_gp(vcpu, 0);
1016 		return 1;
1017 	} else if (ret) {
1018 		return kvm_skip_emulated_instruction(vcpu);
1019 	}
1020 
1021 	ret = kvm_skip_emulated_instruction(vcpu);
1022 
1023 	vmcb12 = map.hva;
1024 
1025 	if (WARN_ON_ONCE(!svm->nested.initialized))
1026 		return -EINVAL;
1027 
1028 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
1029 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
1030 
1031 	if (!nested_vmcb_check_save(vcpu) ||
1032 	    !nested_vmcb_check_controls(vcpu)) {
1033 		vmcb12->control.exit_code    = SVM_EXIT_ERR;
1034 		vmcb12->control.exit_info_1  = 0;
1035 		vmcb12->control.exit_info_2  = 0;
1036 		goto out;
1037 	}
1038 
1039 	/*
1040 	 * Since vmcb01 is not in use, we can use it to store some of the L1
1041 	 * state.
1042 	 */
1043 	vmcb01->save.efer   = vcpu->arch.efer;
1044 	vmcb01->save.cr0    = kvm_read_cr0(vcpu);
1045 	vmcb01->save.cr4    = vcpu->arch.cr4;
1046 	vmcb01->save.rflags = kvm_get_rflags(vcpu);
1047 	vmcb01->save.rip    = kvm_rip_read(vcpu);
1048 
1049 	if (!npt_enabled)
1050 		vmcb01->save.cr3 = kvm_read_cr3(vcpu);
1051 
1052 	svm->nested.nested_run_pending = 1;
1053 
1054 	if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true))
1055 		goto out_exit_err;
1056 
1057 	if (nested_svm_merge_msrpm(vcpu))
1058 		goto out;
1059 
1060 out_exit_err:
1061 	svm->nested.nested_run_pending = 0;
1062 	svm->nmi_l1_to_l2 = false;
1063 	svm->soft_int_injected = false;
1064 
1065 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1066 	svm->vmcb->control.exit_info_1  = 0;
1067 	svm->vmcb->control.exit_info_2  = 0;
1068 
1069 	nested_svm_vmexit(svm);
1070 
1071 out:
1072 	kvm_vcpu_unmap(vcpu, &map);
1073 
1074 	return ret;
1075 }
1076 
1077 /* Copy state save area fields which are handled by VMRUN */
1078 void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
1079 			  struct vmcb_save_area *from_save)
1080 {
1081 	to_save->es = from_save->es;
1082 	to_save->cs = from_save->cs;
1083 	to_save->ss = from_save->ss;
1084 	to_save->ds = from_save->ds;
1085 	to_save->gdtr = from_save->gdtr;
1086 	to_save->idtr = from_save->idtr;
1087 	to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED;
1088 	to_save->efer = from_save->efer;
1089 	to_save->cr0 = from_save->cr0;
1090 	to_save->cr3 = from_save->cr3;
1091 	to_save->cr4 = from_save->cr4;
1092 	to_save->rax = from_save->rax;
1093 	to_save->rsp = from_save->rsp;
1094 	to_save->rip = from_save->rip;
1095 	to_save->cpl = 0;
1096 
1097 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
1098 		to_save->s_cet  = from_save->s_cet;
1099 		to_save->isst_addr = from_save->isst_addr;
1100 		to_save->ssp = from_save->ssp;
1101 	}
1102 }
1103 
1104 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1105 {
1106 	to_vmcb->save.fs = from_vmcb->save.fs;
1107 	to_vmcb->save.gs = from_vmcb->save.gs;
1108 	to_vmcb->save.tr = from_vmcb->save.tr;
1109 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1110 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1111 	to_vmcb->save.star = from_vmcb->save.star;
1112 	to_vmcb->save.lstar = from_vmcb->save.lstar;
1113 	to_vmcb->save.cstar = from_vmcb->save.cstar;
1114 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1115 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1116 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1117 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1118 }
1119 
1120 int nested_svm_vmexit(struct vcpu_svm *svm)
1121 {
1122 	struct kvm_vcpu *vcpu = &svm->vcpu;
1123 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
1124 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
1125 	struct vmcb *vmcb12;
1126 	struct kvm_host_map map;
1127 	int rc;
1128 
1129 	rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map);
1130 	if (rc) {
1131 		if (rc == -EINVAL)
1132 			kvm_inject_gp(vcpu, 0);
1133 		return 1;
1134 	}
1135 
1136 	vmcb12 = map.hva;
1137 
1138 	/* Exit Guest-Mode */
1139 	leave_guest_mode(vcpu);
1140 	svm->nested.vmcb12_gpa = 0;
1141 	WARN_ON_ONCE(svm->nested.nested_run_pending);
1142 
1143 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1144 
1145 	/* in case we halted in L2 */
1146 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
1147 
1148 	/* Give the current vmcb to the guest */
1149 
1150 	vmcb12->save.es     = vmcb02->save.es;
1151 	vmcb12->save.cs     = vmcb02->save.cs;
1152 	vmcb12->save.ss     = vmcb02->save.ss;
1153 	vmcb12->save.ds     = vmcb02->save.ds;
1154 	vmcb12->save.gdtr   = vmcb02->save.gdtr;
1155 	vmcb12->save.idtr   = vmcb02->save.idtr;
1156 	vmcb12->save.efer   = svm->vcpu.arch.efer;
1157 	vmcb12->save.cr0    = kvm_read_cr0(vcpu);
1158 	vmcb12->save.cr3    = kvm_read_cr3(vcpu);
1159 	vmcb12->save.cr2    = vmcb02->save.cr2;
1160 	vmcb12->save.cr4    = svm->vcpu.arch.cr4;
1161 	vmcb12->save.rflags = kvm_get_rflags(vcpu);
1162 	vmcb12->save.rip    = kvm_rip_read(vcpu);
1163 	vmcb12->save.rsp    = kvm_rsp_read(vcpu);
1164 	vmcb12->save.rax    = kvm_rax_read(vcpu);
1165 	vmcb12->save.dr7    = vmcb02->save.dr7;
1166 	vmcb12->save.dr6    = svm->vcpu.arch.dr6;
1167 	vmcb12->save.cpl    = vmcb02->save.cpl;
1168 
1169 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
1170 		vmcb12->save.s_cet	= vmcb02->save.s_cet;
1171 		vmcb12->save.isst_addr	= vmcb02->save.isst_addr;
1172 		vmcb12->save.ssp	= vmcb02->save.ssp;
1173 	}
1174 
1175 	vmcb12->control.int_state         = vmcb02->control.int_state;
1176 	vmcb12->control.exit_code         = vmcb02->control.exit_code;
1177 	vmcb12->control.exit_info_1       = vmcb02->control.exit_info_1;
1178 	vmcb12->control.exit_info_2       = vmcb02->control.exit_info_2;
1179 
1180 	if (!svm_is_vmrun_failure(vmcb12->control.exit_code))
1181 		nested_save_pending_event_to_vmcb12(svm, vmcb12);
1182 
1183 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
1184 		vmcb12->control.next_rip  = vmcb02->control.next_rip;
1185 
1186 	vmcb12->control.int_ctl           = svm->nested.ctl.int_ctl;
1187 	vmcb12->control.event_inj         = svm->nested.ctl.event_inj;
1188 	vmcb12->control.event_inj_err     = svm->nested.ctl.event_inj_err;
1189 
1190 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1191 		vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count;
1192 		vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1193 
1194 	}
1195 
1196 	/*
1197 	 * Invalidate bus_lock_rip unless KVM is still waiting for the guest
1198 	 * to make forward progress before re-enabling bus lock detection.
1199 	 */
1200 	if (!vmcb02->control.bus_lock_counter)
1201 		svm->nested.ctl.bus_lock_rip = INVALID_GPA;
1202 
1203 	nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr);
1204 
1205 	kvm_nested_vmexit_handle_ibrs(vcpu);
1206 
1207 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_ERAPS))
1208 		vmcb01->control.erap_ctl |= ERAP_CONTROL_CLEAR_RAP;
1209 
1210 	svm_switch_vmcb(svm, &svm->vmcb01);
1211 
1212 	/*
1213 	 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01:
1214 	 *
1215 	 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR:  If L1 doesn't
1216 	 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related
1217 	 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses
1218 	 * virtual interrupt masking).  Raise KVM_REQ_EVENT to ensure that
1219 	 * KVM re-requests an interrupt window if necessary, which implicitly
1220 	 * copies this bits from vmcb02 to vmcb01.
1221 	 *
1222 	 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR
1223 	 * is stored in vmcb02, but its value doesn't need to be copied from/to
1224 	 * vmcb01 because it is copied from/to the virtual APIC's TPR register
1225 	 * on each VM entry/exit.
1226 	 *
1227 	 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's
1228 	 * V_GIF.  However, GIF is architecturally clear on each VM exit, thus
1229 	 * there is no need to copy V_GIF from vmcb02 to vmcb01.
1230 	 */
1231 	if (!nested_exit_on_intr(svm))
1232 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
1233 
1234 	if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1235 		     (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)))
1236 		svm_copy_lbrs(vmcb12, vmcb02);
1237 	else
1238 		svm_copy_lbrs(vmcb01, vmcb02);
1239 
1240 	svm_update_lbrv(vcpu);
1241 
1242 	if (vnmi) {
1243 		if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK)
1244 			vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK;
1245 		else
1246 			vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
1247 
1248 		if (vcpu->arch.nmi_pending) {
1249 			vcpu->arch.nmi_pending--;
1250 			vmcb01->control.int_ctl |= V_NMI_PENDING_MASK;
1251 		} else {
1252 			vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK;
1253 		}
1254 	}
1255 
1256 	/*
1257 	 * On vmexit the  GIF is set to false and
1258 	 * no event can be injected in L1.
1259 	 */
1260 	svm_set_gif(svm, false);
1261 	vmcb01->control.exit_int_info = 0;
1262 
1263 	svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset;
1264 	if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) {
1265 		vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset;
1266 		vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1267 	}
1268 
1269 	if (kvm_caps.has_tsc_control &&
1270 	    vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) {
1271 		vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
1272 		svm_write_tsc_multiplier(vcpu);
1273 	}
1274 
1275 	svm->nested.ctl.nested_cr3 = 0;
1276 
1277 	/*
1278 	 * Restore processor state that had been saved in vmcb01
1279 	 */
1280 	kvm_set_rflags(vcpu, vmcb01->save.rflags);
1281 	svm_set_efer(vcpu, vmcb01->save.efer);
1282 	svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE);
1283 	svm_set_cr4(vcpu, vmcb01->save.cr4);
1284 	kvm_rax_write(vcpu, vmcb01->save.rax);
1285 	kvm_rsp_write(vcpu, vmcb01->save.rsp);
1286 	kvm_rip_write(vcpu, vmcb01->save.rip);
1287 
1288 	svm->vcpu.arch.dr7 = DR7_FIXED_1;
1289 	kvm_update_dr7(&svm->vcpu);
1290 
1291 	trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code,
1292 				       vmcb12->control.exit_info_1,
1293 				       vmcb12->control.exit_info_2,
1294 				       vmcb12->control.exit_int_info,
1295 				       vmcb12->control.exit_int_info_err,
1296 				       KVM_ISA_SVM);
1297 
1298 	kvm_vcpu_unmap(vcpu, &map);
1299 
1300 	nested_svm_transition_tlb_flush(vcpu);
1301 
1302 	nested_svm_uninit_mmu_context(vcpu);
1303 
1304 	rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true);
1305 	if (rc)
1306 		return 1;
1307 
1308 	/*
1309 	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
1310 	 * doesn't end up in L1.
1311 	 */
1312 	svm->vcpu.arch.nmi_injected = false;
1313 	kvm_clear_exception_queue(vcpu);
1314 	kvm_clear_interrupt_queue(vcpu);
1315 
1316 	/*
1317 	 * If we are here following the completion of a VMRUN that
1318 	 * is being single-stepped, queue the pending #DB intercept
1319 	 * right now so that it an be accounted for before we execute
1320 	 * L1's next instruction.
1321 	 */
1322 	if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF))
1323 		kvm_queue_exception(&(svm->vcpu), DB_VECTOR);
1324 
1325 	/*
1326 	 * Un-inhibit the AVIC right away, so that other vCPUs can start
1327 	 * to benefit from it right away.
1328 	 */
1329 	if (kvm_apicv_activated(vcpu->kvm))
1330 		__kvm_vcpu_update_apicv(vcpu);
1331 
1332 	return 0;
1333 }
1334 
1335 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu)
1336 {
1337 	struct vcpu_svm *svm = to_svm(vcpu);
1338 
1339 	if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN))
1340 		return;
1341 
1342 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1343 	nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN);
1344 }
1345 
1346 int svm_allocate_nested(struct vcpu_svm *svm)
1347 {
1348 	struct page *vmcb02_page;
1349 
1350 	if (svm->nested.initialized)
1351 		return 0;
1352 
1353 	vmcb02_page = snp_safe_alloc_page();
1354 	if (!vmcb02_page)
1355 		return -ENOMEM;
1356 	svm->nested.vmcb02.ptr = page_address(vmcb02_page);
1357 	svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT);
1358 
1359 	svm->nested.msrpm = svm_vcpu_alloc_msrpm();
1360 	if (!svm->nested.msrpm)
1361 		goto err_free_vmcb02;
1362 
1363 	svm->nested.initialized = true;
1364 	return 0;
1365 
1366 err_free_vmcb02:
1367 	__free_page(vmcb02_page);
1368 	return -ENOMEM;
1369 }
1370 
1371 void svm_free_nested(struct vcpu_svm *svm)
1372 {
1373 	if (!svm->nested.initialized)
1374 		return;
1375 
1376 	if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr))
1377 		svm_switch_vmcb(svm, &svm->vmcb01);
1378 
1379 	svm_vcpu_free_msrpm(svm->nested.msrpm);
1380 	svm->nested.msrpm = NULL;
1381 
1382 	__free_page(virt_to_page(svm->nested.vmcb02.ptr));
1383 	svm->nested.vmcb02.ptr = NULL;
1384 
1385 	/*
1386 	 * When last_vmcb12_gpa matches the current vmcb12 gpa,
1387 	 * some vmcb12 fields are not loaded if they are marked clean
1388 	 * in the vmcb12, since in this case they are up to date already.
1389 	 *
1390 	 * When the vmcb02 is freed, this optimization becomes invalid.
1391 	 */
1392 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1393 
1394 	svm->nested.initialized = false;
1395 }
1396 
1397 void svm_leave_nested(struct kvm_vcpu *vcpu)
1398 {
1399 	struct vcpu_svm *svm = to_svm(vcpu);
1400 
1401 	if (is_guest_mode(vcpu)) {
1402 		svm->nested.nested_run_pending = 0;
1403 		svm->nested.vmcb12_gpa = INVALID_GPA;
1404 
1405 		leave_guest_mode(vcpu);
1406 
1407 		svm_switch_vmcb(svm, &svm->vmcb01);
1408 
1409 		nested_svm_uninit_mmu_context(vcpu);
1410 		vmcb_mark_all_dirty(svm->vmcb);
1411 
1412 		svm_set_gif(svm, true);
1413 
1414 		if (kvm_apicv_activated(vcpu->kvm))
1415 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
1416 	}
1417 
1418 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1419 }
1420 
1421 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1422 {
1423 	gpa_t base = svm->nested.ctl.msrpm_base_pa;
1424 	int write, bit_nr;
1425 	u8 value, mask;
1426 	u32 msr;
1427 
1428 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
1429 		return NESTED_EXIT_HOST;
1430 
1431 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1432 	bit_nr = svm_msrpm_bit_nr(msr);
1433 	write  = svm->vmcb->control.exit_info_1 & 1;
1434 
1435 	if (bit_nr < 0)
1436 		return NESTED_EXIT_DONE;
1437 
1438 	if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE,
1439 				&value, sizeof(value)))
1440 		return NESTED_EXIT_DONE;
1441 
1442 	mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1));
1443 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1444 }
1445 
1446 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1447 {
1448 	unsigned port, size, iopm_len;
1449 	u16 val, mask;
1450 	u8 start_bit;
1451 	u64 gpa;
1452 
1453 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT)))
1454 		return NESTED_EXIT_HOST;
1455 
1456 	port = svm->vmcb->control.exit_info_1 >> 16;
1457 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
1458 		SVM_IOIO_SIZE_SHIFT;
1459 	gpa  = svm->nested.ctl.iopm_base_pa + (port / 8);
1460 	start_bit = port % 8;
1461 	iopm_len = (start_bit + size > 8) ? 2 : 1;
1462 	mask = (0xf >> (4 - size)) << start_bit;
1463 	val = 0;
1464 
1465 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
1466 		return NESTED_EXIT_DONE;
1467 
1468 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1469 }
1470 
1471 static int nested_svm_intercept(struct vcpu_svm *svm)
1472 {
1473 	u64 exit_code = svm->vmcb->control.exit_code;
1474 	int vmexit = NESTED_EXIT_HOST;
1475 
1476 	if (svm_is_vmrun_failure(exit_code))
1477 		return NESTED_EXIT_DONE;
1478 
1479 	switch (exit_code) {
1480 	case SVM_EXIT_MSR:
1481 		vmexit = nested_svm_exit_handled_msr(svm);
1482 		break;
1483 	case SVM_EXIT_IOIO:
1484 		vmexit = nested_svm_intercept_ioio(svm);
1485 		break;
1486 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f:
1487 		/*
1488 		 * Host-intercepted exceptions have been checked already in
1489 		 * nested_svm_exit_special.  There is nothing to do here,
1490 		 * the vmexit is injected by svm_check_nested_events.
1491 		 */
1492 		vmexit = NESTED_EXIT_DONE;
1493 		break;
1494 	default:
1495 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1496 			vmexit = NESTED_EXIT_DONE;
1497 		break;
1498 	}
1499 
1500 	return vmexit;
1501 }
1502 
1503 int nested_svm_exit_handled(struct vcpu_svm *svm)
1504 {
1505 	int vmexit;
1506 
1507 	vmexit = nested_svm_intercept(svm);
1508 
1509 	if (vmexit == NESTED_EXIT_DONE)
1510 		nested_svm_vmexit(svm);
1511 
1512 	return vmexit;
1513 }
1514 
1515 int nested_svm_check_permissions(struct kvm_vcpu *vcpu)
1516 {
1517 	if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) {
1518 		kvm_queue_exception(vcpu, UD_VECTOR);
1519 		return 1;
1520 	}
1521 
1522 	if (to_svm(vcpu)->vmcb->save.cpl) {
1523 		kvm_inject_gp(vcpu, 0);
1524 		return 1;
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
1531 					   u32 error_code)
1532 {
1533 	struct vcpu_svm *svm = to_svm(vcpu);
1534 
1535 	return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector));
1536 }
1537 
1538 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu)
1539 {
1540 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
1541 	struct vcpu_svm *svm = to_svm(vcpu);
1542 	struct vmcb *vmcb = svm->vmcb;
1543 
1544 	vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector;
1545 
1546 	if (ex->has_error_code)
1547 		vmcb->control.exit_info_1 = ex->error_code;
1548 
1549 	/*
1550 	 * EXITINFO2 is undefined for all exception intercepts other
1551 	 * than #PF.
1552 	 */
1553 	if (ex->vector == PF_VECTOR) {
1554 		if (ex->has_payload)
1555 			vmcb->control.exit_info_2 = ex->payload;
1556 		else
1557 			vmcb->control.exit_info_2 = vcpu->arch.cr2;
1558 	} else if (ex->vector == DB_VECTOR) {
1559 		/* See kvm_check_and_inject_events().  */
1560 		kvm_deliver_exception_payload(vcpu, ex);
1561 
1562 		if (vcpu->arch.dr7 & DR7_GD) {
1563 			vcpu->arch.dr7 &= ~DR7_GD;
1564 			kvm_update_dr7(vcpu);
1565 		}
1566 	} else {
1567 		WARN_ON(ex->has_payload);
1568 	}
1569 
1570 	nested_svm_vmexit(svm);
1571 }
1572 
1573 static inline bool nested_exit_on_init(struct vcpu_svm *svm)
1574 {
1575 	return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT);
1576 }
1577 
1578 static int svm_check_nested_events(struct kvm_vcpu *vcpu)
1579 {
1580 	struct kvm_lapic *apic = vcpu->arch.apic;
1581 	struct vcpu_svm *svm = to_svm(vcpu);
1582 	/*
1583 	 * Only a pending nested run blocks a pending exception.  If there is a
1584 	 * previously injected event, the pending exception occurred while said
1585 	 * event was being delivered and thus needs to be handled.
1586 	 */
1587 	bool block_nested_exceptions = svm->nested.nested_run_pending;
1588 	/*
1589 	 * New events (not exceptions) are only recognized at instruction
1590 	 * boundaries.  If an event needs reinjection, then KVM is handling a
1591 	 * VM-Exit that occurred _during_ instruction execution; new events are
1592 	 * blocked until the instruction completes.
1593 	 */
1594 	bool block_nested_events = block_nested_exceptions ||
1595 				   kvm_event_needs_reinjection(vcpu);
1596 
1597 	if (lapic_in_kernel(vcpu) &&
1598 	    test_bit(KVM_APIC_INIT, &apic->pending_events)) {
1599 		if (block_nested_events)
1600 			return -EBUSY;
1601 		if (!nested_exit_on_init(svm))
1602 			return 0;
1603 		nested_svm_simple_vmexit(svm, SVM_EXIT_INIT);
1604 		return 0;
1605 	}
1606 
1607 	if (vcpu->arch.exception_vmexit.pending) {
1608 		if (block_nested_exceptions)
1609                         return -EBUSY;
1610 		nested_svm_inject_exception_vmexit(vcpu);
1611 		return 0;
1612 	}
1613 
1614 	if (vcpu->arch.exception.pending) {
1615 		if (block_nested_exceptions)
1616 			return -EBUSY;
1617 		return 0;
1618 	}
1619 
1620 #ifdef CONFIG_KVM_SMM
1621 	if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
1622 		if (block_nested_events)
1623 			return -EBUSY;
1624 		if (!nested_exit_on_smi(svm))
1625 			return 0;
1626 		nested_svm_simple_vmexit(svm, SVM_EXIT_SMI);
1627 		return 0;
1628 	}
1629 #endif
1630 
1631 	if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
1632 		if (block_nested_events)
1633 			return -EBUSY;
1634 		if (!nested_exit_on_nmi(svm))
1635 			return 0;
1636 		nested_svm_simple_vmexit(svm, SVM_EXIT_NMI);
1637 		return 0;
1638 	}
1639 
1640 	if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
1641 		if (block_nested_events)
1642 			return -EBUSY;
1643 		if (!nested_exit_on_intr(svm))
1644 			return 0;
1645 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1646 		nested_svm_simple_vmexit(svm, SVM_EXIT_INTR);
1647 		return 0;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 int nested_svm_exit_special(struct vcpu_svm *svm)
1654 {
1655 	u32 exit_code = svm->vmcb->control.exit_code;
1656 	struct kvm_vcpu *vcpu = &svm->vcpu;
1657 
1658 	switch (exit_code) {
1659 	case SVM_EXIT_INTR:
1660 	case SVM_EXIT_NMI:
1661 	case SVM_EXIT_NPF:
1662 		return NESTED_EXIT_HOST;
1663 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1664 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1665 
1666 		if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] &
1667 		    excp_bits)
1668 			return NESTED_EXIT_HOST;
1669 		else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1670 			 svm->vcpu.arch.apf.host_apf_flags)
1671 			/* Trap async PF even if not shadowing */
1672 			return NESTED_EXIT_HOST;
1673 		break;
1674 	}
1675 	case SVM_EXIT_VMMCALL:
1676 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
1677 		if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
1678 		    nested_svm_l2_tlb_flush_enabled(vcpu) &&
1679 		    kvm_hv_is_tlb_flush_hcall(vcpu))
1680 			return NESTED_EXIT_HOST;
1681 		break;
1682 	default:
1683 		break;
1684 	}
1685 
1686 	return NESTED_EXIT_CONTINUE;
1687 }
1688 
1689 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu)
1690 {
1691 	struct vcpu_svm *svm = to_svm(vcpu);
1692 
1693 	vcpu->arch.tsc_scaling_ratio =
1694 		kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio,
1695 					       svm->tsc_ratio_msr);
1696 	svm_write_tsc_multiplier(vcpu);
1697 }
1698 
1699 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */
1700 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst,
1701 					      struct vmcb_ctrl_area_cached *from)
1702 {
1703 	unsigned int i;
1704 
1705 	memset(dst, 0, sizeof(struct vmcb_control_area));
1706 
1707 	for (i = 0; i < MAX_INTERCEPT; i++)
1708 		dst->intercepts[i] = from->intercepts[i];
1709 
1710 	dst->iopm_base_pa         = from->iopm_base_pa;
1711 	dst->msrpm_base_pa        = from->msrpm_base_pa;
1712 	dst->tsc_offset           = from->tsc_offset;
1713 	dst->asid                 = from->asid;
1714 	dst->tlb_ctl              = from->tlb_ctl;
1715 	dst->erap_ctl             = from->erap_ctl;
1716 	dst->int_ctl              = from->int_ctl;
1717 	dst->int_vector           = from->int_vector;
1718 	dst->int_state            = from->int_state;
1719 	dst->exit_code            = from->exit_code;
1720 	dst->exit_info_1          = from->exit_info_1;
1721 	dst->exit_info_2          = from->exit_info_2;
1722 	dst->exit_int_info        = from->exit_int_info;
1723 	dst->exit_int_info_err    = from->exit_int_info_err;
1724 	dst->nested_ctl           = from->nested_ctl;
1725 	dst->event_inj            = from->event_inj;
1726 	dst->event_inj_err        = from->event_inj_err;
1727 	dst->next_rip             = from->next_rip;
1728 	dst->nested_cr3           = from->nested_cr3;
1729 	dst->virt_ext              = from->virt_ext;
1730 	dst->pause_filter_count   = from->pause_filter_count;
1731 	dst->pause_filter_thresh  = from->pause_filter_thresh;
1732 	/* 'clean' and 'hv_enlightenments' are not changed by KVM */
1733 }
1734 
1735 static int svm_get_nested_state(struct kvm_vcpu *vcpu,
1736 				struct kvm_nested_state __user *user_kvm_nested_state,
1737 				u32 user_data_size)
1738 {
1739 	struct vcpu_svm *svm;
1740 	struct vmcb_control_area *ctl;
1741 	unsigned long r;
1742 	struct kvm_nested_state kvm_state = {
1743 		.flags = 0,
1744 		.format = KVM_STATE_NESTED_FORMAT_SVM,
1745 		.size = sizeof(kvm_state),
1746 	};
1747 	struct vmcb __user *user_vmcb = (struct vmcb __user *)
1748 		&user_kvm_nested_state->data.svm[0];
1749 
1750 	if (!vcpu)
1751 		return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE;
1752 
1753 	svm = to_svm(vcpu);
1754 
1755 	if (user_data_size < kvm_state.size)
1756 		goto out;
1757 
1758 	/* First fill in the header and copy it out.  */
1759 	if (is_guest_mode(vcpu)) {
1760 		kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa;
1761 		kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE;
1762 		kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
1763 
1764 		if (svm->nested.nested_run_pending)
1765 			kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
1766 	}
1767 
1768 	if (gif_set(svm))
1769 		kvm_state.flags |= KVM_STATE_NESTED_GIF_SET;
1770 
1771 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
1772 		return -EFAULT;
1773 
1774 	if (!is_guest_mode(vcpu))
1775 		goto out;
1776 
1777 	/*
1778 	 * Copy over the full size of the VMCB rather than just the size
1779 	 * of the structs.
1780 	 */
1781 	if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE))
1782 		return -EFAULT;
1783 
1784 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1785 	if (!ctl)
1786 		return -ENOMEM;
1787 
1788 	nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl);
1789 	r = copy_to_user(&user_vmcb->control, ctl,
1790 			 sizeof(user_vmcb->control));
1791 	kfree(ctl);
1792 	if (r)
1793 		return -EFAULT;
1794 
1795 	if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save,
1796 			 sizeof(user_vmcb->save)))
1797 		return -EFAULT;
1798 out:
1799 	return kvm_state.size;
1800 }
1801 
1802 static int svm_set_nested_state(struct kvm_vcpu *vcpu,
1803 				struct kvm_nested_state __user *user_kvm_nested_state,
1804 				struct kvm_nested_state *kvm_state)
1805 {
1806 	struct vcpu_svm *svm = to_svm(vcpu);
1807 	struct vmcb __user *user_vmcb = (struct vmcb __user *)
1808 		&user_kvm_nested_state->data.svm[0];
1809 	struct vmcb_control_area *ctl;
1810 	struct vmcb_save_area *save;
1811 	struct vmcb_save_area_cached save_cached;
1812 	struct vmcb_ctrl_area_cached ctl_cached;
1813 	unsigned long cr0;
1814 	int ret;
1815 
1816 	BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) >
1817 		     KVM_STATE_NESTED_SVM_VMCB_SIZE);
1818 
1819 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM)
1820 		return -EINVAL;
1821 
1822 	if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE |
1823 				 KVM_STATE_NESTED_RUN_PENDING |
1824 				 KVM_STATE_NESTED_GIF_SET))
1825 		return -EINVAL;
1826 
1827 	/*
1828 	 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's
1829 	 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed.
1830 	 * If SVME is disabled, the only valid states are "none" and GIF=1
1831 	 * (clearing SVME does NOT set GIF, i.e. GIF=0 is allowed).
1832 	 */
1833 	if (!(vcpu->arch.efer & EFER_SVME) && kvm_state->flags &&
1834 	    kvm_state->flags != KVM_STATE_NESTED_GIF_SET)
1835 		return -EINVAL;
1836 
1837 	/* SMM temporarily disables SVM, so we cannot be in guest mode.  */
1838 	if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
1839 		return -EINVAL;
1840 
1841 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) {
1842 		svm_leave_nested(vcpu);
1843 		svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1844 		return 0;
1845 	}
1846 
1847 	if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa))
1848 		return -EINVAL;
1849 	if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE)
1850 		return -EINVAL;
1851 
1852 	ctl = memdup_user(&user_vmcb->control, sizeof(*ctl));
1853 	if (IS_ERR(ctl))
1854 		return PTR_ERR(ctl);
1855 
1856 	save = memdup_user(&user_vmcb->save, sizeof(*save));
1857 	if (IS_ERR(save)) {
1858 		kfree(ctl);
1859 		return PTR_ERR(save);
1860 	}
1861 
1862 	ret = -EINVAL;
1863 	__nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl);
1864 	if (!__nested_vmcb_check_controls(vcpu, &ctl_cached))
1865 		goto out_free;
1866 
1867 	/*
1868 	 * Processor state contains L2 state.  Check that it is
1869 	 * valid for guest mode (see nested_vmcb_check_save).
1870 	 */
1871 	cr0 = kvm_read_cr0(vcpu);
1872         if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW))
1873 		goto out_free;
1874 
1875 	/*
1876 	 * Validate host state saved from before VMRUN (see
1877 	 * nested_svm_check_permissions).
1878 	 */
1879 	__nested_copy_vmcb_save_to_cache(&save_cached, save);
1880 	if (!(save->cr0 & X86_CR0_PG) ||
1881 	    !(save->cr0 & X86_CR0_PE) ||
1882 	    (save->rflags & X86_EFLAGS_VM) ||
1883 	    !__nested_vmcb_check_save(vcpu, &save_cached))
1884 		goto out_free;
1885 
1886 
1887 	/*
1888 	 * All checks done, we can enter guest mode. Userspace provides
1889 	 * vmcb12.control, which will be combined with L1 and stored into
1890 	 * vmcb02, and the L1 save state which we store in vmcb01.
1891 	 * L2 registers if needed are moved from the current VMCB to VMCB02.
1892 	 */
1893 
1894 	if (is_guest_mode(vcpu))
1895 		svm_leave_nested(vcpu);
1896 	else
1897 		svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save;
1898 
1899 	svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1900 
1901 	svm->nested.nested_run_pending =
1902 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
1903 
1904 	svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa;
1905 
1906 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save);
1907 	nested_copy_vmcb_control_to_cache(svm, ctl);
1908 
1909 	svm_switch_vmcb(svm, &svm->nested.vmcb02);
1910 	nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base);
1911 
1912 	/*
1913 	 * While the nested guest CR3 is already checked and set by
1914 	 * KVM_SET_SREGS, it was set when nested state was yet loaded,
1915 	 * thus MMU might not be initialized correctly.
1916 	 * Set it again to fix this.
1917 	 */
1918 	ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3,
1919 				  nested_npt_enabled(svm), false);
1920 	if (ret)
1921 		goto out_free;
1922 
1923 	svm->nested.force_msr_bitmap_recalc = true;
1924 
1925 	kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1926 	ret = 0;
1927 out_free:
1928 	kfree(save);
1929 	kfree(ctl);
1930 
1931 	return ret;
1932 }
1933 
1934 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
1935 {
1936 	if (WARN_ON(!is_guest_mode(vcpu)))
1937 		return true;
1938 
1939 	if (!vcpu->arch.pdptrs_from_userspace &&
1940 	    !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu))
1941 		/*
1942 		 * Reload the guest's PDPTRs since after a migration
1943 		 * the guest CR3 might be restored prior to setting the nested
1944 		 * state which can lead to a load of wrong PDPTRs.
1945 		 */
1946 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
1947 			return false;
1948 
1949 	if (!nested_svm_merge_msrpm(vcpu)) {
1950 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1951 		vcpu->run->internal.suberror =
1952 			KVM_INTERNAL_ERROR_EMULATION;
1953 		vcpu->run->internal.ndata = 0;
1954 		return false;
1955 	}
1956 
1957 	if (kvm_hv_verify_vp_assist(vcpu))
1958 		return false;
1959 
1960 	return true;
1961 }
1962 
1963 struct kvm_x86_nested_ops svm_nested_ops = {
1964 	.leave_nested = svm_leave_nested,
1965 	.is_exception_vmexit = nested_svm_is_exception_vmexit,
1966 	.check_events = svm_check_nested_events,
1967 	.triple_fault = nested_svm_triple_fault,
1968 	.get_nested_state_pages = svm_get_nested_state_pages,
1969 	.get_state = svm_get_nested_state,
1970 	.set_state = svm_set_nested_state,
1971 	.hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush,
1972 };
1973