xref: /linux/include/linux/perf_event.h (revision ac253a537da3b210fa4b65d522d5533fc68f9515)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42 
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66 
67 struct perf_callchain_entry {
68 	__u64				nr;
69 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71 
72 struct perf_callchain_entry_ctx {
73 	struct perf_callchain_entry *entry;
74 	u32			    max_stack;
75 	u32			    nr;
76 	short			    contexts;
77 	bool			    contexts_maxed;
78 };
79 
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 				     unsigned long off, unsigned long len);
82 
83 struct perf_raw_frag {
84 	union {
85 		struct perf_raw_frag	*next;
86 		unsigned long		pad;
87 	};
88 	perf_copy_f			copy;
89 	void				*data;
90 	u32				size;
91 } __packed;
92 
93 struct perf_raw_record {
94 	struct perf_raw_frag		frag;
95 	u32				size;
96 };
97 
perf_raw_frag_last(const struct perf_raw_frag * frag)98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 	return frag->pad < sizeof(u64);
101 }
102 
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124 	__u64				nr;
125 	__u64				hw_idx;
126 	struct perf_branch_entry	entries[];
127 };
128 
129 struct task_struct;
130 
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135 	u64		config;	/* register value */
136 	unsigned int	reg;	/* register address or index */
137 	int		alloc;	/* extra register already allocated */
138 	int		idx;	/* index in shared_regs->regs[] */
139 };
140 
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH			0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149 
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 	union {
158 		struct { /* hardware */
159 			u64		config;
160 			u64		last_tag;
161 			unsigned long	config_base;
162 			unsigned long	event_base;
163 			int		event_base_rdpmc;
164 			int		idx;
165 			int		last_cpu;
166 			int		flags;
167 
168 			struct hw_perf_event_extra extra_reg;
169 			struct hw_perf_event_extra branch_reg;
170 		};
171 		struct { /* aux / Intel-PT */
172 			u64		aux_config;
173 			/*
174 			 * For AUX area events, aux_paused cannot be a state
175 			 * flag because it can be updated asynchronously to
176 			 * state.
177 			 */
178 			unsigned int	aux_paused;
179 		};
180 		struct { /* software */
181 			struct hrtimer	hrtimer;
182 		};
183 		struct { /* tracepoint */
184 			/* for tp_event->class */
185 			struct list_head	tp_list;
186 		};
187 		struct { /* amd_power */
188 			u64	pwr_acc;
189 			u64	ptsc;
190 		};
191 #ifdef CONFIG_HAVE_HW_BREAKPOINT
192 		struct { /* breakpoint */
193 			/*
194 			 * Crufty hack to avoid the chicken and egg
195 			 * problem hw_breakpoint has with context
196 			 * creation and event initalization.
197 			 */
198 			struct arch_hw_breakpoint	info;
199 			struct rhlist_head		bp_list;
200 		};
201 #endif
202 		struct { /* amd_iommu */
203 			u8	iommu_bank;
204 			u8	iommu_cntr;
205 			u16	padding;
206 			u64	conf;
207 			u64	conf1;
208 		};
209 	};
210 	/*
211 	 * If the event is a per task event, this will point to the task in
212 	 * question. See the comment in perf_event_alloc().
213 	 */
214 	struct task_struct		*target;
215 
216 	/*
217 	 * PMU would store hardware filter configuration
218 	 * here.
219 	 */
220 	void				*addr_filters;
221 
222 	/* Last sync'ed generation of filters */
223 	unsigned long			addr_filters_gen;
224 
225 /*
226  * hw_perf_event::state flags; used to track the PERF_EF_* state.
227  */
228 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
229 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
230 #define PERF_HES_ARCH		0x04
231 
232 	int				state;
233 
234 	/*
235 	 * The last observed hardware counter value, updated with a
236 	 * local64_cmpxchg() such that pmu::read() can be called nested.
237 	 */
238 	local64_t			prev_count;
239 
240 	/*
241 	 * The period to start the next sample with.
242 	 */
243 	u64				sample_period;
244 
245 	union {
246 		struct { /* Sampling */
247 			/*
248 			 * The period we started this sample with.
249 			 */
250 			u64				last_period;
251 
252 			/*
253 			 * However much is left of the current period;
254 			 * note that this is a full 64bit value and
255 			 * allows for generation of periods longer
256 			 * than hardware might allow.
257 			 */
258 			local64_t			period_left;
259 		};
260 		struct { /* Topdown events counting for context switch */
261 			u64				saved_metric;
262 			u64				saved_slots;
263 		};
264 	};
265 
266 	/*
267 	 * State for throttling the event, see __perf_event_overflow() and
268 	 * perf_adjust_freq_unthr_context().
269 	 */
270 	u64                             interrupts_seq;
271 	u64				interrupts;
272 
273 	/*
274 	 * State for freq target events, see __perf_event_overflow() and
275 	 * perf_adjust_freq_unthr_context().
276 	 */
277 	u64				freq_time_stamp;
278 	u64				freq_count_stamp;
279 #endif
280 };
281 
282 struct perf_event;
283 struct perf_event_pmu_context;
284 
285 /*
286  * Common implementation detail of pmu::{start,commit,cancel}_txn
287  */
288 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
290 
291 /**
292  * pmu::capabilities flags
293  */
294 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
295 #define PERF_PMU_CAP_NO_NMI			0x0002
296 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
297 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
298 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
299 #define PERF_PMU_CAP_ITRACE			0x0020
300 #define PERF_PMU_CAP_NO_EXCLUDE			0x0040
301 #define PERF_PMU_CAP_AUX_OUTPUT			0x0080
302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0100
303 #define PERF_PMU_CAP_AUX_PAUSE			0x0200
304 
305 /**
306  * pmu::scope
307  */
308 enum perf_pmu_scope {
309 	PERF_PMU_SCOPE_NONE	= 0,
310 	PERF_PMU_SCOPE_CORE,
311 	PERF_PMU_SCOPE_DIE,
312 	PERF_PMU_SCOPE_CLUSTER,
313 	PERF_PMU_SCOPE_PKG,
314 	PERF_PMU_SCOPE_SYS_WIDE,
315 	PERF_PMU_MAX_SCOPE,
316 };
317 
318 struct perf_output_handle;
319 
320 #define PMU_NULL_DEV	((void *)(~0UL))
321 
322 /**
323  * struct pmu - generic performance monitoring unit
324  */
325 struct pmu {
326 	struct list_head		entry;
327 
328 	struct module			*module;
329 	struct device			*dev;
330 	struct device			*parent;
331 	const struct attribute_group	**attr_groups;
332 	const struct attribute_group	**attr_update;
333 	const char			*name;
334 	int				type;
335 
336 	/*
337 	 * various common per-pmu feature flags
338 	 */
339 	int				capabilities;
340 
341 	/*
342 	 * PMU scope
343 	 */
344 	unsigned int			scope;
345 
346 	struct perf_cpu_pmu_context * __percpu *cpu_pmu_context;
347 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
348 	int				task_ctx_nr;
349 	int				hrtimer_interval_ms;
350 
351 	/* number of address filters this PMU can do */
352 	unsigned int			nr_addr_filters;
353 
354 	/*
355 	 * Fully disable/enable this PMU, can be used to protect from the PMI
356 	 * as well as for lazy/batch writing of the MSRs.
357 	 */
358 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
359 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
360 
361 	/*
362 	 * Try and initialize the event for this PMU.
363 	 *
364 	 * Returns:
365 	 *  -ENOENT	-- @event is not for this PMU
366 	 *
367 	 *  -ENODEV	-- @event is for this PMU but PMU not present
368 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
369 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
370 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
371 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
372 	 *
373 	 *  0		-- @event is for this PMU and valid
374 	 *
375 	 * Other error return values are allowed.
376 	 */
377 	int (*event_init)		(struct perf_event *event);
378 
379 	/*
380 	 * Notification that the event was mapped or unmapped.  Called
381 	 * in the context of the mapping task.
382 	 */
383 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
384 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
385 
386 	/*
387 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
388 	 * matching hw_perf_event::state flags.
389 	 */
390 #define PERF_EF_START	0x01		/* start the counter when adding    */
391 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
392 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
393 #define PERF_EF_PAUSE	0x08		/* AUX area event, pause tracing */
394 #define PERF_EF_RESUME	0x10		/* AUX area event, resume tracing */
395 
396 	/*
397 	 * Adds/Removes a counter to/from the PMU, can be done inside a
398 	 * transaction, see the ->*_txn() methods.
399 	 *
400 	 * The add/del callbacks will reserve all hardware resources required
401 	 * to service the event, this includes any counter constraint
402 	 * scheduling etc.
403 	 *
404 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
405 	 * is on.
406 	 *
407 	 * ->add() called without PERF_EF_START should result in the same state
408 	 *  as ->add() followed by ->stop().
409 	 *
410 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
411 	 *  ->stop() that must deal with already being stopped without
412 	 *  PERF_EF_UPDATE.
413 	 */
414 	int  (*add)			(struct perf_event *event, int flags);
415 	void (*del)			(struct perf_event *event, int flags);
416 
417 	/*
418 	 * Starts/Stops a counter present on the PMU.
419 	 *
420 	 * The PMI handler should stop the counter when perf_event_overflow()
421 	 * returns !0. ->start() will be used to continue.
422 	 *
423 	 * Also used to change the sample period.
424 	 *
425 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
426 	 * is on -- will be called from NMI context with the PMU generates
427 	 * NMIs.
428 	 *
429 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
430 	 *  period/count values like ->read() would.
431 	 *
432 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
433 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
434 	 *
435 	 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
436 	 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
437 	 * PERF_EF_RESUME.
438 	 *
439 	 * ->start() with PERF_EF_RESUME will start as simply as possible but
440 	 * only if the counter is not otherwise stopped. Will not overlap
441 	 * another ->start() with PERF_EF_RESUME nor ->stop() with
442 	 * PERF_EF_PAUSE.
443 	 *
444 	 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
445 	 * ->stop()/->start() invocations, just not itself.
446 	 */
447 	void (*start)			(struct perf_event *event, int flags);
448 	void (*stop)			(struct perf_event *event, int flags);
449 
450 	/*
451 	 * Updates the counter value of the event.
452 	 *
453 	 * For sampling capable PMUs this will also update the software period
454 	 * hw_perf_event::period_left field.
455 	 */
456 	void (*read)			(struct perf_event *event);
457 
458 	/*
459 	 * Group events scheduling is treated as a transaction, add
460 	 * group events as a whole and perform one schedulability test.
461 	 * If the test fails, roll back the whole group
462 	 *
463 	 * Start the transaction, after this ->add() doesn't need to
464 	 * do schedulability tests.
465 	 *
466 	 * Optional.
467 	 */
468 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
469 	/*
470 	 * If ->start_txn() disabled the ->add() schedulability test
471 	 * then ->commit_txn() is required to perform one. On success
472 	 * the transaction is closed. On error the transaction is kept
473 	 * open until ->cancel_txn() is called.
474 	 *
475 	 * Optional.
476 	 */
477 	int  (*commit_txn)		(struct pmu *pmu);
478 	/*
479 	 * Will cancel the transaction, assumes ->del() is called
480 	 * for each successful ->add() during the transaction.
481 	 *
482 	 * Optional.
483 	 */
484 	void (*cancel_txn)		(struct pmu *pmu);
485 
486 	/*
487 	 * Will return the value for perf_event_mmap_page::index for this event,
488 	 * if no implementation is provided it will default to 0 (see
489 	 * perf_event_idx_default).
490 	 */
491 	int (*event_idx)		(struct perf_event *event); /*optional */
492 
493 	/*
494 	 * context-switches callback
495 	 */
496 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
497 					 struct task_struct *task, bool sched_in);
498 
499 	/*
500 	 * Kmem cache of PMU specific data
501 	 */
502 	struct kmem_cache		*task_ctx_cache;
503 
504 	/*
505 	 * Set up pmu-private data structures for an AUX area
506 	 */
507 	void *(*setup_aux)		(struct perf_event *event, void **pages,
508 					 int nr_pages, bool overwrite);
509 					/* optional */
510 
511 	/*
512 	 * Free pmu-private AUX data structures
513 	 */
514 	void (*free_aux)		(void *aux); /* optional */
515 
516 	/*
517 	 * Take a snapshot of the AUX buffer without touching the event
518 	 * state, so that preempting ->start()/->stop() callbacks does
519 	 * not interfere with their logic. Called in PMI context.
520 	 *
521 	 * Returns the size of AUX data copied to the output handle.
522 	 *
523 	 * Optional.
524 	 */
525 	long (*snapshot_aux)		(struct perf_event *event,
526 					 struct perf_output_handle *handle,
527 					 unsigned long size);
528 
529 	/*
530 	 * Validate address range filters: make sure the HW supports the
531 	 * requested configuration and number of filters; return 0 if the
532 	 * supplied filters are valid, -errno otherwise.
533 	 *
534 	 * Runs in the context of the ioctl()ing process and is not serialized
535 	 * with the rest of the PMU callbacks.
536 	 */
537 	int (*addr_filters_validate)	(struct list_head *filters);
538 					/* optional */
539 
540 	/*
541 	 * Synchronize address range filter configuration:
542 	 * translate hw-agnostic filters into hardware configuration in
543 	 * event::hw::addr_filters.
544 	 *
545 	 * Runs as a part of filter sync sequence that is done in ->start()
546 	 * callback by calling perf_event_addr_filters_sync().
547 	 *
548 	 * May (and should) traverse event::addr_filters::list, for which its
549 	 * caller provides necessary serialization.
550 	 */
551 	void (*addr_filters_sync)	(struct perf_event *event);
552 					/* optional */
553 
554 	/*
555 	 * Check if event can be used for aux_output purposes for
556 	 * events of this PMU.
557 	 *
558 	 * Runs from perf_event_open(). Should return 0 for "no match"
559 	 * or non-zero for "match".
560 	 */
561 	int (*aux_output_match)		(struct perf_event *event);
562 					/* optional */
563 
564 	/*
565 	 * Skip programming this PMU on the given CPU. Typically needed for
566 	 * big.LITTLE things.
567 	 */
568 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
569 
570 	/*
571 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
572 	 */
573 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
574 };
575 
576 enum perf_addr_filter_action_t {
577 	PERF_ADDR_FILTER_ACTION_STOP = 0,
578 	PERF_ADDR_FILTER_ACTION_START,
579 	PERF_ADDR_FILTER_ACTION_FILTER,
580 };
581 
582 /**
583  * struct perf_addr_filter - address range filter definition
584  * @entry:	event's filter list linkage
585  * @path:	object file's path for file-based filters
586  * @offset:	filter range offset
587  * @size:	filter range size (size==0 means single address trigger)
588  * @action:	filter/start/stop
589  *
590  * This is a hardware-agnostic filter configuration as specified by the user.
591  */
592 struct perf_addr_filter {
593 	struct list_head	entry;
594 	struct path		path;
595 	unsigned long		offset;
596 	unsigned long		size;
597 	enum perf_addr_filter_action_t	action;
598 };
599 
600 /**
601  * struct perf_addr_filters_head - container for address range filters
602  * @list:	list of filters for this event
603  * @lock:	spinlock that serializes accesses to the @list and event's
604  *		(and its children's) filter generations.
605  * @nr_file_filters:	number of file-based filters
606  *
607  * A child event will use parent's @list (and therefore @lock), so they are
608  * bundled together; see perf_event_addr_filters().
609  */
610 struct perf_addr_filters_head {
611 	struct list_head	list;
612 	raw_spinlock_t		lock;
613 	unsigned int		nr_file_filters;
614 };
615 
616 struct perf_addr_filter_range {
617 	unsigned long		start;
618 	unsigned long		size;
619 };
620 
621 /**
622  * enum perf_event_state - the states of an event:
623  */
624 enum perf_event_state {
625 	PERF_EVENT_STATE_DEAD		= -4,
626 	PERF_EVENT_STATE_EXIT		= -3,
627 	PERF_EVENT_STATE_ERROR		= -2,
628 	PERF_EVENT_STATE_OFF		= -1,
629 	PERF_EVENT_STATE_INACTIVE	=  0,
630 	PERF_EVENT_STATE_ACTIVE		=  1,
631 };
632 
633 struct file;
634 struct perf_sample_data;
635 
636 typedef void (*perf_overflow_handler_t)(struct perf_event *,
637 					struct perf_sample_data *,
638 					struct pt_regs *regs);
639 
640 /*
641  * Event capabilities. For event_caps and groups caps.
642  *
643  * PERF_EV_CAP_SOFTWARE: Is a software event.
644  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
645  * from any CPU in the package where it is active.
646  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
647  * cannot be a group leader. If an event with this flag is detached from the
648  * group it is scheduled out and moved into an unrecoverable ERROR state.
649  * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
650  * PMU scope where it is active.
651  */
652 #define PERF_EV_CAP_SOFTWARE		BIT(0)
653 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
654 #define PERF_EV_CAP_SIBLING		BIT(2)
655 #define PERF_EV_CAP_READ_SCOPE		BIT(3)
656 
657 #define SWEVENT_HLIST_BITS		8
658 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
659 
660 struct swevent_hlist {
661 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
662 	struct rcu_head			rcu_head;
663 };
664 
665 #define PERF_ATTACH_CONTEXT	0x0001
666 #define PERF_ATTACH_GROUP	0x0002
667 #define PERF_ATTACH_TASK	0x0004
668 #define PERF_ATTACH_TASK_DATA	0x0008
669 #define PERF_ATTACH_GLOBAL_DATA	0x0010
670 #define PERF_ATTACH_SCHED_CB	0x0020
671 #define PERF_ATTACH_CHILD	0x0040
672 #define PERF_ATTACH_EXCLUSIVE	0x0080
673 #define PERF_ATTACH_CALLCHAIN	0x0100
674 #define PERF_ATTACH_ITRACE	0x0200
675 
676 struct bpf_prog;
677 struct perf_cgroup;
678 struct perf_buffer;
679 
680 struct pmu_event_list {
681 	raw_spinlock_t		lock;
682 	struct list_head	list;
683 };
684 
685 /*
686  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
687  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
688  * safe lock, and is only held by the CPU doing the modification, having IRQs
689  * disabled is sufficient since it will hold-off the IPIs.
690  */
691 #ifdef CONFIG_PROVE_LOCKING
692 #define lockdep_assert_event_ctx(event)				\
693 	WARN_ON_ONCE(__lockdep_enabled &&			\
694 		     (this_cpu_read(hardirqs_enabled) &&	\
695 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
696 #else
697 #define lockdep_assert_event_ctx(event)
698 #endif
699 
700 #define for_each_sibling_event(sibling, event)			\
701 	lockdep_assert_event_ctx(event);			\
702 	if ((event)->group_leader == (event))			\
703 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
704 
705 /**
706  * struct perf_event - performance event kernel representation:
707  */
708 struct perf_event {
709 #ifdef CONFIG_PERF_EVENTS
710 	/*
711 	 * entry onto perf_event_context::event_list;
712 	 *   modifications require ctx->lock
713 	 *   RCU safe iterations.
714 	 */
715 	struct list_head		event_entry;
716 
717 	/*
718 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
719 	 * either sufficies for read.
720 	 */
721 	struct list_head		sibling_list;
722 	struct list_head		active_list;
723 	/*
724 	 * Node on the pinned or flexible tree located at the event context;
725 	 */
726 	struct rb_node			group_node;
727 	u64				group_index;
728 	/*
729 	 * We need storage to track the entries in perf_pmu_migrate_context; we
730 	 * cannot use the event_entry because of RCU and we want to keep the
731 	 * group in tact which avoids us using the other two entries.
732 	 */
733 	struct list_head		migrate_entry;
734 
735 	struct hlist_node		hlist_entry;
736 	struct list_head		active_entry;
737 	int				nr_siblings;
738 
739 	/* Not serialized. Only written during event initialization. */
740 	int				event_caps;
741 	/* The cumulative AND of all event_caps for events in this group. */
742 	int				group_caps;
743 
744 	unsigned int			group_generation;
745 	struct perf_event		*group_leader;
746 	/*
747 	 * event->pmu will always point to pmu in which this event belongs.
748 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
749 	 * different pmu events is created.
750 	 */
751 	struct pmu			*pmu;
752 	void				*pmu_private;
753 
754 	enum perf_event_state		state;
755 	unsigned int			attach_state;
756 	local64_t			count;
757 	atomic64_t			child_count;
758 
759 	/*
760 	 * These are the total time in nanoseconds that the event
761 	 * has been enabled (i.e. eligible to run, and the task has
762 	 * been scheduled in, if this is a per-task event)
763 	 * and running (scheduled onto the CPU), respectively.
764 	 */
765 	u64				total_time_enabled;
766 	u64				total_time_running;
767 	u64				tstamp;
768 
769 	struct perf_event_attr		attr;
770 	u16				header_size;
771 	u16				id_header_size;
772 	u16				read_size;
773 	struct hw_perf_event		hw;
774 
775 	struct perf_event_context	*ctx;
776 	/*
777 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
778 	 * is added. This pmu_ctx can be of other pmu for sw event when that
779 	 * sw event is part of a group which also contains non-sw events.
780 	 */
781 	struct perf_event_pmu_context	*pmu_ctx;
782 	atomic_long_t			refcount;
783 
784 	/*
785 	 * These accumulate total time (in nanoseconds) that children
786 	 * events have been enabled and running, respectively.
787 	 */
788 	atomic64_t			child_total_time_enabled;
789 	atomic64_t			child_total_time_running;
790 
791 	/*
792 	 * Protect attach/detach and child_list:
793 	 */
794 	struct mutex			child_mutex;
795 	struct list_head		child_list;
796 	struct perf_event		*parent;
797 
798 	int				oncpu;
799 	int				cpu;
800 
801 	struct list_head		owner_entry;
802 	struct task_struct		*owner;
803 
804 	/* mmap bits */
805 	struct mutex			mmap_mutex;
806 	atomic_t			mmap_count;
807 
808 	struct perf_buffer		*rb;
809 	struct list_head		rb_entry;
810 	unsigned long			rcu_batches;
811 	int				rcu_pending;
812 
813 	/* poll related */
814 	wait_queue_head_t		waitq;
815 	struct fasync_struct		*fasync;
816 
817 	/* delayed work for NMIs and such */
818 	unsigned int			pending_wakeup;
819 	unsigned int			pending_kill;
820 	unsigned int			pending_disable;
821 	unsigned long			pending_addr;	/* SIGTRAP */
822 	struct irq_work			pending_irq;
823 	struct irq_work			pending_disable_irq;
824 	struct callback_head		pending_task;
825 	unsigned int			pending_work;
826 
827 	atomic_t			event_limit;
828 
829 	/* address range filters */
830 	struct perf_addr_filters_head	addr_filters;
831 	/* vma address array for file-based filders */
832 	struct perf_addr_filter_range	*addr_filter_ranges;
833 	unsigned long			addr_filters_gen;
834 
835 	/* for aux_output events */
836 	struct perf_event		*aux_event;
837 
838 	void (*destroy)(struct perf_event *);
839 	struct rcu_head			rcu_head;
840 
841 	struct pid_namespace		*ns;
842 	u64				id;
843 
844 	atomic64_t			lost_samples;
845 
846 	u64				(*clock)(void);
847 	perf_overflow_handler_t		overflow_handler;
848 	void				*overflow_handler_context;
849 	struct bpf_prog			*prog;
850 	u64				bpf_cookie;
851 
852 #ifdef CONFIG_EVENT_TRACING
853 	struct trace_event_call		*tp_event;
854 	struct event_filter		*filter;
855 #ifdef CONFIG_FUNCTION_TRACER
856 	struct ftrace_ops               ftrace_ops;
857 #endif
858 #endif
859 
860 #ifdef CONFIG_CGROUP_PERF
861 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
862 #endif
863 
864 #ifdef CONFIG_SECURITY
865 	void *security;
866 #endif
867 	struct list_head		sb_list;
868 
869 	/*
870 	 * Certain events gets forwarded to another pmu internally by over-
871 	 * writing kernel copy of event->attr.type without user being aware
872 	 * of it. event->orig_type contains original 'type' requested by
873 	 * user.
874 	 */
875 	__u32				orig_type;
876 #endif /* CONFIG_PERF_EVENTS */
877 };
878 
879 /*
880  *           ,-----------------------[1:n]------------------------.
881  *           V                                                    V
882  * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
883  *                                        |                       |
884  *                                        `--[n:1]-> pmu <-[1:n]--'
885  *
886  *
887  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
888  * (similar to perf_event_context). Locking is as if it were a member of
889  * perf_event_context; specifically:
890  *
891  *   modification, both: ctx->mutex && ctx->lock
892  *   reading, either:    ctx->mutex || ctx->lock
893  *
894  * There is one exception to this; namely put_pmu_ctx() isn't always called
895  * with ctx->mutex held; this means that as long as we can guarantee the epc
896  * has events the above rules hold.
897  *
898  * Specificially, sys_perf_event_open()'s group_leader case depends on
899  * ctx->mutex pinning the configuration. Since we hold a reference on
900  * group_leader (through the filedesc) it can't go away, therefore it's
901  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
902  *
903  * perf_event holds a refcount on perf_event_context
904  * perf_event holds a refcount on perf_event_pmu_context
905  */
906 struct perf_event_pmu_context {
907 	struct pmu			*pmu;
908 	struct perf_event_context       *ctx;
909 
910 	struct list_head		pmu_ctx_entry;
911 
912 	struct list_head		pinned_active;
913 	struct list_head		flexible_active;
914 
915 	/* Used to identify the per-cpu perf_event_pmu_context */
916 	unsigned int			embedded : 1;
917 
918 	unsigned int			nr_events;
919 	unsigned int			nr_cgroups;
920 	unsigned int			nr_freq;
921 
922 	atomic_t			refcount; /* event <-> epc */
923 	struct rcu_head			rcu_head;
924 
925 	/*
926 	 * Set when one or more (plausibly active) event can't be scheduled
927 	 * due to pmu overcommit or pmu constraints, except tolerant to
928 	 * events not necessary to be active due to scheduling constraints,
929 	 * such as cgroups.
930 	 */
931 	int				rotate_necessary;
932 };
933 
perf_pmu_ctx_is_active(struct perf_event_pmu_context * epc)934 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
935 {
936 	return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
937 }
938 
939 struct perf_event_groups {
940 	struct rb_root	tree;
941 	u64		index;
942 };
943 
944 
945 /**
946  * struct perf_event_context - event context structure
947  *
948  * Used as a container for task events and CPU events as well:
949  */
950 struct perf_event_context {
951 	/*
952 	 * Protect the states of the events in the list,
953 	 * nr_active, and the list:
954 	 */
955 	raw_spinlock_t			lock;
956 	/*
957 	 * Protect the list of events.  Locking either mutex or lock
958 	 * is sufficient to ensure the list doesn't change; to change
959 	 * the list you need to lock both the mutex and the spinlock.
960 	 */
961 	struct mutex			mutex;
962 
963 	struct list_head		pmu_ctx_list;
964 	struct perf_event_groups	pinned_groups;
965 	struct perf_event_groups	flexible_groups;
966 	struct list_head		event_list;
967 
968 	int				nr_events;
969 	int				nr_user;
970 	int				is_active;
971 
972 	int				nr_stat;
973 	int				nr_freq;
974 	int				rotate_disable;
975 
976 	refcount_t			refcount; /* event <-> ctx */
977 	struct task_struct		*task;
978 
979 	/*
980 	 * Context clock, runs when context enabled.
981 	 */
982 	u64				time;
983 	u64				timestamp;
984 	u64				timeoffset;
985 
986 	/*
987 	 * These fields let us detect when two contexts have both
988 	 * been cloned (inherited) from a common ancestor.
989 	 */
990 	struct perf_event_context	*parent_ctx;
991 	u64				parent_gen;
992 	u64				generation;
993 	int				pin_count;
994 #ifdef CONFIG_CGROUP_PERF
995 	int				nr_cgroups;	 /* cgroup evts */
996 #endif
997 	struct rcu_head			rcu_head;
998 
999 	/*
1000 	 * The count of events for which using the switch-out fast path
1001 	 * should be avoided.
1002 	 *
1003 	 * Sum (event->pending_work + events with
1004 	 *    (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1005 	 *
1006 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1007 	 * that until the signal is delivered.
1008 	 */
1009 	local_t				nr_no_switch_fast;
1010 };
1011 
1012 /**
1013  * struct perf_ctx_data - PMU specific data for a task
1014  * @rcu_head:  To avoid the race on free PMU specific data
1015  * @refcount:  To track users
1016  * @global:    To track system-wide users
1017  * @ctx_cache: Kmem cache of PMU specific data
1018  * @data:      PMU specific data
1019  *
1020  * Currently, the struct is only used in Intel LBR call stack mode to
1021  * save/restore the call stack of a task on context switches.
1022  *
1023  * The rcu_head is used to prevent the race on free the data.
1024  * The data only be allocated when Intel LBR call stack mode is enabled.
1025  * The data will be freed when the mode is disabled.
1026  * The content of the data will only be accessed in context switch, which
1027  * should be protected by rcu_read_lock().
1028  *
1029  * Because of the alignment requirement of Intel Arch LBR, the Kmem cache
1030  * is used to allocate the PMU specific data. The ctx_cache is to track
1031  * the Kmem cache.
1032  *
1033  * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct.
1034  * When system-wide Intel LBR call stack mode is enabled, a buffer with
1035  * constant size will be allocated for each task.
1036  * Also, system memory consumption can further grow when the size of
1037  * struct perf_ctx_data enlarges.
1038  */
1039 struct perf_ctx_data {
1040 	struct rcu_head			rcu_head;
1041 	refcount_t			refcount;
1042 	int				global;
1043 	struct kmem_cache		*ctx_cache;
1044 	void				*data;
1045 };
1046 
1047 struct perf_cpu_pmu_context {
1048 	struct perf_event_pmu_context	epc;
1049 	struct perf_event_pmu_context	*task_epc;
1050 
1051 	struct list_head		sched_cb_entry;
1052 	int				sched_cb_usage;
1053 
1054 	int				active_oncpu;
1055 	int				exclusive;
1056 	int				pmu_disable_count;
1057 
1058 	raw_spinlock_t			hrtimer_lock;
1059 	struct hrtimer			hrtimer;
1060 	ktime_t				hrtimer_interval;
1061 	unsigned int			hrtimer_active;
1062 };
1063 
1064 /**
1065  * struct perf_event_cpu_context - per cpu event context structure
1066  */
1067 struct perf_cpu_context {
1068 	struct perf_event_context	ctx;
1069 	struct perf_event_context	*task_ctx;
1070 	int				online;
1071 
1072 #ifdef CONFIG_CGROUP_PERF
1073 	struct perf_cgroup		*cgrp;
1074 #endif
1075 
1076 	/*
1077 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1078 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1079 	 */
1080 	int				heap_size;
1081 	struct perf_event		**heap;
1082 	struct perf_event		*heap_default[2];
1083 };
1084 
1085 struct perf_output_handle {
1086 	struct perf_event		*event;
1087 	struct perf_buffer		*rb;
1088 	unsigned long			wakeup;
1089 	unsigned long			size;
1090 	union {
1091 		u64			flags;		/* perf_output*() */
1092 		u64			aux_flags;	/* perf_aux_output*() */
1093 		struct {
1094 			u64		skip_read : 1;
1095 		};
1096 	};
1097 	union {
1098 		void			*addr;
1099 		unsigned long		head;
1100 	};
1101 	int				page;
1102 };
1103 
1104 struct bpf_perf_event_data_kern {
1105 	bpf_user_pt_regs_t *regs;
1106 	struct perf_sample_data *data;
1107 	struct perf_event *event;
1108 };
1109 
1110 #ifdef CONFIG_CGROUP_PERF
1111 
1112 /*
1113  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1114  * This is a per-cpu dynamically allocated data structure.
1115  */
1116 struct perf_cgroup_info {
1117 	u64				time;
1118 	u64				timestamp;
1119 	u64				timeoffset;
1120 	int				active;
1121 };
1122 
1123 struct perf_cgroup {
1124 	struct cgroup_subsys_state	css;
1125 	struct perf_cgroup_info	__percpu *info;
1126 };
1127 
1128 /*
1129  * Must ensure cgroup is pinned (css_get) before calling
1130  * this function. In other words, we cannot call this function
1131  * if there is no cgroup event for the current CPU context.
1132  */
1133 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)1134 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1135 {
1136 	return container_of(task_css_check(task, perf_event_cgrp_id,
1137 					   ctx ? lockdep_is_held(&ctx->lock)
1138 					       : true),
1139 			    struct perf_cgroup, css);
1140 }
1141 #endif /* CONFIG_CGROUP_PERF */
1142 
1143 #ifdef CONFIG_PERF_EVENTS
1144 
1145 extern struct perf_event_context *perf_cpu_task_ctx(void);
1146 
1147 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1148 				   struct perf_event *event);
1149 extern void perf_aux_output_end(struct perf_output_handle *handle,
1150 				unsigned long size);
1151 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1152 				unsigned long size);
1153 extern void *perf_get_aux(struct perf_output_handle *handle);
1154 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1155 extern void perf_event_itrace_started(struct perf_event *event);
1156 
1157 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1158 extern void perf_pmu_unregister(struct pmu *pmu);
1159 
1160 extern void __perf_event_task_sched_in(struct task_struct *prev,
1161 				       struct task_struct *task);
1162 extern void __perf_event_task_sched_out(struct task_struct *prev,
1163 					struct task_struct *next);
1164 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1165 extern void perf_event_exit_task(struct task_struct *child);
1166 extern void perf_event_free_task(struct task_struct *task);
1167 extern void perf_event_delayed_put(struct task_struct *task);
1168 extern struct file *perf_event_get(unsigned int fd);
1169 extern const struct perf_event *perf_get_event(struct file *file);
1170 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1171 extern void perf_event_print_debug(void);
1172 extern void perf_pmu_disable(struct pmu *pmu);
1173 extern void perf_pmu_enable(struct pmu *pmu);
1174 extern void perf_sched_cb_dec(struct pmu *pmu);
1175 extern void perf_sched_cb_inc(struct pmu *pmu);
1176 extern int perf_event_task_disable(void);
1177 extern int perf_event_task_enable(void);
1178 
1179 extern void perf_pmu_resched(struct pmu *pmu);
1180 
1181 extern int perf_event_refresh(struct perf_event *event, int refresh);
1182 extern void perf_event_update_userpage(struct perf_event *event);
1183 extern int perf_event_release_kernel(struct perf_event *event);
1184 extern struct perf_event *
1185 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1186 				int cpu,
1187 				struct task_struct *task,
1188 				perf_overflow_handler_t callback,
1189 				void *context);
1190 extern void perf_pmu_migrate_context(struct pmu *pmu,
1191 				int src_cpu, int dst_cpu);
1192 int perf_event_read_local(struct perf_event *event, u64 *value,
1193 			  u64 *enabled, u64 *running);
1194 extern u64 perf_event_read_value(struct perf_event *event,
1195 				 u64 *enabled, u64 *running);
1196 
1197 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1198 
branch_sample_no_flags(const struct perf_event * event)1199 static inline bool branch_sample_no_flags(const struct perf_event *event)
1200 {
1201 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1202 }
1203 
branch_sample_no_cycles(const struct perf_event * event)1204 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1205 {
1206 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1207 }
1208 
branch_sample_type(const struct perf_event * event)1209 static inline bool branch_sample_type(const struct perf_event *event)
1210 {
1211 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1212 }
1213 
branch_sample_hw_index(const struct perf_event * event)1214 static inline bool branch_sample_hw_index(const struct perf_event *event)
1215 {
1216 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1217 }
1218 
branch_sample_priv(const struct perf_event * event)1219 static inline bool branch_sample_priv(const struct perf_event *event)
1220 {
1221 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1222 }
1223 
branch_sample_counters(const struct perf_event * event)1224 static inline bool branch_sample_counters(const struct perf_event *event)
1225 {
1226 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1227 }
1228 
branch_sample_call_stack(const struct perf_event * event)1229 static inline bool branch_sample_call_stack(const struct perf_event *event)
1230 {
1231 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1232 }
1233 
1234 struct perf_sample_data {
1235 	/*
1236 	 * Fields set by perf_sample_data_init() unconditionally,
1237 	 * group so as to minimize the cachelines touched.
1238 	 */
1239 	u64				sample_flags;
1240 	u64				period;
1241 	u64				dyn_size;
1242 
1243 	/*
1244 	 * Fields commonly set by __perf_event_header__init_id(),
1245 	 * group so as to minimize the cachelines touched.
1246 	 */
1247 	u64				type;
1248 	struct {
1249 		u32	pid;
1250 		u32	tid;
1251 	}				tid_entry;
1252 	u64				time;
1253 	u64				id;
1254 	struct {
1255 		u32	cpu;
1256 		u32	reserved;
1257 	}				cpu_entry;
1258 
1259 	/*
1260 	 * The other fields, optionally {set,used} by
1261 	 * perf_{prepare,output}_sample().
1262 	 */
1263 	u64				ip;
1264 	struct perf_callchain_entry	*callchain;
1265 	struct perf_raw_record		*raw;
1266 	struct perf_branch_stack	*br_stack;
1267 	u64				*br_stack_cntr;
1268 	union perf_sample_weight	weight;
1269 	union  perf_mem_data_src	data_src;
1270 	u64				txn;
1271 
1272 	struct perf_regs		regs_user;
1273 	struct perf_regs		regs_intr;
1274 	u64				stack_user_size;
1275 
1276 	u64				stream_id;
1277 	u64				cgroup;
1278 	u64				addr;
1279 	u64				phys_addr;
1280 	u64				data_page_size;
1281 	u64				code_page_size;
1282 	u64				aux_size;
1283 } ____cacheline_aligned;
1284 
1285 /* default value for data source */
1286 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1287 		    PERF_MEM_S(LVL, NA)   |\
1288 		    PERF_MEM_S(SNOOP, NA) |\
1289 		    PERF_MEM_S(LOCK, NA)  |\
1290 		    PERF_MEM_S(TLB, NA)   |\
1291 		    PERF_MEM_S(LVLNUM, NA))
1292 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1293 static inline void perf_sample_data_init(struct perf_sample_data *data,
1294 					 u64 addr, u64 period)
1295 {
1296 	/* remaining struct members initialized in perf_prepare_sample() */
1297 	data->sample_flags = PERF_SAMPLE_PERIOD;
1298 	data->period = period;
1299 	data->dyn_size = 0;
1300 
1301 	if (addr) {
1302 		data->addr = addr;
1303 		data->sample_flags |= PERF_SAMPLE_ADDR;
1304 	}
1305 }
1306 
perf_sample_save_callchain(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)1307 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1308 					      struct perf_event *event,
1309 					      struct pt_regs *regs)
1310 {
1311 	int size = 1;
1312 
1313 	if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1314 		return;
1315 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN))
1316 		return;
1317 
1318 	data->callchain = perf_callchain(event, regs);
1319 	size += data->callchain->nr;
1320 
1321 	data->dyn_size += size * sizeof(u64);
1322 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1323 }
1324 
perf_sample_save_raw_data(struct perf_sample_data * data,struct perf_event * event,struct perf_raw_record * raw)1325 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1326 					     struct perf_event *event,
1327 					     struct perf_raw_record *raw)
1328 {
1329 	struct perf_raw_frag *frag = &raw->frag;
1330 	u32 sum = 0;
1331 	int size;
1332 
1333 	if (!(event->attr.sample_type & PERF_SAMPLE_RAW))
1334 		return;
1335 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW))
1336 		return;
1337 
1338 	do {
1339 		sum += frag->size;
1340 		if (perf_raw_frag_last(frag))
1341 			break;
1342 		frag = frag->next;
1343 	} while (1);
1344 
1345 	size = round_up(sum + sizeof(u32), sizeof(u64));
1346 	raw->size = size - sizeof(u32);
1347 	frag->pad = raw->size - sum;
1348 
1349 	data->raw = raw;
1350 	data->dyn_size += size;
1351 	data->sample_flags |= PERF_SAMPLE_RAW;
1352 }
1353 
has_branch_stack(struct perf_event * event)1354 static inline bool has_branch_stack(struct perf_event *event)
1355 {
1356 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1357 }
1358 
perf_sample_save_brstack(struct perf_sample_data * data,struct perf_event * event,struct perf_branch_stack * brs,u64 * brs_cntr)1359 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1360 					    struct perf_event *event,
1361 					    struct perf_branch_stack *brs,
1362 					    u64 *brs_cntr)
1363 {
1364 	int size = sizeof(u64); /* nr */
1365 
1366 	if (!has_branch_stack(event))
1367 		return;
1368 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK))
1369 		return;
1370 
1371 	if (branch_sample_hw_index(event))
1372 		size += sizeof(u64);
1373 
1374 	brs->nr = min_t(u16, event->attr.sample_max_stack, brs->nr);
1375 
1376 	size += brs->nr * sizeof(struct perf_branch_entry);
1377 
1378 	/*
1379 	 * The extension space for counters is appended after the
1380 	 * struct perf_branch_stack. It is used to store the occurrences
1381 	 * of events of each branch.
1382 	 */
1383 	if (brs_cntr)
1384 		size += brs->nr * sizeof(u64);
1385 
1386 	data->br_stack = brs;
1387 	data->br_stack_cntr = brs_cntr;
1388 	data->dyn_size += size;
1389 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1390 }
1391 
perf_sample_data_size(struct perf_sample_data * data,struct perf_event * event)1392 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1393 					struct perf_event *event)
1394 {
1395 	u32 size = sizeof(struct perf_event_header);
1396 
1397 	size += event->header_size + event->id_header_size;
1398 	size += data->dyn_size;
1399 
1400 	return size;
1401 }
1402 
1403 /*
1404  * Clear all bitfields in the perf_branch_entry.
1405  * The to and from fields are not cleared because they are
1406  * systematically modified by caller.
1407  */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1408 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1409 {
1410 	br->mispred = 0;
1411 	br->predicted = 0;
1412 	br->in_tx = 0;
1413 	br->abort = 0;
1414 	br->cycles = 0;
1415 	br->type = 0;
1416 	br->spec = PERF_BR_SPEC_NA;
1417 	br->reserved = 0;
1418 }
1419 
1420 extern void perf_output_sample(struct perf_output_handle *handle,
1421 			       struct perf_event_header *header,
1422 			       struct perf_sample_data *data,
1423 			       struct perf_event *event);
1424 extern void perf_prepare_sample(struct perf_sample_data *data,
1425 				struct perf_event *event,
1426 				struct pt_regs *regs);
1427 extern void perf_prepare_header(struct perf_event_header *header,
1428 				struct perf_sample_data *data,
1429 				struct perf_event *event,
1430 				struct pt_regs *regs);
1431 
1432 extern int perf_event_overflow(struct perf_event *event,
1433 				 struct perf_sample_data *data,
1434 				 struct pt_regs *regs);
1435 
1436 extern void perf_event_output_forward(struct perf_event *event,
1437 				     struct perf_sample_data *data,
1438 				     struct pt_regs *regs);
1439 extern void perf_event_output_backward(struct perf_event *event,
1440 				       struct perf_sample_data *data,
1441 				       struct pt_regs *regs);
1442 extern int perf_event_output(struct perf_event *event,
1443 			     struct perf_sample_data *data,
1444 			     struct pt_regs *regs);
1445 
1446 static inline bool
is_default_overflow_handler(struct perf_event * event)1447 is_default_overflow_handler(struct perf_event *event)
1448 {
1449 	perf_overflow_handler_t overflow_handler = event->overflow_handler;
1450 
1451 	if (likely(overflow_handler == perf_event_output_forward))
1452 		return true;
1453 	if (unlikely(overflow_handler == perf_event_output_backward))
1454 		return true;
1455 	return false;
1456 }
1457 
1458 extern void
1459 perf_event_header__init_id(struct perf_event_header *header,
1460 			   struct perf_sample_data *data,
1461 			   struct perf_event *event);
1462 extern void
1463 perf_event__output_id_sample(struct perf_event *event,
1464 			     struct perf_output_handle *handle,
1465 			     struct perf_sample_data *sample);
1466 
1467 extern void
1468 perf_log_lost_samples(struct perf_event *event, u64 lost);
1469 
event_has_any_exclude_flag(struct perf_event * event)1470 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1471 {
1472 	struct perf_event_attr *attr = &event->attr;
1473 
1474 	return attr->exclude_idle || attr->exclude_user ||
1475 	       attr->exclude_kernel || attr->exclude_hv ||
1476 	       attr->exclude_guest || attr->exclude_host;
1477 }
1478 
is_sampling_event(struct perf_event * event)1479 static inline bool is_sampling_event(struct perf_event *event)
1480 {
1481 	return event->attr.sample_period != 0;
1482 }
1483 
1484 /*
1485  * Return 1 for a software event, 0 for a hardware event
1486  */
is_software_event(struct perf_event * event)1487 static inline int is_software_event(struct perf_event *event)
1488 {
1489 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1490 }
1491 
1492 /*
1493  * Return 1 for event in sw context, 0 for event in hw context
1494  */
in_software_context(struct perf_event * event)1495 static inline int in_software_context(struct perf_event *event)
1496 {
1497 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1498 }
1499 
is_exclusive_pmu(struct pmu * pmu)1500 static inline int is_exclusive_pmu(struct pmu *pmu)
1501 {
1502 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1503 }
1504 
1505 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1506 
1507 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1508 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1509 
1510 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1511 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1512 #endif
1513 
1514 /*
1515  * When generating a perf sample in-line, instead of from an interrupt /
1516  * exception, we lack a pt_regs. This is typically used from software events
1517  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1518  *
1519  * We typically don't need a full set, but (for x86) do require:
1520  * - ip for PERF_SAMPLE_IP
1521  * - cs for user_mode() tests
1522  * - sp for PERF_SAMPLE_CALLCHAIN
1523  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1524  *
1525  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1526  * things like PERF_SAMPLE_REGS_INTR.
1527  */
perf_fetch_caller_regs(struct pt_regs * regs)1528 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1529 {
1530 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1531 }
1532 
1533 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1534 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1535 {
1536 	if (static_key_false(&perf_swevent_enabled[event_id]))
1537 		__perf_sw_event(event_id, nr, regs, addr);
1538 }
1539 
1540 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1541 
1542 /*
1543  * 'Special' version for the scheduler, it hard assumes no recursion,
1544  * which is guaranteed by us not actually scheduling inside other swevents
1545  * because those disable preemption.
1546  */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1547 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1548 {
1549 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1550 
1551 	perf_fetch_caller_regs(regs);
1552 	___perf_sw_event(event_id, nr, regs, addr);
1553 }
1554 
1555 extern struct static_key_false perf_sched_events;
1556 
__perf_sw_enabled(int swevt)1557 static __always_inline bool __perf_sw_enabled(int swevt)
1558 {
1559 	return static_key_false(&perf_swevent_enabled[swevt]);
1560 }
1561 
perf_event_task_migrate(struct task_struct * task)1562 static inline void perf_event_task_migrate(struct task_struct *task)
1563 {
1564 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1565 		task->sched_migrated = 1;
1566 }
1567 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1568 static inline void perf_event_task_sched_in(struct task_struct *prev,
1569 					    struct task_struct *task)
1570 {
1571 	if (static_branch_unlikely(&perf_sched_events))
1572 		__perf_event_task_sched_in(prev, task);
1573 
1574 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1575 	    task->sched_migrated) {
1576 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1577 		task->sched_migrated = 0;
1578 	}
1579 }
1580 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1581 static inline void perf_event_task_sched_out(struct task_struct *prev,
1582 					     struct task_struct *next)
1583 {
1584 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1585 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1586 
1587 #ifdef CONFIG_CGROUP_PERF
1588 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1589 	    perf_cgroup_from_task(prev, NULL) !=
1590 	    perf_cgroup_from_task(next, NULL))
1591 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1592 #endif
1593 
1594 	if (static_branch_unlikely(&perf_sched_events))
1595 		__perf_event_task_sched_out(prev, next);
1596 }
1597 
1598 extern void perf_event_mmap(struct vm_area_struct *vma);
1599 
1600 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1601 			       bool unregister, const char *sym);
1602 extern void perf_event_bpf_event(struct bpf_prog *prog,
1603 				 enum perf_bpf_event_type type,
1604 				 u16 flags);
1605 
1606 #ifdef CONFIG_GUEST_PERF_EVENTS
1607 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1608 
1609 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1610 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1611 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1612 
perf_guest_state(void)1613 static inline unsigned int perf_guest_state(void)
1614 {
1615 	return static_call(__perf_guest_state)();
1616 }
perf_guest_get_ip(void)1617 static inline unsigned long perf_guest_get_ip(void)
1618 {
1619 	return static_call(__perf_guest_get_ip)();
1620 }
perf_guest_handle_intel_pt_intr(void)1621 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1622 {
1623 	return static_call(__perf_guest_handle_intel_pt_intr)();
1624 }
1625 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1626 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1627 #else
perf_guest_state(void)1628 static inline unsigned int perf_guest_state(void)		 { return 0; }
perf_guest_get_ip(void)1629 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
perf_guest_handle_intel_pt_intr(void)1630 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1631 #endif /* CONFIG_GUEST_PERF_EVENTS */
1632 
1633 extern void perf_event_exec(void);
1634 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1635 extern void perf_event_namespaces(struct task_struct *tsk);
1636 extern void perf_event_fork(struct task_struct *tsk);
1637 extern void perf_event_text_poke(const void *addr,
1638 				 const void *old_bytes, size_t old_len,
1639 				 const void *new_bytes, size_t new_len);
1640 
1641 /* Callchains */
1642 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1643 
1644 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1645 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1646 extern struct perf_callchain_entry *
1647 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1648 		   u32 max_stack, bool crosstask, bool add_mark);
1649 extern int get_callchain_buffers(int max_stack);
1650 extern void put_callchain_buffers(void);
1651 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1652 extern void put_callchain_entry(int rctx);
1653 
1654 extern int sysctl_perf_event_max_stack;
1655 extern int sysctl_perf_event_max_contexts_per_stack;
1656 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1657 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1658 {
1659 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1660 		struct perf_callchain_entry *entry = ctx->entry;
1661 		entry->ip[entry->nr++] = ip;
1662 		++ctx->contexts;
1663 		return 0;
1664 	} else {
1665 		ctx->contexts_maxed = true;
1666 		return -1; /* no more room, stop walking the stack */
1667 	}
1668 }
1669 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1670 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1671 {
1672 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1673 		struct perf_callchain_entry *entry = ctx->entry;
1674 		entry->ip[entry->nr++] = ip;
1675 		++ctx->nr;
1676 		return 0;
1677 	} else {
1678 		return -1; /* no more room, stop walking the stack */
1679 	}
1680 }
1681 
1682 extern int sysctl_perf_event_paranoid;
1683 extern int sysctl_perf_event_sample_rate;
1684 
1685 extern void perf_sample_event_took(u64 sample_len_ns);
1686 
1687 /* Access to perf_event_open(2) syscall. */
1688 #define PERF_SECURITY_OPEN		0
1689 
1690 /* Finer grained perf_event_open(2) access control. */
1691 #define PERF_SECURITY_CPU		1
1692 #define PERF_SECURITY_KERNEL		2
1693 #define PERF_SECURITY_TRACEPOINT	3
1694 
perf_is_paranoid(void)1695 static inline int perf_is_paranoid(void)
1696 {
1697 	return sysctl_perf_event_paranoid > -1;
1698 }
1699 
1700 int perf_allow_kernel(void);
1701 
perf_allow_cpu(void)1702 static inline int perf_allow_cpu(void)
1703 {
1704 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1705 		return -EACCES;
1706 
1707 	return security_perf_event_open(PERF_SECURITY_CPU);
1708 }
1709 
perf_allow_tracepoint(void)1710 static inline int perf_allow_tracepoint(void)
1711 {
1712 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1713 		return -EPERM;
1714 
1715 	return security_perf_event_open(PERF_SECURITY_TRACEPOINT);
1716 }
1717 
1718 extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs);
1719 
1720 extern void perf_event_init(void);
1721 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1722 			  int entry_size, struct pt_regs *regs,
1723 			  struct hlist_head *head, int rctx,
1724 			  struct task_struct *task);
1725 extern void perf_bp_event(struct perf_event *event, void *data);
1726 
1727 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs);
1728 extern unsigned long perf_instruction_pointer(struct perf_event *event,
1729 					      struct pt_regs *regs);
1730 
1731 #ifndef perf_arch_misc_flags
1732 # define perf_arch_misc_flags(regs) \
1733 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1734 # define perf_arch_instruction_pointer(regs)	instruction_pointer(regs)
1735 #endif
1736 #ifndef perf_arch_bpf_user_pt_regs
1737 # define perf_arch_bpf_user_pt_regs(regs) regs
1738 #endif
1739 
1740 #ifndef perf_arch_guest_misc_flags
perf_arch_guest_misc_flags(struct pt_regs * regs)1741 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
1742 {
1743 	unsigned long guest_state = perf_guest_state();
1744 
1745 	if (!(guest_state & PERF_GUEST_ACTIVE))
1746 		return 0;
1747 
1748 	if (guest_state & PERF_GUEST_USER)
1749 		return PERF_RECORD_MISC_GUEST_USER;
1750 	else
1751 		return PERF_RECORD_MISC_GUEST_KERNEL;
1752 }
1753 # define perf_arch_guest_misc_flags(regs)	perf_arch_guest_misc_flags(regs)
1754 #endif
1755 
needs_branch_stack(struct perf_event * event)1756 static inline bool needs_branch_stack(struct perf_event *event)
1757 {
1758 	return event->attr.branch_sample_type != 0;
1759 }
1760 
has_aux(struct perf_event * event)1761 static inline bool has_aux(struct perf_event *event)
1762 {
1763 	return event->pmu->setup_aux;
1764 }
1765 
has_aux_action(struct perf_event * event)1766 static inline bool has_aux_action(struct perf_event *event)
1767 {
1768 	return event->attr.aux_sample_size ||
1769 	       event->attr.aux_pause ||
1770 	       event->attr.aux_resume;
1771 }
1772 
is_write_backward(struct perf_event * event)1773 static inline bool is_write_backward(struct perf_event *event)
1774 {
1775 	return !!event->attr.write_backward;
1776 }
1777 
has_addr_filter(struct perf_event * event)1778 static inline bool has_addr_filter(struct perf_event *event)
1779 {
1780 	return event->pmu->nr_addr_filters;
1781 }
1782 
1783 /*
1784  * An inherited event uses parent's filters
1785  */
1786 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1787 perf_event_addr_filters(struct perf_event *event)
1788 {
1789 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1790 
1791 	if (event->parent)
1792 		ifh = &event->parent->addr_filters;
1793 
1794 	return ifh;
1795 }
1796 
perf_event_fasync(struct perf_event * event)1797 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1798 {
1799 	/* Only the parent has fasync state */
1800 	if (event->parent)
1801 		event = event->parent;
1802 	return &event->fasync;
1803 }
1804 
1805 extern void perf_event_addr_filters_sync(struct perf_event *event);
1806 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1807 
1808 extern int perf_output_begin(struct perf_output_handle *handle,
1809 			     struct perf_sample_data *data,
1810 			     struct perf_event *event, unsigned int size);
1811 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1812 				     struct perf_sample_data *data,
1813 				     struct perf_event *event,
1814 				     unsigned int size);
1815 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1816 				      struct perf_sample_data *data,
1817 				      struct perf_event *event,
1818 				      unsigned int size);
1819 
1820 extern void perf_output_end(struct perf_output_handle *handle);
1821 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1822 			     const void *buf, unsigned int len);
1823 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1824 				     unsigned int len);
1825 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1826 				 struct perf_output_handle *handle,
1827 				 unsigned long from, unsigned long to);
1828 extern int perf_swevent_get_recursion_context(void);
1829 extern void perf_swevent_put_recursion_context(int rctx);
1830 extern u64 perf_swevent_set_period(struct perf_event *event);
1831 extern void perf_event_enable(struct perf_event *event);
1832 extern void perf_event_disable(struct perf_event *event);
1833 extern void perf_event_disable_local(struct perf_event *event);
1834 extern void perf_event_disable_inatomic(struct perf_event *event);
1835 extern void perf_event_task_tick(void);
1836 extern int perf_event_account_interrupt(struct perf_event *event);
1837 extern int perf_event_period(struct perf_event *event, u64 value);
1838 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1839 #else /* !CONFIG_PERF_EVENTS: */
1840 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1841 perf_aux_output_begin(struct perf_output_handle *handle,
1842 		      struct perf_event *event)				{ return NULL; }
1843 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1844 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1845 									{ }
1846 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1847 perf_aux_output_skip(struct perf_output_handle *handle,
1848 		     unsigned long size)				{ return -EINVAL; }
1849 static inline void *
perf_get_aux(struct perf_output_handle * handle)1850 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1851 static inline void
perf_event_task_migrate(struct task_struct * task)1852 perf_event_task_migrate(struct task_struct *task)			{ }
1853 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1854 perf_event_task_sched_in(struct task_struct *prev,
1855 			 struct task_struct *task)			{ }
1856 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1857 perf_event_task_sched_out(struct task_struct *prev,
1858 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1859 static inline int perf_event_init_task(struct task_struct *child,
1860 				       u64 clone_flags)			{ return 0; }
perf_event_exit_task(struct task_struct * child)1861 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1862 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1863 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1864 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1865 static inline const struct perf_event *perf_get_event(struct file *file)
1866 {
1867 	return ERR_PTR(-EINVAL);
1868 }
perf_event_attrs(struct perf_event * event)1869 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1870 {
1871 	return ERR_PTR(-EINVAL);
1872 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1873 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1874 					u64 *enabled, u64 *running)
1875 {
1876 	return -EINVAL;
1877 }
perf_event_print_debug(void)1878 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1879 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1880 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1881 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1882 {
1883 	return -EINVAL;
1884 }
1885 
1886 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1887 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1888 static inline void
perf_bp_event(struct perf_event * event,void * data)1889 perf_bp_event(struct perf_event *event, void *data)			{ }
1890 
perf_event_mmap(struct vm_area_struct * vma)1891 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1892 
1893 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1894 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1895 				      bool unregister, const char *sym)	{ }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1896 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1897 					enum perf_bpf_event_type type,
1898 					u16 flags)			{ }
perf_event_exec(void)1899 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1900 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1901 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1902 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1903 static inline void perf_event_text_poke(const void *addr,
1904 					const void *old_bytes,
1905 					size_t old_len,
1906 					const void *new_bytes,
1907 					size_t new_len)			{ }
perf_event_init(void)1908 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1909 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1910 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1911 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1912 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1913 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1914 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1915 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1916 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
perf_event_period(struct perf_event * event,u64 value)1917 static inline int perf_event_period(struct perf_event *event, u64 value)
1918 {
1919 	return -EINVAL;
1920 }
perf_event_pause(struct perf_event * event,bool reset)1921 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1922 {
1923 	return 0;
1924 }
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)1925 static inline int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
1926 {
1927 	return 0;
1928 }
1929 #endif
1930 
1931 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1932 extern void perf_restore_debug_store(void);
1933 #else
perf_restore_debug_store(void)1934 static inline void perf_restore_debug_store(void)			{ }
1935 #endif
1936 
1937 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1938 
1939 struct perf_pmu_events_attr {
1940 	struct device_attribute attr;
1941 	u64 id;
1942 	const char *event_str;
1943 };
1944 
1945 struct perf_pmu_events_ht_attr {
1946 	struct device_attribute			attr;
1947 	u64					id;
1948 	const char				*event_str_ht;
1949 	const char				*event_str_noht;
1950 };
1951 
1952 struct perf_pmu_events_hybrid_attr {
1953 	struct device_attribute			attr;
1954 	u64					id;
1955 	const char				*event_str;
1956 	u64					pmu_type;
1957 };
1958 
1959 struct perf_pmu_format_hybrid_attr {
1960 	struct device_attribute			attr;
1961 	u64					pmu_type;
1962 };
1963 
1964 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1965 			      char *page);
1966 
1967 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1968 static struct perf_pmu_events_attr _var = {				\
1969 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1970 	.id   =  _id,							\
1971 };
1972 
1973 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1974 static struct perf_pmu_events_attr _var = {				    \
1975 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1976 	.id		= 0,						    \
1977 	.event_str	= _str,						    \
1978 };
1979 
1980 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1981 	(&((struct perf_pmu_events_attr[]) {				\
1982 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1983 		  .id = _id, }						\
1984 	})[0].attr.attr)
1985 
1986 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1987 static ssize_t								\
1988 _name##_show(struct device *dev,					\
1989 			       struct device_attribute *attr,		\
1990 			       char *page)				\
1991 {									\
1992 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1993 	return sprintf(page, _format "\n");				\
1994 }									\
1995 
1996 #define PMU_FORMAT_ATTR(_name, _format)					\
1997 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1998 									\
1999 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
2000 
2001 /* Performance counter hotplug functions */
2002 #ifdef CONFIG_PERF_EVENTS
2003 int perf_event_init_cpu(unsigned int cpu);
2004 int perf_event_exit_cpu(unsigned int cpu);
2005 #else
2006 #define perf_event_init_cpu	NULL
2007 #define perf_event_exit_cpu	NULL
2008 #endif
2009 
2010 extern void arch_perf_update_userpage(struct perf_event *event,
2011 				      struct perf_event_mmap_page *userpg,
2012 				      u64 now);
2013 
2014 /*
2015  * Snapshot branch stack on software events.
2016  *
2017  * Branch stack can be very useful in understanding software events. For
2018  * example, when a long function, e.g. sys_perf_event_open, returns an
2019  * errno, it is not obvious why the function failed. Branch stack could
2020  * provide very helpful information in this type of scenarios.
2021  *
2022  * On software event, it is necessary to stop the hardware branch recorder
2023  * fast. Otherwise, the hardware register/buffer will be flushed with
2024  * entries of the triggering event. Therefore, static call is used to
2025  * stop the hardware recorder.
2026  */
2027 
2028 /*
2029  * cnt is the number of entries allocated for entries.
2030  * Return number of entries copied to .
2031  */
2032 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
2033 					   unsigned int cnt);
2034 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
2035 
2036 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)2037 static inline void perf_lopwr_cb(bool mode)
2038 {
2039 }
2040 #endif
2041 
2042 #endif /* _LINUX_PERF_EVENT_H */
2043