1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #include <linux/lockdep.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static void igb_init_queue_configuration(struct igb_adapter *adapter);
111 static int igb_sw_init(struct igb_adapter *);
112 int igb_open(struct net_device *);
113 int igb_close(struct net_device *);
114 static void igb_configure(struct igb_adapter *);
115 static void igb_configure_tx(struct igb_adapter *);
116 static void igb_configure_rx(struct igb_adapter *);
117 static void igb_clean_all_tx_rings(struct igb_adapter *);
118 static void igb_clean_all_rx_rings(struct igb_adapter *);
119 static void igb_clean_tx_ring(struct igb_ring *);
120 static void igb_clean_rx_ring(struct igb_ring *);
121 static void igb_set_rx_mode(struct net_device *);
122 static void igb_update_phy_info(struct timer_list *);
123 static void igb_watchdog(struct timer_list *);
124 static void igb_watchdog_task(struct work_struct *);
125 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
126 static void igb_get_stats64(struct net_device *dev,
127 struct rtnl_link_stats64 *stats);
128 static int igb_change_mtu(struct net_device *, int);
129 static int igb_set_mac(struct net_device *, void *);
130 static void igb_set_uta(struct igb_adapter *adapter, bool set);
131 static irqreturn_t igb_intr(int irq, void *);
132 static irqreturn_t igb_intr_msi(int irq, void *);
133 static irqreturn_t igb_msix_other(int irq, void *);
134 static irqreturn_t igb_msix_ring(int irq, void *);
135 #ifdef CONFIG_IGB_DCA
136 static void igb_update_dca(struct igb_q_vector *);
137 static void igb_setup_dca(struct igb_adapter *);
138 #endif /* CONFIG_IGB_DCA */
139 static int igb_poll(struct napi_struct *, int);
140 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
141 static int igb_clean_rx_irq(struct igb_q_vector *, int);
142 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
144 static void igb_reset_task(struct work_struct *);
145 static void igb_vlan_mode(struct net_device *netdev,
146 netdev_features_t features);
147 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
148 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
149 static void igb_restore_vlan(struct igb_adapter *);
150 static void igb_rar_set_index(struct igb_adapter *, u32);
151 static void igb_ping_all_vfs(struct igb_adapter *);
152 static void igb_msg_task(struct igb_adapter *);
153 static void igb_vmm_control(struct igb_adapter *);
154 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
155 static void igb_flush_mac_table(struct igb_adapter *);
156 static int igb_available_rars(struct igb_adapter *, u8);
157 static void igb_set_default_mac_filter(struct igb_adapter *);
158 static int igb_uc_sync(struct net_device *, const unsigned char *);
159 static int igb_uc_unsync(struct net_device *, const unsigned char *);
160 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
161 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
162 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
163 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
164 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
165 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
166 bool setting);
167 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
168 bool setting);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170 struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
173 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
174
175 #ifdef CONFIG_PCI_IOV
176 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
177 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
178 #endif
179
180 #ifdef CONFIG_IGB_DCA
181 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
182 static struct notifier_block dca_notifier = {
183 .notifier_call = igb_notify_dca,
184 .next = NULL,
185 .priority = 0
186 };
187 #endif
188 #ifdef CONFIG_PCI_IOV
189 static unsigned int max_vfs;
190 module_param(max_vfs, uint, 0444);
191 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
192 #endif /* CONFIG_PCI_IOV */
193
194 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
195 pci_channel_state_t);
196 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
197 static void igb_io_resume(struct pci_dev *);
198
199 static const struct pci_error_handlers igb_err_handler = {
200 .error_detected = igb_io_error_detected,
201 .slot_reset = igb_io_slot_reset,
202 .resume = igb_io_resume,
203 };
204
205 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
206
207 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
208 MODULE_LICENSE("GPL v2");
209
210 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
211 static int debug = -1;
212 module_param(debug, int, 0);
213 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
214
215 struct igb_reg_info {
216 u32 ofs;
217 char *name;
218 };
219
220 static const struct igb_reg_info igb_reg_info_tbl[] = {
221
222 /* General Registers */
223 {E1000_CTRL, "CTRL"},
224 {E1000_STATUS, "STATUS"},
225 {E1000_CTRL_EXT, "CTRL_EXT"},
226
227 /* Interrupt Registers */
228 {E1000_ICR, "ICR"},
229
230 /* RX Registers */
231 {E1000_RCTL, "RCTL"},
232 {E1000_RDLEN(0), "RDLEN"},
233 {E1000_RDH(0), "RDH"},
234 {E1000_RDT(0), "RDT"},
235 {E1000_RXDCTL(0), "RXDCTL"},
236 {E1000_RDBAL(0), "RDBAL"},
237 {E1000_RDBAH(0), "RDBAH"},
238
239 /* TX Registers */
240 {E1000_TCTL, "TCTL"},
241 {E1000_TDBAL(0), "TDBAL"},
242 {E1000_TDBAH(0), "TDBAH"},
243 {E1000_TDLEN(0), "TDLEN"},
244 {E1000_TDH(0), "TDH"},
245 {E1000_TDT(0), "TDT"},
246 {E1000_TXDCTL(0), "TXDCTL"},
247 {E1000_TDFH, "TDFH"},
248 {E1000_TDFT, "TDFT"},
249 {E1000_TDFHS, "TDFHS"},
250 {E1000_TDFPC, "TDFPC"},
251
252 /* List Terminator */
253 {}
254 };
255
256 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)257 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
258 {
259 int n = 0;
260 char rname[16];
261 u32 regs[8];
262
263 switch (reginfo->ofs) {
264 case E1000_RDLEN(0):
265 for (n = 0; n < 4; n++)
266 regs[n] = rd32(E1000_RDLEN(n));
267 break;
268 case E1000_RDH(0):
269 for (n = 0; n < 4; n++)
270 regs[n] = rd32(E1000_RDH(n));
271 break;
272 case E1000_RDT(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDT(n));
275 break;
276 case E1000_RXDCTL(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RXDCTL(n));
279 break;
280 case E1000_RDBAL(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDBAL(n));
283 break;
284 case E1000_RDBAH(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RDBAH(n));
287 break;
288 case E1000_TDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_TDBAL(n));
291 break;
292 case E1000_TDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_TDBAH(n));
295 break;
296 case E1000_TDLEN(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_TDLEN(n));
299 break;
300 case E1000_TDH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDH(n));
303 break;
304 case E1000_TDT(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDT(n));
307 break;
308 case E1000_TXDCTL(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TXDCTL(n));
311 break;
312 default:
313 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
314 return;
315 }
316
317 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
318 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
319 regs[2], regs[3]);
320 }
321
322 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)323 static void igb_dump(struct igb_adapter *adapter)
324 {
325 struct net_device *netdev = adapter->netdev;
326 struct e1000_hw *hw = &adapter->hw;
327 struct igb_reg_info *reginfo;
328 struct igb_ring *tx_ring;
329 union e1000_adv_tx_desc *tx_desc;
330 struct my_u0 { __le64 a; __le64 b; } *u0;
331 struct igb_ring *rx_ring;
332 union e1000_adv_rx_desc *rx_desc;
333 u32 staterr;
334 u16 i, n;
335
336 if (!netif_msg_hw(adapter))
337 return;
338
339 /* Print netdevice Info */
340 if (netdev) {
341 dev_info(&adapter->pdev->dev, "Net device Info\n");
342 pr_info("Device Name state trans_start\n");
343 pr_info("%-15s %016lX %016lX\n", netdev->name,
344 netdev->state, dev_trans_start(netdev));
345 }
346
347 /* Print Registers */
348 dev_info(&adapter->pdev->dev, "Register Dump\n");
349 pr_info(" Register Name Value\n");
350 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
351 reginfo->name; reginfo++) {
352 igb_regdump(hw, reginfo);
353 }
354
355 /* Print TX Ring Summary */
356 if (!netdev || !netif_running(netdev))
357 goto exit;
358
359 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
360 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
361 for (n = 0; n < adapter->num_tx_queues; n++) {
362 struct igb_tx_buffer *buffer_info;
363 tx_ring = adapter->tx_ring[n];
364 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
365 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
366 n, tx_ring->next_to_use, tx_ring->next_to_clean,
367 (u64)dma_unmap_addr(buffer_info, dma),
368 dma_unmap_len(buffer_info, len),
369 buffer_info->next_to_watch,
370 (u64)buffer_info->time_stamp);
371 }
372
373 /* Print TX Rings */
374 if (!netif_msg_tx_done(adapter))
375 goto rx_ring_summary;
376
377 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
378
379 /* Transmit Descriptor Formats
380 *
381 * Advanced Transmit Descriptor
382 * +--------------------------------------------------------------+
383 * 0 | Buffer Address [63:0] |
384 * +--------------------------------------------------------------+
385 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
386 * +--------------------------------------------------------------+
387 * 63 46 45 40 39 38 36 35 32 31 24 15 0
388 */
389
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 tx_ring = adapter->tx_ring[n];
392 pr_info("------------------------------------\n");
393 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
394 pr_info("------------------------------------\n");
395 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
396
397 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
398 const char *next_desc;
399 struct igb_tx_buffer *buffer_info;
400 tx_desc = IGB_TX_DESC(tx_ring, i);
401 buffer_info = &tx_ring->tx_buffer_info[i];
402 u0 = (struct my_u0 *)tx_desc;
403 if (i == tx_ring->next_to_use &&
404 i == tx_ring->next_to_clean)
405 next_desc = " NTC/U";
406 else if (i == tx_ring->next_to_use)
407 next_desc = " NTU";
408 else if (i == tx_ring->next_to_clean)
409 next_desc = " NTC";
410 else
411 next_desc = "";
412
413 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
414 i, le64_to_cpu(u0->a),
415 le64_to_cpu(u0->b),
416 (u64)dma_unmap_addr(buffer_info, dma),
417 dma_unmap_len(buffer_info, len),
418 buffer_info->next_to_watch,
419 (u64)buffer_info->time_stamp,
420 buffer_info->skb, next_desc);
421
422 if (netif_msg_pktdata(adapter) && buffer_info->skb)
423 print_hex_dump(KERN_INFO, "",
424 DUMP_PREFIX_ADDRESS,
425 16, 1, buffer_info->skb->data,
426 dma_unmap_len(buffer_info, len),
427 true);
428 }
429 }
430
431 /* Print RX Rings Summary */
432 rx_ring_summary:
433 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
434 pr_info("Queue [NTU] [NTC]\n");
435 for (n = 0; n < adapter->num_rx_queues; n++) {
436 rx_ring = adapter->rx_ring[n];
437 pr_info(" %5d %5X %5X\n",
438 n, rx_ring->next_to_use, rx_ring->next_to_clean);
439 }
440
441 /* Print RX Rings */
442 if (!netif_msg_rx_status(adapter))
443 goto exit;
444
445 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
446
447 /* Advanced Receive Descriptor (Read) Format
448 * 63 1 0
449 * +-----------------------------------------------------+
450 * 0 | Packet Buffer Address [63:1] |A0/NSE|
451 * +----------------------------------------------+------+
452 * 8 | Header Buffer Address [63:1] | DD |
453 * +-----------------------------------------------------+
454 *
455 *
456 * Advanced Receive Descriptor (Write-Back) Format
457 *
458 * 63 48 47 32 31 30 21 20 17 16 4 3 0
459 * +------------------------------------------------------+
460 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
461 * | Checksum Ident | | | | Type | Type |
462 * +------------------------------------------------------+
463 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
464 * +------------------------------------------------------+
465 * 63 48 47 32 31 20 19 0
466 */
467
468 for (n = 0; n < adapter->num_rx_queues; n++) {
469 rx_ring = adapter->rx_ring[n];
470 pr_info("------------------------------------\n");
471 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
472 pr_info("------------------------------------\n");
473 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
474 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
475
476 for (i = 0; i < rx_ring->count; i++) {
477 const char *next_desc;
478 struct igb_rx_buffer *buffer_info;
479 buffer_info = &rx_ring->rx_buffer_info[i];
480 rx_desc = IGB_RX_DESC(rx_ring, i);
481 u0 = (struct my_u0 *)rx_desc;
482 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
483
484 if (i == rx_ring->next_to_use)
485 next_desc = " NTU";
486 else if (i == rx_ring->next_to_clean)
487 next_desc = " NTC";
488 else
489 next_desc = "";
490
491 if (staterr & E1000_RXD_STAT_DD) {
492 /* Descriptor Done */
493 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
494 "RWB", i,
495 le64_to_cpu(u0->a),
496 le64_to_cpu(u0->b),
497 next_desc);
498 } else {
499 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
500 "R ", i,
501 le64_to_cpu(u0->a),
502 le64_to_cpu(u0->b),
503 (u64)buffer_info->dma,
504 next_desc);
505
506 if (netif_msg_pktdata(adapter) &&
507 buffer_info->dma && buffer_info->page) {
508 print_hex_dump(KERN_INFO, "",
509 DUMP_PREFIX_ADDRESS,
510 16, 1,
511 page_address(buffer_info->page) +
512 buffer_info->page_offset,
513 igb_rx_bufsz(rx_ring), true);
514 }
515 }
516 }
517 }
518
519 exit:
520 return;
521 }
522
523 /**
524 * igb_get_i2c_data - Reads the I2C SDA data bit
525 * @data: opaque pointer to adapter struct
526 *
527 * Returns the I2C data bit value
528 **/
igb_get_i2c_data(void * data)529 static int igb_get_i2c_data(void *data)
530 {
531 struct igb_adapter *adapter = (struct igb_adapter *)data;
532 struct e1000_hw *hw = &adapter->hw;
533 s32 i2cctl = rd32(E1000_I2CPARAMS);
534
535 return !!(i2cctl & E1000_I2C_DATA_IN);
536 }
537
538 /**
539 * igb_set_i2c_data - Sets the I2C data bit
540 * @data: pointer to hardware structure
541 * @state: I2C data value (0 or 1) to set
542 *
543 * Sets the I2C data bit
544 **/
igb_set_i2c_data(void * data,int state)545 static void igb_set_i2c_data(void *data, int state)
546 {
547 struct igb_adapter *adapter = (struct igb_adapter *)data;
548 struct e1000_hw *hw = &adapter->hw;
549 s32 i2cctl = rd32(E1000_I2CPARAMS);
550
551 if (state) {
552 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
553 } else {
554 i2cctl &= ~E1000_I2C_DATA_OE_N;
555 i2cctl &= ~E1000_I2C_DATA_OUT;
556 }
557
558 wr32(E1000_I2CPARAMS, i2cctl);
559 wrfl();
560 }
561
562 /**
563 * igb_set_i2c_clk - Sets the I2C SCL clock
564 * @data: pointer to hardware structure
565 * @state: state to set clock
566 *
567 * Sets the I2C clock line to state
568 **/
igb_set_i2c_clk(void * data,int state)569 static void igb_set_i2c_clk(void *data, int state)
570 {
571 struct igb_adapter *adapter = (struct igb_adapter *)data;
572 struct e1000_hw *hw = &adapter->hw;
573 s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575 if (state) {
576 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
577 } else {
578 i2cctl &= ~E1000_I2C_CLK_OUT;
579 i2cctl &= ~E1000_I2C_CLK_OE_N;
580 }
581 wr32(E1000_I2CPARAMS, i2cctl);
582 wrfl();
583 }
584
585 /**
586 * igb_get_i2c_clk - Gets the I2C SCL clock state
587 * @data: pointer to hardware structure
588 *
589 * Gets the I2C clock state
590 **/
igb_get_i2c_clk(void * data)591 static int igb_get_i2c_clk(void *data)
592 {
593 struct igb_adapter *adapter = (struct igb_adapter *)data;
594 struct e1000_hw *hw = &adapter->hw;
595 s32 i2cctl = rd32(E1000_I2CPARAMS);
596
597 return !!(i2cctl & E1000_I2C_CLK_IN);
598 }
599
600 static const struct i2c_algo_bit_data igb_i2c_algo = {
601 .setsda = igb_set_i2c_data,
602 .setscl = igb_set_i2c_clk,
603 .getsda = igb_get_i2c_data,
604 .getscl = igb_get_i2c_clk,
605 .udelay = 5,
606 .timeout = 20,
607 };
608
609 /**
610 * igb_get_hw_dev - return device
611 * @hw: pointer to hardware structure
612 *
613 * used by hardware layer to print debugging information
614 **/
igb_get_hw_dev(struct e1000_hw * hw)615 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
616 {
617 struct igb_adapter *adapter = hw->back;
618 return adapter->netdev;
619 }
620
621 static struct pci_driver igb_driver;
622
623 /**
624 * igb_init_module - Driver Registration Routine
625 *
626 * igb_init_module is the first routine called when the driver is
627 * loaded. All it does is register with the PCI subsystem.
628 **/
igb_init_module(void)629 static int __init igb_init_module(void)
630 {
631 int ret;
632
633 pr_info("%s\n", igb_driver_string);
634 pr_info("%s\n", igb_copyright);
635
636 #ifdef CONFIG_IGB_DCA
637 dca_register_notify(&dca_notifier);
638 #endif
639 ret = pci_register_driver(&igb_driver);
640 return ret;
641 }
642
643 module_init(igb_init_module);
644
645 /**
646 * igb_exit_module - Driver Exit Cleanup Routine
647 *
648 * igb_exit_module is called just before the driver is removed
649 * from memory.
650 **/
igb_exit_module(void)651 static void __exit igb_exit_module(void)
652 {
653 #ifdef CONFIG_IGB_DCA
654 dca_unregister_notify(&dca_notifier);
655 #endif
656 pci_unregister_driver(&igb_driver);
657 }
658
659 module_exit(igb_exit_module);
660
661 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
662 /**
663 * igb_cache_ring_register - Descriptor ring to register mapping
664 * @adapter: board private structure to initialize
665 *
666 * Once we know the feature-set enabled for the device, we'll cache
667 * the register offset the descriptor ring is assigned to.
668 **/
igb_cache_ring_register(struct igb_adapter * adapter)669 static void igb_cache_ring_register(struct igb_adapter *adapter)
670 {
671 int i = 0, j = 0;
672 u32 rbase_offset = adapter->vfs_allocated_count;
673
674 switch (adapter->hw.mac.type) {
675 case e1000_82576:
676 /* The queues are allocated for virtualization such that VF 0
677 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
678 * In order to avoid collision we start at the first free queue
679 * and continue consuming queues in the same sequence
680 */
681 if (adapter->vfs_allocated_count) {
682 for (; i < adapter->rss_queues; i++)
683 adapter->rx_ring[i]->reg_idx = rbase_offset +
684 Q_IDX_82576(i);
685 }
686 fallthrough;
687 case e1000_82575:
688 case e1000_82580:
689 case e1000_i350:
690 case e1000_i354:
691 case e1000_i210:
692 case e1000_i211:
693 default:
694 for (; i < adapter->num_rx_queues; i++)
695 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
696 for (; j < adapter->num_tx_queues; j++)
697 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
698 break;
699 }
700 }
701
igb_rd32(struct e1000_hw * hw,u32 reg)702 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
703 {
704 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
705 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
706 u32 value = 0;
707
708 if (E1000_REMOVED(hw_addr))
709 return ~value;
710
711 value = readl(&hw_addr[reg]);
712
713 /* reads should not return all F's */
714 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
715 struct net_device *netdev = igb->netdev;
716 hw->hw_addr = NULL;
717 netdev_err(netdev, "PCIe link lost\n");
718 WARN(pci_device_is_present(igb->pdev),
719 "igb: Failed to read reg 0x%x!\n", reg);
720 }
721
722 return value;
723 }
724
725 /**
726 * igb_write_ivar - configure ivar for given MSI-X vector
727 * @hw: pointer to the HW structure
728 * @msix_vector: vector number we are allocating to a given ring
729 * @index: row index of IVAR register to write within IVAR table
730 * @offset: column offset of in IVAR, should be multiple of 8
731 *
732 * This function is intended to handle the writing of the IVAR register
733 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
734 * each containing an cause allocation for an Rx and Tx ring, and a
735 * variable number of rows depending on the number of queues supported.
736 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)737 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
738 int index, int offset)
739 {
740 u32 ivar = array_rd32(E1000_IVAR0, index);
741
742 /* clear any bits that are currently set */
743 ivar &= ~((u32)0xFF << offset);
744
745 /* write vector and valid bit */
746 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
747
748 array_wr32(E1000_IVAR0, index, ivar);
749 }
750
751 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)752 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
753 {
754 struct igb_adapter *adapter = q_vector->adapter;
755 struct e1000_hw *hw = &adapter->hw;
756 int rx_queue = IGB_N0_QUEUE;
757 int tx_queue = IGB_N0_QUEUE;
758 u32 msixbm = 0;
759
760 if (q_vector->rx.ring)
761 rx_queue = q_vector->rx.ring->reg_idx;
762 if (q_vector->tx.ring)
763 tx_queue = q_vector->tx.ring->reg_idx;
764
765 switch (hw->mac.type) {
766 case e1000_82575:
767 /* The 82575 assigns vectors using a bitmask, which matches the
768 * bitmask for the EICR/EIMS/EIMC registers. To assign one
769 * or more queues to a vector, we write the appropriate bits
770 * into the MSIXBM register for that vector.
771 */
772 if (rx_queue > IGB_N0_QUEUE)
773 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
774 if (tx_queue > IGB_N0_QUEUE)
775 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
776 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
777 msixbm |= E1000_EIMS_OTHER;
778 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
779 q_vector->eims_value = msixbm;
780 break;
781 case e1000_82576:
782 /* 82576 uses a table that essentially consists of 2 columns
783 * with 8 rows. The ordering is column-major so we use the
784 * lower 3 bits as the row index, and the 4th bit as the
785 * column offset.
786 */
787 if (rx_queue > IGB_N0_QUEUE)
788 igb_write_ivar(hw, msix_vector,
789 rx_queue & 0x7,
790 (rx_queue & 0x8) << 1);
791 if (tx_queue > IGB_N0_QUEUE)
792 igb_write_ivar(hw, msix_vector,
793 tx_queue & 0x7,
794 ((tx_queue & 0x8) << 1) + 8);
795 q_vector->eims_value = BIT(msix_vector);
796 break;
797 case e1000_82580:
798 case e1000_i350:
799 case e1000_i354:
800 case e1000_i210:
801 case e1000_i211:
802 /* On 82580 and newer adapters the scheme is similar to 82576
803 * however instead of ordering column-major we have things
804 * ordered row-major. So we traverse the table by using
805 * bit 0 as the column offset, and the remaining bits as the
806 * row index.
807 */
808 if (rx_queue > IGB_N0_QUEUE)
809 igb_write_ivar(hw, msix_vector,
810 rx_queue >> 1,
811 (rx_queue & 0x1) << 4);
812 if (tx_queue > IGB_N0_QUEUE)
813 igb_write_ivar(hw, msix_vector,
814 tx_queue >> 1,
815 ((tx_queue & 0x1) << 4) + 8);
816 q_vector->eims_value = BIT(msix_vector);
817 break;
818 default:
819 BUG();
820 break;
821 }
822
823 /* add q_vector eims value to global eims_enable_mask */
824 adapter->eims_enable_mask |= q_vector->eims_value;
825
826 /* configure q_vector to set itr on first interrupt */
827 q_vector->set_itr = 1;
828 }
829
830 /**
831 * igb_configure_msix - Configure MSI-X hardware
832 * @adapter: board private structure to initialize
833 *
834 * igb_configure_msix sets up the hardware to properly
835 * generate MSI-X interrupts.
836 **/
igb_configure_msix(struct igb_adapter * adapter)837 static void igb_configure_msix(struct igb_adapter *adapter)
838 {
839 u32 tmp;
840 int i, vector = 0;
841 struct e1000_hw *hw = &adapter->hw;
842
843 adapter->eims_enable_mask = 0;
844
845 /* set vector for other causes, i.e. link changes */
846 switch (hw->mac.type) {
847 case e1000_82575:
848 tmp = rd32(E1000_CTRL_EXT);
849 /* enable MSI-X PBA support*/
850 tmp |= E1000_CTRL_EXT_PBA_CLR;
851
852 /* Auto-Mask interrupts upon ICR read. */
853 tmp |= E1000_CTRL_EXT_EIAME;
854 tmp |= E1000_CTRL_EXT_IRCA;
855
856 wr32(E1000_CTRL_EXT, tmp);
857
858 /* enable msix_other interrupt */
859 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
860 adapter->eims_other = E1000_EIMS_OTHER;
861
862 break;
863
864 case e1000_82576:
865 case e1000_82580:
866 case e1000_i350:
867 case e1000_i354:
868 case e1000_i210:
869 case e1000_i211:
870 /* Turn on MSI-X capability first, or our settings
871 * won't stick. And it will take days to debug.
872 */
873 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
874 E1000_GPIE_PBA | E1000_GPIE_EIAME |
875 E1000_GPIE_NSICR);
876
877 /* enable msix_other interrupt */
878 adapter->eims_other = BIT(vector);
879 tmp = (vector++ | E1000_IVAR_VALID) << 8;
880
881 wr32(E1000_IVAR_MISC, tmp);
882 break;
883 default:
884 /* do nothing, since nothing else supports MSI-X */
885 break;
886 } /* switch (hw->mac.type) */
887
888 adapter->eims_enable_mask |= adapter->eims_other;
889
890 for (i = 0; i < adapter->num_q_vectors; i++)
891 igb_assign_vector(adapter->q_vector[i], vector++);
892
893 wrfl();
894 }
895
896 /**
897 * igb_request_msix - Initialize MSI-X interrupts
898 * @adapter: board private structure to initialize
899 *
900 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
901 * kernel.
902 **/
igb_request_msix(struct igb_adapter * adapter)903 static int igb_request_msix(struct igb_adapter *adapter)
904 {
905 unsigned int num_q_vectors = adapter->num_q_vectors;
906 struct net_device *netdev = adapter->netdev;
907 int i, err = 0, vector = 0, free_vector = 0;
908
909 err = request_irq(adapter->msix_entries[vector].vector,
910 igb_msix_other, IRQF_NO_THREAD, netdev->name, adapter);
911 if (err)
912 goto err_out;
913
914 if (num_q_vectors > MAX_Q_VECTORS) {
915 num_q_vectors = MAX_Q_VECTORS;
916 dev_warn(&adapter->pdev->dev,
917 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
918 adapter->num_q_vectors, MAX_Q_VECTORS);
919 }
920 for (i = 0; i < num_q_vectors; i++) {
921 struct igb_q_vector *q_vector = adapter->q_vector[i];
922
923 vector++;
924
925 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
926
927 if (q_vector->rx.ring && q_vector->tx.ring)
928 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
929 q_vector->rx.ring->queue_index);
930 else if (q_vector->tx.ring)
931 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
932 q_vector->tx.ring->queue_index);
933 else if (q_vector->rx.ring)
934 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
935 q_vector->rx.ring->queue_index);
936 else
937 sprintf(q_vector->name, "%s-unused", netdev->name);
938
939 err = request_irq(adapter->msix_entries[vector].vector,
940 igb_msix_ring, 0, q_vector->name,
941 q_vector);
942 if (err)
943 goto err_free;
944 }
945
946 igb_configure_msix(adapter);
947 return 0;
948
949 err_free:
950 /* free already assigned IRQs */
951 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
952
953 vector--;
954 for (i = 0; i < vector; i++) {
955 free_irq(adapter->msix_entries[free_vector++].vector,
956 adapter->q_vector[i]);
957 }
958 err_out:
959 return err;
960 }
961
962 /**
963 * igb_free_q_vector - Free memory allocated for specific interrupt vector
964 * @adapter: board private structure to initialize
965 * @v_idx: Index of vector to be freed
966 *
967 * This function frees the memory allocated to the q_vector.
968 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)969 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
970 {
971 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
972
973 adapter->q_vector[v_idx] = NULL;
974
975 /* igb_get_stats64() might access the rings on this vector,
976 * we must wait a grace period before freeing it.
977 */
978 if (q_vector)
979 kfree_rcu(q_vector, rcu);
980 }
981
982 /**
983 * igb_reset_q_vector - Reset config for interrupt vector
984 * @adapter: board private structure to initialize
985 * @v_idx: Index of vector to be reset
986 *
987 * If NAPI is enabled it will delete any references to the
988 * NAPI struct. This is preparation for igb_free_q_vector.
989 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)990 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
991 {
992 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
993
994 /* Coming from igb_set_interrupt_capability, the vectors are not yet
995 * allocated. So, q_vector is NULL so we should stop here.
996 */
997 if (!q_vector)
998 return;
999
1000 if (q_vector->tx.ring)
1001 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1002
1003 if (q_vector->rx.ring)
1004 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1005
1006 netif_napi_del(&q_vector->napi);
1007
1008 }
1009
igb_reset_interrupt_capability(struct igb_adapter * adapter)1010 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1011 {
1012 int v_idx = adapter->num_q_vectors;
1013
1014 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1015 pci_disable_msix(adapter->pdev);
1016 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1017 pci_disable_msi(adapter->pdev);
1018
1019 while (v_idx--)
1020 igb_reset_q_vector(adapter, v_idx);
1021 }
1022
1023 /**
1024 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1025 * @adapter: board private structure to initialize
1026 *
1027 * This function frees the memory allocated to the q_vectors. In addition if
1028 * NAPI is enabled it will delete any references to the NAPI struct prior
1029 * to freeing the q_vector.
1030 **/
igb_free_q_vectors(struct igb_adapter * adapter)1031 static void igb_free_q_vectors(struct igb_adapter *adapter)
1032 {
1033 int v_idx = adapter->num_q_vectors;
1034
1035 adapter->num_tx_queues = 0;
1036 adapter->num_rx_queues = 0;
1037 adapter->num_q_vectors = 0;
1038
1039 while (v_idx--) {
1040 igb_reset_q_vector(adapter, v_idx);
1041 igb_free_q_vector(adapter, v_idx);
1042 }
1043 }
1044
1045 /**
1046 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1047 * @adapter: board private structure to initialize
1048 *
1049 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1050 * MSI-X interrupts allocated.
1051 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1052 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1053 {
1054 igb_free_q_vectors(adapter);
1055 igb_reset_interrupt_capability(adapter);
1056 }
1057
1058 /**
1059 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1060 * @adapter: board private structure to initialize
1061 * @msix: boolean value of MSIX capability
1062 *
1063 * Attempt to configure interrupts using the best available
1064 * capabilities of the hardware and kernel.
1065 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1066 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1067 {
1068 int err;
1069 int numvecs, i;
1070
1071 if (!msix)
1072 goto msi_only;
1073 adapter->flags |= IGB_FLAG_HAS_MSIX;
1074
1075 /* Number of supported queues. */
1076 adapter->num_rx_queues = adapter->rss_queues;
1077 if (adapter->vfs_allocated_count)
1078 adapter->num_tx_queues = 1;
1079 else
1080 adapter->num_tx_queues = adapter->rss_queues;
1081
1082 /* start with one vector for every Rx queue */
1083 numvecs = adapter->num_rx_queues;
1084
1085 /* if Tx handler is separate add 1 for every Tx queue */
1086 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1087 numvecs += adapter->num_tx_queues;
1088
1089 /* store the number of vectors reserved for queues */
1090 adapter->num_q_vectors = numvecs;
1091
1092 /* add 1 vector for link status interrupts */
1093 numvecs++;
1094 for (i = 0; i < numvecs; i++)
1095 adapter->msix_entries[i].entry = i;
1096
1097 err = pci_enable_msix_range(adapter->pdev,
1098 adapter->msix_entries,
1099 numvecs,
1100 numvecs);
1101 if (err > 0)
1102 return;
1103
1104 igb_reset_interrupt_capability(adapter);
1105
1106 /* If we can't do MSI-X, try MSI */
1107 msi_only:
1108 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1109 #ifdef CONFIG_PCI_IOV
1110 /* disable SR-IOV for non MSI-X configurations */
1111 if (adapter->vf_data) {
1112 struct e1000_hw *hw = &adapter->hw;
1113 /* disable iov and allow time for transactions to clear */
1114 pci_disable_sriov(adapter->pdev);
1115 msleep(500);
1116
1117 kfree(adapter->vf_mac_list);
1118 adapter->vf_mac_list = NULL;
1119 kfree(adapter->vf_data);
1120 adapter->vf_data = NULL;
1121 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122 wrfl();
1123 msleep(100);
1124 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125 }
1126 #endif
1127 adapter->vfs_allocated_count = 0;
1128 adapter->rss_queues = 1;
1129 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130 adapter->num_rx_queues = 1;
1131 adapter->num_tx_queues = 1;
1132 adapter->num_q_vectors = 1;
1133 if (!pci_enable_msi(adapter->pdev))
1134 adapter->flags |= IGB_FLAG_HAS_MSI;
1135 }
1136
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1137 static void igb_add_ring(struct igb_ring *ring,
1138 struct igb_ring_container *head)
1139 {
1140 head->ring = ring;
1141 head->count++;
1142 }
1143
1144 /**
1145 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146 * @adapter: board private structure to initialize
1147 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1148 * @v_idx: index of vector in adapter struct
1149 * @txr_count: total number of Tx rings to allocate
1150 * @txr_idx: index of first Tx ring to allocate
1151 * @rxr_count: total number of Rx rings to allocate
1152 * @rxr_idx: index of first Rx ring to allocate
1153 *
1154 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1155 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1156 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157 int v_count, int v_idx,
1158 int txr_count, int txr_idx,
1159 int rxr_count, int rxr_idx)
1160 {
1161 struct igb_q_vector *q_vector;
1162 struct igb_ring *ring;
1163 int ring_count;
1164 size_t size;
1165
1166 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1167 if (txr_count > 1 || rxr_count > 1)
1168 return -ENOMEM;
1169
1170 ring_count = txr_count + rxr_count;
1171 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1172
1173 /* allocate q_vector and rings */
1174 q_vector = adapter->q_vector[v_idx];
1175 if (!q_vector) {
1176 q_vector = kzalloc(size, GFP_KERNEL);
1177 } else if (size > ksize(q_vector)) {
1178 struct igb_q_vector *new_q_vector;
1179
1180 new_q_vector = kzalloc(size, GFP_KERNEL);
1181 if (new_q_vector)
1182 kfree_rcu(q_vector, rcu);
1183 q_vector = new_q_vector;
1184 } else {
1185 memset(q_vector, 0, size);
1186 }
1187 if (!q_vector)
1188 return -ENOMEM;
1189
1190 /* initialize NAPI */
1191 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1192
1193 /* tie q_vector and adapter together */
1194 adapter->q_vector[v_idx] = q_vector;
1195 q_vector->adapter = adapter;
1196
1197 /* initialize work limits */
1198 q_vector->tx.work_limit = adapter->tx_work_limit;
1199
1200 /* initialize ITR configuration */
1201 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1202 q_vector->itr_val = IGB_START_ITR;
1203
1204 /* initialize pointer to rings */
1205 ring = q_vector->ring;
1206
1207 /* intialize ITR */
1208 if (rxr_count) {
1209 /* rx or rx/tx vector */
1210 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1211 q_vector->itr_val = adapter->rx_itr_setting;
1212 } else {
1213 /* tx only vector */
1214 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1215 q_vector->itr_val = adapter->tx_itr_setting;
1216 }
1217
1218 if (txr_count) {
1219 /* assign generic ring traits */
1220 ring->dev = &adapter->pdev->dev;
1221 ring->netdev = adapter->netdev;
1222
1223 /* configure backlink on ring */
1224 ring->q_vector = q_vector;
1225
1226 /* update q_vector Tx values */
1227 igb_add_ring(ring, &q_vector->tx);
1228
1229 /* For 82575, context index must be unique per ring. */
1230 if (adapter->hw.mac.type == e1000_82575)
1231 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1232
1233 /* apply Tx specific ring traits */
1234 ring->count = adapter->tx_ring_count;
1235 ring->queue_index = txr_idx;
1236
1237 ring->cbs_enable = false;
1238 ring->idleslope = 0;
1239 ring->sendslope = 0;
1240 ring->hicredit = 0;
1241 ring->locredit = 0;
1242
1243 u64_stats_init(&ring->tx_syncp);
1244 u64_stats_init(&ring->tx_syncp2);
1245
1246 /* assign ring to adapter */
1247 adapter->tx_ring[txr_idx] = ring;
1248
1249 /* push pointer to next ring */
1250 ring++;
1251 }
1252
1253 if (rxr_count) {
1254 /* assign generic ring traits */
1255 ring->dev = &adapter->pdev->dev;
1256 ring->netdev = adapter->netdev;
1257
1258 /* configure backlink on ring */
1259 ring->q_vector = q_vector;
1260
1261 /* update q_vector Rx values */
1262 igb_add_ring(ring, &q_vector->rx);
1263
1264 /* set flag indicating ring supports SCTP checksum offload */
1265 if (adapter->hw.mac.type >= e1000_82576)
1266 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1267
1268 /* On i350, i354, i210, and i211, loopback VLAN packets
1269 * have the tag byte-swapped.
1270 */
1271 if (adapter->hw.mac.type >= e1000_i350)
1272 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1273
1274 /* apply Rx specific ring traits */
1275 ring->count = adapter->rx_ring_count;
1276 ring->queue_index = rxr_idx;
1277
1278 u64_stats_init(&ring->rx_syncp);
1279
1280 /* assign ring to adapter */
1281 adapter->rx_ring[rxr_idx] = ring;
1282 }
1283
1284 return 0;
1285 }
1286
1287
1288 /**
1289 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1290 * @adapter: board private structure to initialize
1291 *
1292 * We allocate one q_vector per queue interrupt. If allocation fails we
1293 * return -ENOMEM.
1294 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1295 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1296 {
1297 int q_vectors = adapter->num_q_vectors;
1298 int rxr_remaining = adapter->num_rx_queues;
1299 int txr_remaining = adapter->num_tx_queues;
1300 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1301 int err;
1302
1303 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1304 for (; rxr_remaining; v_idx++) {
1305 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1306 0, 0, 1, rxr_idx);
1307
1308 if (err)
1309 goto err_out;
1310
1311 /* update counts and index */
1312 rxr_remaining--;
1313 rxr_idx++;
1314 }
1315 }
1316
1317 for (; v_idx < q_vectors; v_idx++) {
1318 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1319 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1320
1321 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1322 tqpv, txr_idx, rqpv, rxr_idx);
1323
1324 if (err)
1325 goto err_out;
1326
1327 /* update counts and index */
1328 rxr_remaining -= rqpv;
1329 txr_remaining -= tqpv;
1330 rxr_idx++;
1331 txr_idx++;
1332 }
1333
1334 return 0;
1335
1336 err_out:
1337 adapter->num_tx_queues = 0;
1338 adapter->num_rx_queues = 0;
1339 adapter->num_q_vectors = 0;
1340
1341 while (v_idx--)
1342 igb_free_q_vector(adapter, v_idx);
1343
1344 return -ENOMEM;
1345 }
1346
1347 /**
1348 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1349 * @adapter: board private structure to initialize
1350 * @msix: boolean value of MSIX capability
1351 *
1352 * This function initializes the interrupts and allocates all of the queues.
1353 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1354 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1355 {
1356 struct pci_dev *pdev = adapter->pdev;
1357 int err;
1358
1359 igb_set_interrupt_capability(adapter, msix);
1360
1361 err = igb_alloc_q_vectors(adapter);
1362 if (err) {
1363 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1364 goto err_alloc_q_vectors;
1365 }
1366
1367 igb_cache_ring_register(adapter);
1368
1369 return 0;
1370
1371 err_alloc_q_vectors:
1372 igb_reset_interrupt_capability(adapter);
1373 return err;
1374 }
1375
1376 /**
1377 * igb_request_irq - initialize interrupts
1378 * @adapter: board private structure to initialize
1379 *
1380 * Attempts to configure interrupts using the best available
1381 * capabilities of the hardware and kernel.
1382 **/
igb_request_irq(struct igb_adapter * adapter)1383 static int igb_request_irq(struct igb_adapter *adapter)
1384 {
1385 struct net_device *netdev = adapter->netdev;
1386 struct pci_dev *pdev = adapter->pdev;
1387 int err = 0;
1388
1389 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1390 err = igb_request_msix(adapter);
1391 if (!err)
1392 goto request_done;
1393 /* fall back to MSI */
1394 igb_free_all_tx_resources(adapter);
1395 igb_free_all_rx_resources(adapter);
1396
1397 igb_clear_interrupt_scheme(adapter);
1398 err = igb_init_interrupt_scheme(adapter, false);
1399 if (err)
1400 goto request_done;
1401
1402 igb_setup_all_tx_resources(adapter);
1403 igb_setup_all_rx_resources(adapter);
1404 igb_configure(adapter);
1405 }
1406
1407 igb_assign_vector(adapter->q_vector[0], 0);
1408
1409 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1410 err = request_irq(pdev->irq, igb_intr_msi, 0,
1411 netdev->name, adapter);
1412 if (!err)
1413 goto request_done;
1414
1415 /* fall back to legacy interrupts */
1416 igb_reset_interrupt_capability(adapter);
1417 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1418 }
1419
1420 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1421 netdev->name, adapter);
1422
1423 if (err)
1424 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1425 err);
1426
1427 request_done:
1428 return err;
1429 }
1430
igb_free_irq(struct igb_adapter * adapter)1431 static void igb_free_irq(struct igb_adapter *adapter)
1432 {
1433 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1434 int vector = 0, i;
1435
1436 free_irq(adapter->msix_entries[vector++].vector, adapter);
1437
1438 for (i = 0; i < adapter->num_q_vectors; i++)
1439 free_irq(adapter->msix_entries[vector++].vector,
1440 adapter->q_vector[i]);
1441 } else {
1442 free_irq(adapter->pdev->irq, adapter);
1443 }
1444 }
1445
1446 /**
1447 * igb_irq_disable - Mask off interrupt generation on the NIC
1448 * @adapter: board private structure
1449 **/
igb_irq_disable(struct igb_adapter * adapter)1450 static void igb_irq_disable(struct igb_adapter *adapter)
1451 {
1452 struct e1000_hw *hw = &adapter->hw;
1453
1454 /* we need to be careful when disabling interrupts. The VFs are also
1455 * mapped into these registers and so clearing the bits can cause
1456 * issues on the VF drivers so we only need to clear what we set
1457 */
1458 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 u32 regval = rd32(E1000_EIAM);
1460
1461 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1462 wr32(E1000_EIMC, adapter->eims_enable_mask);
1463 regval = rd32(E1000_EIAC);
1464 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1465 }
1466
1467 wr32(E1000_IAM, 0);
1468 wr32(E1000_IMC, ~0);
1469 wrfl();
1470 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1471 int i;
1472
1473 for (i = 0; i < adapter->num_q_vectors; i++)
1474 synchronize_irq(adapter->msix_entries[i].vector);
1475 } else {
1476 synchronize_irq(adapter->pdev->irq);
1477 }
1478 }
1479
1480 /**
1481 * igb_irq_enable - Enable default interrupt generation settings
1482 * @adapter: board private structure
1483 **/
igb_irq_enable(struct igb_adapter * adapter)1484 static void igb_irq_enable(struct igb_adapter *adapter)
1485 {
1486 struct e1000_hw *hw = &adapter->hw;
1487
1488 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1490 u32 regval = rd32(E1000_EIAC);
1491
1492 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1493 regval = rd32(E1000_EIAM);
1494 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1495 wr32(E1000_EIMS, adapter->eims_enable_mask);
1496 if (adapter->vfs_allocated_count) {
1497 wr32(E1000_MBVFIMR, 0xFF);
1498 ims |= E1000_IMS_VMMB;
1499 }
1500 wr32(E1000_IMS, ims);
1501 } else {
1502 wr32(E1000_IMS, IMS_ENABLE_MASK |
1503 E1000_IMS_DRSTA);
1504 wr32(E1000_IAM, IMS_ENABLE_MASK |
1505 E1000_IMS_DRSTA);
1506 }
1507 }
1508
igb_update_mng_vlan(struct igb_adapter * adapter)1509 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1510 {
1511 struct e1000_hw *hw = &adapter->hw;
1512 u16 pf_id = adapter->vfs_allocated_count;
1513 u16 vid = adapter->hw.mng_cookie.vlan_id;
1514 u16 old_vid = adapter->mng_vlan_id;
1515
1516 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1517 /* add VID to filter table */
1518 igb_vfta_set(hw, vid, pf_id, true, true);
1519 adapter->mng_vlan_id = vid;
1520 } else {
1521 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1522 }
1523
1524 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1525 (vid != old_vid) &&
1526 !test_bit(old_vid, adapter->active_vlans)) {
1527 /* remove VID from filter table */
1528 igb_vfta_set(hw, vid, pf_id, false, true);
1529 }
1530 }
1531
1532 /**
1533 * igb_release_hw_control - release control of the h/w to f/w
1534 * @adapter: address of board private structure
1535 *
1536 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1537 * For ASF and Pass Through versions of f/w this means that the
1538 * driver is no longer loaded.
1539 **/
igb_release_hw_control(struct igb_adapter * adapter)1540 static void igb_release_hw_control(struct igb_adapter *adapter)
1541 {
1542 struct e1000_hw *hw = &adapter->hw;
1543 u32 ctrl_ext;
1544
1545 /* Let firmware take over control of h/w */
1546 ctrl_ext = rd32(E1000_CTRL_EXT);
1547 wr32(E1000_CTRL_EXT,
1548 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1549 }
1550
1551 /**
1552 * igb_get_hw_control - get control of the h/w from f/w
1553 * @adapter: address of board private structure
1554 *
1555 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that
1557 * the driver is loaded.
1558 **/
igb_get_hw_control(struct igb_adapter * adapter)1559 static void igb_get_hw_control(struct igb_adapter *adapter)
1560 {
1561 struct e1000_hw *hw = &adapter->hw;
1562 u32 ctrl_ext;
1563
1564 /* Let firmware know the driver has taken over */
1565 ctrl_ext = rd32(E1000_CTRL_EXT);
1566 wr32(E1000_CTRL_EXT,
1567 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
enable_fqtss(struct igb_adapter * adapter,bool enable)1570 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1571 {
1572 struct net_device *netdev = adapter->netdev;
1573 struct e1000_hw *hw = &adapter->hw;
1574
1575 WARN_ON(hw->mac.type != e1000_i210);
1576
1577 if (enable)
1578 adapter->flags |= IGB_FLAG_FQTSS;
1579 else
1580 adapter->flags &= ~IGB_FLAG_FQTSS;
1581
1582 if (netif_running(netdev))
1583 schedule_work(&adapter->reset_task);
1584 }
1585
is_fqtss_enabled(struct igb_adapter * adapter)1586 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1587 {
1588 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1589 }
1590
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1591 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1592 enum tx_queue_prio prio)
1593 {
1594 u32 val;
1595
1596 WARN_ON(hw->mac.type != e1000_i210);
1597 WARN_ON(queue < 0 || queue > 4);
1598
1599 val = rd32(E1000_I210_TXDCTL(queue));
1600
1601 if (prio == TX_QUEUE_PRIO_HIGH)
1602 val |= E1000_TXDCTL_PRIORITY;
1603 else
1604 val &= ~E1000_TXDCTL_PRIORITY;
1605
1606 wr32(E1000_I210_TXDCTL(queue), val);
1607 }
1608
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1609 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1610 {
1611 u32 val;
1612
1613 WARN_ON(hw->mac.type != e1000_i210);
1614 WARN_ON(queue < 0 || queue > 1);
1615
1616 val = rd32(E1000_I210_TQAVCC(queue));
1617
1618 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1619 val |= E1000_TQAVCC_QUEUEMODE;
1620 else
1621 val &= ~E1000_TQAVCC_QUEUEMODE;
1622
1623 wr32(E1000_I210_TQAVCC(queue), val);
1624 }
1625
is_any_cbs_enabled(struct igb_adapter * adapter)1626 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1627 {
1628 int i;
1629
1630 for (i = 0; i < adapter->num_tx_queues; i++) {
1631 if (adapter->tx_ring[i]->cbs_enable)
1632 return true;
1633 }
1634
1635 return false;
1636 }
1637
is_any_txtime_enabled(struct igb_adapter * adapter)1638 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1639 {
1640 int i;
1641
1642 for (i = 0; i < adapter->num_tx_queues; i++) {
1643 if (adapter->tx_ring[i]->launchtime_enable)
1644 return true;
1645 }
1646
1647 return false;
1648 }
1649
1650 /**
1651 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1652 * @adapter: pointer to adapter struct
1653 * @queue: queue number
1654 *
1655 * Configure CBS and Launchtime for a given hardware queue.
1656 * Parameters are retrieved from the correct Tx ring, so
1657 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1658 * for setting those correctly prior to this function being called.
1659 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1660 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1661 {
1662 struct net_device *netdev = adapter->netdev;
1663 struct e1000_hw *hw = &adapter->hw;
1664 struct igb_ring *ring;
1665 u32 tqavcc, tqavctrl;
1666 u16 value;
1667
1668 WARN_ON(hw->mac.type != e1000_i210);
1669 WARN_ON(queue < 0 || queue > 1);
1670 ring = adapter->tx_ring[queue];
1671
1672 /* If any of the Qav features is enabled, configure queues as SR and
1673 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1674 * as SP.
1675 */
1676 if (ring->cbs_enable || ring->launchtime_enable) {
1677 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1678 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1679 } else {
1680 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1681 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1682 }
1683
1684 /* If CBS is enabled, set DataTranARB and config its parameters. */
1685 if (ring->cbs_enable || queue == 0) {
1686 /* i210 does not allow the queue 0 to be in the Strict
1687 * Priority mode while the Qav mode is enabled, so,
1688 * instead of disabling strict priority mode, we give
1689 * queue 0 the maximum of credits possible.
1690 *
1691 * See section 8.12.19 of the i210 datasheet, "Note:
1692 * Queue0 QueueMode must be set to 1b when
1693 * TransmitMode is set to Qav."
1694 */
1695 if (queue == 0 && !ring->cbs_enable) {
1696 /* max "linkspeed" idleslope in kbps */
1697 ring->idleslope = 1000000;
1698 ring->hicredit = ETH_FRAME_LEN;
1699 }
1700
1701 /* Always set data transfer arbitration to credit-based
1702 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1703 * the queues.
1704 */
1705 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1706 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1707 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1708
1709 /* According to i210 datasheet section 7.2.7.7, we should set
1710 * the 'idleSlope' field from TQAVCC register following the
1711 * equation:
1712 *
1713 * For 100 Mbps link speed:
1714 *
1715 * value = BW * 0x7735 * 0.2 (E1)
1716 *
1717 * For 1000Mbps link speed:
1718 *
1719 * value = BW * 0x7735 * 2 (E2)
1720 *
1721 * E1 and E2 can be merged into one equation as shown below.
1722 * Note that 'link-speed' is in Mbps.
1723 *
1724 * value = BW * 0x7735 * 2 * link-speed
1725 * -------------- (E3)
1726 * 1000
1727 *
1728 * 'BW' is the percentage bandwidth out of full link speed
1729 * which can be found with the following equation. Note that
1730 * idleSlope here is the parameter from this function which
1731 * is in kbps.
1732 *
1733 * BW = idleSlope
1734 * ----------------- (E4)
1735 * link-speed * 1000
1736 *
1737 * That said, we can come up with a generic equation to
1738 * calculate the value we should set it TQAVCC register by
1739 * replacing 'BW' in E3 by E4. The resulting equation is:
1740 *
1741 * value = idleSlope * 0x7735 * 2 * link-speed
1742 * ----------------- -------------- (E5)
1743 * link-speed * 1000 1000
1744 *
1745 * 'link-speed' is present in both sides of the fraction so
1746 * it is canceled out. The final equation is the following:
1747 *
1748 * value = idleSlope * 61034
1749 * ----------------- (E6)
1750 * 1000000
1751 *
1752 * NOTE: For i210, given the above, we can see that idleslope
1753 * is represented in 16.38431 kbps units by the value at
1754 * the TQAVCC register (1Gbps / 61034), which reduces
1755 * the granularity for idleslope increments.
1756 * For instance, if you want to configure a 2576kbps
1757 * idleslope, the value to be written on the register
1758 * would have to be 157.23. If rounded down, you end
1759 * up with less bandwidth available than originally
1760 * required (~2572 kbps). If rounded up, you end up
1761 * with a higher bandwidth (~2589 kbps). Below the
1762 * approach we take is to always round up the
1763 * calculated value, so the resulting bandwidth might
1764 * be slightly higher for some configurations.
1765 */
1766 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1767
1768 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1769 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1770 tqavcc |= value;
1771 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1772
1773 wr32(E1000_I210_TQAVHC(queue),
1774 0x80000000 + ring->hicredit * 0x7735);
1775 } else {
1776
1777 /* Set idleSlope to zero. */
1778 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1781
1782 /* Set hiCredit to zero. */
1783 wr32(E1000_I210_TQAVHC(queue), 0);
1784
1785 /* If CBS is not enabled for any queues anymore, then return to
1786 * the default state of Data Transmission Arbitration on
1787 * TQAVCTRL.
1788 */
1789 if (!is_any_cbs_enabled(adapter)) {
1790 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1791 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1792 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1793 }
1794 }
1795
1796 /* If LaunchTime is enabled, set DataTranTIM. */
1797 if (ring->launchtime_enable) {
1798 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1799 * for any of the SR queues, and configure fetchtime delta.
1800 * XXX NOTE:
1801 * - LaunchTime will be enabled for all SR queues.
1802 * - A fixed offset can be added relative to the launch
1803 * time of all packets if configured at reg LAUNCH_OS0.
1804 * We are keeping it as 0 for now (default value).
1805 */
1806 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1807 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1808 E1000_TQAVCTRL_FETCHTIME_DELTA;
1809 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1810 } else {
1811 /* If Launchtime is not enabled for any SR queues anymore,
1812 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1813 * effectively disabling Launchtime.
1814 */
1815 if (!is_any_txtime_enabled(adapter)) {
1816 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1818 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 }
1821 }
1822
1823 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1824 * CBS are not configurable by software so we don't do any 'controller
1825 * configuration' in respect to these parameters.
1826 */
1827
1828 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1829 ring->cbs_enable ? "enabled" : "disabled",
1830 ring->launchtime_enable ? "enabled" : "disabled",
1831 queue,
1832 ring->idleslope, ring->sendslope,
1833 ring->hicredit, ring->locredit);
1834 }
1835
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1836 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1837 bool enable)
1838 {
1839 struct igb_ring *ring;
1840
1841 if (queue < 0 || queue > adapter->num_tx_queues)
1842 return -EINVAL;
1843
1844 ring = adapter->tx_ring[queue];
1845 ring->launchtime_enable = enable;
1846
1847 return 0;
1848 }
1849
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1850 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1851 bool enable, int idleslope, int sendslope,
1852 int hicredit, int locredit)
1853 {
1854 struct igb_ring *ring;
1855
1856 if (queue < 0 || queue > adapter->num_tx_queues)
1857 return -EINVAL;
1858
1859 ring = adapter->tx_ring[queue];
1860
1861 ring->cbs_enable = enable;
1862 ring->idleslope = idleslope;
1863 ring->sendslope = sendslope;
1864 ring->hicredit = hicredit;
1865 ring->locredit = locredit;
1866
1867 return 0;
1868 }
1869
1870 /**
1871 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1872 * @adapter: pointer to adapter struct
1873 *
1874 * Configure TQAVCTRL register switching the controller's Tx mode
1875 * if FQTSS mode is enabled or disabled. Additionally, will issue
1876 * a call to igb_config_tx_modes() per queue so any previously saved
1877 * Tx parameters are applied.
1878 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1879 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1880 {
1881 struct net_device *netdev = adapter->netdev;
1882 struct e1000_hw *hw = &adapter->hw;
1883 u32 val;
1884
1885 /* Only i210 controller supports changing the transmission mode. */
1886 if (hw->mac.type != e1000_i210)
1887 return;
1888
1889 if (is_fqtss_enabled(adapter)) {
1890 int i, max_queue;
1891
1892 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1893 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1894 * so SP queues wait for SR ones.
1895 */
1896 val = rd32(E1000_I210_TQAVCTRL);
1897 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1898 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1899 wr32(E1000_I210_TQAVCTRL, val);
1900
1901 /* Configure Tx and Rx packet buffers sizes as described in
1902 * i210 datasheet section 7.2.7.7.
1903 */
1904 val = rd32(E1000_TXPBS);
1905 val &= ~I210_TXPBSIZE_MASK;
1906 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1907 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1908 wr32(E1000_TXPBS, val);
1909
1910 val = rd32(E1000_RXPBS);
1911 val &= ~I210_RXPBSIZE_MASK;
1912 val |= I210_RXPBSIZE_PB_30KB;
1913 wr32(E1000_RXPBS, val);
1914
1915 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1916 * register should not exceed the buffer size programmed in
1917 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1918 * so according to the datasheet we should set MAX_TPKT_SIZE to
1919 * 4kB / 64.
1920 *
1921 * However, when we do so, no frame from queue 2 and 3 are
1922 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1923 * or _equal_ to the buffer size programmed in TXPBS. For this
1924 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1925 */
1926 val = (4096 - 1) / 64;
1927 wr32(E1000_I210_DTXMXPKTSZ, val);
1928
1929 /* Since FQTSS mode is enabled, apply any CBS configuration
1930 * previously set. If no previous CBS configuration has been
1931 * done, then the initial configuration is applied, which means
1932 * CBS is disabled.
1933 */
1934 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1935 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1936
1937 for (i = 0; i < max_queue; i++) {
1938 igb_config_tx_modes(adapter, i);
1939 }
1940 } else {
1941 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1942 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1943 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1944
1945 val = rd32(E1000_I210_TQAVCTRL);
1946 /* According to Section 8.12.21, the other flags we've set when
1947 * enabling FQTSS are not relevant when disabling FQTSS so we
1948 * don't set they here.
1949 */
1950 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1951 wr32(E1000_I210_TQAVCTRL, val);
1952 }
1953
1954 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1955 "enabled" : "disabled");
1956 }
1957
1958 /**
1959 * igb_configure - configure the hardware for RX and TX
1960 * @adapter: private board structure
1961 **/
igb_configure(struct igb_adapter * adapter)1962 static void igb_configure(struct igb_adapter *adapter)
1963 {
1964 struct net_device *netdev = adapter->netdev;
1965 int i;
1966
1967 igb_get_hw_control(adapter);
1968 igb_set_rx_mode(netdev);
1969 igb_setup_tx_mode(adapter);
1970
1971 igb_restore_vlan(adapter);
1972
1973 igb_setup_tctl(adapter);
1974 igb_setup_mrqc(adapter);
1975 igb_setup_rctl(adapter);
1976
1977 igb_nfc_filter_restore(adapter);
1978 igb_configure_tx(adapter);
1979 igb_configure_rx(adapter);
1980
1981 igb_rx_fifo_flush_82575(&adapter->hw);
1982
1983 /* call igb_desc_unused which always leaves
1984 * at least 1 descriptor unused to make sure
1985 * next_to_use != next_to_clean
1986 */
1987 for (i = 0; i < adapter->num_rx_queues; i++) {
1988 struct igb_ring *ring = adapter->rx_ring[i];
1989 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1990 }
1991 }
1992
1993 /**
1994 * igb_power_up_link - Power up the phy/serdes link
1995 * @adapter: address of board private structure
1996 **/
igb_power_up_link(struct igb_adapter * adapter)1997 void igb_power_up_link(struct igb_adapter *adapter)
1998 {
1999 igb_reset_phy(&adapter->hw);
2000
2001 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2002 igb_power_up_phy_copper(&adapter->hw);
2003 else
2004 igb_power_up_serdes_link_82575(&adapter->hw);
2005
2006 igb_setup_link(&adapter->hw);
2007 }
2008
2009 /**
2010 * igb_power_down_link - Power down the phy/serdes link
2011 * @adapter: address of board private structure
2012 */
igb_power_down_link(struct igb_adapter * adapter)2013 static void igb_power_down_link(struct igb_adapter *adapter)
2014 {
2015 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 igb_power_down_phy_copper_82575(&adapter->hw);
2017 else
2018 igb_shutdown_serdes_link_82575(&adapter->hw);
2019 }
2020
2021 /**
2022 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2023 * @adapter: address of the board private structure
2024 **/
igb_check_swap_media(struct igb_adapter * adapter)2025 static void igb_check_swap_media(struct igb_adapter *adapter)
2026 {
2027 struct e1000_hw *hw = &adapter->hw;
2028 u32 ctrl_ext, connsw;
2029 bool swap_now = false;
2030
2031 ctrl_ext = rd32(E1000_CTRL_EXT);
2032 connsw = rd32(E1000_CONNSW);
2033
2034 /* need to live swap if current media is copper and we have fiber/serdes
2035 * to go to.
2036 */
2037
2038 if ((hw->phy.media_type == e1000_media_type_copper) &&
2039 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2040 swap_now = true;
2041 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2042 !(connsw & E1000_CONNSW_SERDESD)) {
2043 /* copper signal takes time to appear */
2044 if (adapter->copper_tries < 4) {
2045 adapter->copper_tries++;
2046 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2047 wr32(E1000_CONNSW, connsw);
2048 return;
2049 } else {
2050 adapter->copper_tries = 0;
2051 if ((connsw & E1000_CONNSW_PHYSD) &&
2052 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2053 swap_now = true;
2054 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2055 wr32(E1000_CONNSW, connsw);
2056 }
2057 }
2058 }
2059
2060 if (!swap_now)
2061 return;
2062
2063 switch (hw->phy.media_type) {
2064 case e1000_media_type_copper:
2065 netdev_info(adapter->netdev,
2066 "MAS: changing media to fiber/serdes\n");
2067 ctrl_ext |=
2068 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2069 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2070 adapter->copper_tries = 0;
2071 break;
2072 case e1000_media_type_internal_serdes:
2073 case e1000_media_type_fiber:
2074 netdev_info(adapter->netdev,
2075 "MAS: changing media to copper\n");
2076 ctrl_ext &=
2077 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2078 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2079 break;
2080 default:
2081 /* shouldn't get here during regular operation */
2082 netdev_err(adapter->netdev,
2083 "AMS: Invalid media type found, returning\n");
2084 break;
2085 }
2086 wr32(E1000_CTRL_EXT, ctrl_ext);
2087 }
2088
2089 /**
2090 * igb_up - Open the interface and prepare it to handle traffic
2091 * @adapter: board private structure
2092 **/
igb_up(struct igb_adapter * adapter)2093 int igb_up(struct igb_adapter *adapter)
2094 {
2095 struct e1000_hw *hw = &adapter->hw;
2096 int i;
2097
2098 /* hardware has been reset, we need to reload some things */
2099 igb_configure(adapter);
2100
2101 clear_bit(__IGB_DOWN, &adapter->state);
2102
2103 for (i = 0; i < adapter->num_q_vectors; i++)
2104 napi_enable(&(adapter->q_vector[i]->napi));
2105
2106 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2107 igb_configure_msix(adapter);
2108 else
2109 igb_assign_vector(adapter->q_vector[0], 0);
2110
2111 /* Clear any pending interrupts. */
2112 rd32(E1000_TSICR);
2113 rd32(E1000_ICR);
2114 igb_irq_enable(adapter);
2115
2116 /* notify VFs that reset has been completed */
2117 if (adapter->vfs_allocated_count) {
2118 u32 reg_data = rd32(E1000_CTRL_EXT);
2119
2120 reg_data |= E1000_CTRL_EXT_PFRSTD;
2121 wr32(E1000_CTRL_EXT, reg_data);
2122 }
2123
2124 netif_tx_start_all_queues(adapter->netdev);
2125
2126 /* start the watchdog. */
2127 hw->mac.get_link_status = 1;
2128 schedule_work(&adapter->watchdog_task);
2129
2130 if ((adapter->flags & IGB_FLAG_EEE) &&
2131 (!hw->dev_spec._82575.eee_disable))
2132 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2133
2134 return 0;
2135 }
2136
igb_down(struct igb_adapter * adapter)2137 void igb_down(struct igb_adapter *adapter)
2138 {
2139 struct net_device *netdev = adapter->netdev;
2140 struct e1000_hw *hw = &adapter->hw;
2141 u32 tctl, rctl;
2142 int i;
2143
2144 /* signal that we're down so the interrupt handler does not
2145 * reschedule our watchdog timer
2146 */
2147 set_bit(__IGB_DOWN, &adapter->state);
2148
2149 /* disable receives in the hardware */
2150 rctl = rd32(E1000_RCTL);
2151 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2152 /* flush and sleep below */
2153
2154 igb_nfc_filter_exit(adapter);
2155
2156 netif_carrier_off(netdev);
2157 netif_tx_stop_all_queues(netdev);
2158
2159 /* disable transmits in the hardware */
2160 tctl = rd32(E1000_TCTL);
2161 tctl &= ~E1000_TCTL_EN;
2162 wr32(E1000_TCTL, tctl);
2163 /* flush both disables and wait for them to finish */
2164 wrfl();
2165 usleep_range(10000, 11000);
2166
2167 igb_irq_disable(adapter);
2168
2169 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2170
2171 for (i = 0; i < adapter->num_q_vectors; i++) {
2172 if (adapter->q_vector[i]) {
2173 napi_synchronize(&adapter->q_vector[i]->napi);
2174 napi_disable(&adapter->q_vector[i]->napi);
2175 }
2176 }
2177
2178 del_timer_sync(&adapter->watchdog_timer);
2179 del_timer_sync(&adapter->phy_info_timer);
2180
2181 /* record the stats before reset*/
2182 spin_lock(&adapter->stats64_lock);
2183 igb_update_stats(adapter);
2184 spin_unlock(&adapter->stats64_lock);
2185
2186 adapter->link_speed = 0;
2187 adapter->link_duplex = 0;
2188
2189 if (!pci_channel_offline(adapter->pdev))
2190 igb_reset(adapter);
2191
2192 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2193 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2194
2195 igb_clean_all_tx_rings(adapter);
2196 igb_clean_all_rx_rings(adapter);
2197 #ifdef CONFIG_IGB_DCA
2198
2199 /* since we reset the hardware DCA settings were cleared */
2200 igb_setup_dca(adapter);
2201 #endif
2202 }
2203
igb_reinit_locked(struct igb_adapter * adapter)2204 void igb_reinit_locked(struct igb_adapter *adapter)
2205 {
2206 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2207 usleep_range(1000, 2000);
2208 igb_down(adapter);
2209 igb_up(adapter);
2210 clear_bit(__IGB_RESETTING, &adapter->state);
2211 }
2212
2213 /** igb_enable_mas - Media Autosense re-enable after swap
2214 *
2215 * @adapter: adapter struct
2216 **/
igb_enable_mas(struct igb_adapter * adapter)2217 static void igb_enable_mas(struct igb_adapter *adapter)
2218 {
2219 struct e1000_hw *hw = &adapter->hw;
2220 u32 connsw = rd32(E1000_CONNSW);
2221
2222 /* configure for SerDes media detect */
2223 if ((hw->phy.media_type == e1000_media_type_copper) &&
2224 (!(connsw & E1000_CONNSW_SERDESD))) {
2225 connsw |= E1000_CONNSW_ENRGSRC;
2226 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2227 wr32(E1000_CONNSW, connsw);
2228 wrfl();
2229 }
2230 }
2231
2232 #ifdef CONFIG_IGB_HWMON
2233 /**
2234 * igb_set_i2c_bb - Init I2C interface
2235 * @hw: pointer to hardware structure
2236 **/
igb_set_i2c_bb(struct e1000_hw * hw)2237 static void igb_set_i2c_bb(struct e1000_hw *hw)
2238 {
2239 u32 ctrl_ext;
2240 s32 i2cctl;
2241
2242 ctrl_ext = rd32(E1000_CTRL_EXT);
2243 ctrl_ext |= E1000_CTRL_I2C_ENA;
2244 wr32(E1000_CTRL_EXT, ctrl_ext);
2245 wrfl();
2246
2247 i2cctl = rd32(E1000_I2CPARAMS);
2248 i2cctl |= E1000_I2CBB_EN
2249 | E1000_I2C_CLK_OE_N
2250 | E1000_I2C_DATA_OE_N;
2251 wr32(E1000_I2CPARAMS, i2cctl);
2252 wrfl();
2253 }
2254 #endif
2255
igb_reset(struct igb_adapter * adapter)2256 void igb_reset(struct igb_adapter *adapter)
2257 {
2258 struct pci_dev *pdev = adapter->pdev;
2259 struct e1000_hw *hw = &adapter->hw;
2260 struct e1000_mac_info *mac = &hw->mac;
2261 struct e1000_fc_info *fc = &hw->fc;
2262 u32 pba, hwm;
2263
2264 /* Repartition Pba for greater than 9k mtu
2265 * To take effect CTRL.RST is required.
2266 */
2267 switch (mac->type) {
2268 case e1000_i350:
2269 case e1000_i354:
2270 case e1000_82580:
2271 pba = rd32(E1000_RXPBS);
2272 pba = igb_rxpbs_adjust_82580(pba);
2273 break;
2274 case e1000_82576:
2275 pba = rd32(E1000_RXPBS);
2276 pba &= E1000_RXPBS_SIZE_MASK_82576;
2277 break;
2278 case e1000_82575:
2279 case e1000_i210:
2280 case e1000_i211:
2281 default:
2282 pba = E1000_PBA_34K;
2283 break;
2284 }
2285
2286 if (mac->type == e1000_82575) {
2287 u32 min_rx_space, min_tx_space, needed_tx_space;
2288
2289 /* write Rx PBA so that hardware can report correct Tx PBA */
2290 wr32(E1000_PBA, pba);
2291
2292 /* To maintain wire speed transmits, the Tx FIFO should be
2293 * large enough to accommodate two full transmit packets,
2294 * rounded up to the next 1KB and expressed in KB. Likewise,
2295 * the Rx FIFO should be large enough to accommodate at least
2296 * one full receive packet and is similarly rounded up and
2297 * expressed in KB.
2298 */
2299 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2300
2301 /* The Tx FIFO also stores 16 bytes of information about the Tx
2302 * but don't include Ethernet FCS because hardware appends it.
2303 * We only need to round down to the nearest 512 byte block
2304 * count since the value we care about is 2 frames, not 1.
2305 */
2306 min_tx_space = adapter->max_frame_size;
2307 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2308 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2309
2310 /* upper 16 bits has Tx packet buffer allocation size in KB */
2311 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2312
2313 /* If current Tx allocation is less than the min Tx FIFO size,
2314 * and the min Tx FIFO size is less than the current Rx FIFO
2315 * allocation, take space away from current Rx allocation.
2316 */
2317 if (needed_tx_space < pba) {
2318 pba -= needed_tx_space;
2319
2320 /* if short on Rx space, Rx wins and must trump Tx
2321 * adjustment
2322 */
2323 if (pba < min_rx_space)
2324 pba = min_rx_space;
2325 }
2326
2327 /* adjust PBA for jumbo frames */
2328 wr32(E1000_PBA, pba);
2329 }
2330
2331 /* flow control settings
2332 * The high water mark must be low enough to fit one full frame
2333 * after transmitting the pause frame. As such we must have enough
2334 * space to allow for us to complete our current transmit and then
2335 * receive the frame that is in progress from the link partner.
2336 * Set it to:
2337 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2338 */
2339 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2340
2341 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2342 fc->low_water = fc->high_water - 16;
2343 fc->pause_time = 0xFFFF;
2344 fc->send_xon = 1;
2345 fc->current_mode = fc->requested_mode;
2346
2347 /* disable receive for all VFs and wait one second */
2348 if (adapter->vfs_allocated_count) {
2349 int i;
2350
2351 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2352 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2353
2354 /* ping all the active vfs to let them know we are going down */
2355 igb_ping_all_vfs(adapter);
2356
2357 /* disable transmits and receives */
2358 wr32(E1000_VFRE, 0);
2359 wr32(E1000_VFTE, 0);
2360 }
2361
2362 /* Allow time for pending master requests to run */
2363 hw->mac.ops.reset_hw(hw);
2364 wr32(E1000_WUC, 0);
2365
2366 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2367 /* need to resetup here after media swap */
2368 adapter->ei.get_invariants(hw);
2369 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2370 }
2371 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2372 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2373 igb_enable_mas(adapter);
2374 }
2375 if (hw->mac.ops.init_hw(hw))
2376 dev_err(&pdev->dev, "Hardware Error\n");
2377
2378 /* RAR registers were cleared during init_hw, clear mac table */
2379 igb_flush_mac_table(adapter);
2380 __dev_uc_unsync(adapter->netdev, NULL);
2381
2382 /* Recover default RAR entry */
2383 igb_set_default_mac_filter(adapter);
2384
2385 /* Flow control settings reset on hardware reset, so guarantee flow
2386 * control is off when forcing speed.
2387 */
2388 if (!hw->mac.autoneg)
2389 igb_force_mac_fc(hw);
2390
2391 igb_init_dmac(adapter, pba);
2392 #ifdef CONFIG_IGB_HWMON
2393 /* Re-initialize the thermal sensor on i350 devices. */
2394 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2395 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2396 /* If present, re-initialize the external thermal sensor
2397 * interface.
2398 */
2399 if (adapter->ets)
2400 igb_set_i2c_bb(hw);
2401 mac->ops.init_thermal_sensor_thresh(hw);
2402 }
2403 }
2404 #endif
2405 /* Re-establish EEE setting */
2406 if (hw->phy.media_type == e1000_media_type_copper) {
2407 switch (mac->type) {
2408 case e1000_i350:
2409 case e1000_i210:
2410 case e1000_i211:
2411 igb_set_eee_i350(hw, true, true);
2412 break;
2413 case e1000_i354:
2414 igb_set_eee_i354(hw, true, true);
2415 break;
2416 default:
2417 break;
2418 }
2419 }
2420 if (!netif_running(adapter->netdev))
2421 igb_power_down_link(adapter);
2422
2423 igb_update_mng_vlan(adapter);
2424
2425 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427
2428 /* Re-enable PTP, where applicable. */
2429 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 igb_ptp_reset(adapter);
2431
2432 igb_get_phy_info(hw);
2433 }
2434
igb_fix_features(struct net_device * netdev,netdev_features_t features)2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 netdev_features_t features)
2437 {
2438 /* Since there is no support for separate Rx/Tx vlan accel
2439 * enable/disable make sure Tx flag is always in same state as Rx.
2440 */
2441 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 features |= NETIF_F_HW_VLAN_CTAG_TX;
2443 else
2444 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445
2446 return features;
2447 }
2448
igb_set_features(struct net_device * netdev,netdev_features_t features)2449 static int igb_set_features(struct net_device *netdev,
2450 netdev_features_t features)
2451 {
2452 netdev_features_t changed = netdev->features ^ features;
2453 struct igb_adapter *adapter = netdev_priv(netdev);
2454
2455 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 igb_vlan_mode(netdev, features);
2457
2458 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459 return 0;
2460
2461 if (!(features & NETIF_F_NTUPLE)) {
2462 struct hlist_node *node2;
2463 struct igb_nfc_filter *rule;
2464
2465 spin_lock(&adapter->nfc_lock);
2466 hlist_for_each_entry_safe(rule, node2,
2467 &adapter->nfc_filter_list, nfc_node) {
2468 igb_erase_filter(adapter, rule);
2469 hlist_del(&rule->nfc_node);
2470 kfree(rule);
2471 }
2472 spin_unlock(&adapter->nfc_lock);
2473 adapter->nfc_filter_count = 0;
2474 }
2475
2476 netdev->features = features;
2477
2478 if (netif_running(netdev))
2479 igb_reinit_locked(adapter);
2480 else
2481 igb_reset(adapter);
2482
2483 return 1;
2484 }
2485
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 struct net_device *dev,
2488 const unsigned char *addr, u16 vid,
2489 u16 flags,
2490 struct netlink_ext_ack *extack)
2491 {
2492 /* guarantee we can provide a unique filter for the unicast address */
2493 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 struct igb_adapter *adapter = netdev_priv(dev);
2495 int vfn = adapter->vfs_allocated_count;
2496
2497 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498 return -ENOMEM;
2499 }
2500
2501 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502 }
2503
2504 #define IGB_MAX_MAC_HDR_LEN 127
2505 #define IGB_MAX_NETWORK_HDR_LEN 511
2506
2507 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 netdev_features_t features)
2510 {
2511 unsigned int network_hdr_len, mac_hdr_len;
2512
2513 /* Make certain the headers can be described by a context descriptor */
2514 mac_hdr_len = skb_network_offset(skb);
2515 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 return features & ~(NETIF_F_HW_CSUM |
2517 NETIF_F_SCTP_CRC |
2518 NETIF_F_GSO_UDP_L4 |
2519 NETIF_F_HW_VLAN_CTAG_TX |
2520 NETIF_F_TSO |
2521 NETIF_F_TSO6);
2522
2523 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2525 return features & ~(NETIF_F_HW_CSUM |
2526 NETIF_F_SCTP_CRC |
2527 NETIF_F_GSO_UDP_L4 |
2528 NETIF_F_TSO |
2529 NETIF_F_TSO6);
2530
2531 /* We can only support IPV4 TSO in tunnels if we can mangle the
2532 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2533 */
2534 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2535 features &= ~NETIF_F_TSO;
2536
2537 return features;
2538 }
2539
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2540 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2541 {
2542 if (!is_fqtss_enabled(adapter)) {
2543 enable_fqtss(adapter, true);
2544 return;
2545 }
2546
2547 igb_config_tx_modes(adapter, queue);
2548
2549 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2550 enable_fqtss(adapter, false);
2551 }
2552
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2553 static int igb_offload_cbs(struct igb_adapter *adapter,
2554 struct tc_cbs_qopt_offload *qopt)
2555 {
2556 struct e1000_hw *hw = &adapter->hw;
2557 int err;
2558
2559 /* CBS offloading is only supported by i210 controller. */
2560 if (hw->mac.type != e1000_i210)
2561 return -EOPNOTSUPP;
2562
2563 /* CBS offloading is only supported by queue 0 and queue 1. */
2564 if (qopt->queue < 0 || qopt->queue > 1)
2565 return -EINVAL;
2566
2567 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2568 qopt->idleslope, qopt->sendslope,
2569 qopt->hicredit, qopt->locredit);
2570 if (err)
2571 return err;
2572
2573 igb_offload_apply(adapter, qopt->queue);
2574
2575 return 0;
2576 }
2577
2578 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2579 #define VLAN_PRIO_FULL_MASK (0x07)
2580
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2581 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2582 struct flow_cls_offload *f,
2583 int traffic_class,
2584 struct igb_nfc_filter *input)
2585 {
2586 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2587 struct flow_dissector *dissector = rule->match.dissector;
2588 struct netlink_ext_ack *extack = f->common.extack;
2589
2590 if (dissector->used_keys &
2591 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2592 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2593 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2594 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2595 NL_SET_ERR_MSG_MOD(extack,
2596 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2597 return -EOPNOTSUPP;
2598 }
2599
2600 if (flow_rule_match_has_control_flags(rule, extack))
2601 return -EOPNOTSUPP;
2602
2603 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2604 struct flow_match_eth_addrs match;
2605
2606 flow_rule_match_eth_addrs(rule, &match);
2607 if (!is_zero_ether_addr(match.mask->dst)) {
2608 if (!is_broadcast_ether_addr(match.mask->dst)) {
2609 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2610 return -EINVAL;
2611 }
2612
2613 input->filter.match_flags |=
2614 IGB_FILTER_FLAG_DST_MAC_ADDR;
2615 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2616 }
2617
2618 if (!is_zero_ether_addr(match.mask->src)) {
2619 if (!is_broadcast_ether_addr(match.mask->src)) {
2620 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2621 return -EINVAL;
2622 }
2623
2624 input->filter.match_flags |=
2625 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2626 ether_addr_copy(input->filter.src_addr, match.key->src);
2627 }
2628 }
2629
2630 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2631 struct flow_match_basic match;
2632
2633 flow_rule_match_basic(rule, &match);
2634 if (match.mask->n_proto) {
2635 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2636 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2637 return -EINVAL;
2638 }
2639
2640 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2641 input->filter.etype = match.key->n_proto;
2642 }
2643 }
2644
2645 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2646 struct flow_match_vlan match;
2647
2648 flow_rule_match_vlan(rule, &match);
2649 if (match.mask->vlan_priority) {
2650 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2651 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2652 return -EINVAL;
2653 }
2654
2655 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2656 input->filter.vlan_tci =
2657 (__force __be16)match.key->vlan_priority;
2658 }
2659 }
2660
2661 input->action = traffic_class;
2662 input->cookie = f->cookie;
2663
2664 return 0;
2665 }
2666
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2667 static int igb_configure_clsflower(struct igb_adapter *adapter,
2668 struct flow_cls_offload *cls_flower)
2669 {
2670 struct netlink_ext_ack *extack = cls_flower->common.extack;
2671 struct igb_nfc_filter *filter, *f;
2672 int err, tc;
2673
2674 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2675 if (tc < 0) {
2676 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2677 return -EINVAL;
2678 }
2679
2680 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2681 if (!filter)
2682 return -ENOMEM;
2683
2684 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2685 if (err < 0)
2686 goto err_parse;
2687
2688 spin_lock(&adapter->nfc_lock);
2689
2690 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2691 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2692 err = -EEXIST;
2693 NL_SET_ERR_MSG_MOD(extack,
2694 "This filter is already set in ethtool");
2695 goto err_locked;
2696 }
2697 }
2698
2699 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2700 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 err = -EEXIST;
2702 NL_SET_ERR_MSG_MOD(extack,
2703 "This filter is already set in cls_flower");
2704 goto err_locked;
2705 }
2706 }
2707
2708 err = igb_add_filter(adapter, filter);
2709 if (err < 0) {
2710 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2711 goto err_locked;
2712 }
2713
2714 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2715
2716 spin_unlock(&adapter->nfc_lock);
2717
2718 return 0;
2719
2720 err_locked:
2721 spin_unlock(&adapter->nfc_lock);
2722
2723 err_parse:
2724 kfree(filter);
2725
2726 return err;
2727 }
2728
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2729 static int igb_delete_clsflower(struct igb_adapter *adapter,
2730 struct flow_cls_offload *cls_flower)
2731 {
2732 struct igb_nfc_filter *filter;
2733 int err;
2734
2735 spin_lock(&adapter->nfc_lock);
2736
2737 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2738 if (filter->cookie == cls_flower->cookie)
2739 break;
2740
2741 if (!filter) {
2742 err = -ENOENT;
2743 goto out;
2744 }
2745
2746 err = igb_erase_filter(adapter, filter);
2747 if (err < 0)
2748 goto out;
2749
2750 hlist_del(&filter->nfc_node);
2751 kfree(filter);
2752
2753 out:
2754 spin_unlock(&adapter->nfc_lock);
2755
2756 return err;
2757 }
2758
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2759 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2760 struct flow_cls_offload *cls_flower)
2761 {
2762 switch (cls_flower->command) {
2763 case FLOW_CLS_REPLACE:
2764 return igb_configure_clsflower(adapter, cls_flower);
2765 case FLOW_CLS_DESTROY:
2766 return igb_delete_clsflower(adapter, cls_flower);
2767 case FLOW_CLS_STATS:
2768 return -EOPNOTSUPP;
2769 default:
2770 return -EOPNOTSUPP;
2771 }
2772 }
2773
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2774 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2775 void *cb_priv)
2776 {
2777 struct igb_adapter *adapter = cb_priv;
2778
2779 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2780 return -EOPNOTSUPP;
2781
2782 switch (type) {
2783 case TC_SETUP_CLSFLOWER:
2784 return igb_setup_tc_cls_flower(adapter, type_data);
2785
2786 default:
2787 return -EOPNOTSUPP;
2788 }
2789 }
2790
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2791 static int igb_offload_txtime(struct igb_adapter *adapter,
2792 struct tc_etf_qopt_offload *qopt)
2793 {
2794 struct e1000_hw *hw = &adapter->hw;
2795 int err;
2796
2797 /* Launchtime offloading is only supported by i210 controller. */
2798 if (hw->mac.type != e1000_i210)
2799 return -EOPNOTSUPP;
2800
2801 /* Launchtime offloading is only supported by queues 0 and 1. */
2802 if (qopt->queue < 0 || qopt->queue > 1)
2803 return -EINVAL;
2804
2805 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2806 if (err)
2807 return err;
2808
2809 igb_offload_apply(adapter, qopt->queue);
2810
2811 return 0;
2812 }
2813
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2814 static int igb_tc_query_caps(struct igb_adapter *adapter,
2815 struct tc_query_caps_base *base)
2816 {
2817 switch (base->type) {
2818 case TC_SETUP_QDISC_TAPRIO: {
2819 struct tc_taprio_caps *caps = base->caps;
2820
2821 caps->broken_mqprio = true;
2822
2823 return 0;
2824 }
2825 default:
2826 return -EOPNOTSUPP;
2827 }
2828 }
2829
2830 static LIST_HEAD(igb_block_cb_list);
2831
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2832 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2833 void *type_data)
2834 {
2835 struct igb_adapter *adapter = netdev_priv(dev);
2836
2837 switch (type) {
2838 case TC_QUERY_CAPS:
2839 return igb_tc_query_caps(adapter, type_data);
2840 case TC_SETUP_QDISC_CBS:
2841 return igb_offload_cbs(adapter, type_data);
2842 case TC_SETUP_BLOCK:
2843 return flow_block_cb_setup_simple(type_data,
2844 &igb_block_cb_list,
2845 igb_setup_tc_block_cb,
2846 adapter, adapter, true);
2847
2848 case TC_SETUP_QDISC_ETF:
2849 return igb_offload_txtime(adapter, type_data);
2850
2851 default:
2852 return -EOPNOTSUPP;
2853 }
2854 }
2855
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2856 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2857 {
2858 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2859 struct igb_adapter *adapter = netdev_priv(dev);
2860 struct bpf_prog *prog = bpf->prog, *old_prog;
2861 bool running = netif_running(dev);
2862 bool need_reset;
2863
2864 /* verify igb ring attributes are sufficient for XDP */
2865 for (i = 0; i < adapter->num_rx_queues; i++) {
2866 struct igb_ring *ring = adapter->rx_ring[i];
2867
2868 if (frame_size > igb_rx_bufsz(ring)) {
2869 NL_SET_ERR_MSG_MOD(bpf->extack,
2870 "The RX buffer size is too small for the frame size");
2871 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2872 igb_rx_bufsz(ring), frame_size);
2873 return -EINVAL;
2874 }
2875 }
2876
2877 old_prog = xchg(&adapter->xdp_prog, prog);
2878 need_reset = (!!prog != !!old_prog);
2879
2880 /* device is up and bpf is added/removed, must setup the RX queues */
2881 if (need_reset && running) {
2882 igb_close(dev);
2883 } else {
2884 for (i = 0; i < adapter->num_rx_queues; i++)
2885 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2886 adapter->xdp_prog);
2887 }
2888
2889 if (old_prog)
2890 bpf_prog_put(old_prog);
2891
2892 /* bpf is just replaced, RXQ and MTU are already setup */
2893 if (!need_reset) {
2894 return 0;
2895 } else {
2896 if (prog)
2897 xdp_features_set_redirect_target(dev, true);
2898 else
2899 xdp_features_clear_redirect_target(dev);
2900 }
2901
2902 if (running)
2903 igb_open(dev);
2904
2905 return 0;
2906 }
2907
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2908 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2909 {
2910 switch (xdp->command) {
2911 case XDP_SETUP_PROG:
2912 return igb_xdp_setup(dev, xdp);
2913 default:
2914 return -EINVAL;
2915 }
2916 }
2917
2918 /* This function assumes __netif_tx_lock is held by the caller. */
igb_xdp_ring_update_tail(struct igb_ring * ring)2919 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2920 {
2921 lockdep_assert_held(&txring_txq(ring)->_xmit_lock);
2922
2923 /* Force memory writes to complete before letting h/w know there
2924 * are new descriptors to fetch.
2925 */
2926 wmb();
2927 writel(ring->next_to_use, ring->tail);
2928 }
2929
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2930 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2931 {
2932 unsigned int r_idx = smp_processor_id();
2933
2934 if (r_idx >= adapter->num_tx_queues)
2935 r_idx = r_idx % adapter->num_tx_queues;
2936
2937 return adapter->tx_ring[r_idx];
2938 }
2939
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2940 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2941 {
2942 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2943 int cpu = smp_processor_id();
2944 struct igb_ring *tx_ring;
2945 struct netdev_queue *nq;
2946 u32 ret;
2947
2948 if (unlikely(!xdpf))
2949 return IGB_XDP_CONSUMED;
2950
2951 /* During program transitions its possible adapter->xdp_prog is assigned
2952 * but ring has not been configured yet. In this case simply abort xmit.
2953 */
2954 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2955 if (unlikely(!tx_ring))
2956 return IGB_XDP_CONSUMED;
2957
2958 nq = txring_txq(tx_ring);
2959 __netif_tx_lock(nq, cpu);
2960 /* Avoid transmit queue timeout since we share it with the slow path */
2961 txq_trans_cond_update(nq);
2962 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2963 __netif_tx_unlock(nq);
2964
2965 return ret;
2966 }
2967
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2968 static int igb_xdp_xmit(struct net_device *dev, int n,
2969 struct xdp_frame **frames, u32 flags)
2970 {
2971 struct igb_adapter *adapter = netdev_priv(dev);
2972 int cpu = smp_processor_id();
2973 struct igb_ring *tx_ring;
2974 struct netdev_queue *nq;
2975 int nxmit = 0;
2976 int i;
2977
2978 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2979 return -ENETDOWN;
2980
2981 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2982 return -EINVAL;
2983
2984 /* During program transitions its possible adapter->xdp_prog is assigned
2985 * but ring has not been configured yet. In this case simply abort xmit.
2986 */
2987 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2988 if (unlikely(!tx_ring))
2989 return -ENXIO;
2990
2991 nq = txring_txq(tx_ring);
2992 __netif_tx_lock(nq, cpu);
2993
2994 /* Avoid transmit queue timeout since we share it with the slow path */
2995 txq_trans_cond_update(nq);
2996
2997 for (i = 0; i < n; i++) {
2998 struct xdp_frame *xdpf = frames[i];
2999 int err;
3000
3001 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3002 if (err != IGB_XDP_TX)
3003 break;
3004 nxmit++;
3005 }
3006
3007 if (unlikely(flags & XDP_XMIT_FLUSH))
3008 igb_xdp_ring_update_tail(tx_ring);
3009
3010 __netif_tx_unlock(nq);
3011
3012 return nxmit;
3013 }
3014
3015 static const struct net_device_ops igb_netdev_ops = {
3016 .ndo_open = igb_open,
3017 .ndo_stop = igb_close,
3018 .ndo_start_xmit = igb_xmit_frame,
3019 .ndo_get_stats64 = igb_get_stats64,
3020 .ndo_set_rx_mode = igb_set_rx_mode,
3021 .ndo_set_mac_address = igb_set_mac,
3022 .ndo_change_mtu = igb_change_mtu,
3023 .ndo_eth_ioctl = igb_ioctl,
3024 .ndo_tx_timeout = igb_tx_timeout,
3025 .ndo_validate_addr = eth_validate_addr,
3026 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3027 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3028 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3029 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3030 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3031 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3032 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3033 .ndo_get_vf_config = igb_ndo_get_vf_config,
3034 .ndo_fix_features = igb_fix_features,
3035 .ndo_set_features = igb_set_features,
3036 .ndo_fdb_add = igb_ndo_fdb_add,
3037 .ndo_features_check = igb_features_check,
3038 .ndo_setup_tc = igb_setup_tc,
3039 .ndo_bpf = igb_xdp,
3040 .ndo_xdp_xmit = igb_xdp_xmit,
3041 };
3042
3043 /**
3044 * igb_set_fw_version - Configure version string for ethtool
3045 * @adapter: adapter struct
3046 **/
igb_set_fw_version(struct igb_adapter * adapter)3047 void igb_set_fw_version(struct igb_adapter *adapter)
3048 {
3049 struct e1000_hw *hw = &adapter->hw;
3050 struct e1000_fw_version fw;
3051
3052 igb_get_fw_version(hw, &fw);
3053
3054 switch (hw->mac.type) {
3055 case e1000_i210:
3056 case e1000_i211:
3057 if (!(igb_get_flash_presence_i210(hw))) {
3058 snprintf(adapter->fw_version,
3059 sizeof(adapter->fw_version),
3060 "%2d.%2d-%d",
3061 fw.invm_major, fw.invm_minor,
3062 fw.invm_img_type);
3063 break;
3064 }
3065 fallthrough;
3066 default:
3067 /* if option rom is valid, display its version too */
3068 if (fw.or_valid) {
3069 snprintf(adapter->fw_version,
3070 sizeof(adapter->fw_version),
3071 "%d.%d, 0x%08x, %d.%d.%d",
3072 fw.eep_major, fw.eep_minor, fw.etrack_id,
3073 fw.or_major, fw.or_build, fw.or_patch);
3074 /* no option rom */
3075 } else if (fw.etrack_id != 0X0000) {
3076 snprintf(adapter->fw_version,
3077 sizeof(adapter->fw_version),
3078 "%d.%d, 0x%08x",
3079 fw.eep_major, fw.eep_minor, fw.etrack_id);
3080 } else {
3081 snprintf(adapter->fw_version,
3082 sizeof(adapter->fw_version),
3083 "%d.%d.%d",
3084 fw.eep_major, fw.eep_minor, fw.eep_build);
3085 }
3086 break;
3087 }
3088 }
3089
3090 /**
3091 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3092 *
3093 * @adapter: adapter struct
3094 **/
igb_init_mas(struct igb_adapter * adapter)3095 static void igb_init_mas(struct igb_adapter *adapter)
3096 {
3097 struct e1000_hw *hw = &adapter->hw;
3098 u16 eeprom_data;
3099
3100 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3101 switch (hw->bus.func) {
3102 case E1000_FUNC_0:
3103 if (eeprom_data & IGB_MAS_ENABLE_0) {
3104 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3105 netdev_info(adapter->netdev,
3106 "MAS: Enabling Media Autosense for port %d\n",
3107 hw->bus.func);
3108 }
3109 break;
3110 case E1000_FUNC_1:
3111 if (eeprom_data & IGB_MAS_ENABLE_1) {
3112 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3113 netdev_info(adapter->netdev,
3114 "MAS: Enabling Media Autosense for port %d\n",
3115 hw->bus.func);
3116 }
3117 break;
3118 case E1000_FUNC_2:
3119 if (eeprom_data & IGB_MAS_ENABLE_2) {
3120 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3121 netdev_info(adapter->netdev,
3122 "MAS: Enabling Media Autosense for port %d\n",
3123 hw->bus.func);
3124 }
3125 break;
3126 case E1000_FUNC_3:
3127 if (eeprom_data & IGB_MAS_ENABLE_3) {
3128 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3129 netdev_info(adapter->netdev,
3130 "MAS: Enabling Media Autosense for port %d\n",
3131 hw->bus.func);
3132 }
3133 break;
3134 default:
3135 /* Shouldn't get here */
3136 netdev_err(adapter->netdev,
3137 "MAS: Invalid port configuration, returning\n");
3138 break;
3139 }
3140 }
3141
3142 /**
3143 * igb_init_i2c - Init I2C interface
3144 * @adapter: pointer to adapter structure
3145 **/
igb_init_i2c(struct igb_adapter * adapter)3146 static s32 igb_init_i2c(struct igb_adapter *adapter)
3147 {
3148 s32 status = 0;
3149
3150 /* I2C interface supported on i350 devices */
3151 if (adapter->hw.mac.type != e1000_i350)
3152 return 0;
3153
3154 /* Initialize the i2c bus which is controlled by the registers.
3155 * This bus will use the i2c_algo_bit structure that implements
3156 * the protocol through toggling of the 4 bits in the register.
3157 */
3158 adapter->i2c_adap.owner = THIS_MODULE;
3159 adapter->i2c_algo = igb_i2c_algo;
3160 adapter->i2c_algo.data = adapter;
3161 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3162 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3163 strscpy(adapter->i2c_adap.name, "igb BB",
3164 sizeof(adapter->i2c_adap.name));
3165 status = i2c_bit_add_bus(&adapter->i2c_adap);
3166 return status;
3167 }
3168
3169 /**
3170 * igb_probe - Device Initialization Routine
3171 * @pdev: PCI device information struct
3172 * @ent: entry in igb_pci_tbl
3173 *
3174 * Returns 0 on success, negative on failure
3175 *
3176 * igb_probe initializes an adapter identified by a pci_dev structure.
3177 * The OS initialization, configuring of the adapter private structure,
3178 * and a hardware reset occur.
3179 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3180 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3181 {
3182 struct net_device *netdev;
3183 struct igb_adapter *adapter;
3184 struct e1000_hw *hw;
3185 u16 eeprom_data = 0;
3186 s32 ret_val;
3187 static int global_quad_port_a; /* global quad port a indication */
3188 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3189 u8 part_str[E1000_PBANUM_LENGTH];
3190 int err;
3191
3192 /* Catch broken hardware that put the wrong VF device ID in
3193 * the PCIe SR-IOV capability.
3194 */
3195 if (pdev->is_virtfn) {
3196 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3197 pci_name(pdev), pdev->vendor, pdev->device);
3198 return -EINVAL;
3199 }
3200
3201 err = pci_enable_device_mem(pdev);
3202 if (err)
3203 return err;
3204
3205 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3206 if (err) {
3207 dev_err(&pdev->dev,
3208 "No usable DMA configuration, aborting\n");
3209 goto err_dma;
3210 }
3211
3212 err = pci_request_mem_regions(pdev, igb_driver_name);
3213 if (err)
3214 goto err_pci_reg;
3215
3216 pci_set_master(pdev);
3217 pci_save_state(pdev);
3218
3219 err = -ENOMEM;
3220 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3221 IGB_MAX_TX_QUEUES);
3222 if (!netdev)
3223 goto err_alloc_etherdev;
3224
3225 SET_NETDEV_DEV(netdev, &pdev->dev);
3226
3227 pci_set_drvdata(pdev, netdev);
3228 adapter = netdev_priv(netdev);
3229 adapter->netdev = netdev;
3230 adapter->pdev = pdev;
3231 hw = &adapter->hw;
3232 hw->back = adapter;
3233 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3234
3235 err = -EIO;
3236 adapter->io_addr = pci_iomap(pdev, 0, 0);
3237 if (!adapter->io_addr)
3238 goto err_ioremap;
3239 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3240 hw->hw_addr = adapter->io_addr;
3241
3242 netdev->netdev_ops = &igb_netdev_ops;
3243 igb_set_ethtool_ops(netdev);
3244 netdev->watchdog_timeo = 5 * HZ;
3245
3246 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3247
3248 netdev->mem_start = pci_resource_start(pdev, 0);
3249 netdev->mem_end = pci_resource_end(pdev, 0);
3250
3251 /* PCI config space info */
3252 hw->vendor_id = pdev->vendor;
3253 hw->device_id = pdev->device;
3254 hw->revision_id = pdev->revision;
3255 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3256 hw->subsystem_device_id = pdev->subsystem_device;
3257
3258 /* Copy the default MAC, PHY and NVM function pointers */
3259 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3260 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3261 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3262 /* Initialize skew-specific constants */
3263 err = ei->get_invariants(hw);
3264 if (err)
3265 goto err_sw_init;
3266
3267 /* setup the private structure */
3268 err = igb_sw_init(adapter);
3269 if (err)
3270 goto err_sw_init;
3271
3272 igb_get_bus_info_pcie(hw);
3273
3274 hw->phy.autoneg_wait_to_complete = false;
3275
3276 /* Copper options */
3277 if (hw->phy.media_type == e1000_media_type_copper) {
3278 hw->phy.mdix = AUTO_ALL_MODES;
3279 hw->phy.disable_polarity_correction = false;
3280 hw->phy.ms_type = e1000_ms_hw_default;
3281 }
3282
3283 if (igb_check_reset_block(hw))
3284 dev_info(&pdev->dev,
3285 "PHY reset is blocked due to SOL/IDER session.\n");
3286
3287 /* features is initialized to 0 in allocation, it might have bits
3288 * set by igb_sw_init so we should use an or instead of an
3289 * assignment.
3290 */
3291 netdev->features |= NETIF_F_SG |
3292 NETIF_F_TSO |
3293 NETIF_F_TSO6 |
3294 NETIF_F_RXHASH |
3295 NETIF_F_RXCSUM |
3296 NETIF_F_HW_CSUM;
3297
3298 if (hw->mac.type >= e1000_82576)
3299 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3300
3301 if (hw->mac.type >= e1000_i350)
3302 netdev->features |= NETIF_F_HW_TC;
3303
3304 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3305 NETIF_F_GSO_GRE_CSUM | \
3306 NETIF_F_GSO_IPXIP4 | \
3307 NETIF_F_GSO_IPXIP6 | \
3308 NETIF_F_GSO_UDP_TUNNEL | \
3309 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3310
3311 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3312 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3313
3314 /* copy netdev features into list of user selectable features */
3315 netdev->hw_features |= netdev->features |
3316 NETIF_F_HW_VLAN_CTAG_RX |
3317 NETIF_F_HW_VLAN_CTAG_TX |
3318 NETIF_F_RXALL;
3319
3320 if (hw->mac.type >= e1000_i350)
3321 netdev->hw_features |= NETIF_F_NTUPLE;
3322
3323 netdev->features |= NETIF_F_HIGHDMA;
3324
3325 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3326 netdev->mpls_features |= NETIF_F_HW_CSUM;
3327 netdev->hw_enc_features |= netdev->vlan_features;
3328
3329 /* set this bit last since it cannot be part of vlan_features */
3330 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3331 NETIF_F_HW_VLAN_CTAG_RX |
3332 NETIF_F_HW_VLAN_CTAG_TX;
3333
3334 netdev->priv_flags |= IFF_SUPP_NOFCS;
3335
3336 netdev->priv_flags |= IFF_UNICAST_FLT;
3337 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3338
3339 /* MTU range: 68 - 9216 */
3340 netdev->min_mtu = ETH_MIN_MTU;
3341 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3342
3343 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3344
3345 /* before reading the NVM, reset the controller to put the device in a
3346 * known good starting state
3347 */
3348 hw->mac.ops.reset_hw(hw);
3349
3350 /* make sure the NVM is good , i211/i210 parts can have special NVM
3351 * that doesn't contain a checksum
3352 */
3353 switch (hw->mac.type) {
3354 case e1000_i210:
3355 case e1000_i211:
3356 if (igb_get_flash_presence_i210(hw)) {
3357 if (hw->nvm.ops.validate(hw) < 0) {
3358 dev_err(&pdev->dev,
3359 "The NVM Checksum Is Not Valid\n");
3360 err = -EIO;
3361 goto err_eeprom;
3362 }
3363 }
3364 break;
3365 default:
3366 if (hw->nvm.ops.validate(hw) < 0) {
3367 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3368 err = -EIO;
3369 goto err_eeprom;
3370 }
3371 break;
3372 }
3373
3374 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3375 /* copy the MAC address out of the NVM */
3376 if (hw->mac.ops.read_mac_addr(hw))
3377 dev_err(&pdev->dev, "NVM Read Error\n");
3378 }
3379
3380 eth_hw_addr_set(netdev, hw->mac.addr);
3381
3382 if (!is_valid_ether_addr(netdev->dev_addr)) {
3383 dev_err(&pdev->dev, "Invalid MAC Address\n");
3384 err = -EIO;
3385 goto err_eeprom;
3386 }
3387
3388 igb_set_default_mac_filter(adapter);
3389
3390 /* get firmware version for ethtool -i */
3391 igb_set_fw_version(adapter);
3392
3393 /* configure RXPBSIZE and TXPBSIZE */
3394 if (hw->mac.type == e1000_i210) {
3395 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3396 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3397 }
3398
3399 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3400 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3401
3402 INIT_WORK(&adapter->reset_task, igb_reset_task);
3403 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3404
3405 /* Initialize link properties that are user-changeable */
3406 adapter->fc_autoneg = true;
3407 hw->mac.autoneg = true;
3408 hw->phy.autoneg_advertised = 0x2f;
3409
3410 hw->fc.requested_mode = e1000_fc_default;
3411 hw->fc.current_mode = e1000_fc_default;
3412
3413 igb_validate_mdi_setting(hw);
3414
3415 /* By default, support wake on port A */
3416 if (hw->bus.func == 0)
3417 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3418
3419 /* Check the NVM for wake support on non-port A ports */
3420 if (hw->mac.type >= e1000_82580)
3421 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3422 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3423 &eeprom_data);
3424 else if (hw->bus.func == 1)
3425 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3426
3427 if (eeprom_data & IGB_EEPROM_APME)
3428 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3429
3430 /* now that we have the eeprom settings, apply the special cases where
3431 * the eeprom may be wrong or the board simply won't support wake on
3432 * lan on a particular port
3433 */
3434 switch (pdev->device) {
3435 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3436 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3437 break;
3438 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3439 case E1000_DEV_ID_82576_FIBER:
3440 case E1000_DEV_ID_82576_SERDES:
3441 /* Wake events only supported on port A for dual fiber
3442 * regardless of eeprom setting
3443 */
3444 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3445 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446 break;
3447 case E1000_DEV_ID_82576_QUAD_COPPER:
3448 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3449 /* if quad port adapter, disable WoL on all but port A */
3450 if (global_quad_port_a != 0)
3451 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3452 else
3453 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3454 /* Reset for multiple quad port adapters */
3455 if (++global_quad_port_a == 4)
3456 global_quad_port_a = 0;
3457 break;
3458 default:
3459 /* If the device can't wake, don't set software support */
3460 if (!device_can_wakeup(&adapter->pdev->dev))
3461 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3462 }
3463
3464 /* initialize the wol settings based on the eeprom settings */
3465 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3466 adapter->wol |= E1000_WUFC_MAG;
3467
3468 /* Some vendors want WoL disabled by default, but still supported */
3469 if ((hw->mac.type == e1000_i350) &&
3470 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472 adapter->wol = 0;
3473 }
3474
3475 /* Some vendors want the ability to Use the EEPROM setting as
3476 * enable/disable only, and not for capability
3477 */
3478 if (((hw->mac.type == e1000_i350) ||
3479 (hw->mac.type == e1000_i354)) &&
3480 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3481 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3482 adapter->wol = 0;
3483 }
3484 if (hw->mac.type == e1000_i350) {
3485 if (((pdev->subsystem_device == 0x5001) ||
3486 (pdev->subsystem_device == 0x5002)) &&
3487 (hw->bus.func == 0)) {
3488 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3489 adapter->wol = 0;
3490 }
3491 if (pdev->subsystem_device == 0x1F52)
3492 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 }
3494
3495 device_set_wakeup_enable(&adapter->pdev->dev,
3496 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3497
3498 /* reset the hardware with the new settings */
3499 igb_reset(adapter);
3500
3501 /* Init the I2C interface */
3502 err = igb_init_i2c(adapter);
3503 if (err) {
3504 dev_err(&pdev->dev, "failed to init i2c interface\n");
3505 goto err_eeprom;
3506 }
3507
3508 /* let the f/w know that the h/w is now under the control of the
3509 * driver.
3510 */
3511 igb_get_hw_control(adapter);
3512
3513 strcpy(netdev->name, "eth%d");
3514 err = register_netdev(netdev);
3515 if (err)
3516 goto err_register;
3517
3518 /* carrier off reporting is important to ethtool even BEFORE open */
3519 netif_carrier_off(netdev);
3520
3521 #ifdef CONFIG_IGB_DCA
3522 if (dca_add_requester(&pdev->dev) == 0) {
3523 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3524 dev_info(&pdev->dev, "DCA enabled\n");
3525 igb_setup_dca(adapter);
3526 }
3527
3528 #endif
3529 #ifdef CONFIG_IGB_HWMON
3530 /* Initialize the thermal sensor on i350 devices. */
3531 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3532 u16 ets_word;
3533
3534 /* Read the NVM to determine if this i350 device supports an
3535 * external thermal sensor.
3536 */
3537 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3538 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3539 adapter->ets = true;
3540 else
3541 adapter->ets = false;
3542 /* Only enable I2C bit banging if an external thermal
3543 * sensor is supported.
3544 */
3545 if (adapter->ets)
3546 igb_set_i2c_bb(hw);
3547 hw->mac.ops.init_thermal_sensor_thresh(hw);
3548 if (igb_sysfs_init(adapter))
3549 dev_err(&pdev->dev,
3550 "failed to allocate sysfs resources\n");
3551 } else {
3552 adapter->ets = false;
3553 }
3554 #endif
3555 /* Check if Media Autosense is enabled */
3556 adapter->ei = *ei;
3557 if (hw->dev_spec._82575.mas_capable)
3558 igb_init_mas(adapter);
3559
3560 /* do hw tstamp init after resetting */
3561 igb_ptp_init(adapter);
3562
3563 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3564 /* print bus type/speed/width info, not applicable to i354 */
3565 if (hw->mac.type != e1000_i354) {
3566 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3567 netdev->name,
3568 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3569 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3570 "unknown"),
3571 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3572 "Width x4" :
3573 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3574 "Width x2" :
3575 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3576 "Width x1" : "unknown"), netdev->dev_addr);
3577 }
3578
3579 if ((hw->mac.type == e1000_82576 &&
3580 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3581 (hw->mac.type >= e1000_i210 ||
3582 igb_get_flash_presence_i210(hw))) {
3583 ret_val = igb_read_part_string(hw, part_str,
3584 E1000_PBANUM_LENGTH);
3585 } else {
3586 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3587 }
3588
3589 if (ret_val)
3590 strcpy(part_str, "Unknown");
3591 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3592 dev_info(&pdev->dev,
3593 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3594 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3595 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3596 adapter->num_rx_queues, adapter->num_tx_queues);
3597 if (hw->phy.media_type == e1000_media_type_copper) {
3598 switch (hw->mac.type) {
3599 case e1000_i350:
3600 case e1000_i210:
3601 case e1000_i211:
3602 /* Enable EEE for internal copper PHY devices */
3603 err = igb_set_eee_i350(hw, true, true);
3604 if ((!err) &&
3605 (!hw->dev_spec._82575.eee_disable)) {
3606 adapter->eee_advert =
3607 MDIO_EEE_100TX | MDIO_EEE_1000T;
3608 adapter->flags |= IGB_FLAG_EEE;
3609 }
3610 break;
3611 case e1000_i354:
3612 if ((rd32(E1000_CTRL_EXT) &
3613 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3614 err = igb_set_eee_i354(hw, true, true);
3615 if ((!err) &&
3616 (!hw->dev_spec._82575.eee_disable)) {
3617 adapter->eee_advert =
3618 MDIO_EEE_100TX | MDIO_EEE_1000T;
3619 adapter->flags |= IGB_FLAG_EEE;
3620 }
3621 }
3622 break;
3623 default:
3624 break;
3625 }
3626 }
3627
3628 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3629
3630 pm_runtime_put_noidle(&pdev->dev);
3631 return 0;
3632
3633 err_register:
3634 igb_release_hw_control(adapter);
3635 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3636 err_eeprom:
3637 if (!igb_check_reset_block(hw))
3638 igb_reset_phy(hw);
3639
3640 if (hw->flash_address)
3641 iounmap(hw->flash_address);
3642 err_sw_init:
3643 kfree(adapter->mac_table);
3644 kfree(adapter->shadow_vfta);
3645 igb_clear_interrupt_scheme(adapter);
3646 #ifdef CONFIG_PCI_IOV
3647 igb_disable_sriov(pdev, false);
3648 #endif
3649 pci_iounmap(pdev, adapter->io_addr);
3650 err_ioremap:
3651 free_netdev(netdev);
3652 err_alloc_etherdev:
3653 pci_release_mem_regions(pdev);
3654 err_pci_reg:
3655 err_dma:
3656 pci_disable_device(pdev);
3657 return err;
3658 }
3659
3660 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3661 static int igb_sriov_reinit(struct pci_dev *dev)
3662 {
3663 struct net_device *netdev = pci_get_drvdata(dev);
3664 struct igb_adapter *adapter = netdev_priv(netdev);
3665 struct pci_dev *pdev = adapter->pdev;
3666
3667 rtnl_lock();
3668
3669 if (netif_running(netdev))
3670 igb_close(netdev);
3671 else
3672 igb_reset(adapter);
3673
3674 igb_clear_interrupt_scheme(adapter);
3675
3676 igb_init_queue_configuration(adapter);
3677
3678 if (igb_init_interrupt_scheme(adapter, true)) {
3679 rtnl_unlock();
3680 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3681 return -ENOMEM;
3682 }
3683
3684 if (netif_running(netdev))
3685 igb_open(netdev);
3686
3687 rtnl_unlock();
3688
3689 return 0;
3690 }
3691
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3692 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3693 {
3694 struct net_device *netdev = pci_get_drvdata(pdev);
3695 struct igb_adapter *adapter = netdev_priv(netdev);
3696 struct e1000_hw *hw = &adapter->hw;
3697 unsigned long flags;
3698
3699 /* reclaim resources allocated to VFs */
3700 if (adapter->vf_data) {
3701 /* disable iov and allow time for transactions to clear */
3702 if (pci_vfs_assigned(pdev)) {
3703 dev_warn(&pdev->dev,
3704 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3705 return -EPERM;
3706 } else {
3707 pci_disable_sriov(pdev);
3708 msleep(500);
3709 }
3710 spin_lock_irqsave(&adapter->vfs_lock, flags);
3711 kfree(adapter->vf_mac_list);
3712 adapter->vf_mac_list = NULL;
3713 kfree(adapter->vf_data);
3714 adapter->vf_data = NULL;
3715 adapter->vfs_allocated_count = 0;
3716 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3717 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3718 wrfl();
3719 msleep(100);
3720 dev_info(&pdev->dev, "IOV Disabled\n");
3721
3722 /* Re-enable DMA Coalescing flag since IOV is turned off */
3723 adapter->flags |= IGB_FLAG_DMAC;
3724 }
3725
3726 return reinit ? igb_sriov_reinit(pdev) : 0;
3727 }
3728
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3729 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3730 {
3731 struct net_device *netdev = pci_get_drvdata(pdev);
3732 struct igb_adapter *adapter = netdev_priv(netdev);
3733 int old_vfs = pci_num_vf(pdev);
3734 struct vf_mac_filter *mac_list;
3735 int err = 0;
3736 int num_vf_mac_filters, i;
3737
3738 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3739 err = -EPERM;
3740 goto out;
3741 }
3742 if (!num_vfs)
3743 goto out;
3744
3745 if (old_vfs) {
3746 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3747 old_vfs, max_vfs);
3748 adapter->vfs_allocated_count = old_vfs;
3749 } else
3750 adapter->vfs_allocated_count = num_vfs;
3751
3752 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3753 sizeof(struct vf_data_storage), GFP_KERNEL);
3754
3755 /* if allocation failed then we do not support SR-IOV */
3756 if (!adapter->vf_data) {
3757 adapter->vfs_allocated_count = 0;
3758 err = -ENOMEM;
3759 goto out;
3760 }
3761
3762 /* Due to the limited number of RAR entries calculate potential
3763 * number of MAC filters available for the VFs. Reserve entries
3764 * for PF default MAC, PF MAC filters and at least one RAR entry
3765 * for each VF for VF MAC.
3766 */
3767 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3768 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3769 adapter->vfs_allocated_count);
3770
3771 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3772 sizeof(struct vf_mac_filter),
3773 GFP_KERNEL);
3774
3775 mac_list = adapter->vf_mac_list;
3776 INIT_LIST_HEAD(&adapter->vf_macs.l);
3777
3778 if (adapter->vf_mac_list) {
3779 /* Initialize list of VF MAC filters */
3780 for (i = 0; i < num_vf_mac_filters; i++) {
3781 mac_list->vf = -1;
3782 mac_list->free = true;
3783 list_add(&mac_list->l, &adapter->vf_macs.l);
3784 mac_list++;
3785 }
3786 } else {
3787 /* If we could not allocate memory for the VF MAC filters
3788 * we can continue without this feature but warn user.
3789 */
3790 dev_err(&pdev->dev,
3791 "Unable to allocate memory for VF MAC filter list\n");
3792 }
3793
3794 dev_info(&pdev->dev, "%d VFs allocated\n",
3795 adapter->vfs_allocated_count);
3796 for (i = 0; i < adapter->vfs_allocated_count; i++)
3797 igb_vf_configure(adapter, i);
3798
3799 /* DMA Coalescing is not supported in IOV mode. */
3800 adapter->flags &= ~IGB_FLAG_DMAC;
3801
3802 if (reinit) {
3803 err = igb_sriov_reinit(pdev);
3804 if (err)
3805 goto err_out;
3806 }
3807
3808 /* only call pci_enable_sriov() if no VFs are allocated already */
3809 if (!old_vfs) {
3810 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3811 if (err)
3812 goto err_out;
3813 }
3814
3815 goto out;
3816
3817 err_out:
3818 kfree(adapter->vf_mac_list);
3819 adapter->vf_mac_list = NULL;
3820 kfree(adapter->vf_data);
3821 adapter->vf_data = NULL;
3822 adapter->vfs_allocated_count = 0;
3823 out:
3824 return err;
3825 }
3826
3827 #endif
3828 /**
3829 * igb_remove_i2c - Cleanup I2C interface
3830 * @adapter: pointer to adapter structure
3831 **/
igb_remove_i2c(struct igb_adapter * adapter)3832 static void igb_remove_i2c(struct igb_adapter *adapter)
3833 {
3834 /* free the adapter bus structure */
3835 i2c_del_adapter(&adapter->i2c_adap);
3836 }
3837
3838 /**
3839 * igb_remove - Device Removal Routine
3840 * @pdev: PCI device information struct
3841 *
3842 * igb_remove is called by the PCI subsystem to alert the driver
3843 * that it should release a PCI device. The could be caused by a
3844 * Hot-Plug event, or because the driver is going to be removed from
3845 * memory.
3846 **/
igb_remove(struct pci_dev * pdev)3847 static void igb_remove(struct pci_dev *pdev)
3848 {
3849 struct net_device *netdev = pci_get_drvdata(pdev);
3850 struct igb_adapter *adapter = netdev_priv(netdev);
3851 struct e1000_hw *hw = &adapter->hw;
3852
3853 pm_runtime_get_noresume(&pdev->dev);
3854 #ifdef CONFIG_IGB_HWMON
3855 igb_sysfs_exit(adapter);
3856 #endif
3857 igb_remove_i2c(adapter);
3858 igb_ptp_stop(adapter);
3859 /* The watchdog timer may be rescheduled, so explicitly
3860 * disable watchdog from being rescheduled.
3861 */
3862 set_bit(__IGB_DOWN, &adapter->state);
3863 del_timer_sync(&adapter->watchdog_timer);
3864 del_timer_sync(&adapter->phy_info_timer);
3865
3866 cancel_work_sync(&adapter->reset_task);
3867 cancel_work_sync(&adapter->watchdog_task);
3868
3869 #ifdef CONFIG_IGB_DCA
3870 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3871 dev_info(&pdev->dev, "DCA disabled\n");
3872 dca_remove_requester(&pdev->dev);
3873 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3874 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3875 }
3876 #endif
3877
3878 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3879 * would have already happened in close and is redundant.
3880 */
3881 igb_release_hw_control(adapter);
3882
3883 #ifdef CONFIG_PCI_IOV
3884 igb_disable_sriov(pdev, false);
3885 #endif
3886
3887 unregister_netdev(netdev);
3888
3889 igb_clear_interrupt_scheme(adapter);
3890
3891 pci_iounmap(pdev, adapter->io_addr);
3892 if (hw->flash_address)
3893 iounmap(hw->flash_address);
3894 pci_release_mem_regions(pdev);
3895
3896 kfree(adapter->mac_table);
3897 kfree(adapter->shadow_vfta);
3898 free_netdev(netdev);
3899
3900 pci_disable_device(pdev);
3901 }
3902
3903 /**
3904 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3905 * @adapter: board private structure to initialize
3906 *
3907 * This function initializes the vf specific data storage and then attempts to
3908 * allocate the VFs. The reason for ordering it this way is because it is much
3909 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3910 * the memory for the VFs.
3911 **/
igb_probe_vfs(struct igb_adapter * adapter)3912 static void igb_probe_vfs(struct igb_adapter *adapter)
3913 {
3914 #ifdef CONFIG_PCI_IOV
3915 struct pci_dev *pdev = adapter->pdev;
3916 struct e1000_hw *hw = &adapter->hw;
3917
3918 /* Virtualization features not supported on i210 and 82580 family. */
3919 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3920 (hw->mac.type == e1000_82580))
3921 return;
3922
3923 /* Of the below we really only want the effect of getting
3924 * IGB_FLAG_HAS_MSIX set (if available), without which
3925 * igb_enable_sriov() has no effect.
3926 */
3927 igb_set_interrupt_capability(adapter, true);
3928 igb_reset_interrupt_capability(adapter);
3929
3930 pci_sriov_set_totalvfs(pdev, 7);
3931 igb_enable_sriov(pdev, max_vfs, false);
3932
3933 #endif /* CONFIG_PCI_IOV */
3934 }
3935
igb_get_max_rss_queues(struct igb_adapter * adapter)3936 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3937 {
3938 struct e1000_hw *hw = &adapter->hw;
3939 unsigned int max_rss_queues;
3940
3941 /* Determine the maximum number of RSS queues supported. */
3942 switch (hw->mac.type) {
3943 case e1000_i211:
3944 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3945 break;
3946 case e1000_82575:
3947 case e1000_i210:
3948 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3949 break;
3950 case e1000_i350:
3951 /* I350 cannot do RSS and SR-IOV at the same time */
3952 if (!!adapter->vfs_allocated_count) {
3953 max_rss_queues = 1;
3954 break;
3955 }
3956 fallthrough;
3957 case e1000_82576:
3958 if (!!adapter->vfs_allocated_count) {
3959 max_rss_queues = 2;
3960 break;
3961 }
3962 fallthrough;
3963 case e1000_82580:
3964 case e1000_i354:
3965 default:
3966 max_rss_queues = IGB_MAX_RX_QUEUES;
3967 break;
3968 }
3969
3970 return max_rss_queues;
3971 }
3972
igb_init_queue_configuration(struct igb_adapter * adapter)3973 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3974 {
3975 u32 max_rss_queues;
3976
3977 max_rss_queues = igb_get_max_rss_queues(adapter);
3978 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3979
3980 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3981 }
3982
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3983 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3984 const u32 max_rss_queues)
3985 {
3986 struct e1000_hw *hw = &adapter->hw;
3987
3988 /* Determine if we need to pair queues. */
3989 switch (hw->mac.type) {
3990 case e1000_82575:
3991 case e1000_i211:
3992 /* Device supports enough interrupts without queue pairing. */
3993 break;
3994 case e1000_82576:
3995 case e1000_82580:
3996 case e1000_i350:
3997 case e1000_i354:
3998 case e1000_i210:
3999 default:
4000 /* If rss_queues > half of max_rss_queues, pair the queues in
4001 * order to conserve interrupts due to limited supply.
4002 */
4003 if (adapter->rss_queues > (max_rss_queues / 2))
4004 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4005 else
4006 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4007 break;
4008 }
4009 }
4010
4011 /**
4012 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4013 * @adapter: board private structure to initialize
4014 *
4015 * igb_sw_init initializes the Adapter private data structure.
4016 * Fields are initialized based on PCI device information and
4017 * OS network device settings (MTU size).
4018 **/
igb_sw_init(struct igb_adapter * adapter)4019 static int igb_sw_init(struct igb_adapter *adapter)
4020 {
4021 struct e1000_hw *hw = &adapter->hw;
4022 struct net_device *netdev = adapter->netdev;
4023 struct pci_dev *pdev = adapter->pdev;
4024
4025 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4026
4027 /* set default ring sizes */
4028 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4029 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4030
4031 /* set default ITR values */
4032 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4033 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4034
4035 /* set default work limits */
4036 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4037
4038 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4039 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4040
4041 spin_lock_init(&adapter->nfc_lock);
4042 spin_lock_init(&adapter->stats64_lock);
4043
4044 /* init spinlock to avoid concurrency of VF resources */
4045 spin_lock_init(&adapter->vfs_lock);
4046 #ifdef CONFIG_PCI_IOV
4047 switch (hw->mac.type) {
4048 case e1000_82576:
4049 case e1000_i350:
4050 if (max_vfs > 7) {
4051 dev_warn(&pdev->dev,
4052 "Maximum of 7 VFs per PF, using max\n");
4053 max_vfs = adapter->vfs_allocated_count = 7;
4054 } else
4055 adapter->vfs_allocated_count = max_vfs;
4056 if (adapter->vfs_allocated_count)
4057 dev_warn(&pdev->dev,
4058 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4059 break;
4060 default:
4061 break;
4062 }
4063 #endif /* CONFIG_PCI_IOV */
4064
4065 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4066 adapter->flags |= IGB_FLAG_HAS_MSIX;
4067
4068 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4069 sizeof(struct igb_mac_addr),
4070 GFP_KERNEL);
4071 if (!adapter->mac_table)
4072 return -ENOMEM;
4073
4074 igb_probe_vfs(adapter);
4075
4076 igb_init_queue_configuration(adapter);
4077
4078 /* Setup and initialize a copy of the hw vlan table array */
4079 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4080 GFP_KERNEL);
4081 if (!adapter->shadow_vfta)
4082 return -ENOMEM;
4083
4084 /* This call may decrease the number of queues */
4085 if (igb_init_interrupt_scheme(adapter, true)) {
4086 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4087 return -ENOMEM;
4088 }
4089
4090 /* Explicitly disable IRQ since the NIC can be in any state. */
4091 igb_irq_disable(adapter);
4092
4093 if (hw->mac.type >= e1000_i350)
4094 adapter->flags &= ~IGB_FLAG_DMAC;
4095
4096 set_bit(__IGB_DOWN, &adapter->state);
4097 return 0;
4098 }
4099
4100 /**
4101 * __igb_open - Called when a network interface is made active
4102 * @netdev: network interface device structure
4103 * @resuming: indicates whether we are in a resume call
4104 *
4105 * Returns 0 on success, negative value on failure
4106 *
4107 * The open entry point is called when a network interface is made
4108 * active by the system (IFF_UP). At this point all resources needed
4109 * for transmit and receive operations are allocated, the interrupt
4110 * handler is registered with the OS, the watchdog timer is started,
4111 * and the stack is notified that the interface is ready.
4112 **/
__igb_open(struct net_device * netdev,bool resuming)4113 static int __igb_open(struct net_device *netdev, bool resuming)
4114 {
4115 struct igb_adapter *adapter = netdev_priv(netdev);
4116 struct e1000_hw *hw = &adapter->hw;
4117 struct pci_dev *pdev = adapter->pdev;
4118 int err;
4119 int i;
4120
4121 /* disallow open during test */
4122 if (test_bit(__IGB_TESTING, &adapter->state)) {
4123 WARN_ON(resuming);
4124 return -EBUSY;
4125 }
4126
4127 if (!resuming)
4128 pm_runtime_get_sync(&pdev->dev);
4129
4130 netif_carrier_off(netdev);
4131
4132 /* allocate transmit descriptors */
4133 err = igb_setup_all_tx_resources(adapter);
4134 if (err)
4135 goto err_setup_tx;
4136
4137 /* allocate receive descriptors */
4138 err = igb_setup_all_rx_resources(adapter);
4139 if (err)
4140 goto err_setup_rx;
4141
4142 igb_power_up_link(adapter);
4143
4144 /* before we allocate an interrupt, we must be ready to handle it.
4145 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4146 * as soon as we call pci_request_irq, so we have to setup our
4147 * clean_rx handler before we do so.
4148 */
4149 igb_configure(adapter);
4150
4151 err = igb_request_irq(adapter);
4152 if (err)
4153 goto err_req_irq;
4154
4155 /* Notify the stack of the actual queue counts. */
4156 err = netif_set_real_num_tx_queues(adapter->netdev,
4157 adapter->num_tx_queues);
4158 if (err)
4159 goto err_set_queues;
4160
4161 err = netif_set_real_num_rx_queues(adapter->netdev,
4162 adapter->num_rx_queues);
4163 if (err)
4164 goto err_set_queues;
4165
4166 /* From here on the code is the same as igb_up() */
4167 clear_bit(__IGB_DOWN, &adapter->state);
4168
4169 for (i = 0; i < adapter->num_q_vectors; i++)
4170 napi_enable(&(adapter->q_vector[i]->napi));
4171
4172 /* Clear any pending interrupts. */
4173 rd32(E1000_TSICR);
4174 rd32(E1000_ICR);
4175
4176 igb_irq_enable(adapter);
4177
4178 /* notify VFs that reset has been completed */
4179 if (adapter->vfs_allocated_count) {
4180 u32 reg_data = rd32(E1000_CTRL_EXT);
4181
4182 reg_data |= E1000_CTRL_EXT_PFRSTD;
4183 wr32(E1000_CTRL_EXT, reg_data);
4184 }
4185
4186 netif_tx_start_all_queues(netdev);
4187
4188 if (!resuming)
4189 pm_runtime_put(&pdev->dev);
4190
4191 /* start the watchdog. */
4192 hw->mac.get_link_status = 1;
4193 schedule_work(&adapter->watchdog_task);
4194
4195 return 0;
4196
4197 err_set_queues:
4198 igb_free_irq(adapter);
4199 err_req_irq:
4200 igb_release_hw_control(adapter);
4201 igb_power_down_link(adapter);
4202 igb_free_all_rx_resources(adapter);
4203 err_setup_rx:
4204 igb_free_all_tx_resources(adapter);
4205 err_setup_tx:
4206 igb_reset(adapter);
4207 if (!resuming)
4208 pm_runtime_put(&pdev->dev);
4209
4210 return err;
4211 }
4212
igb_open(struct net_device * netdev)4213 int igb_open(struct net_device *netdev)
4214 {
4215 return __igb_open(netdev, false);
4216 }
4217
4218 /**
4219 * __igb_close - Disables a network interface
4220 * @netdev: network interface device structure
4221 * @suspending: indicates we are in a suspend call
4222 *
4223 * Returns 0, this is not allowed to fail
4224 *
4225 * The close entry point is called when an interface is de-activated
4226 * by the OS. The hardware is still under the driver's control, but
4227 * needs to be disabled. A global MAC reset is issued to stop the
4228 * hardware, and all transmit and receive resources are freed.
4229 **/
__igb_close(struct net_device * netdev,bool suspending)4230 static int __igb_close(struct net_device *netdev, bool suspending)
4231 {
4232 struct igb_adapter *adapter = netdev_priv(netdev);
4233 struct pci_dev *pdev = adapter->pdev;
4234
4235 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4236
4237 if (!suspending)
4238 pm_runtime_get_sync(&pdev->dev);
4239
4240 igb_down(adapter);
4241 igb_free_irq(adapter);
4242
4243 igb_free_all_tx_resources(adapter);
4244 igb_free_all_rx_resources(adapter);
4245
4246 if (!suspending)
4247 pm_runtime_put_sync(&pdev->dev);
4248 return 0;
4249 }
4250
igb_close(struct net_device * netdev)4251 int igb_close(struct net_device *netdev)
4252 {
4253 if (netif_device_present(netdev) || netdev->dismantle)
4254 return __igb_close(netdev, false);
4255 return 0;
4256 }
4257
4258 /**
4259 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4260 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4261 *
4262 * Return 0 on success, negative on failure
4263 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4264 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4265 {
4266 struct device *dev = tx_ring->dev;
4267 int size;
4268
4269 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4270
4271 tx_ring->tx_buffer_info = vmalloc(size);
4272 if (!tx_ring->tx_buffer_info)
4273 goto err;
4274
4275 /* round up to nearest 4K */
4276 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4277 tx_ring->size = ALIGN(tx_ring->size, 4096);
4278
4279 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4280 &tx_ring->dma, GFP_KERNEL);
4281 if (!tx_ring->desc)
4282 goto err;
4283
4284 tx_ring->next_to_use = 0;
4285 tx_ring->next_to_clean = 0;
4286
4287 return 0;
4288
4289 err:
4290 vfree(tx_ring->tx_buffer_info);
4291 tx_ring->tx_buffer_info = NULL;
4292 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4293 return -ENOMEM;
4294 }
4295
4296 /**
4297 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4298 * (Descriptors) for all queues
4299 * @adapter: board private structure
4300 *
4301 * Return 0 on success, negative on failure
4302 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4303 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4304 {
4305 struct pci_dev *pdev = adapter->pdev;
4306 int i, err = 0;
4307
4308 for (i = 0; i < adapter->num_tx_queues; i++) {
4309 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4310 if (err) {
4311 dev_err(&pdev->dev,
4312 "Allocation for Tx Queue %u failed\n", i);
4313 for (i--; i >= 0; i--)
4314 igb_free_tx_resources(adapter->tx_ring[i]);
4315 break;
4316 }
4317 }
4318
4319 return err;
4320 }
4321
4322 /**
4323 * igb_setup_tctl - configure the transmit control registers
4324 * @adapter: Board private structure
4325 **/
igb_setup_tctl(struct igb_adapter * adapter)4326 void igb_setup_tctl(struct igb_adapter *adapter)
4327 {
4328 struct e1000_hw *hw = &adapter->hw;
4329 u32 tctl;
4330
4331 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4332 wr32(E1000_TXDCTL(0), 0);
4333
4334 /* Program the Transmit Control Register */
4335 tctl = rd32(E1000_TCTL);
4336 tctl &= ~E1000_TCTL_CT;
4337 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4338 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4339
4340 igb_config_collision_dist(hw);
4341
4342 /* Enable transmits */
4343 tctl |= E1000_TCTL_EN;
4344
4345 wr32(E1000_TCTL, tctl);
4346 }
4347
4348 /**
4349 * igb_configure_tx_ring - Configure transmit ring after Reset
4350 * @adapter: board private structure
4351 * @ring: tx ring to configure
4352 *
4353 * Configure a transmit ring after a reset.
4354 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4355 void igb_configure_tx_ring(struct igb_adapter *adapter,
4356 struct igb_ring *ring)
4357 {
4358 struct e1000_hw *hw = &adapter->hw;
4359 u32 txdctl = 0;
4360 u64 tdba = ring->dma;
4361 int reg_idx = ring->reg_idx;
4362
4363 wr32(E1000_TDLEN(reg_idx),
4364 ring->count * sizeof(union e1000_adv_tx_desc));
4365 wr32(E1000_TDBAL(reg_idx),
4366 tdba & 0x00000000ffffffffULL);
4367 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4368
4369 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4370 wr32(E1000_TDH(reg_idx), 0);
4371 writel(0, ring->tail);
4372
4373 txdctl |= IGB_TX_PTHRESH;
4374 txdctl |= IGB_TX_HTHRESH << 8;
4375 txdctl |= IGB_TX_WTHRESH << 16;
4376
4377 /* reinitialize tx_buffer_info */
4378 memset(ring->tx_buffer_info, 0,
4379 sizeof(struct igb_tx_buffer) * ring->count);
4380
4381 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4382 wr32(E1000_TXDCTL(reg_idx), txdctl);
4383 }
4384
4385 /**
4386 * igb_configure_tx - Configure transmit Unit after Reset
4387 * @adapter: board private structure
4388 *
4389 * Configure the Tx unit of the MAC after a reset.
4390 **/
igb_configure_tx(struct igb_adapter * adapter)4391 static void igb_configure_tx(struct igb_adapter *adapter)
4392 {
4393 struct e1000_hw *hw = &adapter->hw;
4394 int i;
4395
4396 /* disable the queues */
4397 for (i = 0; i < adapter->num_tx_queues; i++)
4398 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4399
4400 wrfl();
4401 usleep_range(10000, 20000);
4402
4403 for (i = 0; i < adapter->num_tx_queues; i++)
4404 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4405 }
4406
4407 /**
4408 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4410 *
4411 * Returns 0 on success, negative on failure
4412 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4413 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4414 {
4415 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4416 struct device *dev = rx_ring->dev;
4417 int size, res;
4418
4419 /* XDP RX-queue info */
4420 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4421 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4422 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4423 rx_ring->queue_index, 0);
4424 if (res < 0) {
4425 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4426 rx_ring->queue_index);
4427 return res;
4428 }
4429
4430 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4431
4432 rx_ring->rx_buffer_info = vmalloc(size);
4433 if (!rx_ring->rx_buffer_info)
4434 goto err;
4435
4436 /* Round up to nearest 4K */
4437 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4438 rx_ring->size = ALIGN(rx_ring->size, 4096);
4439
4440 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4441 &rx_ring->dma, GFP_KERNEL);
4442 if (!rx_ring->desc)
4443 goto err;
4444
4445 rx_ring->next_to_alloc = 0;
4446 rx_ring->next_to_clean = 0;
4447 rx_ring->next_to_use = 0;
4448
4449 rx_ring->xdp_prog = adapter->xdp_prog;
4450
4451 return 0;
4452
4453 err:
4454 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4455 vfree(rx_ring->rx_buffer_info);
4456 rx_ring->rx_buffer_info = NULL;
4457 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4458 return -ENOMEM;
4459 }
4460
4461 /**
4462 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4463 * (Descriptors) for all queues
4464 * @adapter: board private structure
4465 *
4466 * Return 0 on success, negative on failure
4467 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4468 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4469 {
4470 struct pci_dev *pdev = adapter->pdev;
4471 int i, err = 0;
4472
4473 for (i = 0; i < adapter->num_rx_queues; i++) {
4474 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4475 if (err) {
4476 dev_err(&pdev->dev,
4477 "Allocation for Rx Queue %u failed\n", i);
4478 for (i--; i >= 0; i--)
4479 igb_free_rx_resources(adapter->rx_ring[i]);
4480 break;
4481 }
4482 }
4483
4484 return err;
4485 }
4486
4487 /**
4488 * igb_setup_mrqc - configure the multiple receive queue control registers
4489 * @adapter: Board private structure
4490 **/
igb_setup_mrqc(struct igb_adapter * adapter)4491 static void igb_setup_mrqc(struct igb_adapter *adapter)
4492 {
4493 struct e1000_hw *hw = &adapter->hw;
4494 u32 mrqc, rxcsum;
4495 u32 j, num_rx_queues;
4496 u32 rss_key[10];
4497
4498 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4499 for (j = 0; j < 10; j++)
4500 wr32(E1000_RSSRK(j), rss_key[j]);
4501
4502 num_rx_queues = adapter->rss_queues;
4503
4504 switch (hw->mac.type) {
4505 case e1000_82576:
4506 /* 82576 supports 2 RSS queues for SR-IOV */
4507 if (adapter->vfs_allocated_count)
4508 num_rx_queues = 2;
4509 break;
4510 default:
4511 break;
4512 }
4513
4514 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4515 for (j = 0; j < IGB_RETA_SIZE; j++)
4516 adapter->rss_indir_tbl[j] =
4517 (j * num_rx_queues) / IGB_RETA_SIZE;
4518 adapter->rss_indir_tbl_init = num_rx_queues;
4519 }
4520 igb_write_rss_indir_tbl(adapter);
4521
4522 /* Disable raw packet checksumming so that RSS hash is placed in
4523 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4524 * offloads as they are enabled by default
4525 */
4526 rxcsum = rd32(E1000_RXCSUM);
4527 rxcsum |= E1000_RXCSUM_PCSD;
4528
4529 if (adapter->hw.mac.type >= e1000_82576)
4530 /* Enable Receive Checksum Offload for SCTP */
4531 rxcsum |= E1000_RXCSUM_CRCOFL;
4532
4533 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4534 wr32(E1000_RXCSUM, rxcsum);
4535
4536 /* Generate RSS hash based on packet types, TCP/UDP
4537 * port numbers and/or IPv4/v6 src and dst addresses
4538 */
4539 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4540 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4541 E1000_MRQC_RSS_FIELD_IPV6 |
4542 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4543 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4544
4545 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4546 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4547 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4548 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4549
4550 /* If VMDq is enabled then we set the appropriate mode for that, else
4551 * we default to RSS so that an RSS hash is calculated per packet even
4552 * if we are only using one queue
4553 */
4554 if (adapter->vfs_allocated_count) {
4555 if (hw->mac.type > e1000_82575) {
4556 /* Set the default pool for the PF's first queue */
4557 u32 vtctl = rd32(E1000_VT_CTL);
4558
4559 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4560 E1000_VT_CTL_DISABLE_DEF_POOL);
4561 vtctl |= adapter->vfs_allocated_count <<
4562 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4563 wr32(E1000_VT_CTL, vtctl);
4564 }
4565 if (adapter->rss_queues > 1)
4566 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4567 else
4568 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4569 } else {
4570 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4571 }
4572 igb_vmm_control(adapter);
4573
4574 wr32(E1000_MRQC, mrqc);
4575 }
4576
4577 /**
4578 * igb_setup_rctl - configure the receive control registers
4579 * @adapter: Board private structure
4580 **/
igb_setup_rctl(struct igb_adapter * adapter)4581 void igb_setup_rctl(struct igb_adapter *adapter)
4582 {
4583 struct e1000_hw *hw = &adapter->hw;
4584 u32 rctl;
4585
4586 rctl = rd32(E1000_RCTL);
4587
4588 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4589 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4590
4591 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4592 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4593
4594 /* enable stripping of CRC. It's unlikely this will break BMC
4595 * redirection as it did with e1000. Newer features require
4596 * that the HW strips the CRC.
4597 */
4598 rctl |= E1000_RCTL_SECRC;
4599
4600 /* disable store bad packets and clear size bits. */
4601 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4602
4603 /* enable LPE to allow for reception of jumbo frames */
4604 rctl |= E1000_RCTL_LPE;
4605
4606 /* disable queue 0 to prevent tail write w/o re-config */
4607 wr32(E1000_RXDCTL(0), 0);
4608
4609 /* Attention!!! For SR-IOV PF driver operations you must enable
4610 * queue drop for all VF and PF queues to prevent head of line blocking
4611 * if an un-trusted VF does not provide descriptors to hardware.
4612 */
4613 if (adapter->vfs_allocated_count) {
4614 /* set all queue drop enable bits */
4615 wr32(E1000_QDE, ALL_QUEUES);
4616 }
4617
4618 /* This is useful for sniffing bad packets. */
4619 if (adapter->netdev->features & NETIF_F_RXALL) {
4620 /* UPE and MPE will be handled by normal PROMISC logic
4621 * in e1000e_set_rx_mode
4622 */
4623 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4624 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4625 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4626
4627 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4628 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4629 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4630 * and that breaks VLANs.
4631 */
4632 }
4633
4634 wr32(E1000_RCTL, rctl);
4635 }
4636
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4637 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4638 int vfn)
4639 {
4640 struct e1000_hw *hw = &adapter->hw;
4641 u32 vmolr;
4642
4643 if (size > MAX_JUMBO_FRAME_SIZE)
4644 size = MAX_JUMBO_FRAME_SIZE;
4645
4646 vmolr = rd32(E1000_VMOLR(vfn));
4647 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4648 vmolr |= size | E1000_VMOLR_LPE;
4649 wr32(E1000_VMOLR(vfn), vmolr);
4650
4651 return 0;
4652 }
4653
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4654 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4655 int vfn, bool enable)
4656 {
4657 struct e1000_hw *hw = &adapter->hw;
4658 u32 val, reg;
4659
4660 if (hw->mac.type < e1000_82576)
4661 return;
4662
4663 if (hw->mac.type == e1000_i350)
4664 reg = E1000_DVMOLR(vfn);
4665 else
4666 reg = E1000_VMOLR(vfn);
4667
4668 val = rd32(reg);
4669 if (enable)
4670 val |= E1000_VMOLR_STRVLAN;
4671 else
4672 val &= ~(E1000_VMOLR_STRVLAN);
4673 wr32(reg, val);
4674 }
4675
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4676 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4677 int vfn, bool aupe)
4678 {
4679 struct e1000_hw *hw = &adapter->hw;
4680 u32 vmolr;
4681
4682 /* This register exists only on 82576 and newer so if we are older then
4683 * we should exit and do nothing
4684 */
4685 if (hw->mac.type < e1000_82576)
4686 return;
4687
4688 vmolr = rd32(E1000_VMOLR(vfn));
4689 if (aupe)
4690 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4691 else
4692 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4693
4694 /* clear all bits that might not be set */
4695 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4696
4697 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4698 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4699 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4700 * multicast packets
4701 */
4702 if (vfn <= adapter->vfs_allocated_count)
4703 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4704
4705 wr32(E1000_VMOLR(vfn), vmolr);
4706 }
4707
4708 /**
4709 * igb_setup_srrctl - configure the split and replication receive control
4710 * registers
4711 * @adapter: Board private structure
4712 * @ring: receive ring to be configured
4713 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4714 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4715 {
4716 struct e1000_hw *hw = &adapter->hw;
4717 int reg_idx = ring->reg_idx;
4718 u32 srrctl = 0;
4719
4720 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4721 if (ring_uses_large_buffer(ring))
4722 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4723 else
4724 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4725 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4726 if (hw->mac.type >= e1000_82580)
4727 srrctl |= E1000_SRRCTL_TIMESTAMP;
4728 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4729 * queues and rx flow control is disabled
4730 */
4731 if (adapter->vfs_allocated_count ||
4732 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4733 adapter->num_rx_queues > 1))
4734 srrctl |= E1000_SRRCTL_DROP_EN;
4735
4736 wr32(E1000_SRRCTL(reg_idx), srrctl);
4737 }
4738
4739 /**
4740 * igb_configure_rx_ring - Configure a receive ring after Reset
4741 * @adapter: board private structure
4742 * @ring: receive ring to be configured
4743 *
4744 * Configure the Rx unit of the MAC after a reset.
4745 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4746 void igb_configure_rx_ring(struct igb_adapter *adapter,
4747 struct igb_ring *ring)
4748 {
4749 struct e1000_hw *hw = &adapter->hw;
4750 union e1000_adv_rx_desc *rx_desc;
4751 u64 rdba = ring->dma;
4752 int reg_idx = ring->reg_idx;
4753 u32 rxdctl = 0;
4754
4755 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4756 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4757 MEM_TYPE_PAGE_SHARED, NULL));
4758
4759 /* disable the queue */
4760 wr32(E1000_RXDCTL(reg_idx), 0);
4761
4762 /* Set DMA base address registers */
4763 wr32(E1000_RDBAL(reg_idx),
4764 rdba & 0x00000000ffffffffULL);
4765 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4766 wr32(E1000_RDLEN(reg_idx),
4767 ring->count * sizeof(union e1000_adv_rx_desc));
4768
4769 /* initialize head and tail */
4770 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4771 wr32(E1000_RDH(reg_idx), 0);
4772 writel(0, ring->tail);
4773
4774 /* set descriptor configuration */
4775 igb_setup_srrctl(adapter, ring);
4776
4777 /* set filtering for VMDQ pools */
4778 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4779
4780 rxdctl |= IGB_RX_PTHRESH;
4781 rxdctl |= IGB_RX_HTHRESH << 8;
4782 rxdctl |= IGB_RX_WTHRESH << 16;
4783
4784 /* initialize rx_buffer_info */
4785 memset(ring->rx_buffer_info, 0,
4786 sizeof(struct igb_rx_buffer) * ring->count);
4787
4788 /* initialize Rx descriptor 0 */
4789 rx_desc = IGB_RX_DESC(ring, 0);
4790 rx_desc->wb.upper.length = 0;
4791
4792 /* enable receive descriptor fetching */
4793 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4794 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4795 }
4796
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4797 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4798 struct igb_ring *rx_ring)
4799 {
4800 #if (PAGE_SIZE < 8192)
4801 struct e1000_hw *hw = &adapter->hw;
4802 #endif
4803
4804 /* set build_skb and buffer size flags */
4805 clear_ring_build_skb_enabled(rx_ring);
4806 clear_ring_uses_large_buffer(rx_ring);
4807
4808 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4809 return;
4810
4811 set_ring_build_skb_enabled(rx_ring);
4812
4813 #if (PAGE_SIZE < 8192)
4814 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4815 IGB_2K_TOO_SMALL_WITH_PADDING ||
4816 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4817 set_ring_uses_large_buffer(rx_ring);
4818 #endif
4819 }
4820
4821 /**
4822 * igb_configure_rx - Configure receive Unit after Reset
4823 * @adapter: board private structure
4824 *
4825 * Configure the Rx unit of the MAC after a reset.
4826 **/
igb_configure_rx(struct igb_adapter * adapter)4827 static void igb_configure_rx(struct igb_adapter *adapter)
4828 {
4829 int i;
4830
4831 /* set the correct pool for the PF default MAC address in entry 0 */
4832 igb_set_default_mac_filter(adapter);
4833
4834 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4835 * the Base and Length of the Rx Descriptor Ring
4836 */
4837 for (i = 0; i < adapter->num_rx_queues; i++) {
4838 struct igb_ring *rx_ring = adapter->rx_ring[i];
4839
4840 igb_set_rx_buffer_len(adapter, rx_ring);
4841 igb_configure_rx_ring(adapter, rx_ring);
4842 }
4843 }
4844
4845 /**
4846 * igb_free_tx_resources - Free Tx Resources per Queue
4847 * @tx_ring: Tx descriptor ring for a specific queue
4848 *
4849 * Free all transmit software resources
4850 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4851 void igb_free_tx_resources(struct igb_ring *tx_ring)
4852 {
4853 igb_clean_tx_ring(tx_ring);
4854
4855 vfree(tx_ring->tx_buffer_info);
4856 tx_ring->tx_buffer_info = NULL;
4857
4858 /* if not set, then don't free */
4859 if (!tx_ring->desc)
4860 return;
4861
4862 dma_free_coherent(tx_ring->dev, tx_ring->size,
4863 tx_ring->desc, tx_ring->dma);
4864
4865 tx_ring->desc = NULL;
4866 }
4867
4868 /**
4869 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4870 * @adapter: board private structure
4871 *
4872 * Free all transmit software resources
4873 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4874 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4875 {
4876 int i;
4877
4878 for (i = 0; i < adapter->num_tx_queues; i++)
4879 if (adapter->tx_ring[i])
4880 igb_free_tx_resources(adapter->tx_ring[i]);
4881 }
4882
4883 /**
4884 * igb_clean_tx_ring - Free Tx Buffers
4885 * @tx_ring: ring to be cleaned
4886 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4887 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4888 {
4889 u16 i = tx_ring->next_to_clean;
4890 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4891
4892 while (i != tx_ring->next_to_use) {
4893 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4894
4895 /* Free all the Tx ring sk_buffs or xdp frames */
4896 if (tx_buffer->type == IGB_TYPE_SKB)
4897 dev_kfree_skb_any(tx_buffer->skb);
4898 else
4899 xdp_return_frame(tx_buffer->xdpf);
4900
4901 /* unmap skb header data */
4902 dma_unmap_single(tx_ring->dev,
4903 dma_unmap_addr(tx_buffer, dma),
4904 dma_unmap_len(tx_buffer, len),
4905 DMA_TO_DEVICE);
4906
4907 /* check for eop_desc to determine the end of the packet */
4908 eop_desc = tx_buffer->next_to_watch;
4909 tx_desc = IGB_TX_DESC(tx_ring, i);
4910
4911 /* unmap remaining buffers */
4912 while (tx_desc != eop_desc) {
4913 tx_buffer++;
4914 tx_desc++;
4915 i++;
4916 if (unlikely(i == tx_ring->count)) {
4917 i = 0;
4918 tx_buffer = tx_ring->tx_buffer_info;
4919 tx_desc = IGB_TX_DESC(tx_ring, 0);
4920 }
4921
4922 /* unmap any remaining paged data */
4923 if (dma_unmap_len(tx_buffer, len))
4924 dma_unmap_page(tx_ring->dev,
4925 dma_unmap_addr(tx_buffer, dma),
4926 dma_unmap_len(tx_buffer, len),
4927 DMA_TO_DEVICE);
4928 }
4929
4930 tx_buffer->next_to_watch = NULL;
4931
4932 /* move us one more past the eop_desc for start of next pkt */
4933 tx_buffer++;
4934 i++;
4935 if (unlikely(i == tx_ring->count)) {
4936 i = 0;
4937 tx_buffer = tx_ring->tx_buffer_info;
4938 }
4939 }
4940
4941 /* reset BQL for queue */
4942 netdev_tx_reset_queue(txring_txq(tx_ring));
4943
4944 /* reset next_to_use and next_to_clean */
4945 tx_ring->next_to_use = 0;
4946 tx_ring->next_to_clean = 0;
4947 }
4948
4949 /**
4950 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4951 * @adapter: board private structure
4952 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4953 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4954 {
4955 int i;
4956
4957 for (i = 0; i < adapter->num_tx_queues; i++)
4958 if (adapter->tx_ring[i])
4959 igb_clean_tx_ring(adapter->tx_ring[i]);
4960 }
4961
4962 /**
4963 * igb_free_rx_resources - Free Rx Resources
4964 * @rx_ring: ring to clean the resources from
4965 *
4966 * Free all receive software resources
4967 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4968 void igb_free_rx_resources(struct igb_ring *rx_ring)
4969 {
4970 igb_clean_rx_ring(rx_ring);
4971
4972 rx_ring->xdp_prog = NULL;
4973 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4974 vfree(rx_ring->rx_buffer_info);
4975 rx_ring->rx_buffer_info = NULL;
4976
4977 /* if not set, then don't free */
4978 if (!rx_ring->desc)
4979 return;
4980
4981 dma_free_coherent(rx_ring->dev, rx_ring->size,
4982 rx_ring->desc, rx_ring->dma);
4983
4984 rx_ring->desc = NULL;
4985 }
4986
4987 /**
4988 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4989 * @adapter: board private structure
4990 *
4991 * Free all receive software resources
4992 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4993 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4994 {
4995 int i;
4996
4997 for (i = 0; i < adapter->num_rx_queues; i++)
4998 if (adapter->rx_ring[i])
4999 igb_free_rx_resources(adapter->rx_ring[i]);
5000 }
5001
5002 /**
5003 * igb_clean_rx_ring - Free Rx Buffers per Queue
5004 * @rx_ring: ring to free buffers from
5005 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5006 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5007 {
5008 u16 i = rx_ring->next_to_clean;
5009
5010 dev_kfree_skb(rx_ring->skb);
5011 rx_ring->skb = NULL;
5012
5013 /* Free all the Rx ring sk_buffs */
5014 while (i != rx_ring->next_to_alloc) {
5015 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5016
5017 /* Invalidate cache lines that may have been written to by
5018 * device so that we avoid corrupting memory.
5019 */
5020 dma_sync_single_range_for_cpu(rx_ring->dev,
5021 buffer_info->dma,
5022 buffer_info->page_offset,
5023 igb_rx_bufsz(rx_ring),
5024 DMA_FROM_DEVICE);
5025
5026 /* free resources associated with mapping */
5027 dma_unmap_page_attrs(rx_ring->dev,
5028 buffer_info->dma,
5029 igb_rx_pg_size(rx_ring),
5030 DMA_FROM_DEVICE,
5031 IGB_RX_DMA_ATTR);
5032 __page_frag_cache_drain(buffer_info->page,
5033 buffer_info->pagecnt_bias);
5034
5035 i++;
5036 if (i == rx_ring->count)
5037 i = 0;
5038 }
5039
5040 rx_ring->next_to_alloc = 0;
5041 rx_ring->next_to_clean = 0;
5042 rx_ring->next_to_use = 0;
5043 }
5044
5045 /**
5046 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5047 * @adapter: board private structure
5048 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5049 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5050 {
5051 int i;
5052
5053 for (i = 0; i < adapter->num_rx_queues; i++)
5054 if (adapter->rx_ring[i])
5055 igb_clean_rx_ring(adapter->rx_ring[i]);
5056 }
5057
5058 /**
5059 * igb_set_mac - Change the Ethernet Address of the NIC
5060 * @netdev: network interface device structure
5061 * @p: pointer to an address structure
5062 *
5063 * Returns 0 on success, negative on failure
5064 **/
igb_set_mac(struct net_device * netdev,void * p)5065 static int igb_set_mac(struct net_device *netdev, void *p)
5066 {
5067 struct igb_adapter *adapter = netdev_priv(netdev);
5068 struct e1000_hw *hw = &adapter->hw;
5069 struct sockaddr *addr = p;
5070
5071 if (!is_valid_ether_addr(addr->sa_data))
5072 return -EADDRNOTAVAIL;
5073
5074 eth_hw_addr_set(netdev, addr->sa_data);
5075 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5076
5077 /* set the correct pool for the new PF MAC address in entry 0 */
5078 igb_set_default_mac_filter(adapter);
5079
5080 return 0;
5081 }
5082
5083 /**
5084 * igb_write_mc_addr_list - write multicast addresses to MTA
5085 * @netdev: network interface device structure
5086 *
5087 * Writes multicast address list to the MTA hash table.
5088 * Returns: -ENOMEM on failure
5089 * 0 on no addresses written
5090 * X on writing X addresses to MTA
5091 **/
igb_write_mc_addr_list(struct net_device * netdev)5092 static int igb_write_mc_addr_list(struct net_device *netdev)
5093 {
5094 struct igb_adapter *adapter = netdev_priv(netdev);
5095 struct e1000_hw *hw = &adapter->hw;
5096 struct netdev_hw_addr *ha;
5097 u8 *mta_list;
5098 int i;
5099
5100 if (netdev_mc_empty(netdev)) {
5101 /* nothing to program, so clear mc list */
5102 igb_update_mc_addr_list(hw, NULL, 0);
5103 igb_restore_vf_multicasts(adapter);
5104 return 0;
5105 }
5106
5107 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5108 if (!mta_list)
5109 return -ENOMEM;
5110
5111 /* The shared function expects a packed array of only addresses. */
5112 i = 0;
5113 netdev_for_each_mc_addr(ha, netdev)
5114 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5115
5116 igb_update_mc_addr_list(hw, mta_list, i);
5117 kfree(mta_list);
5118
5119 return netdev_mc_count(netdev);
5120 }
5121
igb_vlan_promisc_enable(struct igb_adapter * adapter)5122 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5123 {
5124 struct e1000_hw *hw = &adapter->hw;
5125 u32 i, pf_id;
5126
5127 switch (hw->mac.type) {
5128 case e1000_i210:
5129 case e1000_i211:
5130 case e1000_i350:
5131 /* VLAN filtering needed for VLAN prio filter */
5132 if (adapter->netdev->features & NETIF_F_NTUPLE)
5133 break;
5134 fallthrough;
5135 case e1000_82576:
5136 case e1000_82580:
5137 case e1000_i354:
5138 /* VLAN filtering needed for pool filtering */
5139 if (adapter->vfs_allocated_count)
5140 break;
5141 fallthrough;
5142 default:
5143 return 1;
5144 }
5145
5146 /* We are already in VLAN promisc, nothing to do */
5147 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5148 return 0;
5149
5150 if (!adapter->vfs_allocated_count)
5151 goto set_vfta;
5152
5153 /* Add PF to all active pools */
5154 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5155
5156 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5157 u32 vlvf = rd32(E1000_VLVF(i));
5158
5159 vlvf |= BIT(pf_id);
5160 wr32(E1000_VLVF(i), vlvf);
5161 }
5162
5163 set_vfta:
5164 /* Set all bits in the VLAN filter table array */
5165 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5166 hw->mac.ops.write_vfta(hw, i, ~0U);
5167
5168 /* Set flag so we don't redo unnecessary work */
5169 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5170
5171 return 0;
5172 }
5173
5174 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5175 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5176 {
5177 struct e1000_hw *hw = &adapter->hw;
5178 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5179 u32 vid_start = vfta_offset * 32;
5180 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5181 u32 i, vid, word, bits, pf_id;
5182
5183 /* guarantee that we don't scrub out management VLAN */
5184 vid = adapter->mng_vlan_id;
5185 if (vid >= vid_start && vid < vid_end)
5186 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5187
5188 if (!adapter->vfs_allocated_count)
5189 goto set_vfta;
5190
5191 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5192
5193 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5194 u32 vlvf = rd32(E1000_VLVF(i));
5195
5196 /* pull VLAN ID from VLVF */
5197 vid = vlvf & VLAN_VID_MASK;
5198
5199 /* only concern ourselves with a certain range */
5200 if (vid < vid_start || vid >= vid_end)
5201 continue;
5202
5203 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5204 /* record VLAN ID in VFTA */
5205 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5206
5207 /* if PF is part of this then continue */
5208 if (test_bit(vid, adapter->active_vlans))
5209 continue;
5210 }
5211
5212 /* remove PF from the pool */
5213 bits = ~BIT(pf_id);
5214 bits &= rd32(E1000_VLVF(i));
5215 wr32(E1000_VLVF(i), bits);
5216 }
5217
5218 set_vfta:
5219 /* extract values from active_vlans and write back to VFTA */
5220 for (i = VFTA_BLOCK_SIZE; i--;) {
5221 vid = (vfta_offset + i) * 32;
5222 word = vid / BITS_PER_LONG;
5223 bits = vid % BITS_PER_LONG;
5224
5225 vfta[i] |= adapter->active_vlans[word] >> bits;
5226
5227 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5228 }
5229 }
5230
igb_vlan_promisc_disable(struct igb_adapter * adapter)5231 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5232 {
5233 u32 i;
5234
5235 /* We are not in VLAN promisc, nothing to do */
5236 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5237 return;
5238
5239 /* Set flag so we don't redo unnecessary work */
5240 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5241
5242 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5243 igb_scrub_vfta(adapter, i);
5244 }
5245
5246 /**
5247 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5248 * @netdev: network interface device structure
5249 *
5250 * The set_rx_mode entry point is called whenever the unicast or multicast
5251 * address lists or the network interface flags are updated. This routine is
5252 * responsible for configuring the hardware for proper unicast, multicast,
5253 * promiscuous mode, and all-multi behavior.
5254 **/
igb_set_rx_mode(struct net_device * netdev)5255 static void igb_set_rx_mode(struct net_device *netdev)
5256 {
5257 struct igb_adapter *adapter = netdev_priv(netdev);
5258 struct e1000_hw *hw = &adapter->hw;
5259 unsigned int vfn = adapter->vfs_allocated_count;
5260 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5261 int count;
5262
5263 /* Check for Promiscuous and All Multicast modes */
5264 if (netdev->flags & IFF_PROMISC) {
5265 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5266 vmolr |= E1000_VMOLR_MPME;
5267
5268 /* enable use of UTA filter to force packets to default pool */
5269 if (hw->mac.type == e1000_82576)
5270 vmolr |= E1000_VMOLR_ROPE;
5271 } else {
5272 if (netdev->flags & IFF_ALLMULTI) {
5273 rctl |= E1000_RCTL_MPE;
5274 vmolr |= E1000_VMOLR_MPME;
5275 } else {
5276 /* Write addresses to the MTA, if the attempt fails
5277 * then we should just turn on promiscuous mode so
5278 * that we can at least receive multicast traffic
5279 */
5280 count = igb_write_mc_addr_list(netdev);
5281 if (count < 0) {
5282 rctl |= E1000_RCTL_MPE;
5283 vmolr |= E1000_VMOLR_MPME;
5284 } else if (count) {
5285 vmolr |= E1000_VMOLR_ROMPE;
5286 }
5287 }
5288 }
5289
5290 /* Write addresses to available RAR registers, if there is not
5291 * sufficient space to store all the addresses then enable
5292 * unicast promiscuous mode
5293 */
5294 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5295 rctl |= E1000_RCTL_UPE;
5296 vmolr |= E1000_VMOLR_ROPE;
5297 }
5298
5299 /* enable VLAN filtering by default */
5300 rctl |= E1000_RCTL_VFE;
5301
5302 /* disable VLAN filtering for modes that require it */
5303 if ((netdev->flags & IFF_PROMISC) ||
5304 (netdev->features & NETIF_F_RXALL)) {
5305 /* if we fail to set all rules then just clear VFE */
5306 if (igb_vlan_promisc_enable(adapter))
5307 rctl &= ~E1000_RCTL_VFE;
5308 } else {
5309 igb_vlan_promisc_disable(adapter);
5310 }
5311
5312 /* update state of unicast, multicast, and VLAN filtering modes */
5313 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5314 E1000_RCTL_VFE);
5315 wr32(E1000_RCTL, rctl);
5316
5317 #if (PAGE_SIZE < 8192)
5318 if (!adapter->vfs_allocated_count) {
5319 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5320 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5321 }
5322 #endif
5323 wr32(E1000_RLPML, rlpml);
5324
5325 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5326 * the VMOLR to enable the appropriate modes. Without this workaround
5327 * we will have issues with VLAN tag stripping not being done for frames
5328 * that are only arriving because we are the default pool
5329 */
5330 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5331 return;
5332
5333 /* set UTA to appropriate mode */
5334 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5335
5336 vmolr |= rd32(E1000_VMOLR(vfn)) &
5337 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5338
5339 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5340 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5341 #if (PAGE_SIZE < 8192)
5342 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5343 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5344 else
5345 #endif
5346 vmolr |= MAX_JUMBO_FRAME_SIZE;
5347 vmolr |= E1000_VMOLR_LPE;
5348
5349 wr32(E1000_VMOLR(vfn), vmolr);
5350
5351 igb_restore_vf_multicasts(adapter);
5352 }
5353
igb_check_wvbr(struct igb_adapter * adapter)5354 static void igb_check_wvbr(struct igb_adapter *adapter)
5355 {
5356 struct e1000_hw *hw = &adapter->hw;
5357 u32 wvbr = 0;
5358
5359 switch (hw->mac.type) {
5360 case e1000_82576:
5361 case e1000_i350:
5362 wvbr = rd32(E1000_WVBR);
5363 if (!wvbr)
5364 return;
5365 break;
5366 default:
5367 break;
5368 }
5369
5370 adapter->wvbr |= wvbr;
5371 }
5372
5373 #define IGB_STAGGERED_QUEUE_OFFSET 8
5374
igb_spoof_check(struct igb_adapter * adapter)5375 static void igb_spoof_check(struct igb_adapter *adapter)
5376 {
5377 int j;
5378
5379 if (!adapter->wvbr)
5380 return;
5381
5382 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5383 if (adapter->wvbr & BIT(j) ||
5384 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5385 dev_warn(&adapter->pdev->dev,
5386 "Spoof event(s) detected on VF %d\n", j);
5387 adapter->wvbr &=
5388 ~(BIT(j) |
5389 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5390 }
5391 }
5392 }
5393
5394 /* Need to wait a few seconds after link up to get diagnostic information from
5395 * the phy
5396 */
igb_update_phy_info(struct timer_list * t)5397 static void igb_update_phy_info(struct timer_list *t)
5398 {
5399 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5400 igb_get_phy_info(&adapter->hw);
5401 }
5402
5403 /**
5404 * igb_has_link - check shared code for link and determine up/down
5405 * @adapter: pointer to driver private info
5406 **/
igb_has_link(struct igb_adapter * adapter)5407 bool igb_has_link(struct igb_adapter *adapter)
5408 {
5409 struct e1000_hw *hw = &adapter->hw;
5410 bool link_active = false;
5411
5412 /* get_link_status is set on LSC (link status) interrupt or
5413 * rx sequence error interrupt. get_link_status will stay
5414 * false until the e1000_check_for_link establishes link
5415 * for copper adapters ONLY
5416 */
5417 switch (hw->phy.media_type) {
5418 case e1000_media_type_copper:
5419 if (!hw->mac.get_link_status)
5420 return true;
5421 fallthrough;
5422 case e1000_media_type_internal_serdes:
5423 hw->mac.ops.check_for_link(hw);
5424 link_active = !hw->mac.get_link_status;
5425 break;
5426 default:
5427 case e1000_media_type_unknown:
5428 break;
5429 }
5430
5431 if (((hw->mac.type == e1000_i210) ||
5432 (hw->mac.type == e1000_i211)) &&
5433 (hw->phy.id == I210_I_PHY_ID)) {
5434 if (!netif_carrier_ok(adapter->netdev)) {
5435 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5436 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5437 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5438 adapter->link_check_timeout = jiffies;
5439 }
5440 }
5441
5442 return link_active;
5443 }
5444
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5445 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5446 {
5447 bool ret = false;
5448 u32 ctrl_ext, thstat;
5449
5450 /* check for thermal sensor event on i350 copper only */
5451 if (hw->mac.type == e1000_i350) {
5452 thstat = rd32(E1000_THSTAT);
5453 ctrl_ext = rd32(E1000_CTRL_EXT);
5454
5455 if ((hw->phy.media_type == e1000_media_type_copper) &&
5456 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5457 ret = !!(thstat & event);
5458 }
5459
5460 return ret;
5461 }
5462
5463 /**
5464 * igb_check_lvmmc - check for malformed packets received
5465 * and indicated in LVMMC register
5466 * @adapter: pointer to adapter
5467 **/
igb_check_lvmmc(struct igb_adapter * adapter)5468 static void igb_check_lvmmc(struct igb_adapter *adapter)
5469 {
5470 struct e1000_hw *hw = &adapter->hw;
5471 u32 lvmmc;
5472
5473 lvmmc = rd32(E1000_LVMMC);
5474 if (lvmmc) {
5475 if (unlikely(net_ratelimit())) {
5476 netdev_warn(adapter->netdev,
5477 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5478 lvmmc);
5479 }
5480 }
5481 }
5482
5483 /**
5484 * igb_watchdog - Timer Call-back
5485 * @t: pointer to timer_list containing our private info pointer
5486 **/
igb_watchdog(struct timer_list * t)5487 static void igb_watchdog(struct timer_list *t)
5488 {
5489 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5490 /* Do the rest outside of interrupt context */
5491 schedule_work(&adapter->watchdog_task);
5492 }
5493
igb_watchdog_task(struct work_struct * work)5494 static void igb_watchdog_task(struct work_struct *work)
5495 {
5496 struct igb_adapter *adapter = container_of(work,
5497 struct igb_adapter,
5498 watchdog_task);
5499 struct e1000_hw *hw = &adapter->hw;
5500 struct e1000_phy_info *phy = &hw->phy;
5501 struct net_device *netdev = adapter->netdev;
5502 u32 link;
5503 int i;
5504 u32 connsw;
5505 u16 phy_data, retry_count = 20;
5506
5507 link = igb_has_link(adapter);
5508
5509 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5510 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5511 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5512 else
5513 link = false;
5514 }
5515
5516 /* Force link down if we have fiber to swap to */
5517 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5518 if (hw->phy.media_type == e1000_media_type_copper) {
5519 connsw = rd32(E1000_CONNSW);
5520 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5521 link = 0;
5522 }
5523 }
5524 if (link) {
5525 /* Perform a reset if the media type changed. */
5526 if (hw->dev_spec._82575.media_changed) {
5527 hw->dev_spec._82575.media_changed = false;
5528 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5529 igb_reset(adapter);
5530 }
5531 /* Cancel scheduled suspend requests. */
5532 pm_runtime_resume(netdev->dev.parent);
5533
5534 if (!netif_carrier_ok(netdev)) {
5535 u32 ctrl;
5536
5537 hw->mac.ops.get_speed_and_duplex(hw,
5538 &adapter->link_speed,
5539 &adapter->link_duplex);
5540
5541 ctrl = rd32(E1000_CTRL);
5542 /* Links status message must follow this format */
5543 netdev_info(netdev,
5544 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5545 netdev->name,
5546 adapter->link_speed,
5547 adapter->link_duplex == FULL_DUPLEX ?
5548 "Full" : "Half",
5549 (ctrl & E1000_CTRL_TFCE) &&
5550 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5551 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5552 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5553
5554 /* disable EEE if enabled */
5555 if ((adapter->flags & IGB_FLAG_EEE) &&
5556 (adapter->link_duplex == HALF_DUPLEX)) {
5557 dev_info(&adapter->pdev->dev,
5558 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5559 adapter->hw.dev_spec._82575.eee_disable = true;
5560 adapter->flags &= ~IGB_FLAG_EEE;
5561 }
5562
5563 /* check if SmartSpeed worked */
5564 igb_check_downshift(hw);
5565 if (phy->speed_downgraded)
5566 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5567
5568 /* check for thermal sensor event */
5569 if (igb_thermal_sensor_event(hw,
5570 E1000_THSTAT_LINK_THROTTLE))
5571 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5572
5573 /* adjust timeout factor according to speed/duplex */
5574 adapter->tx_timeout_factor = 1;
5575 switch (adapter->link_speed) {
5576 case SPEED_10:
5577 adapter->tx_timeout_factor = 14;
5578 break;
5579 case SPEED_100:
5580 /* maybe add some timeout factor ? */
5581 break;
5582 }
5583
5584 if (adapter->link_speed != SPEED_1000 ||
5585 !hw->phy.ops.read_reg)
5586 goto no_wait;
5587
5588 /* wait for Remote receiver status OK */
5589 retry_read_status:
5590 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5591 &phy_data)) {
5592 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5593 retry_count) {
5594 msleep(100);
5595 retry_count--;
5596 goto retry_read_status;
5597 } else if (!retry_count) {
5598 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5599 }
5600 } else {
5601 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5602 }
5603 no_wait:
5604 netif_carrier_on(netdev);
5605
5606 igb_ping_all_vfs(adapter);
5607 igb_check_vf_rate_limit(adapter);
5608
5609 /* link state has changed, schedule phy info update */
5610 if (!test_bit(__IGB_DOWN, &adapter->state))
5611 mod_timer(&adapter->phy_info_timer,
5612 round_jiffies(jiffies + 2 * HZ));
5613 }
5614 } else {
5615 if (netif_carrier_ok(netdev)) {
5616 adapter->link_speed = 0;
5617 adapter->link_duplex = 0;
5618
5619 /* check for thermal sensor event */
5620 if (igb_thermal_sensor_event(hw,
5621 E1000_THSTAT_PWR_DOWN)) {
5622 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5623 }
5624
5625 /* Links status message must follow this format */
5626 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5627 netdev->name);
5628 netif_carrier_off(netdev);
5629
5630 igb_ping_all_vfs(adapter);
5631
5632 /* link state has changed, schedule phy info update */
5633 if (!test_bit(__IGB_DOWN, &adapter->state))
5634 mod_timer(&adapter->phy_info_timer,
5635 round_jiffies(jiffies + 2 * HZ));
5636
5637 /* link is down, time to check for alternate media */
5638 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5639 igb_check_swap_media(adapter);
5640 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5641 schedule_work(&adapter->reset_task);
5642 /* return immediately */
5643 return;
5644 }
5645 }
5646 pm_schedule_suspend(netdev->dev.parent,
5647 MSEC_PER_SEC * 5);
5648
5649 /* also check for alternate media here */
5650 } else if (!netif_carrier_ok(netdev) &&
5651 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5652 igb_check_swap_media(adapter);
5653 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5654 schedule_work(&adapter->reset_task);
5655 /* return immediately */
5656 return;
5657 }
5658 }
5659 }
5660
5661 spin_lock(&adapter->stats64_lock);
5662 igb_update_stats(adapter);
5663 spin_unlock(&adapter->stats64_lock);
5664
5665 for (i = 0; i < adapter->num_tx_queues; i++) {
5666 struct igb_ring *tx_ring = adapter->tx_ring[i];
5667 if (!netif_carrier_ok(netdev)) {
5668 /* We've lost link, so the controller stops DMA,
5669 * but we've got queued Tx work that's never going
5670 * to get done, so reset controller to flush Tx.
5671 * (Do the reset outside of interrupt context).
5672 */
5673 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5674 adapter->tx_timeout_count++;
5675 schedule_work(&adapter->reset_task);
5676 /* return immediately since reset is imminent */
5677 return;
5678 }
5679 }
5680
5681 /* Force detection of hung controller every watchdog period */
5682 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5683 }
5684
5685 /* Cause software interrupt to ensure Rx ring is cleaned */
5686 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5687 u32 eics = 0;
5688
5689 for (i = 0; i < adapter->num_q_vectors; i++)
5690 eics |= adapter->q_vector[i]->eims_value;
5691 wr32(E1000_EICS, eics);
5692 } else {
5693 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5694 }
5695
5696 igb_spoof_check(adapter);
5697 igb_ptp_rx_hang(adapter);
5698 igb_ptp_tx_hang(adapter);
5699
5700 /* Check LVMMC register on i350/i354 only */
5701 if ((adapter->hw.mac.type == e1000_i350) ||
5702 (adapter->hw.mac.type == e1000_i354))
5703 igb_check_lvmmc(adapter);
5704
5705 /* Reset the timer */
5706 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5707 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5708 mod_timer(&adapter->watchdog_timer,
5709 round_jiffies(jiffies + HZ));
5710 else
5711 mod_timer(&adapter->watchdog_timer,
5712 round_jiffies(jiffies + 2 * HZ));
5713 }
5714 }
5715
5716 enum latency_range {
5717 lowest_latency = 0,
5718 low_latency = 1,
5719 bulk_latency = 2,
5720 latency_invalid = 255
5721 };
5722
5723 /**
5724 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5725 * @q_vector: pointer to q_vector
5726 *
5727 * Stores a new ITR value based on strictly on packet size. This
5728 * algorithm is less sophisticated than that used in igb_update_itr,
5729 * due to the difficulty of synchronizing statistics across multiple
5730 * receive rings. The divisors and thresholds used by this function
5731 * were determined based on theoretical maximum wire speed and testing
5732 * data, in order to minimize response time while increasing bulk
5733 * throughput.
5734 * This functionality is controlled by ethtool's coalescing settings.
5735 * NOTE: This function is called only when operating in a multiqueue
5736 * receive environment.
5737 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5738 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5739 {
5740 int new_val = q_vector->itr_val;
5741 int avg_wire_size = 0;
5742 struct igb_adapter *adapter = q_vector->adapter;
5743 unsigned int packets;
5744
5745 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5746 * ints/sec - ITR timer value of 120 ticks.
5747 */
5748 if (adapter->link_speed != SPEED_1000) {
5749 new_val = IGB_4K_ITR;
5750 goto set_itr_val;
5751 }
5752
5753 packets = q_vector->rx.total_packets;
5754 if (packets)
5755 avg_wire_size = q_vector->rx.total_bytes / packets;
5756
5757 packets = q_vector->tx.total_packets;
5758 if (packets)
5759 avg_wire_size = max_t(u32, avg_wire_size,
5760 q_vector->tx.total_bytes / packets);
5761
5762 /* if avg_wire_size isn't set no work was done */
5763 if (!avg_wire_size)
5764 goto clear_counts;
5765
5766 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5767 avg_wire_size += 24;
5768
5769 /* Don't starve jumbo frames */
5770 avg_wire_size = min(avg_wire_size, 3000);
5771
5772 /* Give a little boost to mid-size frames */
5773 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5774 new_val = avg_wire_size / 3;
5775 else
5776 new_val = avg_wire_size / 2;
5777
5778 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5779 if (new_val < IGB_20K_ITR &&
5780 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5781 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5782 new_val = IGB_20K_ITR;
5783
5784 set_itr_val:
5785 if (new_val != q_vector->itr_val) {
5786 q_vector->itr_val = new_val;
5787 q_vector->set_itr = 1;
5788 }
5789 clear_counts:
5790 q_vector->rx.total_bytes = 0;
5791 q_vector->rx.total_packets = 0;
5792 q_vector->tx.total_bytes = 0;
5793 q_vector->tx.total_packets = 0;
5794 }
5795
5796 /**
5797 * igb_update_itr - update the dynamic ITR value based on statistics
5798 * @q_vector: pointer to q_vector
5799 * @ring_container: ring info to update the itr for
5800 *
5801 * Stores a new ITR value based on packets and byte
5802 * counts during the last interrupt. The advantage of per interrupt
5803 * computation is faster updates and more accurate ITR for the current
5804 * traffic pattern. Constants in this function were computed
5805 * based on theoretical maximum wire speed and thresholds were set based
5806 * on testing data as well as attempting to minimize response time
5807 * while increasing bulk throughput.
5808 * This functionality is controlled by ethtool's coalescing settings.
5809 * NOTE: These calculations are only valid when operating in a single-
5810 * queue environment.
5811 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5812 static void igb_update_itr(struct igb_q_vector *q_vector,
5813 struct igb_ring_container *ring_container)
5814 {
5815 unsigned int packets = ring_container->total_packets;
5816 unsigned int bytes = ring_container->total_bytes;
5817 u8 itrval = ring_container->itr;
5818
5819 /* no packets, exit with status unchanged */
5820 if (packets == 0)
5821 return;
5822
5823 switch (itrval) {
5824 case lowest_latency:
5825 /* handle TSO and jumbo frames */
5826 if (bytes/packets > 8000)
5827 itrval = bulk_latency;
5828 else if ((packets < 5) && (bytes > 512))
5829 itrval = low_latency;
5830 break;
5831 case low_latency: /* 50 usec aka 20000 ints/s */
5832 if (bytes > 10000) {
5833 /* this if handles the TSO accounting */
5834 if (bytes/packets > 8000)
5835 itrval = bulk_latency;
5836 else if ((packets < 10) || ((bytes/packets) > 1200))
5837 itrval = bulk_latency;
5838 else if ((packets > 35))
5839 itrval = lowest_latency;
5840 } else if (bytes/packets > 2000) {
5841 itrval = bulk_latency;
5842 } else if (packets <= 2 && bytes < 512) {
5843 itrval = lowest_latency;
5844 }
5845 break;
5846 case bulk_latency: /* 250 usec aka 4000 ints/s */
5847 if (bytes > 25000) {
5848 if (packets > 35)
5849 itrval = low_latency;
5850 } else if (bytes < 1500) {
5851 itrval = low_latency;
5852 }
5853 break;
5854 }
5855
5856 /* clear work counters since we have the values we need */
5857 ring_container->total_bytes = 0;
5858 ring_container->total_packets = 0;
5859
5860 /* write updated itr to ring container */
5861 ring_container->itr = itrval;
5862 }
5863
igb_set_itr(struct igb_q_vector * q_vector)5864 static void igb_set_itr(struct igb_q_vector *q_vector)
5865 {
5866 struct igb_adapter *adapter = q_vector->adapter;
5867 u32 new_itr = q_vector->itr_val;
5868 u8 current_itr = 0;
5869
5870 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5871 if (adapter->link_speed != SPEED_1000) {
5872 current_itr = 0;
5873 new_itr = IGB_4K_ITR;
5874 goto set_itr_now;
5875 }
5876
5877 igb_update_itr(q_vector, &q_vector->tx);
5878 igb_update_itr(q_vector, &q_vector->rx);
5879
5880 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5881
5882 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5883 if (current_itr == lowest_latency &&
5884 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5885 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5886 current_itr = low_latency;
5887
5888 switch (current_itr) {
5889 /* counts and packets in update_itr are dependent on these numbers */
5890 case lowest_latency:
5891 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5892 break;
5893 case low_latency:
5894 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5895 break;
5896 case bulk_latency:
5897 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5898 break;
5899 default:
5900 break;
5901 }
5902
5903 set_itr_now:
5904 if (new_itr != q_vector->itr_val) {
5905 /* this attempts to bias the interrupt rate towards Bulk
5906 * by adding intermediate steps when interrupt rate is
5907 * increasing
5908 */
5909 new_itr = new_itr > q_vector->itr_val ?
5910 max((new_itr * q_vector->itr_val) /
5911 (new_itr + (q_vector->itr_val >> 2)),
5912 new_itr) : new_itr;
5913 /* Don't write the value here; it resets the adapter's
5914 * internal timer, and causes us to delay far longer than
5915 * we should between interrupts. Instead, we write the ITR
5916 * value at the beginning of the next interrupt so the timing
5917 * ends up being correct.
5918 */
5919 q_vector->itr_val = new_itr;
5920 q_vector->set_itr = 1;
5921 }
5922 }
5923
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5924 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5925 struct igb_tx_buffer *first,
5926 u32 vlan_macip_lens, u32 type_tucmd,
5927 u32 mss_l4len_idx)
5928 {
5929 struct e1000_adv_tx_context_desc *context_desc;
5930 u16 i = tx_ring->next_to_use;
5931 struct timespec64 ts;
5932
5933 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5934
5935 i++;
5936 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5937
5938 /* set bits to identify this as an advanced context descriptor */
5939 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5940
5941 /* For 82575, context index must be unique per ring. */
5942 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5943 mss_l4len_idx |= tx_ring->reg_idx << 4;
5944
5945 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5946 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5947 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5948
5949 /* We assume there is always a valid tx time available. Invalid times
5950 * should have been handled by the upper layers.
5951 */
5952 if (tx_ring->launchtime_enable) {
5953 ts = ktime_to_timespec64(first->skb->tstamp);
5954 skb_txtime_consumed(first->skb);
5955 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5956 } else {
5957 context_desc->seqnum_seed = 0;
5958 }
5959 }
5960
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5961 static int igb_tso(struct igb_ring *tx_ring,
5962 struct igb_tx_buffer *first,
5963 u8 *hdr_len)
5964 {
5965 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5966 struct sk_buff *skb = first->skb;
5967 union {
5968 struct iphdr *v4;
5969 struct ipv6hdr *v6;
5970 unsigned char *hdr;
5971 } ip;
5972 union {
5973 struct tcphdr *tcp;
5974 struct udphdr *udp;
5975 unsigned char *hdr;
5976 } l4;
5977 u32 paylen, l4_offset;
5978 int err;
5979
5980 if (skb->ip_summed != CHECKSUM_PARTIAL)
5981 return 0;
5982
5983 if (!skb_is_gso(skb))
5984 return 0;
5985
5986 err = skb_cow_head(skb, 0);
5987 if (err < 0)
5988 return err;
5989
5990 ip.hdr = skb_network_header(skb);
5991 l4.hdr = skb_checksum_start(skb);
5992
5993 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5994 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5995 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5996
5997 /* initialize outer IP header fields */
5998 if (ip.v4->version == 4) {
5999 unsigned char *csum_start = skb_checksum_start(skb);
6000 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6001
6002 /* IP header will have to cancel out any data that
6003 * is not a part of the outer IP header
6004 */
6005 ip.v4->check = csum_fold(csum_partial(trans_start,
6006 csum_start - trans_start,
6007 0));
6008 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6009
6010 ip.v4->tot_len = 0;
6011 first->tx_flags |= IGB_TX_FLAGS_TSO |
6012 IGB_TX_FLAGS_CSUM |
6013 IGB_TX_FLAGS_IPV4;
6014 } else {
6015 ip.v6->payload_len = 0;
6016 first->tx_flags |= IGB_TX_FLAGS_TSO |
6017 IGB_TX_FLAGS_CSUM;
6018 }
6019
6020 /* determine offset of inner transport header */
6021 l4_offset = l4.hdr - skb->data;
6022
6023 /* remove payload length from inner checksum */
6024 paylen = skb->len - l4_offset;
6025 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6026 /* compute length of segmentation header */
6027 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6028 csum_replace_by_diff(&l4.tcp->check,
6029 (__force __wsum)htonl(paylen));
6030 } else {
6031 /* compute length of segmentation header */
6032 *hdr_len = sizeof(*l4.udp) + l4_offset;
6033 csum_replace_by_diff(&l4.udp->check,
6034 (__force __wsum)htonl(paylen));
6035 }
6036
6037 /* update gso size and bytecount with header size */
6038 first->gso_segs = skb_shinfo(skb)->gso_segs;
6039 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6040
6041 /* MSS L4LEN IDX */
6042 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6043 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6044
6045 /* VLAN MACLEN IPLEN */
6046 vlan_macip_lens = l4.hdr - ip.hdr;
6047 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6048 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6049
6050 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6051 type_tucmd, mss_l4len_idx);
6052
6053 return 1;
6054 }
6055
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6056 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6057 {
6058 struct sk_buff *skb = first->skb;
6059 u32 vlan_macip_lens = 0;
6060 u32 type_tucmd = 0;
6061
6062 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6063 csum_failed:
6064 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6065 !tx_ring->launchtime_enable)
6066 return;
6067 goto no_csum;
6068 }
6069
6070 switch (skb->csum_offset) {
6071 case offsetof(struct tcphdr, check):
6072 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6073 fallthrough;
6074 case offsetof(struct udphdr, check):
6075 break;
6076 case offsetof(struct sctphdr, checksum):
6077 /* validate that this is actually an SCTP request */
6078 if (skb_csum_is_sctp(skb)) {
6079 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6080 break;
6081 }
6082 fallthrough;
6083 default:
6084 skb_checksum_help(skb);
6085 goto csum_failed;
6086 }
6087
6088 /* update TX checksum flag */
6089 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6090 vlan_macip_lens = skb_checksum_start_offset(skb) -
6091 skb_network_offset(skb);
6092 no_csum:
6093 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6094 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6095
6096 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6097 }
6098
6099 #define IGB_SET_FLAG(_input, _flag, _result) \
6100 ((_flag <= _result) ? \
6101 ((u32)(_input & _flag) * (_result / _flag)) : \
6102 ((u32)(_input & _flag) / (_flag / _result)))
6103
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6104 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6105 {
6106 /* set type for advanced descriptor with frame checksum insertion */
6107 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6108 E1000_ADVTXD_DCMD_DEXT |
6109 E1000_ADVTXD_DCMD_IFCS;
6110
6111 /* set HW vlan bit if vlan is present */
6112 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6113 (E1000_ADVTXD_DCMD_VLE));
6114
6115 /* set segmentation bits for TSO */
6116 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6117 (E1000_ADVTXD_DCMD_TSE));
6118
6119 /* set timestamp bit if present */
6120 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6121 (E1000_ADVTXD_MAC_TSTAMP));
6122
6123 /* insert frame checksum */
6124 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6125
6126 return cmd_type;
6127 }
6128
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6129 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6130 union e1000_adv_tx_desc *tx_desc,
6131 u32 tx_flags, unsigned int paylen)
6132 {
6133 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6134
6135 /* 82575 requires a unique index per ring */
6136 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6137 olinfo_status |= tx_ring->reg_idx << 4;
6138
6139 /* insert L4 checksum */
6140 olinfo_status |= IGB_SET_FLAG(tx_flags,
6141 IGB_TX_FLAGS_CSUM,
6142 (E1000_TXD_POPTS_TXSM << 8));
6143
6144 /* insert IPv4 checksum */
6145 olinfo_status |= IGB_SET_FLAG(tx_flags,
6146 IGB_TX_FLAGS_IPV4,
6147 (E1000_TXD_POPTS_IXSM << 8));
6148
6149 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6150 }
6151
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6152 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6153 {
6154 struct net_device *netdev = tx_ring->netdev;
6155
6156 netif_stop_subqueue(netdev, tx_ring->queue_index);
6157
6158 /* Herbert's original patch had:
6159 * smp_mb__after_netif_stop_queue();
6160 * but since that doesn't exist yet, just open code it.
6161 */
6162 smp_mb();
6163
6164 /* We need to check again in a case another CPU has just
6165 * made room available.
6166 */
6167 if (igb_desc_unused(tx_ring) < size)
6168 return -EBUSY;
6169
6170 /* A reprieve! */
6171 netif_wake_subqueue(netdev, tx_ring->queue_index);
6172
6173 u64_stats_update_begin(&tx_ring->tx_syncp2);
6174 tx_ring->tx_stats.restart_queue2++;
6175 u64_stats_update_end(&tx_ring->tx_syncp2);
6176
6177 return 0;
6178 }
6179
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6180 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6181 {
6182 if (igb_desc_unused(tx_ring) >= size)
6183 return 0;
6184 return __igb_maybe_stop_tx(tx_ring, size);
6185 }
6186
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6187 static int igb_tx_map(struct igb_ring *tx_ring,
6188 struct igb_tx_buffer *first,
6189 const u8 hdr_len)
6190 {
6191 struct sk_buff *skb = first->skb;
6192 struct igb_tx_buffer *tx_buffer;
6193 union e1000_adv_tx_desc *tx_desc;
6194 skb_frag_t *frag;
6195 dma_addr_t dma;
6196 unsigned int data_len, size;
6197 u32 tx_flags = first->tx_flags;
6198 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6199 u16 i = tx_ring->next_to_use;
6200
6201 tx_desc = IGB_TX_DESC(tx_ring, i);
6202
6203 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6204
6205 size = skb_headlen(skb);
6206 data_len = skb->data_len;
6207
6208 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6209
6210 tx_buffer = first;
6211
6212 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6213 if (dma_mapping_error(tx_ring->dev, dma))
6214 goto dma_error;
6215
6216 /* record length, and DMA address */
6217 dma_unmap_len_set(tx_buffer, len, size);
6218 dma_unmap_addr_set(tx_buffer, dma, dma);
6219
6220 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6221
6222 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6223 tx_desc->read.cmd_type_len =
6224 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6225
6226 i++;
6227 tx_desc++;
6228 if (i == tx_ring->count) {
6229 tx_desc = IGB_TX_DESC(tx_ring, 0);
6230 i = 0;
6231 }
6232 tx_desc->read.olinfo_status = 0;
6233
6234 dma += IGB_MAX_DATA_PER_TXD;
6235 size -= IGB_MAX_DATA_PER_TXD;
6236
6237 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6238 }
6239
6240 if (likely(!data_len))
6241 break;
6242
6243 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6244
6245 i++;
6246 tx_desc++;
6247 if (i == tx_ring->count) {
6248 tx_desc = IGB_TX_DESC(tx_ring, 0);
6249 i = 0;
6250 }
6251 tx_desc->read.olinfo_status = 0;
6252
6253 size = skb_frag_size(frag);
6254 data_len -= size;
6255
6256 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6257 size, DMA_TO_DEVICE);
6258
6259 tx_buffer = &tx_ring->tx_buffer_info[i];
6260 }
6261
6262 /* write last descriptor with RS and EOP bits */
6263 cmd_type |= size | IGB_TXD_DCMD;
6264 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6265
6266 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6267
6268 /* set the timestamp */
6269 first->time_stamp = jiffies;
6270
6271 skb_tx_timestamp(skb);
6272
6273 /* Force memory writes to complete before letting h/w know there
6274 * are new descriptors to fetch. (Only applicable for weak-ordered
6275 * memory model archs, such as IA-64).
6276 *
6277 * We also need this memory barrier to make certain all of the
6278 * status bits have been updated before next_to_watch is written.
6279 */
6280 dma_wmb();
6281
6282 /* set next_to_watch value indicating a packet is present */
6283 first->next_to_watch = tx_desc;
6284
6285 i++;
6286 if (i == tx_ring->count)
6287 i = 0;
6288
6289 tx_ring->next_to_use = i;
6290
6291 /* Make sure there is space in the ring for the next send. */
6292 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6293
6294 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6295 writel(i, tx_ring->tail);
6296 }
6297 return 0;
6298
6299 dma_error:
6300 dev_err(tx_ring->dev, "TX DMA map failed\n");
6301 tx_buffer = &tx_ring->tx_buffer_info[i];
6302
6303 /* clear dma mappings for failed tx_buffer_info map */
6304 while (tx_buffer != first) {
6305 if (dma_unmap_len(tx_buffer, len))
6306 dma_unmap_page(tx_ring->dev,
6307 dma_unmap_addr(tx_buffer, dma),
6308 dma_unmap_len(tx_buffer, len),
6309 DMA_TO_DEVICE);
6310 dma_unmap_len_set(tx_buffer, len, 0);
6311
6312 if (i-- == 0)
6313 i += tx_ring->count;
6314 tx_buffer = &tx_ring->tx_buffer_info[i];
6315 }
6316
6317 if (dma_unmap_len(tx_buffer, len))
6318 dma_unmap_single(tx_ring->dev,
6319 dma_unmap_addr(tx_buffer, dma),
6320 dma_unmap_len(tx_buffer, len),
6321 DMA_TO_DEVICE);
6322 dma_unmap_len_set(tx_buffer, len, 0);
6323
6324 dev_kfree_skb_any(tx_buffer->skb);
6325 tx_buffer->skb = NULL;
6326
6327 tx_ring->next_to_use = i;
6328
6329 return -1;
6330 }
6331
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6332 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6333 struct igb_ring *tx_ring,
6334 struct xdp_frame *xdpf)
6335 {
6336 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6337 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6338 u16 count, i, index = tx_ring->next_to_use;
6339 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6340 struct igb_tx_buffer *tx_buffer = tx_head;
6341 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6342 u32 len = xdpf->len, cmd_type, olinfo_status;
6343 void *data = xdpf->data;
6344
6345 count = TXD_USE_COUNT(len);
6346 for (i = 0; i < nr_frags; i++)
6347 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6348
6349 if (igb_maybe_stop_tx(tx_ring, count + 3))
6350 return IGB_XDP_CONSUMED;
6351
6352 i = 0;
6353 /* record the location of the first descriptor for this packet */
6354 tx_head->bytecount = xdp_get_frame_len(xdpf);
6355 tx_head->type = IGB_TYPE_XDP;
6356 tx_head->gso_segs = 1;
6357 tx_head->xdpf = xdpf;
6358
6359 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6360 /* 82575 requires a unique index per ring */
6361 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6362 olinfo_status |= tx_ring->reg_idx << 4;
6363 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6364
6365 for (;;) {
6366 dma_addr_t dma;
6367
6368 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6369 if (dma_mapping_error(tx_ring->dev, dma))
6370 goto unmap;
6371
6372 /* record length, and DMA address */
6373 dma_unmap_len_set(tx_buffer, len, len);
6374 dma_unmap_addr_set(tx_buffer, dma, dma);
6375
6376 /* put descriptor type bits */
6377 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6378 E1000_ADVTXD_DCMD_IFCS | len;
6379
6380 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6381 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6382
6383 tx_buffer->protocol = 0;
6384
6385 if (++index == tx_ring->count)
6386 index = 0;
6387
6388 if (i == nr_frags)
6389 break;
6390
6391 tx_buffer = &tx_ring->tx_buffer_info[index];
6392 tx_desc = IGB_TX_DESC(tx_ring, index);
6393 tx_desc->read.olinfo_status = 0;
6394
6395 data = skb_frag_address(&sinfo->frags[i]);
6396 len = skb_frag_size(&sinfo->frags[i]);
6397 i++;
6398 }
6399 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6400
6401 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6402 /* set the timestamp */
6403 tx_head->time_stamp = jiffies;
6404
6405 /* Avoid any potential race with xdp_xmit and cleanup */
6406 smp_wmb();
6407
6408 /* set next_to_watch value indicating a packet is present */
6409 tx_head->next_to_watch = tx_desc;
6410 tx_ring->next_to_use = index;
6411
6412 /* Make sure there is space in the ring for the next send. */
6413 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6414
6415 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6416 writel(index, tx_ring->tail);
6417
6418 return IGB_XDP_TX;
6419
6420 unmap:
6421 for (;;) {
6422 tx_buffer = &tx_ring->tx_buffer_info[index];
6423 if (dma_unmap_len(tx_buffer, len))
6424 dma_unmap_page(tx_ring->dev,
6425 dma_unmap_addr(tx_buffer, dma),
6426 dma_unmap_len(tx_buffer, len),
6427 DMA_TO_DEVICE);
6428 dma_unmap_len_set(tx_buffer, len, 0);
6429 if (tx_buffer == tx_head)
6430 break;
6431
6432 if (!index)
6433 index += tx_ring->count;
6434 index--;
6435 }
6436
6437 return IGB_XDP_CONSUMED;
6438 }
6439
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6440 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6441 struct igb_ring *tx_ring)
6442 {
6443 struct igb_tx_buffer *first;
6444 int tso;
6445 u32 tx_flags = 0;
6446 unsigned short f;
6447 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6448 __be16 protocol = vlan_get_protocol(skb);
6449 u8 hdr_len = 0;
6450
6451 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6452 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6453 * + 2 desc gap to keep tail from touching head,
6454 * + 1 desc for context descriptor,
6455 * otherwise try next time
6456 */
6457 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6458 count += TXD_USE_COUNT(skb_frag_size(
6459 &skb_shinfo(skb)->frags[f]));
6460
6461 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6462 /* this is a hard error */
6463 return NETDEV_TX_BUSY;
6464 }
6465
6466 /* record the location of the first descriptor for this packet */
6467 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6468 first->type = IGB_TYPE_SKB;
6469 first->skb = skb;
6470 first->bytecount = skb->len;
6471 first->gso_segs = 1;
6472
6473 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6474 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6475
6476 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6477 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6478 &adapter->state)) {
6479 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6480 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6481
6482 adapter->ptp_tx_skb = skb_get(skb);
6483 adapter->ptp_tx_start = jiffies;
6484 if (adapter->hw.mac.type == e1000_82576)
6485 schedule_work(&adapter->ptp_tx_work);
6486 } else {
6487 adapter->tx_hwtstamp_skipped++;
6488 }
6489 }
6490
6491 if (skb_vlan_tag_present(skb)) {
6492 tx_flags |= IGB_TX_FLAGS_VLAN;
6493 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6494 }
6495
6496 /* record initial flags and protocol */
6497 first->tx_flags = tx_flags;
6498 first->protocol = protocol;
6499
6500 tso = igb_tso(tx_ring, first, &hdr_len);
6501 if (tso < 0)
6502 goto out_drop;
6503 else if (!tso)
6504 igb_tx_csum(tx_ring, first);
6505
6506 if (igb_tx_map(tx_ring, first, hdr_len))
6507 goto cleanup_tx_tstamp;
6508
6509 return NETDEV_TX_OK;
6510
6511 out_drop:
6512 dev_kfree_skb_any(first->skb);
6513 first->skb = NULL;
6514 cleanup_tx_tstamp:
6515 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6516 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6517
6518 dev_kfree_skb_any(adapter->ptp_tx_skb);
6519 adapter->ptp_tx_skb = NULL;
6520 if (adapter->hw.mac.type == e1000_82576)
6521 cancel_work_sync(&adapter->ptp_tx_work);
6522 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6523 }
6524
6525 return NETDEV_TX_OK;
6526 }
6527
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6528 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6529 struct sk_buff *skb)
6530 {
6531 unsigned int r_idx = skb->queue_mapping;
6532
6533 if (r_idx >= adapter->num_tx_queues)
6534 r_idx = r_idx % adapter->num_tx_queues;
6535
6536 return adapter->tx_ring[r_idx];
6537 }
6538
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6539 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6540 struct net_device *netdev)
6541 {
6542 struct igb_adapter *adapter = netdev_priv(netdev);
6543
6544 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6545 * in order to meet this minimum size requirement.
6546 */
6547 if (skb_put_padto(skb, 17))
6548 return NETDEV_TX_OK;
6549
6550 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6551 }
6552
6553 /**
6554 * igb_tx_timeout - Respond to a Tx Hang
6555 * @netdev: network interface device structure
6556 * @txqueue: number of the Tx queue that hung (unused)
6557 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6558 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6559 {
6560 struct igb_adapter *adapter = netdev_priv(netdev);
6561 struct e1000_hw *hw = &adapter->hw;
6562
6563 /* Do the reset outside of interrupt context */
6564 adapter->tx_timeout_count++;
6565
6566 if (hw->mac.type >= e1000_82580)
6567 hw->dev_spec._82575.global_device_reset = true;
6568
6569 schedule_work(&adapter->reset_task);
6570 wr32(E1000_EICS,
6571 (adapter->eims_enable_mask & ~adapter->eims_other));
6572 }
6573
igb_reset_task(struct work_struct * work)6574 static void igb_reset_task(struct work_struct *work)
6575 {
6576 struct igb_adapter *adapter;
6577 adapter = container_of(work, struct igb_adapter, reset_task);
6578
6579 rtnl_lock();
6580 /* If we're already down or resetting, just bail */
6581 if (test_bit(__IGB_DOWN, &adapter->state) ||
6582 test_bit(__IGB_RESETTING, &adapter->state)) {
6583 rtnl_unlock();
6584 return;
6585 }
6586
6587 igb_dump(adapter);
6588 netdev_err(adapter->netdev, "Reset adapter\n");
6589 igb_reinit_locked(adapter);
6590 rtnl_unlock();
6591 }
6592
6593 /**
6594 * igb_get_stats64 - Get System Network Statistics
6595 * @netdev: network interface device structure
6596 * @stats: rtnl_link_stats64 pointer
6597 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6598 static void igb_get_stats64(struct net_device *netdev,
6599 struct rtnl_link_stats64 *stats)
6600 {
6601 struct igb_adapter *adapter = netdev_priv(netdev);
6602
6603 spin_lock(&adapter->stats64_lock);
6604 igb_update_stats(adapter);
6605 memcpy(stats, &adapter->stats64, sizeof(*stats));
6606 spin_unlock(&adapter->stats64_lock);
6607 }
6608
6609 /**
6610 * igb_change_mtu - Change the Maximum Transfer Unit
6611 * @netdev: network interface device structure
6612 * @new_mtu: new value for maximum frame size
6613 *
6614 * Returns 0 on success, negative on failure
6615 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6616 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6617 {
6618 struct igb_adapter *adapter = netdev_priv(netdev);
6619 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6620
6621 if (adapter->xdp_prog) {
6622 int i;
6623
6624 for (i = 0; i < adapter->num_rx_queues; i++) {
6625 struct igb_ring *ring = adapter->rx_ring[i];
6626
6627 if (max_frame > igb_rx_bufsz(ring)) {
6628 netdev_warn(adapter->netdev,
6629 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6630 max_frame);
6631 return -EINVAL;
6632 }
6633 }
6634 }
6635
6636 /* adjust max frame to be at least the size of a standard frame */
6637 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6638 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6639
6640 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6641 usleep_range(1000, 2000);
6642
6643 /* igb_down has a dependency on max_frame_size */
6644 adapter->max_frame_size = max_frame;
6645
6646 if (netif_running(netdev))
6647 igb_down(adapter);
6648
6649 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6650 netdev->mtu, new_mtu);
6651 WRITE_ONCE(netdev->mtu, new_mtu);
6652
6653 if (netif_running(netdev))
6654 igb_up(adapter);
6655 else
6656 igb_reset(adapter);
6657
6658 clear_bit(__IGB_RESETTING, &adapter->state);
6659
6660 return 0;
6661 }
6662
6663 /**
6664 * igb_update_stats - Update the board statistics counters
6665 * @adapter: board private structure
6666 **/
igb_update_stats(struct igb_adapter * adapter)6667 void igb_update_stats(struct igb_adapter *adapter)
6668 {
6669 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6670 struct e1000_hw *hw = &adapter->hw;
6671 struct pci_dev *pdev = adapter->pdev;
6672 u32 reg, mpc;
6673 int i;
6674 u64 bytes, packets;
6675 unsigned int start;
6676 u64 _bytes, _packets;
6677
6678 /* Prevent stats update while adapter is being reset, or if the pci
6679 * connection is down.
6680 */
6681 if (adapter->link_speed == 0)
6682 return;
6683 if (pci_channel_offline(pdev))
6684 return;
6685
6686 bytes = 0;
6687 packets = 0;
6688
6689 rcu_read_lock();
6690 for (i = 0; i < adapter->num_rx_queues; i++) {
6691 struct igb_ring *ring = adapter->rx_ring[i];
6692 u32 rqdpc = rd32(E1000_RQDPC(i));
6693 if (hw->mac.type >= e1000_i210)
6694 wr32(E1000_RQDPC(i), 0);
6695
6696 if (rqdpc) {
6697 ring->rx_stats.drops += rqdpc;
6698 net_stats->rx_fifo_errors += rqdpc;
6699 }
6700
6701 do {
6702 start = u64_stats_fetch_begin(&ring->rx_syncp);
6703 _bytes = ring->rx_stats.bytes;
6704 _packets = ring->rx_stats.packets;
6705 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6706 bytes += _bytes;
6707 packets += _packets;
6708 }
6709
6710 net_stats->rx_bytes = bytes;
6711 net_stats->rx_packets = packets;
6712
6713 bytes = 0;
6714 packets = 0;
6715 for (i = 0; i < adapter->num_tx_queues; i++) {
6716 struct igb_ring *ring = adapter->tx_ring[i];
6717 do {
6718 start = u64_stats_fetch_begin(&ring->tx_syncp);
6719 _bytes = ring->tx_stats.bytes;
6720 _packets = ring->tx_stats.packets;
6721 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6722 bytes += _bytes;
6723 packets += _packets;
6724 }
6725 net_stats->tx_bytes = bytes;
6726 net_stats->tx_packets = packets;
6727 rcu_read_unlock();
6728
6729 /* read stats registers */
6730 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6731 adapter->stats.gprc += rd32(E1000_GPRC);
6732 adapter->stats.gorc += rd32(E1000_GORCL);
6733 rd32(E1000_GORCH); /* clear GORCL */
6734 adapter->stats.bprc += rd32(E1000_BPRC);
6735 adapter->stats.mprc += rd32(E1000_MPRC);
6736 adapter->stats.roc += rd32(E1000_ROC);
6737
6738 adapter->stats.prc64 += rd32(E1000_PRC64);
6739 adapter->stats.prc127 += rd32(E1000_PRC127);
6740 adapter->stats.prc255 += rd32(E1000_PRC255);
6741 adapter->stats.prc511 += rd32(E1000_PRC511);
6742 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6743 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6744 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6745 adapter->stats.sec += rd32(E1000_SEC);
6746
6747 mpc = rd32(E1000_MPC);
6748 adapter->stats.mpc += mpc;
6749 net_stats->rx_fifo_errors += mpc;
6750 adapter->stats.scc += rd32(E1000_SCC);
6751 adapter->stats.ecol += rd32(E1000_ECOL);
6752 adapter->stats.mcc += rd32(E1000_MCC);
6753 adapter->stats.latecol += rd32(E1000_LATECOL);
6754 adapter->stats.dc += rd32(E1000_DC);
6755 adapter->stats.rlec += rd32(E1000_RLEC);
6756 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6757 adapter->stats.xontxc += rd32(E1000_XONTXC);
6758 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6759 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6760 adapter->stats.fcruc += rd32(E1000_FCRUC);
6761 adapter->stats.gptc += rd32(E1000_GPTC);
6762 adapter->stats.gotc += rd32(E1000_GOTCL);
6763 rd32(E1000_GOTCH); /* clear GOTCL */
6764 adapter->stats.rnbc += rd32(E1000_RNBC);
6765 adapter->stats.ruc += rd32(E1000_RUC);
6766 adapter->stats.rfc += rd32(E1000_RFC);
6767 adapter->stats.rjc += rd32(E1000_RJC);
6768 adapter->stats.tor += rd32(E1000_TORH);
6769 adapter->stats.tot += rd32(E1000_TOTH);
6770 adapter->stats.tpr += rd32(E1000_TPR);
6771
6772 adapter->stats.ptc64 += rd32(E1000_PTC64);
6773 adapter->stats.ptc127 += rd32(E1000_PTC127);
6774 adapter->stats.ptc255 += rd32(E1000_PTC255);
6775 adapter->stats.ptc511 += rd32(E1000_PTC511);
6776 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6777 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6778
6779 adapter->stats.mptc += rd32(E1000_MPTC);
6780 adapter->stats.bptc += rd32(E1000_BPTC);
6781
6782 adapter->stats.tpt += rd32(E1000_TPT);
6783 adapter->stats.colc += rd32(E1000_COLC);
6784
6785 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6786 /* read internal phy specific stats */
6787 reg = rd32(E1000_CTRL_EXT);
6788 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6789 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6790
6791 /* this stat has invalid values on i210/i211 */
6792 if ((hw->mac.type != e1000_i210) &&
6793 (hw->mac.type != e1000_i211))
6794 adapter->stats.tncrs += rd32(E1000_TNCRS);
6795 }
6796
6797 adapter->stats.tsctc += rd32(E1000_TSCTC);
6798 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6799
6800 adapter->stats.iac += rd32(E1000_IAC);
6801 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6802 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6803 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6804 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6805 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6806 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6807 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6808 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6809
6810 /* Fill out the OS statistics structure */
6811 net_stats->multicast = adapter->stats.mprc;
6812 net_stats->collisions = adapter->stats.colc;
6813
6814 /* Rx Errors */
6815
6816 /* RLEC on some newer hardware can be incorrect so build
6817 * our own version based on RUC and ROC
6818 */
6819 net_stats->rx_errors = adapter->stats.rxerrc +
6820 adapter->stats.crcerrs + adapter->stats.algnerrc +
6821 adapter->stats.ruc + adapter->stats.roc +
6822 adapter->stats.cexterr;
6823 net_stats->rx_length_errors = adapter->stats.ruc +
6824 adapter->stats.roc;
6825 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6826 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6827 net_stats->rx_missed_errors = adapter->stats.mpc;
6828
6829 /* Tx Errors */
6830 net_stats->tx_errors = adapter->stats.ecol +
6831 adapter->stats.latecol;
6832 net_stats->tx_aborted_errors = adapter->stats.ecol;
6833 net_stats->tx_window_errors = adapter->stats.latecol;
6834 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6835
6836 /* Tx Dropped needs to be maintained elsewhere */
6837
6838 /* Management Stats */
6839 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6840 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6841 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6842
6843 /* OS2BMC Stats */
6844 reg = rd32(E1000_MANC);
6845 if (reg & E1000_MANC_EN_BMC2OS) {
6846 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6847 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6848 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6849 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6850 }
6851 }
6852
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6853 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6854 {
6855 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6856 struct e1000_hw *hw = &adapter->hw;
6857 struct timespec64 ts;
6858 u32 tsauxc;
6859
6860 if (pin < 0 || pin >= IGB_N_SDP)
6861 return;
6862
6863 spin_lock(&adapter->tmreg_lock);
6864
6865 if (hw->mac.type == e1000_82580 ||
6866 hw->mac.type == e1000_i354 ||
6867 hw->mac.type == e1000_i350) {
6868 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6869 u32 systiml, systimh, level_mask, level, rem;
6870 u64 systim, now;
6871
6872 /* read systim registers in sequence */
6873 rd32(E1000_SYSTIMR);
6874 systiml = rd32(E1000_SYSTIML);
6875 systimh = rd32(E1000_SYSTIMH);
6876 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6877 now = timecounter_cyc2time(&adapter->tc, systim);
6878
6879 if (pin < 2) {
6880 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6881 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6882 } else {
6883 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6884 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6885 }
6886
6887 div_u64_rem(now, ns, &rem);
6888 systim = systim + (ns - rem);
6889
6890 /* synchronize pin level with rising/falling edges */
6891 div_u64_rem(now, ns << 1, &rem);
6892 if (rem < ns) {
6893 /* first half of period */
6894 if (level == 0) {
6895 /* output is already low, skip this period */
6896 systim += ns;
6897 pr_notice("igb: periodic output on %s missed falling edge\n",
6898 adapter->sdp_config[pin].name);
6899 }
6900 } else {
6901 /* second half of period */
6902 if (level == 1) {
6903 /* output is already high, skip this period */
6904 systim += ns;
6905 pr_notice("igb: periodic output on %s missed rising edge\n",
6906 adapter->sdp_config[pin].name);
6907 }
6908 }
6909
6910 /* for this chip family tv_sec is the upper part of the binary value,
6911 * so not seconds
6912 */
6913 ts.tv_nsec = (u32)systim;
6914 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6915 } else {
6916 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6917 adapter->perout[tsintr_tt].period);
6918 }
6919
6920 /* u32 conversion of tv_sec is safe until y2106 */
6921 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6922 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6923 tsauxc = rd32(E1000_TSAUXC);
6924 tsauxc |= TSAUXC_EN_TT0;
6925 wr32(E1000_TSAUXC, tsauxc);
6926 adapter->perout[tsintr_tt].start = ts;
6927
6928 spin_unlock(&adapter->tmreg_lock);
6929 }
6930
igb_extts(struct igb_adapter * adapter,int tsintr_tt)6931 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6932 {
6933 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6934 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6935 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6936 struct e1000_hw *hw = &adapter->hw;
6937 struct ptp_clock_event event;
6938 struct timespec64 ts;
6939 unsigned long flags;
6940
6941 if (pin < 0 || pin >= IGB_N_SDP)
6942 return;
6943
6944 if (hw->mac.type == e1000_82580 ||
6945 hw->mac.type == e1000_i354 ||
6946 hw->mac.type == e1000_i350) {
6947 u64 ns = rd32(auxstmpl);
6948
6949 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6950 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6951 ns = timecounter_cyc2time(&adapter->tc, ns);
6952 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6953 ts = ns_to_timespec64(ns);
6954 } else {
6955 ts.tv_nsec = rd32(auxstmpl);
6956 ts.tv_sec = rd32(auxstmph);
6957 }
6958
6959 event.type = PTP_CLOCK_EXTTS;
6960 event.index = tsintr_tt;
6961 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6962 ptp_clock_event(adapter->ptp_clock, &event);
6963 }
6964
igb_tsync_interrupt(struct igb_adapter * adapter)6965 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6966 {
6967 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
6968 TSINTR_TT0 | TSINTR_TT1 |
6969 TSINTR_AUTT0 | TSINTR_AUTT1);
6970 struct e1000_hw *hw = &adapter->hw;
6971 u32 tsicr = rd32(E1000_TSICR);
6972 struct ptp_clock_event event;
6973
6974 if (hw->mac.type == e1000_82580) {
6975 /* 82580 has a hardware bug that requires an explicit
6976 * write to clear the TimeSync interrupt cause.
6977 */
6978 wr32(E1000_TSICR, tsicr & mask);
6979 }
6980
6981 if (tsicr & TSINTR_SYS_WRAP) {
6982 event.type = PTP_CLOCK_PPS;
6983 if (adapter->ptp_caps.pps)
6984 ptp_clock_event(adapter->ptp_clock, &event);
6985 }
6986
6987 if (tsicr & E1000_TSICR_TXTS) {
6988 /* retrieve hardware timestamp */
6989 schedule_work(&adapter->ptp_tx_work);
6990 }
6991
6992 if (tsicr & TSINTR_TT0)
6993 igb_perout(adapter, 0);
6994
6995 if (tsicr & TSINTR_TT1)
6996 igb_perout(adapter, 1);
6997
6998 if (tsicr & TSINTR_AUTT0)
6999 igb_extts(adapter, 0);
7000
7001 if (tsicr & TSINTR_AUTT1)
7002 igb_extts(adapter, 1);
7003 }
7004
igb_msix_other(int irq,void * data)7005 static irqreturn_t igb_msix_other(int irq, void *data)
7006 {
7007 struct igb_adapter *adapter = data;
7008 struct e1000_hw *hw = &adapter->hw;
7009 u32 icr = rd32(E1000_ICR);
7010 /* reading ICR causes bit 31 of EICR to be cleared */
7011
7012 if (icr & E1000_ICR_DRSTA)
7013 schedule_work(&adapter->reset_task);
7014
7015 if (icr & E1000_ICR_DOUTSYNC) {
7016 /* HW is reporting DMA is out of sync */
7017 adapter->stats.doosync++;
7018 /* The DMA Out of Sync is also indication of a spoof event
7019 * in IOV mode. Check the Wrong VM Behavior register to
7020 * see if it is really a spoof event.
7021 */
7022 igb_check_wvbr(adapter);
7023 }
7024
7025 /* Check for a mailbox event */
7026 if (icr & E1000_ICR_VMMB)
7027 igb_msg_task(adapter);
7028
7029 if (icr & E1000_ICR_LSC) {
7030 hw->mac.get_link_status = 1;
7031 /* guard against interrupt when we're going down */
7032 if (!test_bit(__IGB_DOWN, &adapter->state))
7033 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7034 }
7035
7036 if (icr & E1000_ICR_TS)
7037 igb_tsync_interrupt(adapter);
7038
7039 wr32(E1000_EIMS, adapter->eims_other);
7040
7041 return IRQ_HANDLED;
7042 }
7043
igb_write_itr(struct igb_q_vector * q_vector)7044 static void igb_write_itr(struct igb_q_vector *q_vector)
7045 {
7046 struct igb_adapter *adapter = q_vector->adapter;
7047 u32 itr_val = q_vector->itr_val & 0x7FFC;
7048
7049 if (!q_vector->set_itr)
7050 return;
7051
7052 if (!itr_val)
7053 itr_val = 0x4;
7054
7055 if (adapter->hw.mac.type == e1000_82575)
7056 itr_val |= itr_val << 16;
7057 else
7058 itr_val |= E1000_EITR_CNT_IGNR;
7059
7060 writel(itr_val, q_vector->itr_register);
7061 q_vector->set_itr = 0;
7062 }
7063
igb_msix_ring(int irq,void * data)7064 static irqreturn_t igb_msix_ring(int irq, void *data)
7065 {
7066 struct igb_q_vector *q_vector = data;
7067
7068 /* Write the ITR value calculated from the previous interrupt. */
7069 igb_write_itr(q_vector);
7070
7071 napi_schedule(&q_vector->napi);
7072
7073 return IRQ_HANDLED;
7074 }
7075
7076 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7077 static void igb_update_tx_dca(struct igb_adapter *adapter,
7078 struct igb_ring *tx_ring,
7079 int cpu)
7080 {
7081 struct e1000_hw *hw = &adapter->hw;
7082 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7083
7084 if (hw->mac.type != e1000_82575)
7085 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7086
7087 /* We can enable relaxed ordering for reads, but not writes when
7088 * DCA is enabled. This is due to a known issue in some chipsets
7089 * which will cause the DCA tag to be cleared.
7090 */
7091 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7092 E1000_DCA_TXCTRL_DATA_RRO_EN |
7093 E1000_DCA_TXCTRL_DESC_DCA_EN;
7094
7095 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7096 }
7097
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7098 static void igb_update_rx_dca(struct igb_adapter *adapter,
7099 struct igb_ring *rx_ring,
7100 int cpu)
7101 {
7102 struct e1000_hw *hw = &adapter->hw;
7103 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7104
7105 if (hw->mac.type != e1000_82575)
7106 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7107
7108 /* We can enable relaxed ordering for reads, but not writes when
7109 * DCA is enabled. This is due to a known issue in some chipsets
7110 * which will cause the DCA tag to be cleared.
7111 */
7112 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7113 E1000_DCA_RXCTRL_DESC_DCA_EN;
7114
7115 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7116 }
7117
igb_update_dca(struct igb_q_vector * q_vector)7118 static void igb_update_dca(struct igb_q_vector *q_vector)
7119 {
7120 struct igb_adapter *adapter = q_vector->adapter;
7121 int cpu = get_cpu();
7122
7123 if (q_vector->cpu == cpu)
7124 goto out_no_update;
7125
7126 if (q_vector->tx.ring)
7127 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7128
7129 if (q_vector->rx.ring)
7130 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7131
7132 q_vector->cpu = cpu;
7133 out_no_update:
7134 put_cpu();
7135 }
7136
igb_setup_dca(struct igb_adapter * adapter)7137 static void igb_setup_dca(struct igb_adapter *adapter)
7138 {
7139 struct e1000_hw *hw = &adapter->hw;
7140 int i;
7141
7142 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7143 return;
7144
7145 /* Always use CB2 mode, difference is masked in the CB driver. */
7146 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7147
7148 for (i = 0; i < adapter->num_q_vectors; i++) {
7149 adapter->q_vector[i]->cpu = -1;
7150 igb_update_dca(adapter->q_vector[i]);
7151 }
7152 }
7153
__igb_notify_dca(struct device * dev,void * data)7154 static int __igb_notify_dca(struct device *dev, void *data)
7155 {
7156 struct net_device *netdev = dev_get_drvdata(dev);
7157 struct igb_adapter *adapter = netdev_priv(netdev);
7158 struct pci_dev *pdev = adapter->pdev;
7159 struct e1000_hw *hw = &adapter->hw;
7160 unsigned long event = *(unsigned long *)data;
7161
7162 switch (event) {
7163 case DCA_PROVIDER_ADD:
7164 /* if already enabled, don't do it again */
7165 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7166 break;
7167 if (dca_add_requester(dev) == 0) {
7168 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7169 dev_info(&pdev->dev, "DCA enabled\n");
7170 igb_setup_dca(adapter);
7171 break;
7172 }
7173 fallthrough; /* since DCA is disabled. */
7174 case DCA_PROVIDER_REMOVE:
7175 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7176 /* without this a class_device is left
7177 * hanging around in the sysfs model
7178 */
7179 dca_remove_requester(dev);
7180 dev_info(&pdev->dev, "DCA disabled\n");
7181 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7182 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7183 }
7184 break;
7185 }
7186
7187 return 0;
7188 }
7189
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7190 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7191 void *p)
7192 {
7193 int ret_val;
7194
7195 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7196 __igb_notify_dca);
7197
7198 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7199 }
7200 #endif /* CONFIG_IGB_DCA */
7201
7202 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7203 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7204 {
7205 unsigned char mac_addr[ETH_ALEN];
7206
7207 eth_zero_addr(mac_addr);
7208 igb_set_vf_mac(adapter, vf, mac_addr);
7209
7210 /* By default spoof check is enabled for all VFs */
7211 adapter->vf_data[vf].spoofchk_enabled = true;
7212
7213 /* By default VFs are not trusted */
7214 adapter->vf_data[vf].trusted = false;
7215
7216 return 0;
7217 }
7218
7219 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7220 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7221 {
7222 struct e1000_hw *hw = &adapter->hw;
7223 u32 ping;
7224 int i;
7225
7226 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7227 ping = E1000_PF_CONTROL_MSG;
7228 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7229 ping |= E1000_VT_MSGTYPE_CTS;
7230 igb_write_mbx(hw, &ping, 1, i);
7231 }
7232 }
7233
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7234 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7235 {
7236 struct e1000_hw *hw = &adapter->hw;
7237 u32 vmolr = rd32(E1000_VMOLR(vf));
7238 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7239
7240 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7241 IGB_VF_FLAG_MULTI_PROMISC);
7242 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7243
7244 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7245 vmolr |= E1000_VMOLR_MPME;
7246 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7247 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7248 } else {
7249 /* if we have hashes and we are clearing a multicast promisc
7250 * flag we need to write the hashes to the MTA as this step
7251 * was previously skipped
7252 */
7253 if (vf_data->num_vf_mc_hashes > 30) {
7254 vmolr |= E1000_VMOLR_MPME;
7255 } else if (vf_data->num_vf_mc_hashes) {
7256 int j;
7257
7258 vmolr |= E1000_VMOLR_ROMPE;
7259 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7260 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7261 }
7262 }
7263
7264 wr32(E1000_VMOLR(vf), vmolr);
7265
7266 /* there are flags left unprocessed, likely not supported */
7267 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7268 return -EINVAL;
7269
7270 return 0;
7271 }
7272
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7273 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7274 u32 *msgbuf, u32 vf)
7275 {
7276 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7277 u16 *hash_list = (u16 *)&msgbuf[1];
7278 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7279 int i;
7280
7281 /* salt away the number of multicast addresses assigned
7282 * to this VF for later use to restore when the PF multi cast
7283 * list changes
7284 */
7285 vf_data->num_vf_mc_hashes = n;
7286
7287 /* only up to 30 hash values supported */
7288 if (n > 30)
7289 n = 30;
7290
7291 /* store the hashes for later use */
7292 for (i = 0; i < n; i++)
7293 vf_data->vf_mc_hashes[i] = hash_list[i];
7294
7295 /* Flush and reset the mta with the new values */
7296 igb_set_rx_mode(adapter->netdev);
7297
7298 return 0;
7299 }
7300
igb_restore_vf_multicasts(struct igb_adapter * adapter)7301 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7302 {
7303 struct e1000_hw *hw = &adapter->hw;
7304 struct vf_data_storage *vf_data;
7305 int i, j;
7306
7307 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7308 u32 vmolr = rd32(E1000_VMOLR(i));
7309
7310 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7311
7312 vf_data = &adapter->vf_data[i];
7313
7314 if ((vf_data->num_vf_mc_hashes > 30) ||
7315 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7316 vmolr |= E1000_VMOLR_MPME;
7317 } else if (vf_data->num_vf_mc_hashes) {
7318 vmolr |= E1000_VMOLR_ROMPE;
7319 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7320 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7321 }
7322 wr32(E1000_VMOLR(i), vmolr);
7323 }
7324 }
7325
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7326 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7327 {
7328 struct e1000_hw *hw = &adapter->hw;
7329 u32 pool_mask, vlvf_mask, i;
7330
7331 /* create mask for VF and other pools */
7332 pool_mask = E1000_VLVF_POOLSEL_MASK;
7333 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7334
7335 /* drop PF from pool bits */
7336 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7337 adapter->vfs_allocated_count);
7338
7339 /* Find the vlan filter for this id */
7340 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7341 u32 vlvf = rd32(E1000_VLVF(i));
7342 u32 vfta_mask, vid, vfta;
7343
7344 /* remove the vf from the pool */
7345 if (!(vlvf & vlvf_mask))
7346 continue;
7347
7348 /* clear out bit from VLVF */
7349 vlvf ^= vlvf_mask;
7350
7351 /* if other pools are present, just remove ourselves */
7352 if (vlvf & pool_mask)
7353 goto update_vlvfb;
7354
7355 /* if PF is present, leave VFTA */
7356 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7357 goto update_vlvf;
7358
7359 vid = vlvf & E1000_VLVF_VLANID_MASK;
7360 vfta_mask = BIT(vid % 32);
7361
7362 /* clear bit from VFTA */
7363 vfta = adapter->shadow_vfta[vid / 32];
7364 if (vfta & vfta_mask)
7365 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7366 update_vlvf:
7367 /* clear pool selection enable */
7368 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7369 vlvf &= E1000_VLVF_POOLSEL_MASK;
7370 else
7371 vlvf = 0;
7372 update_vlvfb:
7373 /* clear pool bits */
7374 wr32(E1000_VLVF(i), vlvf);
7375 }
7376 }
7377
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7378 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7379 {
7380 u32 vlvf;
7381 int idx;
7382
7383 /* short cut the special case */
7384 if (vlan == 0)
7385 return 0;
7386
7387 /* Search for the VLAN id in the VLVF entries */
7388 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7389 vlvf = rd32(E1000_VLVF(idx));
7390 if ((vlvf & VLAN_VID_MASK) == vlan)
7391 break;
7392 }
7393
7394 return idx;
7395 }
7396
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7397 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7398 {
7399 struct e1000_hw *hw = &adapter->hw;
7400 u32 bits, pf_id;
7401 int idx;
7402
7403 idx = igb_find_vlvf_entry(hw, vid);
7404 if (!idx)
7405 return;
7406
7407 /* See if any other pools are set for this VLAN filter
7408 * entry other than the PF.
7409 */
7410 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7411 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7412 bits &= rd32(E1000_VLVF(idx));
7413
7414 /* Disable the filter so this falls into the default pool. */
7415 if (!bits) {
7416 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7417 wr32(E1000_VLVF(idx), BIT(pf_id));
7418 else
7419 wr32(E1000_VLVF(idx), 0);
7420 }
7421 }
7422
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7423 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7424 bool add, u32 vf)
7425 {
7426 int pf_id = adapter->vfs_allocated_count;
7427 struct e1000_hw *hw = &adapter->hw;
7428 int err;
7429
7430 /* If VLAN overlaps with one the PF is currently monitoring make
7431 * sure that we are able to allocate a VLVF entry. This may be
7432 * redundant but it guarantees PF will maintain visibility to
7433 * the VLAN.
7434 */
7435 if (add && test_bit(vid, adapter->active_vlans)) {
7436 err = igb_vfta_set(hw, vid, pf_id, true, false);
7437 if (err)
7438 return err;
7439 }
7440
7441 err = igb_vfta_set(hw, vid, vf, add, false);
7442
7443 if (add && !err)
7444 return err;
7445
7446 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7447 * we may need to drop the PF pool bit in order to allow us to free
7448 * up the VLVF resources.
7449 */
7450 if (test_bit(vid, adapter->active_vlans) ||
7451 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7452 igb_update_pf_vlvf(adapter, vid);
7453
7454 return err;
7455 }
7456
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7457 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7458 {
7459 struct e1000_hw *hw = &adapter->hw;
7460
7461 if (vid)
7462 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7463 else
7464 wr32(E1000_VMVIR(vf), 0);
7465 }
7466
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7467 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7468 u16 vlan, u8 qos)
7469 {
7470 int err;
7471
7472 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7473 if (err)
7474 return err;
7475
7476 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7477 igb_set_vmolr(adapter, vf, !vlan);
7478
7479 /* revoke access to previous VLAN */
7480 if (vlan != adapter->vf_data[vf].pf_vlan)
7481 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7482 false, vf);
7483
7484 adapter->vf_data[vf].pf_vlan = vlan;
7485 adapter->vf_data[vf].pf_qos = qos;
7486 igb_set_vf_vlan_strip(adapter, vf, true);
7487 dev_info(&adapter->pdev->dev,
7488 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7489 if (test_bit(__IGB_DOWN, &adapter->state)) {
7490 dev_warn(&adapter->pdev->dev,
7491 "The VF VLAN has been set, but the PF device is not up.\n");
7492 dev_warn(&adapter->pdev->dev,
7493 "Bring the PF device up before attempting to use the VF device.\n");
7494 }
7495
7496 return err;
7497 }
7498
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7499 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7500 {
7501 /* Restore tagless access via VLAN 0 */
7502 igb_set_vf_vlan(adapter, 0, true, vf);
7503
7504 igb_set_vmvir(adapter, 0, vf);
7505 igb_set_vmolr(adapter, vf, true);
7506
7507 /* Remove any PF assigned VLAN */
7508 if (adapter->vf_data[vf].pf_vlan)
7509 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7510 false, vf);
7511
7512 adapter->vf_data[vf].pf_vlan = 0;
7513 adapter->vf_data[vf].pf_qos = 0;
7514 igb_set_vf_vlan_strip(adapter, vf, false);
7515
7516 return 0;
7517 }
7518
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7519 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7520 u16 vlan, u8 qos, __be16 vlan_proto)
7521 {
7522 struct igb_adapter *adapter = netdev_priv(netdev);
7523
7524 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7525 return -EINVAL;
7526
7527 if (vlan_proto != htons(ETH_P_8021Q))
7528 return -EPROTONOSUPPORT;
7529
7530 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7531 igb_disable_port_vlan(adapter, vf);
7532 }
7533
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7534 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7535 {
7536 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7537 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7538 int ret;
7539
7540 if (adapter->vf_data[vf].pf_vlan)
7541 return -1;
7542
7543 /* VLAN 0 is a special case, don't allow it to be removed */
7544 if (!vid && !add)
7545 return 0;
7546
7547 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7548 if (!ret)
7549 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7550 return ret;
7551 }
7552
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7553 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7554 {
7555 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7556
7557 /* clear flags - except flag that indicates PF has set the MAC */
7558 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7559 vf_data->last_nack = jiffies;
7560
7561 /* reset vlans for device */
7562 igb_clear_vf_vfta(adapter, vf);
7563 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7564 igb_set_vmvir(adapter, vf_data->pf_vlan |
7565 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7566 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7567 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7568
7569 /* reset multicast table array for vf */
7570 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7571
7572 /* Flush and reset the mta with the new values */
7573 igb_set_rx_mode(adapter->netdev);
7574 }
7575
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7576 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7577 {
7578 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7579
7580 /* clear mac address as we were hotplug removed/added */
7581 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7582 eth_zero_addr(vf_mac);
7583
7584 /* process remaining reset events */
7585 igb_vf_reset(adapter, vf);
7586 }
7587
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7588 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7589 {
7590 struct e1000_hw *hw = &adapter->hw;
7591 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7592 u32 reg, msgbuf[3] = {};
7593 u8 *addr = (u8 *)(&msgbuf[1]);
7594
7595 /* process all the same items cleared in a function level reset */
7596 igb_vf_reset(adapter, vf);
7597
7598 /* set vf mac address */
7599 igb_set_vf_mac(adapter, vf, vf_mac);
7600
7601 /* enable transmit and receive for vf */
7602 reg = rd32(E1000_VFTE);
7603 wr32(E1000_VFTE, reg | BIT(vf));
7604 reg = rd32(E1000_VFRE);
7605 wr32(E1000_VFRE, reg | BIT(vf));
7606
7607 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7608
7609 /* reply to reset with ack and vf mac address */
7610 if (!is_zero_ether_addr(vf_mac)) {
7611 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7612 memcpy(addr, vf_mac, ETH_ALEN);
7613 } else {
7614 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7615 }
7616 igb_write_mbx(hw, msgbuf, 3, vf);
7617 }
7618
igb_flush_mac_table(struct igb_adapter * adapter)7619 static void igb_flush_mac_table(struct igb_adapter *adapter)
7620 {
7621 struct e1000_hw *hw = &adapter->hw;
7622 int i;
7623
7624 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7625 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7626 eth_zero_addr(adapter->mac_table[i].addr);
7627 adapter->mac_table[i].queue = 0;
7628 igb_rar_set_index(adapter, i);
7629 }
7630 }
7631
igb_available_rars(struct igb_adapter * adapter,u8 queue)7632 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7633 {
7634 struct e1000_hw *hw = &adapter->hw;
7635 /* do not count rar entries reserved for VFs MAC addresses */
7636 int rar_entries = hw->mac.rar_entry_count -
7637 adapter->vfs_allocated_count;
7638 int i, count = 0;
7639
7640 for (i = 0; i < rar_entries; i++) {
7641 /* do not count default entries */
7642 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7643 continue;
7644
7645 /* do not count "in use" entries for different queues */
7646 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7647 (adapter->mac_table[i].queue != queue))
7648 continue;
7649
7650 count++;
7651 }
7652
7653 return count;
7654 }
7655
7656 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7657 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7658 {
7659 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7660
7661 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7662 mac_table->queue = adapter->vfs_allocated_count;
7663 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7664
7665 igb_rar_set_index(adapter, 0);
7666 }
7667
7668 /* If the filter to be added and an already existing filter express
7669 * the same address and address type, it should be possible to only
7670 * override the other configurations, for example the queue to steer
7671 * traffic.
7672 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7673 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7674 const u8 *addr, const u8 flags)
7675 {
7676 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7677 return true;
7678
7679 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7680 (flags & IGB_MAC_STATE_SRC_ADDR))
7681 return false;
7682
7683 if (!ether_addr_equal(addr, entry->addr))
7684 return false;
7685
7686 return true;
7687 }
7688
7689 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7690 * 'flags' is used to indicate what kind of match is made, match is by
7691 * default for the destination address, if matching by source address
7692 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7693 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7694 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7695 const u8 *addr, const u8 queue,
7696 const u8 flags)
7697 {
7698 struct e1000_hw *hw = &adapter->hw;
7699 int rar_entries = hw->mac.rar_entry_count -
7700 adapter->vfs_allocated_count;
7701 int i;
7702
7703 if (is_zero_ether_addr(addr))
7704 return -EINVAL;
7705
7706 /* Search for the first empty entry in the MAC table.
7707 * Do not touch entries at the end of the table reserved for the VF MAC
7708 * addresses.
7709 */
7710 for (i = 0; i < rar_entries; i++) {
7711 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7712 addr, flags))
7713 continue;
7714
7715 ether_addr_copy(adapter->mac_table[i].addr, addr);
7716 adapter->mac_table[i].queue = queue;
7717 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7718
7719 igb_rar_set_index(adapter, i);
7720 return i;
7721 }
7722
7723 return -ENOSPC;
7724 }
7725
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7726 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7727 const u8 queue)
7728 {
7729 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7730 }
7731
7732 /* Remove a MAC filter for 'addr' directing matching traffic to
7733 * 'queue', 'flags' is used to indicate what kind of match need to be
7734 * removed, match is by default for the destination address, if
7735 * matching by source address is to be removed the flag
7736 * IGB_MAC_STATE_SRC_ADDR can be used.
7737 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7738 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7739 const u8 *addr, const u8 queue,
7740 const u8 flags)
7741 {
7742 struct e1000_hw *hw = &adapter->hw;
7743 int rar_entries = hw->mac.rar_entry_count -
7744 adapter->vfs_allocated_count;
7745 int i;
7746
7747 if (is_zero_ether_addr(addr))
7748 return -EINVAL;
7749
7750 /* Search for matching entry in the MAC table based on given address
7751 * and queue. Do not touch entries at the end of the table reserved
7752 * for the VF MAC addresses.
7753 */
7754 for (i = 0; i < rar_entries; i++) {
7755 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7756 continue;
7757 if ((adapter->mac_table[i].state & flags) != flags)
7758 continue;
7759 if (adapter->mac_table[i].queue != queue)
7760 continue;
7761 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7762 continue;
7763
7764 /* When a filter for the default address is "deleted",
7765 * we return it to its initial configuration
7766 */
7767 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7768 adapter->mac_table[i].state =
7769 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7770 adapter->mac_table[i].queue =
7771 adapter->vfs_allocated_count;
7772 } else {
7773 adapter->mac_table[i].state = 0;
7774 adapter->mac_table[i].queue = 0;
7775 eth_zero_addr(adapter->mac_table[i].addr);
7776 }
7777
7778 igb_rar_set_index(adapter, i);
7779 return 0;
7780 }
7781
7782 return -ENOENT;
7783 }
7784
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7785 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7786 const u8 queue)
7787 {
7788 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7789 }
7790
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7791 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7792 const u8 *addr, u8 queue, u8 flags)
7793 {
7794 struct e1000_hw *hw = &adapter->hw;
7795
7796 /* In theory, this should be supported on 82575 as well, but
7797 * that part wasn't easily accessible during development.
7798 */
7799 if (hw->mac.type != e1000_i210)
7800 return -EOPNOTSUPP;
7801
7802 return igb_add_mac_filter_flags(adapter, addr, queue,
7803 IGB_MAC_STATE_QUEUE_STEERING | flags);
7804 }
7805
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7806 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7807 const u8 *addr, u8 queue, u8 flags)
7808 {
7809 return igb_del_mac_filter_flags(adapter, addr, queue,
7810 IGB_MAC_STATE_QUEUE_STEERING | flags);
7811 }
7812
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7813 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7814 {
7815 struct igb_adapter *adapter = netdev_priv(netdev);
7816 int ret;
7817
7818 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7819
7820 return min_t(int, ret, 0);
7821 }
7822
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7823 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7824 {
7825 struct igb_adapter *adapter = netdev_priv(netdev);
7826
7827 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7828
7829 return 0;
7830 }
7831
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7832 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7833 const u32 info, const u8 *addr)
7834 {
7835 struct pci_dev *pdev = adapter->pdev;
7836 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7837 struct vf_mac_filter *entry;
7838 bool found = false;
7839 int ret = 0;
7840
7841 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7842 !vf_data->trusted) {
7843 dev_warn(&pdev->dev,
7844 "VF %d requested MAC filter but is administratively denied\n",
7845 vf);
7846 return -EINVAL;
7847 }
7848 if (!is_valid_ether_addr(addr)) {
7849 dev_warn(&pdev->dev,
7850 "VF %d attempted to set invalid MAC filter\n",
7851 vf);
7852 return -EINVAL;
7853 }
7854
7855 switch (info) {
7856 case E1000_VF_MAC_FILTER_CLR:
7857 /* remove all unicast MAC filters related to the current VF */
7858 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7859 if (entry->vf == vf) {
7860 entry->vf = -1;
7861 entry->free = true;
7862 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7863 }
7864 }
7865 break;
7866 case E1000_VF_MAC_FILTER_ADD:
7867 /* try to find empty slot in the list */
7868 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7869 if (entry->free) {
7870 found = true;
7871 break;
7872 }
7873 }
7874
7875 if (found) {
7876 entry->free = false;
7877 entry->vf = vf;
7878 ether_addr_copy(entry->vf_mac, addr);
7879
7880 ret = igb_add_mac_filter(adapter, addr, vf);
7881 ret = min_t(int, ret, 0);
7882 } else {
7883 ret = -ENOSPC;
7884 }
7885
7886 if (ret == -ENOSPC)
7887 dev_warn(&pdev->dev,
7888 "VF %d has requested MAC filter but there is no space for it\n",
7889 vf);
7890 break;
7891 default:
7892 ret = -EINVAL;
7893 break;
7894 }
7895
7896 return ret;
7897 }
7898
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7899 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7900 {
7901 struct pci_dev *pdev = adapter->pdev;
7902 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7903 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7904
7905 /* The VF MAC Address is stored in a packed array of bytes
7906 * starting at the second 32 bit word of the msg array
7907 */
7908 unsigned char *addr = (unsigned char *)&msg[1];
7909 int ret = 0;
7910
7911 if (!info) {
7912 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7913 !vf_data->trusted) {
7914 dev_warn(&pdev->dev,
7915 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7916 vf);
7917 return -EINVAL;
7918 }
7919
7920 if (!is_valid_ether_addr(addr)) {
7921 dev_warn(&pdev->dev,
7922 "VF %d attempted to set invalid MAC\n",
7923 vf);
7924 return -EINVAL;
7925 }
7926
7927 ret = igb_set_vf_mac(adapter, vf, addr);
7928 } else {
7929 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7930 }
7931
7932 return ret;
7933 }
7934
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7935 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7936 {
7937 struct e1000_hw *hw = &adapter->hw;
7938 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7939 u32 msg = E1000_VT_MSGTYPE_NACK;
7940
7941 /* if device isn't clear to send it shouldn't be reading either */
7942 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7943 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7944 igb_write_mbx(hw, &msg, 1, vf);
7945 vf_data->last_nack = jiffies;
7946 }
7947 }
7948
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7949 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7950 {
7951 struct pci_dev *pdev = adapter->pdev;
7952 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7953 struct e1000_hw *hw = &adapter->hw;
7954 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7955 s32 retval;
7956
7957 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7958
7959 if (retval) {
7960 /* if receive failed revoke VF CTS stats and restart init */
7961 dev_err(&pdev->dev, "Error receiving message from VF\n");
7962 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7963 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7964 goto unlock;
7965 goto out;
7966 }
7967
7968 /* this is a message we already processed, do nothing */
7969 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7970 goto unlock;
7971
7972 /* until the vf completes a reset it should not be
7973 * allowed to start any configuration.
7974 */
7975 if (msgbuf[0] == E1000_VF_RESET) {
7976 /* unlocks mailbox */
7977 igb_vf_reset_msg(adapter, vf);
7978 return;
7979 }
7980
7981 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7982 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7983 goto unlock;
7984 retval = -1;
7985 goto out;
7986 }
7987
7988 switch ((msgbuf[0] & 0xFFFF)) {
7989 case E1000_VF_SET_MAC_ADDR:
7990 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7991 break;
7992 case E1000_VF_SET_PROMISC:
7993 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7994 break;
7995 case E1000_VF_SET_MULTICAST:
7996 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7997 break;
7998 case E1000_VF_SET_LPE:
7999 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8000 break;
8001 case E1000_VF_SET_VLAN:
8002 retval = -1;
8003 if (vf_data->pf_vlan)
8004 dev_warn(&pdev->dev,
8005 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8006 vf);
8007 else
8008 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8009 break;
8010 default:
8011 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8012 retval = -1;
8013 break;
8014 }
8015
8016 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8017 out:
8018 /* notify the VF of the results of what it sent us */
8019 if (retval)
8020 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8021 else
8022 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8023
8024 /* unlocks mailbox */
8025 igb_write_mbx(hw, msgbuf, 1, vf);
8026 return;
8027
8028 unlock:
8029 igb_unlock_mbx(hw, vf);
8030 }
8031
igb_msg_task(struct igb_adapter * adapter)8032 static void igb_msg_task(struct igb_adapter *adapter)
8033 {
8034 struct e1000_hw *hw = &adapter->hw;
8035 unsigned long flags;
8036 u32 vf;
8037
8038 spin_lock_irqsave(&adapter->vfs_lock, flags);
8039 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8040 /* process any reset requests */
8041 if (!igb_check_for_rst(hw, vf))
8042 igb_vf_reset_event(adapter, vf);
8043
8044 /* process any messages pending */
8045 if (!igb_check_for_msg(hw, vf))
8046 igb_rcv_msg_from_vf(adapter, vf);
8047
8048 /* process any acks */
8049 if (!igb_check_for_ack(hw, vf))
8050 igb_rcv_ack_from_vf(adapter, vf);
8051 }
8052 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8053 }
8054
8055 /**
8056 * igb_set_uta - Set unicast filter table address
8057 * @adapter: board private structure
8058 * @set: boolean indicating if we are setting or clearing bits
8059 *
8060 * The unicast table address is a register array of 32-bit registers.
8061 * The table is meant to be used in a way similar to how the MTA is used
8062 * however due to certain limitations in the hardware it is necessary to
8063 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8064 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8065 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8066 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8067 {
8068 struct e1000_hw *hw = &adapter->hw;
8069 u32 uta = set ? ~0 : 0;
8070 int i;
8071
8072 /* we only need to do this if VMDq is enabled */
8073 if (!adapter->vfs_allocated_count)
8074 return;
8075
8076 for (i = hw->mac.uta_reg_count; i--;)
8077 array_wr32(E1000_UTA, i, uta);
8078 }
8079
8080 /**
8081 * igb_intr_msi - Interrupt Handler
8082 * @irq: interrupt number
8083 * @data: pointer to a network interface device structure
8084 **/
igb_intr_msi(int irq,void * data)8085 static irqreturn_t igb_intr_msi(int irq, void *data)
8086 {
8087 struct igb_adapter *adapter = data;
8088 struct igb_q_vector *q_vector = adapter->q_vector[0];
8089 struct e1000_hw *hw = &adapter->hw;
8090 /* read ICR disables interrupts using IAM */
8091 u32 icr = rd32(E1000_ICR);
8092
8093 igb_write_itr(q_vector);
8094
8095 if (icr & E1000_ICR_DRSTA)
8096 schedule_work(&adapter->reset_task);
8097
8098 if (icr & E1000_ICR_DOUTSYNC) {
8099 /* HW is reporting DMA is out of sync */
8100 adapter->stats.doosync++;
8101 }
8102
8103 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8104 hw->mac.get_link_status = 1;
8105 if (!test_bit(__IGB_DOWN, &adapter->state))
8106 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8107 }
8108
8109 if (icr & E1000_ICR_TS)
8110 igb_tsync_interrupt(adapter);
8111
8112 napi_schedule(&q_vector->napi);
8113
8114 return IRQ_HANDLED;
8115 }
8116
8117 /**
8118 * igb_intr - Legacy Interrupt Handler
8119 * @irq: interrupt number
8120 * @data: pointer to a network interface device structure
8121 **/
igb_intr(int irq,void * data)8122 static irqreturn_t igb_intr(int irq, void *data)
8123 {
8124 struct igb_adapter *adapter = data;
8125 struct igb_q_vector *q_vector = adapter->q_vector[0];
8126 struct e1000_hw *hw = &adapter->hw;
8127 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8128 * need for the IMC write
8129 */
8130 u32 icr = rd32(E1000_ICR);
8131
8132 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8133 * not set, then the adapter didn't send an interrupt
8134 */
8135 if (!(icr & E1000_ICR_INT_ASSERTED))
8136 return IRQ_NONE;
8137
8138 igb_write_itr(q_vector);
8139
8140 if (icr & E1000_ICR_DRSTA)
8141 schedule_work(&adapter->reset_task);
8142
8143 if (icr & E1000_ICR_DOUTSYNC) {
8144 /* HW is reporting DMA is out of sync */
8145 adapter->stats.doosync++;
8146 }
8147
8148 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8149 hw->mac.get_link_status = 1;
8150 /* guard against interrupt when we're going down */
8151 if (!test_bit(__IGB_DOWN, &adapter->state))
8152 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8153 }
8154
8155 if (icr & E1000_ICR_TS)
8156 igb_tsync_interrupt(adapter);
8157
8158 napi_schedule(&q_vector->napi);
8159
8160 return IRQ_HANDLED;
8161 }
8162
igb_ring_irq_enable(struct igb_q_vector * q_vector)8163 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8164 {
8165 struct igb_adapter *adapter = q_vector->adapter;
8166 struct e1000_hw *hw = &adapter->hw;
8167
8168 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8169 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8170 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8171 igb_set_itr(q_vector);
8172 else
8173 igb_update_ring_itr(q_vector);
8174 }
8175
8176 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8177 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8178 wr32(E1000_EIMS, q_vector->eims_value);
8179 else
8180 igb_irq_enable(adapter);
8181 }
8182 }
8183
8184 /**
8185 * igb_poll - NAPI Rx polling callback
8186 * @napi: napi polling structure
8187 * @budget: count of how many packets we should handle
8188 **/
igb_poll(struct napi_struct * napi,int budget)8189 static int igb_poll(struct napi_struct *napi, int budget)
8190 {
8191 struct igb_q_vector *q_vector = container_of(napi,
8192 struct igb_q_vector,
8193 napi);
8194 bool clean_complete = true;
8195 int work_done = 0;
8196
8197 #ifdef CONFIG_IGB_DCA
8198 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8199 igb_update_dca(q_vector);
8200 #endif
8201 if (q_vector->tx.ring)
8202 clean_complete = igb_clean_tx_irq(q_vector, budget);
8203
8204 if (q_vector->rx.ring) {
8205 int cleaned = igb_clean_rx_irq(q_vector, budget);
8206
8207 work_done += cleaned;
8208 if (cleaned >= budget)
8209 clean_complete = false;
8210 }
8211
8212 /* If all work not completed, return budget and keep polling */
8213 if (!clean_complete)
8214 return budget;
8215
8216 /* Exit the polling mode, but don't re-enable interrupts if stack might
8217 * poll us due to busy-polling
8218 */
8219 if (likely(napi_complete_done(napi, work_done)))
8220 igb_ring_irq_enable(q_vector);
8221
8222 return work_done;
8223 }
8224
8225 /**
8226 * igb_clean_tx_irq - Reclaim resources after transmit completes
8227 * @q_vector: pointer to q_vector containing needed info
8228 * @napi_budget: Used to determine if we are in netpoll
8229 *
8230 * returns true if ring is completely cleaned
8231 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8232 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8233 {
8234 struct igb_adapter *adapter = q_vector->adapter;
8235 struct igb_ring *tx_ring = q_vector->tx.ring;
8236 struct igb_tx_buffer *tx_buffer;
8237 union e1000_adv_tx_desc *tx_desc;
8238 unsigned int total_bytes = 0, total_packets = 0;
8239 unsigned int budget = q_vector->tx.work_limit;
8240 unsigned int i = tx_ring->next_to_clean;
8241
8242 if (test_bit(__IGB_DOWN, &adapter->state))
8243 return true;
8244
8245 tx_buffer = &tx_ring->tx_buffer_info[i];
8246 tx_desc = IGB_TX_DESC(tx_ring, i);
8247 i -= tx_ring->count;
8248
8249 do {
8250 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8251
8252 /* if next_to_watch is not set then there is no work pending */
8253 if (!eop_desc)
8254 break;
8255
8256 /* prevent any other reads prior to eop_desc */
8257 smp_rmb();
8258
8259 /* if DD is not set pending work has not been completed */
8260 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8261 break;
8262
8263 /* clear next_to_watch to prevent false hangs */
8264 tx_buffer->next_to_watch = NULL;
8265
8266 /* update the statistics for this packet */
8267 total_bytes += tx_buffer->bytecount;
8268 total_packets += tx_buffer->gso_segs;
8269
8270 /* free the skb */
8271 if (tx_buffer->type == IGB_TYPE_SKB)
8272 napi_consume_skb(tx_buffer->skb, napi_budget);
8273 else
8274 xdp_return_frame(tx_buffer->xdpf);
8275
8276 /* unmap skb header data */
8277 dma_unmap_single(tx_ring->dev,
8278 dma_unmap_addr(tx_buffer, dma),
8279 dma_unmap_len(tx_buffer, len),
8280 DMA_TO_DEVICE);
8281
8282 /* clear tx_buffer data */
8283 dma_unmap_len_set(tx_buffer, len, 0);
8284
8285 /* clear last DMA location and unmap remaining buffers */
8286 while (tx_desc != eop_desc) {
8287 tx_buffer++;
8288 tx_desc++;
8289 i++;
8290 if (unlikely(!i)) {
8291 i -= tx_ring->count;
8292 tx_buffer = tx_ring->tx_buffer_info;
8293 tx_desc = IGB_TX_DESC(tx_ring, 0);
8294 }
8295
8296 /* unmap any remaining paged data */
8297 if (dma_unmap_len(tx_buffer, len)) {
8298 dma_unmap_page(tx_ring->dev,
8299 dma_unmap_addr(tx_buffer, dma),
8300 dma_unmap_len(tx_buffer, len),
8301 DMA_TO_DEVICE);
8302 dma_unmap_len_set(tx_buffer, len, 0);
8303 }
8304 }
8305
8306 /* move us one more past the eop_desc for start of next pkt */
8307 tx_buffer++;
8308 tx_desc++;
8309 i++;
8310 if (unlikely(!i)) {
8311 i -= tx_ring->count;
8312 tx_buffer = tx_ring->tx_buffer_info;
8313 tx_desc = IGB_TX_DESC(tx_ring, 0);
8314 }
8315
8316 /* issue prefetch for next Tx descriptor */
8317 prefetch(tx_desc);
8318
8319 /* update budget accounting */
8320 budget--;
8321 } while (likely(budget));
8322
8323 netdev_tx_completed_queue(txring_txq(tx_ring),
8324 total_packets, total_bytes);
8325 i += tx_ring->count;
8326 tx_ring->next_to_clean = i;
8327 u64_stats_update_begin(&tx_ring->tx_syncp);
8328 tx_ring->tx_stats.bytes += total_bytes;
8329 tx_ring->tx_stats.packets += total_packets;
8330 u64_stats_update_end(&tx_ring->tx_syncp);
8331 q_vector->tx.total_bytes += total_bytes;
8332 q_vector->tx.total_packets += total_packets;
8333
8334 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8335 struct e1000_hw *hw = &adapter->hw;
8336
8337 /* Detect a transmit hang in hardware, this serializes the
8338 * check with the clearing of time_stamp and movement of i
8339 */
8340 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8341 if (tx_buffer->next_to_watch &&
8342 time_after(jiffies, tx_buffer->time_stamp +
8343 (adapter->tx_timeout_factor * HZ)) &&
8344 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8345
8346 /* detected Tx unit hang */
8347 dev_err(tx_ring->dev,
8348 "Detected Tx Unit Hang\n"
8349 " Tx Queue <%d>\n"
8350 " TDH <%x>\n"
8351 " TDT <%x>\n"
8352 " next_to_use <%x>\n"
8353 " next_to_clean <%x>\n"
8354 "buffer_info[next_to_clean]\n"
8355 " time_stamp <%lx>\n"
8356 " next_to_watch <%p>\n"
8357 " jiffies <%lx>\n"
8358 " desc.status <%x>\n",
8359 tx_ring->queue_index,
8360 rd32(E1000_TDH(tx_ring->reg_idx)),
8361 readl(tx_ring->tail),
8362 tx_ring->next_to_use,
8363 tx_ring->next_to_clean,
8364 tx_buffer->time_stamp,
8365 tx_buffer->next_to_watch,
8366 jiffies,
8367 tx_buffer->next_to_watch->wb.status);
8368 netif_stop_subqueue(tx_ring->netdev,
8369 tx_ring->queue_index);
8370
8371 /* we are about to reset, no point in enabling stuff */
8372 return true;
8373 }
8374 }
8375
8376 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8377 if (unlikely(total_packets &&
8378 netif_carrier_ok(tx_ring->netdev) &&
8379 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8380 /* Make sure that anybody stopping the queue after this
8381 * sees the new next_to_clean.
8382 */
8383 smp_mb();
8384 if (__netif_subqueue_stopped(tx_ring->netdev,
8385 tx_ring->queue_index) &&
8386 !(test_bit(__IGB_DOWN, &adapter->state))) {
8387 netif_wake_subqueue(tx_ring->netdev,
8388 tx_ring->queue_index);
8389
8390 u64_stats_update_begin(&tx_ring->tx_syncp);
8391 tx_ring->tx_stats.restart_queue++;
8392 u64_stats_update_end(&tx_ring->tx_syncp);
8393 }
8394 }
8395
8396 return !!budget;
8397 }
8398
8399 /**
8400 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8401 * @rx_ring: rx descriptor ring to store buffers on
8402 * @old_buff: donor buffer to have page reused
8403 *
8404 * Synchronizes page for reuse by the adapter
8405 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8406 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8407 struct igb_rx_buffer *old_buff)
8408 {
8409 struct igb_rx_buffer *new_buff;
8410 u16 nta = rx_ring->next_to_alloc;
8411
8412 new_buff = &rx_ring->rx_buffer_info[nta];
8413
8414 /* update, and store next to alloc */
8415 nta++;
8416 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8417
8418 /* Transfer page from old buffer to new buffer.
8419 * Move each member individually to avoid possible store
8420 * forwarding stalls.
8421 */
8422 new_buff->dma = old_buff->dma;
8423 new_buff->page = old_buff->page;
8424 new_buff->page_offset = old_buff->page_offset;
8425 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8426 }
8427
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8428 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8429 int rx_buf_pgcnt)
8430 {
8431 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8432 struct page *page = rx_buffer->page;
8433
8434 /* avoid re-using remote and pfmemalloc pages */
8435 if (!dev_page_is_reusable(page))
8436 return false;
8437
8438 #if (PAGE_SIZE < 8192)
8439 /* if we are only owner of page we can reuse it */
8440 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8441 return false;
8442 #else
8443 #define IGB_LAST_OFFSET \
8444 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8445
8446 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8447 return false;
8448 #endif
8449
8450 /* If we have drained the page fragment pool we need to update
8451 * the pagecnt_bias and page count so that we fully restock the
8452 * number of references the driver holds.
8453 */
8454 if (unlikely(pagecnt_bias == 1)) {
8455 page_ref_add(page, USHRT_MAX - 1);
8456 rx_buffer->pagecnt_bias = USHRT_MAX;
8457 }
8458
8459 return true;
8460 }
8461
8462 /**
8463 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8464 * @rx_ring: rx descriptor ring to transact packets on
8465 * @rx_buffer: buffer containing page to add
8466 * @skb: sk_buff to place the data into
8467 * @size: size of buffer to be added
8468 *
8469 * This function will add the data contained in rx_buffer->page to the skb.
8470 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8471 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8472 struct igb_rx_buffer *rx_buffer,
8473 struct sk_buff *skb,
8474 unsigned int size)
8475 {
8476 #if (PAGE_SIZE < 8192)
8477 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8478 #else
8479 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8480 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8481 SKB_DATA_ALIGN(size);
8482 #endif
8483 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8484 rx_buffer->page_offset, size, truesize);
8485 #if (PAGE_SIZE < 8192)
8486 rx_buffer->page_offset ^= truesize;
8487 #else
8488 rx_buffer->page_offset += truesize;
8489 #endif
8490 }
8491
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8492 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8493 struct igb_rx_buffer *rx_buffer,
8494 struct xdp_buff *xdp,
8495 ktime_t timestamp)
8496 {
8497 #if (PAGE_SIZE < 8192)
8498 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8499 #else
8500 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8501 xdp->data_hard_start);
8502 #endif
8503 unsigned int size = xdp->data_end - xdp->data;
8504 unsigned int headlen;
8505 struct sk_buff *skb;
8506
8507 /* prefetch first cache line of first page */
8508 net_prefetch(xdp->data);
8509
8510 /* allocate a skb to store the frags */
8511 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8512 if (unlikely(!skb))
8513 return NULL;
8514
8515 if (timestamp)
8516 skb_hwtstamps(skb)->hwtstamp = timestamp;
8517
8518 /* Determine available headroom for copy */
8519 headlen = size;
8520 if (headlen > IGB_RX_HDR_LEN)
8521 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8522
8523 /* align pull length to size of long to optimize memcpy performance */
8524 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8525
8526 /* update all of the pointers */
8527 size -= headlen;
8528 if (size) {
8529 skb_add_rx_frag(skb, 0, rx_buffer->page,
8530 (xdp->data + headlen) - page_address(rx_buffer->page),
8531 size, truesize);
8532 #if (PAGE_SIZE < 8192)
8533 rx_buffer->page_offset ^= truesize;
8534 #else
8535 rx_buffer->page_offset += truesize;
8536 #endif
8537 } else {
8538 rx_buffer->pagecnt_bias++;
8539 }
8540
8541 return skb;
8542 }
8543
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8544 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8545 struct igb_rx_buffer *rx_buffer,
8546 struct xdp_buff *xdp,
8547 ktime_t timestamp)
8548 {
8549 #if (PAGE_SIZE < 8192)
8550 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8551 #else
8552 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8553 SKB_DATA_ALIGN(xdp->data_end -
8554 xdp->data_hard_start);
8555 #endif
8556 unsigned int metasize = xdp->data - xdp->data_meta;
8557 struct sk_buff *skb;
8558
8559 /* prefetch first cache line of first page */
8560 net_prefetch(xdp->data_meta);
8561
8562 /* build an skb around the page buffer */
8563 skb = napi_build_skb(xdp->data_hard_start, truesize);
8564 if (unlikely(!skb))
8565 return NULL;
8566
8567 /* update pointers within the skb to store the data */
8568 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8569 __skb_put(skb, xdp->data_end - xdp->data);
8570
8571 if (metasize)
8572 skb_metadata_set(skb, metasize);
8573
8574 if (timestamp)
8575 skb_hwtstamps(skb)->hwtstamp = timestamp;
8576
8577 /* update buffer offset */
8578 #if (PAGE_SIZE < 8192)
8579 rx_buffer->page_offset ^= truesize;
8580 #else
8581 rx_buffer->page_offset += truesize;
8582 #endif
8583
8584 return skb;
8585 }
8586
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8587 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8588 struct igb_ring *rx_ring,
8589 struct xdp_buff *xdp)
8590 {
8591 int err, result = IGB_XDP_PASS;
8592 struct bpf_prog *xdp_prog;
8593 u32 act;
8594
8595 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8596
8597 if (!xdp_prog)
8598 goto xdp_out;
8599
8600 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8601
8602 act = bpf_prog_run_xdp(xdp_prog, xdp);
8603 switch (act) {
8604 case XDP_PASS:
8605 break;
8606 case XDP_TX:
8607 result = igb_xdp_xmit_back(adapter, xdp);
8608 if (result == IGB_XDP_CONSUMED)
8609 goto out_failure;
8610 break;
8611 case XDP_REDIRECT:
8612 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8613 if (err)
8614 goto out_failure;
8615 result = IGB_XDP_REDIR;
8616 break;
8617 default:
8618 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8619 fallthrough;
8620 case XDP_ABORTED:
8621 out_failure:
8622 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8623 fallthrough;
8624 case XDP_DROP:
8625 result = IGB_XDP_CONSUMED;
8626 break;
8627 }
8628 xdp_out:
8629 return ERR_PTR(-result);
8630 }
8631
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8632 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8633 unsigned int size)
8634 {
8635 unsigned int truesize;
8636
8637 #if (PAGE_SIZE < 8192)
8638 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8639 #else
8640 truesize = ring_uses_build_skb(rx_ring) ?
8641 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8642 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8643 SKB_DATA_ALIGN(size);
8644 #endif
8645 return truesize;
8646 }
8647
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8648 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8649 struct igb_rx_buffer *rx_buffer,
8650 unsigned int size)
8651 {
8652 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8653 #if (PAGE_SIZE < 8192)
8654 rx_buffer->page_offset ^= truesize;
8655 #else
8656 rx_buffer->page_offset += truesize;
8657 #endif
8658 }
8659
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8660 static inline void igb_rx_checksum(struct igb_ring *ring,
8661 union e1000_adv_rx_desc *rx_desc,
8662 struct sk_buff *skb)
8663 {
8664 skb_checksum_none_assert(skb);
8665
8666 /* Ignore Checksum bit is set */
8667 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8668 return;
8669
8670 /* Rx checksum disabled via ethtool */
8671 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8672 return;
8673
8674 /* TCP/UDP checksum error bit is set */
8675 if (igb_test_staterr(rx_desc,
8676 E1000_RXDEXT_STATERR_TCPE |
8677 E1000_RXDEXT_STATERR_IPE)) {
8678 /* work around errata with sctp packets where the TCPE aka
8679 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8680 * packets, (aka let the stack check the crc32c)
8681 */
8682 if (!((skb->len == 60) &&
8683 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8684 u64_stats_update_begin(&ring->rx_syncp);
8685 ring->rx_stats.csum_err++;
8686 u64_stats_update_end(&ring->rx_syncp);
8687 }
8688 /* let the stack verify checksum errors */
8689 return;
8690 }
8691 /* It must be a TCP or UDP packet with a valid checksum */
8692 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8693 E1000_RXD_STAT_UDPCS))
8694 skb->ip_summed = CHECKSUM_UNNECESSARY;
8695
8696 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8697 le32_to_cpu(rx_desc->wb.upper.status_error));
8698 }
8699
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8700 static inline void igb_rx_hash(struct igb_ring *ring,
8701 union e1000_adv_rx_desc *rx_desc,
8702 struct sk_buff *skb)
8703 {
8704 if (ring->netdev->features & NETIF_F_RXHASH)
8705 skb_set_hash(skb,
8706 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8707 PKT_HASH_TYPE_L3);
8708 }
8709
8710 /**
8711 * igb_is_non_eop - process handling of non-EOP buffers
8712 * @rx_ring: Rx ring being processed
8713 * @rx_desc: Rx descriptor for current buffer
8714 *
8715 * This function updates next to clean. If the buffer is an EOP buffer
8716 * this function exits returning false, otherwise it will place the
8717 * sk_buff in the next buffer to be chained and return true indicating
8718 * that this is in fact a non-EOP buffer.
8719 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8720 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8721 union e1000_adv_rx_desc *rx_desc)
8722 {
8723 u32 ntc = rx_ring->next_to_clean + 1;
8724
8725 /* fetch, update, and store next to clean */
8726 ntc = (ntc < rx_ring->count) ? ntc : 0;
8727 rx_ring->next_to_clean = ntc;
8728
8729 prefetch(IGB_RX_DESC(rx_ring, ntc));
8730
8731 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8732 return false;
8733
8734 return true;
8735 }
8736
8737 /**
8738 * igb_cleanup_headers - Correct corrupted or empty headers
8739 * @rx_ring: rx descriptor ring packet is being transacted on
8740 * @rx_desc: pointer to the EOP Rx descriptor
8741 * @skb: pointer to current skb being fixed
8742 *
8743 * Address the case where we are pulling data in on pages only
8744 * and as such no data is present in the skb header.
8745 *
8746 * In addition if skb is not at least 60 bytes we need to pad it so that
8747 * it is large enough to qualify as a valid Ethernet frame.
8748 *
8749 * Returns true if an error was encountered and skb was freed.
8750 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8751 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8752 union e1000_adv_rx_desc *rx_desc,
8753 struct sk_buff *skb)
8754 {
8755 /* XDP packets use error pointer so abort at this point */
8756 if (IS_ERR(skb))
8757 return true;
8758
8759 if (unlikely((igb_test_staterr(rx_desc,
8760 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8761 struct net_device *netdev = rx_ring->netdev;
8762 if (!(netdev->features & NETIF_F_RXALL)) {
8763 dev_kfree_skb_any(skb);
8764 return true;
8765 }
8766 }
8767
8768 /* if eth_skb_pad returns an error the skb was freed */
8769 if (eth_skb_pad(skb))
8770 return true;
8771
8772 return false;
8773 }
8774
8775 /**
8776 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8777 * @rx_ring: rx descriptor ring packet is being transacted on
8778 * @rx_desc: pointer to the EOP Rx descriptor
8779 * @skb: pointer to current skb being populated
8780 *
8781 * This function checks the ring, descriptor, and packet information in
8782 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8783 * other fields within the skb.
8784 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8785 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8786 union e1000_adv_rx_desc *rx_desc,
8787 struct sk_buff *skb)
8788 {
8789 struct net_device *dev = rx_ring->netdev;
8790
8791 igb_rx_hash(rx_ring, rx_desc, skb);
8792
8793 igb_rx_checksum(rx_ring, rx_desc, skb);
8794
8795 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8796 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8797 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8798
8799 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8800 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8801 u16 vid;
8802
8803 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8804 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8805 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8806 else
8807 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8808
8809 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8810 }
8811
8812 skb_record_rx_queue(skb, rx_ring->queue_index);
8813
8814 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8815 }
8816
igb_rx_offset(struct igb_ring * rx_ring)8817 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8818 {
8819 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8820 }
8821
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8822 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8823 const unsigned int size, int *rx_buf_pgcnt)
8824 {
8825 struct igb_rx_buffer *rx_buffer;
8826
8827 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8828 *rx_buf_pgcnt =
8829 #if (PAGE_SIZE < 8192)
8830 page_count(rx_buffer->page);
8831 #else
8832 0;
8833 #endif
8834 prefetchw(rx_buffer->page);
8835
8836 /* we are reusing so sync this buffer for CPU use */
8837 dma_sync_single_range_for_cpu(rx_ring->dev,
8838 rx_buffer->dma,
8839 rx_buffer->page_offset,
8840 size,
8841 DMA_FROM_DEVICE);
8842
8843 rx_buffer->pagecnt_bias--;
8844
8845 return rx_buffer;
8846 }
8847
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8848 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8849 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8850 {
8851 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8852 /* hand second half of page back to the ring */
8853 igb_reuse_rx_page(rx_ring, rx_buffer);
8854 } else {
8855 /* We are not reusing the buffer so unmap it and free
8856 * any references we are holding to it
8857 */
8858 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8859 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8860 IGB_RX_DMA_ATTR);
8861 __page_frag_cache_drain(rx_buffer->page,
8862 rx_buffer->pagecnt_bias);
8863 }
8864
8865 /* clear contents of rx_buffer */
8866 rx_buffer->page = NULL;
8867 }
8868
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8869 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8870 {
8871 unsigned int total_bytes = 0, total_packets = 0;
8872 struct igb_adapter *adapter = q_vector->adapter;
8873 struct igb_ring *rx_ring = q_vector->rx.ring;
8874 u16 cleaned_count = igb_desc_unused(rx_ring);
8875 struct sk_buff *skb = rx_ring->skb;
8876 int cpu = smp_processor_id();
8877 unsigned int xdp_xmit = 0;
8878 struct netdev_queue *nq;
8879 struct xdp_buff xdp;
8880 u32 frame_sz = 0;
8881 int rx_buf_pgcnt;
8882
8883 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8884 #if (PAGE_SIZE < 8192)
8885 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8886 #endif
8887 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8888
8889 while (likely(total_packets < budget)) {
8890 union e1000_adv_rx_desc *rx_desc;
8891 struct igb_rx_buffer *rx_buffer;
8892 ktime_t timestamp = 0;
8893 int pkt_offset = 0;
8894 unsigned int size;
8895 void *pktbuf;
8896
8897 /* return some buffers to hardware, one at a time is too slow */
8898 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8899 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8900 cleaned_count = 0;
8901 }
8902
8903 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8904 size = le16_to_cpu(rx_desc->wb.upper.length);
8905 if (!size)
8906 break;
8907
8908 /* This memory barrier is needed to keep us from reading
8909 * any other fields out of the rx_desc until we know the
8910 * descriptor has been written back
8911 */
8912 dma_rmb();
8913
8914 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8915 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8916
8917 /* pull rx packet timestamp if available and valid */
8918 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8919 int ts_hdr_len;
8920
8921 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8922 pktbuf, ×tamp);
8923
8924 pkt_offset += ts_hdr_len;
8925 size -= ts_hdr_len;
8926 }
8927
8928 /* retrieve a buffer from the ring */
8929 if (!skb) {
8930 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8931 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8932
8933 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8934 xdp_buff_clear_frags_flag(&xdp);
8935 #if (PAGE_SIZE > 4096)
8936 /* At larger PAGE_SIZE, frame_sz depend on len size */
8937 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8938 #endif
8939 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8940 }
8941
8942 if (IS_ERR(skb)) {
8943 unsigned int xdp_res = -PTR_ERR(skb);
8944
8945 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8946 xdp_xmit |= xdp_res;
8947 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8948 } else {
8949 rx_buffer->pagecnt_bias++;
8950 }
8951 total_packets++;
8952 total_bytes += size;
8953 } else if (skb)
8954 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8955 else if (ring_uses_build_skb(rx_ring))
8956 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8957 timestamp);
8958 else
8959 skb = igb_construct_skb(rx_ring, rx_buffer,
8960 &xdp, timestamp);
8961
8962 /* exit if we failed to retrieve a buffer */
8963 if (!skb) {
8964 rx_ring->rx_stats.alloc_failed++;
8965 rx_buffer->pagecnt_bias++;
8966 break;
8967 }
8968
8969 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8970 cleaned_count++;
8971
8972 /* fetch next buffer in frame if non-eop */
8973 if (igb_is_non_eop(rx_ring, rx_desc))
8974 continue;
8975
8976 /* verify the packet layout is correct */
8977 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8978 skb = NULL;
8979 continue;
8980 }
8981
8982 /* probably a little skewed due to removing CRC */
8983 total_bytes += skb->len;
8984
8985 /* populate checksum, timestamp, VLAN, and protocol */
8986 igb_process_skb_fields(rx_ring, rx_desc, skb);
8987
8988 napi_gro_receive(&q_vector->napi, skb);
8989
8990 /* reset skb pointer */
8991 skb = NULL;
8992
8993 /* update budget accounting */
8994 total_packets++;
8995 }
8996
8997 /* place incomplete frames back on ring for completion */
8998 rx_ring->skb = skb;
8999
9000 if (xdp_xmit & IGB_XDP_REDIR)
9001 xdp_do_flush();
9002
9003 if (xdp_xmit & IGB_XDP_TX) {
9004 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9005
9006 nq = txring_txq(tx_ring);
9007 __netif_tx_lock(nq, cpu);
9008 igb_xdp_ring_update_tail(tx_ring);
9009 __netif_tx_unlock(nq);
9010 }
9011
9012 u64_stats_update_begin(&rx_ring->rx_syncp);
9013 rx_ring->rx_stats.packets += total_packets;
9014 rx_ring->rx_stats.bytes += total_bytes;
9015 u64_stats_update_end(&rx_ring->rx_syncp);
9016 q_vector->rx.total_packets += total_packets;
9017 q_vector->rx.total_bytes += total_bytes;
9018
9019 if (cleaned_count)
9020 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9021
9022 return total_packets;
9023 }
9024
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9025 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9026 struct igb_rx_buffer *bi)
9027 {
9028 struct page *page = bi->page;
9029 dma_addr_t dma;
9030
9031 /* since we are recycling buffers we should seldom need to alloc */
9032 if (likely(page))
9033 return true;
9034
9035 /* alloc new page for storage */
9036 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9037 if (unlikely(!page)) {
9038 rx_ring->rx_stats.alloc_failed++;
9039 return false;
9040 }
9041
9042 /* map page for use */
9043 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9044 igb_rx_pg_size(rx_ring),
9045 DMA_FROM_DEVICE,
9046 IGB_RX_DMA_ATTR);
9047
9048 /* if mapping failed free memory back to system since
9049 * there isn't much point in holding memory we can't use
9050 */
9051 if (dma_mapping_error(rx_ring->dev, dma)) {
9052 __free_pages(page, igb_rx_pg_order(rx_ring));
9053
9054 rx_ring->rx_stats.alloc_failed++;
9055 return false;
9056 }
9057
9058 bi->dma = dma;
9059 bi->page = page;
9060 bi->page_offset = igb_rx_offset(rx_ring);
9061 page_ref_add(page, USHRT_MAX - 1);
9062 bi->pagecnt_bias = USHRT_MAX;
9063
9064 return true;
9065 }
9066
9067 /**
9068 * igb_alloc_rx_buffers - Replace used receive buffers
9069 * @rx_ring: rx descriptor ring to allocate new receive buffers
9070 * @cleaned_count: count of buffers to allocate
9071 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9072 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9073 {
9074 union e1000_adv_rx_desc *rx_desc;
9075 struct igb_rx_buffer *bi;
9076 u16 i = rx_ring->next_to_use;
9077 u16 bufsz;
9078
9079 /* nothing to do */
9080 if (!cleaned_count)
9081 return;
9082
9083 rx_desc = IGB_RX_DESC(rx_ring, i);
9084 bi = &rx_ring->rx_buffer_info[i];
9085 i -= rx_ring->count;
9086
9087 bufsz = igb_rx_bufsz(rx_ring);
9088
9089 do {
9090 if (!igb_alloc_mapped_page(rx_ring, bi))
9091 break;
9092
9093 /* sync the buffer for use by the device */
9094 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9095 bi->page_offset, bufsz,
9096 DMA_FROM_DEVICE);
9097
9098 /* Refresh the desc even if buffer_addrs didn't change
9099 * because each write-back erases this info.
9100 */
9101 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9102
9103 rx_desc++;
9104 bi++;
9105 i++;
9106 if (unlikely(!i)) {
9107 rx_desc = IGB_RX_DESC(rx_ring, 0);
9108 bi = rx_ring->rx_buffer_info;
9109 i -= rx_ring->count;
9110 }
9111
9112 /* clear the length for the next_to_use descriptor */
9113 rx_desc->wb.upper.length = 0;
9114
9115 cleaned_count--;
9116 } while (cleaned_count);
9117
9118 i += rx_ring->count;
9119
9120 if (rx_ring->next_to_use != i) {
9121 /* record the next descriptor to use */
9122 rx_ring->next_to_use = i;
9123
9124 /* update next to alloc since we have filled the ring */
9125 rx_ring->next_to_alloc = i;
9126
9127 /* Force memory writes to complete before letting h/w
9128 * know there are new descriptors to fetch. (Only
9129 * applicable for weak-ordered memory model archs,
9130 * such as IA-64).
9131 */
9132 dma_wmb();
9133 writel(i, rx_ring->tail);
9134 }
9135 }
9136
9137 /**
9138 * igb_mii_ioctl -
9139 * @netdev: pointer to netdev struct
9140 * @ifr: interface structure
9141 * @cmd: ioctl command to execute
9142 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9143 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9144 {
9145 struct igb_adapter *adapter = netdev_priv(netdev);
9146 struct mii_ioctl_data *data = if_mii(ifr);
9147
9148 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9149 return -EOPNOTSUPP;
9150
9151 switch (cmd) {
9152 case SIOCGMIIPHY:
9153 data->phy_id = adapter->hw.phy.addr;
9154 break;
9155 case SIOCGMIIREG:
9156 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9157 &data->val_out))
9158 return -EIO;
9159 break;
9160 case SIOCSMIIREG:
9161 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9162 data->val_in))
9163 return -EIO;
9164 break;
9165 default:
9166 return -EOPNOTSUPP;
9167 }
9168 return 0;
9169 }
9170
9171 /**
9172 * igb_ioctl -
9173 * @netdev: pointer to netdev struct
9174 * @ifr: interface structure
9175 * @cmd: ioctl command to execute
9176 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9177 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9178 {
9179 switch (cmd) {
9180 case SIOCGMIIPHY:
9181 case SIOCGMIIREG:
9182 case SIOCSMIIREG:
9183 return igb_mii_ioctl(netdev, ifr, cmd);
9184 case SIOCGHWTSTAMP:
9185 return igb_ptp_get_ts_config(netdev, ifr);
9186 case SIOCSHWTSTAMP:
9187 return igb_ptp_set_ts_config(netdev, ifr);
9188 default:
9189 return -EOPNOTSUPP;
9190 }
9191 }
9192
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9193 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9194 {
9195 struct igb_adapter *adapter = hw->back;
9196
9197 pci_read_config_word(adapter->pdev, reg, value);
9198 }
9199
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9200 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9201 {
9202 struct igb_adapter *adapter = hw->back;
9203
9204 pci_write_config_word(adapter->pdev, reg, *value);
9205 }
9206
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9207 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9208 {
9209 struct igb_adapter *adapter = hw->back;
9210
9211 if (pcie_capability_read_word(adapter->pdev, reg, value))
9212 return -E1000_ERR_CONFIG;
9213
9214 return 0;
9215 }
9216
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9217 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9218 {
9219 struct igb_adapter *adapter = hw->back;
9220
9221 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9222 return -E1000_ERR_CONFIG;
9223
9224 return 0;
9225 }
9226
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9227 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9228 {
9229 struct igb_adapter *adapter = netdev_priv(netdev);
9230 struct e1000_hw *hw = &adapter->hw;
9231 u32 ctrl, rctl;
9232 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9233
9234 if (enable) {
9235 /* enable VLAN tag insert/strip */
9236 ctrl = rd32(E1000_CTRL);
9237 ctrl |= E1000_CTRL_VME;
9238 wr32(E1000_CTRL, ctrl);
9239
9240 /* Disable CFI check */
9241 rctl = rd32(E1000_RCTL);
9242 rctl &= ~E1000_RCTL_CFIEN;
9243 wr32(E1000_RCTL, rctl);
9244 } else {
9245 /* disable VLAN tag insert/strip */
9246 ctrl = rd32(E1000_CTRL);
9247 ctrl &= ~E1000_CTRL_VME;
9248 wr32(E1000_CTRL, ctrl);
9249 }
9250
9251 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9252 }
9253
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9254 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9255 __be16 proto, u16 vid)
9256 {
9257 struct igb_adapter *adapter = netdev_priv(netdev);
9258 struct e1000_hw *hw = &adapter->hw;
9259 int pf_id = adapter->vfs_allocated_count;
9260
9261 /* add the filter since PF can receive vlans w/o entry in vlvf */
9262 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9263 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9264
9265 set_bit(vid, adapter->active_vlans);
9266
9267 return 0;
9268 }
9269
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9270 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9271 __be16 proto, u16 vid)
9272 {
9273 struct igb_adapter *adapter = netdev_priv(netdev);
9274 int pf_id = adapter->vfs_allocated_count;
9275 struct e1000_hw *hw = &adapter->hw;
9276
9277 /* remove VID from filter table */
9278 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9279 igb_vfta_set(hw, vid, pf_id, false, true);
9280
9281 clear_bit(vid, adapter->active_vlans);
9282
9283 return 0;
9284 }
9285
igb_restore_vlan(struct igb_adapter * adapter)9286 static void igb_restore_vlan(struct igb_adapter *adapter)
9287 {
9288 u16 vid = 1;
9289
9290 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9291 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9292
9293 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9294 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9295 }
9296
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9297 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9298 {
9299 struct pci_dev *pdev = adapter->pdev;
9300 struct e1000_mac_info *mac = &adapter->hw.mac;
9301
9302 mac->autoneg = 0;
9303
9304 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9305 * for the switch() below to work
9306 */
9307 if ((spd & 1) || (dplx & ~1))
9308 goto err_inval;
9309
9310 /* Fiber NIC's only allow 1000 gbps Full duplex
9311 * and 100Mbps Full duplex for 100baseFx sfp
9312 */
9313 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9314 switch (spd + dplx) {
9315 case SPEED_10 + DUPLEX_HALF:
9316 case SPEED_10 + DUPLEX_FULL:
9317 case SPEED_100 + DUPLEX_HALF:
9318 goto err_inval;
9319 default:
9320 break;
9321 }
9322 }
9323
9324 switch (spd + dplx) {
9325 case SPEED_10 + DUPLEX_HALF:
9326 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9327 break;
9328 case SPEED_10 + DUPLEX_FULL:
9329 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9330 break;
9331 case SPEED_100 + DUPLEX_HALF:
9332 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9333 break;
9334 case SPEED_100 + DUPLEX_FULL:
9335 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9336 break;
9337 case SPEED_1000 + DUPLEX_FULL:
9338 mac->autoneg = 1;
9339 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9340 break;
9341 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9342 default:
9343 goto err_inval;
9344 }
9345
9346 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9347 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9348
9349 return 0;
9350
9351 err_inval:
9352 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9353 return -EINVAL;
9354 }
9355
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9356 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9357 bool runtime)
9358 {
9359 struct net_device *netdev = pci_get_drvdata(pdev);
9360 struct igb_adapter *adapter = netdev_priv(netdev);
9361 struct e1000_hw *hw = &adapter->hw;
9362 u32 ctrl, rctl, status;
9363 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9364 bool wake;
9365
9366 rtnl_lock();
9367 netif_device_detach(netdev);
9368
9369 if (netif_running(netdev))
9370 __igb_close(netdev, true);
9371
9372 igb_ptp_suspend(adapter);
9373
9374 igb_clear_interrupt_scheme(adapter);
9375 rtnl_unlock();
9376
9377 status = rd32(E1000_STATUS);
9378 if (status & E1000_STATUS_LU)
9379 wufc &= ~E1000_WUFC_LNKC;
9380
9381 if (wufc) {
9382 igb_setup_rctl(adapter);
9383 igb_set_rx_mode(netdev);
9384
9385 /* turn on all-multi mode if wake on multicast is enabled */
9386 if (wufc & E1000_WUFC_MC) {
9387 rctl = rd32(E1000_RCTL);
9388 rctl |= E1000_RCTL_MPE;
9389 wr32(E1000_RCTL, rctl);
9390 }
9391
9392 ctrl = rd32(E1000_CTRL);
9393 ctrl |= E1000_CTRL_ADVD3WUC;
9394 wr32(E1000_CTRL, ctrl);
9395
9396 /* Allow time for pending master requests to run */
9397 igb_disable_pcie_master(hw);
9398
9399 wr32(E1000_WUC, E1000_WUC_PME_EN);
9400 wr32(E1000_WUFC, wufc);
9401 } else {
9402 wr32(E1000_WUC, 0);
9403 wr32(E1000_WUFC, 0);
9404 }
9405
9406 wake = wufc || adapter->en_mng_pt;
9407 if (!wake)
9408 igb_power_down_link(adapter);
9409 else
9410 igb_power_up_link(adapter);
9411
9412 if (enable_wake)
9413 *enable_wake = wake;
9414
9415 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9416 * would have already happened in close and is redundant.
9417 */
9418 igb_release_hw_control(adapter);
9419
9420 pci_disable_device(pdev);
9421
9422 return 0;
9423 }
9424
igb_deliver_wake_packet(struct net_device * netdev)9425 static void igb_deliver_wake_packet(struct net_device *netdev)
9426 {
9427 struct igb_adapter *adapter = netdev_priv(netdev);
9428 struct e1000_hw *hw = &adapter->hw;
9429 struct sk_buff *skb;
9430 u32 wupl;
9431
9432 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9433
9434 /* WUPM stores only the first 128 bytes of the wake packet.
9435 * Read the packet only if we have the whole thing.
9436 */
9437 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9438 return;
9439
9440 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9441 if (!skb)
9442 return;
9443
9444 skb_put(skb, wupl);
9445
9446 /* Ensure reads are 32-bit aligned */
9447 wupl = roundup(wupl, 4);
9448
9449 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9450
9451 skb->protocol = eth_type_trans(skb, netdev);
9452 netif_rx(skb);
9453 }
9454
igb_suspend(struct device * dev)9455 static int igb_suspend(struct device *dev)
9456 {
9457 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9458 }
9459
__igb_resume(struct device * dev,bool rpm)9460 static int __igb_resume(struct device *dev, bool rpm)
9461 {
9462 struct pci_dev *pdev = to_pci_dev(dev);
9463 struct net_device *netdev = pci_get_drvdata(pdev);
9464 struct igb_adapter *adapter = netdev_priv(netdev);
9465 struct e1000_hw *hw = &adapter->hw;
9466 u32 err, val;
9467
9468 pci_set_power_state(pdev, PCI_D0);
9469 pci_restore_state(pdev);
9470 pci_save_state(pdev);
9471
9472 if (!pci_device_is_present(pdev))
9473 return -ENODEV;
9474 err = pci_enable_device_mem(pdev);
9475 if (err) {
9476 dev_err(&pdev->dev,
9477 "igb: Cannot enable PCI device from suspend\n");
9478 return err;
9479 }
9480 pci_set_master(pdev);
9481
9482 pci_enable_wake(pdev, PCI_D3hot, 0);
9483 pci_enable_wake(pdev, PCI_D3cold, 0);
9484
9485 if (igb_init_interrupt_scheme(adapter, true)) {
9486 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9487 return -ENOMEM;
9488 }
9489
9490 igb_reset(adapter);
9491
9492 /* let the f/w know that the h/w is now under the control of the
9493 * driver.
9494 */
9495 igb_get_hw_control(adapter);
9496
9497 val = rd32(E1000_WUS);
9498 if (val & WAKE_PKT_WUS)
9499 igb_deliver_wake_packet(netdev);
9500
9501 wr32(E1000_WUS, ~0);
9502
9503 if (!rpm)
9504 rtnl_lock();
9505 if (!err && netif_running(netdev))
9506 err = __igb_open(netdev, true);
9507
9508 if (!err)
9509 netif_device_attach(netdev);
9510 if (!rpm)
9511 rtnl_unlock();
9512
9513 return err;
9514 }
9515
igb_resume(struct device * dev)9516 static int igb_resume(struct device *dev)
9517 {
9518 return __igb_resume(dev, false);
9519 }
9520
igb_runtime_idle(struct device * dev)9521 static int igb_runtime_idle(struct device *dev)
9522 {
9523 struct net_device *netdev = dev_get_drvdata(dev);
9524 struct igb_adapter *adapter = netdev_priv(netdev);
9525
9526 if (!igb_has_link(adapter))
9527 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9528
9529 return -EBUSY;
9530 }
9531
igb_runtime_suspend(struct device * dev)9532 static int igb_runtime_suspend(struct device *dev)
9533 {
9534 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9535 }
9536
igb_runtime_resume(struct device * dev)9537 static int igb_runtime_resume(struct device *dev)
9538 {
9539 return __igb_resume(dev, true);
9540 }
9541
igb_shutdown(struct pci_dev * pdev)9542 static void igb_shutdown(struct pci_dev *pdev)
9543 {
9544 bool wake;
9545
9546 __igb_shutdown(pdev, &wake, 0);
9547
9548 if (system_state == SYSTEM_POWER_OFF) {
9549 pci_wake_from_d3(pdev, wake);
9550 pci_set_power_state(pdev, PCI_D3hot);
9551 }
9552 }
9553
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9554 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9555 {
9556 #ifdef CONFIG_PCI_IOV
9557 int err;
9558
9559 if (num_vfs == 0) {
9560 return igb_disable_sriov(dev, true);
9561 } else {
9562 err = igb_enable_sriov(dev, num_vfs, true);
9563 return err ? err : num_vfs;
9564 }
9565 #endif
9566 return 0;
9567 }
9568
9569 /**
9570 * igb_io_error_detected - called when PCI error is detected
9571 * @pdev: Pointer to PCI device
9572 * @state: The current pci connection state
9573 *
9574 * This function is called after a PCI bus error affecting
9575 * this device has been detected.
9576 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9577 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9578 pci_channel_state_t state)
9579 {
9580 struct net_device *netdev = pci_get_drvdata(pdev);
9581 struct igb_adapter *adapter = netdev_priv(netdev);
9582
9583 if (state == pci_channel_io_normal) {
9584 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9585 return PCI_ERS_RESULT_CAN_RECOVER;
9586 }
9587
9588 netif_device_detach(netdev);
9589
9590 if (state == pci_channel_io_perm_failure)
9591 return PCI_ERS_RESULT_DISCONNECT;
9592
9593 if (netif_running(netdev))
9594 igb_down(adapter);
9595 pci_disable_device(pdev);
9596
9597 /* Request a slot reset. */
9598 return PCI_ERS_RESULT_NEED_RESET;
9599 }
9600
9601 /**
9602 * igb_io_slot_reset - called after the pci bus has been reset.
9603 * @pdev: Pointer to PCI device
9604 *
9605 * Restart the card from scratch, as if from a cold-boot. Implementation
9606 * resembles the first-half of the __igb_resume routine.
9607 **/
igb_io_slot_reset(struct pci_dev * pdev)9608 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9609 {
9610 struct net_device *netdev = pci_get_drvdata(pdev);
9611 struct igb_adapter *adapter = netdev_priv(netdev);
9612 struct e1000_hw *hw = &adapter->hw;
9613 pci_ers_result_t result;
9614
9615 if (pci_enable_device_mem(pdev)) {
9616 dev_err(&pdev->dev,
9617 "Cannot re-enable PCI device after reset.\n");
9618 result = PCI_ERS_RESULT_DISCONNECT;
9619 } else {
9620 pci_set_master(pdev);
9621 pci_restore_state(pdev);
9622 pci_save_state(pdev);
9623
9624 pci_enable_wake(pdev, PCI_D3hot, 0);
9625 pci_enable_wake(pdev, PCI_D3cold, 0);
9626
9627 /* In case of PCI error, adapter lose its HW address
9628 * so we should re-assign it here.
9629 */
9630 hw->hw_addr = adapter->io_addr;
9631
9632 igb_reset(adapter);
9633 wr32(E1000_WUS, ~0);
9634 result = PCI_ERS_RESULT_RECOVERED;
9635 }
9636
9637 return result;
9638 }
9639
9640 /**
9641 * igb_io_resume - called when traffic can start flowing again.
9642 * @pdev: Pointer to PCI device
9643 *
9644 * This callback is called when the error recovery driver tells us that
9645 * its OK to resume normal operation. Implementation resembles the
9646 * second-half of the __igb_resume routine.
9647 */
igb_io_resume(struct pci_dev * pdev)9648 static void igb_io_resume(struct pci_dev *pdev)
9649 {
9650 struct net_device *netdev = pci_get_drvdata(pdev);
9651 struct igb_adapter *adapter = netdev_priv(netdev);
9652
9653 if (netif_running(netdev)) {
9654 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9655 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9656 return;
9657 }
9658 if (igb_up(adapter)) {
9659 dev_err(&pdev->dev, "igb_up failed after reset\n");
9660 return;
9661 }
9662 }
9663
9664 netif_device_attach(netdev);
9665
9666 /* let the f/w know that the h/w is now under the control of the
9667 * driver.
9668 */
9669 igb_get_hw_control(adapter);
9670 }
9671
9672 /**
9673 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9674 * @adapter: Pointer to adapter structure
9675 * @index: Index of the RAR entry which need to be synced with MAC table
9676 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9677 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9678 {
9679 struct e1000_hw *hw = &adapter->hw;
9680 u32 rar_low, rar_high;
9681 u8 *addr = adapter->mac_table[index].addr;
9682
9683 /* HW expects these to be in network order when they are plugged
9684 * into the registers which are little endian. In order to guarantee
9685 * that ordering we need to do an leXX_to_cpup here in order to be
9686 * ready for the byteswap that occurs with writel
9687 */
9688 rar_low = le32_to_cpup((__le32 *)(addr));
9689 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9690
9691 /* Indicate to hardware the Address is Valid. */
9692 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9693 if (is_valid_ether_addr(addr))
9694 rar_high |= E1000_RAH_AV;
9695
9696 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9697 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9698
9699 switch (hw->mac.type) {
9700 case e1000_82575:
9701 case e1000_i210:
9702 if (adapter->mac_table[index].state &
9703 IGB_MAC_STATE_QUEUE_STEERING)
9704 rar_high |= E1000_RAH_QSEL_ENABLE;
9705
9706 rar_high |= E1000_RAH_POOL_1 *
9707 adapter->mac_table[index].queue;
9708 break;
9709 default:
9710 rar_high |= E1000_RAH_POOL_1 <<
9711 adapter->mac_table[index].queue;
9712 break;
9713 }
9714 }
9715
9716 wr32(E1000_RAL(index), rar_low);
9717 wrfl();
9718 wr32(E1000_RAH(index), rar_high);
9719 wrfl();
9720 }
9721
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9722 static int igb_set_vf_mac(struct igb_adapter *adapter,
9723 int vf, unsigned char *mac_addr)
9724 {
9725 struct e1000_hw *hw = &adapter->hw;
9726 /* VF MAC addresses start at end of receive addresses and moves
9727 * towards the first, as a result a collision should not be possible
9728 */
9729 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9730 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9731
9732 ether_addr_copy(vf_mac_addr, mac_addr);
9733 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9734 adapter->mac_table[rar_entry].queue = vf;
9735 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9736 igb_rar_set_index(adapter, rar_entry);
9737
9738 return 0;
9739 }
9740
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9741 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9742 {
9743 struct igb_adapter *adapter = netdev_priv(netdev);
9744
9745 if (vf >= adapter->vfs_allocated_count)
9746 return -EINVAL;
9747
9748 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9749 * flag and allows to overwrite the MAC via VF netdev. This
9750 * is necessary to allow libvirt a way to restore the original
9751 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9752 * down a VM.
9753 */
9754 if (is_zero_ether_addr(mac)) {
9755 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9756 dev_info(&adapter->pdev->dev,
9757 "remove administratively set MAC on VF %d\n",
9758 vf);
9759 } else if (is_valid_ether_addr(mac)) {
9760 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9761 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9762 mac, vf);
9763 dev_info(&adapter->pdev->dev,
9764 "Reload the VF driver to make this change effective.");
9765 /* Generate additional warning if PF is down */
9766 if (test_bit(__IGB_DOWN, &adapter->state)) {
9767 dev_warn(&adapter->pdev->dev,
9768 "The VF MAC address has been set, but the PF device is not up.\n");
9769 dev_warn(&adapter->pdev->dev,
9770 "Bring the PF device up before attempting to use the VF device.\n");
9771 }
9772 } else {
9773 return -EINVAL;
9774 }
9775 return igb_set_vf_mac(adapter, vf, mac);
9776 }
9777
igb_link_mbps(int internal_link_speed)9778 static int igb_link_mbps(int internal_link_speed)
9779 {
9780 switch (internal_link_speed) {
9781 case SPEED_100:
9782 return 100;
9783 case SPEED_1000:
9784 return 1000;
9785 default:
9786 return 0;
9787 }
9788 }
9789
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9790 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9791 int link_speed)
9792 {
9793 int rf_dec, rf_int;
9794 u32 bcnrc_val;
9795
9796 if (tx_rate != 0) {
9797 /* Calculate the rate factor values to set */
9798 rf_int = link_speed / tx_rate;
9799 rf_dec = (link_speed - (rf_int * tx_rate));
9800 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9801 tx_rate;
9802
9803 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9804 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9805 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9806 } else {
9807 bcnrc_val = 0;
9808 }
9809
9810 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9811 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9812 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9813 */
9814 wr32(E1000_RTTBCNRM, 0x14);
9815 wr32(E1000_RTTBCNRC, bcnrc_val);
9816 }
9817
igb_check_vf_rate_limit(struct igb_adapter * adapter)9818 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9819 {
9820 int actual_link_speed, i;
9821 bool reset_rate = false;
9822
9823 /* VF TX rate limit was not set or not supported */
9824 if ((adapter->vf_rate_link_speed == 0) ||
9825 (adapter->hw.mac.type != e1000_82576))
9826 return;
9827
9828 actual_link_speed = igb_link_mbps(adapter->link_speed);
9829 if (actual_link_speed != adapter->vf_rate_link_speed) {
9830 reset_rate = true;
9831 adapter->vf_rate_link_speed = 0;
9832 dev_info(&adapter->pdev->dev,
9833 "Link speed has been changed. VF Transmit rate is disabled\n");
9834 }
9835
9836 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9837 if (reset_rate)
9838 adapter->vf_data[i].tx_rate = 0;
9839
9840 igb_set_vf_rate_limit(&adapter->hw, i,
9841 adapter->vf_data[i].tx_rate,
9842 actual_link_speed);
9843 }
9844 }
9845
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9846 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9847 int min_tx_rate, int max_tx_rate)
9848 {
9849 struct igb_adapter *adapter = netdev_priv(netdev);
9850 struct e1000_hw *hw = &adapter->hw;
9851 int actual_link_speed;
9852
9853 if (hw->mac.type != e1000_82576)
9854 return -EOPNOTSUPP;
9855
9856 if (min_tx_rate)
9857 return -EINVAL;
9858
9859 actual_link_speed = igb_link_mbps(adapter->link_speed);
9860 if ((vf >= adapter->vfs_allocated_count) ||
9861 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9862 (max_tx_rate < 0) ||
9863 (max_tx_rate > actual_link_speed))
9864 return -EINVAL;
9865
9866 adapter->vf_rate_link_speed = actual_link_speed;
9867 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9868 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9869
9870 return 0;
9871 }
9872
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9873 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9874 bool setting)
9875 {
9876 struct igb_adapter *adapter = netdev_priv(netdev);
9877 struct e1000_hw *hw = &adapter->hw;
9878 u32 reg_val, reg_offset;
9879
9880 if (!adapter->vfs_allocated_count)
9881 return -EOPNOTSUPP;
9882
9883 if (vf >= adapter->vfs_allocated_count)
9884 return -EINVAL;
9885
9886 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9887 reg_val = rd32(reg_offset);
9888 if (setting)
9889 reg_val |= (BIT(vf) |
9890 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9891 else
9892 reg_val &= ~(BIT(vf) |
9893 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9894 wr32(reg_offset, reg_val);
9895
9896 adapter->vf_data[vf].spoofchk_enabled = setting;
9897 return 0;
9898 }
9899
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9900 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9901 {
9902 struct igb_adapter *adapter = netdev_priv(netdev);
9903
9904 if (vf >= adapter->vfs_allocated_count)
9905 return -EINVAL;
9906 if (adapter->vf_data[vf].trusted == setting)
9907 return 0;
9908
9909 adapter->vf_data[vf].trusted = setting;
9910
9911 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9912 vf, setting ? "" : "not ");
9913 return 0;
9914 }
9915
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9916 static int igb_ndo_get_vf_config(struct net_device *netdev,
9917 int vf, struct ifla_vf_info *ivi)
9918 {
9919 struct igb_adapter *adapter = netdev_priv(netdev);
9920 if (vf >= adapter->vfs_allocated_count)
9921 return -EINVAL;
9922 ivi->vf = vf;
9923 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9924 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9925 ivi->min_tx_rate = 0;
9926 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9927 ivi->qos = adapter->vf_data[vf].pf_qos;
9928 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9929 ivi->trusted = adapter->vf_data[vf].trusted;
9930 return 0;
9931 }
9932
igb_vmm_control(struct igb_adapter * adapter)9933 static void igb_vmm_control(struct igb_adapter *adapter)
9934 {
9935 struct e1000_hw *hw = &adapter->hw;
9936 u32 reg;
9937
9938 switch (hw->mac.type) {
9939 case e1000_82575:
9940 case e1000_i210:
9941 case e1000_i211:
9942 case e1000_i354:
9943 default:
9944 /* replication is not supported for 82575 */
9945 return;
9946 case e1000_82576:
9947 /* notify HW that the MAC is adding vlan tags */
9948 reg = rd32(E1000_DTXCTL);
9949 reg |= E1000_DTXCTL_VLAN_ADDED;
9950 wr32(E1000_DTXCTL, reg);
9951 fallthrough;
9952 case e1000_82580:
9953 /* enable replication vlan tag stripping */
9954 reg = rd32(E1000_RPLOLR);
9955 reg |= E1000_RPLOLR_STRVLAN;
9956 wr32(E1000_RPLOLR, reg);
9957 fallthrough;
9958 case e1000_i350:
9959 /* none of the above registers are supported by i350 */
9960 break;
9961 }
9962
9963 if (adapter->vfs_allocated_count) {
9964 igb_vmdq_set_loopback_pf(hw, true);
9965 igb_vmdq_set_replication_pf(hw, true);
9966 igb_vmdq_set_anti_spoofing_pf(hw, true,
9967 adapter->vfs_allocated_count);
9968 } else {
9969 igb_vmdq_set_loopback_pf(hw, false);
9970 igb_vmdq_set_replication_pf(hw, false);
9971 }
9972 }
9973
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9974 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9975 {
9976 struct e1000_hw *hw = &adapter->hw;
9977 u32 dmac_thr;
9978 u16 hwm;
9979 u32 reg;
9980
9981 if (hw->mac.type > e1000_82580) {
9982 if (adapter->flags & IGB_FLAG_DMAC) {
9983 /* force threshold to 0. */
9984 wr32(E1000_DMCTXTH, 0);
9985
9986 /* DMA Coalescing high water mark needs to be greater
9987 * than the Rx threshold. Set hwm to PBA - max frame
9988 * size in 16B units, capping it at PBA - 6KB.
9989 */
9990 hwm = 64 * (pba - 6);
9991 reg = rd32(E1000_FCRTC);
9992 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9993 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9994 wr32(E1000_FCRTC, reg);
9995
9996 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9997 * frame size, capping it at PBA - 10KB.
9998 */
9999 dmac_thr = pba - 10;
10000 reg = rd32(E1000_DMACR);
10001 reg &= ~E1000_DMACR_DMACTHR_MASK;
10002 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10003
10004 /* transition to L0x or L1 if available..*/
10005 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10006
10007 /* watchdog timer= +-1000 usec in 32usec intervals */
10008 reg |= (1000 >> 5);
10009
10010 /* Disable BMC-to-OS Watchdog Enable */
10011 if (hw->mac.type != e1000_i354)
10012 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10013 wr32(E1000_DMACR, reg);
10014
10015 /* no lower threshold to disable
10016 * coalescing(smart fifb)-UTRESH=0
10017 */
10018 wr32(E1000_DMCRTRH, 0);
10019
10020 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10021
10022 wr32(E1000_DMCTLX, reg);
10023
10024 /* free space in tx packet buffer to wake from
10025 * DMA coal
10026 */
10027 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10028 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10029 }
10030
10031 if (hw->mac.type >= e1000_i210 ||
10032 (adapter->flags & IGB_FLAG_DMAC)) {
10033 reg = rd32(E1000_PCIEMISC);
10034 reg |= E1000_PCIEMISC_LX_DECISION;
10035 wr32(E1000_PCIEMISC, reg);
10036 } /* endif adapter->dmac is not disabled */
10037 } else if (hw->mac.type == e1000_82580) {
10038 u32 reg = rd32(E1000_PCIEMISC);
10039
10040 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10041 wr32(E1000_DMACR, 0);
10042 }
10043 }
10044
10045 /**
10046 * igb_read_i2c_byte - Reads 8 bit word over I2C
10047 * @hw: pointer to hardware structure
10048 * @byte_offset: byte offset to read
10049 * @dev_addr: device address
10050 * @data: value read
10051 *
10052 * Performs byte read operation over I2C interface at
10053 * a specified device address.
10054 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10055 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10056 u8 dev_addr, u8 *data)
10057 {
10058 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10059 struct i2c_client *this_client = adapter->i2c_client;
10060 s32 status;
10061 u16 swfw_mask = 0;
10062
10063 if (!this_client)
10064 return E1000_ERR_I2C;
10065
10066 swfw_mask = E1000_SWFW_PHY0_SM;
10067
10068 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10069 return E1000_ERR_SWFW_SYNC;
10070
10071 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10072 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10073
10074 if (status < 0)
10075 return E1000_ERR_I2C;
10076 else {
10077 *data = status;
10078 return 0;
10079 }
10080 }
10081
10082 /**
10083 * igb_write_i2c_byte - Writes 8 bit word over I2C
10084 * @hw: pointer to hardware structure
10085 * @byte_offset: byte offset to write
10086 * @dev_addr: device address
10087 * @data: value to write
10088 *
10089 * Performs byte write operation over I2C interface at
10090 * a specified device address.
10091 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10092 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10093 u8 dev_addr, u8 data)
10094 {
10095 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10096 struct i2c_client *this_client = adapter->i2c_client;
10097 s32 status;
10098 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10099
10100 if (!this_client)
10101 return E1000_ERR_I2C;
10102
10103 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10104 return E1000_ERR_SWFW_SYNC;
10105 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10106 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10107
10108 if (status)
10109 return E1000_ERR_I2C;
10110 else
10111 return 0;
10112
10113 }
10114
igb_reinit_queues(struct igb_adapter * adapter)10115 int igb_reinit_queues(struct igb_adapter *adapter)
10116 {
10117 struct net_device *netdev = adapter->netdev;
10118 struct pci_dev *pdev = adapter->pdev;
10119 int err = 0;
10120
10121 if (netif_running(netdev))
10122 igb_close(netdev);
10123
10124 igb_reset_interrupt_capability(adapter);
10125
10126 if (igb_init_interrupt_scheme(adapter, true)) {
10127 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10128 return -ENOMEM;
10129 }
10130
10131 if (netif_running(netdev))
10132 err = igb_open(netdev);
10133
10134 return err;
10135 }
10136
igb_nfc_filter_exit(struct igb_adapter * adapter)10137 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10138 {
10139 struct igb_nfc_filter *rule;
10140
10141 spin_lock(&adapter->nfc_lock);
10142
10143 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10144 igb_erase_filter(adapter, rule);
10145
10146 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10147 igb_erase_filter(adapter, rule);
10148
10149 spin_unlock(&adapter->nfc_lock);
10150 }
10151
igb_nfc_filter_restore(struct igb_adapter * adapter)10152 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10153 {
10154 struct igb_nfc_filter *rule;
10155
10156 spin_lock(&adapter->nfc_lock);
10157
10158 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10159 igb_add_filter(adapter, rule);
10160
10161 spin_unlock(&adapter->nfc_lock);
10162 }
10163
10164 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10165 igb_runtime_suspend, igb_runtime_resume,
10166 igb_runtime_idle);
10167
10168 static struct pci_driver igb_driver = {
10169 .name = igb_driver_name,
10170 .id_table = igb_pci_tbl,
10171 .probe = igb_probe,
10172 .remove = igb_remove,
10173 .driver.pm = pm_ptr(&igb_pm_ops),
10174 .shutdown = igb_shutdown,
10175 .sriov_configure = igb_pci_sriov_configure,
10176 .err_handler = &igb_err_handler
10177 };
10178
10179 /* igb_main.c */
10180