1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/apic.h> 31 #include <asm/processor.h> 32 #include <asm/mce.h> 33 #include <asm/msr.h> 34 #include <asm/page.h> 35 #include <asm/current.h> 36 #include <asm/apicdef.h> 37 #include <asm/delay.h> 38 #include <linux/atomic.h> 39 #include <linux/jump_label.h> 40 #include "kvm_cache_regs.h" 41 #include "irq.h" 42 #include "ioapic.h" 43 #include "trace.h" 44 #include "x86.h" 45 #include "xen.h" 46 #include "cpuid.h" 47 #include "hyperv.h" 48 #include "smm.h" 49 50 #ifndef CONFIG_X86_64 51 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 52 #else 53 #define mod_64(x, y) ((x) % (y)) 54 #endif 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION 0x14UL 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 60 /* 61 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 62 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 63 * before the deadline expires, to account for the delay between taking the 64 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 65 * the guest, i.e. so that the interrupt arrives in the guest with minimal 66 * latency relative to the deadline programmed by the guest. 67 */ 68 static bool lapic_timer_advance __read_mostly = true; 69 module_param(lapic_timer_advance, bool, 0444); 70 71 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 72 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 73 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 74 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 75 /* step-by-step approximation to mitigate fluctuation */ 76 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 77 78 static bool __read_mostly vector_hashing_enabled = true; 79 module_param_named(vector_hashing, vector_hashing_enabled, bool, 0444); 80 81 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 82 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 83 84 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 85 { 86 apic_set_reg(apic->regs, reg_off, val); 87 } 88 89 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 90 { 91 return apic_get_reg64(apic->regs, reg); 92 } 93 94 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 95 int reg, u64 val) 96 { 97 apic_set_reg64(apic->regs, reg, val); 98 } 99 100 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 101 { 102 struct kvm_lapic *apic = vcpu->arch.apic; 103 104 return apic_test_vector(vector, apic->regs + APIC_ISR) || 105 apic_test_vector(vector, apic->regs + APIC_IRR); 106 } 107 108 static bool kvm_lapic_advertise_suppress_eoi_broadcast(struct kvm *kvm) 109 { 110 switch (kvm->arch.suppress_eoi_broadcast_mode) { 111 case KVM_SUPPRESS_EOI_BROADCAST_ENABLED: 112 return true; 113 case KVM_SUPPRESS_EOI_BROADCAST_DISABLED: 114 return false; 115 case KVM_SUPPRESS_EOI_BROADCAST_QUIRKED: 116 /* 117 * The default in-kernel I/O APIC emulates the 82093AA and does not 118 * implement an EOI register. Some guests (e.g. Windows with the 119 * Hyper-V role enabled) disable LAPIC EOI broadcast without 120 * checking the I/O APIC version, which can cause level-triggered 121 * interrupts to never be EOI'd. 122 * 123 * To avoid this, KVM doesn't advertise Suppress EOI Broadcast 124 * support when using the default in-kernel I/O APIC. 125 * 126 * Historically, in split IRQCHIP mode, KVM always advertised 127 * Suppress EOI Broadcast support but did not actually suppress 128 * EOIs, resulting in quirky behavior. 129 */ 130 return !ioapic_in_kernel(kvm); 131 default: 132 WARN_ON_ONCE(1); 133 return false; 134 } 135 } 136 137 bool kvm_lapic_suppress_eoi_broadcast(struct kvm_lapic *apic) 138 { 139 struct kvm *kvm = apic->vcpu->kvm; 140 141 if (!(kvm_lapic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI)) 142 return false; 143 144 switch (kvm->arch.suppress_eoi_broadcast_mode) { 145 case KVM_SUPPRESS_EOI_BROADCAST_ENABLED: 146 return true; 147 case KVM_SUPPRESS_EOI_BROADCAST_DISABLED: 148 return false; 149 case KVM_SUPPRESS_EOI_BROADCAST_QUIRKED: 150 /* 151 * Historically, in split IRQCHIP mode, KVM ignored the suppress 152 * EOI broadcast bit set by the guest and broadcasts EOIs to the 153 * userspace I/O APIC. For In-kernel I/O APIC, the support itself 154 * is not advertised, can only be enabled via KVM_SET_APIC_STATE, 155 * and KVM's I/O APIC doesn't emulate Directed EOIs; but if the 156 * feature is enabled, it is respected (with odd behavior). 157 */ 158 return ioapic_in_kernel(kvm); 159 default: 160 WARN_ON_ONCE(1); 161 return false; 162 } 163 } 164 165 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 166 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_has_noapic_vcpu); 167 168 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 169 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 170 171 static inline int apic_enabled(struct kvm_lapic *apic) 172 { 173 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 174 } 175 176 #define LVT_MASK \ 177 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 178 179 #define LINT_MASK \ 180 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 181 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 182 183 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 184 { 185 return apic->vcpu->vcpu_id; 186 } 187 188 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 189 { 190 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 191 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 192 } 193 194 static bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 195 { 196 return kvm_x86_ops.set_hv_timer 197 && !(kvm_mwait_in_guest(vcpu->kvm) || 198 kvm_can_post_timer_interrupt(vcpu)); 199 } 200 201 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 202 { 203 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 204 } 205 206 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 207 { 208 return ((id >> 4) << 16) | (1 << (id & 0xf)); 209 } 210 211 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 212 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 213 switch (map->logical_mode) { 214 case KVM_APIC_MODE_SW_DISABLED: 215 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 216 *cluster = map->xapic_flat_map; 217 *mask = 0; 218 return true; 219 case KVM_APIC_MODE_X2APIC: { 220 u32 offset = (dest_id >> 16) * 16; 221 u32 max_apic_id = map->max_apic_id; 222 223 if (offset <= max_apic_id) { 224 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 225 226 offset = array_index_nospec(offset, map->max_apic_id + 1); 227 *cluster = &map->phys_map[offset]; 228 *mask = dest_id & (0xffff >> (16 - cluster_size)); 229 } else { 230 *mask = 0; 231 } 232 233 return true; 234 } 235 case KVM_APIC_MODE_XAPIC_FLAT: 236 *cluster = map->xapic_flat_map; 237 *mask = dest_id & 0xff; 238 return true; 239 case KVM_APIC_MODE_XAPIC_CLUSTER: 240 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 241 *mask = dest_id & 0xf; 242 return true; 243 case KVM_APIC_MODE_MAP_DISABLED: 244 return false; 245 default: 246 WARN_ON_ONCE(1); 247 return false; 248 } 249 } 250 251 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 252 struct kvm_vcpu *vcpu, 253 bool *xapic_id_mismatch) 254 { 255 struct kvm_lapic *apic = vcpu->arch.apic; 256 u32 x2apic_id = kvm_x2apic_id(apic); 257 u32 xapic_id = kvm_xapic_id(apic); 258 u32 physical_id; 259 260 /* 261 * For simplicity, KVM always allocates enough space for all possible 262 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 263 * without the optimized map. 264 */ 265 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 266 return -EINVAL; 267 268 /* 269 * Bail if a vCPU was added and/or enabled its APIC between allocating 270 * the map and doing the actual calculations for the map. Note, KVM 271 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 272 * the compiler decides to reload x2apic_id after this check. 273 */ 274 if (x2apic_id > new->max_apic_id) 275 return -E2BIG; 276 277 /* 278 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 279 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 280 * 32-bit value. Any unwanted aliasing due to truncation results will 281 * be detected below. 282 */ 283 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 284 *xapic_id_mismatch = true; 285 286 /* 287 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 288 * Allow sending events to vCPUs by their x2APIC ID even if the target 289 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 290 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 291 * and collide). 292 * 293 * Honor the architectural (and KVM's non-optimized) behavior if 294 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 295 * to process messages independently. If multiple vCPUs have the same 296 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 297 * manually modified its xAPIC IDs, events targeting that ID are 298 * supposed to be recognized by all vCPUs with said ID. 299 */ 300 if (vcpu->kvm->arch.x2apic_format) { 301 /* See also kvm_apic_match_physical_addr(). */ 302 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 303 new->phys_map[x2apic_id] = apic; 304 305 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 306 new->phys_map[xapic_id] = apic; 307 } else { 308 /* 309 * Disable the optimized map if the physical APIC ID is already 310 * mapped, i.e. is aliased to multiple vCPUs. The optimized 311 * map requires a strict 1:1 mapping between IDs and vCPUs. 312 */ 313 if (apic_x2apic_mode(apic)) 314 physical_id = x2apic_id; 315 else 316 physical_id = xapic_id; 317 318 if (new->phys_map[physical_id]) 319 return -EINVAL; 320 321 new->phys_map[physical_id] = apic; 322 } 323 324 return 0; 325 } 326 327 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 328 struct kvm_vcpu *vcpu) 329 { 330 struct kvm_lapic *apic = vcpu->arch.apic; 331 enum kvm_apic_logical_mode logical_mode; 332 struct kvm_lapic **cluster; 333 u16 mask; 334 u32 ldr; 335 336 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 337 return; 338 339 if (!kvm_apic_sw_enabled(apic)) 340 return; 341 342 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 343 if (!ldr) 344 return; 345 346 if (apic_x2apic_mode(apic)) { 347 logical_mode = KVM_APIC_MODE_X2APIC; 348 } else { 349 ldr = GET_APIC_LOGICAL_ID(ldr); 350 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 351 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 352 else 353 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 354 } 355 356 /* 357 * To optimize logical mode delivery, all software-enabled APICs must 358 * be configured for the same mode. 359 */ 360 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 361 new->logical_mode = logical_mode; 362 } else if (new->logical_mode != logical_mode) { 363 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 364 return; 365 } 366 367 /* 368 * In x2APIC mode, the LDR is read-only and derived directly from the 369 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 370 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 371 * reversing the LDR calculation to get cluster of APICs, i.e. no 372 * additional work is required. 373 */ 374 if (apic_x2apic_mode(apic)) 375 return; 376 377 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 378 &cluster, &mask))) { 379 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 380 return; 381 } 382 383 if (!mask) 384 return; 385 386 ldr = ffs(mask) - 1; 387 if (!is_power_of_2(mask) || cluster[ldr]) 388 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 389 else 390 cluster[ldr] = apic; 391 } 392 393 /* 394 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 395 * 396 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 397 * apic_map_lock_held. 398 */ 399 enum { 400 CLEAN, 401 UPDATE_IN_PROGRESS, 402 DIRTY 403 }; 404 405 static void kvm_recalculate_apic_map(struct kvm *kvm) 406 { 407 struct kvm_apic_map *new, *old = NULL; 408 struct kvm_vcpu *vcpu; 409 unsigned long i; 410 u32 max_id = 255; /* enough space for any xAPIC ID */ 411 bool xapic_id_mismatch; 412 int r; 413 414 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 415 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 416 return; 417 418 WARN_ONCE(!irqchip_in_kernel(kvm), 419 "Dirty APIC map without an in-kernel local APIC"); 420 421 mutex_lock(&kvm->arch.apic_map_lock); 422 423 retry: 424 /* 425 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 426 * or the APIC registers (if dirty). Note, on retry the map may have 427 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 428 * ID, i.e. the map may still show up as in-progress. In that case 429 * this task still needs to retry and complete its calculation. 430 */ 431 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 432 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 433 /* Someone else has updated the map. */ 434 mutex_unlock(&kvm->arch.apic_map_lock); 435 return; 436 } 437 438 /* 439 * Reset the mismatch flag between attempts so that KVM does the right 440 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 441 * keep max_id strictly increasing. Disallowing max_id from shrinking 442 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 443 * with the highest x2APIC ID is toggling its APIC on and off. 444 */ 445 xapic_id_mismatch = false; 446 447 kvm_for_each_vcpu(i, vcpu, kvm) 448 if (kvm_apic_present(vcpu)) 449 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 450 451 new = kvzalloc(sizeof(struct kvm_apic_map) + 452 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 453 GFP_KERNEL_ACCOUNT); 454 455 if (!new) 456 goto out; 457 458 new->max_apic_id = max_id; 459 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 460 461 kvm_for_each_vcpu(i, vcpu, kvm) { 462 if (!kvm_apic_present(vcpu)) 463 continue; 464 465 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 466 if (r) { 467 kvfree(new); 468 new = NULL; 469 if (r == -E2BIG) { 470 cond_resched(); 471 goto retry; 472 } 473 474 goto out; 475 } 476 477 kvm_recalculate_logical_map(new, vcpu); 478 } 479 out: 480 /* 481 * The optimized map is effectively KVM's internal version of APICv, 482 * and all unwanted aliasing that results in disabling the optimized 483 * map also applies to APICv. 484 */ 485 if (!new) 486 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 487 else 488 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 489 490 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 491 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 492 else 493 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 494 495 if (xapic_id_mismatch) 496 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 497 else 498 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 499 500 old = rcu_dereference_protected(kvm->arch.apic_map, 501 lockdep_is_held(&kvm->arch.apic_map_lock)); 502 rcu_assign_pointer(kvm->arch.apic_map, new); 503 /* 504 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 505 * If another update has come in, leave it DIRTY. 506 */ 507 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 508 UPDATE_IN_PROGRESS, CLEAN); 509 mutex_unlock(&kvm->arch.apic_map_lock); 510 511 if (old) 512 kvfree_rcu(old, rcu); 513 514 kvm_make_scan_ioapic_request(kvm); 515 } 516 517 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 518 { 519 bool enabled = val & APIC_SPIV_APIC_ENABLED; 520 521 kvm_lapic_set_reg(apic, APIC_SPIV, val); 522 523 if (enabled != apic->sw_enabled) { 524 apic->sw_enabled = enabled; 525 if (enabled) 526 static_branch_slow_dec_deferred(&apic_sw_disabled); 527 else 528 static_branch_inc(&apic_sw_disabled.key); 529 530 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 531 } 532 533 /* Check if there are APF page ready requests pending */ 534 if (enabled) { 535 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 536 kvm_xen_sw_enable_lapic(apic->vcpu); 537 } 538 } 539 540 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 541 { 542 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 543 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 544 } 545 546 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 547 { 548 kvm_lapic_set_reg(apic, APIC_LDR, id); 549 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 550 } 551 552 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 553 { 554 kvm_lapic_set_reg(apic, APIC_DFR, val); 555 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 556 } 557 558 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 559 { 560 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 561 562 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 563 564 kvm_lapic_set_reg(apic, APIC_ID, id); 565 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 566 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 567 } 568 569 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 570 { 571 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 572 } 573 574 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 575 { 576 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 577 } 578 579 static inline int apic_lvtt_period(struct kvm_lapic *apic) 580 { 581 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 582 } 583 584 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 585 { 586 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 587 } 588 589 static inline int apic_lvt_nmi_mode(u32 lvt_val) 590 { 591 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 592 } 593 594 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 595 { 596 return apic->nr_lvt_entries > lvt_index; 597 } 598 599 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 600 { 601 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 602 } 603 604 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 605 { 606 struct kvm_lapic *apic = vcpu->arch.apic; 607 u32 v = 0; 608 609 if (!lapic_in_kernel(vcpu)) 610 return; 611 612 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 613 614 615 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 616 kvm_lapic_advertise_suppress_eoi_broadcast(vcpu->kvm)) 617 v |= APIC_LVR_DIRECTED_EOI; 618 kvm_lapic_set_reg(apic, APIC_LVR, v); 619 } 620 621 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 622 { 623 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 624 struct kvm_lapic *apic = vcpu->arch.apic; 625 int i; 626 627 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 628 return; 629 630 /* Initialize/mask any "new" LVT entries. */ 631 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 632 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 633 634 apic->nr_lvt_entries = nr_lvt_entries; 635 636 /* The number of LVT entries is reflected in the version register. */ 637 kvm_apic_set_version(vcpu); 638 } 639 640 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 641 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 642 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 643 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 644 [LVT_LINT0] = LINT_MASK, 645 [LVT_LINT1] = LINT_MASK, 646 [LVT_ERROR] = LVT_MASK, 647 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 648 }; 649 650 static u8 count_vectors(void *bitmap) 651 { 652 int vec; 653 u32 *reg; 654 u8 count = 0; 655 656 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 657 reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec); 658 count += hweight32(*reg); 659 } 660 661 return count; 662 } 663 664 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) 665 { 666 unsigned long pir_vals[NR_PIR_WORDS]; 667 u32 *__pir = (void *)pir_vals; 668 u32 i, vec; 669 u32 irr_val, prev_irr_val; 670 int max_updated_irr; 671 672 max_updated_irr = -1; 673 *max_irr = -1; 674 675 if (!pi_harvest_pir(pir, pir_vals)) 676 return false; 677 678 for (i = vec = 0; i <= 7; i++, vec += 32) { 679 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 680 681 irr_val = READ_ONCE(*p_irr); 682 683 if (__pir[i]) { 684 prev_irr_val = irr_val; 685 do { 686 irr_val = prev_irr_val | __pir[i]; 687 } while (prev_irr_val != irr_val && 688 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 689 690 if (prev_irr_val != irr_val) 691 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 692 } 693 if (irr_val) 694 *max_irr = __fls(irr_val) + vec; 695 } 696 697 return ((max_updated_irr != -1) && 698 (max_updated_irr == *max_irr)); 699 } 700 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_apic_update_irr); 701 702 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) 703 { 704 struct kvm_lapic *apic = vcpu->arch.apic; 705 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 706 707 if (unlikely(!apic->apicv_active && irr_updated)) 708 apic->irr_pending = true; 709 return irr_updated; 710 } 711 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_update_irr); 712 713 static inline int apic_search_irr(struct kvm_lapic *apic) 714 { 715 return apic_find_highest_vector(apic->regs + APIC_IRR); 716 } 717 718 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 719 { 720 /* 721 * Note that irr_pending is just a hint. It will be always 722 * true with virtual interrupt delivery enabled. 723 */ 724 if (!apic->irr_pending) 725 return -1; 726 727 return apic_search_irr(apic); 728 } 729 730 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 731 { 732 if (unlikely(apic->apicv_active)) { 733 apic_clear_vector(vec, apic->regs + APIC_IRR); 734 } else { 735 apic->irr_pending = false; 736 apic_clear_vector(vec, apic->regs + APIC_IRR); 737 if (apic_search_irr(apic) != -1) 738 apic->irr_pending = true; 739 } 740 } 741 742 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 743 { 744 apic_clear_irr(vec, vcpu->arch.apic); 745 } 746 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_clear_irr); 747 748 static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic) 749 { 750 return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec); 751 } 752 753 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 754 { 755 if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 756 apic_vector_to_isr(vec, apic))) 757 return; 758 759 /* 760 * With APIC virtualization enabled, all caching is disabled 761 * because the processor can modify ISR under the hood. Instead 762 * just set SVI. 763 */ 764 if (unlikely(apic->apicv_active)) 765 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 766 else { 767 ++apic->isr_count; 768 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 769 /* 770 * ISR (in service register) bit is set when injecting an interrupt. 771 * The highest vector is injected. Thus the latest bit set matches 772 * the highest bit in ISR. 773 */ 774 apic->highest_isr_cache = vec; 775 } 776 } 777 778 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 779 { 780 /* 781 * Note that isr_count is always 1, and highest_isr_cache 782 * is always -1, with APIC virtualization enabled. 783 */ 784 if (!apic->isr_count) 785 return -1; 786 if (likely(apic->highest_isr_cache != -1)) 787 return apic->highest_isr_cache; 788 789 return apic_find_highest_vector(apic->regs + APIC_ISR); 790 } 791 792 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 793 { 794 if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 795 apic_vector_to_isr(vec, apic))) 796 return; 797 798 /* 799 * We do get here for APIC virtualization enabled if the guest 800 * uses the Hyper-V APIC enlightenment. In this case we may need 801 * to trigger a new interrupt delivery by writing the SVI field; 802 * on the other hand isr_count and highest_isr_cache are unused 803 * and must be left alone. 804 */ 805 if (unlikely(apic->apicv_active)) 806 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 807 else { 808 --apic->isr_count; 809 BUG_ON(apic->isr_count < 0); 810 apic->highest_isr_cache = -1; 811 } 812 } 813 814 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 815 { 816 /* This may race with setting of irr in __apic_accept_irq() and 817 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 818 * will cause vmexit immediately and the value will be recalculated 819 * on the next vmentry. 820 */ 821 return apic_find_highest_irr(vcpu->arch.apic); 822 } 823 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_find_highest_irr); 824 825 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 826 int vector, int level, int trig_mode, 827 struct rtc_status *rtc_status); 828 829 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 830 struct rtc_status *rtc_status) 831 { 832 struct kvm_lapic *apic = vcpu->arch.apic; 833 834 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 835 irq->level, irq->trig_mode, rtc_status); 836 } 837 838 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 839 struct kvm_lapic_irq *irq, u32 min) 840 { 841 int i, count = 0; 842 struct kvm_vcpu *vcpu; 843 844 if (min > map->max_apic_id) 845 return 0; 846 847 min = array_index_nospec(min, map->max_apic_id + 1); 848 849 for_each_set_bit(i, ipi_bitmap, 850 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 851 if (map->phys_map[min + i]) { 852 vcpu = map->phys_map[min + i]->vcpu; 853 count += kvm_apic_set_irq(vcpu, irq, NULL); 854 } 855 } 856 857 return count; 858 } 859 860 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 861 unsigned long ipi_bitmap_high, u32 min, 862 unsigned long icr, int op_64_bit) 863 { 864 struct kvm_apic_map *map; 865 struct kvm_lapic_irq irq = {0}; 866 int cluster_size = op_64_bit ? 64 : 32; 867 int count; 868 869 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 870 return -KVM_EINVAL; 871 872 irq.vector = icr & APIC_VECTOR_MASK; 873 irq.delivery_mode = icr & APIC_MODE_MASK; 874 irq.level = (icr & APIC_INT_ASSERT) != 0; 875 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 876 877 rcu_read_lock(); 878 map = rcu_dereference(kvm->arch.apic_map); 879 880 count = -EOPNOTSUPP; 881 if (likely(map)) { 882 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 883 min += cluster_size; 884 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 885 } 886 887 rcu_read_unlock(); 888 return count; 889 } 890 891 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 892 { 893 894 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 895 sizeof(val)); 896 } 897 898 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 899 { 900 901 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 902 sizeof(*val)); 903 } 904 905 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 906 { 907 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 908 } 909 910 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 911 { 912 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 913 return; 914 915 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 916 } 917 918 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 919 { 920 u8 val; 921 922 if (pv_eoi_get_user(vcpu, &val) < 0) 923 return false; 924 925 val &= KVM_PV_EOI_ENABLED; 926 927 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 928 return false; 929 930 /* 931 * Clear pending bit in any case: it will be set again on vmentry. 932 * While this might not be ideal from performance point of view, 933 * this makes sure pv eoi is only enabled when we know it's safe. 934 */ 935 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 936 937 return val; 938 } 939 940 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 941 { 942 int highest_irr; 943 if (kvm_x86_ops.sync_pir_to_irr) 944 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 945 else 946 highest_irr = apic_find_highest_irr(apic); 947 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 948 return -1; 949 return highest_irr; 950 } 951 952 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 953 { 954 u32 tpr, isrv, ppr, old_ppr; 955 int isr; 956 957 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 958 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 959 isr = apic_find_highest_isr(apic); 960 isrv = (isr != -1) ? isr : 0; 961 962 if ((tpr & 0xf0) >= (isrv & 0xf0)) 963 ppr = tpr & 0xff; 964 else 965 ppr = isrv & 0xf0; 966 967 *new_ppr = ppr; 968 if (old_ppr != ppr) 969 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 970 971 return ppr < old_ppr; 972 } 973 974 static void apic_update_ppr(struct kvm_lapic *apic) 975 { 976 u32 ppr; 977 978 if (__apic_update_ppr(apic, &ppr) && 979 apic_has_interrupt_for_ppr(apic, ppr) != -1) 980 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 981 } 982 983 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 984 { 985 apic_update_ppr(vcpu->arch.apic); 986 } 987 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_update_ppr); 988 989 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 990 { 991 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 992 apic_update_ppr(apic); 993 } 994 995 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 996 { 997 return mda == (apic_x2apic_mode(apic) ? 998 X2APIC_BROADCAST : APIC_BROADCAST); 999 } 1000 1001 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 1002 { 1003 if (kvm_apic_broadcast(apic, mda)) 1004 return true; 1005 1006 /* 1007 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 1008 * were in x2APIC mode if the target APIC ID can't be encoded as an 1009 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 1010 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 1011 * mode. Match the x2APIC ID if and only if the target APIC ID can't 1012 * be encoded in xAPIC to avoid spurious matches against a vCPU that 1013 * changed its (addressable) xAPIC ID (which is writable). 1014 */ 1015 if (apic_x2apic_mode(apic) || mda > 0xff) 1016 return mda == kvm_x2apic_id(apic); 1017 1018 return mda == kvm_xapic_id(apic); 1019 } 1020 1021 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 1022 { 1023 u32 logical_id; 1024 1025 if (kvm_apic_broadcast(apic, mda)) 1026 return true; 1027 1028 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 1029 1030 if (apic_x2apic_mode(apic)) 1031 return ((logical_id >> 16) == (mda >> 16)) 1032 && (logical_id & mda & 0xffff) != 0; 1033 1034 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1035 1036 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1037 case APIC_DFR_FLAT: 1038 return (logical_id & mda) != 0; 1039 case APIC_DFR_CLUSTER: 1040 return ((logical_id >> 4) == (mda >> 4)) 1041 && (logical_id & mda & 0xf) != 0; 1042 default: 1043 return false; 1044 } 1045 } 1046 1047 /* The KVM local APIC implementation has two quirks: 1048 * 1049 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1050 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1051 * KVM doesn't do that aliasing. 1052 * 1053 * - in-kernel IOAPIC messages have to be delivered directly to 1054 * x2APIC, because the kernel does not support interrupt remapping. 1055 * In order to support broadcast without interrupt remapping, x2APIC 1056 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1057 * to X2APIC_BROADCAST. 1058 * 1059 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1060 * important when userspace wants to use x2APIC-format MSIs, because 1061 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1062 */ 1063 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1064 struct kvm_lapic *source, struct kvm_lapic *target) 1065 { 1066 bool ipi = source != NULL; 1067 1068 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1069 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1070 return X2APIC_BROADCAST; 1071 1072 return dest_id; 1073 } 1074 1075 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1076 int shorthand, unsigned int dest, int dest_mode) 1077 { 1078 struct kvm_lapic *target = vcpu->arch.apic; 1079 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1080 1081 switch (shorthand) { 1082 case APIC_DEST_NOSHORT: 1083 if (dest_mode == APIC_DEST_PHYSICAL) 1084 return kvm_apic_match_physical_addr(target, mda); 1085 else 1086 return kvm_apic_match_logical_addr(target, mda); 1087 case APIC_DEST_SELF: 1088 return target == source; 1089 case APIC_DEST_ALLINC: 1090 return true; 1091 case APIC_DEST_ALLBUT: 1092 return target != source; 1093 default: 1094 return false; 1095 } 1096 } 1097 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_match_dest); 1098 1099 static int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1100 const unsigned long *bitmap, u32 bitmap_size) 1101 { 1102 int idx = find_nth_bit(bitmap, bitmap_size, vector % dest_vcpus); 1103 1104 BUG_ON(idx >= bitmap_size); 1105 return idx; 1106 } 1107 1108 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1109 { 1110 if (!kvm->arch.disabled_lapic_found) { 1111 kvm->arch.disabled_lapic_found = true; 1112 pr_info("Disabled LAPIC found during irq injection\n"); 1113 } 1114 } 1115 1116 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1117 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1118 { 1119 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1120 if ((irq->dest_id == APIC_BROADCAST && 1121 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1122 return true; 1123 if (irq->dest_id == X2APIC_BROADCAST) 1124 return true; 1125 } else { 1126 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1127 if (irq->dest_id == (x2apic_ipi ? 1128 X2APIC_BROADCAST : APIC_BROADCAST)) 1129 return true; 1130 } 1131 1132 return false; 1133 } 1134 1135 static bool kvm_lowest_prio_delivery(struct kvm_lapic_irq *irq) 1136 { 1137 return (irq->delivery_mode == APIC_DM_LOWEST || irq->msi_redir_hint); 1138 } 1139 1140 static int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1141 { 1142 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1143 } 1144 1145 /* Return true if the interrupt can be handled by using *bitmap as index mask 1146 * for valid destinations in *dst array. 1147 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1148 * Note: we may have zero kvm_lapic destinations when we return true, which 1149 * means that the interrupt should be dropped. In this case, *bitmap would be 1150 * zero and *dst undefined. 1151 */ 1152 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1153 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1154 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1155 unsigned long *bitmap) 1156 { 1157 int i, lowest; 1158 1159 if (irq->shorthand == APIC_DEST_SELF && src) { 1160 *dst = src; 1161 *bitmap = 1; 1162 return true; 1163 } else if (irq->shorthand) 1164 return false; 1165 1166 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1167 return false; 1168 1169 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1170 if (irq->dest_id > map->max_apic_id) { 1171 *bitmap = 0; 1172 } else { 1173 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1174 *dst = &map->phys_map[dest_id]; 1175 *bitmap = 1; 1176 } 1177 return true; 1178 } 1179 1180 *bitmap = 0; 1181 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1182 (u16 *)bitmap)) 1183 return false; 1184 1185 if (!kvm_lowest_prio_delivery(irq)) 1186 return true; 1187 1188 if (!vector_hashing_enabled) { 1189 lowest = -1; 1190 for_each_set_bit(i, bitmap, 16) { 1191 if (!(*dst)[i]) 1192 continue; 1193 if (lowest < 0) 1194 lowest = i; 1195 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1196 (*dst)[lowest]->vcpu) < 0) 1197 lowest = i; 1198 } 1199 } else { 1200 if (!*bitmap) 1201 return true; 1202 1203 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1204 bitmap, 16); 1205 1206 if (!(*dst)[lowest]) { 1207 kvm_apic_disabled_lapic_found(kvm); 1208 *bitmap = 0; 1209 return true; 1210 } 1211 } 1212 1213 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1214 1215 return true; 1216 } 1217 1218 static bool __kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1219 struct kvm_lapic_irq *irq, int *r, 1220 struct rtc_status *rtc_status) 1221 { 1222 struct kvm_apic_map *map; 1223 unsigned long bitmap; 1224 struct kvm_lapic **dst = NULL; 1225 int i; 1226 bool ret; 1227 1228 *r = -1; 1229 1230 if (irq->shorthand == APIC_DEST_SELF) { 1231 if (KVM_BUG_ON(!src, kvm)) { 1232 *r = 0; 1233 return true; 1234 } 1235 *r = kvm_apic_set_irq(src->vcpu, irq, rtc_status); 1236 return true; 1237 } 1238 1239 rcu_read_lock(); 1240 map = rcu_dereference(kvm->arch.apic_map); 1241 1242 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1243 if (ret) { 1244 *r = 0; 1245 for_each_set_bit(i, &bitmap, 16) { 1246 if (!dst[i]) 1247 continue; 1248 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, rtc_status); 1249 } 1250 } 1251 1252 rcu_read_unlock(); 1253 return ret; 1254 } 1255 1256 1257 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1258 struct kvm_lapic_irq *irq, int *r) 1259 { 1260 return __kvm_irq_delivery_to_apic_fast(kvm, src, irq, r, NULL); 1261 } 1262 1263 /* 1264 * This routine tries to handle interrupts in posted mode, here is how 1265 * it deals with different cases: 1266 * - For single-destination interrupts, handle it in posted mode 1267 * - Else if vector hashing is enabled and it is a lowest-priority 1268 * interrupt, handle it in posted mode and use the following mechanism 1269 * to find the destination vCPU. 1270 * 1. For lowest-priority interrupts, store all the possible 1271 * destination vCPUs in an array. 1272 * 2. Use "guest vector % max number of destination vCPUs" to find 1273 * the right destination vCPU in the array for the lowest-priority 1274 * interrupt. 1275 * - Otherwise, use remapped mode to inject the interrupt. 1276 */ 1277 static bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, 1278 struct kvm_lapic_irq *irq, 1279 struct kvm_vcpu **dest_vcpu) 1280 { 1281 struct kvm_apic_map *map; 1282 unsigned long bitmap; 1283 struct kvm_lapic **dst = NULL; 1284 bool ret = false; 1285 1286 if (irq->shorthand) 1287 return false; 1288 1289 rcu_read_lock(); 1290 map = rcu_dereference(kvm->arch.apic_map); 1291 1292 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1293 hweight16(bitmap) == 1) { 1294 unsigned long i = find_first_bit(&bitmap, 16); 1295 1296 if (dst[i]) { 1297 *dest_vcpu = dst[i]->vcpu; 1298 ret = true; 1299 } 1300 } 1301 1302 rcu_read_unlock(); 1303 return ret; 1304 } 1305 1306 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1307 struct kvm_vcpu **dest_vcpu) 1308 { 1309 int r = 0; 1310 unsigned long i; 1311 struct kvm_vcpu *vcpu; 1312 1313 if (kvm_intr_is_single_vcpu_fast(kvm, irq, dest_vcpu)) 1314 return true; 1315 1316 kvm_for_each_vcpu(i, vcpu, kvm) { 1317 if (!kvm_apic_present(vcpu)) 1318 continue; 1319 1320 if (!kvm_apic_match_dest(vcpu, NULL, irq->shorthand, 1321 irq->dest_id, irq->dest_mode)) 1322 continue; 1323 1324 if (++r == 2) 1325 return false; 1326 1327 *dest_vcpu = vcpu; 1328 } 1329 1330 return r == 1; 1331 } 1332 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_intr_is_single_vcpu); 1333 1334 int __kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src, 1335 struct kvm_lapic_irq *irq, 1336 struct rtc_status *rtc_status) 1337 { 1338 int r = -1; 1339 struct kvm_vcpu *vcpu, *lowest = NULL; 1340 unsigned long i, dest_vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1341 unsigned int dest_vcpus = 0; 1342 1343 if (__kvm_irq_delivery_to_apic_fast(kvm, src, irq, &r, rtc_status)) 1344 return r; 1345 1346 if (irq->dest_mode == APIC_DEST_PHYSICAL && 1347 irq->dest_id == 0xff && kvm_lowest_prio_delivery(irq)) { 1348 pr_info("apic: phys broadcast and lowest prio\n"); 1349 irq->delivery_mode = APIC_DM_FIXED; 1350 } 1351 1352 memset(dest_vcpu_bitmap, 0, sizeof(dest_vcpu_bitmap)); 1353 1354 kvm_for_each_vcpu(i, vcpu, kvm) { 1355 if (!kvm_apic_present(vcpu)) 1356 continue; 1357 1358 if (!kvm_apic_match_dest(vcpu, src, irq->shorthand, 1359 irq->dest_id, irq->dest_mode)) 1360 continue; 1361 1362 if (!kvm_lowest_prio_delivery(irq)) { 1363 if (r < 0) 1364 r = 0; 1365 r += kvm_apic_set_irq(vcpu, irq, rtc_status); 1366 } else if (kvm_apic_sw_enabled(vcpu->arch.apic)) { 1367 if (!vector_hashing_enabled) { 1368 if (!lowest) 1369 lowest = vcpu; 1370 else if (kvm_apic_compare_prio(vcpu, lowest) < 0) 1371 lowest = vcpu; 1372 } else { 1373 __set_bit(i, dest_vcpu_bitmap); 1374 dest_vcpus++; 1375 } 1376 } 1377 } 1378 1379 if (dest_vcpus != 0) { 1380 int idx = kvm_vector_to_index(irq->vector, dest_vcpus, 1381 dest_vcpu_bitmap, KVM_MAX_VCPUS); 1382 1383 lowest = kvm_get_vcpu(kvm, idx); 1384 } 1385 1386 if (lowest) 1387 r = kvm_apic_set_irq(lowest, irq, rtc_status); 1388 1389 return r; 1390 } 1391 1392 /* 1393 * Add a pending IRQ into lapic. 1394 * Return 1 if successfully added and 0 if discarded. 1395 */ 1396 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1397 int vector, int level, int trig_mode, 1398 struct rtc_status *rtc_status) 1399 { 1400 int result = 0; 1401 struct kvm_vcpu *vcpu = apic->vcpu; 1402 1403 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1404 trig_mode, vector); 1405 switch (delivery_mode) { 1406 case APIC_DM_LOWEST: 1407 vcpu->arch.apic_arb_prio++; 1408 fallthrough; 1409 case APIC_DM_FIXED: 1410 if (unlikely(trig_mode && !level)) 1411 break; 1412 1413 /* FIXME add logic for vcpu on reset */ 1414 if (unlikely(!apic_enabled(apic))) 1415 break; 1416 1417 result = 1; 1418 1419 #ifdef CONFIG_KVM_IOAPIC 1420 if (rtc_status) { 1421 __set_bit(vcpu->vcpu_id, rtc_status->map); 1422 rtc_status->vectors[vcpu->vcpu_id] = vector; 1423 } 1424 #endif 1425 1426 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1427 if (trig_mode) 1428 apic_set_vector(vector, apic->regs + APIC_TMR); 1429 else 1430 apic_clear_vector(vector, apic->regs + APIC_TMR); 1431 } 1432 1433 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1434 trig_mode, vector); 1435 break; 1436 1437 case APIC_DM_REMRD: 1438 result = 1; 1439 vcpu->arch.pv.pv_unhalted = 1; 1440 kvm_make_request(KVM_REQ_EVENT, vcpu); 1441 kvm_vcpu_kick(vcpu); 1442 break; 1443 1444 case APIC_DM_SMI: 1445 if (!kvm_inject_smi(vcpu)) { 1446 kvm_vcpu_kick(vcpu); 1447 result = 1; 1448 } 1449 break; 1450 1451 case APIC_DM_NMI: 1452 result = 1; 1453 kvm_inject_nmi(vcpu); 1454 kvm_vcpu_kick(vcpu); 1455 break; 1456 1457 case APIC_DM_INIT: 1458 if (!trig_mode || level) { 1459 result = 1; 1460 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1461 apic->pending_events = (1UL << KVM_APIC_INIT); 1462 kvm_make_request(KVM_REQ_EVENT, vcpu); 1463 kvm_vcpu_kick(vcpu); 1464 } 1465 break; 1466 1467 case APIC_DM_STARTUP: 1468 result = 1; 1469 apic->sipi_vector = vector; 1470 /* make sure sipi_vector is visible for the receiver */ 1471 smp_wmb(); 1472 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1473 kvm_make_request(KVM_REQ_EVENT, vcpu); 1474 kvm_vcpu_kick(vcpu); 1475 break; 1476 1477 case APIC_DM_EXTINT: 1478 /* 1479 * Should only be called by kvm_apic_local_deliver() with LVT0, 1480 * before NMI watchdog was enabled. Already handled by 1481 * kvm_apic_accept_pic_intr(). 1482 */ 1483 break; 1484 1485 default: 1486 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1487 delivery_mode); 1488 break; 1489 } 1490 return result; 1491 } 1492 1493 /* 1494 * This routine identifies the destination vcpus mask meant to receive the 1495 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1496 * out the destination vcpus array and set the bitmap or it traverses to 1497 * each available vcpu to identify the same. 1498 */ 1499 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1500 unsigned long *vcpu_bitmap) 1501 { 1502 struct kvm_lapic **dest_vcpu = NULL; 1503 struct kvm_lapic *src = NULL; 1504 struct kvm_apic_map *map; 1505 struct kvm_vcpu *vcpu; 1506 unsigned long bitmap, i; 1507 int vcpu_idx; 1508 bool ret; 1509 1510 rcu_read_lock(); 1511 map = rcu_dereference(kvm->arch.apic_map); 1512 1513 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1514 &bitmap); 1515 if (ret) { 1516 for_each_set_bit(i, &bitmap, 16) { 1517 if (!dest_vcpu[i]) 1518 continue; 1519 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1520 __set_bit(vcpu_idx, vcpu_bitmap); 1521 } 1522 } else { 1523 kvm_for_each_vcpu(i, vcpu, kvm) { 1524 if (!kvm_apic_present(vcpu)) 1525 continue; 1526 if (!kvm_apic_match_dest(vcpu, NULL, 1527 irq->shorthand, 1528 irq->dest_id, 1529 irq->dest_mode)) 1530 continue; 1531 __set_bit(i, vcpu_bitmap); 1532 } 1533 } 1534 rcu_read_unlock(); 1535 } 1536 1537 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1538 { 1539 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1540 } 1541 1542 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1543 { 1544 int __maybe_unused trigger_mode; 1545 1546 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1547 if (!kvm_ioapic_handles_vector(apic, vector)) 1548 return; 1549 1550 /* 1551 * If the intercepted EOI is for an IRQ that was pending from previous 1552 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely 1553 * no longer need to be intercepted. 1554 */ 1555 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) 1556 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); 1557 1558 /* Request a KVM exit to inform the userspace IOAPIC. */ 1559 if (irqchip_split(apic->vcpu->kvm)) { 1560 /* 1561 * Don't exit to userspace if the guest has enabled Directed 1562 * EOI, a.k.a. Suppress EOI Broadcasts, in which case the local 1563 * APIC doesn't broadcast EOIs (the guest must EOI the target 1564 * I/O APIC(s) directly). 1565 */ 1566 if (kvm_lapic_suppress_eoi_broadcast(apic)) 1567 return; 1568 1569 apic->vcpu->arch.pending_ioapic_eoi = vector; 1570 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1571 return; 1572 } 1573 1574 #ifdef CONFIG_KVM_IOAPIC 1575 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1576 trigger_mode = IOAPIC_LEVEL_TRIG; 1577 else 1578 trigger_mode = IOAPIC_EDGE_TRIG; 1579 1580 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1581 #endif 1582 } 1583 1584 static int apic_set_eoi(struct kvm_lapic *apic) 1585 { 1586 int vector = apic_find_highest_isr(apic); 1587 1588 trace_kvm_eoi(apic, vector); 1589 1590 /* 1591 * Not every write EOI will has corresponding ISR, 1592 * one example is when Kernel check timer on setup_IO_APIC 1593 */ 1594 if (vector == -1) 1595 return vector; 1596 1597 apic_clear_isr(vector, apic); 1598 apic_update_ppr(apic); 1599 1600 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1601 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1602 1603 kvm_ioapic_send_eoi(apic, vector); 1604 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1605 return vector; 1606 } 1607 1608 /* 1609 * this interface assumes a trap-like exit, which has already finished 1610 * desired side effect including vISR and vPPR update. 1611 */ 1612 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1613 { 1614 struct kvm_lapic *apic = vcpu->arch.apic; 1615 1616 trace_kvm_eoi(apic, vector); 1617 1618 kvm_ioapic_send_eoi(apic, vector); 1619 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1620 } 1621 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_set_eoi_accelerated); 1622 1623 static void kvm_icr_to_lapic_irq(struct kvm_lapic *apic, u32 icr_low, 1624 u32 icr_high, struct kvm_lapic_irq *irq) 1625 { 1626 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1627 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1628 1629 irq->vector = icr_low & APIC_VECTOR_MASK; 1630 irq->delivery_mode = icr_low & APIC_MODE_MASK; 1631 irq->dest_mode = icr_low & APIC_DEST_MASK; 1632 irq->level = (icr_low & APIC_INT_ASSERT) != 0; 1633 irq->trig_mode = icr_low & APIC_INT_LEVELTRIG; 1634 irq->shorthand = icr_low & APIC_SHORT_MASK; 1635 irq->msi_redir_hint = false; 1636 if (apic_x2apic_mode(apic)) 1637 irq->dest_id = icr_high; 1638 else 1639 irq->dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1640 } 1641 1642 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1643 { 1644 struct kvm_lapic_irq irq; 1645 1646 kvm_icr_to_lapic_irq(apic, icr_low, icr_high, &irq); 1647 1648 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1649 1650 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq); 1651 } 1652 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_send_ipi); 1653 1654 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1655 { 1656 ktime_t remaining, now; 1657 s64 ns; 1658 1659 /* if initial count is 0, current count should also be 0 */ 1660 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1661 apic->lapic_timer.period == 0) 1662 return 0; 1663 1664 now = ktime_get(); 1665 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1666 if (ktime_to_ns(remaining) < 0) 1667 remaining = 0; 1668 1669 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1670 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1671 apic->divide_count)); 1672 } 1673 1674 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1675 { 1676 struct kvm_vcpu *vcpu = apic->vcpu; 1677 struct kvm_run *run = vcpu->run; 1678 1679 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1680 run->tpr_access.rip = kvm_rip_read(vcpu); 1681 run->tpr_access.is_write = write; 1682 } 1683 1684 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1685 { 1686 if (apic->vcpu->arch.tpr_access_reporting) 1687 __report_tpr_access(apic, write); 1688 } 1689 1690 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1691 { 1692 u32 val = 0; 1693 1694 if (offset >= LAPIC_MMIO_LENGTH) 1695 return 0; 1696 1697 switch (offset) { 1698 case APIC_ARBPRI: 1699 break; 1700 1701 case APIC_TMCCT: /* Timer CCR */ 1702 if (apic_lvtt_tscdeadline(apic)) 1703 return 0; 1704 1705 val = apic_get_tmcct(apic); 1706 break; 1707 case APIC_PROCPRI: 1708 apic_update_ppr(apic); 1709 val = kvm_lapic_get_reg(apic, offset); 1710 break; 1711 case APIC_TASKPRI: 1712 report_tpr_access(apic, false); 1713 fallthrough; 1714 default: 1715 val = kvm_lapic_get_reg(apic, offset); 1716 break; 1717 } 1718 1719 return val; 1720 } 1721 1722 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1723 { 1724 return container_of(dev, struct kvm_lapic, dev); 1725 } 1726 1727 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1728 #define APIC_REGS_MASK(first, count) \ 1729 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1730 1731 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1732 { 1733 /* Leave bits '0' for reserved and write-only registers. */ 1734 u64 valid_reg_mask = 1735 APIC_REG_MASK(APIC_ID) | 1736 APIC_REG_MASK(APIC_LVR) | 1737 APIC_REG_MASK(APIC_TASKPRI) | 1738 APIC_REG_MASK(APIC_PROCPRI) | 1739 APIC_REG_MASK(APIC_LDR) | 1740 APIC_REG_MASK(APIC_SPIV) | 1741 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1742 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1743 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1744 APIC_REG_MASK(APIC_ESR) | 1745 APIC_REG_MASK(APIC_ICR) | 1746 APIC_REG_MASK(APIC_LVTT) | 1747 APIC_REG_MASK(APIC_LVTTHMR) | 1748 APIC_REG_MASK(APIC_LVTPC) | 1749 APIC_REG_MASK(APIC_LVT0) | 1750 APIC_REG_MASK(APIC_LVT1) | 1751 APIC_REG_MASK(APIC_LVTERR) | 1752 APIC_REG_MASK(APIC_TMICT) | 1753 APIC_REG_MASK(APIC_TMCCT) | 1754 APIC_REG_MASK(APIC_TDCR); 1755 1756 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1757 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1758 1759 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1760 if (!apic_x2apic_mode(apic)) 1761 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1762 APIC_REG_MASK(APIC_DFR) | 1763 APIC_REG_MASK(APIC_ICR2); 1764 1765 return valid_reg_mask; 1766 } 1767 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_readable_reg_mask); 1768 1769 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1770 void *data) 1771 { 1772 unsigned char alignment = offset & 0xf; 1773 u32 result; 1774 1775 /* 1776 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1777 * x2APIC and needs to be manually handled by the caller. 1778 */ 1779 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1780 1781 if (alignment + len > 4) 1782 return 1; 1783 1784 if (offset > 0x3f0 || 1785 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1786 return 1; 1787 1788 result = __apic_read(apic, offset & ~0xf); 1789 1790 trace_kvm_apic_read(offset, result); 1791 1792 switch (len) { 1793 case 1: 1794 case 2: 1795 case 4: 1796 memcpy(data, (char *)&result + alignment, len); 1797 break; 1798 default: 1799 printk(KERN_ERR "Local APIC read with len = %x, " 1800 "should be 1,2, or 4 instead\n", len); 1801 break; 1802 } 1803 return 0; 1804 } 1805 1806 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1807 { 1808 return addr >= apic->base_address && 1809 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1810 } 1811 1812 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1813 gpa_t address, int len, void *data) 1814 { 1815 struct kvm_lapic *apic = to_lapic(this); 1816 u32 offset = address - apic->base_address; 1817 1818 if (!apic_mmio_in_range(apic, address)) 1819 return -EOPNOTSUPP; 1820 1821 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1822 if (!kvm_check_has_quirk(vcpu->kvm, 1823 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1824 return -EOPNOTSUPP; 1825 1826 memset(data, 0xff, len); 1827 return 0; 1828 } 1829 1830 kvm_lapic_reg_read(apic, offset, len, data); 1831 1832 return 0; 1833 } 1834 1835 static void update_divide_count(struct kvm_lapic *apic) 1836 { 1837 u32 tmp1, tmp2, tdcr; 1838 1839 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1840 tmp1 = tdcr & 0xf; 1841 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1842 apic->divide_count = 0x1 << (tmp2 & 0x7); 1843 } 1844 1845 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1846 { 1847 /* 1848 * Do not allow the guest to program periodic timers with small 1849 * interval, since the hrtimers are not throttled by the host 1850 * scheduler. 1851 */ 1852 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1853 s64 min_period = min_timer_period_us * 1000LL; 1854 1855 if (apic->lapic_timer.period < min_period) { 1856 pr_info_once( 1857 "vcpu %i: requested %lld ns " 1858 "lapic timer period limited to %lld ns\n", 1859 apic->vcpu->vcpu_id, 1860 apic->lapic_timer.period, min_period); 1861 apic->lapic_timer.period = min_period; 1862 } 1863 } 1864 } 1865 1866 static void cancel_hv_timer(struct kvm_lapic *apic); 1867 1868 static void cancel_apic_timer(struct kvm_lapic *apic) 1869 { 1870 hrtimer_cancel(&apic->lapic_timer.timer); 1871 preempt_disable(); 1872 if (apic->lapic_timer.hv_timer_in_use) 1873 cancel_hv_timer(apic); 1874 preempt_enable(); 1875 atomic_set(&apic->lapic_timer.pending, 0); 1876 } 1877 1878 static void apic_update_lvtt(struct kvm_lapic *apic) 1879 { 1880 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1881 apic->lapic_timer.timer_mode_mask; 1882 1883 if (apic->lapic_timer.timer_mode != timer_mode) { 1884 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1885 APIC_LVT_TIMER_TSCDEADLINE)) { 1886 cancel_apic_timer(apic); 1887 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1888 apic->lapic_timer.period = 0; 1889 apic->lapic_timer.tscdeadline = 0; 1890 } 1891 apic->lapic_timer.timer_mode = timer_mode; 1892 limit_periodic_timer_frequency(apic); 1893 } 1894 } 1895 1896 /* 1897 * On APICv, this test will cause a busy wait 1898 * during a higher-priority task. 1899 */ 1900 1901 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1902 { 1903 struct kvm_lapic *apic = vcpu->arch.apic; 1904 u32 reg; 1905 1906 /* 1907 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's 1908 * copy of the vIRR is bogus, it's the responsibility of the caller to 1909 * precisely check whether or not a timer IRQ is pending. 1910 */ 1911 if (apic->guest_apic_protected) 1912 return true; 1913 1914 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1915 if (kvm_apic_hw_enabled(apic)) { 1916 int vec = reg & APIC_VECTOR_MASK; 1917 void *bitmap = apic->regs + APIC_ISR; 1918 1919 if (apic->apicv_active) 1920 bitmap = apic->regs + APIC_IRR; 1921 1922 if (apic_test_vector(vec, bitmap)) 1923 return true; 1924 } 1925 return false; 1926 } 1927 1928 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1929 { 1930 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1931 1932 /* 1933 * If the guest TSC is running at a different ratio than the host, then 1934 * convert the delay to nanoseconds to achieve an accurate delay. Note 1935 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1936 * always for VMX enabled hardware. 1937 */ 1938 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1939 __delay(min(guest_cycles, 1940 nsec_to_cycles(vcpu, timer_advance_ns))); 1941 } else { 1942 u64 delay_ns = guest_cycles * 1000000ULL; 1943 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1944 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1945 } 1946 } 1947 1948 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1949 s64 advance_expire_delta) 1950 { 1951 struct kvm_lapic *apic = vcpu->arch.apic; 1952 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1953 u64 ns; 1954 1955 /* Do not adjust for tiny fluctuations or large random spikes. */ 1956 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1957 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1958 return; 1959 1960 /* too early */ 1961 if (advance_expire_delta < 0) { 1962 ns = -advance_expire_delta * 1000000ULL; 1963 do_div(ns, vcpu->arch.virtual_tsc_khz); 1964 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1965 } else { 1966 /* too late */ 1967 ns = advance_expire_delta * 1000000ULL; 1968 do_div(ns, vcpu->arch.virtual_tsc_khz); 1969 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1970 } 1971 1972 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1973 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1974 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1975 } 1976 1977 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1978 { 1979 struct kvm_lapic *apic = vcpu->arch.apic; 1980 u64 guest_tsc, tsc_deadline; 1981 1982 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1983 apic->lapic_timer.expired_tscdeadline = 0; 1984 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1985 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1986 1987 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1988 1989 /* 1990 * If the timer fired early, reread the TSC to account for the overhead 1991 * of the above adjustment to avoid waiting longer than is necessary. 1992 */ 1993 if (guest_tsc < tsc_deadline) 1994 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1995 1996 if (guest_tsc < tsc_deadline) 1997 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1998 } 1999 2000 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 2001 { 2002 if (lapic_in_kernel(vcpu) && 2003 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 2004 vcpu->arch.apic->lapic_timer.timer_advance_ns && 2005 lapic_timer_int_injected(vcpu)) 2006 __kvm_wait_lapic_expire(vcpu); 2007 } 2008 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_wait_lapic_expire); 2009 2010 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 2011 { 2012 struct kvm_timer *ktimer = &apic->lapic_timer; 2013 2014 kvm_apic_local_deliver(apic, APIC_LVTT); 2015 if (apic_lvtt_tscdeadline(apic)) { 2016 ktimer->tscdeadline = 0; 2017 } else if (apic_lvtt_oneshot(apic)) { 2018 ktimer->tscdeadline = 0; 2019 ktimer->target_expiration = 0; 2020 } 2021 } 2022 2023 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 2024 { 2025 struct kvm_vcpu *vcpu = apic->vcpu; 2026 struct kvm_timer *ktimer = &apic->lapic_timer; 2027 2028 if (atomic_read(&apic->lapic_timer.pending)) 2029 return; 2030 2031 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 2032 ktimer->expired_tscdeadline = ktimer->tscdeadline; 2033 2034 if (!from_timer_fn && apic->apicv_active) { 2035 WARN_ON(kvm_get_running_vcpu() != vcpu); 2036 kvm_apic_inject_pending_timer_irqs(apic); 2037 return; 2038 } 2039 2040 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 2041 /* 2042 * Ensure the guest's timer has truly expired before posting an 2043 * interrupt. Open code the relevant checks to avoid querying 2044 * lapic_timer_int_injected(), which will be false since the 2045 * interrupt isn't yet injected. Waiting until after injecting 2046 * is not an option since that won't help a posted interrupt. 2047 */ 2048 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 2049 vcpu->arch.apic->lapic_timer.timer_advance_ns) 2050 __kvm_wait_lapic_expire(vcpu); 2051 kvm_apic_inject_pending_timer_irqs(apic); 2052 return; 2053 } 2054 2055 atomic_inc(&apic->lapic_timer.pending); 2056 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 2057 if (from_timer_fn) 2058 kvm_vcpu_kick(vcpu); 2059 } 2060 2061 static void start_sw_tscdeadline(struct kvm_lapic *apic) 2062 { 2063 struct kvm_timer *ktimer = &apic->lapic_timer; 2064 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 2065 u64 ns = 0; 2066 ktime_t expire; 2067 struct kvm_vcpu *vcpu = apic->vcpu; 2068 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 2069 unsigned long flags; 2070 ktime_t now; 2071 2072 if (unlikely(!tscdeadline || !this_tsc_khz)) 2073 return; 2074 2075 local_irq_save(flags); 2076 2077 now = ktime_get(); 2078 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 2079 2080 ns = (tscdeadline - guest_tsc) * 1000000ULL; 2081 do_div(ns, this_tsc_khz); 2082 2083 if (likely(tscdeadline > guest_tsc) && 2084 likely(ns > apic->lapic_timer.timer_advance_ns)) { 2085 expire = ktime_add_ns(now, ns); 2086 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 2087 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 2088 } else 2089 apic_timer_expired(apic, false); 2090 2091 local_irq_restore(flags); 2092 } 2093 2094 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 2095 { 2096 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 2097 (u64)apic->divide_count; 2098 } 2099 2100 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 2101 { 2102 ktime_t now, remaining; 2103 u64 ns_remaining_old, ns_remaining_new; 2104 2105 apic->lapic_timer.period = 2106 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2107 limit_periodic_timer_frequency(apic); 2108 2109 now = ktime_get(); 2110 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 2111 if (ktime_to_ns(remaining) < 0) 2112 remaining = 0; 2113 2114 ns_remaining_old = ktime_to_ns(remaining); 2115 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 2116 apic->divide_count, old_divisor); 2117 2118 apic->lapic_timer.tscdeadline += 2119 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 2120 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2121 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2122 } 2123 2124 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2125 { 2126 ktime_t now; 2127 u64 tscl = rdtsc(); 2128 s64 deadline; 2129 2130 now = ktime_get(); 2131 apic->lapic_timer.period = 2132 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2133 2134 if (!apic->lapic_timer.period) { 2135 apic->lapic_timer.tscdeadline = 0; 2136 return false; 2137 } 2138 2139 limit_periodic_timer_frequency(apic); 2140 deadline = apic->lapic_timer.period; 2141 2142 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2143 if (unlikely(count_reg != APIC_TMICT)) { 2144 deadline = tmict_to_ns(apic, 2145 kvm_lapic_get_reg(apic, count_reg)); 2146 if (unlikely(deadline <= 0)) { 2147 if (apic_lvtt_period(apic)) 2148 deadline = apic->lapic_timer.period; 2149 else 2150 deadline = 0; 2151 } 2152 else if (unlikely(deadline > apic->lapic_timer.period)) { 2153 pr_info_ratelimited( 2154 "vcpu %i: requested lapic timer restore with " 2155 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2156 "Using initial count to start timer.\n", 2157 apic->vcpu->vcpu_id, 2158 count_reg, 2159 kvm_lapic_get_reg(apic, count_reg), 2160 deadline, apic->lapic_timer.period); 2161 kvm_lapic_set_reg(apic, count_reg, 0); 2162 deadline = apic->lapic_timer.period; 2163 } 2164 } 2165 } 2166 2167 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2168 nsec_to_cycles(apic->vcpu, deadline); 2169 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2170 2171 return true; 2172 } 2173 2174 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2175 { 2176 struct kvm_timer *ktimer = &apic->lapic_timer; 2177 ktime_t now = ktime_get(); 2178 u64 tscl = rdtsc(); 2179 ktime_t delta; 2180 2181 /* 2182 * Use kernel time as the time source for both the hrtimer deadline and 2183 * TSC-based deadline so that they stay synchronized. Computing each 2184 * deadline independently will cause the two deadlines to drift apart 2185 * over time as differences in the periods accumulate, e.g. due to 2186 * differences in the underlying clocks or numerical approximation errors. 2187 */ 2188 ktimer->target_expiration = ktime_add_ns(ktimer->target_expiration, 2189 ktimer->period); 2190 2191 /* 2192 * If the new expiration is in the past, e.g. because userspace stopped 2193 * running the VM for an extended duration, then force the expiration 2194 * to "now" and don't try to play catch-up with the missed events. KVM 2195 * will only deliver a single interrupt regardless of how many events 2196 * are pending, i.e. restarting the timer with an expiration in the 2197 * past will do nothing more than waste host cycles, and can even lead 2198 * to a hard lockup in extreme cases. 2199 */ 2200 if (ktime_before(ktimer->target_expiration, now)) 2201 ktimer->target_expiration = now; 2202 2203 /* 2204 * Note, ensuring the expiration isn't in the past also prevents delta 2205 * from going negative, which could cause the TSC deadline to become 2206 * excessively large due to it an unsigned value. 2207 */ 2208 delta = ktime_sub(ktimer->target_expiration, now); 2209 ktimer->tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2210 nsec_to_cycles(apic->vcpu, delta); 2211 } 2212 2213 static void start_sw_period(struct kvm_lapic *apic) 2214 { 2215 if (!apic->lapic_timer.period) 2216 return; 2217 2218 if (ktime_after(ktime_get(), 2219 apic->lapic_timer.target_expiration)) { 2220 apic_timer_expired(apic, false); 2221 2222 if (apic_lvtt_oneshot(apic)) 2223 return; 2224 2225 advance_periodic_target_expiration(apic); 2226 } 2227 2228 hrtimer_start(&apic->lapic_timer.timer, 2229 apic->lapic_timer.target_expiration, 2230 HRTIMER_MODE_ABS_HARD); 2231 } 2232 2233 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2234 { 2235 if (!lapic_in_kernel(vcpu)) 2236 return false; 2237 2238 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2239 } 2240 2241 static void cancel_hv_timer(struct kvm_lapic *apic) 2242 { 2243 WARN_ON(preemptible()); 2244 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2245 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2246 apic->lapic_timer.hv_timer_in_use = false; 2247 } 2248 2249 static bool start_hv_timer(struct kvm_lapic *apic) 2250 { 2251 struct kvm_timer *ktimer = &apic->lapic_timer; 2252 struct kvm_vcpu *vcpu = apic->vcpu; 2253 bool expired; 2254 2255 WARN_ON(preemptible()); 2256 if (!kvm_can_use_hv_timer(vcpu)) 2257 return false; 2258 2259 if (!ktimer->tscdeadline) 2260 return false; 2261 2262 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2263 return false; 2264 2265 ktimer->hv_timer_in_use = true; 2266 hrtimer_cancel(&ktimer->timer); 2267 2268 /* 2269 * To simplify handling the periodic timer, leave the hv timer running 2270 * even if the deadline timer has expired, i.e. rely on the resulting 2271 * VM-Exit to recompute the periodic timer's target expiration. 2272 */ 2273 if (!apic_lvtt_period(apic)) { 2274 /* 2275 * Cancel the hv timer if the sw timer fired while the hv timer 2276 * was being programmed, or if the hv timer itself expired. 2277 */ 2278 if (atomic_read(&ktimer->pending)) { 2279 cancel_hv_timer(apic); 2280 } else if (expired) { 2281 apic_timer_expired(apic, false); 2282 cancel_hv_timer(apic); 2283 } 2284 } 2285 2286 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2287 2288 return true; 2289 } 2290 2291 static void start_sw_timer(struct kvm_lapic *apic) 2292 { 2293 struct kvm_timer *ktimer = &apic->lapic_timer; 2294 2295 WARN_ON(preemptible()); 2296 if (apic->lapic_timer.hv_timer_in_use) 2297 cancel_hv_timer(apic); 2298 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2299 return; 2300 2301 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2302 start_sw_period(apic); 2303 else if (apic_lvtt_tscdeadline(apic)) 2304 start_sw_tscdeadline(apic); 2305 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2306 } 2307 2308 static void restart_apic_timer(struct kvm_lapic *apic) 2309 { 2310 preempt_disable(); 2311 2312 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2313 goto out; 2314 2315 if (!start_hv_timer(apic)) 2316 start_sw_timer(apic); 2317 out: 2318 preempt_enable(); 2319 } 2320 2321 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2322 { 2323 struct kvm_lapic *apic = vcpu->arch.apic; 2324 2325 preempt_disable(); 2326 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2327 if (!apic->lapic_timer.hv_timer_in_use) 2328 goto out; 2329 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2330 apic_timer_expired(apic, false); 2331 cancel_hv_timer(apic); 2332 2333 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2334 advance_periodic_target_expiration(apic); 2335 restart_apic_timer(apic); 2336 } 2337 out: 2338 preempt_enable(); 2339 } 2340 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_expired_hv_timer); 2341 2342 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2343 { 2344 restart_apic_timer(vcpu->arch.apic); 2345 } 2346 2347 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2348 { 2349 struct kvm_lapic *apic = vcpu->arch.apic; 2350 2351 preempt_disable(); 2352 /* Possibly the TSC deadline timer is not enabled yet */ 2353 if (apic->lapic_timer.hv_timer_in_use) 2354 start_sw_timer(apic); 2355 preempt_enable(); 2356 } 2357 2358 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2359 { 2360 struct kvm_lapic *apic = vcpu->arch.apic; 2361 2362 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2363 restart_apic_timer(apic); 2364 } 2365 2366 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2367 { 2368 atomic_set(&apic->lapic_timer.pending, 0); 2369 2370 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2371 && !set_target_expiration(apic, count_reg)) 2372 return; 2373 2374 restart_apic_timer(apic); 2375 } 2376 2377 static void start_apic_timer(struct kvm_lapic *apic) 2378 { 2379 __start_apic_timer(apic, APIC_TMICT); 2380 } 2381 2382 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2383 { 2384 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2385 2386 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2387 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2388 if (lvt0_in_nmi_mode) { 2389 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2390 } else 2391 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2392 } 2393 } 2394 2395 static int get_lvt_index(u32 reg) 2396 { 2397 if (reg == APIC_LVTCMCI) 2398 return LVT_CMCI; 2399 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2400 return -1; 2401 return array_index_nospec( 2402 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2403 } 2404 2405 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2406 { 2407 int ret = 0; 2408 2409 trace_kvm_apic_write(reg, val); 2410 2411 switch (reg) { 2412 case APIC_ID: /* Local APIC ID */ 2413 if (!apic_x2apic_mode(apic)) { 2414 kvm_apic_set_xapic_id(apic, val >> 24); 2415 } else { 2416 ret = 1; 2417 } 2418 break; 2419 2420 case APIC_TASKPRI: 2421 report_tpr_access(apic, true); 2422 apic_set_tpr(apic, val & 0xff); 2423 break; 2424 2425 case APIC_EOI: 2426 apic_set_eoi(apic); 2427 break; 2428 2429 case APIC_LDR: 2430 if (!apic_x2apic_mode(apic)) 2431 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2432 else 2433 ret = 1; 2434 break; 2435 2436 case APIC_DFR: 2437 if (!apic_x2apic_mode(apic)) 2438 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2439 else 2440 ret = 1; 2441 break; 2442 2443 case APIC_SPIV: { 2444 u32 mask = 0x3ff; 2445 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2446 mask |= APIC_SPIV_DIRECTED_EOI; 2447 apic_set_spiv(apic, val & mask); 2448 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2449 int i; 2450 2451 for (i = 0; i < apic->nr_lvt_entries; i++) { 2452 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2453 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2454 } 2455 apic_update_lvtt(apic); 2456 atomic_set(&apic->lapic_timer.pending, 0); 2457 2458 } 2459 break; 2460 } 2461 case APIC_ICR: 2462 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2463 2464 /* No delay here, so we always clear the pending bit */ 2465 val &= ~APIC_ICR_BUSY; 2466 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2467 kvm_lapic_set_reg(apic, APIC_ICR, val); 2468 break; 2469 case APIC_ICR2: 2470 if (apic_x2apic_mode(apic)) 2471 ret = 1; 2472 else 2473 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2474 break; 2475 2476 case APIC_LVT0: 2477 apic_manage_nmi_watchdog(apic, val); 2478 fallthrough; 2479 case APIC_LVTTHMR: 2480 case APIC_LVTPC: 2481 case APIC_LVT1: 2482 case APIC_LVTERR: 2483 case APIC_LVTCMCI: { 2484 u32 index = get_lvt_index(reg); 2485 if (!kvm_lapic_lvt_supported(apic, index)) { 2486 ret = 1; 2487 break; 2488 } 2489 if (!kvm_apic_sw_enabled(apic)) 2490 val |= APIC_LVT_MASKED; 2491 val &= apic_lvt_mask[index]; 2492 kvm_lapic_set_reg(apic, reg, val); 2493 break; 2494 } 2495 2496 case APIC_LVTT: 2497 if (!kvm_apic_sw_enabled(apic)) 2498 val |= APIC_LVT_MASKED; 2499 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2500 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2501 apic_update_lvtt(apic); 2502 break; 2503 2504 case APIC_TMICT: 2505 if (apic_lvtt_tscdeadline(apic)) 2506 break; 2507 2508 cancel_apic_timer(apic); 2509 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2510 start_apic_timer(apic); 2511 break; 2512 2513 case APIC_TDCR: { 2514 uint32_t old_divisor = apic->divide_count; 2515 2516 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2517 update_divide_count(apic); 2518 if (apic->divide_count != old_divisor && 2519 apic->lapic_timer.period) { 2520 hrtimer_cancel(&apic->lapic_timer.timer); 2521 update_target_expiration(apic, old_divisor); 2522 restart_apic_timer(apic); 2523 } 2524 break; 2525 } 2526 case APIC_ESR: 2527 if (apic_x2apic_mode(apic) && val != 0) 2528 ret = 1; 2529 break; 2530 2531 case APIC_SELF_IPI: 2532 /* 2533 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2534 * the vector, everything else is reserved. 2535 */ 2536 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2537 ret = 1; 2538 else 2539 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2540 break; 2541 default: 2542 ret = 1; 2543 break; 2544 } 2545 2546 /* 2547 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2548 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2549 * on relevant changes, i.e. this is a nop for most writes. 2550 */ 2551 kvm_recalculate_apic_map(apic->vcpu->kvm); 2552 2553 return ret; 2554 } 2555 2556 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2557 gpa_t address, int len, const void *data) 2558 { 2559 struct kvm_lapic *apic = to_lapic(this); 2560 unsigned int offset = address - apic->base_address; 2561 u32 val; 2562 2563 if (!apic_mmio_in_range(apic, address)) 2564 return -EOPNOTSUPP; 2565 2566 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2567 if (!kvm_check_has_quirk(vcpu->kvm, 2568 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2569 return -EOPNOTSUPP; 2570 2571 return 0; 2572 } 2573 2574 /* 2575 * APIC register must be aligned on 128-bits boundary. 2576 * 32/64/128 bits registers must be accessed thru 32 bits. 2577 * Refer SDM 8.4.1 2578 */ 2579 if (len != 4 || (offset & 0xf)) 2580 return 0; 2581 2582 val = *(u32*)data; 2583 2584 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2585 2586 return 0; 2587 } 2588 2589 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2590 { 2591 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2592 } 2593 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_set_eoi); 2594 2595 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2596 2597 static int __kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data, bool fast) 2598 { 2599 if (data & X2APIC_ICR_RESERVED_BITS) 2600 return 1; 2601 2602 /* 2603 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2604 * only AMD requires it to be zero, Intel essentially just ignores the 2605 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2606 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2607 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2608 * sane way to provide consistent behavior with respect to hardware. 2609 */ 2610 data &= ~APIC_ICR_BUSY; 2611 2612 if (fast) { 2613 struct kvm_lapic_irq irq; 2614 int ignored; 2615 2616 kvm_icr_to_lapic_irq(apic, (u32)data, (u32)(data >> 32), &irq); 2617 2618 if (!kvm_irq_delivery_to_apic_fast(apic->vcpu->kvm, apic, &irq, 2619 &ignored)) 2620 return -EWOULDBLOCK; 2621 2622 trace_kvm_apic_ipi((u32)data, irq.dest_id); 2623 } else { 2624 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2625 } 2626 if (kvm_x86_ops.x2apic_icr_is_split) { 2627 kvm_lapic_set_reg(apic, APIC_ICR, data); 2628 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2629 } else { 2630 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2631 } 2632 trace_kvm_apic_write(APIC_ICR, data); 2633 return 0; 2634 } 2635 2636 static int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2637 { 2638 return __kvm_x2apic_icr_write(apic, data, false); 2639 } 2640 2641 int kvm_x2apic_icr_write_fast(struct kvm_lapic *apic, u64 data) 2642 { 2643 return __kvm_x2apic_icr_write(apic, data, true); 2644 } 2645 2646 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2647 { 2648 if (kvm_x86_ops.x2apic_icr_is_split) 2649 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2650 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2651 2652 return kvm_lapic_get_reg64(apic, APIC_ICR); 2653 } 2654 2655 /* emulate APIC access in a trap manner */ 2656 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2657 { 2658 struct kvm_lapic *apic = vcpu->arch.apic; 2659 2660 /* 2661 * ICR is a single 64-bit register when x2APIC is enabled, all others 2662 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2663 * go down the common path to get the upper half from ICR2. 2664 * 2665 * Note, using the write helpers may incur an unnecessary write to the 2666 * virtual APIC state, but KVM needs to conditionally modify the value 2667 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2668 * conditional branches is likely a wash relative to the cost of the 2669 * maybe-unecessary write, and both are in the noise anyways. 2670 */ 2671 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2672 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2673 else 2674 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2675 } 2676 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_write_nodecode); 2677 2678 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2679 { 2680 struct kvm_lapic *apic = vcpu->arch.apic; 2681 2682 if (!vcpu->arch.apic) { 2683 static_branch_dec(&kvm_has_noapic_vcpu); 2684 return; 2685 } 2686 2687 hrtimer_cancel(&apic->lapic_timer.timer); 2688 2689 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2690 static_branch_slow_dec_deferred(&apic_hw_disabled); 2691 2692 if (!apic->sw_enabled) 2693 static_branch_slow_dec_deferred(&apic_sw_disabled); 2694 2695 if (apic->regs) 2696 free_page((unsigned long)apic->regs); 2697 2698 kfree(apic); 2699 } 2700 2701 /* 2702 *---------------------------------------------------------------------- 2703 * LAPIC interface 2704 *---------------------------------------------------------------------- 2705 */ 2706 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2707 { 2708 struct kvm_lapic *apic = vcpu->arch.apic; 2709 2710 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2711 return 0; 2712 2713 return apic->lapic_timer.tscdeadline; 2714 } 2715 2716 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2717 { 2718 struct kvm_lapic *apic = vcpu->arch.apic; 2719 2720 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2721 return; 2722 2723 hrtimer_cancel(&apic->lapic_timer.timer); 2724 apic->lapic_timer.tscdeadline = data; 2725 start_apic_timer(apic); 2726 } 2727 2728 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2729 { 2730 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2731 } 2732 2733 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2734 { 2735 u64 tpr; 2736 2737 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2738 2739 return (tpr & 0xf0) >> 4; 2740 } 2741 2742 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2743 { 2744 u64 old_value = vcpu->arch.apic_base; 2745 struct kvm_lapic *apic = vcpu->arch.apic; 2746 2747 vcpu->arch.apic_base = value; 2748 2749 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2750 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2751 2752 if (!apic) 2753 return; 2754 2755 /* update jump label if enable bit changes */ 2756 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2757 if (value & MSR_IA32_APICBASE_ENABLE) { 2758 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2759 static_branch_slow_dec_deferred(&apic_hw_disabled); 2760 /* Check if there are APF page ready requests pending */ 2761 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2762 } else { 2763 static_branch_inc(&apic_hw_disabled.key); 2764 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2765 } 2766 } 2767 2768 if ((old_value ^ value) & X2APIC_ENABLE) { 2769 if (value & X2APIC_ENABLE) 2770 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2771 else if (value & MSR_IA32_APICBASE_ENABLE) 2772 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2773 } 2774 2775 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2776 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2777 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2778 } 2779 2780 apic->base_address = apic->vcpu->arch.apic_base & 2781 MSR_IA32_APICBASE_BASE; 2782 2783 if ((value & MSR_IA32_APICBASE_ENABLE) && 2784 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2785 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2786 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2787 } 2788 } 2789 2790 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2791 { 2792 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2793 enum lapic_mode new_mode = kvm_apic_mode(value); 2794 2795 if (vcpu->arch.apic_base == value) 2796 return 0; 2797 2798 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2799 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2800 2801 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2802 return 1; 2803 if (!host_initiated) { 2804 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2805 return 1; 2806 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2807 return 1; 2808 } 2809 2810 __kvm_apic_set_base(vcpu, value); 2811 kvm_recalculate_apic_map(vcpu->kvm); 2812 return 0; 2813 } 2814 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_set_base); 2815 2816 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2817 { 2818 struct kvm_lapic *apic = vcpu->arch.apic; 2819 2820 /* 2821 * When APICv is enabled, KVM must always search the IRR for a pending 2822 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2823 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2824 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2825 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2826 * the IRR at this time could race with IRQ delivery from hardware that 2827 * still sees APICv as being enabled. 2828 * 2829 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2830 * state prior to updating KVM's metadata caches, so that KVM 2831 * can safely search the IRR and set irr_pending accordingly. 2832 */ 2833 apic->irr_pending = true; 2834 2835 /* 2836 * Update SVI when APICv gets enabled, otherwise SVI won't reflect the 2837 * highest bit in vISR and the next accelerated EOI in the guest won't 2838 * be virtualized correctly (the CPU uses SVI to determine which vISR 2839 * vector to clear). 2840 */ 2841 if (apic->apicv_active) { 2842 apic->isr_count = 1; 2843 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 2844 } else { 2845 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2846 } 2847 2848 apic->highest_isr_cache = -1; 2849 } 2850 2851 int kvm_alloc_apic_access_page(struct kvm *kvm) 2852 { 2853 void __user *hva; 2854 2855 guard(mutex)(&kvm->slots_lock); 2856 2857 if (kvm->arch.apic_access_memslot_enabled || 2858 kvm->arch.apic_access_memslot_inhibited) 2859 return 0; 2860 2861 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2862 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2863 if (IS_ERR(hva)) 2864 return PTR_ERR(hva); 2865 2866 kvm->arch.apic_access_memslot_enabled = true; 2867 2868 return 0; 2869 } 2870 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_alloc_apic_access_page); 2871 2872 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2873 { 2874 struct kvm *kvm = vcpu->kvm; 2875 2876 if (!kvm->arch.apic_access_memslot_enabled) 2877 return; 2878 2879 kvm_vcpu_srcu_read_unlock(vcpu); 2880 2881 mutex_lock(&kvm->slots_lock); 2882 2883 if (kvm->arch.apic_access_memslot_enabled) { 2884 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2885 /* 2886 * Clear "enabled" after the memslot is deleted so that a 2887 * different vCPU doesn't get a false negative when checking 2888 * the flag out of slots_lock. No additional memory barrier is 2889 * needed as modifying memslots requires waiting other vCPUs to 2890 * drop SRCU (see above), and false positives are ok as the 2891 * flag is rechecked after acquiring slots_lock. 2892 */ 2893 kvm->arch.apic_access_memslot_enabled = false; 2894 2895 /* 2896 * Mark the memslot as inhibited to prevent reallocating the 2897 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2898 */ 2899 kvm->arch.apic_access_memslot_inhibited = true; 2900 } 2901 2902 mutex_unlock(&kvm->slots_lock); 2903 2904 kvm_vcpu_srcu_read_lock(vcpu); 2905 } 2906 2907 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2908 { 2909 struct kvm_lapic *apic = vcpu->arch.apic; 2910 u64 msr_val; 2911 int i; 2912 2913 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2914 2915 if (!init_event) { 2916 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2917 if (kvm_vcpu_is_reset_bsp(vcpu)) 2918 msr_val |= MSR_IA32_APICBASE_BSP; 2919 2920 /* 2921 * Use the inner helper to avoid an extra recalcuation of the 2922 * optimized APIC map if some other task has dirtied the map. 2923 * The recalculation needed for this vCPU will be done after 2924 * all APIC state has been initialized (see below). 2925 */ 2926 __kvm_apic_set_base(vcpu, msr_val); 2927 } 2928 2929 if (!apic) 2930 return; 2931 2932 /* Stop the timer in case it's a reset to an active apic */ 2933 hrtimer_cancel(&apic->lapic_timer.timer); 2934 2935 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2936 if (!init_event) 2937 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2938 kvm_apic_set_version(apic->vcpu); 2939 2940 for (i = 0; i < apic->nr_lvt_entries; i++) 2941 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2942 apic_update_lvtt(apic); 2943 if (kvm_vcpu_is_reset_bsp(vcpu) && 2944 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2945 kvm_lapic_set_reg(apic, APIC_LVT0, 2946 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2947 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2948 2949 kvm_apic_set_dfr(apic, 0xffffffffU); 2950 apic_set_spiv(apic, 0xff); 2951 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2952 if (!apic_x2apic_mode(apic)) 2953 kvm_apic_set_ldr(apic, 0); 2954 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2955 if (!apic_x2apic_mode(apic)) { 2956 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2957 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2958 } else { 2959 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2960 } 2961 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2962 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2963 for (i = 0; i < 8; i++) { 2964 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2965 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2966 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2967 } 2968 kvm_apic_update_apicv(vcpu); 2969 update_divide_count(apic); 2970 atomic_set(&apic->lapic_timer.pending, 0); 2971 2972 vcpu->arch.pv_eoi.msr_val = 0; 2973 apic_update_ppr(apic); 2974 if (apic->apicv_active) 2975 kvm_x86_call(apicv_post_state_restore)(vcpu); 2976 2977 vcpu->arch.apic_arb_prio = 0; 2978 vcpu->arch.apic_attention = 0; 2979 2980 kvm_recalculate_apic_map(vcpu->kvm); 2981 } 2982 2983 /* 2984 *---------------------------------------------------------------------- 2985 * timer interface 2986 *---------------------------------------------------------------------- 2987 */ 2988 2989 static bool lapic_is_periodic(struct kvm_lapic *apic) 2990 { 2991 return apic_lvtt_period(apic); 2992 } 2993 2994 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2995 { 2996 struct kvm_lapic *apic = vcpu->arch.apic; 2997 2998 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2999 return atomic_read(&apic->lapic_timer.pending); 3000 3001 return 0; 3002 } 3003 3004 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 3005 { 3006 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 3007 int vector, mode, trig_mode; 3008 int r; 3009 3010 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 3011 vector = reg & APIC_VECTOR_MASK; 3012 mode = reg & APIC_MODE_MASK; 3013 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 3014 3015 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 3016 if (r && lvt_type == APIC_LVTPC && 3017 guest_cpuid_is_intel_compatible(apic->vcpu)) 3018 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 3019 return r; 3020 } 3021 return 0; 3022 } 3023 3024 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 3025 { 3026 struct kvm_lapic *apic = vcpu->arch.apic; 3027 3028 if (apic) 3029 kvm_apic_local_deliver(apic, APIC_LVT0); 3030 } 3031 3032 static const struct kvm_io_device_ops apic_mmio_ops = { 3033 .read = apic_mmio_read, 3034 .write = apic_mmio_write, 3035 }; 3036 3037 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 3038 { 3039 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 3040 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 3041 3042 apic_timer_expired(apic, true); 3043 3044 if (lapic_is_periodic(apic) && !WARN_ON_ONCE(!apic->lapic_timer.period)) { 3045 advance_periodic_target_expiration(apic); 3046 hrtimer_set_expires(&ktimer->timer, ktimer->target_expiration); 3047 return HRTIMER_RESTART; 3048 } else 3049 return HRTIMER_NORESTART; 3050 } 3051 3052 int kvm_create_lapic(struct kvm_vcpu *vcpu) 3053 { 3054 struct kvm_lapic *apic; 3055 3056 if (!irqchip_in_kernel(vcpu->kvm)) { 3057 static_branch_inc(&kvm_has_noapic_vcpu); 3058 return 0; 3059 } 3060 3061 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 3062 if (!apic) 3063 goto nomem; 3064 3065 vcpu->arch.apic = apic; 3066 3067 if (kvm_x86_ops.alloc_apic_backing_page) 3068 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 3069 else 3070 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3071 if (!apic->regs) { 3072 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 3073 vcpu->vcpu_id); 3074 goto nomem_free_apic; 3075 } 3076 apic->vcpu = vcpu; 3077 3078 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 3079 3080 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, 3081 HRTIMER_MODE_ABS_HARD); 3082 if (lapic_timer_advance) 3083 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 3084 3085 /* 3086 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 3087 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 3088 */ 3089 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 3090 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 3091 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 3092 3093 /* 3094 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 3095 * will not get notified of any changes until this vCPU is visible to 3096 * other vCPUs (marked online and added to the set of vCPUs). 3097 * 3098 * Opportunistically mark APICv active as VMX in particularly is highly 3099 * unlikely to have inhibits. Ignore the current per-VM APICv state so 3100 * that vCPU creation is guaranteed to run with a deterministic value, 3101 * the request will ensure the vCPU gets the correct state before VM-Entry. 3102 */ 3103 if (enable_apicv) { 3104 apic->apicv_active = true; 3105 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 3106 } 3107 3108 return 0; 3109 nomem_free_apic: 3110 kfree(apic); 3111 vcpu->arch.apic = NULL; 3112 nomem: 3113 return -ENOMEM; 3114 } 3115 3116 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 3117 { 3118 struct kvm_lapic *apic = vcpu->arch.apic; 3119 u32 ppr; 3120 3121 if (!kvm_apic_present(vcpu)) 3122 return -1; 3123 3124 if (apic->guest_apic_protected) 3125 return -1; 3126 3127 __apic_update_ppr(apic, &ppr); 3128 return apic_has_interrupt_for_ppr(apic, ppr); 3129 } 3130 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_has_interrupt); 3131 3132 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 3133 { 3134 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 3135 3136 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 3137 return 1; 3138 if ((lvt0 & APIC_LVT_MASKED) == 0 && 3139 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 3140 return 1; 3141 return 0; 3142 } 3143 3144 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 3145 { 3146 struct kvm_lapic *apic = vcpu->arch.apic; 3147 3148 if (atomic_read(&apic->lapic_timer.pending) > 0) { 3149 kvm_apic_inject_pending_timer_irqs(apic); 3150 atomic_set(&apic->lapic_timer.pending, 0); 3151 } 3152 } 3153 3154 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 3155 { 3156 struct kvm_lapic *apic = vcpu->arch.apic; 3157 u32 ppr; 3158 3159 if (WARN_ON_ONCE(vector < 0 || !apic)) 3160 return; 3161 3162 /* 3163 * We get here even with APIC virtualization enabled, if doing 3164 * nested virtualization and L1 runs with the "acknowledge interrupt 3165 * on exit" mode. Then we cannot inject the interrupt via RVI, 3166 * because the process would deliver it through the IDT. 3167 */ 3168 3169 apic_clear_irr(vector, apic); 3170 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 3171 /* 3172 * For auto-EOI interrupts, there might be another pending 3173 * interrupt above PPR, so check whether to raise another 3174 * KVM_REQ_EVENT. 3175 */ 3176 apic_update_ppr(apic); 3177 } else { 3178 /* 3179 * For normal interrupts, PPR has been raised and there cannot 3180 * be a higher-priority pending interrupt---except if there was 3181 * a concurrent interrupt injection, but that would have 3182 * triggered KVM_REQ_EVENT already. 3183 */ 3184 apic_set_isr(vector, apic); 3185 __apic_update_ppr(apic, &ppr); 3186 } 3187 3188 } 3189 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_ack_interrupt); 3190 3191 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3192 struct kvm_lapic_state *s, bool set) 3193 { 3194 if (apic_x2apic_mode(vcpu->arch.apic)) { 3195 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3196 u32 *id = (u32 *)(s->regs + APIC_ID); 3197 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3198 u64 icr; 3199 3200 if (vcpu->kvm->arch.x2apic_format) { 3201 if (*id != x2apic_id) 3202 return -EINVAL; 3203 } else { 3204 /* 3205 * Ignore the userspace value when setting APIC state. 3206 * KVM's model is that the x2APIC ID is readonly, e.g. 3207 * KVM only supports delivering interrupts to KVM's 3208 * version of the x2APIC ID. However, for backwards 3209 * compatibility, don't reject attempts to set a 3210 * mismatched ID for userspace that hasn't opted into 3211 * x2apic_format. 3212 */ 3213 if (set) 3214 *id = x2apic_id; 3215 else 3216 *id = x2apic_id << 24; 3217 } 3218 3219 /* 3220 * In x2APIC mode, the LDR is fixed and based on the id. And 3221 * if the ICR is _not_ split, ICR is internally a single 64-bit 3222 * register, but needs to be split to ICR+ICR2 in userspace for 3223 * backwards compatibility. 3224 */ 3225 if (set) 3226 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3227 3228 if (!kvm_x86_ops.x2apic_icr_is_split) { 3229 if (set) { 3230 icr = apic_get_reg(s->regs, APIC_ICR) | 3231 (u64)apic_get_reg(s->regs, APIC_ICR2) << 32; 3232 apic_set_reg64(s->regs, APIC_ICR, icr); 3233 } else { 3234 icr = apic_get_reg64(s->regs, APIC_ICR); 3235 apic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3236 } 3237 } 3238 } 3239 3240 return 0; 3241 } 3242 3243 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3244 { 3245 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3246 3247 /* 3248 * Get calculated timer current count for remaining timer period (if 3249 * any) and store it in the returned register set. 3250 */ 3251 apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3252 3253 return kvm_apic_state_fixup(vcpu, s, false); 3254 } 3255 3256 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3257 { 3258 struct kvm_lapic *apic = vcpu->arch.apic; 3259 int r; 3260 3261 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3262 3263 /* set SPIV separately to get count of SW disabled APICs right */ 3264 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3265 3266 r = kvm_apic_state_fixup(vcpu, s, true); 3267 if (r) { 3268 kvm_recalculate_apic_map(vcpu->kvm); 3269 return r; 3270 } 3271 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3272 3273 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3274 kvm_recalculate_apic_map(vcpu->kvm); 3275 kvm_apic_set_version(vcpu); 3276 3277 apic_update_ppr(apic); 3278 cancel_apic_timer(apic); 3279 apic->lapic_timer.expired_tscdeadline = 0; 3280 apic_update_lvtt(apic); 3281 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3282 update_divide_count(apic); 3283 __start_apic_timer(apic, APIC_TMCCT); 3284 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3285 kvm_apic_update_apicv(vcpu); 3286 if (apic->apicv_active) 3287 kvm_x86_call(apicv_post_state_restore)(vcpu); 3288 kvm_make_request(KVM_REQ_EVENT, vcpu); 3289 3290 #ifdef CONFIG_KVM_IOAPIC 3291 if (ioapic_in_kernel(vcpu->kvm)) 3292 kvm_rtc_eoi_tracking_restore_one(vcpu); 3293 #endif 3294 3295 vcpu->arch.apic_arb_prio = 0; 3296 3297 return 0; 3298 } 3299 3300 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3301 { 3302 struct hrtimer *timer; 3303 3304 if (!lapic_in_kernel(vcpu) || 3305 kvm_can_post_timer_interrupt(vcpu)) 3306 return; 3307 3308 timer = &vcpu->arch.apic->lapic_timer.timer; 3309 if (hrtimer_cancel(timer)) 3310 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3311 } 3312 3313 /* 3314 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3315 * 3316 * Detect whether guest triggered PV EOI since the 3317 * last entry. If yes, set EOI on guests's behalf. 3318 * Clear PV EOI in guest memory in any case. 3319 */ 3320 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3321 struct kvm_lapic *apic) 3322 { 3323 int vector; 3324 /* 3325 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3326 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3327 * 3328 * KVM_APIC_PV_EOI_PENDING is unset: 3329 * -> host disabled PV EOI. 3330 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3331 * -> host enabled PV EOI, guest did not execute EOI yet. 3332 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3333 * -> host enabled PV EOI, guest executed EOI. 3334 */ 3335 BUG_ON(!pv_eoi_enabled(vcpu)); 3336 3337 if (pv_eoi_test_and_clr_pending(vcpu)) 3338 return; 3339 vector = apic_set_eoi(apic); 3340 trace_kvm_pv_eoi(apic, vector); 3341 } 3342 3343 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3344 { 3345 u32 data; 3346 3347 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3348 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3349 3350 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3351 return; 3352 3353 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3354 sizeof(u32))) 3355 return; 3356 3357 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3358 } 3359 3360 /* 3361 * apic_sync_pv_eoi_to_guest - called before vmentry 3362 * 3363 * Detect whether it's safe to enable PV EOI and 3364 * if yes do so. 3365 */ 3366 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3367 struct kvm_lapic *apic) 3368 { 3369 if (!pv_eoi_enabled(vcpu) || 3370 /* IRR set or many bits in ISR: could be nested. */ 3371 apic->irr_pending || 3372 /* Cache not set: could be safe but we don't bother. */ 3373 apic->highest_isr_cache == -1 || 3374 /* Need EOI to update ioapic. */ 3375 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3376 /* 3377 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3378 * so we need not do anything here. 3379 */ 3380 return; 3381 } 3382 3383 pv_eoi_set_pending(apic->vcpu); 3384 } 3385 3386 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3387 { 3388 u32 data, tpr; 3389 int max_irr, max_isr; 3390 struct kvm_lapic *apic = vcpu->arch.apic; 3391 3392 apic_sync_pv_eoi_to_guest(vcpu, apic); 3393 3394 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3395 return; 3396 3397 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3398 max_irr = apic_find_highest_irr(apic); 3399 if (max_irr < 0) 3400 max_irr = 0; 3401 max_isr = apic_find_highest_isr(apic); 3402 if (max_isr < 0) 3403 max_isr = 0; 3404 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3405 3406 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3407 sizeof(u32)); 3408 } 3409 3410 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3411 { 3412 if (vapic_addr) { 3413 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3414 &vcpu->arch.apic->vapic_cache, 3415 vapic_addr, sizeof(u32))) 3416 return -EINVAL; 3417 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3418 } else { 3419 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3420 } 3421 3422 vcpu->arch.apic->vapic_addr = vapic_addr; 3423 return 0; 3424 } 3425 3426 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3427 { 3428 u32 low; 3429 3430 if (reg == APIC_ICR) { 3431 *data = kvm_x2apic_icr_read(apic); 3432 return 0; 3433 } 3434 3435 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3436 return 1; 3437 3438 *data = low; 3439 3440 return 0; 3441 } 3442 3443 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3444 { 3445 /* 3446 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3447 * can be written as such, all other registers remain accessible only 3448 * through 32-bit reads/writes. 3449 */ 3450 if (reg == APIC_ICR) 3451 return kvm_x2apic_icr_write(apic, data); 3452 3453 /* Bits 63:32 are reserved in all other registers. */ 3454 if (data >> 32) 3455 return 1; 3456 3457 return kvm_lapic_reg_write(apic, reg, (u32)data); 3458 } 3459 3460 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3461 { 3462 struct kvm_lapic *apic = vcpu->arch.apic; 3463 u32 reg = (msr - APIC_BASE_MSR) << 4; 3464 3465 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3466 return 1; 3467 3468 return kvm_lapic_msr_write(apic, reg, data); 3469 } 3470 3471 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3472 { 3473 struct kvm_lapic *apic = vcpu->arch.apic; 3474 u32 reg = (msr - APIC_BASE_MSR) << 4; 3475 3476 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3477 return 1; 3478 3479 return kvm_lapic_msr_read(apic, reg, data); 3480 } 3481 3482 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3483 { 3484 if (!lapic_in_kernel(vcpu)) 3485 return 1; 3486 3487 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3488 } 3489 3490 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3491 { 3492 if (!lapic_in_kernel(vcpu)) 3493 return 1; 3494 3495 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3496 } 3497 3498 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3499 { 3500 u64 addr = data & ~KVM_MSR_ENABLED; 3501 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3502 unsigned long new_len; 3503 int ret; 3504 3505 if (!IS_ALIGNED(addr, 4)) 3506 return 1; 3507 3508 if (data & KVM_MSR_ENABLED) { 3509 if (addr == ghc->gpa && len <= ghc->len) 3510 new_len = ghc->len; 3511 else 3512 new_len = len; 3513 3514 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3515 if (ret) 3516 return ret; 3517 } 3518 3519 vcpu->arch.pv_eoi.msr_val = data; 3520 3521 return 0; 3522 } 3523 3524 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3525 { 3526 struct kvm_lapic *apic = vcpu->arch.apic; 3527 u8 sipi_vector; 3528 int r; 3529 3530 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3531 return 0; 3532 3533 if (is_guest_mode(vcpu)) { 3534 r = kvm_check_nested_events(vcpu); 3535 if (r < 0) 3536 return r == -EBUSY ? 0 : r; 3537 /* 3538 * Continue processing INIT/SIPI even if a nested VM-Exit 3539 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3540 * are blocked as a result of transitioning to VMX root mode. 3541 */ 3542 } 3543 3544 /* 3545 * INITs are blocked while CPU is in specific states (SMM, VMX root 3546 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3547 * wait-for-SIPI (WFS). 3548 */ 3549 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3550 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3551 return 0; 3552 } 3553 3554 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3555 kvm_vcpu_reset(vcpu, true); 3556 if (kvm_vcpu_is_bsp(apic->vcpu)) 3557 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3558 else 3559 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 3560 } 3561 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3562 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3563 /* evaluate pending_events before reading the vector */ 3564 smp_rmb(); 3565 sipi_vector = apic->sipi_vector; 3566 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3567 sipi_vector); 3568 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3569 } 3570 } 3571 return 0; 3572 } 3573 3574 void kvm_lapic_exit(void) 3575 { 3576 static_key_deferred_flush(&apic_hw_disabled); 3577 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3578 static_key_deferred_flush(&apic_sw_disabled); 3579 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3580 } 3581