1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 * Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <sound/core.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/initval.h>
20 #include <sound/soc.h>
21 #include <sound/dmaengine_pcm.h>
22
23 #include "omap-mcbsp-priv.h"
24 #include "omap-mcbsp.h"
25 #include "sdma-pcm.h"
26
27 #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
28
29 enum {
30 OMAP_MCBSP_WORD_8 = 0,
31 OMAP_MCBSP_WORD_12,
32 OMAP_MCBSP_WORD_16,
33 OMAP_MCBSP_WORD_20,
34 OMAP_MCBSP_WORD_24,
35 OMAP_MCBSP_WORD_32,
36 };
37
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)38 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
39 {
40 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
41 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2));
42 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1));
43 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2));
44 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1));
45 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
46 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
47 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2));
48 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1));
49 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2));
50 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1));
51 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
52 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
53 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0));
54 dev_dbg(mcbsp->dev, "***********************\n");
55 }
56
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)57 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
58 {
59 struct clk *fck_src;
60 const char *src;
61 int r;
62
63 if (fck_src_id == MCBSP_CLKS_PAD_SRC)
64 src = "pad_fck";
65 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
66 src = "prcm_fck";
67 else
68 return -EINVAL;
69
70 fck_src = clk_get(mcbsp->dev, src);
71 if (IS_ERR(fck_src)) {
72 dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
73 return 0;
74 }
75
76 if (mcbsp->active)
77 pm_runtime_put_sync(mcbsp->dev);
78
79 r = clk_set_parent(mcbsp->fclk, fck_src);
80 if (r)
81 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 src);
83
84 if (mcbsp->active)
85 pm_runtime_get_sync(mcbsp->dev);
86
87 clk_put(fck_src);
88
89 return r;
90 }
91
omap_mcbsp_irq_handler(int irq,void * data)92 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
93 {
94 struct omap_mcbsp *mcbsp = data;
95 u16 irqst;
96
97 irqst = MCBSP_READ(mcbsp, IRQST);
98 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
99
100 if (irqst & RSYNCERREN)
101 dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
102 if (irqst & RFSREN)
103 dev_dbg(mcbsp->dev, "RX Frame Sync\n");
104 if (irqst & REOFEN)
105 dev_dbg(mcbsp->dev, "RX End Of Frame\n");
106 if (irqst & RRDYEN)
107 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
108 if (irqst & RUNDFLEN)
109 dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
110 if (irqst & ROVFLEN)
111 dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
112
113 if (irqst & XSYNCERREN)
114 dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
115 if (irqst & XFSXEN)
116 dev_dbg(mcbsp->dev, "TX Frame Sync\n");
117 if (irqst & XEOFEN)
118 dev_dbg(mcbsp->dev, "TX End Of Frame\n");
119 if (irqst & XRDYEN)
120 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
121 if (irqst & XUNDFLEN)
122 dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
123 if (irqst & XOVFLEN)
124 dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
125 if (irqst & XEMPTYEOFEN)
126 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
127
128 MCBSP_WRITE(mcbsp, IRQST, irqst);
129
130 return IRQ_HANDLED;
131 }
132
omap_mcbsp_tx_irq_handler(int irq,void * data)133 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
134 {
135 struct omap_mcbsp *mcbsp = data;
136 u16 irqst_spcr2;
137
138 irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
139 dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
140
141 if (irqst_spcr2 & XSYNC_ERR) {
142 dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
143 irqst_spcr2);
144 /* Writing zero to XSYNC_ERR clears the IRQ */
145 MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
146 }
147
148 return IRQ_HANDLED;
149 }
150
omap_mcbsp_rx_irq_handler(int irq,void * data)151 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
152 {
153 struct omap_mcbsp *mcbsp = data;
154 u16 irqst_spcr1;
155
156 irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
157 dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
158
159 if (irqst_spcr1 & RSYNC_ERR) {
160 dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
161 irqst_spcr1);
162 /* Writing zero to RSYNC_ERR clears the IRQ */
163 MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
164 }
165
166 return IRQ_HANDLED;
167 }
168
169 /*
170 * omap_mcbsp_config simply write a config to the
171 * appropriate McBSP.
172 * You either call this function or set the McBSP registers
173 * by yourself before calling omap_mcbsp_start().
174 */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)175 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
176 const struct omap_mcbsp_reg_cfg *config)
177 {
178 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
179 mcbsp->id, mcbsp->phys_base);
180
181 /* We write the given config */
182 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
183 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
184 MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
185 MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
186 MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
187 MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
188 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
189 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
190 MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
191 MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
192 MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
193 if (mcbsp->pdata->has_ccr) {
194 MCBSP_WRITE(mcbsp, XCCR, config->xccr);
195 MCBSP_WRITE(mcbsp, RCCR, config->rccr);
196 }
197 /* Enable wakeup behavior */
198 if (mcbsp->pdata->has_wakeup)
199 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
200
201 /* Enable TX/RX sync error interrupts by default */
202 if (mcbsp->irq)
203 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
204 RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
205 }
206
207 /**
208 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
209 * @mcbsp: omap_mcbsp struct for the McBSP instance
210 * @stream: Stream direction (playback/capture)
211 *
212 * Returns the address of mcbsp data transmit register or data receive register
213 * to be used by DMA for transferring/receiving data
214 */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)215 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
216 unsigned int stream)
217 {
218 int data_reg;
219
220 if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
221 if (mcbsp->pdata->reg_size == 2)
222 data_reg = OMAP_MCBSP_REG_DXR1;
223 else
224 data_reg = OMAP_MCBSP_REG_DXR;
225 } else {
226 if (mcbsp->pdata->reg_size == 2)
227 data_reg = OMAP_MCBSP_REG_DRR1;
228 else
229 data_reg = OMAP_MCBSP_REG_DRR;
230 }
231
232 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
233 }
234
235 /*
236 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
237 * The threshold parameter is 1 based, and it is converted (threshold - 1)
238 * for the THRSH2 register.
239 */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)240 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
241 {
242 if (threshold && threshold <= mcbsp->max_tx_thres)
243 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
244 }
245
246 /*
247 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
248 * The threshold parameter is 1 based, and it is converted (threshold - 1)
249 * for the THRSH1 register.
250 */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)251 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
252 {
253 if (threshold && threshold <= mcbsp->max_rx_thres)
254 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
255 }
256
257 /*
258 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
259 */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)260 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
261 {
262 u16 buffstat;
263
264 /* Returns the number of free locations in the buffer */
265 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
266
267 /* Number of slots are different in McBSP ports */
268 return mcbsp->pdata->buffer_size - buffstat;
269 }
270
271 /*
272 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
273 * to reach the threshold value (when the DMA will be triggered to read it)
274 */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)275 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
276 {
277 u16 buffstat, threshold;
278
279 /* Returns the number of used locations in the buffer */
280 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
281 /* RX threshold */
282 threshold = MCBSP_READ(mcbsp, THRSH1);
283
284 /* Return the number of location till we reach the threshold limit */
285 if (threshold <= buffstat)
286 return 0;
287 else
288 return threshold - buffstat;
289 }
290
omap_mcbsp_request(struct omap_mcbsp * mcbsp)291 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
292 {
293 void *reg_cache;
294 int err;
295
296 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
297 if (!reg_cache)
298 return -ENOMEM;
299
300 spin_lock(&mcbsp->lock);
301 if (!mcbsp->free) {
302 dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
303 err = -EBUSY;
304 goto err_kfree;
305 }
306
307 mcbsp->free = false;
308 mcbsp->reg_cache = reg_cache;
309 spin_unlock(&mcbsp->lock);
310
311 if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
312 mcbsp->pdata->ops->request(mcbsp->id - 1);
313
314 /*
315 * Make sure that transmitter, receiver and sample-rate generator are
316 * not running before activating IRQs.
317 */
318 MCBSP_WRITE(mcbsp, SPCR1, 0);
319 MCBSP_WRITE(mcbsp, SPCR2, 0);
320
321 if (mcbsp->irq) {
322 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
323 "McBSP", (void *)mcbsp);
324 if (err != 0) {
325 dev_err(mcbsp->dev, "Unable to request IRQ\n");
326 goto err_clk_disable;
327 }
328 } else {
329 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
330 "McBSP TX", (void *)mcbsp);
331 if (err != 0) {
332 dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
333 goto err_clk_disable;
334 }
335
336 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
337 "McBSP RX", (void *)mcbsp);
338 if (err != 0) {
339 dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
340 goto err_free_irq;
341 }
342 }
343
344 return 0;
345 err_free_irq:
346 free_irq(mcbsp->tx_irq, (void *)mcbsp);
347 err_clk_disable:
348 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
349 mcbsp->pdata->ops->free(mcbsp->id - 1);
350
351 /* Disable wakeup behavior */
352 if (mcbsp->pdata->has_wakeup)
353 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
354
355 spin_lock(&mcbsp->lock);
356 mcbsp->free = true;
357 mcbsp->reg_cache = NULL;
358 err_kfree:
359 spin_unlock(&mcbsp->lock);
360 kfree(reg_cache);
361
362 return err;
363 }
364
omap_mcbsp_free(struct omap_mcbsp * mcbsp)365 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
366 {
367 void *reg_cache;
368
369 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
370 mcbsp->pdata->ops->free(mcbsp->id - 1);
371
372 /* Disable wakeup behavior */
373 if (mcbsp->pdata->has_wakeup)
374 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
375
376 /* Disable interrupt requests */
377 if (mcbsp->irq) {
378 MCBSP_WRITE(mcbsp, IRQEN, 0);
379
380 free_irq(mcbsp->irq, (void *)mcbsp);
381 } else {
382 free_irq(mcbsp->rx_irq, (void *)mcbsp);
383 free_irq(mcbsp->tx_irq, (void *)mcbsp);
384 }
385
386 reg_cache = mcbsp->reg_cache;
387
388 /*
389 * Select CLKS source from internal source unconditionally before
390 * marking the McBSP port as free.
391 * If the external clock source via MCBSP_CLKS pin has been selected the
392 * system will refuse to enter idle if the CLKS pin source is not reset
393 * back to internal source.
394 */
395 if (!mcbsp_omap1())
396 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
397
398 spin_lock(&mcbsp->lock);
399 if (mcbsp->free)
400 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
401 else
402 mcbsp->free = true;
403 mcbsp->reg_cache = NULL;
404 spin_unlock(&mcbsp->lock);
405
406 kfree(reg_cache);
407 }
408
409 /*
410 * Here we start the McBSP, by enabling transmitter, receiver or both.
411 * If no transmitter or receiver is active prior calling, then sample-rate
412 * generator and frame sync are started.
413 */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int stream)414 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
415 {
416 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
417 int rx = !tx;
418 int enable_srg = 0;
419 u16 w;
420
421 if (mcbsp->st_data)
422 omap_mcbsp_st_start(mcbsp);
423
424 /* Only enable SRG, if McBSP is master */
425 w = MCBSP_READ_CACHE(mcbsp, PCR0);
426 if (w & (FSXM | FSRM | CLKXM | CLKRM))
427 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
428 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
429
430 if (enable_srg) {
431 /* Start the sample generator */
432 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
433 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
434 }
435
436 /* Enable transmitter and receiver */
437 tx &= 1;
438 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
439 MCBSP_WRITE(mcbsp, SPCR2, w | tx);
440
441 rx &= 1;
442 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
443 MCBSP_WRITE(mcbsp, SPCR1, w | rx);
444
445 /*
446 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
447 * REVISIT: 100us may give enough time for two CLKSRG, however
448 * due to some unknown PM related, clock gating etc. reason it
449 * is now at 500us.
450 */
451 udelay(500);
452
453 if (enable_srg) {
454 /* Start frame sync */
455 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
456 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
457 }
458
459 if (mcbsp->pdata->has_ccr) {
460 /* Release the transmitter and receiver */
461 w = MCBSP_READ_CACHE(mcbsp, XCCR);
462 w &= ~(tx ? XDISABLE : 0);
463 MCBSP_WRITE(mcbsp, XCCR, w);
464 w = MCBSP_READ_CACHE(mcbsp, RCCR);
465 w &= ~(rx ? RDISABLE : 0);
466 MCBSP_WRITE(mcbsp, RCCR, w);
467 }
468
469 /* Dump McBSP Regs */
470 omap_mcbsp_dump_reg(mcbsp);
471 }
472
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int stream)473 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
474 {
475 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
476 int rx = !tx;
477 int idle;
478 u16 w;
479
480 /* Reset transmitter */
481 tx &= 1;
482 if (mcbsp->pdata->has_ccr) {
483 w = MCBSP_READ_CACHE(mcbsp, XCCR);
484 w |= (tx ? XDISABLE : 0);
485 MCBSP_WRITE(mcbsp, XCCR, w);
486 }
487 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
488 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
489
490 /* Reset receiver */
491 rx &= 1;
492 if (mcbsp->pdata->has_ccr) {
493 w = MCBSP_READ_CACHE(mcbsp, RCCR);
494 w |= (rx ? RDISABLE : 0);
495 MCBSP_WRITE(mcbsp, RCCR, w);
496 }
497 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
498 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
499
500 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
501 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
502
503 if (idle) {
504 /* Reset the sample rate generator */
505 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
506 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
507 }
508
509 if (mcbsp->st_data)
510 omap_mcbsp_st_stop(mcbsp);
511 }
512
513 #define max_thres(m) (mcbsp->pdata->buffer_size)
514 #define valid_threshold(m, val) ((val) <= max_thres(m))
515 #define THRESHOLD_PROP_BUILDER(prop) \
516 static ssize_t prop##_show(struct device *dev, \
517 struct device_attribute *attr, char *buf) \
518 { \
519 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
520 \
521 return sysfs_emit(buf, "%u\n", mcbsp->prop); \
522 } \
523 \
524 static ssize_t prop##_store(struct device *dev, \
525 struct device_attribute *attr, \
526 const char *buf, size_t size) \
527 { \
528 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
529 unsigned long val; \
530 int status; \
531 \
532 status = kstrtoul(buf, 0, &val); \
533 if (status) \
534 return status; \
535 \
536 if (!valid_threshold(mcbsp, val)) \
537 return -EDOM; \
538 \
539 mcbsp->prop = val; \
540 return size; \
541 } \
542 \
543 static DEVICE_ATTR_RW(prop)
544
545 THRESHOLD_PROP_BUILDER(max_tx_thres);
546 THRESHOLD_PROP_BUILDER(max_rx_thres);
547
548 static const char * const dma_op_modes[] = {
549 "element", "threshold",
550 };
551
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t dma_op_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554 {
555 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
556 int dma_op_mode, i = 0;
557 ssize_t len = 0;
558 const char * const *s;
559
560 dma_op_mode = mcbsp->dma_op_mode;
561
562 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
563 if (dma_op_mode == i)
564 len += sysfs_emit_at(buf, len, "[%s] ", *s);
565 else
566 len += sysfs_emit_at(buf, len, "%s ", *s);
567 }
568 len += sysfs_emit_at(buf, len, "\n");
569
570 return len;
571 }
572
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)573 static ssize_t dma_op_mode_store(struct device *dev,
574 struct device_attribute *attr, const char *buf,
575 size_t size)
576 {
577 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
578 int i;
579
580 i = sysfs_match_string(dma_op_modes, buf);
581 if (i < 0)
582 return i;
583
584 spin_lock_irq(&mcbsp->lock);
585 if (!mcbsp->free) {
586 size = -EBUSY;
587 goto unlock;
588 }
589 mcbsp->dma_op_mode = i;
590
591 unlock:
592 spin_unlock_irq(&mcbsp->lock);
593
594 return size;
595 }
596
597 static DEVICE_ATTR_RW(dma_op_mode);
598
599 static const struct attribute *additional_attrs[] = {
600 &dev_attr_max_tx_thres.attr,
601 &dev_attr_max_rx_thres.attr,
602 &dev_attr_dma_op_mode.attr,
603 NULL,
604 };
605
606 static const struct attribute_group additional_attr_group = {
607 .attrs = (struct attribute **)additional_attrs,
608 };
609
610 /*
611 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
612 * 730 has only 2 McBSP, and both of them are MPU peripherals.
613 */
omap_mcbsp_init(struct platform_device * pdev)614 static int omap_mcbsp_init(struct platform_device *pdev)
615 {
616 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
617 struct resource *res;
618 int ret;
619
620 spin_lock_init(&mcbsp->lock);
621 mcbsp->free = true;
622
623 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
624 if (!res)
625 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626
627 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
628 if (IS_ERR(mcbsp->io_base))
629 return PTR_ERR(mcbsp->io_base);
630
631 mcbsp->phys_base = res->start;
632 mcbsp->reg_cache_size = resource_size(res);
633
634 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
635 if (!res)
636 mcbsp->phys_dma_base = mcbsp->phys_base;
637 else
638 mcbsp->phys_dma_base = res->start;
639
640 /*
641 * OMAP1, 2 uses two interrupt lines: TX, RX
642 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
643 * OMAP4 and newer SoC only have the combined IRQ line.
644 * Use the combined IRQ if available since it gives better debugging
645 * possibilities.
646 */
647 mcbsp->irq = platform_get_irq_byname(pdev, "common");
648 if (mcbsp->irq == -ENXIO) {
649 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
650
651 if (mcbsp->tx_irq == -ENXIO) {
652 mcbsp->irq = platform_get_irq(pdev, 0);
653 mcbsp->tx_irq = 0;
654 } else {
655 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
656 mcbsp->irq = 0;
657 }
658 }
659
660 if (!pdev->dev.of_node) {
661 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
662 if (!res) {
663 dev_err(&pdev->dev, "invalid tx DMA channel\n");
664 return -ENODEV;
665 }
666 mcbsp->dma_req[0] = res->start;
667 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
668
669 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
670 if (!res) {
671 dev_err(&pdev->dev, "invalid rx DMA channel\n");
672 return -ENODEV;
673 }
674 mcbsp->dma_req[1] = res->start;
675 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
676 } else {
677 mcbsp->dma_data[0].filter_data = "tx";
678 mcbsp->dma_data[1].filter_data = "rx";
679 }
680
681 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
682 SNDRV_PCM_STREAM_PLAYBACK);
683 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
684 SNDRV_PCM_STREAM_CAPTURE);
685
686 mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
687 if (IS_ERR(mcbsp->fclk)) {
688 ret = PTR_ERR(mcbsp->fclk);
689 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
690 return ret;
691 }
692
693 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
694 if (mcbsp->pdata->buffer_size) {
695 /*
696 * Initially configure the maximum thresholds to a safe value.
697 * The McBSP FIFO usage with these values should not go under
698 * 16 locations.
699 * If the whole FIFO without safety buffer is used, than there
700 * is a possibility that the DMA will be not able to push the
701 * new data on time, causing channel shifts in runtime.
702 */
703 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
704 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
705
706 ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
707 if (ret) {
708 dev_err(mcbsp->dev,
709 "Unable to create additional controls\n");
710 return ret;
711 }
712 }
713
714 return omap_mcbsp_st_init(pdev);
715 }
716
717 /*
718 * Stream DMA parameters. DMA request line and port address are set runtime
719 * since they are different between OMAP1 and later OMAPs
720 */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)721 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
722 unsigned int packet_size)
723 {
724 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
725 struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
726 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
727 int words;
728
729 /* No need to proceed further if McBSP does not have FIFO */
730 if (mcbsp->pdata->buffer_size == 0)
731 return;
732
733 /*
734 * Configure McBSP threshold based on either:
735 * packet_size, when the sDMA is in packet mode, or based on the
736 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
737 * for mono streams.
738 */
739 if (packet_size)
740 words = packet_size;
741 else
742 words = 1;
743
744 /* Configure McBSP internal buffer usage */
745 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
746 omap_mcbsp_set_tx_threshold(mcbsp, words);
747 else
748 omap_mcbsp_set_rx_threshold(mcbsp, words);
749 }
750
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)751 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
752 struct snd_pcm_hw_rule *rule)
753 {
754 struct snd_interval *buffer_size = hw_param_interval(params,
755 SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
756 struct snd_interval *channels = hw_param_interval(params,
757 SNDRV_PCM_HW_PARAM_CHANNELS);
758 struct omap_mcbsp *mcbsp = rule->private;
759 struct snd_interval frames;
760 int size;
761
762 snd_interval_any(&frames);
763 size = mcbsp->pdata->buffer_size;
764
765 frames.min = size / channels->min;
766 frames.integer = 1;
767 return snd_interval_refine(buffer_size, &frames);
768 }
769
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)770 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
771 struct snd_soc_dai *cpu_dai)
772 {
773 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
774 int err = 0;
775
776 if (!snd_soc_dai_active(cpu_dai))
777 err = omap_mcbsp_request(mcbsp);
778
779 /*
780 * OMAP3 McBSP FIFO is word structured.
781 * McBSP2 has 1024 + 256 = 1280 word long buffer,
782 * McBSP1,3,4,5 has 128 word long buffer
783 * This means that the size of the FIFO depends on the sample format.
784 * For example on McBSP3:
785 * 16bit samples: size is 128 * 2 = 256 bytes
786 * 32bit samples: size is 128 * 4 = 512 bytes
787 * It is simpler to place constraint for buffer and period based on
788 * channels.
789 * McBSP3 as example again (16 or 32 bit samples):
790 * 1 channel (mono): size is 128 frames (128 words)
791 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
792 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
793 */
794 if (mcbsp->pdata->buffer_size) {
795 /*
796 * Rule for the buffer size. We should not allow
797 * smaller buffer than the FIFO size to avoid underruns.
798 * This applies only for the playback stream.
799 */
800 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
801 snd_pcm_hw_rule_add(substream->runtime, 0,
802 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
803 omap_mcbsp_hwrule_min_buffersize,
804 mcbsp,
805 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
806
807 /* Make sure, that the period size is always even */
808 snd_pcm_hw_constraint_step(substream->runtime, 0,
809 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
810 }
811
812 return err;
813 }
814
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)815 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
816 struct snd_soc_dai *cpu_dai)
817 {
818 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
819 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
820 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
821 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
822
823 if (mcbsp->latency[stream2])
824 cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
825 mcbsp->latency[stream2]);
826 else if (mcbsp->latency[stream1])
827 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
828
829 mcbsp->latency[stream1] = 0;
830
831 if (!snd_soc_dai_active(cpu_dai)) {
832 omap_mcbsp_free(mcbsp);
833 mcbsp->configured = 0;
834 }
835 }
836
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)837 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
838 struct snd_soc_dai *cpu_dai)
839 {
840 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
841 struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
842 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
843 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
844 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
845 int latency = mcbsp->latency[stream2];
846
847 /* Prevent omap hardware from hitting off between FIFO fills */
848 if (!latency || mcbsp->latency[stream1] < latency)
849 latency = mcbsp->latency[stream1];
850
851 if (cpu_latency_qos_request_active(pm_qos_req))
852 cpu_latency_qos_update_request(pm_qos_req, latency);
853 else if (latency)
854 cpu_latency_qos_add_request(pm_qos_req, latency);
855
856 return 0;
857 }
858
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)859 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
860 struct snd_soc_dai *cpu_dai)
861 {
862 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
863
864 switch (cmd) {
865 case SNDRV_PCM_TRIGGER_START:
866 case SNDRV_PCM_TRIGGER_RESUME:
867 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
868 mcbsp->active++;
869 omap_mcbsp_start(mcbsp, substream->stream);
870 break;
871
872 case SNDRV_PCM_TRIGGER_STOP:
873 case SNDRV_PCM_TRIGGER_SUSPEND:
874 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
875 omap_mcbsp_stop(mcbsp, substream->stream);
876 mcbsp->active--;
877 break;
878 default:
879 return -EINVAL;
880 }
881
882 return 0;
883 }
884
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)885 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
886 struct snd_pcm_substream *substream,
887 struct snd_soc_dai *dai)
888 {
889 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
890 struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
891 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
892 u16 fifo_use;
893 snd_pcm_sframes_t delay;
894
895 /* No need to proceed further if McBSP does not have FIFO */
896 if (mcbsp->pdata->buffer_size == 0)
897 return 0;
898
899 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
900 fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
901 else
902 fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
903
904 /*
905 * Divide the used locations with the channel count to get the
906 * FIFO usage in samples (don't care about partial samples in the
907 * buffer).
908 */
909 delay = fifo_use / substream->runtime->channels;
910
911 return delay;
912 }
913
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)914 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
915 struct snd_pcm_hw_params *params,
916 struct snd_soc_dai *cpu_dai)
917 {
918 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
919 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
920 struct snd_dmaengine_dai_dma_data *dma_data;
921 int wlen, channels, wpf;
922 int pkt_size = 0;
923 unsigned int format, div, framesize, master;
924 unsigned int buffer_size = mcbsp->pdata->buffer_size;
925
926 dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
927 channels = params_channels(params);
928
929 switch (params_format(params)) {
930 case SNDRV_PCM_FORMAT_S16_LE:
931 wlen = 16;
932 break;
933 case SNDRV_PCM_FORMAT_S32_LE:
934 wlen = 32;
935 break;
936 default:
937 return -EINVAL;
938 }
939 if (buffer_size) {
940 int latency;
941
942 if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
943 int period_words, max_thrsh;
944 int divider = 0;
945
946 period_words = params_period_bytes(params) / (wlen / 8);
947 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
948 max_thrsh = mcbsp->max_tx_thres;
949 else
950 max_thrsh = mcbsp->max_rx_thres;
951 /*
952 * Use sDMA packet mode if McBSP is in threshold mode:
953 * If period words less than the FIFO size the packet
954 * size is set to the number of period words, otherwise
955 * Look for the biggest threshold value which divides
956 * the period size evenly.
957 */
958 divider = period_words / max_thrsh;
959 if (period_words % max_thrsh)
960 divider++;
961 while (period_words % divider &&
962 divider < period_words)
963 divider++;
964 if (divider == period_words)
965 return -EINVAL;
966
967 pkt_size = period_words / divider;
968 } else if (channels > 1) {
969 /* Use packet mode for non mono streams */
970 pkt_size = channels;
971 }
972
973 latency = (buffer_size - pkt_size) / channels;
974 latency = latency * USEC_PER_SEC /
975 (params->rate_num / params->rate_den);
976 mcbsp->latency[substream->stream] = latency;
977
978 omap_mcbsp_set_threshold(substream, pkt_size);
979 }
980
981 dma_data->maxburst = pkt_size;
982
983 if (mcbsp->configured) {
984 /* McBSP already configured by another stream */
985 return 0;
986 }
987
988 regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
989 regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
990 regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
991 regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
992 format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
993 wpf = channels;
994 if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
995 format == SND_SOC_DAIFMT_LEFT_J)) {
996 /* Use dual-phase frames */
997 regs->rcr2 |= RPHASE;
998 regs->xcr2 |= XPHASE;
999 /* Set 1 word per (McBSP) frame for phase1 and phase2 */
1000 wpf--;
1001 regs->rcr2 |= RFRLEN2(wpf - 1);
1002 regs->xcr2 |= XFRLEN2(wpf - 1);
1003 }
1004
1005 regs->rcr1 |= RFRLEN1(wpf - 1);
1006 regs->xcr1 |= XFRLEN1(wpf - 1);
1007
1008 switch (params_format(params)) {
1009 case SNDRV_PCM_FORMAT_S16_LE:
1010 /* Set word lengths */
1011 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
1012 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
1013 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
1014 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
1015 break;
1016 case SNDRV_PCM_FORMAT_S32_LE:
1017 /* Set word lengths */
1018 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
1019 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
1020 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
1021 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
1022 break;
1023 default:
1024 /* Unsupported PCM format */
1025 return -EINVAL;
1026 }
1027
1028 /* In McBSP master modes, FRAME (i.e. sample rate) is generated
1029 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1030 master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1031 if (master == SND_SOC_DAIFMT_BP_FP) {
1032 div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1033 framesize = (mcbsp->in_freq / div) / params_rate(params);
1034
1035 if (framesize < wlen * channels) {
1036 printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1037 "channels\n", __func__);
1038 return -EINVAL;
1039 }
1040 } else
1041 framesize = wlen * channels;
1042
1043 /* Set FS period and length in terms of bit clock periods */
1044 regs->srgr2 &= ~FPER(0xfff);
1045 regs->srgr1 &= ~FWID(0xff);
1046 switch (format) {
1047 case SND_SOC_DAIFMT_I2S:
1048 case SND_SOC_DAIFMT_LEFT_J:
1049 regs->srgr2 |= FPER(framesize - 1);
1050 regs->srgr1 |= FWID((framesize >> 1) - 1);
1051 break;
1052 case SND_SOC_DAIFMT_DSP_A:
1053 case SND_SOC_DAIFMT_DSP_B:
1054 regs->srgr2 |= FPER(framesize - 1);
1055 regs->srgr1 |= FWID(0);
1056 break;
1057 }
1058
1059 omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1060 mcbsp->wlen = wlen;
1061 mcbsp->configured = 1;
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1068 * cache is initialized here
1069 */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)1070 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1071 unsigned int fmt)
1072 {
1073 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1074 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1075 bool inv_fs = false;
1076
1077 if (mcbsp->configured)
1078 return 0;
1079
1080 mcbsp->fmt = fmt;
1081 memset(regs, 0, sizeof(*regs));
1082 /* Generic McBSP register settings */
1083 regs->spcr2 |= XINTM(3) | FREE;
1084 regs->spcr1 |= RINTM(3);
1085 /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1086 if (!mcbsp->pdata->has_ccr) {
1087 regs->rcr2 |= RFIG;
1088 regs->xcr2 |= XFIG;
1089 }
1090
1091 /* Configure XCCR/RCCR only for revisions which have ccr registers */
1092 if (mcbsp->pdata->has_ccr) {
1093 regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1094 regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1095 }
1096
1097 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1098 case SND_SOC_DAIFMT_I2S:
1099 /* 1-bit data delay */
1100 regs->rcr2 |= RDATDLY(1);
1101 regs->xcr2 |= XDATDLY(1);
1102 break;
1103 case SND_SOC_DAIFMT_LEFT_J:
1104 /* 0-bit data delay */
1105 regs->rcr2 |= RDATDLY(0);
1106 regs->xcr2 |= XDATDLY(0);
1107 regs->spcr1 |= RJUST(2);
1108 /* Invert FS polarity configuration */
1109 inv_fs = true;
1110 break;
1111 case SND_SOC_DAIFMT_DSP_A:
1112 /* 1-bit data delay */
1113 regs->rcr2 |= RDATDLY(1);
1114 regs->xcr2 |= XDATDLY(1);
1115 /* Invert FS polarity configuration */
1116 inv_fs = true;
1117 break;
1118 case SND_SOC_DAIFMT_DSP_B:
1119 /* 0-bit data delay */
1120 regs->rcr2 |= RDATDLY(0);
1121 regs->xcr2 |= XDATDLY(0);
1122 /* Invert FS polarity configuration */
1123 inv_fs = true;
1124 break;
1125 default:
1126 /* Unsupported data format */
1127 return -EINVAL;
1128 }
1129
1130 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1131 case SND_SOC_DAIFMT_BP_FP:
1132 /* McBSP master. Set FS and bit clocks as outputs */
1133 regs->pcr0 |= FSXM | FSRM |
1134 CLKXM | CLKRM;
1135 /* Sample rate generator drives the FS */
1136 regs->srgr2 |= FSGM;
1137 break;
1138 case SND_SOC_DAIFMT_BC_FP:
1139 /* McBSP slave. FS clock as output */
1140 regs->srgr2 |= FSGM;
1141 regs->pcr0 |= FSXM | FSRM;
1142 break;
1143 case SND_SOC_DAIFMT_BC_FC:
1144 /* McBSP slave */
1145 break;
1146 default:
1147 /* Unsupported master/slave configuration */
1148 return -EINVAL;
1149 }
1150
1151 /* Set bit clock (CLKX/CLKR) and FS polarities */
1152 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1153 case SND_SOC_DAIFMT_NB_NF:
1154 /*
1155 * Normal BCLK + FS.
1156 * FS active low. TX data driven on falling edge of bit clock
1157 * and RX data sampled on rising edge of bit clock.
1158 */
1159 regs->pcr0 |= FSXP | FSRP |
1160 CLKXP | CLKRP;
1161 break;
1162 case SND_SOC_DAIFMT_NB_IF:
1163 regs->pcr0 |= CLKXP | CLKRP;
1164 break;
1165 case SND_SOC_DAIFMT_IB_NF:
1166 regs->pcr0 |= FSXP | FSRP;
1167 break;
1168 case SND_SOC_DAIFMT_IB_IF:
1169 break;
1170 default:
1171 return -EINVAL;
1172 }
1173 if (inv_fs)
1174 regs->pcr0 ^= FSXP | FSRP;
1175
1176 return 0;
1177 }
1178
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)1179 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1180 int div_id, int div)
1181 {
1182 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1183 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1184
1185 if (div_id != OMAP_MCBSP_CLKGDV)
1186 return -ENODEV;
1187
1188 mcbsp->clk_div = div;
1189 regs->srgr1 &= ~CLKGDV(0xff);
1190 regs->srgr1 |= CLKGDV(div - 1);
1191
1192 return 0;
1193 }
1194
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)1195 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1196 int clk_id, unsigned int freq,
1197 int dir)
1198 {
1199 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1200 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1201 int err = 0;
1202
1203 if (mcbsp->active) {
1204 if (freq == mcbsp->in_freq)
1205 return 0;
1206 else
1207 return -EBUSY;
1208 }
1209
1210 mcbsp->in_freq = freq;
1211 regs->srgr2 &= ~CLKSM;
1212 regs->pcr0 &= ~SCLKME;
1213
1214 switch (clk_id) {
1215 case OMAP_MCBSP_SYSCLK_CLK:
1216 regs->srgr2 |= CLKSM;
1217 break;
1218 case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1219 if (mcbsp_omap1()) {
1220 err = -EINVAL;
1221 break;
1222 }
1223 err = omap2_mcbsp_set_clks_src(mcbsp,
1224 MCBSP_CLKS_PRCM_SRC);
1225 break;
1226 case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1227 if (mcbsp_omap1()) {
1228 err = 0;
1229 break;
1230 }
1231 err = omap2_mcbsp_set_clks_src(mcbsp,
1232 MCBSP_CLKS_PAD_SRC);
1233 break;
1234
1235 case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1236 regs->srgr2 |= CLKSM;
1237 regs->pcr0 |= SCLKME;
1238 /*
1239 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1240 * disable output on those pins. This enables to inject the
1241 * reference clock through CLKX/CLKR. For this to work
1242 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1243 */
1244 regs->pcr0 &= ~CLKXM;
1245 break;
1246 case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1247 regs->pcr0 |= SCLKME;
1248 /* Disable ouput on CLKR pin in master mode */
1249 regs->pcr0 &= ~CLKRM;
1250 break;
1251 default:
1252 err = -ENODEV;
1253 }
1254
1255 return err;
1256 }
1257
omap_mcbsp_probe(struct snd_soc_dai * dai)1258 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1259 {
1260 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1261
1262 pm_runtime_enable(mcbsp->dev);
1263
1264 snd_soc_dai_init_dma_data(dai,
1265 &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1266 &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1267
1268 return 0;
1269 }
1270
omap_mcbsp_remove(struct snd_soc_dai * dai)1271 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1272 {
1273 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1274
1275 pm_runtime_disable(mcbsp->dev);
1276
1277 return 0;
1278 }
1279
1280 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1281 .probe = omap_mcbsp_probe,
1282 .remove = omap_mcbsp_remove,
1283 .startup = omap_mcbsp_dai_startup,
1284 .shutdown = omap_mcbsp_dai_shutdown,
1285 .prepare = omap_mcbsp_dai_prepare,
1286 .trigger = omap_mcbsp_dai_trigger,
1287 .delay = omap_mcbsp_dai_delay,
1288 .hw_params = omap_mcbsp_dai_hw_params,
1289 .set_fmt = omap_mcbsp_dai_set_dai_fmt,
1290 .set_clkdiv = omap_mcbsp_dai_set_clkdiv,
1291 .set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
1292 };
1293
1294 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1295 .playback = {
1296 .channels_min = 1,
1297 .channels_max = 16,
1298 .rates = OMAP_MCBSP_RATES,
1299 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1300 },
1301 .capture = {
1302 .channels_min = 1,
1303 .channels_max = 16,
1304 .rates = OMAP_MCBSP_RATES,
1305 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1306 },
1307 .ops = &mcbsp_dai_ops,
1308 };
1309
1310 static const struct snd_soc_component_driver omap_mcbsp_component = {
1311 .name = "omap-mcbsp",
1312 .legacy_dai_naming = 1,
1313 };
1314
1315 static struct omap_mcbsp_platform_data omap2420_pdata = {
1316 .reg_step = 4,
1317 .reg_size = 2,
1318 };
1319
1320 static struct omap_mcbsp_platform_data omap2430_pdata = {
1321 .reg_step = 4,
1322 .reg_size = 4,
1323 .has_ccr = true,
1324 };
1325
1326 static struct omap_mcbsp_platform_data omap3_pdata = {
1327 .reg_step = 4,
1328 .reg_size = 4,
1329 .has_ccr = true,
1330 .has_wakeup = true,
1331 };
1332
1333 static struct omap_mcbsp_platform_data omap4_pdata = {
1334 .reg_step = 4,
1335 .reg_size = 4,
1336 .has_ccr = true,
1337 .has_wakeup = true,
1338 };
1339
1340 static const struct of_device_id omap_mcbsp_of_match[] = {
1341 {
1342 .compatible = "ti,omap2420-mcbsp",
1343 .data = &omap2420_pdata,
1344 },
1345 {
1346 .compatible = "ti,omap2430-mcbsp",
1347 .data = &omap2430_pdata,
1348 },
1349 {
1350 .compatible = "ti,omap3-mcbsp",
1351 .data = &omap3_pdata,
1352 },
1353 {
1354 .compatible = "ti,omap4-mcbsp",
1355 .data = &omap4_pdata,
1356 },
1357 { },
1358 };
1359 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1360
asoc_mcbsp_probe(struct platform_device * pdev)1361 static int asoc_mcbsp_probe(struct platform_device *pdev)
1362 {
1363 struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1364 const struct omap_mcbsp_platform_data *match_pdata =
1365 device_get_match_data(&pdev->dev);
1366 struct omap_mcbsp *mcbsp;
1367 int ret;
1368
1369 if (match_pdata) {
1370 struct device_node *node = pdev->dev.of_node;
1371 struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1372 int buffer_size;
1373
1374 pdata = devm_kmemdup(&pdev->dev, match_pdata,
1375 sizeof(struct omap_mcbsp_platform_data),
1376 GFP_KERNEL);
1377 if (!pdata)
1378 return -ENOMEM;
1379
1380 if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381 pdata->buffer_size = buffer_size;
1382 if (pdata_quirk)
1383 pdata->force_ick_on = pdata_quirk->force_ick_on;
1384 } else if (!pdata) {
1385 dev_err(&pdev->dev, "missing platform data.\n");
1386 return -EINVAL;
1387 }
1388 mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389 if (!mcbsp)
1390 return -ENOMEM;
1391
1392 mcbsp->id = pdev->id;
1393 mcbsp->pdata = pdata;
1394 mcbsp->dev = &pdev->dev;
1395 platform_set_drvdata(pdev, mcbsp);
1396
1397 ret = omap_mcbsp_init(pdev);
1398 if (ret)
1399 return ret;
1400
1401 if (mcbsp->pdata->reg_size == 2) {
1402 omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403 omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404 }
1405
1406 ret = devm_snd_soc_register_component(&pdev->dev,
1407 &omap_mcbsp_component,
1408 &omap_mcbsp_dai, 1);
1409 if (ret)
1410 return ret;
1411
1412 return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413 }
1414
asoc_mcbsp_remove(struct platform_device * pdev)1415 static void asoc_mcbsp_remove(struct platform_device *pdev)
1416 {
1417 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418
1419 if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420 mcbsp->pdata->ops->free(mcbsp->id);
1421
1422 if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1424 }
1425
1426 static struct platform_driver asoc_mcbsp_driver = {
1427 .driver = {
1428 .name = "omap-mcbsp",
1429 .of_match_table = omap_mcbsp_of_match,
1430 },
1431
1432 .probe = asoc_mcbsp_probe,
1433 .remove = asoc_mcbsp_remove,
1434 };
1435
1436 module_platform_driver(asoc_mcbsp_driver);
1437
1438 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1439 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1440 MODULE_LICENSE("GPL");
1441 MODULE_ALIAS("platform:omap-mcbsp");
1442