1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state);
39
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 {
42 struct irq_data *irqd = irq_desc_get_irq_data(desc);
43 bool inprogress;
44
45 do {
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 guard(raw_spinlock_irqsave)(&desc->lock);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 /* Oops, that failed? */
71 } while (inprogress);
72 }
73
74 /**
75 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
76 * @irq: interrupt number to wait for
77 *
78 * This function waits for any pending hard IRQ handlers for this interrupt
79 * to complete before returning. If you use this function while holding a
80 * resource the IRQ handler may need you will deadlock. It does not take
81 * associated threaded handlers into account.
82 *
83 * Do not use this for shutdown scenarios where you must be sure that all
84 * parts (hardirq and threaded handler) have completed.
85 *
86 * Returns: false if a threaded handler is active.
87 *
88 * This function may be called - with care - from IRQ context.
89 *
90 * It does not check whether there is an interrupt in flight at the
91 * hardware level, but not serviced yet, as this might deadlock when called
92 * with interrupts disabled and the target CPU of the interrupt is the
93 * current CPU.
94 */
synchronize_hardirq(unsigned int irq)95 bool synchronize_hardirq(unsigned int irq)
96 {
97 struct irq_desc *desc = irq_to_desc(irq);
98
99 if (desc) {
100 __synchronize_hardirq(desc, false);
101 return !atomic_read(&desc->threads_active);
102 }
103
104 return true;
105 }
106 EXPORT_SYMBOL(synchronize_hardirq);
107
__synchronize_irq(struct irq_desc * desc)108 static void __synchronize_irq(struct irq_desc *desc)
109 {
110 __synchronize_hardirq(desc, true);
111 /*
112 * We made sure that no hardirq handler is running. Now verify that no
113 * threaded handlers are active.
114 */
115 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
116 }
117
118 /**
119 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
120 * @irq: interrupt number to wait for
121 *
122 * This function waits for any pending IRQ handlers for this interrupt to
123 * complete before returning. If you use this function while holding a
124 * resource the IRQ handler may need you will deadlock.
125 *
126 * Can only be called from preemptible code as it might sleep when
127 * an interrupt thread is associated to @irq.
128 *
129 * It optionally makes sure (when the irq chip supports that method)
130 * that the interrupt is not pending in any CPU and waiting for
131 * service.
132 */
synchronize_irq(unsigned int irq)133 void synchronize_irq(unsigned int irq)
134 {
135 struct irq_desc *desc = irq_to_desc(irq);
136
137 if (desc)
138 __synchronize_irq(desc);
139 }
140 EXPORT_SYMBOL(synchronize_irq);
141
142 #ifdef CONFIG_SMP
143 cpumask_var_t irq_default_affinity;
144
__irq_can_set_affinity(struct irq_desc * desc)145 static bool __irq_can_set_affinity(struct irq_desc *desc)
146 {
147 if (!desc || !irqd_can_balance(&desc->irq_data) ||
148 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
149 return false;
150 return true;
151 }
152
153 /**
154 * irq_can_set_affinity - Check if the affinity of a given irq can be set
155 * @irq: Interrupt to check
156 *
157 */
irq_can_set_affinity(unsigned int irq)158 int irq_can_set_affinity(unsigned int irq)
159 {
160 return __irq_can_set_affinity(irq_to_desc(irq));
161 }
162
163 /**
164 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
165 * @irq: Interrupt to check
166 *
167 * Like irq_can_set_affinity() above, but additionally checks for the
168 * AFFINITY_MANAGED flag.
169 */
irq_can_set_affinity_usr(unsigned int irq)170 bool irq_can_set_affinity_usr(unsigned int irq)
171 {
172 struct irq_desc *desc = irq_to_desc(irq);
173
174 return __irq_can_set_affinity(desc) &&
175 !irqd_affinity_is_managed(&desc->irq_data);
176 }
177
178 /**
179 * irq_set_thread_affinity - Notify irq threads to adjust affinity
180 * @desc: irq descriptor which has affinity changed
181 *
182 * Just set IRQTF_AFFINITY and delegate the affinity setting to the
183 * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as
184 * we hold desc->lock and this code can be called from hard interrupt
185 * context.
186 */
irq_set_thread_affinity(struct irq_desc * desc)187 static void irq_set_thread_affinity(struct irq_desc *desc)
188 {
189 struct irqaction *action;
190
191 for_each_action_of_desc(desc, action) {
192 if (action->thread) {
193 set_bit(IRQTF_AFFINITY, &action->thread_flags);
194 wake_up_process(action->thread);
195 }
196 if (action->secondary && action->secondary->thread) {
197 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
198 wake_up_process(action->secondary->thread);
199 }
200 }
201 }
202
203 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)204 static void irq_validate_effective_affinity(struct irq_data *data)
205 {
206 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
207 struct irq_chip *chip = irq_data_get_irq_chip(data);
208
209 if (!cpumask_empty(m))
210 return;
211 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
212 chip->name, data->irq);
213 }
214 #else
irq_validate_effective_affinity(struct irq_data * data)215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 #endif
217
218 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
219
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 bool force)
222 {
223 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
224 struct irq_desc *desc = irq_data_to_desc(data);
225 struct irq_chip *chip = irq_data_get_irq_chip(data);
226 const struct cpumask *prog_mask;
227 int ret;
228
229 if (!chip || !chip->irq_set_affinity)
230 return -EINVAL;
231
232 /*
233 * If this is a managed interrupt and housekeeping is enabled on
234 * it check whether the requested affinity mask intersects with
235 * a housekeeping CPU. If so, then remove the isolated CPUs from
236 * the mask and just keep the housekeeping CPU(s). This prevents
237 * the affinity setter from routing the interrupt to an isolated
238 * CPU to avoid that I/O submitted from a housekeeping CPU causes
239 * interrupts on an isolated one.
240 *
241 * If the masks do not intersect or include online CPU(s) then
242 * keep the requested mask. The isolated target CPUs are only
243 * receiving interrupts when the I/O operation was submitted
244 * directly from them.
245 *
246 * If all housekeeping CPUs in the affinity mask are offline, the
247 * interrupt will be migrated by the CPU hotplug code once a
248 * housekeeping CPU which belongs to the affinity mask comes
249 * online.
250 */
251 if (irqd_affinity_is_managed(data) &&
252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253 const struct cpumask *hk_mask;
254
255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256
257 cpumask_and(tmp_mask, mask, hk_mask);
258 if (!cpumask_intersects(tmp_mask, cpu_online_mask))
259 prog_mask = mask;
260 else
261 prog_mask = tmp_mask;
262 } else {
263 prog_mask = mask;
264 }
265
266 /*
267 * Make sure we only provide online CPUs to the irqchip,
268 * unless we are being asked to force the affinity (in which
269 * case we do as we are told).
270 */
271 cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
272 if (!force && !cpumask_empty(tmp_mask))
273 ret = chip->irq_set_affinity(data, tmp_mask, force);
274 else if (force)
275 ret = chip->irq_set_affinity(data, mask, force);
276 else
277 ret = -EINVAL;
278
279 switch (ret) {
280 case IRQ_SET_MASK_OK:
281 case IRQ_SET_MASK_OK_DONE:
282 cpumask_copy(desc->irq_common_data.affinity, mask);
283 fallthrough;
284 case IRQ_SET_MASK_OK_NOCOPY:
285 irq_validate_effective_affinity(data);
286 irq_set_thread_affinity(desc);
287 ret = 0;
288 }
289
290 return ret;
291 }
292
293 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 const struct cpumask *dest)
296 {
297 struct irq_desc *desc = irq_data_to_desc(data);
298
299 irqd_set_move_pending(data);
300 irq_copy_pending(desc, dest);
301 return 0;
302 }
303 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)304 static inline int irq_set_affinity_pending(struct irq_data *data,
305 const struct cpumask *dest)
306 {
307 return -EBUSY;
308 }
309 #endif
310
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)311 static int irq_try_set_affinity(struct irq_data *data,
312 const struct cpumask *dest, bool force)
313 {
314 int ret = irq_do_set_affinity(data, dest, force);
315
316 /*
317 * In case that the underlying vector management is busy and the
318 * architecture supports the generic pending mechanism then utilize
319 * this to avoid returning an error to user space.
320 */
321 if (ret == -EBUSY && !force)
322 ret = irq_set_affinity_pending(data, dest);
323 return ret;
324 }
325
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)326 static bool irq_set_affinity_deactivated(struct irq_data *data,
327 const struct cpumask *mask)
328 {
329 struct irq_desc *desc = irq_data_to_desc(data);
330
331 /*
332 * Handle irq chips which can handle affinity only in activated
333 * state correctly
334 *
335 * If the interrupt is not yet activated, just store the affinity
336 * mask and do not call the chip driver at all. On activation the
337 * driver has to make sure anyway that the interrupt is in a
338 * usable state so startup works.
339 */
340 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
341 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
342 return false;
343
344 cpumask_copy(desc->irq_common_data.affinity, mask);
345 irq_data_update_effective_affinity(data, mask);
346 irqd_set(data, IRQD_AFFINITY_SET);
347 return true;
348 }
349
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
351 bool force)
352 {
353 struct irq_chip *chip = irq_data_get_irq_chip(data);
354 struct irq_desc *desc = irq_data_to_desc(data);
355 int ret = 0;
356
357 if (!chip || !chip->irq_set_affinity)
358 return -EINVAL;
359
360 if (irq_set_affinity_deactivated(data, mask))
361 return 0;
362
363 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
364 ret = irq_try_set_affinity(data, mask, force);
365 } else {
366 irqd_set_move_pending(data);
367 irq_copy_pending(desc, mask);
368 }
369
370 if (desc->affinity_notify) {
371 kref_get(&desc->affinity_notify->kref);
372 if (!schedule_work(&desc->affinity_notify->work)) {
373 /* Work was already scheduled, drop our extra ref */
374 kref_put(&desc->affinity_notify->kref,
375 desc->affinity_notify->release);
376 }
377 }
378 irqd_set(data, IRQD_AFFINITY_SET);
379
380 return ret;
381 }
382
383 /**
384 * irq_update_affinity_desc - Update affinity management for an interrupt
385 * @irq: The interrupt number to update
386 * @affinity: Pointer to the affinity descriptor
387 *
388 * This interface can be used to configure the affinity management of
389 * interrupts which have been allocated already.
390 *
391 * There are certain limitations on when it may be used - attempts to use it
392 * for when the kernel is configured for generic IRQ reservation mode (in
393 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
394 * managed/non-managed interrupt accounting. In addition, attempts to use it on
395 * an interrupt which is already started or which has already been configured
396 * as managed will also fail, as these mean invalid init state or double init.
397 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)398 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity)
399 {
400 /*
401 * Supporting this with the reservation scheme used by x86 needs
402 * some more thought. Fail it for now.
403 */
404 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
405 return -EOPNOTSUPP;
406
407 scoped_irqdesc_get_and_buslock(irq, 0) {
408 struct irq_desc *desc = scoped_irqdesc;
409 bool activated;
410
411 /* Requires the interrupt to be shut down */
412 if (irqd_is_started(&desc->irq_data))
413 return -EBUSY;
414
415 /* Interrupts which are already managed cannot be modified */
416 if (irqd_affinity_is_managed(&desc->irq_data))
417 return -EBUSY;
418 /*
419 * Deactivate the interrupt. That's required to undo
420 * anything an earlier activation has established.
421 */
422 activated = irqd_is_activated(&desc->irq_data);
423 if (activated)
424 irq_domain_deactivate_irq(&desc->irq_data);
425
426 if (affinity->is_managed) {
427 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
428 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
429 }
430
431 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
432
433 /* Restore the activation state */
434 if (activated)
435 irq_domain_activate_irq(&desc->irq_data, false);
436 return 0;
437 }
438 return -EINVAL;
439 }
440
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)441 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
442 bool force)
443 {
444 struct irq_desc *desc = irq_to_desc(irq);
445
446 if (!desc)
447 return -EINVAL;
448
449 guard(raw_spinlock_irqsave)(&desc->lock);
450 return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
451 }
452
453 /**
454 * irq_set_affinity - Set the irq affinity of a given irq
455 * @irq: Interrupt to set affinity
456 * @cpumask: cpumask
457 *
458 * Fails if cpumask does not contain an online CPU
459 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)460 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
461 {
462 return __irq_set_affinity(irq, cpumask, false);
463 }
464 EXPORT_SYMBOL_GPL(irq_set_affinity);
465
466 /**
467 * irq_force_affinity - Force the irq affinity of a given irq
468 * @irq: Interrupt to set affinity
469 * @cpumask: cpumask
470 *
471 * Same as irq_set_affinity, but without checking the mask against
472 * online cpus.
473 *
474 * Solely for low level cpu hotplug code, where we need to make per
475 * cpu interrupts affine before the cpu becomes online.
476 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)477 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
478 {
479 return __irq_set_affinity(irq, cpumask, true);
480 }
481 EXPORT_SYMBOL_GPL(irq_force_affinity);
482
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)483 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity)
484 {
485 int ret = -EINVAL;
486
487 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
488 scoped_irqdesc->affinity_hint = m;
489 ret = 0;
490 }
491
492 if (!ret && m && setaffinity)
493 __irq_set_affinity(irq, m, false);
494 return ret;
495 }
496 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
497
irq_affinity_notify(struct work_struct * work)498 static void irq_affinity_notify(struct work_struct *work)
499 {
500 struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work);
501 struct irq_desc *desc = irq_to_desc(notify->irq);
502 cpumask_var_t cpumask;
503
504 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
505 goto out;
506
507 scoped_guard(raw_spinlock_irqsave, &desc->lock) {
508 if (irq_move_pending(&desc->irq_data))
509 irq_get_pending(cpumask, desc);
510 else
511 cpumask_copy(cpumask, desc->irq_common_data.affinity);
512 }
513
514 notify->notify(notify, cpumask);
515
516 free_cpumask_var(cpumask);
517 out:
518 kref_put(¬ify->kref, notify->release);
519 }
520
521 /**
522 * irq_set_affinity_notifier - control notification of IRQ affinity changes
523 * @irq: Interrupt for which to enable/disable notification
524 * @notify: Context for notification, or %NULL to disable
525 * notification. Function pointers must be initialised;
526 * the other fields will be initialised by this function.
527 *
528 * Must be called in process context. Notification may only be enabled
529 * after the IRQ is allocated and must be disabled before the IRQ is freed
530 * using free_irq().
531 */
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)532 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
533 {
534 struct irq_desc *desc = irq_to_desc(irq);
535 struct irq_affinity_notify *old_notify;
536
537 /* The release function is promised process context */
538 might_sleep();
539
540 if (!desc || irq_is_nmi(desc))
541 return -EINVAL;
542
543 /* Complete initialisation of *notify */
544 if (notify) {
545 notify->irq = irq;
546 kref_init(¬ify->kref);
547 INIT_WORK(¬ify->work, irq_affinity_notify);
548 }
549
550 scoped_guard(raw_spinlock_irqsave, &desc->lock) {
551 old_notify = desc->affinity_notify;
552 desc->affinity_notify = notify;
553 }
554
555 if (old_notify) {
556 if (cancel_work_sync(&old_notify->work)) {
557 /* Pending work had a ref, put that one too */
558 kref_put(&old_notify->kref, old_notify->release);
559 }
560 kref_put(&old_notify->kref, old_notify->release);
561 }
562
563 return 0;
564 }
565 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
566
567 #ifndef CONFIG_AUTO_IRQ_AFFINITY
568 /*
569 * Generic version of the affinity autoselector.
570 */
irq_setup_affinity(struct irq_desc * desc)571 int irq_setup_affinity(struct irq_desc *desc)
572 {
573 struct cpumask *set = irq_default_affinity;
574 int node = irq_desc_get_node(desc);
575
576 static DEFINE_RAW_SPINLOCK(mask_lock);
577 static struct cpumask mask;
578
579 /* Excludes PER_CPU and NO_BALANCE interrupts */
580 if (!__irq_can_set_affinity(desc))
581 return 0;
582
583 guard(raw_spinlock)(&mask_lock);
584 /*
585 * Preserve the managed affinity setting and a userspace affinity
586 * setup, but make sure that one of the targets is online.
587 */
588 if (irqd_affinity_is_managed(&desc->irq_data) ||
589 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
590 if (cpumask_intersects(desc->irq_common_data.affinity,
591 cpu_online_mask))
592 set = desc->irq_common_data.affinity;
593 else
594 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
595 }
596
597 cpumask_and(&mask, cpu_online_mask, set);
598 if (cpumask_empty(&mask))
599 cpumask_copy(&mask, cpu_online_mask);
600
601 if (node != NUMA_NO_NODE) {
602 const struct cpumask *nodemask = cpumask_of_node(node);
603
604 /* make sure at least one of the cpus in nodemask is online */
605 if (cpumask_intersects(&mask, nodemask))
606 cpumask_and(&mask, &mask, nodemask);
607 }
608 return irq_do_set_affinity(&desc->irq_data, &mask, false);
609 }
610 #else
611 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)612 int irq_setup_affinity(struct irq_desc *desc)
613 {
614 return irq_select_affinity(irq_desc_get_irq(desc));
615 }
616 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
617 #endif /* CONFIG_SMP */
618
619
620 /**
621 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
622 * @irq: interrupt number to set affinity
623 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
624 * specific data for percpu_devid interrupts
625 *
626 * This function uses the vCPU specific data to set the vCPU affinity for
627 * an irq. The vCPU specific data is passed from outside, such as KVM. One
628 * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity().
629 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)630 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
631 {
632 scoped_irqdesc_get_and_lock(irq, 0) {
633 struct irq_desc *desc = scoped_irqdesc;
634 struct irq_data *data;
635 struct irq_chip *chip;
636
637 data = irq_desc_get_irq_data(desc);
638 do {
639 chip = irq_data_get_irq_chip(data);
640 if (chip && chip->irq_set_vcpu_affinity)
641 break;
642
643 data = irqd_get_parent_data(data);
644 } while (data);
645
646 if (!data)
647 return -ENOSYS;
648 return chip->irq_set_vcpu_affinity(data, vcpu_info);
649 }
650 return -EINVAL;
651 }
652 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
653
__disable_irq(struct irq_desc * desc)654 void __disable_irq(struct irq_desc *desc)
655 {
656 if (!desc->depth++)
657 irq_disable(desc);
658 }
659
__disable_irq_nosync(unsigned int irq)660 static int __disable_irq_nosync(unsigned int irq)
661 {
662 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
663 __disable_irq(scoped_irqdesc);
664 return 0;
665 }
666 return -EINVAL;
667 }
668
669 /**
670 * disable_irq_nosync - disable an irq without waiting
671 * @irq: Interrupt to disable
672 *
673 * Disable the selected interrupt line. Disables and Enables are
674 * nested.
675 * Unlike disable_irq(), this function does not ensure existing
676 * instances of the IRQ handler have completed before returning.
677 *
678 * This function may be called from IRQ context.
679 */
disable_irq_nosync(unsigned int irq)680 void disable_irq_nosync(unsigned int irq)
681 {
682 __disable_irq_nosync(irq);
683 }
684 EXPORT_SYMBOL(disable_irq_nosync);
685
686 /**
687 * disable_irq - disable an irq and wait for completion
688 * @irq: Interrupt to disable
689 *
690 * Disable the selected interrupt line. Enables and Disables are nested.
691 *
692 * This function waits for any pending IRQ handlers for this interrupt to
693 * complete before returning. If you use this function while holding a
694 * resource the IRQ handler may need you will deadlock.
695 *
696 * Can only be called from preemptible code as it might sleep when an
697 * interrupt thread is associated to @irq.
698 *
699 */
disable_irq(unsigned int irq)700 void disable_irq(unsigned int irq)
701 {
702 might_sleep();
703 if (!__disable_irq_nosync(irq))
704 synchronize_irq(irq);
705 }
706 EXPORT_SYMBOL(disable_irq);
707
708 /**
709 * disable_hardirq - disables an irq and waits for hardirq completion
710 * @irq: Interrupt to disable
711 *
712 * Disable the selected interrupt line. Enables and Disables are nested.
713 *
714 * This function waits for any pending hard IRQ handlers for this interrupt
715 * to complete before returning. If you use this function while holding a
716 * resource the hard IRQ handler may need you will deadlock.
717 *
718 * When used to optimistically disable an interrupt from atomic context the
719 * return value must be checked.
720 *
721 * Returns: false if a threaded handler is active.
722 *
723 * This function may be called - with care - from IRQ context.
724 */
disable_hardirq(unsigned int irq)725 bool disable_hardirq(unsigned int irq)
726 {
727 if (!__disable_irq_nosync(irq))
728 return synchronize_hardirq(irq);
729 return false;
730 }
731 EXPORT_SYMBOL_GPL(disable_hardirq);
732
733 /**
734 * disable_nmi_nosync - disable an nmi without waiting
735 * @irq: Interrupt to disable
736 *
737 * Disable the selected interrupt line. Disables and enables are nested.
738 *
739 * The interrupt to disable must have been requested through request_nmi.
740 * Unlike disable_nmi(), this function does not ensure existing
741 * instances of the IRQ handler have completed before returning.
742 */
disable_nmi_nosync(unsigned int irq)743 void disable_nmi_nosync(unsigned int irq)
744 {
745 disable_irq_nosync(irq);
746 }
747
__enable_irq(struct irq_desc * desc)748 void __enable_irq(struct irq_desc *desc)
749 {
750 switch (desc->depth) {
751 case 0:
752 err_out:
753 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
754 irq_desc_get_irq(desc));
755 break;
756 case 1: {
757 if (desc->istate & IRQS_SUSPENDED)
758 goto err_out;
759 /* Prevent probing on this irq: */
760 irq_settings_set_noprobe(desc);
761 /*
762 * Call irq_startup() not irq_enable() here because the
763 * interrupt might be marked NOAUTOEN so irq_startup()
764 * needs to be invoked when it gets enabled the first time.
765 * This is also required when __enable_irq() is invoked for
766 * a managed and shutdown interrupt from the S3 resume
767 * path.
768 *
769 * If it was already started up, then irq_startup() will
770 * invoke irq_enable() under the hood.
771 */
772 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
773 break;
774 }
775 default:
776 desc->depth--;
777 }
778 }
779
780 /**
781 * enable_irq - enable handling of an irq
782 * @irq: Interrupt to enable
783 *
784 * Undoes the effect of one call to disable_irq(). If this matches the
785 * last disable, processing of interrupts on this IRQ line is re-enabled.
786 *
787 * This function may be called from IRQ context only when
788 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
789 */
enable_irq(unsigned int irq)790 void enable_irq(unsigned int irq)
791 {
792 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
793 struct irq_desc *desc = scoped_irqdesc;
794
795 if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq))
796 return;
797 __enable_irq(desc);
798 }
799 }
800 EXPORT_SYMBOL(enable_irq);
801
802 /**
803 * enable_nmi - enable handling of an nmi
804 * @irq: Interrupt to enable
805 *
806 * The interrupt to enable must have been requested through request_nmi.
807 * Undoes the effect of one call to disable_nmi(). If this matches the last
808 * disable, processing of interrupts on this IRQ line is re-enabled.
809 */
enable_nmi(unsigned int irq)810 void enable_nmi(unsigned int irq)
811 {
812 enable_irq(irq);
813 }
814
set_irq_wake_real(unsigned int irq,unsigned int on)815 static int set_irq_wake_real(unsigned int irq, unsigned int on)
816 {
817 struct irq_desc *desc = irq_to_desc(irq);
818 int ret = -ENXIO;
819
820 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
821 return 0;
822
823 if (desc->irq_data.chip->irq_set_wake)
824 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
825
826 return ret;
827 }
828
829 /**
830 * irq_set_irq_wake - control irq power management wakeup
831 * @irq: interrupt to control
832 * @on: enable/disable power management wakeup
833 *
834 * Enable/disable power management wakeup mode, which is disabled by
835 * default. Enables and disables must match, just as they match for
836 * non-wakeup mode support.
837 *
838 * Wakeup mode lets this IRQ wake the system from sleep states like
839 * "suspend to RAM".
840 *
841 * Note: irq enable/disable state is completely orthogonal to the
842 * enable/disable state of irq wake. An irq can be disabled with
843 * disable_irq() and still wake the system as long as the irq has wake
844 * enabled. If this does not hold, then the underlying irq chip and the
845 * related driver need to be investigated.
846 */
irq_set_irq_wake(unsigned int irq,unsigned int on)847 int irq_set_irq_wake(unsigned int irq, unsigned int on)
848 {
849 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
850 struct irq_desc *desc = scoped_irqdesc;
851 int ret = 0;
852
853 /* Don't use NMIs as wake up interrupts please */
854 if (irq_is_nmi(desc))
855 return -EINVAL;
856
857 /*
858 * wakeup-capable irqs can be shared between drivers that
859 * don't need to have the same sleep mode behaviors.
860 */
861 if (on) {
862 if (desc->wake_depth++ == 0) {
863 ret = set_irq_wake_real(irq, on);
864 if (ret)
865 desc->wake_depth = 0;
866 else
867 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
868 }
869 } else {
870 if (desc->wake_depth == 0) {
871 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
872 } else if (--desc->wake_depth == 0) {
873 ret = set_irq_wake_real(irq, on);
874 if (ret)
875 desc->wake_depth = 1;
876 else
877 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
878 }
879 }
880 return ret;
881 }
882 return -EINVAL;
883 }
884 EXPORT_SYMBOL(irq_set_irq_wake);
885
886 /*
887 * Internal function that tells the architecture code whether a
888 * particular irq has been exclusively allocated or is available
889 * for driver use.
890 */
can_request_irq(unsigned int irq,unsigned long irqflags)891 bool can_request_irq(unsigned int irq, unsigned long irqflags)
892 {
893 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
894 struct irq_desc *desc = scoped_irqdesc;
895
896 if (irq_settings_can_request(desc)) {
897 if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED)
898 return true;
899 }
900 }
901 return false;
902 }
903
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)904 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
905 {
906 struct irq_chip *chip = desc->irq_data.chip;
907 int ret, unmask = 0;
908
909 if (!chip || !chip->irq_set_type) {
910 /*
911 * IRQF_TRIGGER_* but the PIC does not support multiple
912 * flow-types?
913 */
914 pr_debug("No set_type function for IRQ %d (%s)\n",
915 irq_desc_get_irq(desc),
916 chip ? (chip->name ? : "unknown") : "unknown");
917 return 0;
918 }
919
920 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
921 if (!irqd_irq_masked(&desc->irq_data))
922 mask_irq(desc);
923 if (!irqd_irq_disabled(&desc->irq_data))
924 unmask = 1;
925 }
926
927 /* Mask all flags except trigger mode */
928 flags &= IRQ_TYPE_SENSE_MASK;
929 ret = chip->irq_set_type(&desc->irq_data, flags);
930
931 switch (ret) {
932 case IRQ_SET_MASK_OK:
933 case IRQ_SET_MASK_OK_DONE:
934 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
935 irqd_set(&desc->irq_data, flags);
936 fallthrough;
937
938 case IRQ_SET_MASK_OK_NOCOPY:
939 flags = irqd_get_trigger_type(&desc->irq_data);
940 irq_settings_set_trigger_mask(desc, flags);
941 irqd_clear(&desc->irq_data, IRQD_LEVEL);
942 irq_settings_clr_level(desc);
943 if (flags & IRQ_TYPE_LEVEL_MASK) {
944 irq_settings_set_level(desc);
945 irqd_set(&desc->irq_data, IRQD_LEVEL);
946 }
947
948 ret = 0;
949 break;
950 default:
951 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
952 flags, irq_desc_get_irq(desc), chip->irq_set_type);
953 }
954 if (unmask)
955 unmask_irq(desc);
956 return ret;
957 }
958
959 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)960 int irq_set_parent(int irq, int parent_irq)
961 {
962 scoped_irqdesc_get_and_lock(irq, 0) {
963 scoped_irqdesc->parent_irq = parent_irq;
964 return 0;
965 }
966 return -EINVAL;
967 }
968 EXPORT_SYMBOL_GPL(irq_set_parent);
969 #endif
970
971 /*
972 * Default primary interrupt handler for threaded interrupts. Is
973 * assigned as primary handler when request_threaded_irq is called
974 * with handler == NULL. Useful for oneshot interrupts.
975 */
irq_default_primary_handler(int irq,void * dev_id)976 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
977 {
978 return IRQ_WAKE_THREAD;
979 }
980
981 /*
982 * Primary handler for nested threaded interrupts. Should never be
983 * called.
984 */
irq_nested_primary_handler(int irq,void * dev_id)985 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
986 {
987 WARN(1, "Primary handler called for nested irq %d\n", irq);
988 return IRQ_NONE;
989 }
990
irq_forced_secondary_handler(int irq,void * dev_id)991 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
992 {
993 WARN(1, "Secondary action handler called for irq %d\n", irq);
994 return IRQ_NONE;
995 }
996
997 #ifdef CONFIG_SMP
998 /*
999 * Check whether we need to change the affinity of the interrupt thread.
1000 */
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1001 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1002 {
1003 cpumask_var_t mask;
1004 bool valid = false;
1005
1006 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1007 return;
1008
1009 __set_current_state(TASK_RUNNING);
1010
1011 /*
1012 * In case we are out of memory we set IRQTF_AFFINITY again and
1013 * try again next time
1014 */
1015 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1016 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1017 return;
1018 }
1019
1020 scoped_guard(raw_spinlock_irq, &desc->lock) {
1021 /*
1022 * This code is triggered unconditionally. Check the affinity
1023 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1024 */
1025 if (cpumask_available(desc->irq_common_data.affinity)) {
1026 const struct cpumask *m;
1027
1028 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1029 cpumask_copy(mask, m);
1030 valid = true;
1031 }
1032 }
1033
1034 if (valid)
1035 set_cpus_allowed_ptr(current, mask);
1036 free_cpumask_var(mask);
1037 }
1038 #else
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1039 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1040 #endif
1041
irq_wait_for_interrupt(struct irq_desc * desc,struct irqaction * action)1042 static int irq_wait_for_interrupt(struct irq_desc *desc,
1043 struct irqaction *action)
1044 {
1045 for (;;) {
1046 set_current_state(TASK_INTERRUPTIBLE);
1047 irq_thread_check_affinity(desc, action);
1048
1049 if (kthread_should_stop()) {
1050 /* may need to run one last time */
1051 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1052 &action->thread_flags)) {
1053 __set_current_state(TASK_RUNNING);
1054 return 0;
1055 }
1056 __set_current_state(TASK_RUNNING);
1057 return -1;
1058 }
1059
1060 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1061 &action->thread_flags)) {
1062 __set_current_state(TASK_RUNNING);
1063 return 0;
1064 }
1065 schedule();
1066 }
1067 }
1068
1069 /*
1070 * Oneshot interrupts keep the irq line masked until the threaded
1071 * handler finished. unmask if the interrupt has not been disabled and
1072 * is marked MASKED.
1073 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1074 static void irq_finalize_oneshot(struct irq_desc *desc,
1075 struct irqaction *action)
1076 {
1077 if (!(desc->istate & IRQS_ONESHOT) ||
1078 action->handler == irq_forced_secondary_handler)
1079 return;
1080 again:
1081 chip_bus_lock(desc);
1082 raw_spin_lock_irq(&desc->lock);
1083
1084 /*
1085 * Implausible though it may be we need to protect us against
1086 * the following scenario:
1087 *
1088 * The thread is faster done than the hard interrupt handler
1089 * on the other CPU. If we unmask the irq line then the
1090 * interrupt can come in again and masks the line, leaves due
1091 * to IRQS_INPROGRESS and the irq line is masked forever.
1092 *
1093 * This also serializes the state of shared oneshot handlers
1094 * versus "desc->threads_oneshot |= action->thread_mask;" in
1095 * irq_wake_thread(). See the comment there which explains the
1096 * serialization.
1097 */
1098 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1099 raw_spin_unlock_irq(&desc->lock);
1100 chip_bus_sync_unlock(desc);
1101 cpu_relax();
1102 goto again;
1103 }
1104
1105 /*
1106 * Now check again, whether the thread should run. Otherwise
1107 * we would clear the threads_oneshot bit of this thread which
1108 * was just set.
1109 */
1110 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1111 goto out_unlock;
1112
1113 desc->threads_oneshot &= ~action->thread_mask;
1114
1115 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1116 irqd_irq_masked(&desc->irq_data))
1117 unmask_threaded_irq(desc);
1118
1119 out_unlock:
1120 raw_spin_unlock_irq(&desc->lock);
1121 chip_bus_sync_unlock(desc);
1122 }
1123
1124 /*
1125 * Interrupts explicitly requested as threaded interrupts want to be
1126 * preemptible - many of them need to sleep and wait for slow busses to
1127 * complete.
1128 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1129 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action)
1130 {
1131 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1132
1133 if (ret == IRQ_HANDLED)
1134 atomic_inc(&desc->threads_handled);
1135
1136 irq_finalize_oneshot(desc, action);
1137 return ret;
1138 }
1139
1140 /*
1141 * Interrupts which are not explicitly requested as threaded
1142 * interrupts rely on the implicit bh/preempt disable of the hard irq
1143 * context. So we need to disable bh here to avoid deadlocks and other
1144 * side effects.
1145 */
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1146 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1147 {
1148 irqreturn_t ret;
1149
1150 local_bh_disable();
1151 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1152 local_irq_disable();
1153 ret = irq_thread_fn(desc, action);
1154 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1155 local_irq_enable();
1156 local_bh_enable();
1157 return ret;
1158 }
1159
wake_threads_waitq(struct irq_desc * desc)1160 void wake_threads_waitq(struct irq_desc *desc)
1161 {
1162 if (atomic_dec_and_test(&desc->threads_active))
1163 wake_up(&desc->wait_for_threads);
1164 }
1165
irq_thread_dtor(struct callback_head * unused)1166 static void irq_thread_dtor(struct callback_head *unused)
1167 {
1168 struct task_struct *tsk = current;
1169 struct irq_desc *desc;
1170 struct irqaction *action;
1171
1172 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1173 return;
1174
1175 action = kthread_data(tsk);
1176
1177 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1178 tsk->comm, tsk->pid, action->irq);
1179
1180
1181 desc = irq_to_desc(action->irq);
1182 /*
1183 * If IRQTF_RUNTHREAD is set, we need to decrement
1184 * desc->threads_active and wake possible waiters.
1185 */
1186 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1187 wake_threads_waitq(desc);
1188
1189 /* Prevent a stale desc->threads_oneshot */
1190 irq_finalize_oneshot(desc, action);
1191 }
1192
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1193 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1194 {
1195 struct irqaction *secondary = action->secondary;
1196
1197 if (WARN_ON_ONCE(!secondary))
1198 return;
1199
1200 guard(raw_spinlock_irq)(&desc->lock);
1201 __irq_wake_thread(desc, secondary);
1202 }
1203
1204 /*
1205 * Internal function to notify that a interrupt thread is ready.
1206 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1207 static void irq_thread_set_ready(struct irq_desc *desc,
1208 struct irqaction *action)
1209 {
1210 set_bit(IRQTF_READY, &action->thread_flags);
1211 wake_up(&desc->wait_for_threads);
1212 }
1213
1214 /*
1215 * Internal function to wake up a interrupt thread and wait until it is
1216 * ready.
1217 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1218 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1219 struct irqaction *action)
1220 {
1221 if (!action || !action->thread)
1222 return;
1223
1224 wake_up_process(action->thread);
1225 wait_event(desc->wait_for_threads,
1226 test_bit(IRQTF_READY, &action->thread_flags));
1227 }
1228
1229 /*
1230 * Interrupt handler thread
1231 */
irq_thread(void * data)1232 static int irq_thread(void *data)
1233 {
1234 struct callback_head on_exit_work;
1235 struct irqaction *action = data;
1236 struct irq_desc *desc = irq_to_desc(action->irq);
1237 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1238 struct irqaction *action);
1239
1240 irq_thread_set_ready(desc, action);
1241
1242 sched_set_fifo(current);
1243
1244 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1245 &action->thread_flags))
1246 handler_fn = irq_forced_thread_fn;
1247 else
1248 handler_fn = irq_thread_fn;
1249
1250 init_task_work(&on_exit_work, irq_thread_dtor);
1251 task_work_add(current, &on_exit_work, TWA_NONE);
1252
1253 while (!irq_wait_for_interrupt(desc, action)) {
1254 irqreturn_t action_ret;
1255
1256 action_ret = handler_fn(desc, action);
1257 if (action_ret == IRQ_WAKE_THREAD)
1258 irq_wake_secondary(desc, action);
1259
1260 wake_threads_waitq(desc);
1261 }
1262
1263 /*
1264 * This is the regular exit path. __free_irq() is stopping the
1265 * thread via kthread_stop() after calling
1266 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1267 * oneshot mask bit can be set.
1268 */
1269 task_work_cancel_func(current, irq_thread_dtor);
1270 return 0;
1271 }
1272
1273 /**
1274 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1275 * @irq: Interrupt line
1276 * @dev_id: Device identity for which the thread should be woken
1277 */
irq_wake_thread(unsigned int irq,void * dev_id)1278 void irq_wake_thread(unsigned int irq, void *dev_id)
1279 {
1280 struct irq_desc *desc = irq_to_desc(irq);
1281 struct irqaction *action;
1282
1283 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1284 return;
1285
1286 guard(raw_spinlock_irqsave)(&desc->lock);
1287 for_each_action_of_desc(desc, action) {
1288 if (action->dev_id == dev_id) {
1289 if (action->thread)
1290 __irq_wake_thread(desc, action);
1291 break;
1292 }
1293 }
1294 }
1295 EXPORT_SYMBOL_GPL(irq_wake_thread);
1296
irq_setup_forced_threading(struct irqaction * new)1297 static int irq_setup_forced_threading(struct irqaction *new)
1298 {
1299 if (!force_irqthreads())
1300 return 0;
1301 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1302 return 0;
1303
1304 /*
1305 * No further action required for interrupts which are requested as
1306 * threaded interrupts already
1307 */
1308 if (new->handler == irq_default_primary_handler)
1309 return 0;
1310
1311 new->flags |= IRQF_ONESHOT;
1312
1313 /*
1314 * Handle the case where we have a real primary handler and a
1315 * thread handler. We force thread them as well by creating a
1316 * secondary action.
1317 */
1318 if (new->handler && new->thread_fn) {
1319 /* Allocate the secondary action */
1320 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1321 if (!new->secondary)
1322 return -ENOMEM;
1323 new->secondary->handler = irq_forced_secondary_handler;
1324 new->secondary->thread_fn = new->thread_fn;
1325 new->secondary->dev_id = new->dev_id;
1326 new->secondary->irq = new->irq;
1327 new->secondary->name = new->name;
1328 }
1329 /* Deal with the primary handler */
1330 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1331 new->thread_fn = new->handler;
1332 new->handler = irq_default_primary_handler;
1333 return 0;
1334 }
1335
irq_request_resources(struct irq_desc * desc)1336 static int irq_request_resources(struct irq_desc *desc)
1337 {
1338 struct irq_data *d = &desc->irq_data;
1339 struct irq_chip *c = d->chip;
1340
1341 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1342 }
1343
irq_release_resources(struct irq_desc * desc)1344 static void irq_release_resources(struct irq_desc *desc)
1345 {
1346 struct irq_data *d = &desc->irq_data;
1347 struct irq_chip *c = d->chip;
1348
1349 if (c->irq_release_resources)
1350 c->irq_release_resources(d);
1351 }
1352
irq_supports_nmi(struct irq_desc * desc)1353 static bool irq_supports_nmi(struct irq_desc *desc)
1354 {
1355 struct irq_data *d = irq_desc_get_irq_data(desc);
1356
1357 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1358 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1359 if (d->parent_data)
1360 return false;
1361 #endif
1362 /* Don't support NMIs for chips behind a slow bus */
1363 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1364 return false;
1365
1366 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1367 }
1368
irq_nmi_setup(struct irq_desc * desc)1369 static int irq_nmi_setup(struct irq_desc *desc)
1370 {
1371 struct irq_data *d = irq_desc_get_irq_data(desc);
1372 struct irq_chip *c = d->chip;
1373
1374 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1375 }
1376
irq_nmi_teardown(struct irq_desc * desc)1377 static void irq_nmi_teardown(struct irq_desc *desc)
1378 {
1379 struct irq_data *d = irq_desc_get_irq_data(desc);
1380 struct irq_chip *c = d->chip;
1381
1382 if (c->irq_nmi_teardown)
1383 c->irq_nmi_teardown(d);
1384 }
1385
1386 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1387 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1388 {
1389 struct task_struct *t;
1390
1391 if (!secondary) {
1392 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1393 new->name);
1394 } else {
1395 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1396 new->name);
1397 }
1398
1399 if (IS_ERR(t))
1400 return PTR_ERR(t);
1401
1402 /*
1403 * We keep the reference to the task struct even if
1404 * the thread dies to avoid that the interrupt code
1405 * references an already freed task_struct.
1406 */
1407 new->thread = get_task_struct(t);
1408 /*
1409 * Tell the thread to set its affinity. This is
1410 * important for shared interrupt handlers as we do
1411 * not invoke setup_affinity() for the secondary
1412 * handlers as everything is already set up. Even for
1413 * interrupts marked with IRQF_NO_BALANCE this is
1414 * correct as we want the thread to move to the cpu(s)
1415 * on which the requesting code placed the interrupt.
1416 */
1417 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1418 return 0;
1419 }
1420
1421 /*
1422 * Internal function to register an irqaction - typically used to
1423 * allocate special interrupts that are part of the architecture.
1424 *
1425 * Locking rules:
1426 *
1427 * desc->request_mutex Provides serialization against a concurrent free_irq()
1428 * chip_bus_lock Provides serialization for slow bus operations
1429 * desc->lock Provides serialization against hard interrupts
1430 *
1431 * chip_bus_lock and desc->lock are sufficient for all other management and
1432 * interrupt related functions. desc->request_mutex solely serializes
1433 * request/free_irq().
1434 */
1435 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1436 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1437 {
1438 struct irqaction *old, **old_ptr;
1439 unsigned long flags, thread_mask = 0;
1440 int ret, nested, shared = 0;
1441
1442 if (!desc)
1443 return -EINVAL;
1444
1445 if (desc->irq_data.chip == &no_irq_chip)
1446 return -ENOSYS;
1447 if (!try_module_get(desc->owner))
1448 return -ENODEV;
1449
1450 new->irq = irq;
1451
1452 /*
1453 * If the trigger type is not specified by the caller,
1454 * then use the default for this interrupt.
1455 */
1456 if (!(new->flags & IRQF_TRIGGER_MASK))
1457 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1458
1459 /*
1460 * Check whether the interrupt nests into another interrupt
1461 * thread.
1462 */
1463 nested = irq_settings_is_nested_thread(desc);
1464 if (nested) {
1465 if (!new->thread_fn) {
1466 ret = -EINVAL;
1467 goto out_mput;
1468 }
1469 /*
1470 * Replace the primary handler which was provided from
1471 * the driver for non nested interrupt handling by the
1472 * dummy function which warns when called.
1473 */
1474 new->handler = irq_nested_primary_handler;
1475 } else {
1476 if (irq_settings_can_thread(desc)) {
1477 ret = irq_setup_forced_threading(new);
1478 if (ret)
1479 goto out_mput;
1480 }
1481 }
1482
1483 /*
1484 * Create a handler thread when a thread function is supplied
1485 * and the interrupt does not nest into another interrupt
1486 * thread.
1487 */
1488 if (new->thread_fn && !nested) {
1489 ret = setup_irq_thread(new, irq, false);
1490 if (ret)
1491 goto out_mput;
1492 if (new->secondary) {
1493 ret = setup_irq_thread(new->secondary, irq, true);
1494 if (ret)
1495 goto out_thread;
1496 }
1497 }
1498
1499 /*
1500 * Drivers are often written to work w/o knowledge about the
1501 * underlying irq chip implementation, so a request for a
1502 * threaded irq without a primary hard irq context handler
1503 * requires the ONESHOT flag to be set. Some irq chips like
1504 * MSI based interrupts are per se one shot safe. Check the
1505 * chip flags, so we can avoid the unmask dance at the end of
1506 * the threaded handler for those.
1507 */
1508 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1509 new->flags &= ~IRQF_ONESHOT;
1510
1511 /*
1512 * Protects against a concurrent __free_irq() call which might wait
1513 * for synchronize_hardirq() to complete without holding the optional
1514 * chip bus lock and desc->lock. Also protects against handing out
1515 * a recycled oneshot thread_mask bit while it's still in use by
1516 * its previous owner.
1517 */
1518 mutex_lock(&desc->request_mutex);
1519
1520 /*
1521 * Acquire bus lock as the irq_request_resources() callback below
1522 * might rely on the serialization or the magic power management
1523 * functions which are abusing the irq_bus_lock() callback,
1524 */
1525 chip_bus_lock(desc);
1526
1527 /* First installed action requests resources. */
1528 if (!desc->action) {
1529 ret = irq_request_resources(desc);
1530 if (ret) {
1531 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1532 new->name, irq, desc->irq_data.chip->name);
1533 goto out_bus_unlock;
1534 }
1535 }
1536
1537 /*
1538 * The following block of code has to be executed atomically
1539 * protected against a concurrent interrupt and any of the other
1540 * management calls which are not serialized via
1541 * desc->request_mutex or the optional bus lock.
1542 */
1543 raw_spin_lock_irqsave(&desc->lock, flags);
1544 old_ptr = &desc->action;
1545 old = *old_ptr;
1546 if (old) {
1547 /*
1548 * Can't share interrupts unless both agree to and are
1549 * the same type (level, edge, polarity). So both flag
1550 * fields must have IRQF_SHARED set and the bits which
1551 * set the trigger type must match. Also all must
1552 * agree on ONESHOT.
1553 * Interrupt lines used for NMIs cannot be shared.
1554 */
1555 unsigned int oldtype;
1556
1557 if (irq_is_nmi(desc)) {
1558 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1559 new->name, irq, desc->irq_data.chip->name);
1560 ret = -EINVAL;
1561 goto out_unlock;
1562 }
1563
1564 /*
1565 * If nobody did set the configuration before, inherit
1566 * the one provided by the requester.
1567 */
1568 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1569 oldtype = irqd_get_trigger_type(&desc->irq_data);
1570 } else {
1571 oldtype = new->flags & IRQF_TRIGGER_MASK;
1572 irqd_set_trigger_type(&desc->irq_data, oldtype);
1573 }
1574
1575 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1576 (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1577 goto mismatch;
1578
1579 if ((old->flags & IRQF_ONESHOT) &&
1580 (new->flags & IRQF_COND_ONESHOT))
1581 new->flags |= IRQF_ONESHOT;
1582 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1583 goto mismatch;
1584
1585 /* All handlers must agree on per-cpuness */
1586 if ((old->flags & IRQF_PERCPU) !=
1587 (new->flags & IRQF_PERCPU))
1588 goto mismatch;
1589
1590 /* add new interrupt at end of irq queue */
1591 do {
1592 /*
1593 * Or all existing action->thread_mask bits,
1594 * so we can find the next zero bit for this
1595 * new action.
1596 */
1597 thread_mask |= old->thread_mask;
1598 old_ptr = &old->next;
1599 old = *old_ptr;
1600 } while (old);
1601 shared = 1;
1602 }
1603
1604 /*
1605 * Setup the thread mask for this irqaction for ONESHOT. For
1606 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1607 * conditional in irq_wake_thread().
1608 */
1609 if (new->flags & IRQF_ONESHOT) {
1610 /*
1611 * Unlikely to have 32 resp 64 irqs sharing one line,
1612 * but who knows.
1613 */
1614 if (thread_mask == ~0UL) {
1615 ret = -EBUSY;
1616 goto out_unlock;
1617 }
1618 /*
1619 * The thread_mask for the action is or'ed to
1620 * desc->thread_active to indicate that the
1621 * IRQF_ONESHOT thread handler has been woken, but not
1622 * yet finished. The bit is cleared when a thread
1623 * completes. When all threads of a shared interrupt
1624 * line have completed desc->threads_active becomes
1625 * zero and the interrupt line is unmasked. See
1626 * handle.c:irq_wake_thread() for further information.
1627 *
1628 * If no thread is woken by primary (hard irq context)
1629 * interrupt handlers, then desc->threads_active is
1630 * also checked for zero to unmask the irq line in the
1631 * affected hard irq flow handlers
1632 * (handle_[fasteoi|level]_irq).
1633 *
1634 * The new action gets the first zero bit of
1635 * thread_mask assigned. See the loop above which or's
1636 * all existing action->thread_mask bits.
1637 */
1638 new->thread_mask = 1UL << ffz(thread_mask);
1639
1640 } else if (new->handler == irq_default_primary_handler &&
1641 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1642 /*
1643 * The interrupt was requested with handler = NULL, so
1644 * we use the default primary handler for it. But it
1645 * does not have the oneshot flag set. In combination
1646 * with level interrupts this is deadly, because the
1647 * default primary handler just wakes the thread, then
1648 * the irq lines is reenabled, but the device still
1649 * has the level irq asserted. Rinse and repeat....
1650 *
1651 * While this works for edge type interrupts, we play
1652 * it safe and reject unconditionally because we can't
1653 * say for sure which type this interrupt really
1654 * has. The type flags are unreliable as the
1655 * underlying chip implementation can override them.
1656 */
1657 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1658 new->name, irq);
1659 ret = -EINVAL;
1660 goto out_unlock;
1661 }
1662
1663 if (!shared) {
1664 /* Setup the type (level, edge polarity) if configured: */
1665 if (new->flags & IRQF_TRIGGER_MASK) {
1666 ret = __irq_set_trigger(desc,
1667 new->flags & IRQF_TRIGGER_MASK);
1668
1669 if (ret)
1670 goto out_unlock;
1671 }
1672
1673 /*
1674 * Activate the interrupt. That activation must happen
1675 * independently of IRQ_NOAUTOEN. request_irq() can fail
1676 * and the callers are supposed to handle
1677 * that. enable_irq() of an interrupt requested with
1678 * IRQ_NOAUTOEN is not supposed to fail. The activation
1679 * keeps it in shutdown mode, it merily associates
1680 * resources if necessary and if that's not possible it
1681 * fails. Interrupts which are in managed shutdown mode
1682 * will simply ignore that activation request.
1683 */
1684 ret = irq_activate(desc);
1685 if (ret)
1686 goto out_unlock;
1687
1688 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1689 IRQS_ONESHOT | IRQS_WAITING);
1690 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1691
1692 if (new->flags & IRQF_PERCPU) {
1693 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1694 irq_settings_set_per_cpu(desc);
1695 if (new->flags & IRQF_NO_DEBUG)
1696 irq_settings_set_no_debug(desc);
1697 }
1698
1699 if (noirqdebug)
1700 irq_settings_set_no_debug(desc);
1701
1702 if (new->flags & IRQF_ONESHOT)
1703 desc->istate |= IRQS_ONESHOT;
1704
1705 /* Exclude IRQ from balancing if requested */
1706 if (new->flags & IRQF_NOBALANCING) {
1707 irq_settings_set_no_balancing(desc);
1708 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1709 }
1710
1711 if (!(new->flags & IRQF_NO_AUTOEN) &&
1712 irq_settings_can_autoenable(desc)) {
1713 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1714 } else {
1715 /*
1716 * Shared interrupts do not go well with disabling
1717 * auto enable. The sharing interrupt might request
1718 * it while it's still disabled and then wait for
1719 * interrupts forever.
1720 */
1721 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1722 /* Undo nested disables: */
1723 desc->depth = 1;
1724 }
1725
1726 } else if (new->flags & IRQF_TRIGGER_MASK) {
1727 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1728 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1729
1730 if (nmsk != omsk)
1731 /* hope the handler works with current trigger mode */
1732 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1733 irq, omsk, nmsk);
1734 }
1735
1736 *old_ptr = new;
1737
1738 irq_pm_install_action(desc, new);
1739
1740 /* Reset broken irq detection when installing new handler */
1741 desc->irq_count = 0;
1742 desc->irqs_unhandled = 0;
1743
1744 /*
1745 * Check whether we disabled the irq via the spurious handler
1746 * before. Reenable it and give it another chance.
1747 */
1748 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1749 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1750 __enable_irq(desc);
1751 }
1752
1753 raw_spin_unlock_irqrestore(&desc->lock, flags);
1754 chip_bus_sync_unlock(desc);
1755 mutex_unlock(&desc->request_mutex);
1756
1757 irq_setup_timings(desc, new);
1758
1759 wake_up_and_wait_for_irq_thread_ready(desc, new);
1760 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1761
1762 register_irq_proc(irq, desc);
1763 new->dir = NULL;
1764 register_handler_proc(irq, new);
1765 return 0;
1766
1767 mismatch:
1768 if (!(new->flags & IRQF_PROBE_SHARED)) {
1769 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1770 irq, new->flags, new->name, old->flags, old->name);
1771 #ifdef CONFIG_DEBUG_SHIRQ
1772 dump_stack();
1773 #endif
1774 }
1775 ret = -EBUSY;
1776
1777 out_unlock:
1778 raw_spin_unlock_irqrestore(&desc->lock, flags);
1779
1780 if (!desc->action)
1781 irq_release_resources(desc);
1782 out_bus_unlock:
1783 chip_bus_sync_unlock(desc);
1784 mutex_unlock(&desc->request_mutex);
1785
1786 out_thread:
1787 if (new->thread) {
1788 struct task_struct *t = new->thread;
1789
1790 new->thread = NULL;
1791 kthread_stop_put(t);
1792 }
1793 if (new->secondary && new->secondary->thread) {
1794 struct task_struct *t = new->secondary->thread;
1795
1796 new->secondary->thread = NULL;
1797 kthread_stop_put(t);
1798 }
1799 out_mput:
1800 module_put(desc->owner);
1801 return ret;
1802 }
1803
1804 /*
1805 * Internal function to unregister an irqaction - used to free
1806 * regular and special interrupts that are part of the architecture.
1807 */
__free_irq(struct irq_desc * desc,void * dev_id)1808 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1809 {
1810 unsigned irq = desc->irq_data.irq;
1811 struct irqaction *action, **action_ptr;
1812 unsigned long flags;
1813
1814 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1815
1816 mutex_lock(&desc->request_mutex);
1817 chip_bus_lock(desc);
1818 raw_spin_lock_irqsave(&desc->lock, flags);
1819
1820 /*
1821 * There can be multiple actions per IRQ descriptor, find the right
1822 * one based on the dev_id:
1823 */
1824 action_ptr = &desc->action;
1825 for (;;) {
1826 action = *action_ptr;
1827
1828 if (!action) {
1829 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1830 raw_spin_unlock_irqrestore(&desc->lock, flags);
1831 chip_bus_sync_unlock(desc);
1832 mutex_unlock(&desc->request_mutex);
1833 return NULL;
1834 }
1835
1836 if (action->dev_id == dev_id)
1837 break;
1838 action_ptr = &action->next;
1839 }
1840
1841 /* Found it - now remove it from the list of entries: */
1842 *action_ptr = action->next;
1843
1844 irq_pm_remove_action(desc, action);
1845
1846 /* If this was the last handler, shut down the IRQ line: */
1847 if (!desc->action) {
1848 irq_settings_clr_disable_unlazy(desc);
1849 /* Only shutdown. Deactivate after synchronize_hardirq() */
1850 irq_shutdown(desc);
1851 }
1852
1853 #ifdef CONFIG_SMP
1854 /* make sure affinity_hint is cleaned up */
1855 if (WARN_ON_ONCE(desc->affinity_hint))
1856 desc->affinity_hint = NULL;
1857 #endif
1858
1859 raw_spin_unlock_irqrestore(&desc->lock, flags);
1860 /*
1861 * Drop bus_lock here so the changes which were done in the chip
1862 * callbacks above are synced out to the irq chips which hang
1863 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1864 *
1865 * Aside of that the bus_lock can also be taken from the threaded
1866 * handler in irq_finalize_oneshot() which results in a deadlock
1867 * because kthread_stop() would wait forever for the thread to
1868 * complete, which is blocked on the bus lock.
1869 *
1870 * The still held desc->request_mutex() protects against a
1871 * concurrent request_irq() of this irq so the release of resources
1872 * and timing data is properly serialized.
1873 */
1874 chip_bus_sync_unlock(desc);
1875
1876 unregister_handler_proc(irq, action);
1877
1878 /*
1879 * Make sure it's not being used on another CPU and if the chip
1880 * supports it also make sure that there is no (not yet serviced)
1881 * interrupt in flight at the hardware level.
1882 */
1883 __synchronize_irq(desc);
1884
1885 #ifdef CONFIG_DEBUG_SHIRQ
1886 /*
1887 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1888 * event to happen even now it's being freed, so let's make sure that
1889 * is so by doing an extra call to the handler ....
1890 *
1891 * ( We do this after actually deregistering it, to make sure that a
1892 * 'real' IRQ doesn't run in parallel with our fake. )
1893 */
1894 if (action->flags & IRQF_SHARED) {
1895 local_irq_save(flags);
1896 action->handler(irq, dev_id);
1897 local_irq_restore(flags);
1898 }
1899 #endif
1900
1901 /*
1902 * The action has already been removed above, but the thread writes
1903 * its oneshot mask bit when it completes. Though request_mutex is
1904 * held across this which prevents __setup_irq() from handing out
1905 * the same bit to a newly requested action.
1906 */
1907 if (action->thread) {
1908 kthread_stop_put(action->thread);
1909 if (action->secondary && action->secondary->thread)
1910 kthread_stop_put(action->secondary->thread);
1911 }
1912
1913 /* Last action releases resources */
1914 if (!desc->action) {
1915 /*
1916 * Reacquire bus lock as irq_release_resources() might
1917 * require it to deallocate resources over the slow bus.
1918 */
1919 chip_bus_lock(desc);
1920 /*
1921 * There is no interrupt on the fly anymore. Deactivate it
1922 * completely.
1923 */
1924 scoped_guard(raw_spinlock_irqsave, &desc->lock)
1925 irq_domain_deactivate_irq(&desc->irq_data);
1926
1927 irq_release_resources(desc);
1928 chip_bus_sync_unlock(desc);
1929 irq_remove_timings(desc);
1930 }
1931
1932 mutex_unlock(&desc->request_mutex);
1933
1934 irq_chip_pm_put(&desc->irq_data);
1935 module_put(desc->owner);
1936 kfree(action->secondary);
1937 return action;
1938 }
1939
1940 /**
1941 * free_irq - free an interrupt allocated with request_irq
1942 * @irq: Interrupt line to free
1943 * @dev_id: Device identity to free
1944 *
1945 * Remove an interrupt handler. The handler is removed and if the interrupt
1946 * line is no longer in use by any driver it is disabled. On a shared IRQ
1947 * the caller must ensure the interrupt is disabled on the card it drives
1948 * before calling this function. The function does not return until any
1949 * executing interrupts for this IRQ have completed.
1950 *
1951 * This function must not be called from interrupt context.
1952 *
1953 * Returns the devname argument passed to request_irq.
1954 */
free_irq(unsigned int irq,void * dev_id)1955 const void *free_irq(unsigned int irq, void *dev_id)
1956 {
1957 struct irq_desc *desc = irq_to_desc(irq);
1958 struct irqaction *action;
1959 const char *devname;
1960
1961 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1962 return NULL;
1963
1964 #ifdef CONFIG_SMP
1965 if (WARN_ON(desc->affinity_notify))
1966 desc->affinity_notify = NULL;
1967 #endif
1968
1969 action = __free_irq(desc, dev_id);
1970
1971 if (!action)
1972 return NULL;
1973
1974 devname = action->name;
1975 kfree(action);
1976 return devname;
1977 }
1978 EXPORT_SYMBOL(free_irq);
1979
1980 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1981 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1982 {
1983 const char *devname = NULL;
1984
1985 desc->istate &= ~IRQS_NMI;
1986
1987 if (!WARN_ON(desc->action == NULL)) {
1988 irq_pm_remove_action(desc, desc->action);
1989 devname = desc->action->name;
1990 unregister_handler_proc(irq, desc->action);
1991
1992 kfree(desc->action);
1993 desc->action = NULL;
1994 }
1995
1996 irq_settings_clr_disable_unlazy(desc);
1997 irq_shutdown_and_deactivate(desc);
1998
1999 irq_release_resources(desc);
2000
2001 irq_chip_pm_put(&desc->irq_data);
2002 module_put(desc->owner);
2003
2004 return devname;
2005 }
2006
free_nmi(unsigned int irq,void * dev_id)2007 const void *free_nmi(unsigned int irq, void *dev_id)
2008 {
2009 struct irq_desc *desc = irq_to_desc(irq);
2010
2011 if (!desc || WARN_ON(!irq_is_nmi(desc)))
2012 return NULL;
2013
2014 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2015 return NULL;
2016
2017 /* NMI still enabled */
2018 if (WARN_ON(desc->depth == 0))
2019 disable_nmi_nosync(irq);
2020
2021 guard(raw_spinlock_irqsave)(&desc->lock);
2022 irq_nmi_teardown(desc);
2023 return __cleanup_nmi(irq, desc);
2024 }
2025
2026 /**
2027 * request_threaded_irq - allocate an interrupt line
2028 * @irq: Interrupt line to allocate
2029 * @handler: Function to be called when the IRQ occurs.
2030 * Primary handler for threaded interrupts.
2031 * If handler is NULL and thread_fn != NULL
2032 * the default primary handler is installed.
2033 * @thread_fn: Function called from the irq handler thread
2034 * If NULL, no irq thread is created
2035 * @irqflags: Interrupt type flags
2036 * @devname: An ascii name for the claiming device
2037 * @dev_id: A cookie passed back to the handler function
2038 *
2039 * This call allocates interrupt resources and enables the interrupt line
2040 * and IRQ handling. From the point this call is made your handler function
2041 * may be invoked. Since your handler function must clear any interrupt the
2042 * board raises, you must take care both to initialise your hardware and to
2043 * set up the interrupt handler in the right order.
2044 *
2045 * If you want to set up a threaded irq handler for your device then you
2046 * need to supply @handler and @thread_fn. @handler is still called in hard
2047 * interrupt context and has to check whether the interrupt originates from
2048 * the device. If yes it needs to disable the interrupt on the device and
2049 * return IRQ_WAKE_THREAD which will wake up the handler thread and run
2050 * @thread_fn. This split handler design is necessary to support shared
2051 * interrupts.
2052 *
2053 * @dev_id must be globally unique. Normally the address of the device data
2054 * structure is used as the cookie. Since the handler receives this value
2055 * it makes sense to use it.
2056 *
2057 * If your interrupt is shared you must pass a non NULL dev_id as this is
2058 * required when freeing the interrupt.
2059 *
2060 * Flags:
2061 *
2062 * IRQF_SHARED Interrupt is shared
2063 * IRQF_TRIGGER_* Specify active edge(s) or level
2064 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2065 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2066 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2067 irq_handler_t thread_fn, unsigned long irqflags,
2068 const char *devname, void *dev_id)
2069 {
2070 struct irqaction *action;
2071 struct irq_desc *desc;
2072 int retval;
2073
2074 if (irq == IRQ_NOTCONNECTED)
2075 return -ENOTCONN;
2076
2077 /*
2078 * Sanity-check: shared interrupts must pass in a real dev-ID,
2079 * otherwise we'll have trouble later trying to figure out
2080 * which interrupt is which (messes up the interrupt freeing
2081 * logic etc).
2082 *
2083 * Also shared interrupts do not go well with disabling auto enable.
2084 * The sharing interrupt might request it while it's still disabled
2085 * and then wait for interrupts forever.
2086 *
2087 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2088 * it cannot be set along with IRQF_NO_SUSPEND.
2089 */
2090 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2091 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2092 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2093 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2094 return -EINVAL;
2095
2096 desc = irq_to_desc(irq);
2097 if (!desc)
2098 return -EINVAL;
2099
2100 if (!irq_settings_can_request(desc) ||
2101 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2102 return -EINVAL;
2103
2104 if (!handler) {
2105 if (!thread_fn)
2106 return -EINVAL;
2107 handler = irq_default_primary_handler;
2108 }
2109
2110 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2111 if (!action)
2112 return -ENOMEM;
2113
2114 action->handler = handler;
2115 action->thread_fn = thread_fn;
2116 action->flags = irqflags;
2117 action->name = devname;
2118 action->dev_id = dev_id;
2119
2120 retval = irq_chip_pm_get(&desc->irq_data);
2121 if (retval < 0) {
2122 kfree(action);
2123 return retval;
2124 }
2125
2126 retval = __setup_irq(irq, desc, action);
2127
2128 if (retval) {
2129 irq_chip_pm_put(&desc->irq_data);
2130 kfree(action->secondary);
2131 kfree(action);
2132 }
2133
2134 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2135 if (!retval && (irqflags & IRQF_SHARED)) {
2136 /*
2137 * It's a shared IRQ -- the driver ought to be prepared for it
2138 * to happen immediately, so let's make sure....
2139 * We disable the irq to make sure that a 'real' IRQ doesn't
2140 * run in parallel with our fake.
2141 */
2142 unsigned long flags;
2143
2144 disable_irq(irq);
2145 local_irq_save(flags);
2146
2147 handler(irq, dev_id);
2148
2149 local_irq_restore(flags);
2150 enable_irq(irq);
2151 }
2152 #endif
2153 return retval;
2154 }
2155 EXPORT_SYMBOL(request_threaded_irq);
2156
2157 /**
2158 * request_any_context_irq - allocate an interrupt line
2159 * @irq: Interrupt line to allocate
2160 * @handler: Function to be called when the IRQ occurs.
2161 * Threaded handler for threaded interrupts.
2162 * @flags: Interrupt type flags
2163 * @name: An ascii name for the claiming device
2164 * @dev_id: A cookie passed back to the handler function
2165 *
2166 * This call allocates interrupt resources and enables the interrupt line
2167 * and IRQ handling. It selects either a hardirq or threaded handling
2168 * method depending on the context.
2169 *
2170 * Returns: On failure, it returns a negative value. On success, it returns either
2171 * IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2172 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2173 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2174 unsigned long flags, const char *name, void *dev_id)
2175 {
2176 struct irq_desc *desc;
2177 int ret;
2178
2179 if (irq == IRQ_NOTCONNECTED)
2180 return -ENOTCONN;
2181
2182 desc = irq_to_desc(irq);
2183 if (!desc)
2184 return -EINVAL;
2185
2186 if (irq_settings_is_nested_thread(desc)) {
2187 ret = request_threaded_irq(irq, NULL, handler,
2188 flags, name, dev_id);
2189 return !ret ? IRQC_IS_NESTED : ret;
2190 }
2191
2192 ret = request_irq(irq, handler, flags, name, dev_id);
2193 return !ret ? IRQC_IS_HARDIRQ : ret;
2194 }
2195 EXPORT_SYMBOL_GPL(request_any_context_irq);
2196
2197 /**
2198 * request_nmi - allocate an interrupt line for NMI delivery
2199 * @irq: Interrupt line to allocate
2200 * @handler: Function to be called when the IRQ occurs.
2201 * Threaded handler for threaded interrupts.
2202 * @irqflags: Interrupt type flags
2203 * @name: An ascii name for the claiming device
2204 * @dev_id: A cookie passed back to the handler function
2205 *
2206 * This call allocates interrupt resources and enables the interrupt line
2207 * and IRQ handling. It sets up the IRQ line to be handled as an NMI.
2208 *
2209 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2210 * cannot be threaded.
2211 *
2212 * Interrupt lines requested for NMI delivering must produce per cpu
2213 * interrupts and have auto enabling setting disabled.
2214 *
2215 * @dev_id must be globally unique. Normally the address of the device data
2216 * structure is used as the cookie. Since the handler receives this value
2217 * it makes sense to use it.
2218 *
2219 * If the interrupt line cannot be used to deliver NMIs, function will fail
2220 * and return a negative value.
2221 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2222 int request_nmi(unsigned int irq, irq_handler_t handler,
2223 unsigned long irqflags, const char *name, void *dev_id)
2224 {
2225 struct irqaction *action;
2226 struct irq_desc *desc;
2227 int retval;
2228
2229 if (irq == IRQ_NOTCONNECTED)
2230 return -ENOTCONN;
2231
2232 /* NMI cannot be shared, used for Polling */
2233 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2234 return -EINVAL;
2235
2236 if (!(irqflags & IRQF_PERCPU))
2237 return -EINVAL;
2238
2239 if (!handler)
2240 return -EINVAL;
2241
2242 desc = irq_to_desc(irq);
2243
2244 if (!desc || (irq_settings_can_autoenable(desc) &&
2245 !(irqflags & IRQF_NO_AUTOEN)) ||
2246 !irq_settings_can_request(desc) ||
2247 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2248 !irq_supports_nmi(desc))
2249 return -EINVAL;
2250
2251 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2252 if (!action)
2253 return -ENOMEM;
2254
2255 action->handler = handler;
2256 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2257 action->name = name;
2258 action->dev_id = dev_id;
2259
2260 retval = irq_chip_pm_get(&desc->irq_data);
2261 if (retval < 0)
2262 goto err_out;
2263
2264 retval = __setup_irq(irq, desc, action);
2265 if (retval)
2266 goto err_irq_setup;
2267
2268 scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2269 /* Setup NMI state */
2270 desc->istate |= IRQS_NMI;
2271 retval = irq_nmi_setup(desc);
2272 if (retval) {
2273 __cleanup_nmi(irq, desc);
2274 return -EINVAL;
2275 }
2276 return 0;
2277 }
2278
2279 err_irq_setup:
2280 irq_chip_pm_put(&desc->irq_data);
2281 err_out:
2282 kfree(action);
2283
2284 return retval;
2285 }
2286
enable_percpu_irq(unsigned int irq,unsigned int type)2287 void enable_percpu_irq(unsigned int irq, unsigned int type)
2288 {
2289 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2290 struct irq_desc *desc = scoped_irqdesc;
2291
2292 /*
2293 * If the trigger type is not specified by the caller, then
2294 * use the default for this interrupt.
2295 */
2296 type &= IRQ_TYPE_SENSE_MASK;
2297 if (type == IRQ_TYPE_NONE)
2298 type = irqd_get_trigger_type(&desc->irq_data);
2299
2300 if (type != IRQ_TYPE_NONE) {
2301 if (__irq_set_trigger(desc, type)) {
2302 WARN(1, "failed to set type for IRQ%d\n", irq);
2303 return;
2304 }
2305 }
2306 irq_percpu_enable(desc, smp_processor_id());
2307 }
2308 }
2309 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2310
enable_percpu_nmi(unsigned int irq,unsigned int type)2311 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2312 {
2313 enable_percpu_irq(irq, type);
2314 }
2315
2316 /**
2317 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2318 * @irq: Linux irq number to check for
2319 *
2320 * Must be called from a non migratable context. Returns the enable
2321 * state of a per cpu interrupt on the current cpu.
2322 */
irq_percpu_is_enabled(unsigned int irq)2323 bool irq_percpu_is_enabled(unsigned int irq)
2324 {
2325 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2326 return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled);
2327 return false;
2328 }
2329 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2330
disable_percpu_irq(unsigned int irq)2331 void disable_percpu_irq(unsigned int irq)
2332 {
2333 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2334 irq_percpu_disable(scoped_irqdesc, smp_processor_id());
2335 }
2336 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2337
disable_percpu_nmi(unsigned int irq)2338 void disable_percpu_nmi(unsigned int irq)
2339 {
2340 disable_percpu_irq(irq);
2341 }
2342
2343 /*
2344 * Internal function to unregister a percpu irqaction.
2345 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2346 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2347 {
2348 struct irq_desc *desc = irq_to_desc(irq);
2349 struct irqaction *action;
2350
2351 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2352
2353 if (!desc)
2354 return NULL;
2355
2356 scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2357 action = desc->action;
2358 if (!action || action->percpu_dev_id != dev_id) {
2359 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2360 return NULL;
2361 }
2362
2363 if (!cpumask_empty(desc->percpu_enabled)) {
2364 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2365 irq, cpumask_first(desc->percpu_enabled));
2366 return NULL;
2367 }
2368
2369 /* Found it - now remove it from the list of entries: */
2370 desc->action = NULL;
2371 desc->istate &= ~IRQS_NMI;
2372 }
2373
2374 unregister_handler_proc(irq, action);
2375 irq_chip_pm_put(&desc->irq_data);
2376 module_put(desc->owner);
2377 return action;
2378 }
2379
2380 /**
2381 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2382 * @irq: Interrupt line to free
2383 * @dev_id: Device identity to free
2384 *
2385 * Remove a percpu interrupt handler. The handler is removed, but the
2386 * interrupt line is not disabled. This must be done on each CPU before
2387 * calling this function. The function does not return until any executing
2388 * interrupts for this IRQ have completed.
2389 *
2390 * This function must not be called from interrupt context.
2391 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2392 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2393 {
2394 struct irq_desc *desc = irq_to_desc(irq);
2395
2396 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2397 return;
2398
2399 chip_bus_lock(desc);
2400 kfree(__free_percpu_irq(irq, dev_id));
2401 chip_bus_sync_unlock(desc);
2402 }
2403 EXPORT_SYMBOL_GPL(free_percpu_irq);
2404
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2405 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2406 {
2407 struct irq_desc *desc = irq_to_desc(irq);
2408
2409 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2410 return;
2411
2412 if (WARN_ON(!irq_is_nmi(desc)))
2413 return;
2414
2415 kfree(__free_percpu_irq(irq, dev_id));
2416 }
2417
2418 /**
2419 * setup_percpu_irq - setup a per-cpu interrupt
2420 * @irq: Interrupt line to setup
2421 * @act: irqaction for the interrupt
2422 *
2423 * Used to statically setup per-cpu interrupts in the early boot process.
2424 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2425 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2426 {
2427 struct irq_desc *desc = irq_to_desc(irq);
2428 int retval;
2429
2430 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2431 return -EINVAL;
2432
2433 retval = irq_chip_pm_get(&desc->irq_data);
2434 if (retval < 0)
2435 return retval;
2436
2437 retval = __setup_irq(irq, desc, act);
2438
2439 if (retval)
2440 irq_chip_pm_put(&desc->irq_data);
2441
2442 return retval;
2443 }
2444
2445 /**
2446 * __request_percpu_irq - allocate a percpu interrupt line
2447 * @irq: Interrupt line to allocate
2448 * @handler: Function to be called when the IRQ occurs.
2449 * @flags: Interrupt type flags (IRQF_TIMER only)
2450 * @devname: An ascii name for the claiming device
2451 * @dev_id: A percpu cookie passed back to the handler function
2452 *
2453 * This call allocates interrupt resources and enables the interrupt on the
2454 * local CPU. If the interrupt is supposed to be enabled on other CPUs, it
2455 * has to be done on each CPU using enable_percpu_irq().
2456 *
2457 * @dev_id must be globally unique. It is a per-cpu variable, and
2458 * the handler gets called with the interrupted CPU's instance of
2459 * that variable.
2460 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2461 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2462 unsigned long flags, const char *devname,
2463 void __percpu *dev_id)
2464 {
2465 struct irqaction *action;
2466 struct irq_desc *desc;
2467 int retval;
2468
2469 if (!dev_id)
2470 return -EINVAL;
2471
2472 desc = irq_to_desc(irq);
2473 if (!desc || !irq_settings_can_request(desc) ||
2474 !irq_settings_is_per_cpu_devid(desc))
2475 return -EINVAL;
2476
2477 if (flags && flags != IRQF_TIMER)
2478 return -EINVAL;
2479
2480 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2481 if (!action)
2482 return -ENOMEM;
2483
2484 action->handler = handler;
2485 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2486 action->name = devname;
2487 action->percpu_dev_id = dev_id;
2488
2489 retval = irq_chip_pm_get(&desc->irq_data);
2490 if (retval < 0) {
2491 kfree(action);
2492 return retval;
2493 }
2494
2495 retval = __setup_irq(irq, desc, action);
2496
2497 if (retval) {
2498 irq_chip_pm_put(&desc->irq_data);
2499 kfree(action);
2500 }
2501
2502 return retval;
2503 }
2504 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2505
2506 /**
2507 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2508 * @irq: Interrupt line to allocate
2509 * @handler: Function to be called when the IRQ occurs.
2510 * @name: An ascii name for the claiming device
2511 * @dev_id: A percpu cookie passed back to the handler function
2512 *
2513 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2514 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2515 * being enabled on the same CPU by using enable_percpu_nmi().
2516 *
2517 * @dev_id must be globally unique. It is a per-cpu variable, and the
2518 * handler gets called with the interrupted CPU's instance of that
2519 * variable.
2520 *
2521 * Interrupt lines requested for NMI delivering should have auto enabling
2522 * setting disabled.
2523 *
2524 * If the interrupt line cannot be used to deliver NMIs, function
2525 * will fail returning a negative value.
2526 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2527 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2528 const char *name, void __percpu *dev_id)
2529 {
2530 struct irqaction *action;
2531 struct irq_desc *desc;
2532 int retval;
2533
2534 if (!handler)
2535 return -EINVAL;
2536
2537 desc = irq_to_desc(irq);
2538
2539 if (!desc || !irq_settings_can_request(desc) ||
2540 !irq_settings_is_per_cpu_devid(desc) ||
2541 irq_settings_can_autoenable(desc) ||
2542 !irq_supports_nmi(desc))
2543 return -EINVAL;
2544
2545 /* The line cannot already be NMI */
2546 if (irq_is_nmi(desc))
2547 return -EINVAL;
2548
2549 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2550 if (!action)
2551 return -ENOMEM;
2552
2553 action->handler = handler;
2554 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2555 | IRQF_NOBALANCING;
2556 action->name = name;
2557 action->percpu_dev_id = dev_id;
2558
2559 retval = irq_chip_pm_get(&desc->irq_data);
2560 if (retval < 0)
2561 goto err_out;
2562
2563 retval = __setup_irq(irq, desc, action);
2564 if (retval)
2565 goto err_irq_setup;
2566
2567 scoped_guard(raw_spinlock_irqsave, &desc->lock)
2568 desc->istate |= IRQS_NMI;
2569 return 0;
2570
2571 err_irq_setup:
2572 irq_chip_pm_put(&desc->irq_data);
2573 err_out:
2574 kfree(action);
2575
2576 return retval;
2577 }
2578
2579 /**
2580 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2581 * @irq: Interrupt line to prepare for NMI delivery
2582 *
2583 * This call prepares an interrupt line to deliver NMI on the current CPU,
2584 * before that interrupt line gets enabled with enable_percpu_nmi().
2585 *
2586 * As a CPU local operation, this should be called from non-preemptible
2587 * context.
2588 *
2589 * If the interrupt line cannot be used to deliver NMIs, function will fail
2590 * returning a negative value.
2591 */
prepare_percpu_nmi(unsigned int irq)2592 int prepare_percpu_nmi(unsigned int irq)
2593 {
2594 int ret = -EINVAL;
2595
2596 WARN_ON(preemptible());
2597
2598 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2599 if (WARN(!irq_is_nmi(scoped_irqdesc),
2600 "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq))
2601 return -EINVAL;
2602
2603 ret = irq_nmi_setup(scoped_irqdesc);
2604 if (ret)
2605 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2606 }
2607 return ret;
2608 }
2609
2610 /**
2611 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2612 * @irq: Interrupt line from which CPU local NMI configuration should be removed
2613 *
2614 * This call undoes the setup done by prepare_percpu_nmi().
2615 *
2616 * IRQ line should not be enabled for the current CPU.
2617 * As a CPU local operation, this should be called from non-preemptible
2618 * context.
2619 */
teardown_percpu_nmi(unsigned int irq)2620 void teardown_percpu_nmi(unsigned int irq)
2621 {
2622 WARN_ON(preemptible());
2623
2624 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2625 if (WARN_ON(!irq_is_nmi(scoped_irqdesc)))
2626 return;
2627 irq_nmi_teardown(scoped_irqdesc);
2628 }
2629 }
2630
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2631 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state)
2632 {
2633 struct irq_chip *chip;
2634 int err = -EINVAL;
2635
2636 do {
2637 chip = irq_data_get_irq_chip(data);
2638 if (WARN_ON_ONCE(!chip))
2639 return -ENODEV;
2640 if (chip->irq_get_irqchip_state)
2641 break;
2642 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2643 data = data->parent_data;
2644 #else
2645 data = NULL;
2646 #endif
2647 } while (data);
2648
2649 if (data)
2650 err = chip->irq_get_irqchip_state(data, which, state);
2651 return err;
2652 }
2653
2654 /**
2655 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2656 * @irq: Interrupt line that is forwarded to a VM
2657 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2658 * @state: a pointer to a boolean where the state is to be stored
2659 *
2660 * This call snapshots the internal irqchip state of an interrupt,
2661 * returning into @state the bit corresponding to stage @which
2662 *
2663 * This function should be called with preemption disabled if the interrupt
2664 * controller has per-cpu registers.
2665 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2666 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state)
2667 {
2668 scoped_irqdesc_get_and_buslock(irq, 0) {
2669 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2670
2671 return __irq_get_irqchip_state(data, which, state);
2672 }
2673 return -EINVAL;
2674 }
2675 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2676
2677 /**
2678 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2679 * @irq: Interrupt line that is forwarded to a VM
2680 * @which: State to be restored (one of IRQCHIP_STATE_*)
2681 * @val: Value corresponding to @which
2682 *
2683 * This call sets the internal irqchip state of an interrupt, depending on
2684 * the value of @which.
2685 *
2686 * This function should be called with migration disabled if the interrupt
2687 * controller has per-cpu registers.
2688 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2689 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
2690 {
2691 scoped_irqdesc_get_and_buslock(irq, 0) {
2692 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2693 struct irq_chip *chip;
2694
2695 do {
2696 chip = irq_data_get_irq_chip(data);
2697
2698 if (WARN_ON_ONCE(!chip))
2699 return -ENODEV;
2700
2701 if (chip->irq_set_irqchip_state)
2702 break;
2703
2704 data = irqd_get_parent_data(data);
2705 } while (data);
2706
2707 if (data)
2708 return chip->irq_set_irqchip_state(data, which, val);
2709 }
2710 return -EINVAL;
2711 }
2712 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2713
2714 /**
2715 * irq_has_action - Check whether an interrupt is requested
2716 * @irq: The linux irq number
2717 *
2718 * Returns: A snapshot of the current state
2719 */
irq_has_action(unsigned int irq)2720 bool irq_has_action(unsigned int irq)
2721 {
2722 bool res;
2723
2724 rcu_read_lock();
2725 res = irq_desc_has_action(irq_to_desc(irq));
2726 rcu_read_unlock();
2727 return res;
2728 }
2729 EXPORT_SYMBOL_GPL(irq_has_action);
2730
2731 /**
2732 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2733 * @irq: The linux irq number
2734 * @bitmask: The bitmask to evaluate
2735 *
2736 * Returns: True if one of the bits in @bitmask is set
2737 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2738 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2739 {
2740 struct irq_desc *desc;
2741 bool res = false;
2742
2743 rcu_read_lock();
2744 desc = irq_to_desc(irq);
2745 if (desc)
2746 res = !!(desc->status_use_accessors & bitmask);
2747 rcu_read_unlock();
2748 return res;
2749 }
2750 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2751