1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5 *
6 * This file contains the core interrupt handling code, for irq-chip based
7 * architectures. Detailed information is available in
8 * Documentation/core-api/genericirq.rst
9 */
10
11 #include <linux/irq.h>
12 #include <linux/msi.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/irqdomain.h>
17
18 #include <trace/events/irq.h>
19
20 #include "internals.h"
21
bad_chained_irq(int irq,void * dev_id)22 static irqreturn_t bad_chained_irq(int irq, void *dev_id)
23 {
24 WARN_ONCE(1, "Chained irq %d should not call an action\n", irq);
25 return IRQ_NONE;
26 }
27
28 /*
29 * Chained handlers should never call action on their IRQ. This default
30 * action will emit warning if such thing happens.
31 */
32 struct irqaction chained_action = {
33 .handler = bad_chained_irq,
34 };
35
36 /**
37 * irq_set_chip - set the irq chip for an irq
38 * @irq: irq number
39 * @chip: pointer to irq chip description structure
40 */
irq_set_chip(unsigned int irq,const struct irq_chip * chip)41 int irq_set_chip(unsigned int irq, const struct irq_chip *chip)
42 {
43 int ret = -EINVAL;
44
45 scoped_irqdesc_get_and_lock(irq, 0) {
46 scoped_irqdesc->irq_data.chip = (struct irq_chip *)(chip ?: &no_irq_chip);
47 ret = 0;
48 }
49 /* For !CONFIG_SPARSE_IRQ make the irq show up in allocated_irqs. */
50 if (!ret)
51 irq_mark_irq(irq);
52 return ret;
53 }
54 EXPORT_SYMBOL(irq_set_chip);
55
56 /**
57 * irq_set_irq_type - set the irq trigger type for an irq
58 * @irq: irq number
59 * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
60 */
irq_set_irq_type(unsigned int irq,unsigned int type)61 int irq_set_irq_type(unsigned int irq, unsigned int type)
62 {
63 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL)
64 return __irq_set_trigger(scoped_irqdesc, type);
65 return -EINVAL;
66 }
67 EXPORT_SYMBOL(irq_set_irq_type);
68
69 /**
70 * irq_set_handler_data - set irq handler data for an irq
71 * @irq: Interrupt number
72 * @data: Pointer to interrupt specific data
73 *
74 * Set the hardware irq controller data for an irq
75 */
irq_set_handler_data(unsigned int irq,void * data)76 int irq_set_handler_data(unsigned int irq, void *data)
77 {
78 scoped_irqdesc_get_and_lock(irq, 0) {
79 scoped_irqdesc->irq_common_data.handler_data = data;
80 return 0;
81 }
82 return -EINVAL;
83 }
84 EXPORT_SYMBOL(irq_set_handler_data);
85
86 /**
87 * irq_set_msi_desc_off - set MSI descriptor data for an irq at offset
88 * @irq_base: Interrupt number base
89 * @irq_offset: Interrupt number offset
90 * @entry: Pointer to MSI descriptor data
91 *
92 * Set the MSI descriptor entry for an irq at offset
93 */
irq_set_msi_desc_off(unsigned int irq_base,unsigned int irq_offset,struct msi_desc * entry)94 int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc *entry)
95 {
96 scoped_irqdesc_get_and_lock(irq_base + irq_offset, IRQ_GET_DESC_CHECK_GLOBAL) {
97 scoped_irqdesc->irq_common_data.msi_desc = entry;
98 if (entry && !irq_offset)
99 entry->irq = irq_base;
100 return 0;
101 }
102 return -EINVAL;
103 }
104
105 /**
106 * irq_set_msi_desc - set MSI descriptor data for an irq
107 * @irq: Interrupt number
108 * @entry: Pointer to MSI descriptor data
109 *
110 * Set the MSI descriptor entry for an irq
111 */
irq_set_msi_desc(unsigned int irq,struct msi_desc * entry)112 int irq_set_msi_desc(unsigned int irq, struct msi_desc *entry)
113 {
114 return irq_set_msi_desc_off(irq, 0, entry);
115 }
116
117 /**
118 * irq_set_chip_data - set irq chip data for an irq
119 * @irq: Interrupt number
120 * @data: Pointer to chip specific data
121 *
122 * Set the hardware irq chip data for an irq
123 */
irq_set_chip_data(unsigned int irq,void * data)124 int irq_set_chip_data(unsigned int irq, void *data)
125 {
126 scoped_irqdesc_get_and_lock(irq, 0) {
127 scoped_irqdesc->irq_data.chip_data = data;
128 return 0;
129 }
130 return -EINVAL;
131 }
132 EXPORT_SYMBOL(irq_set_chip_data);
133
irq_get_irq_data(unsigned int irq)134 struct irq_data *irq_get_irq_data(unsigned int irq)
135 {
136 struct irq_desc *desc = irq_to_desc(irq);
137
138 return desc ? &desc->irq_data : NULL;
139 }
140 EXPORT_SYMBOL_GPL(irq_get_irq_data);
141
irq_state_clr_disabled(struct irq_desc * desc)142 static void irq_state_clr_disabled(struct irq_desc *desc)
143 {
144 irqd_clear(&desc->irq_data, IRQD_IRQ_DISABLED);
145 }
146
irq_state_clr_masked(struct irq_desc * desc)147 static void irq_state_clr_masked(struct irq_desc *desc)
148 {
149 irqd_clear(&desc->irq_data, IRQD_IRQ_MASKED);
150 }
151
irq_state_clr_started(struct irq_desc * desc)152 static void irq_state_clr_started(struct irq_desc *desc)
153 {
154 irqd_clear(&desc->irq_data, IRQD_IRQ_STARTED);
155 }
156
irq_state_set_started(struct irq_desc * desc)157 static void irq_state_set_started(struct irq_desc *desc)
158 {
159 irqd_set(&desc->irq_data, IRQD_IRQ_STARTED);
160 }
161
162 enum {
163 IRQ_STARTUP_NORMAL,
164 IRQ_STARTUP_MANAGED,
165 IRQ_STARTUP_ABORT,
166 };
167
168 #ifdef CONFIG_SMP
169 static int
__irq_startup_managed(struct irq_desc * desc,const struct cpumask * aff,bool force)170 __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff,
171 bool force)
172 {
173 struct irq_data *d = irq_desc_get_irq_data(desc);
174
175 if (!irqd_affinity_is_managed(d))
176 return IRQ_STARTUP_NORMAL;
177
178 irqd_clr_managed_shutdown(d);
179
180 if (!cpumask_intersects(aff, cpu_online_mask)) {
181 /*
182 * Catch code which fiddles with enable_irq() on a managed
183 * and potentially shutdown IRQ. Chained interrupt
184 * installment or irq auto probing should not happen on
185 * managed irqs either.
186 */
187 if (WARN_ON_ONCE(force))
188 return IRQ_STARTUP_ABORT;
189 /*
190 * The interrupt was requested, but there is no online CPU
191 * in it's affinity mask. Put it into managed shutdown
192 * state and let the cpu hotplug mechanism start it up once
193 * a CPU in the mask becomes available.
194 */
195 return IRQ_STARTUP_ABORT;
196 }
197 /*
198 * Managed interrupts have reserved resources, so this should not
199 * happen.
200 */
201 if (WARN_ON(irq_domain_activate_irq(d, false)))
202 return IRQ_STARTUP_ABORT;
203 return IRQ_STARTUP_MANAGED;
204 }
205
irq_startup_managed(struct irq_desc * desc)206 void irq_startup_managed(struct irq_desc *desc)
207 {
208 struct irq_data *d = irq_desc_get_irq_data(desc);
209
210 /*
211 * Clear managed-shutdown flag, so we don't repeat managed-startup for
212 * multiple hotplugs, and cause imbalanced disable depth.
213 */
214 irqd_clr_managed_shutdown(d);
215
216 /*
217 * Only start it up when the disable depth is 1, so that a disable,
218 * hotunplug, hotplug sequence does not end up enabling it during
219 * hotplug unconditionally.
220 */
221 desc->depth--;
222 if (!desc->depth)
223 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
224 }
225
226 #else
227 static __always_inline int
__irq_startup_managed(struct irq_desc * desc,const struct cpumask * aff,bool force)228 __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff,
229 bool force)
230 {
231 return IRQ_STARTUP_NORMAL;
232 }
233 #endif
234
irq_enable(struct irq_desc * desc)235 static void irq_enable(struct irq_desc *desc)
236 {
237 if (!irqd_irq_disabled(&desc->irq_data)) {
238 unmask_irq(desc);
239 } else {
240 irq_state_clr_disabled(desc);
241 if (desc->irq_data.chip->irq_enable) {
242 desc->irq_data.chip->irq_enable(&desc->irq_data);
243 irq_state_clr_masked(desc);
244 } else {
245 unmask_irq(desc);
246 }
247 }
248 }
249
__irq_startup(struct irq_desc * desc)250 static int __irq_startup(struct irq_desc *desc)
251 {
252 struct irq_data *d = irq_desc_get_irq_data(desc);
253 int ret = 0;
254
255 /* Warn if this interrupt is not activated but try nevertheless */
256 WARN_ON_ONCE(!irqd_is_activated(d));
257
258 if (d->chip->irq_startup) {
259 ret = d->chip->irq_startup(d);
260 irq_state_clr_disabled(desc);
261 irq_state_clr_masked(desc);
262 } else {
263 irq_enable(desc);
264 }
265 irq_state_set_started(desc);
266 return ret;
267 }
268
irq_startup(struct irq_desc * desc,bool resend,bool force)269 int irq_startup(struct irq_desc *desc, bool resend, bool force)
270 {
271 struct irq_data *d = irq_desc_get_irq_data(desc);
272 const struct cpumask *aff = irq_data_get_affinity_mask(d);
273 int ret = 0;
274
275 desc->depth = 0;
276
277 if (irqd_is_started(d)) {
278 irq_enable(desc);
279 } else {
280 switch (__irq_startup_managed(desc, aff, force)) {
281 case IRQ_STARTUP_NORMAL:
282 if (d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP)
283 irq_setup_affinity(desc);
284 ret = __irq_startup(desc);
285 if (!(d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP))
286 irq_setup_affinity(desc);
287 break;
288 case IRQ_STARTUP_MANAGED:
289 irq_do_set_affinity(d, aff, false);
290 ret = __irq_startup(desc);
291 break;
292 case IRQ_STARTUP_ABORT:
293 desc->depth = 1;
294 irqd_set_managed_shutdown(d);
295 return 0;
296 }
297 }
298 if (resend)
299 check_irq_resend(desc, false);
300
301 return ret;
302 }
303
irq_activate(struct irq_desc * desc)304 int irq_activate(struct irq_desc *desc)
305 {
306 struct irq_data *d = irq_desc_get_irq_data(desc);
307
308 if (!irqd_affinity_is_managed(d))
309 return irq_domain_activate_irq(d, false);
310 return 0;
311 }
312
irq_activate_and_startup(struct irq_desc * desc,bool resend)313 int irq_activate_and_startup(struct irq_desc *desc, bool resend)
314 {
315 if (WARN_ON(irq_activate(desc)))
316 return 0;
317 return irq_startup(desc, resend, IRQ_START_FORCE);
318 }
319
320 static void __irq_disable(struct irq_desc *desc, bool mask);
321
irq_shutdown(struct irq_desc * desc)322 void irq_shutdown(struct irq_desc *desc)
323 {
324 if (irqd_is_started(&desc->irq_data)) {
325 clear_irq_resend(desc);
326 /*
327 * Increment disable depth, so that a managed shutdown on
328 * CPU hotunplug preserves the actual disabled state when the
329 * CPU comes back online. See irq_startup_managed().
330 */
331 desc->depth++;
332
333 if (desc->irq_data.chip->irq_shutdown) {
334 desc->irq_data.chip->irq_shutdown(&desc->irq_data);
335 irq_state_set_disabled(desc);
336 irq_state_set_masked(desc);
337 } else {
338 __irq_disable(desc, true);
339 }
340 irq_state_clr_started(desc);
341 }
342 }
343
344
irq_shutdown_and_deactivate(struct irq_desc * desc)345 void irq_shutdown_and_deactivate(struct irq_desc *desc)
346 {
347 irq_shutdown(desc);
348 /*
349 * This must be called even if the interrupt was never started up,
350 * because the activation can happen before the interrupt is
351 * available for request/startup. It has it's own state tracking so
352 * it's safe to call it unconditionally.
353 */
354 irq_domain_deactivate_irq(&desc->irq_data);
355 }
356
__irq_disable(struct irq_desc * desc,bool mask)357 static void __irq_disable(struct irq_desc *desc, bool mask)
358 {
359 if (irqd_irq_disabled(&desc->irq_data)) {
360 if (mask)
361 mask_irq(desc);
362 } else {
363 irq_state_set_disabled(desc);
364 if (desc->irq_data.chip->irq_disable) {
365 desc->irq_data.chip->irq_disable(&desc->irq_data);
366 irq_state_set_masked(desc);
367 } else if (mask) {
368 mask_irq(desc);
369 }
370 }
371 }
372
373 /**
374 * irq_disable - Mark interrupt disabled
375 * @desc: irq descriptor which should be disabled
376 *
377 * If the chip does not implement the irq_disable callback, we
378 * use a lazy disable approach. That means we mark the interrupt
379 * disabled, but leave the hardware unmasked. That's an
380 * optimization because we avoid the hardware access for the
381 * common case where no interrupt happens after we marked it
382 * disabled. If an interrupt happens, then the interrupt flow
383 * handler masks the line at the hardware level and marks it
384 * pending.
385 *
386 * If the interrupt chip does not implement the irq_disable callback,
387 * a driver can disable the lazy approach for a particular irq line by
388 * calling 'irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)'. This can
389 * be used for devices which cannot disable the interrupt at the
390 * device level under certain circumstances and have to use
391 * disable_irq[_nosync] instead.
392 */
irq_disable(struct irq_desc * desc)393 void irq_disable(struct irq_desc *desc)
394 {
395 __irq_disable(desc, irq_settings_disable_unlazy(desc));
396 }
397
irq_percpu_enable(struct irq_desc * desc,unsigned int cpu)398 void irq_percpu_enable(struct irq_desc *desc, unsigned int cpu)
399 {
400 if (desc->irq_data.chip->irq_enable)
401 desc->irq_data.chip->irq_enable(&desc->irq_data);
402 else
403 desc->irq_data.chip->irq_unmask(&desc->irq_data);
404 cpumask_set_cpu(cpu, desc->percpu_enabled);
405 }
406
irq_percpu_disable(struct irq_desc * desc,unsigned int cpu)407 void irq_percpu_disable(struct irq_desc *desc, unsigned int cpu)
408 {
409 if (desc->irq_data.chip->irq_disable)
410 desc->irq_data.chip->irq_disable(&desc->irq_data);
411 else
412 desc->irq_data.chip->irq_mask(&desc->irq_data);
413 cpumask_clear_cpu(cpu, desc->percpu_enabled);
414 }
415
mask_ack_irq(struct irq_desc * desc)416 static inline void mask_ack_irq(struct irq_desc *desc)
417 {
418 if (desc->irq_data.chip->irq_mask_ack) {
419 desc->irq_data.chip->irq_mask_ack(&desc->irq_data);
420 irq_state_set_masked(desc);
421 } else {
422 mask_irq(desc);
423 if (desc->irq_data.chip->irq_ack)
424 desc->irq_data.chip->irq_ack(&desc->irq_data);
425 }
426 }
427
mask_irq(struct irq_desc * desc)428 void mask_irq(struct irq_desc *desc)
429 {
430 if (irqd_irq_masked(&desc->irq_data))
431 return;
432
433 if (desc->irq_data.chip->irq_mask) {
434 desc->irq_data.chip->irq_mask(&desc->irq_data);
435 irq_state_set_masked(desc);
436 }
437 }
438
unmask_irq(struct irq_desc * desc)439 void unmask_irq(struct irq_desc *desc)
440 {
441 if (!irqd_irq_masked(&desc->irq_data))
442 return;
443
444 if (desc->irq_data.chip->irq_unmask) {
445 desc->irq_data.chip->irq_unmask(&desc->irq_data);
446 irq_state_clr_masked(desc);
447 }
448 }
449
unmask_threaded_irq(struct irq_desc * desc)450 void unmask_threaded_irq(struct irq_desc *desc)
451 {
452 struct irq_chip *chip = desc->irq_data.chip;
453
454 if (chip->flags & IRQCHIP_EOI_THREADED)
455 chip->irq_eoi(&desc->irq_data);
456
457 unmask_irq(desc);
458 }
459
irq_check_poll(struct irq_desc * desc)460 static bool irq_check_poll(struct irq_desc *desc)
461 {
462 if (!(desc->istate & IRQS_POLL_INPROGRESS))
463 return false;
464 return irq_wait_for_poll(desc);
465 }
466
irq_can_handle_pm(struct irq_desc * desc)467 static bool irq_can_handle_pm(struct irq_desc *desc)
468 {
469 unsigned int mask = IRQD_IRQ_INPROGRESS | IRQD_WAKEUP_ARMED;
470
471 /*
472 * If the interrupt is not in progress and is not an armed
473 * wakeup interrupt, proceed.
474 */
475 if (!irqd_has_set(&desc->irq_data, mask))
476 return true;
477
478 /*
479 * If the interrupt is an armed wakeup source, mark it pending
480 * and suspended, disable it and notify the pm core about the
481 * event.
482 */
483 if (irq_pm_check_wakeup(desc))
484 return false;
485
486 /*
487 * Handle a potential concurrent poll on a different core.
488 */
489 return irq_check_poll(desc);
490 }
491
irq_can_handle_actions(struct irq_desc * desc)492 static inline bool irq_can_handle_actions(struct irq_desc *desc)
493 {
494 desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING);
495
496 if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) {
497 desc->istate |= IRQS_PENDING;
498 return false;
499 }
500 return true;
501 }
502
irq_can_handle(struct irq_desc * desc)503 static inline bool irq_can_handle(struct irq_desc *desc)
504 {
505 if (!irq_can_handle_pm(desc))
506 return false;
507
508 return irq_can_handle_actions(desc);
509 }
510
511 /**
512 * handle_nested_irq - Handle a nested irq from a irq thread
513 * @irq: the interrupt number
514 *
515 * Handle interrupts which are nested into a threaded interrupt
516 * handler. The handler function is called inside the calling threads
517 * context.
518 */
handle_nested_irq(unsigned int irq)519 void handle_nested_irq(unsigned int irq)
520 {
521 struct irq_desc *desc = irq_to_desc(irq);
522 struct irqaction *action;
523 irqreturn_t action_ret;
524
525 might_sleep();
526
527 scoped_guard(raw_spinlock_irq, &desc->lock) {
528 if (!irq_can_handle_actions(desc))
529 return;
530
531 action = desc->action;
532 kstat_incr_irqs_this_cpu(desc);
533 atomic_inc(&desc->threads_active);
534 }
535
536 action_ret = IRQ_NONE;
537 for_each_action_of_desc(desc, action)
538 action_ret |= action->thread_fn(action->irq, action->dev_id);
539
540 if (!irq_settings_no_debug(desc))
541 note_interrupt(desc, action_ret);
542
543 wake_threads_waitq(desc);
544 }
545 EXPORT_SYMBOL_GPL(handle_nested_irq);
546
547 /**
548 * handle_simple_irq - Simple and software-decoded IRQs.
549 * @desc: the interrupt description structure for this irq
550 *
551 * Simple interrupts are either sent from a demultiplexing interrupt
552 * handler or come from hardware, where no interrupt hardware control is
553 * necessary.
554 *
555 * Note: The caller is expected to handle the ack, clear, mask and unmask
556 * issues if necessary.
557 */
handle_simple_irq(struct irq_desc * desc)558 void handle_simple_irq(struct irq_desc *desc)
559 {
560 guard(raw_spinlock)(&desc->lock);
561
562 if (!irq_can_handle(desc))
563 return;
564
565 kstat_incr_irqs_this_cpu(desc);
566 handle_irq_event(desc);
567 }
568 EXPORT_SYMBOL_GPL(handle_simple_irq);
569
570 /**
571 * handle_untracked_irq - Simple and software-decoded IRQs.
572 * @desc: the interrupt description structure for this irq
573 *
574 * Untracked interrupts are sent from a demultiplexing interrupt handler
575 * when the demultiplexer does not know which device it its multiplexed irq
576 * domain generated the interrupt. IRQ's handled through here are not
577 * subjected to stats tracking, randomness, or spurious interrupt
578 * detection.
579 *
580 * Note: Like handle_simple_irq, the caller is expected to handle the ack,
581 * clear, mask and unmask issues if necessary.
582 */
handle_untracked_irq(struct irq_desc * desc)583 void handle_untracked_irq(struct irq_desc *desc)
584 {
585 scoped_guard(raw_spinlock, &desc->lock) {
586 if (!irq_can_handle(desc))
587 return;
588
589 desc->istate &= ~IRQS_PENDING;
590 irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS);
591 }
592
593 __handle_irq_event_percpu(desc);
594
595 scoped_guard(raw_spinlock, &desc->lock)
596 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
597 }
598 EXPORT_SYMBOL_GPL(handle_untracked_irq);
599
600 /*
601 * Called unconditionally from handle_level_irq() and only for oneshot
602 * interrupts from handle_fasteoi_irq()
603 */
cond_unmask_irq(struct irq_desc * desc)604 static void cond_unmask_irq(struct irq_desc *desc)
605 {
606 /*
607 * We need to unmask in the following cases:
608 * - Standard level irq (IRQF_ONESHOT is not set)
609 * - Oneshot irq which did not wake the thread (caused by a
610 * spurious interrupt or a primary handler handling it
611 * completely).
612 */
613 if (!irqd_irq_disabled(&desc->irq_data) &&
614 irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot)
615 unmask_irq(desc);
616 }
617
618 /**
619 * handle_level_irq - Level type irq handler
620 * @desc: the interrupt description structure for this irq
621 *
622 * Level type interrupts are active as long as the hardware line has the
623 * active level. This may require to mask the interrupt and unmask it after
624 * the associated handler has acknowledged the device, so the interrupt
625 * line is back to inactive.
626 */
handle_level_irq(struct irq_desc * desc)627 void handle_level_irq(struct irq_desc *desc)
628 {
629 guard(raw_spinlock)(&desc->lock);
630 mask_ack_irq(desc);
631
632 if (!irq_can_handle(desc))
633 return;
634
635 kstat_incr_irqs_this_cpu(desc);
636 handle_irq_event(desc);
637
638 cond_unmask_irq(desc);
639 }
640 EXPORT_SYMBOL_GPL(handle_level_irq);
641
cond_unmask_eoi_irq(struct irq_desc * desc,struct irq_chip * chip)642 static void cond_unmask_eoi_irq(struct irq_desc *desc, struct irq_chip *chip)
643 {
644 if (!(desc->istate & IRQS_ONESHOT)) {
645 chip->irq_eoi(&desc->irq_data);
646 return;
647 }
648 /*
649 * We need to unmask in the following cases:
650 * - Oneshot irq which did not wake the thread (caused by a
651 * spurious interrupt or a primary handler handling it
652 * completely).
653 */
654 if (!irqd_irq_disabled(&desc->irq_data) &&
655 irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) {
656 chip->irq_eoi(&desc->irq_data);
657 unmask_irq(desc);
658 } else if (!(chip->flags & IRQCHIP_EOI_THREADED)) {
659 chip->irq_eoi(&desc->irq_data);
660 }
661 }
662
cond_eoi_irq(struct irq_chip * chip,struct irq_data * data)663 static inline void cond_eoi_irq(struct irq_chip *chip, struct irq_data *data)
664 {
665 if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED))
666 chip->irq_eoi(data);
667 }
668
669 /**
670 * handle_fasteoi_irq - irq handler for transparent controllers
671 * @desc: the interrupt description structure for this irq
672 *
673 * Only a single callback will be issued to the chip: an ->eoi() call when
674 * the interrupt has been serviced. This enables support for modern forms
675 * of interrupt handlers, which handle the flow details in hardware,
676 * transparently.
677 */
handle_fasteoi_irq(struct irq_desc * desc)678 void handle_fasteoi_irq(struct irq_desc *desc)
679 {
680 struct irq_chip *chip = desc->irq_data.chip;
681
682 guard(raw_spinlock)(&desc->lock);
683
684 /*
685 * When an affinity change races with IRQ handling, the next interrupt
686 * can arrive on the new CPU before the original CPU has completed
687 * handling the previous one - it may need to be resent.
688 */
689 if (!irq_can_handle_pm(desc)) {
690 if (irqd_needs_resend_when_in_progress(&desc->irq_data))
691 desc->istate |= IRQS_PENDING;
692 cond_eoi_irq(chip, &desc->irq_data);
693 return;
694 }
695
696 if (!irq_can_handle_actions(desc)) {
697 mask_irq(desc);
698 cond_eoi_irq(chip, &desc->irq_data);
699 return;
700 }
701
702 kstat_incr_irqs_this_cpu(desc);
703 if (desc->istate & IRQS_ONESHOT)
704 mask_irq(desc);
705
706 handle_irq_event(desc);
707
708 cond_unmask_eoi_irq(desc, chip);
709
710 /*
711 * When the race described above happens this will resend the interrupt.
712 */
713 if (unlikely(desc->istate & IRQS_PENDING))
714 check_irq_resend(desc, false);
715 }
716 EXPORT_SYMBOL_GPL(handle_fasteoi_irq);
717
718 /**
719 * handle_fasteoi_nmi - irq handler for NMI interrupt lines
720 * @desc: the interrupt description structure for this irq
721 *
722 * A simple NMI-safe handler, considering the restrictions
723 * from request_nmi.
724 *
725 * Only a single callback will be issued to the chip: an ->eoi()
726 * call when the interrupt has been serviced. This enables support
727 * for modern forms of interrupt handlers, which handle the flow
728 * details in hardware, transparently.
729 */
handle_fasteoi_nmi(struct irq_desc * desc)730 void handle_fasteoi_nmi(struct irq_desc *desc)
731 {
732 struct irq_chip *chip = irq_desc_get_chip(desc);
733 struct irqaction *action = desc->action;
734 unsigned int irq = irq_desc_get_irq(desc);
735 irqreturn_t res;
736
737 __kstat_incr_irqs_this_cpu(desc);
738
739 trace_irq_handler_entry(irq, action);
740 /*
741 * NMIs cannot be shared, there is only one action.
742 */
743 res = action->handler(irq, action->dev_id);
744 trace_irq_handler_exit(irq, action, res);
745
746 if (chip->irq_eoi)
747 chip->irq_eoi(&desc->irq_data);
748 }
749 EXPORT_SYMBOL_GPL(handle_fasteoi_nmi);
750
751 /**
752 * handle_edge_irq - edge type IRQ handler
753 * @desc: the interrupt description structure for this irq
754 *
755 * Interrupt occurs on the falling and/or rising edge of a hardware
756 * signal. The occurrence is latched into the irq controller hardware and
757 * must be acked in order to be reenabled. After the ack another interrupt
758 * can happen on the same source even before the first one is handled by
759 * the associated event handler. If this happens it might be necessary to
760 * disable (mask) the interrupt depending on the controller hardware. This
761 * requires to reenable the interrupt inside of the loop which handles the
762 * interrupts which have arrived while the handler was running. If all
763 * pending interrupts are handled, the loop is left.
764 */
handle_edge_irq(struct irq_desc * desc)765 void handle_edge_irq(struct irq_desc *desc)
766 {
767 guard(raw_spinlock)(&desc->lock);
768
769 if (!irq_can_handle(desc)) {
770 desc->istate |= IRQS_PENDING;
771 mask_ack_irq(desc);
772 return;
773 }
774
775 kstat_incr_irqs_this_cpu(desc);
776
777 /* Start handling the irq */
778 desc->irq_data.chip->irq_ack(&desc->irq_data);
779
780 do {
781 if (unlikely(!desc->action)) {
782 mask_irq(desc);
783 return;
784 }
785
786 /*
787 * When another irq arrived while we were handling
788 * one, we could have masked the irq.
789 * Reenable it, if it was not disabled in meantime.
790 */
791 if (unlikely(desc->istate & IRQS_PENDING)) {
792 if (!irqd_irq_disabled(&desc->irq_data) &&
793 irqd_irq_masked(&desc->irq_data))
794 unmask_irq(desc);
795 }
796
797 handle_irq_event(desc);
798
799 } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data));
800 }
801 EXPORT_SYMBOL(handle_edge_irq);
802
803 /**
804 * handle_percpu_irq - Per CPU local irq handler
805 * @desc: the interrupt description structure for this irq
806 *
807 * Per CPU interrupts on SMP machines without locking requirements
808 */
handle_percpu_irq(struct irq_desc * desc)809 void handle_percpu_irq(struct irq_desc *desc)
810 {
811 struct irq_chip *chip = irq_desc_get_chip(desc);
812
813 /*
814 * PER CPU interrupts are not serialized. Do not touch
815 * desc->tot_count.
816 */
817 __kstat_incr_irqs_this_cpu(desc);
818
819 if (chip->irq_ack)
820 chip->irq_ack(&desc->irq_data);
821
822 handle_irq_event_percpu(desc);
823
824 if (chip->irq_eoi)
825 chip->irq_eoi(&desc->irq_data);
826 }
827
828 /**
829 * handle_percpu_devid_irq - Per CPU local irq handler with per cpu dev ids
830 * @desc: the interrupt description structure for this irq
831 *
832 * Per CPU interrupts on SMP machines without locking requirements. Same as
833 * handle_percpu_irq() above but with the following extras:
834 *
835 * action->percpu_dev_id is a pointer to percpu variables which
836 * contain the real device id for the cpu on which this handler is
837 * called
838 */
handle_percpu_devid_irq(struct irq_desc * desc)839 void handle_percpu_devid_irq(struct irq_desc *desc)
840 {
841 struct irq_chip *chip = irq_desc_get_chip(desc);
842 struct irqaction *action = desc->action;
843 unsigned int irq = irq_desc_get_irq(desc);
844 irqreturn_t res;
845
846 /*
847 * PER CPU interrupts are not serialized. Do not touch
848 * desc->tot_count.
849 */
850 __kstat_incr_irqs_this_cpu(desc);
851
852 if (chip->irq_ack)
853 chip->irq_ack(&desc->irq_data);
854
855 if (likely(action)) {
856 trace_irq_handler_entry(irq, action);
857 res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id));
858 trace_irq_handler_exit(irq, action, res);
859 } else {
860 unsigned int cpu = smp_processor_id();
861 bool enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
862
863 if (enabled)
864 irq_percpu_disable(desc, cpu);
865
866 pr_err_once("Spurious%s percpu IRQ%u on CPU%u\n",
867 enabled ? " and unmasked" : "", irq, cpu);
868 }
869
870 if (chip->irq_eoi)
871 chip->irq_eoi(&desc->irq_data);
872 }
873
874 /**
875 * handle_percpu_devid_fasteoi_nmi - Per CPU local NMI handler with per cpu
876 * dev ids
877 * @desc: the interrupt description structure for this irq
878 *
879 * Similar to handle_fasteoi_nmi, but handling the dev_id cookie
880 * as a percpu pointer.
881 */
handle_percpu_devid_fasteoi_nmi(struct irq_desc * desc)882 void handle_percpu_devid_fasteoi_nmi(struct irq_desc *desc)
883 {
884 struct irq_chip *chip = irq_desc_get_chip(desc);
885 struct irqaction *action = desc->action;
886 unsigned int irq = irq_desc_get_irq(desc);
887 irqreturn_t res;
888
889 __kstat_incr_irqs_this_cpu(desc);
890
891 trace_irq_handler_entry(irq, action);
892 res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id));
893 trace_irq_handler_exit(irq, action, res);
894
895 if (chip->irq_eoi)
896 chip->irq_eoi(&desc->irq_data);
897 }
898
899 static void
__irq_do_set_handler(struct irq_desc * desc,irq_flow_handler_t handle,int is_chained,const char * name)900 __irq_do_set_handler(struct irq_desc *desc, irq_flow_handler_t handle,
901 int is_chained, const char *name)
902 {
903 if (!handle) {
904 handle = handle_bad_irq;
905 } else {
906 struct irq_data *irq_data = &desc->irq_data;
907 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
908 /*
909 * With hierarchical domains we might run into a
910 * situation where the outermost chip is not yet set
911 * up, but the inner chips are there. Instead of
912 * bailing we install the handler, but obviously we
913 * cannot enable/startup the interrupt at this point.
914 */
915 while (irq_data) {
916 if (irq_data->chip != &no_irq_chip)
917 break;
918 /*
919 * Bail out if the outer chip is not set up
920 * and the interrupt supposed to be started
921 * right away.
922 */
923 if (WARN_ON(is_chained))
924 return;
925 /* Try the parent */
926 irq_data = irq_data->parent_data;
927 }
928 #endif
929 if (WARN_ON(!irq_data || irq_data->chip == &no_irq_chip))
930 return;
931 }
932
933 /* Uninstall? */
934 if (handle == handle_bad_irq) {
935 if (desc->irq_data.chip != &no_irq_chip)
936 mask_ack_irq(desc);
937 irq_state_set_disabled(desc);
938 if (is_chained) {
939 desc->action = NULL;
940 WARN_ON(irq_chip_pm_put(irq_desc_get_irq_data(desc)));
941 }
942 desc->depth = 1;
943 }
944 desc->handle_irq = handle;
945 desc->name = name;
946
947 if (handle != handle_bad_irq && is_chained) {
948 unsigned int type = irqd_get_trigger_type(&desc->irq_data);
949
950 /*
951 * We're about to start this interrupt immediately,
952 * hence the need to set the trigger configuration.
953 * But the .set_type callback may have overridden the
954 * flow handler, ignoring that we're dealing with a
955 * chained interrupt. Reset it immediately because we
956 * do know better.
957 */
958 if (type != IRQ_TYPE_NONE) {
959 __irq_set_trigger(desc, type);
960 desc->handle_irq = handle;
961 }
962
963 irq_settings_set_noprobe(desc);
964 irq_settings_set_norequest(desc);
965 irq_settings_set_nothread(desc);
966 desc->action = &chained_action;
967 WARN_ON(irq_chip_pm_get(irq_desc_get_irq_data(desc)));
968 irq_activate_and_startup(desc, IRQ_RESEND);
969 }
970 }
971
__irq_set_handler(unsigned int irq,irq_flow_handler_t handle,int is_chained,const char * name)972 void __irq_set_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
973 const char *name)
974 {
975 scoped_irqdesc_get_and_lock(irq, 0)
976 __irq_do_set_handler(scoped_irqdesc, handle, is_chained, name);
977 }
978 EXPORT_SYMBOL_GPL(__irq_set_handler);
979
irq_set_chained_handler_and_data(unsigned int irq,irq_flow_handler_t handle,void * data)980 void irq_set_chained_handler_and_data(unsigned int irq, irq_flow_handler_t handle,
981 void *data)
982 {
983 scoped_irqdesc_get_and_buslock(irq, 0) {
984 struct irq_desc *desc = scoped_irqdesc;
985
986 desc->irq_common_data.handler_data = data;
987 __irq_do_set_handler(desc, handle, 1, NULL);
988 }
989 }
990 EXPORT_SYMBOL_GPL(irq_set_chained_handler_and_data);
991
992 void
irq_set_chip_and_handler_name(unsigned int irq,const struct irq_chip * chip,irq_flow_handler_t handle,const char * name)993 irq_set_chip_and_handler_name(unsigned int irq, const struct irq_chip *chip,
994 irq_flow_handler_t handle, const char *name)
995 {
996 irq_set_chip(irq, chip);
997 __irq_set_handler(irq, handle, 0, name);
998 }
999 EXPORT_SYMBOL_GPL(irq_set_chip_and_handler_name);
1000
irq_modify_status(unsigned int irq,unsigned long clr,unsigned long set)1001 void irq_modify_status(unsigned int irq, unsigned long clr, unsigned long set)
1002 {
1003 scoped_irqdesc_get_and_lock(irq, 0) {
1004 struct irq_desc *desc = scoped_irqdesc;
1005 unsigned long trigger, tmp;
1006 /*
1007 * Warn when a driver sets the no autoenable flag on an already
1008 * active interrupt.
1009 */
1010 WARN_ON_ONCE(!desc->depth && (set & _IRQ_NOAUTOEN));
1011
1012 irq_settings_clr_and_set(desc, clr, set);
1013
1014 trigger = irqd_get_trigger_type(&desc->irq_data);
1015
1016 irqd_clear(&desc->irq_data, IRQD_NO_BALANCING | IRQD_PER_CPU |
1017 IRQD_TRIGGER_MASK | IRQD_LEVEL);
1018 if (irq_settings_has_no_balance_set(desc))
1019 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1020 if (irq_settings_is_per_cpu(desc))
1021 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1022 if (irq_settings_is_level(desc))
1023 irqd_set(&desc->irq_data, IRQD_LEVEL);
1024
1025 tmp = irq_settings_get_trigger_mask(desc);
1026 if (tmp != IRQ_TYPE_NONE)
1027 trigger = tmp;
1028
1029 irqd_set(&desc->irq_data, trigger);
1030 }
1031 }
1032 EXPORT_SYMBOL_GPL(irq_modify_status);
1033
1034 #ifdef CONFIG_DEPRECATED_IRQ_CPU_ONOFFLINE
1035 /**
1036 * irq_cpu_online - Invoke all irq_cpu_online functions.
1037 *
1038 * Iterate through all irqs and invoke the chip.irq_cpu_online()
1039 * for each.
1040 */
irq_cpu_online(void)1041 void irq_cpu_online(void)
1042 {
1043 unsigned int irq;
1044
1045 for_each_active_irq(irq) {
1046 struct irq_desc *desc = irq_to_desc(irq);
1047 struct irq_chip *chip;
1048
1049 if (!desc)
1050 continue;
1051
1052 guard(raw_spinlock_irqsave)(&desc->lock);
1053 chip = irq_data_get_irq_chip(&desc->irq_data);
1054 if (chip && chip->irq_cpu_online &&
1055 (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) ||
1056 !irqd_irq_disabled(&desc->irq_data)))
1057 chip->irq_cpu_online(&desc->irq_data);
1058 }
1059 }
1060
1061 /**
1062 * irq_cpu_offline - Invoke all irq_cpu_offline functions.
1063 *
1064 * Iterate through all irqs and invoke the chip.irq_cpu_offline()
1065 * for each.
1066 */
irq_cpu_offline(void)1067 void irq_cpu_offline(void)
1068 {
1069 unsigned int irq;
1070
1071 for_each_active_irq(irq) {
1072 struct irq_desc *desc = irq_to_desc(irq);
1073 struct irq_chip *chip;
1074
1075 if (!desc)
1076 continue;
1077
1078 guard(raw_spinlock_irqsave)(&desc->lock);
1079 chip = irq_data_get_irq_chip(&desc->irq_data);
1080 if (chip && chip->irq_cpu_offline &&
1081 (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) ||
1082 !irqd_irq_disabled(&desc->irq_data)))
1083 chip->irq_cpu_offline(&desc->irq_data);
1084 }
1085 }
1086 #endif
1087
1088 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1089
1090 #ifdef CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS
1091 /**
1092 * handle_fasteoi_ack_irq - irq handler for edge hierarchy stacked on
1093 * transparent controllers
1094 *
1095 * @desc: the interrupt description structure for this irq
1096 *
1097 * Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
1098 * also needs to have its ->irq_ack() function called.
1099 */
handle_fasteoi_ack_irq(struct irq_desc * desc)1100 void handle_fasteoi_ack_irq(struct irq_desc *desc)
1101 {
1102 struct irq_chip *chip = desc->irq_data.chip;
1103
1104 guard(raw_spinlock)(&desc->lock);
1105
1106 if (!irq_can_handle_pm(desc)) {
1107 cond_eoi_irq(chip, &desc->irq_data);
1108 return;
1109 }
1110
1111 if (unlikely(!irq_can_handle_actions(desc))) {
1112 mask_irq(desc);
1113 cond_eoi_irq(chip, &desc->irq_data);
1114 return;
1115 }
1116
1117 kstat_incr_irqs_this_cpu(desc);
1118 if (desc->istate & IRQS_ONESHOT)
1119 mask_irq(desc);
1120
1121 desc->irq_data.chip->irq_ack(&desc->irq_data);
1122
1123 handle_irq_event(desc);
1124
1125 cond_unmask_eoi_irq(desc, chip);
1126 }
1127 EXPORT_SYMBOL_GPL(handle_fasteoi_ack_irq);
1128
1129 /**
1130 * handle_fasteoi_mask_irq - irq handler for level hierarchy stacked on
1131 * transparent controllers
1132 *
1133 * @desc: the interrupt description structure for this irq
1134 *
1135 * Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
1136 * also needs to have its ->irq_mask_ack() function called.
1137 */
handle_fasteoi_mask_irq(struct irq_desc * desc)1138 void handle_fasteoi_mask_irq(struct irq_desc *desc)
1139 {
1140 struct irq_chip *chip = desc->irq_data.chip;
1141
1142 guard(raw_spinlock)(&desc->lock);
1143 mask_ack_irq(desc);
1144
1145 if (!irq_can_handle(desc)) {
1146 cond_eoi_irq(chip, &desc->irq_data);
1147 return;
1148 }
1149
1150 kstat_incr_irqs_this_cpu(desc);
1151
1152 handle_irq_event(desc);
1153
1154 cond_unmask_eoi_irq(desc, chip);
1155 }
1156 EXPORT_SYMBOL_GPL(handle_fasteoi_mask_irq);
1157
1158 #endif /* CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS */
1159
1160 /**
1161 * irq_chip_set_parent_state - set the state of a parent interrupt.
1162 *
1163 * @data: Pointer to interrupt specific data
1164 * @which: State to be restored (one of IRQCHIP_STATE_*)
1165 * @val: Value corresponding to @which
1166 *
1167 * Conditional success, if the underlying irqchip does not implement it.
1168 */
irq_chip_set_parent_state(struct irq_data * data,enum irqchip_irq_state which,bool val)1169 int irq_chip_set_parent_state(struct irq_data *data,
1170 enum irqchip_irq_state which,
1171 bool val)
1172 {
1173 data = data->parent_data;
1174
1175 if (!data || !data->chip->irq_set_irqchip_state)
1176 return 0;
1177
1178 return data->chip->irq_set_irqchip_state(data, which, val);
1179 }
1180 EXPORT_SYMBOL_GPL(irq_chip_set_parent_state);
1181
1182 /**
1183 * irq_chip_get_parent_state - get the state of a parent interrupt.
1184 *
1185 * @data: Pointer to interrupt specific data
1186 * @which: one of IRQCHIP_STATE_* the caller wants to know
1187 * @state: a pointer to a boolean where the state is to be stored
1188 *
1189 * Conditional success, if the underlying irqchip does not implement it.
1190 */
irq_chip_get_parent_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)1191 int irq_chip_get_parent_state(struct irq_data *data,
1192 enum irqchip_irq_state which,
1193 bool *state)
1194 {
1195 data = data->parent_data;
1196
1197 if (!data || !data->chip->irq_get_irqchip_state)
1198 return 0;
1199
1200 return data->chip->irq_get_irqchip_state(data, which, state);
1201 }
1202 EXPORT_SYMBOL_GPL(irq_chip_get_parent_state);
1203
1204 /**
1205 * irq_chip_enable_parent - Enable the parent interrupt (defaults to unmask if
1206 * NULL)
1207 * @data: Pointer to interrupt specific data
1208 */
irq_chip_enable_parent(struct irq_data * data)1209 void irq_chip_enable_parent(struct irq_data *data)
1210 {
1211 data = data->parent_data;
1212 if (data->chip->irq_enable)
1213 data->chip->irq_enable(data);
1214 else
1215 data->chip->irq_unmask(data);
1216 }
1217 EXPORT_SYMBOL_GPL(irq_chip_enable_parent);
1218
1219 /**
1220 * irq_chip_disable_parent - Disable the parent interrupt (defaults to mask if
1221 * NULL)
1222 * @data: Pointer to interrupt specific data
1223 */
irq_chip_disable_parent(struct irq_data * data)1224 void irq_chip_disable_parent(struct irq_data *data)
1225 {
1226 data = data->parent_data;
1227 if (data->chip->irq_disable)
1228 data->chip->irq_disable(data);
1229 else
1230 data->chip->irq_mask(data);
1231 }
1232 EXPORT_SYMBOL_GPL(irq_chip_disable_parent);
1233
1234 /**
1235 * irq_chip_ack_parent - Acknowledge the parent interrupt
1236 * @data: Pointer to interrupt specific data
1237 */
irq_chip_ack_parent(struct irq_data * data)1238 void irq_chip_ack_parent(struct irq_data *data)
1239 {
1240 data = data->parent_data;
1241 data->chip->irq_ack(data);
1242 }
1243 EXPORT_SYMBOL_GPL(irq_chip_ack_parent);
1244
1245 /**
1246 * irq_chip_mask_parent - Mask the parent interrupt
1247 * @data: Pointer to interrupt specific data
1248 */
irq_chip_mask_parent(struct irq_data * data)1249 void irq_chip_mask_parent(struct irq_data *data)
1250 {
1251 data = data->parent_data;
1252 data->chip->irq_mask(data);
1253 }
1254 EXPORT_SYMBOL_GPL(irq_chip_mask_parent);
1255
1256 /**
1257 * irq_chip_mask_ack_parent - Mask and acknowledge the parent interrupt
1258 * @data: Pointer to interrupt specific data
1259 */
irq_chip_mask_ack_parent(struct irq_data * data)1260 void irq_chip_mask_ack_parent(struct irq_data *data)
1261 {
1262 data = data->parent_data;
1263 data->chip->irq_mask_ack(data);
1264 }
1265 EXPORT_SYMBOL_GPL(irq_chip_mask_ack_parent);
1266
1267 /**
1268 * irq_chip_unmask_parent - Unmask the parent interrupt
1269 * @data: Pointer to interrupt specific data
1270 */
irq_chip_unmask_parent(struct irq_data * data)1271 void irq_chip_unmask_parent(struct irq_data *data)
1272 {
1273 data = data->parent_data;
1274 data->chip->irq_unmask(data);
1275 }
1276 EXPORT_SYMBOL_GPL(irq_chip_unmask_parent);
1277
1278 /**
1279 * irq_chip_eoi_parent - Invoke EOI on the parent interrupt
1280 * @data: Pointer to interrupt specific data
1281 */
irq_chip_eoi_parent(struct irq_data * data)1282 void irq_chip_eoi_parent(struct irq_data *data)
1283 {
1284 data = data->parent_data;
1285 data->chip->irq_eoi(data);
1286 }
1287 EXPORT_SYMBOL_GPL(irq_chip_eoi_parent);
1288
1289 /**
1290 * irq_chip_set_affinity_parent - Set affinity on the parent interrupt
1291 * @data: Pointer to interrupt specific data
1292 * @dest: The affinity mask to set
1293 * @force: Flag to enforce setting (disable online checks)
1294 *
1295 * Conditional, as the underlying parent chip might not implement it.
1296 */
irq_chip_set_affinity_parent(struct irq_data * data,const struct cpumask * dest,bool force)1297 int irq_chip_set_affinity_parent(struct irq_data *data,
1298 const struct cpumask *dest, bool force)
1299 {
1300 data = data->parent_data;
1301 if (data->chip->irq_set_affinity)
1302 return data->chip->irq_set_affinity(data, dest, force);
1303
1304 return -ENOSYS;
1305 }
1306 EXPORT_SYMBOL_GPL(irq_chip_set_affinity_parent);
1307
1308 /**
1309 * irq_chip_set_type_parent - Set IRQ type on the parent interrupt
1310 * @data: Pointer to interrupt specific data
1311 * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
1312 *
1313 * Conditional, as the underlying parent chip might not implement it.
1314 */
irq_chip_set_type_parent(struct irq_data * data,unsigned int type)1315 int irq_chip_set_type_parent(struct irq_data *data, unsigned int type)
1316 {
1317 data = data->parent_data;
1318
1319 if (data->chip->irq_set_type)
1320 return data->chip->irq_set_type(data, type);
1321
1322 return -ENOSYS;
1323 }
1324 EXPORT_SYMBOL_GPL(irq_chip_set_type_parent);
1325
1326 /**
1327 * irq_chip_retrigger_hierarchy - Retrigger an interrupt in hardware
1328 * @data: Pointer to interrupt specific data
1329 *
1330 * Iterate through the domain hierarchy of the interrupt and check
1331 * whether a hw retrigger function exists. If yes, invoke it.
1332 */
irq_chip_retrigger_hierarchy(struct irq_data * data)1333 int irq_chip_retrigger_hierarchy(struct irq_data *data)
1334 {
1335 for (data = data->parent_data; data; data = data->parent_data)
1336 if (data->chip && data->chip->irq_retrigger)
1337 return data->chip->irq_retrigger(data);
1338
1339 return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(irq_chip_retrigger_hierarchy);
1342
1343 /**
1344 * irq_chip_set_vcpu_affinity_parent - Set vcpu affinity on the parent interrupt
1345 * @data: Pointer to interrupt specific data
1346 * @vcpu_info: The vcpu affinity information
1347 */
irq_chip_set_vcpu_affinity_parent(struct irq_data * data,void * vcpu_info)1348 int irq_chip_set_vcpu_affinity_parent(struct irq_data *data, void *vcpu_info)
1349 {
1350 data = data->parent_data;
1351 if (data->chip->irq_set_vcpu_affinity)
1352 return data->chip->irq_set_vcpu_affinity(data, vcpu_info);
1353
1354 return -ENOSYS;
1355 }
1356 EXPORT_SYMBOL_GPL(irq_chip_set_vcpu_affinity_parent);
1357 /**
1358 * irq_chip_set_wake_parent - Set/reset wake-up on the parent interrupt
1359 * @data: Pointer to interrupt specific data
1360 * @on: Whether to set or reset the wake-up capability of this irq
1361 *
1362 * Conditional, as the underlying parent chip might not implement it.
1363 */
irq_chip_set_wake_parent(struct irq_data * data,unsigned int on)1364 int irq_chip_set_wake_parent(struct irq_data *data, unsigned int on)
1365 {
1366 data = data->parent_data;
1367
1368 if (data->chip->flags & IRQCHIP_SKIP_SET_WAKE)
1369 return 0;
1370
1371 if (data->chip->irq_set_wake)
1372 return data->chip->irq_set_wake(data, on);
1373
1374 return -ENOSYS;
1375 }
1376 EXPORT_SYMBOL_GPL(irq_chip_set_wake_parent);
1377
1378 /**
1379 * irq_chip_request_resources_parent - Request resources on the parent interrupt
1380 * @data: Pointer to interrupt specific data
1381 */
irq_chip_request_resources_parent(struct irq_data * data)1382 int irq_chip_request_resources_parent(struct irq_data *data)
1383 {
1384 data = data->parent_data;
1385
1386 if (data->chip->irq_request_resources)
1387 return data->chip->irq_request_resources(data);
1388
1389 /* no error on missing optional irq_chip::irq_request_resources */
1390 return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(irq_chip_request_resources_parent);
1393
1394 /**
1395 * irq_chip_release_resources_parent - Release resources on the parent interrupt
1396 * @data: Pointer to interrupt specific data
1397 */
irq_chip_release_resources_parent(struct irq_data * data)1398 void irq_chip_release_resources_parent(struct irq_data *data)
1399 {
1400 data = data->parent_data;
1401 if (data->chip->irq_release_resources)
1402 data->chip->irq_release_resources(data);
1403 }
1404 EXPORT_SYMBOL_GPL(irq_chip_release_resources_parent);
1405 #endif
1406
1407 /**
1408 * irq_chip_compose_msi_msg - Compose msi message for a irq chip
1409 * @data: Pointer to interrupt specific data
1410 * @msg: Pointer to the MSI message
1411 *
1412 * For hierarchical domains we find the first chip in the hierarchy
1413 * which implements the irq_compose_msi_msg callback. For non
1414 * hierarchical we use the top level chip.
1415 */
irq_chip_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1416 int irq_chip_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1417 {
1418 struct irq_data *pos;
1419
1420 for (pos = NULL; !pos && data; data = irqd_get_parent_data(data)) {
1421 if (data->chip && data->chip->irq_compose_msi_msg)
1422 pos = data;
1423 }
1424
1425 if (!pos)
1426 return -ENOSYS;
1427
1428 pos->chip->irq_compose_msi_msg(pos, msg);
1429 return 0;
1430 }
1431
irq_get_pm_device(struct irq_data * data)1432 static struct device *irq_get_pm_device(struct irq_data *data)
1433 {
1434 if (data->domain)
1435 return data->domain->pm_dev;
1436
1437 return NULL;
1438 }
1439
1440 /**
1441 * irq_chip_pm_get - Enable power for an IRQ chip
1442 * @data: Pointer to interrupt specific data
1443 *
1444 * Enable the power to the IRQ chip referenced by the interrupt data
1445 * structure.
1446 */
irq_chip_pm_get(struct irq_data * data)1447 int irq_chip_pm_get(struct irq_data *data)
1448 {
1449 struct device *dev = irq_get_pm_device(data);
1450 int retval = 0;
1451
1452 if (IS_ENABLED(CONFIG_PM) && dev)
1453 retval = pm_runtime_resume_and_get(dev);
1454
1455 return retval;
1456 }
1457
1458 /**
1459 * irq_chip_pm_put - Disable power for an IRQ chip
1460 * @data: Pointer to interrupt specific data
1461 *
1462 * Disable the power to the IRQ chip referenced by the interrupt data
1463 * structure, belongs. Note that power will only be disabled, once this
1464 * function has been called for all IRQs that have called irq_chip_pm_get().
1465 */
irq_chip_pm_put(struct irq_data * data)1466 int irq_chip_pm_put(struct irq_data *data)
1467 {
1468 struct device *dev = irq_get_pm_device(data);
1469 int retval = 0;
1470
1471 if (IS_ENABLED(CONFIG_PM) && dev)
1472 retval = pm_runtime_put(dev);
1473
1474 return (retval < 0) ? retval : 0;
1475 }
1476