xref: /linux/kernel/irq/manage.c (revision 3381d7b2b3dd012d366b9ba9339f98d54bea69fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 #ifdef CONFIG_SMP
39 static inline void synchronize_irqwork(struct irq_desc *desc)
40 {
41 	/* Synchronize pending or on the fly redirect work */
42 	irq_work_sync(&desc->redirect.work);
43 }
44 #else
45 static inline void synchronize_irqwork(struct irq_desc *desc) { }
46 #endif
47 
48 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state);
49 
50 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
51 {
52 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
53 	bool inprogress;
54 
55 	do {
56 		/*
57 		 * Wait until we're out of the critical section.  This might
58 		 * give the wrong answer due to the lack of memory barriers.
59 		 */
60 		while (irqd_irq_inprogress(&desc->irq_data))
61 			cpu_relax();
62 
63 		/* Ok, that indicated we're done: double-check carefully. */
64 		guard(raw_spinlock_irqsave)(&desc->lock);
65 		inprogress = irqd_irq_inprogress(&desc->irq_data);
66 
67 		/*
68 		 * If requested and supported, check at the chip whether it
69 		 * is in flight at the hardware level, i.e. already pending
70 		 * in a CPU and waiting for service and acknowledge.
71 		 */
72 		if (!inprogress && sync_chip) {
73 			/*
74 			 * Ignore the return code. inprogress is only updated
75 			 * when the chip supports it.
76 			 */
77 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
78 						&inprogress);
79 		}
80 		/* Oops, that failed? */
81 	} while (inprogress);
82 }
83 
84 /**
85  * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
86  * @irq: interrupt number to wait for
87  *
88  * This function waits for any pending hard IRQ handlers for this interrupt
89  * to complete before returning. If you use this function while holding a
90  * resource the IRQ handler may need you will deadlock. It does not take
91  * associated threaded handlers into account.
92  *
93  * Do not use this for shutdown scenarios where you must be sure that all
94  * parts (hardirq and threaded handler) have completed.
95  *
96  * Returns: false if a threaded handler is active.
97  *
98  * This function may be called - with care - from IRQ context.
99  *
100  * It does not check whether there is an interrupt in flight at the
101  * hardware level, but not serviced yet, as this might deadlock when called
102  * with interrupts disabled and the target CPU of the interrupt is the
103  * current CPU.
104  */
105 bool synchronize_hardirq(unsigned int irq)
106 {
107 	struct irq_desc *desc = irq_to_desc(irq);
108 
109 	if (desc) {
110 		__synchronize_hardirq(desc, false);
111 		return !atomic_read(&desc->threads_active);
112 	}
113 
114 	return true;
115 }
116 EXPORT_SYMBOL(synchronize_hardirq);
117 
118 static void __synchronize_irq(struct irq_desc *desc)
119 {
120 	synchronize_irqwork(desc);
121 	__synchronize_hardirq(desc, true);
122 
123 	/*
124 	 * We made sure that no hardirq handler is running. Now verify that no
125 	 * threaded handlers are active.
126 	 */
127 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
128 }
129 
130 /**
131  * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
132  * @irq: interrupt number to wait for
133  *
134  * This function waits for any pending IRQ handlers for this interrupt to
135  * complete before returning. If you use this function while holding a
136  * resource the IRQ handler may need you will deadlock.
137  *
138  * Can only be called from preemptible code as it might sleep when
139  * an interrupt thread is associated to @irq.
140  *
141  * It optionally makes sure (when the irq chip supports that method)
142  * that the interrupt is not pending in any CPU and waiting for
143  * service.
144  */
145 void synchronize_irq(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	if (desc)
150 		__synchronize_irq(desc);
151 }
152 EXPORT_SYMBOL(synchronize_irq);
153 
154 #ifdef CONFIG_SMP
155 cpumask_var_t irq_default_affinity;
156 
157 static bool __irq_can_set_affinity(struct irq_desc *desc)
158 {
159 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
160 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
161 		return false;
162 	return true;
163 }
164 
165 /**
166  * irq_can_set_affinity - Check if the affinity of a given irq can be set
167  * @irq:	Interrupt to check
168  *
169  */
170 int irq_can_set_affinity(unsigned int irq)
171 {
172 	return __irq_can_set_affinity(irq_to_desc(irq));
173 }
174 
175 /**
176  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
177  * @irq:	Interrupt to check
178  *
179  * Like irq_can_set_affinity() above, but additionally checks for the
180  * AFFINITY_MANAGED flag.
181  */
182 bool irq_can_set_affinity_usr(unsigned int irq)
183 {
184 	struct irq_desc *desc = irq_to_desc(irq);
185 
186 	return __irq_can_set_affinity(desc) &&
187 		!irqd_affinity_is_managed(&desc->irq_data);
188 }
189 
190 /**
191  * irq_set_thread_affinity - Notify irq threads to adjust affinity
192  * @desc:	irq descriptor which has affinity changed
193  *
194  * Just set IRQTF_AFFINITY and delegate the affinity setting to the
195  * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as
196  * we hold desc->lock and this code can be called from hard interrupt
197  * context.
198  */
199 static void irq_set_thread_affinity(struct irq_desc *desc)
200 {
201 	struct irqaction *action;
202 
203 	for_each_action_of_desc(desc, action) {
204 		if (action->thread) {
205 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
206 			wake_up_process(action->thread);
207 		}
208 		if (action->secondary && action->secondary->thread) {
209 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
210 			wake_up_process(action->secondary->thread);
211 		}
212 	}
213 }
214 
215 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
216 static void irq_validate_effective_affinity(struct irq_data *data)
217 {
218 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
219 	struct irq_chip *chip = irq_data_get_irq_chip(data);
220 
221 	if (!cpumask_empty(m))
222 		return;
223 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
224 		     chip->name, data->irq);
225 }
226 #else
227 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
228 #endif
229 
230 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
231 
232 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
233 {
234 	struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
235 	struct irq_desc *desc = irq_data_to_desc(data);
236 	struct irq_chip *chip = irq_data_get_irq_chip(data);
237 	const struct cpumask  *prog_mask;
238 	int ret;
239 
240 	if (!chip || !chip->irq_set_affinity)
241 		return -EINVAL;
242 
243 	/*
244 	 * If this is a managed interrupt and housekeeping is enabled on
245 	 * it check whether the requested affinity mask intersects with
246 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
247 	 * the mask and just keep the housekeeping CPU(s). This prevents
248 	 * the affinity setter from routing the interrupt to an isolated
249 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
250 	 * interrupts on an isolated one.
251 	 *
252 	 * If the masks do not intersect or include online CPU(s) then
253 	 * keep the requested mask. The isolated target CPUs are only
254 	 * receiving interrupts when the I/O operation was submitted
255 	 * directly from them.
256 	 *
257 	 * If all housekeeping CPUs in the affinity mask are offline, the
258 	 * interrupt will be migrated by the CPU hotplug code once a
259 	 * housekeeping CPU which belongs to the affinity mask comes
260 	 * online.
261 	 */
262 	if (irqd_affinity_is_managed(data) &&
263 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
264 		const struct cpumask *hk_mask;
265 
266 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
267 
268 		cpumask_and(tmp_mask, mask, hk_mask);
269 		if (!cpumask_intersects(tmp_mask, cpu_online_mask))
270 			prog_mask = mask;
271 		else
272 			prog_mask = tmp_mask;
273 	} else {
274 		prog_mask = mask;
275 	}
276 
277 	/*
278 	 * Make sure we only provide online CPUs to the irqchip,
279 	 * unless we are being asked to force the affinity (in which
280 	 * case we do as we are told).
281 	 */
282 	cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
283 	if (!force && !cpumask_empty(tmp_mask))
284 		ret = chip->irq_set_affinity(data, tmp_mask, force);
285 	else if (force)
286 		ret = chip->irq_set_affinity(data, mask, force);
287 	else
288 		ret = -EINVAL;
289 
290 	switch (ret) {
291 	case IRQ_SET_MASK_OK:
292 	case IRQ_SET_MASK_OK_DONE:
293 		cpumask_copy(desc->irq_common_data.affinity, mask);
294 		fallthrough;
295 	case IRQ_SET_MASK_OK_NOCOPY:
296 		irq_validate_effective_affinity(data);
297 		irq_set_thread_affinity(desc);
298 		ret = 0;
299 	}
300 
301 	return ret;
302 }
303 
304 #ifdef CONFIG_GENERIC_PENDING_IRQ
305 static inline int irq_set_affinity_pending(struct irq_data *data,
306 					   const struct cpumask *dest)
307 {
308 	struct irq_desc *desc = irq_data_to_desc(data);
309 
310 	irqd_set_move_pending(data);
311 	irq_copy_pending(desc, dest);
312 	return 0;
313 }
314 #else
315 static inline int irq_set_affinity_pending(struct irq_data *data,
316 					   const struct cpumask *dest)
317 {
318 	return -EBUSY;
319 }
320 #endif
321 
322 static int irq_try_set_affinity(struct irq_data *data,
323 				const struct cpumask *dest, bool force)
324 {
325 	int ret = irq_do_set_affinity(data, dest, force);
326 
327 	/*
328 	 * In case that the underlying vector management is busy and the
329 	 * architecture supports the generic pending mechanism then utilize
330 	 * this to avoid returning an error to user space.
331 	 */
332 	if (ret == -EBUSY && !force)
333 		ret = irq_set_affinity_pending(data, dest);
334 	return ret;
335 }
336 
337 static bool irq_set_affinity_deactivated(struct irq_data *data,
338 					 const struct cpumask *mask)
339 {
340 	struct irq_desc *desc = irq_data_to_desc(data);
341 
342 	/*
343 	 * Handle irq chips which can handle affinity only in activated
344 	 * state correctly
345 	 *
346 	 * If the interrupt is not yet activated, just store the affinity
347 	 * mask and do not call the chip driver at all. On activation the
348 	 * driver has to make sure anyway that the interrupt is in a
349 	 * usable state so startup works.
350 	 */
351 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
352 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
353 		return false;
354 
355 	cpumask_copy(desc->irq_common_data.affinity, mask);
356 	irq_data_update_effective_affinity(data, mask);
357 	irqd_set(data, IRQD_AFFINITY_SET);
358 	return true;
359 }
360 
361 /**
362  * irq_affinity_schedule_notify_work - Schedule work to notify about affinity change
363  * @desc:  Interrupt descriptor whose affinity changed
364  */
365 void irq_affinity_schedule_notify_work(struct irq_desc *desc)
366 {
367 	lockdep_assert_held(&desc->lock);
368 
369 	kref_get(&desc->affinity_notify->kref);
370 	if (!schedule_work(&desc->affinity_notify->work)) {
371 		/* Work was already scheduled, drop our extra ref */
372 		kref_put(&desc->affinity_notify->kref, desc->affinity_notify->release);
373 	}
374 }
375 
376 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
377 			    bool force)
378 {
379 	struct irq_chip *chip = irq_data_get_irq_chip(data);
380 	struct irq_desc *desc = irq_data_to_desc(data);
381 	int ret = 0;
382 
383 	if (!chip || !chip->irq_set_affinity)
384 		return -EINVAL;
385 
386 	if (irq_set_affinity_deactivated(data, mask))
387 		return 0;
388 
389 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
390 		ret = irq_try_set_affinity(data, mask, force);
391 	} else {
392 		irqd_set_move_pending(data);
393 		irq_copy_pending(desc, mask);
394 	}
395 
396 	if (desc->affinity_notify)
397 		irq_affinity_schedule_notify_work(desc);
398 
399 	irqd_set(data, IRQD_AFFINITY_SET);
400 
401 	return ret;
402 }
403 
404 /**
405  * irq_update_affinity_desc - Update affinity management for an interrupt
406  * @irq:	The interrupt number to update
407  * @affinity:	Pointer to the affinity descriptor
408  *
409  * This interface can be used to configure the affinity management of
410  * interrupts which have been allocated already.
411  *
412  * There are certain limitations on when it may be used - attempts to use it
413  * for when the kernel is configured for generic IRQ reservation mode (in
414  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
415  * managed/non-managed interrupt accounting. In addition, attempts to use it on
416  * an interrupt which is already started or which has already been configured
417  * as managed will also fail, as these mean invalid init state or double init.
418  */
419 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity)
420 {
421 	/*
422 	 * Supporting this with the reservation scheme used by x86 needs
423 	 * some more thought. Fail it for now.
424 	 */
425 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
426 		return -EOPNOTSUPP;
427 
428 	scoped_irqdesc_get_and_buslock(irq, 0) {
429 		struct irq_desc *desc = scoped_irqdesc;
430 		bool activated;
431 
432 		/* Requires the interrupt to be shut down */
433 		if (irqd_is_started(&desc->irq_data))
434 			return -EBUSY;
435 
436 		/* Interrupts which are already managed cannot be modified */
437 		if (irqd_affinity_is_managed(&desc->irq_data))
438 			return -EBUSY;
439 		/*
440 		 * Deactivate the interrupt. That's required to undo
441 		 * anything an earlier activation has established.
442 		 */
443 		activated = irqd_is_activated(&desc->irq_data);
444 		if (activated)
445 			irq_domain_deactivate_irq(&desc->irq_data);
446 
447 		if (affinity->is_managed) {
448 			irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
449 			irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
450 		}
451 
452 		cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
453 
454 		/* Restore the activation state */
455 		if (activated)
456 			irq_domain_activate_irq(&desc->irq_data, false);
457 		return 0;
458 	}
459 	return -EINVAL;
460 }
461 
462 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
463 			      bool force)
464 {
465 	struct irq_desc *desc = irq_to_desc(irq);
466 
467 	if (!desc)
468 		return -EINVAL;
469 
470 	guard(raw_spinlock_irqsave)(&desc->lock);
471 	return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
472 }
473 
474 /**
475  * irq_set_affinity - Set the irq affinity of a given irq
476  * @irq:	Interrupt to set affinity
477  * @cpumask:	cpumask
478  *
479  * Fails if cpumask does not contain an online CPU
480  */
481 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
482 {
483 	return __irq_set_affinity(irq, cpumask, false);
484 }
485 EXPORT_SYMBOL_GPL(irq_set_affinity);
486 
487 /**
488  * irq_force_affinity - Force the irq affinity of a given irq
489  * @irq:	Interrupt to set affinity
490  * @cpumask:	cpumask
491  *
492  * Same as irq_set_affinity, but without checking the mask against
493  * online cpus.
494  *
495  * Solely for low level cpu hotplug code, where we need to make per
496  * cpu interrupts affine before the cpu becomes online.
497  */
498 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
499 {
500 	return __irq_set_affinity(irq, cpumask, true);
501 }
502 EXPORT_SYMBOL_GPL(irq_force_affinity);
503 
504 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity)
505 {
506 	int ret = -EINVAL;
507 
508 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
509 		scoped_irqdesc->affinity_hint = m;
510 		ret = 0;
511 	}
512 
513 	if (!ret && m && setaffinity)
514 		__irq_set_affinity(irq, m, false);
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
518 
519 static void irq_affinity_notify(struct work_struct *work)
520 {
521 	struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work);
522 	struct irq_desc *desc = irq_to_desc(notify->irq);
523 	cpumask_var_t cpumask;
524 
525 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
526 		goto out;
527 
528 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
529 		if (irq_move_pending(&desc->irq_data))
530 			irq_get_pending(cpumask, desc);
531 		else
532 			cpumask_copy(cpumask, desc->irq_common_data.affinity);
533 	}
534 
535 	notify->notify(notify, cpumask);
536 
537 	free_cpumask_var(cpumask);
538 out:
539 	kref_put(&notify->kref, notify->release);
540 }
541 
542 /**
543  * irq_set_affinity_notifier - control notification of IRQ affinity changes
544  * @irq:	Interrupt for which to enable/disable notification
545  * @notify:	Context for notification, or %NULL to disable
546  *		notification.  Function pointers must be initialised;
547  *		the other fields will be initialised by this function.
548  *
549  * Must be called in process context.  Notification may only be enabled
550  * after the IRQ is allocated and must be disabled before the IRQ is freed
551  * using free_irq().
552  */
553 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
554 {
555 	struct irq_desc *desc = irq_to_desc(irq);
556 	struct irq_affinity_notify *old_notify;
557 
558 	/* The release function is promised process context */
559 	might_sleep();
560 
561 	if (!desc || irq_is_nmi(desc))
562 		return -EINVAL;
563 
564 	/* Complete initialisation of *notify */
565 	if (notify) {
566 		notify->irq = irq;
567 		kref_init(&notify->kref);
568 		INIT_WORK(&notify->work, irq_affinity_notify);
569 	}
570 
571 	scoped_guard(raw_spinlock_irq, &desc->lock) {
572 		old_notify = desc->affinity_notify;
573 		desc->affinity_notify = notify;
574 	}
575 
576 	if (old_notify) {
577 		if (cancel_work_sync(&old_notify->work)) {
578 			/* Pending work had a ref, put that one too */
579 			kref_put(&old_notify->kref, old_notify->release);
580 		}
581 		kref_put(&old_notify->kref, old_notify->release);
582 	}
583 
584 	return 0;
585 }
586 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
587 
588 #ifndef CONFIG_AUTO_IRQ_AFFINITY
589 /*
590  * Generic version of the affinity autoselector.
591  */
592 int irq_setup_affinity(struct irq_desc *desc)
593 {
594 	struct cpumask *set = irq_default_affinity;
595 	int node = irq_desc_get_node(desc);
596 
597 	static DEFINE_RAW_SPINLOCK(mask_lock);
598 	static struct cpumask mask;
599 
600 	/* Excludes PER_CPU and NO_BALANCE interrupts */
601 	if (!__irq_can_set_affinity(desc))
602 		return 0;
603 
604 	guard(raw_spinlock)(&mask_lock);
605 	/*
606 	 * Preserve the managed affinity setting and a userspace affinity
607 	 * setup, but make sure that one of the targets is online.
608 	 */
609 	if (irqd_affinity_is_managed(&desc->irq_data) ||
610 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
611 		if (cpumask_intersects(desc->irq_common_data.affinity,
612 				       cpu_online_mask))
613 			set = desc->irq_common_data.affinity;
614 		else
615 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
616 	}
617 
618 	cpumask_and(&mask, cpu_online_mask, set);
619 	if (cpumask_empty(&mask))
620 		cpumask_copy(&mask, cpu_online_mask);
621 
622 	if (node != NUMA_NO_NODE) {
623 		const struct cpumask *nodemask = cpumask_of_node(node);
624 
625 		/* make sure at least one of the cpus in nodemask is online */
626 		if (cpumask_intersects(&mask, nodemask))
627 			cpumask_and(&mask, &mask, nodemask);
628 	}
629 	return irq_do_set_affinity(&desc->irq_data, &mask, false);
630 }
631 #else
632 /* Wrapper for ALPHA specific affinity selector magic */
633 int irq_setup_affinity(struct irq_desc *desc)
634 {
635 	return irq_select_affinity(irq_desc_get_irq(desc));
636 }
637 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
638 #endif /* CONFIG_SMP */
639 
640 
641 /**
642  * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
643  * @irq:	interrupt number to set affinity
644  * @vcpu_info:	vCPU specific data or pointer to a percpu array of vCPU
645  *		specific data for percpu_devid interrupts
646  *
647  * This function uses the vCPU specific data to set the vCPU affinity for
648  * an irq. The vCPU specific data is passed from outside, such as KVM. One
649  * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity().
650  */
651 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
652 {
653 	scoped_irqdesc_get_and_lock(irq, 0) {
654 		struct irq_desc *desc = scoped_irqdesc;
655 		struct irq_data *data;
656 		struct irq_chip *chip;
657 
658 		data = irq_desc_get_irq_data(desc);
659 		do {
660 			chip = irq_data_get_irq_chip(data);
661 			if (chip && chip->irq_set_vcpu_affinity)
662 				break;
663 
664 			data = irqd_get_parent_data(data);
665 		} while (data);
666 
667 		if (!data)
668 			return -ENOSYS;
669 		return chip->irq_set_vcpu_affinity(data, vcpu_info);
670 	}
671 	return -EINVAL;
672 }
673 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
674 
675 void __disable_irq(struct irq_desc *desc)
676 {
677 	if (!desc->depth++)
678 		irq_disable(desc);
679 }
680 
681 static int __disable_irq_nosync(unsigned int irq)
682 {
683 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
684 		__disable_irq(scoped_irqdesc);
685 		return 0;
686 	}
687 	return -EINVAL;
688 }
689 
690 /**
691  * disable_irq_nosync - disable an irq without waiting
692  * @irq: Interrupt to disable
693  *
694  * Disable the selected interrupt line.  Disables and Enables are
695  * nested.
696  * Unlike disable_irq(), this function does not ensure existing
697  * instances of the IRQ handler have completed before returning.
698  *
699  * This function may be called from IRQ context.
700  */
701 void disable_irq_nosync(unsigned int irq)
702 {
703 	__disable_irq_nosync(irq);
704 }
705 EXPORT_SYMBOL(disable_irq_nosync);
706 
707 /**
708  * disable_irq - disable an irq and wait for completion
709  * @irq: Interrupt to disable
710  *
711  * Disable the selected interrupt line.  Enables and Disables are nested.
712  *
713  * This function waits for any pending IRQ handlers for this interrupt to
714  * complete before returning. If you use this function while holding a
715  * resource the IRQ handler may need you will deadlock.
716  *
717  * Can only be called from preemptible code as it might sleep when an
718  * interrupt thread is associated to @irq.
719  *
720  */
721 void disable_irq(unsigned int irq)
722 {
723 	might_sleep();
724 	if (!__disable_irq_nosync(irq))
725 		synchronize_irq(irq);
726 }
727 EXPORT_SYMBOL(disable_irq);
728 
729 /**
730  * disable_hardirq - disables an irq and waits for hardirq completion
731  * @irq: Interrupt to disable
732  *
733  * Disable the selected interrupt line.  Enables and Disables are nested.
734  *
735  * This function waits for any pending hard IRQ handlers for this interrupt
736  * to complete before returning. If you use this function while holding a
737  * resource the hard IRQ handler may need you will deadlock.
738  *
739  * When used to optimistically disable an interrupt from atomic context the
740  * return value must be checked.
741  *
742  * Returns: false if a threaded handler is active.
743  *
744  * This function may be called - with care - from IRQ context.
745  */
746 bool disable_hardirq(unsigned int irq)
747 {
748 	if (!__disable_irq_nosync(irq))
749 		return synchronize_hardirq(irq);
750 	return false;
751 }
752 EXPORT_SYMBOL_GPL(disable_hardirq);
753 
754 /**
755  * disable_nmi_nosync - disable an nmi without waiting
756  * @irq: Interrupt to disable
757  *
758  * Disable the selected interrupt line. Disables and enables are nested.
759  *
760  * The interrupt to disable must have been requested through request_nmi.
761  * Unlike disable_nmi(), this function does not ensure existing
762  * instances of the IRQ handler have completed before returning.
763  */
764 void disable_nmi_nosync(unsigned int irq)
765 {
766 	disable_irq_nosync(irq);
767 }
768 
769 void __enable_irq(struct irq_desc *desc)
770 {
771 	switch (desc->depth) {
772 	case 0:
773  err_out:
774 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
775 		     irq_desc_get_irq(desc));
776 		break;
777 	case 1: {
778 		if (desc->istate & IRQS_SUSPENDED)
779 			goto err_out;
780 		/* Prevent probing on this irq: */
781 		irq_settings_set_noprobe(desc);
782 		/*
783 		 * Call irq_startup() not irq_enable() here because the
784 		 * interrupt might be marked NOAUTOEN so irq_startup()
785 		 * needs to be invoked when it gets enabled the first time.
786 		 * This is also required when __enable_irq() is invoked for
787 		 * a managed and shutdown interrupt from the S3 resume
788 		 * path.
789 		 *
790 		 * If it was already started up, then irq_startup() will
791 		 * invoke irq_enable() under the hood.
792 		 */
793 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
794 		break;
795 	}
796 	default:
797 		desc->depth--;
798 	}
799 }
800 
801 /**
802  * enable_irq - enable handling of an irq
803  * @irq: Interrupt to enable
804  *
805  * Undoes the effect of one call to disable_irq().  If this matches the
806  * last disable, processing of interrupts on this IRQ line is re-enabled.
807  *
808  * This function may be called from IRQ context only when
809  * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
810  */
811 void enable_irq(unsigned int irq)
812 {
813 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
814 		struct irq_desc *desc = scoped_irqdesc;
815 
816 		if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq))
817 			return;
818 		__enable_irq(desc);
819 	}
820 }
821 EXPORT_SYMBOL(enable_irq);
822 
823 /**
824  * enable_nmi - enable handling of an nmi
825  * @irq: Interrupt to enable
826  *
827  * The interrupt to enable must have been requested through request_nmi.
828  * Undoes the effect of one call to disable_nmi(). If this matches the last
829  * disable, processing of interrupts on this IRQ line is re-enabled.
830  */
831 void enable_nmi(unsigned int irq)
832 {
833 	enable_irq(irq);
834 }
835 
836 static int set_irq_wake_real(unsigned int irq, unsigned int on)
837 {
838 	struct irq_desc *desc = irq_to_desc(irq);
839 	int ret = -ENXIO;
840 
841 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
842 		return 0;
843 
844 	if (desc->irq_data.chip->irq_set_wake)
845 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
846 
847 	return ret;
848 }
849 
850 /**
851  * irq_set_irq_wake - control irq power management wakeup
852  * @irq:	interrupt to control
853  * @on:	enable/disable power management wakeup
854  *
855  * Enable/disable power management wakeup mode, which is disabled by
856  * default.  Enables and disables must match, just as they match for
857  * non-wakeup mode support.
858  *
859  * Wakeup mode lets this IRQ wake the system from sleep states like
860  * "suspend to RAM".
861  *
862  * Note: irq enable/disable state is completely orthogonal to the
863  * enable/disable state of irq wake. An irq can be disabled with
864  * disable_irq() and still wake the system as long as the irq has wake
865  * enabled. If this does not hold, then the underlying irq chip and the
866  * related driver need to be investigated.
867  */
868 int irq_set_irq_wake(unsigned int irq, unsigned int on)
869 {
870 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
871 		struct irq_desc *desc = scoped_irqdesc;
872 		int ret = 0;
873 
874 		/* Don't use NMIs as wake up interrupts please */
875 		if (irq_is_nmi(desc))
876 			return -EINVAL;
877 
878 		/*
879 		 * wakeup-capable irqs can be shared between drivers that
880 		 * don't need to have the same sleep mode behaviors.
881 		 */
882 		if (on) {
883 			if (desc->wake_depth++ == 0) {
884 				ret = set_irq_wake_real(irq, on);
885 				if (ret)
886 					desc->wake_depth = 0;
887 				else
888 					irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
889 			}
890 		} else {
891 			if (desc->wake_depth == 0) {
892 				WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
893 			} else if (--desc->wake_depth == 0) {
894 				ret = set_irq_wake_real(irq, on);
895 				if (ret)
896 					desc->wake_depth = 1;
897 				else
898 					irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
899 			}
900 		}
901 		return ret;
902 	}
903 	return -EINVAL;
904 }
905 EXPORT_SYMBOL(irq_set_irq_wake);
906 
907 /*
908  * Internal function that tells the architecture code whether a
909  * particular irq has been exclusively allocated or is available
910  * for driver use.
911  */
912 bool can_request_irq(unsigned int irq, unsigned long irqflags)
913 {
914 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
915 		struct irq_desc *desc = scoped_irqdesc;
916 
917 		if (irq_settings_can_request(desc)) {
918 			if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED)
919 				return true;
920 		}
921 	}
922 	return false;
923 }
924 
925 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
926 {
927 	struct irq_chip *chip = desc->irq_data.chip;
928 	int ret, unmask = 0;
929 
930 	if (!chip || !chip->irq_set_type) {
931 		/*
932 		 * IRQF_TRIGGER_* but the PIC does not support multiple
933 		 * flow-types?
934 		 */
935 		pr_debug("No set_type function for IRQ %d (%s)\n",
936 			 irq_desc_get_irq(desc),
937 			 chip ? (chip->name ? : "unknown") : "unknown");
938 		return 0;
939 	}
940 
941 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
942 		if (!irqd_irq_masked(&desc->irq_data))
943 			mask_irq(desc);
944 		if (!irqd_irq_disabled(&desc->irq_data))
945 			unmask = 1;
946 	}
947 
948 	/* Mask all flags except trigger mode */
949 	flags &= IRQ_TYPE_SENSE_MASK;
950 	ret = chip->irq_set_type(&desc->irq_data, flags);
951 
952 	switch (ret) {
953 	case IRQ_SET_MASK_OK:
954 	case IRQ_SET_MASK_OK_DONE:
955 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
956 		irqd_set(&desc->irq_data, flags);
957 		fallthrough;
958 
959 	case IRQ_SET_MASK_OK_NOCOPY:
960 		flags = irqd_get_trigger_type(&desc->irq_data);
961 		irq_settings_set_trigger_mask(desc, flags);
962 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
963 		irq_settings_clr_level(desc);
964 		if (flags & IRQ_TYPE_LEVEL_MASK) {
965 			irq_settings_set_level(desc);
966 			irqd_set(&desc->irq_data, IRQD_LEVEL);
967 		}
968 
969 		ret = 0;
970 		break;
971 	default:
972 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
973 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
974 	}
975 	if (unmask)
976 		unmask_irq(desc);
977 	return ret;
978 }
979 
980 #ifdef CONFIG_HARDIRQS_SW_RESEND
981 int irq_set_parent(int irq, int parent_irq)
982 {
983 	scoped_irqdesc_get_and_lock(irq, 0) {
984 		scoped_irqdesc->parent_irq = parent_irq;
985 		return 0;
986 	}
987 	return -EINVAL;
988 }
989 EXPORT_SYMBOL_GPL(irq_set_parent);
990 #endif
991 
992 /*
993  * Default primary interrupt handler for threaded interrupts. Is
994  * assigned as primary handler when request_threaded_irq is called
995  * with handler == NULL. Useful for oneshot interrupts.
996  */
997 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
998 {
999 	return IRQ_WAKE_THREAD;
1000 }
1001 
1002 /*
1003  * Primary handler for nested threaded interrupts. Should never be
1004  * called.
1005  */
1006 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1007 {
1008 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1009 	return IRQ_NONE;
1010 }
1011 
1012 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1013 {
1014 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1015 	return IRQ_NONE;
1016 }
1017 
1018 #ifdef CONFIG_SMP
1019 /*
1020  * Check whether we need to change the affinity of the interrupt thread.
1021  */
1022 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1023 {
1024 	cpumask_var_t mask;
1025 
1026 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1027 		return;
1028 
1029 	__set_current_state(TASK_RUNNING);
1030 
1031 	/*
1032 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1033 	 * try again next time
1034 	 */
1035 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1036 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1037 		return;
1038 	}
1039 
1040 	scoped_guard(raw_spinlock_irq, &desc->lock) {
1041 		const struct cpumask *m;
1042 
1043 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1044 		cpumask_copy(mask, m);
1045 	}
1046 
1047 	set_cpus_allowed_ptr(current, mask);
1048 	free_cpumask_var(mask);
1049 }
1050 #else
1051 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1052 #endif
1053 
1054 static int irq_wait_for_interrupt(struct irq_desc *desc,
1055 				  struct irqaction *action)
1056 {
1057 	for (;;) {
1058 		set_current_state(TASK_INTERRUPTIBLE);
1059 		irq_thread_check_affinity(desc, action);
1060 
1061 		if (kthread_should_stop()) {
1062 			/* may need to run one last time */
1063 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1064 					       &action->thread_flags)) {
1065 				__set_current_state(TASK_RUNNING);
1066 				return 0;
1067 			}
1068 			__set_current_state(TASK_RUNNING);
1069 			return -1;
1070 		}
1071 
1072 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1073 				       &action->thread_flags)) {
1074 			__set_current_state(TASK_RUNNING);
1075 			return 0;
1076 		}
1077 		schedule();
1078 	}
1079 }
1080 
1081 /*
1082  * Oneshot interrupts keep the irq line masked until the threaded
1083  * handler finished. unmask if the interrupt has not been disabled and
1084  * is marked MASKED.
1085  */
1086 static void irq_finalize_oneshot(struct irq_desc *desc,
1087 				 struct irqaction *action)
1088 {
1089 	if (!(desc->istate & IRQS_ONESHOT) ||
1090 	    action->handler == irq_forced_secondary_handler)
1091 		return;
1092 again:
1093 	chip_bus_lock(desc);
1094 	raw_spin_lock_irq(&desc->lock);
1095 
1096 	/*
1097 	 * Implausible though it may be we need to protect us against
1098 	 * the following scenario:
1099 	 *
1100 	 * The thread is faster done than the hard interrupt handler
1101 	 * on the other CPU. If we unmask the irq line then the
1102 	 * interrupt can come in again and masks the line, leaves due
1103 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1104 	 *
1105 	 * This also serializes the state of shared oneshot handlers
1106 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1107 	 * irq_wake_thread(). See the comment there which explains the
1108 	 * serialization.
1109 	 */
1110 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1111 		raw_spin_unlock_irq(&desc->lock);
1112 		chip_bus_sync_unlock(desc);
1113 		cpu_relax();
1114 		goto again;
1115 	}
1116 
1117 	/*
1118 	 * Now check again, whether the thread should run. Otherwise
1119 	 * we would clear the threads_oneshot bit of this thread which
1120 	 * was just set.
1121 	 */
1122 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1123 		goto out_unlock;
1124 
1125 	desc->threads_oneshot &= ~action->thread_mask;
1126 
1127 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1128 	    irqd_irq_masked(&desc->irq_data))
1129 		unmask_threaded_irq(desc);
1130 
1131 out_unlock:
1132 	raw_spin_unlock_irq(&desc->lock);
1133 	chip_bus_sync_unlock(desc);
1134 }
1135 
1136 /*
1137  * Interrupts explicitly requested as threaded interrupts want to be
1138  * preemptible - many of them need to sleep and wait for slow busses to
1139  * complete.
1140  */
1141 static irqreturn_t irq_thread_fn(struct irq_desc *desc,	struct irqaction *action)
1142 {
1143 	irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1144 
1145 	if (ret == IRQ_HANDLED)
1146 		atomic_inc(&desc->threads_handled);
1147 
1148 	irq_finalize_oneshot(desc, action);
1149 	return ret;
1150 }
1151 
1152 /*
1153  * Interrupts which are not explicitly requested as threaded
1154  * interrupts rely on the implicit bh/preempt disable of the hard irq
1155  * context. So we need to disable bh here to avoid deadlocks and other
1156  * side effects.
1157  */
1158 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1159 {
1160 	irqreturn_t ret;
1161 
1162 	local_bh_disable();
1163 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1164 		local_irq_disable();
1165 	ret = irq_thread_fn(desc, action);
1166 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1167 		local_irq_enable();
1168 	local_bh_enable();
1169 	return ret;
1170 }
1171 
1172 void wake_threads_waitq(struct irq_desc *desc)
1173 {
1174 	if (atomic_dec_and_test(&desc->threads_active))
1175 		wake_up(&desc->wait_for_threads);
1176 }
1177 
1178 static void irq_thread_dtor(struct callback_head *unused)
1179 {
1180 	struct task_struct *tsk = current;
1181 	struct irq_desc *desc;
1182 	struct irqaction *action;
1183 
1184 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1185 		return;
1186 
1187 	action = kthread_data(tsk);
1188 
1189 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1190 	       tsk->comm, tsk->pid, action->irq);
1191 
1192 
1193 	desc = irq_to_desc(action->irq);
1194 	/*
1195 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1196 	 * desc->threads_active and wake possible waiters.
1197 	 */
1198 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1199 		wake_threads_waitq(desc);
1200 
1201 	/* Prevent a stale desc->threads_oneshot */
1202 	irq_finalize_oneshot(desc, action);
1203 }
1204 
1205 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1206 {
1207 	struct irqaction *secondary = action->secondary;
1208 
1209 	if (WARN_ON_ONCE(!secondary))
1210 		return;
1211 
1212 	guard(raw_spinlock_irq)(&desc->lock);
1213 	__irq_wake_thread(desc, secondary);
1214 }
1215 
1216 /*
1217  * Internal function to notify that a interrupt thread is ready.
1218  */
1219 static void irq_thread_set_ready(struct irq_desc *desc,
1220 				 struct irqaction *action)
1221 {
1222 	set_bit(IRQTF_READY, &action->thread_flags);
1223 	wake_up(&desc->wait_for_threads);
1224 }
1225 
1226 /*
1227  * Internal function to wake up a interrupt thread and wait until it is
1228  * ready.
1229  */
1230 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1231 						  struct irqaction *action)
1232 {
1233 	if (!action || !action->thread)
1234 		return;
1235 
1236 	wake_up_process(action->thread);
1237 	wait_event(desc->wait_for_threads,
1238 		   test_bit(IRQTF_READY, &action->thread_flags));
1239 }
1240 
1241 /*
1242  * Interrupt handler thread
1243  */
1244 static int irq_thread(void *data)
1245 {
1246 	struct callback_head on_exit_work;
1247 	struct irqaction *action = data;
1248 	struct irq_desc *desc = irq_to_desc(action->irq);
1249 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1250 			struct irqaction *action);
1251 
1252 	irq_thread_set_ready(desc, action);
1253 
1254 	if (action->handler == irq_forced_secondary_handler)
1255 		sched_set_fifo_secondary(current);
1256 	else
1257 		sched_set_fifo(current);
1258 
1259 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1260 					   &action->thread_flags))
1261 		handler_fn = irq_forced_thread_fn;
1262 	else
1263 		handler_fn = irq_thread_fn;
1264 
1265 	init_task_work(&on_exit_work, irq_thread_dtor);
1266 	task_work_add(current, &on_exit_work, TWA_NONE);
1267 
1268 	while (!irq_wait_for_interrupt(desc, action)) {
1269 		irqreturn_t action_ret;
1270 
1271 		action_ret = handler_fn(desc, action);
1272 		if (action_ret == IRQ_WAKE_THREAD)
1273 			irq_wake_secondary(desc, action);
1274 
1275 		wake_threads_waitq(desc);
1276 	}
1277 
1278 	/*
1279 	 * This is the regular exit path. __free_irq() is stopping the
1280 	 * thread via kthread_stop() after calling
1281 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1282 	 * oneshot mask bit can be set.
1283 	 */
1284 	task_work_cancel_func(current, irq_thread_dtor);
1285 	return 0;
1286 }
1287 
1288 /**
1289  * irq_wake_thread - wake the irq thread for the action identified by dev_id
1290  * @irq:	Interrupt line
1291  * @dev_id:	Device identity for which the thread should be woken
1292  */
1293 void irq_wake_thread(unsigned int irq, void *dev_id)
1294 {
1295 	struct irq_desc *desc = irq_to_desc(irq);
1296 	struct irqaction *action;
1297 
1298 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1299 		return;
1300 
1301 	guard(raw_spinlock_irqsave)(&desc->lock);
1302 	for_each_action_of_desc(desc, action) {
1303 		if (action->dev_id == dev_id) {
1304 			if (action->thread)
1305 				__irq_wake_thread(desc, action);
1306 			break;
1307 		}
1308 	}
1309 }
1310 EXPORT_SYMBOL_GPL(irq_wake_thread);
1311 
1312 static int irq_setup_forced_threading(struct irqaction *new)
1313 {
1314 	if (!force_irqthreads())
1315 		return 0;
1316 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1317 		return 0;
1318 
1319 	/*
1320 	 * No further action required for interrupts which are requested as
1321 	 * threaded interrupts already
1322 	 */
1323 	if (new->handler == irq_default_primary_handler)
1324 		return 0;
1325 
1326 	new->flags |= IRQF_ONESHOT;
1327 
1328 	/*
1329 	 * Handle the case where we have a real primary handler and a
1330 	 * thread handler. We force thread them as well by creating a
1331 	 * secondary action.
1332 	 */
1333 	if (new->handler && new->thread_fn) {
1334 		/* Allocate the secondary action */
1335 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1336 		if (!new->secondary)
1337 			return -ENOMEM;
1338 		new->secondary->handler = irq_forced_secondary_handler;
1339 		new->secondary->thread_fn = new->thread_fn;
1340 		new->secondary->dev_id = new->dev_id;
1341 		new->secondary->irq = new->irq;
1342 		new->secondary->name = new->name;
1343 	}
1344 	/* Deal with the primary handler */
1345 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1346 	new->thread_fn = new->handler;
1347 	new->handler = irq_default_primary_handler;
1348 	return 0;
1349 }
1350 
1351 static int irq_request_resources(struct irq_desc *desc)
1352 {
1353 	struct irq_data *d = &desc->irq_data;
1354 	struct irq_chip *c = d->chip;
1355 
1356 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1357 }
1358 
1359 static void irq_release_resources(struct irq_desc *desc)
1360 {
1361 	struct irq_data *d = &desc->irq_data;
1362 	struct irq_chip *c = d->chip;
1363 
1364 	if (c->irq_release_resources)
1365 		c->irq_release_resources(d);
1366 }
1367 
1368 static bool irq_supports_nmi(struct irq_desc *desc)
1369 {
1370 	struct irq_data *d = irq_desc_get_irq_data(desc);
1371 
1372 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1373 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1374 	if (d->parent_data)
1375 		return false;
1376 #endif
1377 	/* Don't support NMIs for chips behind a slow bus */
1378 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1379 		return false;
1380 
1381 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1382 }
1383 
1384 static int irq_nmi_setup(struct irq_desc *desc)
1385 {
1386 	struct irq_data *d = irq_desc_get_irq_data(desc);
1387 	struct irq_chip *c = d->chip;
1388 
1389 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1390 }
1391 
1392 static void irq_nmi_teardown(struct irq_desc *desc)
1393 {
1394 	struct irq_data *d = irq_desc_get_irq_data(desc);
1395 	struct irq_chip *c = d->chip;
1396 
1397 	if (c->irq_nmi_teardown)
1398 		c->irq_nmi_teardown(d);
1399 }
1400 
1401 static int
1402 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1403 {
1404 	struct task_struct *t;
1405 
1406 	if (!secondary) {
1407 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1408 				   new->name);
1409 	} else {
1410 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1411 				   new->name);
1412 	}
1413 
1414 	if (IS_ERR(t))
1415 		return PTR_ERR(t);
1416 
1417 	/*
1418 	 * We keep the reference to the task struct even if
1419 	 * the thread dies to avoid that the interrupt code
1420 	 * references an already freed task_struct.
1421 	 */
1422 	new->thread = get_task_struct(t);
1423 
1424 	/*
1425 	 * The affinity can not be established yet, but it will be once the
1426 	 * interrupt is enabled. Delay and defer the actual setting to the
1427 	 * thread itself once it is ready to run. In the meantime, prevent
1428 	 * it from ever being re-affined directly by cpuset or
1429 	 * housekeeping. The proper way to do it is to re-affine the whole
1430 	 * vector.
1431 	 */
1432 	kthread_bind_mask(t, cpu_possible_mask);
1433 
1434 	/*
1435 	 * Ensure the thread adjusts the affinity once it reaches the
1436 	 * thread function.
1437 	 */
1438 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1439 
1440 	return 0;
1441 }
1442 
1443 static bool valid_percpu_irqaction(struct irqaction *old, struct irqaction *new)
1444 {
1445 	do {
1446 		if (cpumask_intersects(old->affinity, new->affinity) ||
1447 		    old->percpu_dev_id == new->percpu_dev_id)
1448 			return false;
1449 
1450 		old = old->next;
1451 	} while (old);
1452 
1453 	return true;
1454 }
1455 
1456 /*
1457  * Internal function to register an irqaction - typically used to
1458  * allocate special interrupts that are part of the architecture.
1459  *
1460  * Locking rules:
1461  *
1462  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1463  *   chip_bus_lock	Provides serialization for slow bus operations
1464  *     desc->lock	Provides serialization against hard interrupts
1465  *
1466  * chip_bus_lock and desc->lock are sufficient for all other management and
1467  * interrupt related functions. desc->request_mutex solely serializes
1468  * request/free_irq().
1469  */
1470 static int
1471 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1472 {
1473 	struct irqaction *old, **old_ptr;
1474 	unsigned long flags, thread_mask = 0;
1475 	int ret, nested, shared = 0;
1476 	bool per_cpu_devid;
1477 
1478 	if (!desc)
1479 		return -EINVAL;
1480 
1481 	if (desc->irq_data.chip == &no_irq_chip)
1482 		return -ENOSYS;
1483 	if (!try_module_get(desc->owner))
1484 		return -ENODEV;
1485 
1486 	per_cpu_devid = irq_settings_is_per_cpu_devid(desc);
1487 
1488 	new->irq = irq;
1489 
1490 	/*
1491 	 * If the trigger type is not specified by the caller,
1492 	 * then use the default for this interrupt.
1493 	 */
1494 	if (!(new->flags & IRQF_TRIGGER_MASK))
1495 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1496 
1497 	/*
1498 	 * IRQF_ONESHOT means the interrupt source in the IRQ chip will be
1499 	 * masked until the threaded handled is done. If there is no thread
1500 	 * handler then it makes no sense to have IRQF_ONESHOT.
1501 	 */
1502 	WARN_ON_ONCE(new->flags & IRQF_ONESHOT && !new->thread_fn);
1503 
1504 	/*
1505 	 * Check whether the interrupt nests into another interrupt
1506 	 * thread.
1507 	 */
1508 	nested = irq_settings_is_nested_thread(desc);
1509 	if (nested) {
1510 		if (!new->thread_fn) {
1511 			ret = -EINVAL;
1512 			goto out_mput;
1513 		}
1514 		/*
1515 		 * Replace the primary handler which was provided from
1516 		 * the driver for non nested interrupt handling by the
1517 		 * dummy function which warns when called.
1518 		 */
1519 		new->handler = irq_nested_primary_handler;
1520 	} else {
1521 		if (irq_settings_can_thread(desc)) {
1522 			ret = irq_setup_forced_threading(new);
1523 			if (ret)
1524 				goto out_mput;
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * Create a handler thread when a thread function is supplied
1530 	 * and the interrupt does not nest into another interrupt
1531 	 * thread.
1532 	 */
1533 	if (new->thread_fn && !nested) {
1534 		ret = setup_irq_thread(new, irq, false);
1535 		if (ret)
1536 			goto out_mput;
1537 		if (new->secondary) {
1538 			ret = setup_irq_thread(new->secondary, irq, true);
1539 			if (ret)
1540 				goto out_thread;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Drivers are often written to work w/o knowledge about the
1546 	 * underlying irq chip implementation, so a request for a
1547 	 * threaded irq without a primary hard irq context handler
1548 	 * requires the ONESHOT flag to be set. Some irq chips like
1549 	 * MSI based interrupts are per se one shot safe. Check the
1550 	 * chip flags, so we can avoid the unmask dance at the end of
1551 	 * the threaded handler for those.
1552 	 */
1553 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1554 		new->flags &= ~IRQF_ONESHOT;
1555 
1556 	/*
1557 	 * Protects against a concurrent __free_irq() call which might wait
1558 	 * for synchronize_hardirq() to complete without holding the optional
1559 	 * chip bus lock and desc->lock. Also protects against handing out
1560 	 * a recycled oneshot thread_mask bit while it's still in use by
1561 	 * its previous owner.
1562 	 */
1563 	mutex_lock(&desc->request_mutex);
1564 
1565 	/*
1566 	 * Acquire bus lock as the irq_request_resources() callback below
1567 	 * might rely on the serialization or the magic power management
1568 	 * functions which are abusing the irq_bus_lock() callback,
1569 	 */
1570 	chip_bus_lock(desc);
1571 
1572 	/* First installed action requests resources. */
1573 	if (!desc->action) {
1574 		ret = irq_request_resources(desc);
1575 		if (ret) {
1576 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1577 			       new->name, irq, desc->irq_data.chip->name);
1578 			goto out_bus_unlock;
1579 		}
1580 	}
1581 
1582 	/*
1583 	 * The following block of code has to be executed atomically
1584 	 * protected against a concurrent interrupt and any of the other
1585 	 * management calls which are not serialized via
1586 	 * desc->request_mutex or the optional bus lock.
1587 	 */
1588 	raw_spin_lock_irqsave(&desc->lock, flags);
1589 	old_ptr = &desc->action;
1590 	old = *old_ptr;
1591 	if (old) {
1592 		/*
1593 		 * Can't share interrupts unless both agree to and are
1594 		 * the same type (level, edge, polarity). So both flag
1595 		 * fields must have IRQF_SHARED set and the bits which
1596 		 * set the trigger type must match. Also all must
1597 		 * agree on ONESHOT.
1598 		 * Interrupt lines used for NMIs cannot be shared.
1599 		 */
1600 		unsigned int oldtype;
1601 
1602 		if (irq_is_nmi(desc) && !per_cpu_devid) {
1603 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1604 				new->name, irq, desc->irq_data.chip->name);
1605 			ret = -EINVAL;
1606 			goto out_unlock;
1607 		}
1608 
1609 		if (per_cpu_devid && !valid_percpu_irqaction(old, new)) {
1610 			pr_err("Overlapping affinities for %s (irq %d) on irqchip %s.\n",
1611 				new->name, irq, desc->irq_data.chip->name);
1612 			ret = -EINVAL;
1613 			goto out_unlock;
1614 		}
1615 
1616 		/*
1617 		 * If nobody did set the configuration before, inherit
1618 		 * the one provided by the requester.
1619 		 */
1620 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1621 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1622 		} else {
1623 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1624 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1625 		}
1626 
1627 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1628 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1629 			goto mismatch;
1630 
1631 		if ((old->flags & IRQF_ONESHOT) &&
1632 		    (new->flags & IRQF_COND_ONESHOT))
1633 			new->flags |= IRQF_ONESHOT;
1634 		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1635 			goto mismatch;
1636 
1637 		/* All handlers must agree on per-cpuness */
1638 		if ((old->flags & IRQF_PERCPU) !=
1639 		    (new->flags & IRQF_PERCPU))
1640 			goto mismatch;
1641 
1642 		/* add new interrupt at end of irq queue */
1643 		do {
1644 			/*
1645 			 * Or all existing action->thread_mask bits,
1646 			 * so we can find the next zero bit for this
1647 			 * new action.
1648 			 */
1649 			thread_mask |= old->thread_mask;
1650 			old_ptr = &old->next;
1651 			old = *old_ptr;
1652 		} while (old);
1653 		shared = 1;
1654 	}
1655 
1656 	/*
1657 	 * Setup the thread mask for this irqaction for ONESHOT. For
1658 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1659 	 * conditional in irq_wake_thread().
1660 	 */
1661 	if (new->flags & IRQF_ONESHOT) {
1662 		/*
1663 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1664 		 * but who knows.
1665 		 */
1666 		if (thread_mask == ~0UL) {
1667 			ret = -EBUSY;
1668 			goto out_unlock;
1669 		}
1670 		/*
1671 		 * The thread_mask for the action is or'ed to
1672 		 * desc->thread_active to indicate that the
1673 		 * IRQF_ONESHOT thread handler has been woken, but not
1674 		 * yet finished. The bit is cleared when a thread
1675 		 * completes. When all threads of a shared interrupt
1676 		 * line have completed desc->threads_active becomes
1677 		 * zero and the interrupt line is unmasked. See
1678 		 * handle.c:irq_wake_thread() for further information.
1679 		 *
1680 		 * If no thread is woken by primary (hard irq context)
1681 		 * interrupt handlers, then desc->threads_active is
1682 		 * also checked for zero to unmask the irq line in the
1683 		 * affected hard irq flow handlers
1684 		 * (handle_[fasteoi|level]_irq).
1685 		 *
1686 		 * The new action gets the first zero bit of
1687 		 * thread_mask assigned. See the loop above which or's
1688 		 * all existing action->thread_mask bits.
1689 		 */
1690 		new->thread_mask = 1UL << ffz(thread_mask);
1691 
1692 	} else if (new->handler == irq_default_primary_handler &&
1693 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1694 		/*
1695 		 * The interrupt was requested with handler = NULL, so
1696 		 * we use the default primary handler for it. But it
1697 		 * does not have the oneshot flag set. In combination
1698 		 * with level interrupts this is deadly, because the
1699 		 * default primary handler just wakes the thread, then
1700 		 * the irq lines is reenabled, but the device still
1701 		 * has the level irq asserted. Rinse and repeat....
1702 		 *
1703 		 * While this works for edge type interrupts, we play
1704 		 * it safe and reject unconditionally because we can't
1705 		 * say for sure which type this interrupt really
1706 		 * has. The type flags are unreliable as the
1707 		 * underlying chip implementation can override them.
1708 		 */
1709 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1710 		       new->name, irq);
1711 		ret = -EINVAL;
1712 		goto out_unlock;
1713 	}
1714 
1715 	if (!shared) {
1716 		/* Setup the type (level, edge polarity) if configured: */
1717 		if (new->flags & IRQF_TRIGGER_MASK) {
1718 			ret = __irq_set_trigger(desc,
1719 						new->flags & IRQF_TRIGGER_MASK);
1720 
1721 			if (ret)
1722 				goto out_unlock;
1723 		}
1724 
1725 		/*
1726 		 * Activate the interrupt. That activation must happen
1727 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1728 		 * and the callers are supposed to handle
1729 		 * that. enable_irq() of an interrupt requested with
1730 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1731 		 * keeps it in shutdown mode, it merily associates
1732 		 * resources if necessary and if that's not possible it
1733 		 * fails. Interrupts which are in managed shutdown mode
1734 		 * will simply ignore that activation request.
1735 		 */
1736 		ret = irq_activate(desc);
1737 		if (ret)
1738 			goto out_unlock;
1739 
1740 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1741 				  IRQS_ONESHOT | IRQS_WAITING);
1742 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1743 
1744 		if (new->flags & IRQF_PERCPU) {
1745 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1746 			irq_settings_set_per_cpu(desc);
1747 			if (new->flags & IRQF_NO_DEBUG)
1748 				irq_settings_set_no_debug(desc);
1749 		}
1750 
1751 		if (noirqdebug)
1752 			irq_settings_set_no_debug(desc);
1753 
1754 		if (new->flags & IRQF_ONESHOT)
1755 			desc->istate |= IRQS_ONESHOT;
1756 
1757 		/* Exclude IRQ from balancing if requested */
1758 		if (new->flags & IRQF_NOBALANCING) {
1759 			irq_settings_set_no_balancing(desc);
1760 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1761 		}
1762 
1763 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1764 		    irq_settings_can_autoenable(desc)) {
1765 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1766 		} else if (!per_cpu_devid) {
1767 			/*
1768 			 * Shared interrupts do not go well with disabling
1769 			 * auto enable. The sharing interrupt might request
1770 			 * it while it's still disabled and then wait for
1771 			 * interrupts forever.
1772 			 */
1773 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1774 			/* Undo nested disables: */
1775 			desc->depth = 1;
1776 		}
1777 
1778 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1779 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1780 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1781 
1782 		if (nmsk != omsk)
1783 			/* hope the handler works with current  trigger mode */
1784 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1785 				irq, omsk, nmsk);
1786 	}
1787 
1788 	*old_ptr = new;
1789 
1790 	irq_pm_install_action(desc, new);
1791 
1792 	/* Reset broken irq detection when installing new handler */
1793 	desc->irq_count = 0;
1794 	desc->irqs_unhandled = 0;
1795 
1796 	/*
1797 	 * Check whether we disabled the irq via the spurious handler
1798 	 * before. Reenable it and give it another chance.
1799 	 */
1800 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1801 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1802 		__enable_irq(desc);
1803 	}
1804 
1805 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1806 	chip_bus_sync_unlock(desc);
1807 	mutex_unlock(&desc->request_mutex);
1808 
1809 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1810 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1811 
1812 	register_irq_proc(irq, desc);
1813 	new->dir = NULL;
1814 	register_handler_proc(irq, new);
1815 	return 0;
1816 
1817 mismatch:
1818 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1819 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1820 		       irq, new->flags, new->name, old->flags, old->name);
1821 #ifdef CONFIG_DEBUG_SHIRQ
1822 		dump_stack();
1823 #endif
1824 	}
1825 	ret = -EBUSY;
1826 
1827 out_unlock:
1828 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1829 
1830 	if (!desc->action)
1831 		irq_release_resources(desc);
1832 out_bus_unlock:
1833 	chip_bus_sync_unlock(desc);
1834 	mutex_unlock(&desc->request_mutex);
1835 
1836 out_thread:
1837 	if (new->thread) {
1838 		struct task_struct *t = new->thread;
1839 
1840 		new->thread = NULL;
1841 		kthread_stop_put(t);
1842 	}
1843 	if (new->secondary && new->secondary->thread) {
1844 		struct task_struct *t = new->secondary->thread;
1845 
1846 		new->secondary->thread = NULL;
1847 		kthread_stop_put(t);
1848 	}
1849 out_mput:
1850 	module_put(desc->owner);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Internal function to unregister an irqaction - used to free
1856  * regular and special interrupts that are part of the architecture.
1857  */
1858 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1859 {
1860 	unsigned irq = desc->irq_data.irq;
1861 	struct irqaction *action, **action_ptr;
1862 	unsigned long flags;
1863 
1864 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1865 
1866 	mutex_lock(&desc->request_mutex);
1867 	chip_bus_lock(desc);
1868 	raw_spin_lock_irqsave(&desc->lock, flags);
1869 
1870 	/*
1871 	 * There can be multiple actions per IRQ descriptor, find the right
1872 	 * one based on the dev_id:
1873 	 */
1874 	action_ptr = &desc->action;
1875 	for (;;) {
1876 		action = *action_ptr;
1877 
1878 		if (!action) {
1879 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1880 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1881 			chip_bus_sync_unlock(desc);
1882 			mutex_unlock(&desc->request_mutex);
1883 			return NULL;
1884 		}
1885 
1886 		if (action->dev_id == dev_id)
1887 			break;
1888 		action_ptr = &action->next;
1889 	}
1890 
1891 	/* Found it - now remove it from the list of entries: */
1892 	*action_ptr = action->next;
1893 
1894 	irq_pm_remove_action(desc, action);
1895 
1896 	/* If this was the last handler, shut down the IRQ line: */
1897 	if (!desc->action) {
1898 		irq_settings_clr_disable_unlazy(desc);
1899 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1900 		irq_shutdown(desc);
1901 	}
1902 
1903 #ifdef CONFIG_SMP
1904 	/* make sure affinity_hint is cleaned up */
1905 	if (WARN_ON_ONCE(desc->affinity_hint))
1906 		desc->affinity_hint = NULL;
1907 #endif
1908 
1909 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1910 	/*
1911 	 * Drop bus_lock here so the changes which were done in the chip
1912 	 * callbacks above are synced out to the irq chips which hang
1913 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1914 	 *
1915 	 * Aside of that the bus_lock can also be taken from the threaded
1916 	 * handler in irq_finalize_oneshot() which results in a deadlock
1917 	 * because kthread_stop() would wait forever for the thread to
1918 	 * complete, which is blocked on the bus lock.
1919 	 *
1920 	 * The still held desc->request_mutex() protects against a
1921 	 * concurrent request_irq() of this irq so the release of resources
1922 	 * and timing data is properly serialized.
1923 	 */
1924 	chip_bus_sync_unlock(desc);
1925 
1926 	unregister_handler_proc(irq, action);
1927 
1928 	/*
1929 	 * Make sure it's not being used on another CPU and if the chip
1930 	 * supports it also make sure that there is no (not yet serviced)
1931 	 * interrupt in flight at the hardware level.
1932 	 */
1933 	__synchronize_irq(desc);
1934 
1935 #ifdef CONFIG_DEBUG_SHIRQ
1936 	/*
1937 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1938 	 * event to happen even now it's being freed, so let's make sure that
1939 	 * is so by doing an extra call to the handler ....
1940 	 *
1941 	 * ( We do this after actually deregistering it, to make sure that a
1942 	 *   'real' IRQ doesn't run in parallel with our fake. )
1943 	 */
1944 	if (action->flags & IRQF_SHARED) {
1945 		local_irq_save(flags);
1946 		action->handler(irq, dev_id);
1947 		local_irq_restore(flags);
1948 	}
1949 #endif
1950 
1951 	/*
1952 	 * The action has already been removed above, but the thread writes
1953 	 * its oneshot mask bit when it completes. Though request_mutex is
1954 	 * held across this which prevents __setup_irq() from handing out
1955 	 * the same bit to a newly requested action.
1956 	 */
1957 	if (action->thread) {
1958 		kthread_stop_put(action->thread);
1959 		if (action->secondary && action->secondary->thread)
1960 			kthread_stop_put(action->secondary->thread);
1961 	}
1962 
1963 	/* Last action releases resources */
1964 	if (!desc->action) {
1965 		/*
1966 		 * Reacquire bus lock as irq_release_resources() might
1967 		 * require it to deallocate resources over the slow bus.
1968 		 */
1969 		chip_bus_lock(desc);
1970 		/*
1971 		 * There is no interrupt on the fly anymore. Deactivate it
1972 		 * completely.
1973 		 */
1974 		scoped_guard(raw_spinlock_irqsave, &desc->lock)
1975 			irq_domain_deactivate_irq(&desc->irq_data);
1976 
1977 		irq_release_resources(desc);
1978 		chip_bus_sync_unlock(desc);
1979 	}
1980 
1981 	mutex_unlock(&desc->request_mutex);
1982 
1983 	irq_chip_pm_put(&desc->irq_data);
1984 	module_put(desc->owner);
1985 	kfree(action->secondary);
1986 	return action;
1987 }
1988 
1989 /**
1990  * free_irq - free an interrupt allocated with request_irq
1991  * @irq:	Interrupt line to free
1992  * @dev_id:	Device identity to free
1993  *
1994  * Remove an interrupt handler. The handler is removed and if the interrupt
1995  * line is no longer in use by any driver it is disabled.  On a shared IRQ
1996  * the caller must ensure the interrupt is disabled on the card it drives
1997  * before calling this function. The function does not return until any
1998  * executing interrupts for this IRQ have completed.
1999  *
2000  * This function must not be called from interrupt context.
2001  *
2002  * Returns the devname argument passed to request_irq.
2003  */
2004 const void *free_irq(unsigned int irq, void *dev_id)
2005 {
2006 	struct irq_desc *desc = irq_to_desc(irq);
2007 	struct irqaction *action;
2008 	const char *devname;
2009 
2010 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2011 		return NULL;
2012 
2013 #ifdef CONFIG_SMP
2014 	if (WARN_ON(desc->affinity_notify))
2015 		desc->affinity_notify = NULL;
2016 #endif
2017 
2018 	action = __free_irq(desc, dev_id);
2019 
2020 	if (!action)
2021 		return NULL;
2022 
2023 	devname = action->name;
2024 	kfree(action);
2025 	return devname;
2026 }
2027 EXPORT_SYMBOL(free_irq);
2028 
2029 /* This function must be called with desc->lock held */
2030 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2031 {
2032 	const char *devname = NULL;
2033 
2034 	desc->istate &= ~IRQS_NMI;
2035 
2036 	if (!WARN_ON(desc->action == NULL)) {
2037 		irq_pm_remove_action(desc, desc->action);
2038 		devname = desc->action->name;
2039 		unregister_handler_proc(irq, desc->action);
2040 
2041 		kfree(desc->action);
2042 		desc->action = NULL;
2043 	}
2044 
2045 	irq_settings_clr_disable_unlazy(desc);
2046 	irq_shutdown_and_deactivate(desc);
2047 
2048 	irq_release_resources(desc);
2049 
2050 	irq_chip_pm_put(&desc->irq_data);
2051 	module_put(desc->owner);
2052 
2053 	return devname;
2054 }
2055 
2056 const void *free_nmi(unsigned int irq, void *dev_id)
2057 {
2058 	struct irq_desc *desc = irq_to_desc(irq);
2059 
2060 	if (!desc || WARN_ON(!irq_is_nmi(desc)))
2061 		return NULL;
2062 
2063 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2064 		return NULL;
2065 
2066 	/* NMI still enabled */
2067 	if (WARN_ON(desc->depth == 0))
2068 		disable_nmi_nosync(irq);
2069 
2070 	guard(raw_spinlock_irqsave)(&desc->lock);
2071 	irq_nmi_teardown(desc);
2072 	return __cleanup_nmi(irq, desc);
2073 }
2074 
2075 /**
2076  * request_threaded_irq - allocate an interrupt line
2077  * @irq:	Interrupt line to allocate
2078  * @handler:	Function to be called when the IRQ occurs.
2079  *		Primary handler for threaded interrupts.
2080  *		If handler is NULL and thread_fn != NULL
2081  *		the default primary handler is installed.
2082  * @thread_fn:	Function called from the irq handler thread
2083  *		If NULL, no irq thread is created
2084  * @irqflags:	Interrupt type flags
2085  * @devname:	An ascii name for the claiming device
2086  * @dev_id:	A cookie passed back to the handler function
2087  *
2088  * This call allocates interrupt resources and enables the interrupt line
2089  * and IRQ handling. From the point this call is made your handler function
2090  * may be invoked. Since your handler function must clear any interrupt the
2091  * board raises, you must take care both to initialise your hardware and to
2092  * set up the interrupt handler in the right order.
2093  *
2094  * If you want to set up a threaded irq handler for your device then you
2095  * need to supply @handler and @thread_fn. @handler is still called in hard
2096  * interrupt context and has to check whether the interrupt originates from
2097  * the device. If yes it needs to disable the interrupt on the device and
2098  * return IRQ_WAKE_THREAD which will wake up the handler thread and run
2099  * @thread_fn. This split handler design is necessary to support shared
2100  * interrupts.
2101  *
2102  * @dev_id must be globally unique. Normally the address of the device data
2103  * structure is used as the cookie. Since the handler receives this value
2104  * it makes sense to use it.
2105  *
2106  * If your interrupt is shared you must pass a non NULL dev_id as this is
2107  * required when freeing the interrupt.
2108  *
2109  * Flags:
2110  *
2111  *	IRQF_SHARED		Interrupt is shared
2112  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2113  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2114  */
2115 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2116 			 irq_handler_t thread_fn, unsigned long irqflags,
2117 			 const char *devname, void *dev_id)
2118 {
2119 	struct irqaction *action;
2120 	struct irq_desc *desc;
2121 	int retval;
2122 
2123 	if (irq == IRQ_NOTCONNECTED)
2124 		return -ENOTCONN;
2125 
2126 	/*
2127 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2128 	 * otherwise we'll have trouble later trying to figure out
2129 	 * which interrupt is which (messes up the interrupt freeing
2130 	 * logic etc).
2131 	 *
2132 	 * Also shared interrupts do not go well with disabling auto enable.
2133 	 * The sharing interrupt might request it while it's still disabled
2134 	 * and then wait for interrupts forever.
2135 	 *
2136 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2137 	 * it cannot be set along with IRQF_NO_SUSPEND.
2138 	 */
2139 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2140 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2141 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2142 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2143 		return -EINVAL;
2144 
2145 	desc = irq_to_desc(irq);
2146 	if (!desc)
2147 		return -EINVAL;
2148 
2149 	if (!irq_settings_can_request(desc) ||
2150 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2151 		return -EINVAL;
2152 
2153 	if (!handler) {
2154 		if (!thread_fn)
2155 			return -EINVAL;
2156 		handler = irq_default_primary_handler;
2157 	}
2158 
2159 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2160 	if (!action)
2161 		return -ENOMEM;
2162 
2163 	action->handler = handler;
2164 	action->thread_fn = thread_fn;
2165 	action->flags = irqflags;
2166 	action->name = devname;
2167 	action->dev_id = dev_id;
2168 
2169 	retval = irq_chip_pm_get(&desc->irq_data);
2170 	if (retval < 0) {
2171 		kfree(action);
2172 		return retval;
2173 	}
2174 
2175 	retval = __setup_irq(irq, desc, action);
2176 
2177 	if (retval) {
2178 		irq_chip_pm_put(&desc->irq_data);
2179 		kfree(action->secondary);
2180 		kfree(action);
2181 	}
2182 
2183 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2184 	if (!retval && (irqflags & IRQF_SHARED)) {
2185 		/*
2186 		 * It's a shared IRQ -- the driver ought to be prepared for it
2187 		 * to happen immediately, so let's make sure....
2188 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2189 		 * run in parallel with our fake.
2190 		 */
2191 		unsigned long flags;
2192 
2193 		disable_irq(irq);
2194 		local_irq_save(flags);
2195 
2196 		handler(irq, dev_id);
2197 
2198 		local_irq_restore(flags);
2199 		enable_irq(irq);
2200 	}
2201 #endif
2202 	return retval;
2203 }
2204 EXPORT_SYMBOL(request_threaded_irq);
2205 
2206 /**
2207  * request_any_context_irq - allocate an interrupt line
2208  * @irq:	Interrupt line to allocate
2209  * @handler:	Function to be called when the IRQ occurs.
2210  *		Threaded handler for threaded interrupts.
2211  * @flags:	Interrupt type flags
2212  * @name:	An ascii name for the claiming device
2213  * @dev_id:	A cookie passed back to the handler function
2214  *
2215  * This call allocates interrupt resources and enables the interrupt line
2216  * and IRQ handling. It selects either a hardirq or threaded handling
2217  * method depending on the context.
2218  *
2219  * Returns: On failure, it returns a negative value. On success, it returns either
2220  * IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2221  */
2222 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2223 			    unsigned long flags, const char *name, void *dev_id)
2224 {
2225 	struct irq_desc *desc;
2226 	int ret;
2227 
2228 	if (irq == IRQ_NOTCONNECTED)
2229 		return -ENOTCONN;
2230 
2231 	desc = irq_to_desc(irq);
2232 	if (!desc)
2233 		return -EINVAL;
2234 
2235 	if (irq_settings_is_nested_thread(desc)) {
2236 		ret = request_threaded_irq(irq, NULL, handler,
2237 					   flags, name, dev_id);
2238 		return !ret ? IRQC_IS_NESTED : ret;
2239 	}
2240 
2241 	ret = request_irq(irq, handler, flags, name, dev_id);
2242 	return !ret ? IRQC_IS_HARDIRQ : ret;
2243 }
2244 EXPORT_SYMBOL_GPL(request_any_context_irq);
2245 
2246 /**
2247  * request_nmi - allocate an interrupt line for NMI delivery
2248  * @irq:	Interrupt line to allocate
2249  * @handler:	Function to be called when the IRQ occurs.
2250  *		Threaded handler for threaded interrupts.
2251  * @irqflags:	Interrupt type flags
2252  * @name:	An ascii name for the claiming device
2253  * @dev_id:	A cookie passed back to the handler function
2254  *
2255  * This call allocates interrupt resources and enables the interrupt line
2256  * and IRQ handling. It sets up the IRQ line to be handled as an NMI.
2257  *
2258  * An interrupt line delivering NMIs cannot be shared and IRQ handling
2259  * cannot be threaded.
2260  *
2261  * Interrupt lines requested for NMI delivering must produce per cpu
2262  * interrupts and have auto enabling setting disabled.
2263  *
2264  * @dev_id must be globally unique. Normally the address of the device data
2265  * structure is used as the cookie. Since the handler receives this value
2266  * it makes sense to use it.
2267  *
2268  * If the interrupt line cannot be used to deliver NMIs, function will fail
2269  * and return a negative value.
2270  */
2271 int request_nmi(unsigned int irq, irq_handler_t handler,
2272 		unsigned long irqflags, const char *name, void *dev_id)
2273 {
2274 	struct irqaction *action;
2275 	struct irq_desc *desc;
2276 	int retval;
2277 
2278 	if (irq == IRQ_NOTCONNECTED)
2279 		return -ENOTCONN;
2280 
2281 	/* NMI cannot be shared, used for Polling */
2282 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2283 		return -EINVAL;
2284 
2285 	if (!(irqflags & IRQF_PERCPU))
2286 		return -EINVAL;
2287 
2288 	if (!handler)
2289 		return -EINVAL;
2290 
2291 	desc = irq_to_desc(irq);
2292 
2293 	if (!desc || (irq_settings_can_autoenable(desc) &&
2294 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2295 	    !irq_settings_can_request(desc) ||
2296 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2297 	    !irq_supports_nmi(desc))
2298 		return -EINVAL;
2299 
2300 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2301 	if (!action)
2302 		return -ENOMEM;
2303 
2304 	action->handler = handler;
2305 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2306 	action->name = name;
2307 	action->dev_id = dev_id;
2308 
2309 	retval = irq_chip_pm_get(&desc->irq_data);
2310 	if (retval < 0)
2311 		goto err_out;
2312 
2313 	retval = __setup_irq(irq, desc, action);
2314 	if (retval)
2315 		goto err_irq_setup;
2316 
2317 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2318 		/* Setup NMI state */
2319 		desc->istate |= IRQS_NMI;
2320 		retval = irq_nmi_setup(desc);
2321 		if (retval) {
2322 			__cleanup_nmi(irq, desc);
2323 			return -EINVAL;
2324 		}
2325 		return 0;
2326 	}
2327 
2328 err_irq_setup:
2329 	irq_chip_pm_put(&desc->irq_data);
2330 err_out:
2331 	kfree(action);
2332 
2333 	return retval;
2334 }
2335 
2336 void enable_percpu_irq(unsigned int irq, unsigned int type)
2337 {
2338 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2339 		struct irq_desc *desc = scoped_irqdesc;
2340 
2341 		/*
2342 		 * If the trigger type is not specified by the caller, then
2343 		 * use the default for this interrupt.
2344 		 */
2345 		type &= IRQ_TYPE_SENSE_MASK;
2346 		if (type == IRQ_TYPE_NONE)
2347 			type = irqd_get_trigger_type(&desc->irq_data);
2348 
2349 		if (type != IRQ_TYPE_NONE) {
2350 			if (__irq_set_trigger(desc, type)) {
2351 				WARN(1, "failed to set type for IRQ%d\n", irq);
2352 				return;
2353 			}
2354 		}
2355 		irq_percpu_enable(desc, smp_processor_id());
2356 	}
2357 }
2358 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2359 
2360 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2361 {
2362 	enable_percpu_irq(irq, type);
2363 }
2364 
2365 /**
2366  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2367  * @irq:	Linux irq number to check for
2368  *
2369  * Must be called from a non migratable context. Returns the enable
2370  * state of a per cpu interrupt on the current cpu.
2371  */
2372 bool irq_percpu_is_enabled(unsigned int irq)
2373 {
2374 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2375 		return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled);
2376 	return false;
2377 }
2378 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2379 
2380 void disable_percpu_irq(unsigned int irq)
2381 {
2382 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2383 		irq_percpu_disable(scoped_irqdesc, smp_processor_id());
2384 }
2385 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2386 
2387 void disable_percpu_nmi(unsigned int irq)
2388 {
2389 	disable_percpu_irq(irq);
2390 }
2391 
2392 /*
2393  * Internal function to unregister a percpu irqaction.
2394  */
2395 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2396 {
2397 	struct irq_desc *desc = irq_to_desc(irq);
2398 	struct irqaction *action, **action_ptr;
2399 
2400 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2401 
2402 	if (!desc)
2403 		return NULL;
2404 
2405 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2406 		action_ptr = &desc->action;
2407 		for (;;) {
2408 			action = *action_ptr;
2409 
2410 			if (!action) {
2411 				WARN(1, "Trying to free already-free IRQ %d\n", irq);
2412 				return NULL;
2413 			}
2414 
2415 			if (action->percpu_dev_id == dev_id)
2416 				break;
2417 
2418 			action_ptr = &action->next;
2419 		}
2420 
2421 		if (cpumask_intersects(desc->percpu_enabled, action->affinity)) {
2422 			WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", irq,
2423 			     cpumask_first_and(desc->percpu_enabled, action->affinity));
2424 			return NULL;
2425 		}
2426 
2427 		/* Found it - now remove it from the list of entries: */
2428 		*action_ptr = action->next;
2429 
2430 		/* Demote from NMI if we killed the last action */
2431 		if (!desc->action)
2432 			desc->istate &= ~IRQS_NMI;
2433 	}
2434 
2435 	unregister_handler_proc(irq, action);
2436 	irq_chip_pm_put(&desc->irq_data);
2437 	module_put(desc->owner);
2438 	return action;
2439 }
2440 
2441 /**
2442  * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2443  * @irq:	Interrupt line to free
2444  * @dev_id:	Device identity to free
2445  *
2446  * Remove a percpu interrupt handler. The handler is removed, but the
2447  * interrupt line is not disabled. This must be done on each CPU before
2448  * calling this function. The function does not return until any executing
2449  * interrupts for this IRQ have completed.
2450  *
2451  * This function must not be called from interrupt context.
2452  */
2453 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2454 {
2455 	struct irq_desc *desc = irq_to_desc(irq);
2456 
2457 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2458 		return;
2459 
2460 	chip_bus_lock(desc);
2461 	kfree(__free_percpu_irq(irq, dev_id));
2462 	chip_bus_sync_unlock(desc);
2463 }
2464 EXPORT_SYMBOL_GPL(free_percpu_irq);
2465 
2466 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2467 {
2468 	struct irq_desc *desc = irq_to_desc(irq);
2469 
2470 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2471 		return;
2472 
2473 	if (WARN_ON(!irq_is_nmi(desc)))
2474 		return;
2475 
2476 	kfree(__free_percpu_irq(irq, dev_id));
2477 }
2478 
2479 static
2480 struct irqaction *create_percpu_irqaction(irq_handler_t handler, unsigned long flags,
2481 					  const char *devname, const cpumask_t *affinity,
2482 					  void __percpu *dev_id)
2483 {
2484 	struct irqaction *action;
2485 
2486 	if (!affinity)
2487 		affinity = cpu_possible_mask;
2488 
2489 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2490 	if (!action)
2491 		return NULL;
2492 
2493 	action->handler = handler;
2494 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2495 	action->name = devname;
2496 	action->percpu_dev_id = dev_id;
2497 	action->affinity = affinity;
2498 
2499 	/*
2500 	 * We allow some form of sharing for non-overlapping affinity
2501 	 * masks. Obviously, covering all CPUs prevents any sharing in
2502 	 * the first place.
2503 	 */
2504 	if (!cpumask_equal(affinity, cpu_possible_mask))
2505 		action->flags |= IRQF_SHARED;
2506 
2507 	return action;
2508 }
2509 
2510 /**
2511  * request_percpu_irq_affinity - allocate a percpu interrupt line
2512  * @irq:	Interrupt line to allocate
2513  * @handler:	Function to be called when the IRQ occurs.
2514  * @devname:	An ascii name for the claiming device
2515  * @affinity:	A cpumask describing the target CPUs for this interrupt
2516  * @dev_id:	A percpu cookie passed back to the handler function
2517  *
2518  * This call allocates interrupt resources, but doesn't enable the interrupt
2519  * on any CPU, as all percpu-devid interrupts are flagged with IRQ_NOAUTOEN.
2520  * It has to be done on each CPU using enable_percpu_irq().
2521  *
2522  * @dev_id must be globally unique. It is a per-cpu variable, and
2523  * the handler gets called with the interrupted CPU's instance of
2524  * that variable.
2525  */
2526 int request_percpu_irq_affinity(unsigned int irq, irq_handler_t handler, const char *devname,
2527 				const cpumask_t *affinity, void __percpu *dev_id)
2528 {
2529 	struct irqaction *action;
2530 	struct irq_desc *desc;
2531 	int retval;
2532 
2533 	if (!dev_id)
2534 		return -EINVAL;
2535 
2536 	desc = irq_to_desc(irq);
2537 	if (!desc || !irq_settings_can_request(desc) ||
2538 	    !irq_settings_is_per_cpu_devid(desc))
2539 		return -EINVAL;
2540 
2541 	action = create_percpu_irqaction(handler, 0, devname, affinity, dev_id);
2542 	if (!action)
2543 		return -ENOMEM;
2544 
2545 	retval = irq_chip_pm_get(&desc->irq_data);
2546 	if (retval < 0) {
2547 		kfree(action);
2548 		return retval;
2549 	}
2550 
2551 	retval = __setup_irq(irq, desc, action);
2552 
2553 	if (retval) {
2554 		irq_chip_pm_put(&desc->irq_data);
2555 		kfree(action);
2556 	}
2557 
2558 	return retval;
2559 }
2560 EXPORT_SYMBOL_GPL(request_percpu_irq_affinity);
2561 
2562 /**
2563  * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2564  * @irq:	Interrupt line to allocate
2565  * @handler:	Function to be called when the IRQ occurs.
2566  * @name:	An ascii name for the claiming device
2567  * @affinity:	A cpumask describing the target CPUs for this interrupt
2568  * @dev_id:	A percpu cookie passed back to the handler function
2569  *
2570  * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2571  * have to be setup on each CPU by calling prepare_percpu_nmi() before
2572  * being enabled on the same CPU by using enable_percpu_nmi().
2573  *
2574  * @dev_id must be globally unique. It is a per-cpu variable, and the
2575  * handler gets called with the interrupted CPU's instance of that
2576  * variable.
2577  *
2578  * Interrupt lines requested for NMI delivering should have auto enabling
2579  * setting disabled.
2580  *
2581  * If the interrupt line cannot be used to deliver NMIs, function
2582  * will fail returning a negative value.
2583  */
2584 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char *name,
2585 		       const struct cpumask *affinity, void __percpu *dev_id)
2586 {
2587 	struct irqaction *action;
2588 	struct irq_desc *desc;
2589 	int retval;
2590 
2591 	if (!handler)
2592 		return -EINVAL;
2593 
2594 	desc = irq_to_desc(irq);
2595 
2596 	if (!desc || !irq_settings_can_request(desc) ||
2597 	    !irq_settings_is_per_cpu_devid(desc) ||
2598 	    irq_settings_can_autoenable(desc) ||
2599 	    !irq_supports_nmi(desc))
2600 		return -EINVAL;
2601 
2602 	/* The line cannot be NMI already if the new request covers all CPUs */
2603 	if (irq_is_nmi(desc) &&
2604 	    (!affinity || cpumask_equal(affinity, cpu_possible_mask)))
2605 		return -EINVAL;
2606 
2607 	action = create_percpu_irqaction(handler, IRQF_NO_THREAD | IRQF_NOBALANCING,
2608 					 name, affinity, dev_id);
2609 	if (!action)
2610 		return -ENOMEM;
2611 
2612 	retval = irq_chip_pm_get(&desc->irq_data);
2613 	if (retval < 0)
2614 		goto err_out;
2615 
2616 	retval = __setup_irq(irq, desc, action);
2617 	if (retval)
2618 		goto err_irq_setup;
2619 
2620 	scoped_guard(raw_spinlock_irqsave, &desc->lock)
2621 		desc->istate |= IRQS_NMI;
2622 	return 0;
2623 
2624 err_irq_setup:
2625 	irq_chip_pm_put(&desc->irq_data);
2626 err_out:
2627 	kfree(action);
2628 
2629 	return retval;
2630 }
2631 
2632 /**
2633  * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2634  * @irq: Interrupt line to prepare for NMI delivery
2635  *
2636  * This call prepares an interrupt line to deliver NMI on the current CPU,
2637  * before that interrupt line gets enabled with enable_percpu_nmi().
2638  *
2639  * As a CPU local operation, this should be called from non-preemptible
2640  * context.
2641  *
2642  * If the interrupt line cannot be used to deliver NMIs, function will fail
2643  * returning a negative value.
2644  */
2645 int prepare_percpu_nmi(unsigned int irq)
2646 {
2647 	int ret = -EINVAL;
2648 
2649 	WARN_ON(preemptible());
2650 
2651 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2652 		if (WARN(!irq_is_nmi(scoped_irqdesc),
2653 			 "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq))
2654 			return -EINVAL;
2655 
2656 		ret = irq_nmi_setup(scoped_irqdesc);
2657 		if (ret)
2658 			pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2659 	}
2660 	return ret;
2661 }
2662 
2663 /**
2664  * teardown_percpu_nmi - undoes NMI setup of IRQ line
2665  * @irq: Interrupt line from which CPU local NMI configuration should be removed
2666  *
2667  * This call undoes the setup done by prepare_percpu_nmi().
2668  *
2669  * IRQ line should not be enabled for the current CPU.
2670  * As a CPU local operation, this should be called from non-preemptible
2671  * context.
2672  */
2673 void teardown_percpu_nmi(unsigned int irq)
2674 {
2675 	WARN_ON(preemptible());
2676 
2677 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2678 		if (WARN_ON(!irq_is_nmi(scoped_irqdesc)))
2679 			return;
2680 		irq_nmi_teardown(scoped_irqdesc);
2681 	}
2682 }
2683 
2684 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state)
2685 {
2686 	struct irq_chip *chip;
2687 	int err = -EINVAL;
2688 
2689 	do {
2690 		chip = irq_data_get_irq_chip(data);
2691 		if (WARN_ON_ONCE(!chip))
2692 			return -ENODEV;
2693 		if (chip->irq_get_irqchip_state)
2694 			break;
2695 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2696 		data = data->parent_data;
2697 #else
2698 		data = NULL;
2699 #endif
2700 	} while (data);
2701 
2702 	if (data)
2703 		err = chip->irq_get_irqchip_state(data, which, state);
2704 	return err;
2705 }
2706 
2707 /**
2708  * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2709  * @irq:	Interrupt line that is forwarded to a VM
2710  * @which:	One of IRQCHIP_STATE_* the caller wants to know about
2711  * @state:	a pointer to a boolean where the state is to be stored
2712  *
2713  * This call snapshots the internal irqchip state of an interrupt,
2714  * returning into @state the bit corresponding to stage @which
2715  *
2716  * This function should be called with preemption disabled if the interrupt
2717  * controller has per-cpu registers.
2718  */
2719 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state)
2720 {
2721 	scoped_irqdesc_get_and_buslock(irq, 0) {
2722 		struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2723 
2724 		return __irq_get_irqchip_state(data, which, state);
2725 	}
2726 	return -EINVAL;
2727 }
2728 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2729 
2730 /**
2731  * irq_set_irqchip_state - set the state of a forwarded interrupt.
2732  * @irq:	Interrupt line that is forwarded to a VM
2733  * @which:	State to be restored (one of IRQCHIP_STATE_*)
2734  * @val:	Value corresponding to @which
2735  *
2736  * This call sets the internal irqchip state of an interrupt, depending on
2737  * the value of @which.
2738  *
2739  * This function should be called with migration disabled if the interrupt
2740  * controller has per-cpu registers.
2741  */
2742 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
2743 {
2744 	scoped_irqdesc_get_and_buslock(irq, 0) {
2745 		struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2746 		struct irq_chip *chip;
2747 
2748 		do {
2749 			chip = irq_data_get_irq_chip(data);
2750 
2751 			if (WARN_ON_ONCE(!chip))
2752 				return -ENODEV;
2753 
2754 			if (chip->irq_set_irqchip_state)
2755 				break;
2756 
2757 			data = irqd_get_parent_data(data);
2758 		} while (data);
2759 
2760 		if (data)
2761 			return chip->irq_set_irqchip_state(data, which, val);
2762 	}
2763 	return -EINVAL;
2764 }
2765 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2766 
2767 /**
2768  * irq_has_action - Check whether an interrupt is requested
2769  * @irq:	The linux irq number
2770  *
2771  * Returns: A snapshot of the current state
2772  */
2773 bool irq_has_action(unsigned int irq)
2774 {
2775 	bool res;
2776 
2777 	rcu_read_lock();
2778 	res = irq_desc_has_action(irq_to_desc(irq));
2779 	rcu_read_unlock();
2780 	return res;
2781 }
2782 EXPORT_SYMBOL_GPL(irq_has_action);
2783 
2784 /**
2785  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2786  * @irq:	The linux irq number
2787  * @bitmask:	The bitmask to evaluate
2788  *
2789  * Returns: True if one of the bits in @bitmask is set
2790  */
2791 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2792 {
2793 	struct irq_desc *desc;
2794 	bool res = false;
2795 
2796 	rcu_read_lock();
2797 	desc = irq_to_desc(irq);
2798 	if (desc)
2799 		res = !!(desc->status_use_accessors & bitmask);
2800 	rcu_read_unlock();
2801 	return res;
2802 }
2803 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2804