1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
120 /**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161
162 if (addr_type == IPV6_ADDR_ANY)
163 return false;
164
165 if (addr_type != IPV6_ADDR_MAPPED)
166 return true;
167 }
168 #endif
169 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173 kuid_t sk_uid, bool relax,
174 bool reuseport_cb_ok, bool reuseport_ok)
175 {
176 int bound_dev_if2;
177
178 if (sk == sk2)
179 return false;
180
181 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182
183 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184 sk->sk_bound_dev_if == bound_dev_if2) {
185 if (sk->sk_reuse && sk2->sk_reuse &&
186 sk2->sk_state != TCP_LISTEN) {
187 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188 sk2->sk_reuseport && reuseport_cb_ok &&
189 (sk2->sk_state == TCP_TIME_WAIT ||
190 uid_eq(sk_uid, sock_i_uid(sk2)))))
191 return true;
192 } else if (!reuseport_ok || !sk->sk_reuseport ||
193 !sk2->sk_reuseport || !reuseport_cb_ok ||
194 (sk2->sk_state != TCP_TIME_WAIT &&
195 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196 return true;
197 }
198 }
199 return false;
200 }
201
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203 kuid_t sk_uid, bool relax,
204 bool reuseport_cb_ok, bool reuseport_ok)
205 {
206 if (ipv6_only_sock(sk2)) {
207 if (sk->sk_family == AF_INET)
208 return false;
209
210 #if IS_ENABLED(CONFIG_IPV6)
211 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
212 return false;
213 #endif
214 }
215
216 return inet_bind_conflict(sk, sk2, sk_uid, relax,
217 reuseport_cb_ok, reuseport_ok);
218 }
219
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)220 static bool inet_bhash2_conflict(const struct sock *sk,
221 const struct inet_bind2_bucket *tb2,
222 kuid_t sk_uid,
223 bool relax, bool reuseport_cb_ok,
224 bool reuseport_ok)
225 {
226 struct sock *sk2;
227
228 sk_for_each_bound(sk2, &tb2->owners) {
229 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
230 reuseport_cb_ok, reuseport_ok))
231 return true;
232 }
233
234 return false;
235 }
236
237 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
238 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
239 sk_for_each_bound((__sk), &(__tb2)->owners)
240
241 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)242 static int inet_csk_bind_conflict(const struct sock *sk,
243 const struct inet_bind_bucket *tb,
244 const struct inet_bind2_bucket *tb2, /* may be null */
245 bool relax, bool reuseport_ok)
246 {
247 kuid_t uid = sock_i_uid((struct sock *)sk);
248 struct sock_reuseport *reuseport_cb;
249 bool reuseport_cb_ok;
250 struct sock *sk2;
251
252 rcu_read_lock();
253 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
254 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
255 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
256 rcu_read_unlock();
257
258 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
259 * ipv4) should have been checked already. We need to do these two
260 * checks separately because their spinlocks have to be acquired/released
261 * independently of each other, to prevent possible deadlocks
262 */
263 if (inet_use_bhash2_on_bind(sk))
264 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
265 reuseport_cb_ok, reuseport_ok);
266
267 /* Unlike other sk lookup places we do not check
268 * for sk_net here, since _all_ the socks listed
269 * in tb->owners and tb2->owners list belong
270 * to the same net - the one this bucket belongs to.
271 */
272 sk_for_each_bound_bhash(sk2, tb2, tb) {
273 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
274 continue;
275
276 if (inet_rcv_saddr_equal(sk, sk2, true))
277 return true;
278 }
279
280 return false;
281 }
282
283 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
284 * INADDR_ANY (if ipv4) socket.
285 *
286 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
287 * against concurrent binds on the port for addr any
288 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)289 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
290 bool relax, bool reuseport_ok)
291 {
292 kuid_t uid = sock_i_uid((struct sock *)sk);
293 const struct net *net = sock_net(sk);
294 struct sock_reuseport *reuseport_cb;
295 struct inet_bind_hashbucket *head2;
296 struct inet_bind2_bucket *tb2;
297 bool conflict = false;
298 bool reuseport_cb_ok;
299
300 rcu_read_lock();
301 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
302 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
303 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
304 rcu_read_unlock();
305
306 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
307
308 spin_lock(&head2->lock);
309
310 inet_bind_bucket_for_each(tb2, &head2->chain) {
311 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
312 continue;
313
314 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
315 continue;
316
317 conflict = true;
318 break;
319 }
320
321 spin_unlock(&head2->lock);
322
323 return conflict;
324 }
325
326 /*
327 * Find an open port number for the socket. Returns with the
328 * inet_bind_hashbucket locks held if successful.
329 */
330 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)331 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
332 struct inet_bind2_bucket **tb2_ret,
333 struct inet_bind_hashbucket **head2_ret, int *port_ret)
334 {
335 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
336 int i, low, high, attempt_half, port, l3mdev;
337 struct inet_bind_hashbucket *head, *head2;
338 struct net *net = sock_net(sk);
339 struct inet_bind2_bucket *tb2;
340 struct inet_bind_bucket *tb;
341 u32 remaining, offset;
342 bool relax = false;
343
344 l3mdev = inet_sk_bound_l3mdev(sk);
345 ports_exhausted:
346 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
347 other_half_scan:
348 inet_sk_get_local_port_range(sk, &low, &high);
349 high++; /* [32768, 60999] -> [32768, 61000[ */
350 if (high - low < 4)
351 attempt_half = 0;
352 if (attempt_half) {
353 int half = low + (((high - low) >> 2) << 1);
354
355 if (attempt_half == 1)
356 high = half;
357 else
358 low = half;
359 }
360 remaining = high - low;
361 if (likely(remaining > 1))
362 remaining &= ~1U;
363
364 offset = get_random_u32_below(remaining);
365 /* __inet_hash_connect() favors ports having @low parity
366 * We do the opposite to not pollute connect() users.
367 */
368 offset |= 1U;
369
370 other_parity_scan:
371 port = low + offset;
372 for (i = 0; i < remaining; i += 2, port += 2) {
373 if (unlikely(port >= high))
374 port -= remaining;
375 if (inet_is_local_reserved_port(net, port))
376 continue;
377 head = &hinfo->bhash[inet_bhashfn(net, port,
378 hinfo->bhash_size)];
379 spin_lock_bh(&head->lock);
380 if (inet_use_bhash2_on_bind(sk)) {
381 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
382 goto next_port;
383 }
384
385 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
386 spin_lock(&head2->lock);
387 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
388 inet_bind_bucket_for_each(tb, &head->chain)
389 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
390 if (!inet_csk_bind_conflict(sk, tb, tb2,
391 relax, false))
392 goto success;
393 spin_unlock(&head2->lock);
394 goto next_port;
395 }
396 tb = NULL;
397 goto success;
398 next_port:
399 spin_unlock_bh(&head->lock);
400 cond_resched();
401 }
402
403 offset--;
404 if (!(offset & 1))
405 goto other_parity_scan;
406
407 if (attempt_half == 1) {
408 /* OK we now try the upper half of the range */
409 attempt_half = 2;
410 goto other_half_scan;
411 }
412
413 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
414 /* We still have a chance to connect to different destinations */
415 relax = true;
416 goto ports_exhausted;
417 }
418 return NULL;
419 success:
420 *port_ret = port;
421 *tb_ret = tb;
422 *tb2_ret = tb2;
423 *head2_ret = head2;
424 return head;
425 }
426
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)427 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
428 struct sock *sk)
429 {
430 kuid_t uid = sock_i_uid(sk);
431
432 if (tb->fastreuseport <= 0)
433 return 0;
434 if (!sk->sk_reuseport)
435 return 0;
436 if (rcu_access_pointer(sk->sk_reuseport_cb))
437 return 0;
438 if (!uid_eq(tb->fastuid, uid))
439 return 0;
440 /* We only need to check the rcv_saddr if this tb was once marked
441 * without fastreuseport and then was reset, as we can only know that
442 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
443 * owners list.
444 */
445 if (tb->fastreuseport == FASTREUSEPORT_ANY)
446 return 1;
447 #if IS_ENABLED(CONFIG_IPV6)
448 if (tb->fast_sk_family == AF_INET6)
449 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
450 inet6_rcv_saddr(sk),
451 tb->fast_rcv_saddr,
452 sk->sk_rcv_saddr,
453 tb->fast_ipv6_only,
454 ipv6_only_sock(sk), true, false);
455 #endif
456 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
457 ipv6_only_sock(sk), true, false);
458 }
459
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)460 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
461 struct sock *sk)
462 {
463 kuid_t uid = sock_i_uid(sk);
464 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
465
466 if (hlist_empty(&tb->bhash2)) {
467 tb->fastreuse = reuse;
468 if (sk->sk_reuseport) {
469 tb->fastreuseport = FASTREUSEPORT_ANY;
470 tb->fastuid = uid;
471 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
472 tb->fast_ipv6_only = ipv6_only_sock(sk);
473 tb->fast_sk_family = sk->sk_family;
474 #if IS_ENABLED(CONFIG_IPV6)
475 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
476 #endif
477 } else {
478 tb->fastreuseport = 0;
479 }
480 } else {
481 if (!reuse)
482 tb->fastreuse = 0;
483 if (sk->sk_reuseport) {
484 /* We didn't match or we don't have fastreuseport set on
485 * the tb, but we have sk_reuseport set on this socket
486 * and we know that there are no bind conflicts with
487 * this socket in this tb, so reset our tb's reuseport
488 * settings so that any subsequent sockets that match
489 * our current socket will be put on the fast path.
490 *
491 * If we reset we need to set FASTREUSEPORT_STRICT so we
492 * do extra checking for all subsequent sk_reuseport
493 * socks.
494 */
495 if (!sk_reuseport_match(tb, sk)) {
496 tb->fastreuseport = FASTREUSEPORT_STRICT;
497 tb->fastuid = uid;
498 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
499 tb->fast_ipv6_only = ipv6_only_sock(sk);
500 tb->fast_sk_family = sk->sk_family;
501 #if IS_ENABLED(CONFIG_IPV6)
502 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
503 #endif
504 }
505 } else {
506 tb->fastreuseport = 0;
507 }
508 }
509 }
510
511 /* Obtain a reference to a local port for the given sock,
512 * if snum is zero it means select any available local port.
513 * We try to allocate an odd port (and leave even ports for connect())
514 */
inet_csk_get_port(struct sock * sk,unsigned short snum)515 int inet_csk_get_port(struct sock *sk, unsigned short snum)
516 {
517 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
518 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
519 bool found_port = false, check_bind_conflict = true;
520 bool bhash_created = false, bhash2_created = false;
521 int ret = -EADDRINUSE, port = snum, l3mdev;
522 struct inet_bind_hashbucket *head, *head2;
523 struct inet_bind2_bucket *tb2 = NULL;
524 struct inet_bind_bucket *tb = NULL;
525 bool head2_lock_acquired = false;
526 struct net *net = sock_net(sk);
527
528 l3mdev = inet_sk_bound_l3mdev(sk);
529
530 if (!port) {
531 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
532 if (!head)
533 return ret;
534
535 head2_lock_acquired = true;
536
537 if (tb && tb2)
538 goto success;
539 found_port = true;
540 } else {
541 head = &hinfo->bhash[inet_bhashfn(net, port,
542 hinfo->bhash_size)];
543 spin_lock_bh(&head->lock);
544 inet_bind_bucket_for_each(tb, &head->chain)
545 if (inet_bind_bucket_match(tb, net, port, l3mdev))
546 break;
547 }
548
549 if (!tb) {
550 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
551 head, port, l3mdev);
552 if (!tb)
553 goto fail_unlock;
554 bhash_created = true;
555 }
556
557 if (!found_port) {
558 if (!hlist_empty(&tb->bhash2)) {
559 if (sk->sk_reuse == SK_FORCE_REUSE ||
560 (tb->fastreuse > 0 && reuse) ||
561 sk_reuseport_match(tb, sk))
562 check_bind_conflict = false;
563 }
564
565 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
566 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
567 goto fail_unlock;
568 }
569
570 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
571 spin_lock(&head2->lock);
572 head2_lock_acquired = true;
573 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
574 }
575
576 if (!tb2) {
577 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
578 net, head2, tb, sk);
579 if (!tb2)
580 goto fail_unlock;
581 bhash2_created = true;
582 }
583
584 if (!found_port && check_bind_conflict) {
585 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
586 goto fail_unlock;
587 }
588
589 success:
590 inet_csk_update_fastreuse(tb, sk);
591
592 if (!inet_csk(sk)->icsk_bind_hash)
593 inet_bind_hash(sk, tb, tb2, port);
594 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
595 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
596 ret = 0;
597
598 fail_unlock:
599 if (ret) {
600 if (bhash2_created)
601 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
602 if (bhash_created)
603 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
604 }
605 if (head2_lock_acquired)
606 spin_unlock(&head2->lock);
607 spin_unlock_bh(&head->lock);
608 return ret;
609 }
610 EXPORT_SYMBOL_GPL(inet_csk_get_port);
611
612 /*
613 * Wait for an incoming connection, avoid race conditions. This must be called
614 * with the socket locked.
615 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)616 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
617 {
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 DEFINE_WAIT(wait);
620 int err;
621
622 /*
623 * True wake-one mechanism for incoming connections: only
624 * one process gets woken up, not the 'whole herd'.
625 * Since we do not 'race & poll' for established sockets
626 * anymore, the common case will execute the loop only once.
627 *
628 * Subtle issue: "add_wait_queue_exclusive()" will be added
629 * after any current non-exclusive waiters, and we know that
630 * it will always _stay_ after any new non-exclusive waiters
631 * because all non-exclusive waiters are added at the
632 * beginning of the wait-queue. As such, it's ok to "drop"
633 * our exclusiveness temporarily when we get woken up without
634 * having to remove and re-insert us on the wait queue.
635 */
636 for (;;) {
637 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
638 TASK_INTERRUPTIBLE);
639 release_sock(sk);
640 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
641 timeo = schedule_timeout(timeo);
642 sched_annotate_sleep();
643 lock_sock(sk);
644 err = 0;
645 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
646 break;
647 err = -EINVAL;
648 if (sk->sk_state != TCP_LISTEN)
649 break;
650 err = sock_intr_errno(timeo);
651 if (signal_pending(current))
652 break;
653 err = -EAGAIN;
654 if (!timeo)
655 break;
656 }
657 finish_wait(sk_sleep(sk), &wait);
658 return err;
659 }
660
661 /*
662 * This will accept the next outstanding connection.
663 */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)664 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
665 {
666 struct inet_connection_sock *icsk = inet_csk(sk);
667 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
668 struct request_sock *req;
669 struct sock *newsk;
670 int error;
671
672 lock_sock(sk);
673
674 /* We need to make sure that this socket is listening,
675 * and that it has something pending.
676 */
677 error = -EINVAL;
678 if (sk->sk_state != TCP_LISTEN)
679 goto out_err;
680
681 /* Find already established connection */
682 if (reqsk_queue_empty(queue)) {
683 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
684
685 /* If this is a non blocking socket don't sleep */
686 error = -EAGAIN;
687 if (!timeo)
688 goto out_err;
689
690 error = inet_csk_wait_for_connect(sk, timeo);
691 if (error)
692 goto out_err;
693 }
694 req = reqsk_queue_remove(queue, sk);
695 arg->is_empty = reqsk_queue_empty(queue);
696 newsk = req->sk;
697
698 if (sk->sk_protocol == IPPROTO_TCP &&
699 tcp_rsk(req)->tfo_listener) {
700 spin_lock_bh(&queue->fastopenq.lock);
701 if (tcp_rsk(req)->tfo_listener) {
702 /* We are still waiting for the final ACK from 3WHS
703 * so can't free req now. Instead, we set req->sk to
704 * NULL to signify that the child socket is taken
705 * so reqsk_fastopen_remove() will free the req
706 * when 3WHS finishes (or is aborted).
707 */
708 req->sk = NULL;
709 req = NULL;
710 }
711 spin_unlock_bh(&queue->fastopenq.lock);
712 }
713
714 out:
715 release_sock(sk);
716 if (newsk && mem_cgroup_sockets_enabled) {
717 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
718 int amt = 0;
719
720 /* atomically get the memory usage, set and charge the
721 * newsk->sk_memcg.
722 */
723 lock_sock(newsk);
724
725 mem_cgroup_sk_alloc(newsk);
726 if (newsk->sk_memcg) {
727 /* The socket has not been accepted yet, no need
728 * to look at newsk->sk_wmem_queued.
729 */
730 amt = sk_mem_pages(newsk->sk_forward_alloc +
731 atomic_read(&newsk->sk_rmem_alloc));
732 }
733
734 if (amt)
735 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
736 kmem_cache_charge(newsk, gfp);
737
738 release_sock(newsk);
739 }
740 if (req)
741 reqsk_put(req);
742
743 if (newsk)
744 inet_init_csk_locks(newsk);
745
746 return newsk;
747 out_err:
748 newsk = NULL;
749 req = NULL;
750 arg->err = error;
751 goto out;
752 }
753 EXPORT_SYMBOL(inet_csk_accept);
754
755 /*
756 * Using different timers for retransmit, delayed acks and probes
757 * We may wish use just one timer maintaining a list of expire jiffies
758 * to optimize.
759 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))760 void inet_csk_init_xmit_timers(struct sock *sk,
761 void (*retransmit_handler)(struct timer_list *t),
762 void (*delack_handler)(struct timer_list *t),
763 void (*keepalive_handler)(struct timer_list *t))
764 {
765 struct inet_connection_sock *icsk = inet_csk(sk);
766
767 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
768 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
769 timer_setup(&sk->sk_timer, keepalive_handler, 0);
770 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
771 }
772 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
773
inet_csk_clear_xmit_timers(struct sock * sk)774 void inet_csk_clear_xmit_timers(struct sock *sk)
775 {
776 struct inet_connection_sock *icsk = inet_csk(sk);
777
778 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
779
780 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
781 sk_stop_timer(sk, &icsk->icsk_delack_timer);
782 sk_stop_timer(sk, &sk->sk_timer);
783 }
784 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
785
inet_csk_clear_xmit_timers_sync(struct sock * sk)786 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
787 {
788 struct inet_connection_sock *icsk = inet_csk(sk);
789
790 /* ongoing timer handlers need to acquire socket lock. */
791 sock_not_owned_by_me(sk);
792
793 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
794
795 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
796 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
797 sk_stop_timer_sync(sk, &sk->sk_timer);
798 }
799
inet_csk_delete_keepalive_timer(struct sock * sk)800 void inet_csk_delete_keepalive_timer(struct sock *sk)
801 {
802 sk_stop_timer(sk, &sk->sk_timer);
803 }
804 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
805
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)806 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
807 {
808 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
809 }
810 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
811
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)812 struct dst_entry *inet_csk_route_req(const struct sock *sk,
813 struct flowi4 *fl4,
814 const struct request_sock *req)
815 {
816 const struct inet_request_sock *ireq = inet_rsk(req);
817 struct net *net = read_pnet(&ireq->ireq_net);
818 struct ip_options_rcu *opt;
819 struct rtable *rt;
820
821 rcu_read_lock();
822 opt = rcu_dereference(ireq->ireq_opt);
823
824 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
825 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
826 sk->sk_protocol, inet_sk_flowi_flags(sk),
827 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
828 ireq->ir_loc_addr, ireq->ir_rmt_port,
829 htons(ireq->ir_num), sk->sk_uid);
830 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
831 rt = ip_route_output_flow(net, fl4, sk);
832 if (IS_ERR(rt))
833 goto no_route;
834 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
835 goto route_err;
836 rcu_read_unlock();
837 return &rt->dst;
838
839 route_err:
840 ip_rt_put(rt);
841 no_route:
842 rcu_read_unlock();
843 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
844 return NULL;
845 }
846 EXPORT_SYMBOL_GPL(inet_csk_route_req);
847
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)848 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
849 struct sock *newsk,
850 const struct request_sock *req)
851 {
852 const struct inet_request_sock *ireq = inet_rsk(req);
853 struct net *net = read_pnet(&ireq->ireq_net);
854 struct inet_sock *newinet = inet_sk(newsk);
855 struct ip_options_rcu *opt;
856 struct flowi4 *fl4;
857 struct rtable *rt;
858
859 opt = rcu_dereference(ireq->ireq_opt);
860 fl4 = &newinet->cork.fl.u.ip4;
861
862 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
863 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
864 sk->sk_protocol, inet_sk_flowi_flags(sk),
865 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
866 ireq->ir_loc_addr, ireq->ir_rmt_port,
867 htons(ireq->ir_num), sk->sk_uid);
868 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
869 rt = ip_route_output_flow(net, fl4, sk);
870 if (IS_ERR(rt))
871 goto no_route;
872 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
873 goto route_err;
874 return &rt->dst;
875
876 route_err:
877 ip_rt_put(rt);
878 no_route:
879 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
880 return NULL;
881 }
882 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
883
884 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)885 static void syn_ack_recalc(struct request_sock *req,
886 const int max_syn_ack_retries,
887 const u8 rskq_defer_accept,
888 int *expire, int *resend)
889 {
890 if (!rskq_defer_accept) {
891 *expire = req->num_timeout >= max_syn_ack_retries;
892 *resend = 1;
893 return;
894 }
895 *expire = req->num_timeout >= max_syn_ack_retries &&
896 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
897 /* Do not resend while waiting for data after ACK,
898 * start to resend on end of deferring period to give
899 * last chance for data or ACK to create established socket.
900 */
901 *resend = !inet_rsk(req)->acked ||
902 req->num_timeout >= rskq_defer_accept - 1;
903 }
904
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)905 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
906 {
907 int err = req->rsk_ops->rtx_syn_ack(parent, req);
908
909 if (!err)
910 req->num_retrans++;
911 return err;
912 }
913 EXPORT_SYMBOL(inet_rtx_syn_ack);
914
915 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)916 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
917 bool attach_listener)
918 {
919 struct request_sock *req;
920
921 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
922 if (!req)
923 return NULL;
924 req->rsk_listener = NULL;
925 if (attach_listener) {
926 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
927 kmem_cache_free(ops->slab, req);
928 return NULL;
929 }
930 req->rsk_listener = sk_listener;
931 }
932 req->rsk_ops = ops;
933 req_to_sk(req)->sk_prot = sk_listener->sk_prot;
934 sk_node_init(&req_to_sk(req)->sk_node);
935 sk_tx_queue_clear(req_to_sk(req));
936 req->saved_syn = NULL;
937 req->syncookie = 0;
938 req->timeout = 0;
939 req->num_timeout = 0;
940 req->num_retrans = 0;
941 req->sk = NULL;
942 refcount_set(&req->rsk_refcnt, 0);
943
944 return req;
945 }
946 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
947
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)948 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
949 struct sock *sk_listener,
950 bool attach_listener)
951 {
952 struct request_sock *req = reqsk_alloc(ops, sk_listener,
953 attach_listener);
954
955 if (req) {
956 struct inet_request_sock *ireq = inet_rsk(req);
957
958 ireq->ireq_opt = NULL;
959 #if IS_ENABLED(CONFIG_IPV6)
960 ireq->pktopts = NULL;
961 #endif
962 atomic64_set(&ireq->ir_cookie, 0);
963 ireq->ireq_state = TCP_NEW_SYN_RECV;
964 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
965 ireq->ireq_family = sk_listener->sk_family;
966 req->timeout = TCP_TIMEOUT_INIT;
967 }
968
969 return req;
970 }
971 EXPORT_SYMBOL(inet_reqsk_alloc);
972
inet_reqsk_clone(struct request_sock * req,struct sock * sk)973 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
974 struct sock *sk)
975 {
976 struct sock *req_sk, *nreq_sk;
977 struct request_sock *nreq;
978
979 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
980 if (!nreq) {
981 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
982
983 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
984 sock_put(sk);
985 return NULL;
986 }
987
988 req_sk = req_to_sk(req);
989 nreq_sk = req_to_sk(nreq);
990
991 memcpy(nreq_sk, req_sk,
992 offsetof(struct sock, sk_dontcopy_begin));
993 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
994 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
995 /* alloc is larger than struct, see above */);
996
997 sk_node_init(&nreq_sk->sk_node);
998 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
999 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1000 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
1001 #endif
1002 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
1003
1004 nreq->rsk_listener = sk;
1005
1006 /* We need not acquire fastopenq->lock
1007 * because the child socket is locked in inet_csk_listen_stop().
1008 */
1009 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
1010 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
1011
1012 return nreq;
1013 }
1014
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)1015 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1016 const struct request_sock *req)
1017 {
1018 if (req->num_timeout == 0)
1019 atomic_inc(&queue->young);
1020 atomic_inc(&queue->qlen);
1021 }
1022
reqsk_migrate_reset(struct request_sock * req)1023 static void reqsk_migrate_reset(struct request_sock *req)
1024 {
1025 req->saved_syn = NULL;
1026 #if IS_ENABLED(CONFIG_IPV6)
1027 inet_rsk(req)->ipv6_opt = NULL;
1028 inet_rsk(req)->pktopts = NULL;
1029 #else
1030 inet_rsk(req)->ireq_opt = NULL;
1031 #endif
1032 }
1033
1034 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1035 static bool reqsk_queue_unlink(struct request_sock *req)
1036 {
1037 struct sock *sk = req_to_sk(req);
1038 bool found = false;
1039
1040 if (sk_hashed(sk)) {
1041 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
1042 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1043
1044 spin_lock(lock);
1045 found = __sk_nulls_del_node_init_rcu(sk);
1046 spin_unlock(lock);
1047 }
1048
1049 return found;
1050 }
1051
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1052 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1053 struct request_sock *req,
1054 bool from_timer)
1055 {
1056 bool unlinked = reqsk_queue_unlink(req);
1057
1058 if (!from_timer && timer_delete_sync(&req->rsk_timer))
1059 reqsk_put(req);
1060
1061 if (unlinked) {
1062 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1063 reqsk_put(req);
1064 }
1065
1066 return unlinked;
1067 }
1068
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1069 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1070 {
1071 return __inet_csk_reqsk_queue_drop(sk, req, false);
1072 }
1073 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1074
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1075 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1076 {
1077 inet_csk_reqsk_queue_drop(sk, req);
1078 reqsk_put(req);
1079 }
1080 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1081
reqsk_timer_handler(struct timer_list * t)1082 static void reqsk_timer_handler(struct timer_list *t)
1083 {
1084 struct request_sock *req = from_timer(req, t, rsk_timer);
1085 struct request_sock *nreq = NULL, *oreq = req;
1086 struct sock *sk_listener = req->rsk_listener;
1087 struct inet_connection_sock *icsk;
1088 struct request_sock_queue *queue;
1089 struct net *net;
1090 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1091
1092 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1093 struct sock *nsk;
1094
1095 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1096 if (!nsk)
1097 goto drop;
1098
1099 nreq = inet_reqsk_clone(req, nsk);
1100 if (!nreq)
1101 goto drop;
1102
1103 /* The new timer for the cloned req can decrease the 2
1104 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1105 * hold another count to prevent use-after-free and
1106 * call reqsk_put() just before return.
1107 */
1108 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1109 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1110 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1111
1112 req = nreq;
1113 sk_listener = nsk;
1114 }
1115
1116 icsk = inet_csk(sk_listener);
1117 net = sock_net(sk_listener);
1118 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1119 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1120 /* Normally all the openreqs are young and become mature
1121 * (i.e. converted to established socket) for first timeout.
1122 * If synack was not acknowledged for 1 second, it means
1123 * one of the following things: synack was lost, ack was lost,
1124 * rtt is high or nobody planned to ack (i.e. synflood).
1125 * When server is a bit loaded, queue is populated with old
1126 * open requests, reducing effective size of queue.
1127 * When server is well loaded, queue size reduces to zero
1128 * after several minutes of work. It is not synflood,
1129 * it is normal operation. The solution is pruning
1130 * too old entries overriding normal timeout, when
1131 * situation becomes dangerous.
1132 *
1133 * Essentially, we reserve half of room for young
1134 * embrions; and abort old ones without pity, if old
1135 * ones are about to clog our table.
1136 */
1137 queue = &icsk->icsk_accept_queue;
1138 qlen = reqsk_queue_len(queue);
1139 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1140 int young = reqsk_queue_len_young(queue) << 1;
1141
1142 while (max_syn_ack_retries > 2) {
1143 if (qlen < young)
1144 break;
1145 max_syn_ack_retries--;
1146 young <<= 1;
1147 }
1148 }
1149 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1150 &expire, &resend);
1151 req->rsk_ops->syn_ack_timeout(req);
1152 if (!expire &&
1153 (!resend ||
1154 !inet_rtx_syn_ack(sk_listener, req) ||
1155 inet_rsk(req)->acked)) {
1156 if (req->num_timeout++ == 0)
1157 atomic_dec(&queue->young);
1158 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1159
1160 if (!nreq)
1161 return;
1162
1163 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1164 /* delete timer */
1165 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1166 goto no_ownership;
1167 }
1168
1169 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1170 reqsk_migrate_reset(oreq);
1171 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1172 reqsk_put(oreq);
1173
1174 reqsk_put(nreq);
1175 return;
1176 }
1177
1178 /* Even if we can clone the req, we may need not retransmit any more
1179 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1180 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1181 */
1182 if (nreq) {
1183 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1184 no_ownership:
1185 reqsk_migrate_reset(nreq);
1186 reqsk_queue_removed(queue, nreq);
1187 __reqsk_free(nreq);
1188 }
1189
1190 drop:
1191 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1192 reqsk_put(req);
1193 }
1194
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1195 static bool reqsk_queue_hash_req(struct request_sock *req,
1196 unsigned long timeout)
1197 {
1198 bool found_dup_sk = false;
1199
1200 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1201 return false;
1202
1203 /* The timer needs to be setup after a successful insertion. */
1204 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1205 mod_timer(&req->rsk_timer, jiffies + timeout);
1206
1207 /* before letting lookups find us, make sure all req fields
1208 * are committed to memory and refcnt initialized.
1209 */
1210 smp_wmb();
1211 refcount_set(&req->rsk_refcnt, 2 + 1);
1212 return true;
1213 }
1214
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1215 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1216 unsigned long timeout)
1217 {
1218 if (!reqsk_queue_hash_req(req, timeout))
1219 return false;
1220
1221 inet_csk_reqsk_queue_added(sk);
1222 return true;
1223 }
1224 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1225
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1226 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1227 const gfp_t priority)
1228 {
1229 struct inet_connection_sock *icsk = inet_csk(newsk);
1230
1231 if (!icsk->icsk_ulp_ops)
1232 return;
1233
1234 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1235 }
1236
1237 /**
1238 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1239 * @sk: the socket to clone
1240 * @req: request_sock
1241 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1242 *
1243 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1244 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1245 struct sock *inet_csk_clone_lock(const struct sock *sk,
1246 const struct request_sock *req,
1247 const gfp_t priority)
1248 {
1249 struct sock *newsk = sk_clone_lock(sk, priority);
1250
1251 if (newsk) {
1252 struct inet_connection_sock *newicsk = inet_csk(newsk);
1253
1254 inet_sk_set_state(newsk, TCP_SYN_RECV);
1255 newicsk->icsk_bind_hash = NULL;
1256 newicsk->icsk_bind2_hash = NULL;
1257
1258 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1259 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1260 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1261
1262 /* listeners have SOCK_RCU_FREE, not the children */
1263 sock_reset_flag(newsk, SOCK_RCU_FREE);
1264
1265 inet_sk(newsk)->mc_list = NULL;
1266
1267 newsk->sk_mark = inet_rsk(req)->ir_mark;
1268 atomic64_set(&newsk->sk_cookie,
1269 atomic64_read(&inet_rsk(req)->ir_cookie));
1270
1271 newicsk->icsk_retransmits = 0;
1272 newicsk->icsk_backoff = 0;
1273 newicsk->icsk_probes_out = 0;
1274 newicsk->icsk_probes_tstamp = 0;
1275
1276 /* Deinitialize accept_queue to trap illegal accesses. */
1277 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1278
1279 inet_clone_ulp(req, newsk, priority);
1280
1281 security_inet_csk_clone(newsk, req);
1282 }
1283 return newsk;
1284 }
1285 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1286
1287 /*
1288 * At this point, there should be no process reference to this
1289 * socket, and thus no user references at all. Therefore we
1290 * can assume the socket waitqueue is inactive and nobody will
1291 * try to jump onto it.
1292 */
inet_csk_destroy_sock(struct sock * sk)1293 void inet_csk_destroy_sock(struct sock *sk)
1294 {
1295 WARN_ON(sk->sk_state != TCP_CLOSE);
1296 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1297
1298 /* It cannot be in hash table! */
1299 WARN_ON(!sk_unhashed(sk));
1300
1301 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1302 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1303
1304 sk->sk_prot->destroy(sk);
1305
1306 sk_stream_kill_queues(sk);
1307
1308 xfrm_sk_free_policy(sk);
1309
1310 this_cpu_dec(*sk->sk_prot->orphan_count);
1311
1312 sock_put(sk);
1313 }
1314 EXPORT_SYMBOL(inet_csk_destroy_sock);
1315
1316 /* This function allows to force a closure of a socket after the call to
1317 * tcp/dccp_create_openreq_child().
1318 */
inet_csk_prepare_forced_close(struct sock * sk)1319 void inet_csk_prepare_forced_close(struct sock *sk)
1320 __releases(&sk->sk_lock.slock)
1321 {
1322 /* sk_clone_lock locked the socket and set refcnt to 2 */
1323 bh_unlock_sock(sk);
1324 sock_put(sk);
1325 inet_csk_prepare_for_destroy_sock(sk);
1326 inet_sk(sk)->inet_num = 0;
1327 }
1328 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1329
inet_ulp_can_listen(const struct sock * sk)1330 static int inet_ulp_can_listen(const struct sock *sk)
1331 {
1332 const struct inet_connection_sock *icsk = inet_csk(sk);
1333
1334 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1335 return -EINVAL;
1336
1337 return 0;
1338 }
1339
inet_csk_listen_start(struct sock * sk)1340 int inet_csk_listen_start(struct sock *sk)
1341 {
1342 struct inet_connection_sock *icsk = inet_csk(sk);
1343 struct inet_sock *inet = inet_sk(sk);
1344 int err;
1345
1346 err = inet_ulp_can_listen(sk);
1347 if (unlikely(err))
1348 return err;
1349
1350 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1351
1352 sk->sk_ack_backlog = 0;
1353 inet_csk_delack_init(sk);
1354
1355 /* There is race window here: we announce ourselves listening,
1356 * but this transition is still not validated by get_port().
1357 * It is OK, because this socket enters to hash table only
1358 * after validation is complete.
1359 */
1360 inet_sk_state_store(sk, TCP_LISTEN);
1361 err = sk->sk_prot->get_port(sk, inet->inet_num);
1362 if (!err) {
1363 inet->inet_sport = htons(inet->inet_num);
1364
1365 sk_dst_reset(sk);
1366 err = sk->sk_prot->hash(sk);
1367
1368 if (likely(!err))
1369 return 0;
1370 }
1371
1372 inet_sk_set_state(sk, TCP_CLOSE);
1373 return err;
1374 }
1375 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1376
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1377 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1378 struct sock *child)
1379 {
1380 sk->sk_prot->disconnect(child, O_NONBLOCK);
1381
1382 sock_orphan(child);
1383
1384 this_cpu_inc(*sk->sk_prot->orphan_count);
1385
1386 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1387 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1388 BUG_ON(sk != req->rsk_listener);
1389
1390 /* Paranoid, to prevent race condition if
1391 * an inbound pkt destined for child is
1392 * blocked by sock lock in tcp_v4_rcv().
1393 * Also to satisfy an assertion in
1394 * tcp_v4_destroy_sock().
1395 */
1396 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1397 }
1398 inet_csk_destroy_sock(child);
1399 }
1400
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1401 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1402 struct request_sock *req,
1403 struct sock *child)
1404 {
1405 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1406
1407 spin_lock(&queue->rskq_lock);
1408 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1409 inet_child_forget(sk, req, child);
1410 child = NULL;
1411 } else {
1412 req->sk = child;
1413 req->dl_next = NULL;
1414 if (queue->rskq_accept_head == NULL)
1415 WRITE_ONCE(queue->rskq_accept_head, req);
1416 else
1417 queue->rskq_accept_tail->dl_next = req;
1418 queue->rskq_accept_tail = req;
1419 sk_acceptq_added(sk);
1420 }
1421 spin_unlock(&queue->rskq_lock);
1422 return child;
1423 }
1424 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1425
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1426 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1427 struct request_sock *req, bool own_req)
1428 {
1429 if (own_req) {
1430 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1431 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1432
1433 if (sk != req->rsk_listener) {
1434 /* another listening sk has been selected,
1435 * migrate the req to it.
1436 */
1437 struct request_sock *nreq;
1438
1439 /* hold a refcnt for the nreq->rsk_listener
1440 * which is assigned in inet_reqsk_clone()
1441 */
1442 sock_hold(sk);
1443 nreq = inet_reqsk_clone(req, sk);
1444 if (!nreq) {
1445 inet_child_forget(sk, req, child);
1446 goto child_put;
1447 }
1448
1449 refcount_set(&nreq->rsk_refcnt, 1);
1450 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1451 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1452 reqsk_migrate_reset(req);
1453 reqsk_put(req);
1454 return child;
1455 }
1456
1457 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1458 reqsk_migrate_reset(nreq);
1459 __reqsk_free(nreq);
1460 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1461 return child;
1462 }
1463 }
1464 /* Too bad, another child took ownership of the request, undo. */
1465 child_put:
1466 bh_unlock_sock(child);
1467 sock_put(child);
1468 return NULL;
1469 }
1470 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1471
1472 /*
1473 * This routine closes sockets which have been at least partially
1474 * opened, but not yet accepted.
1475 */
inet_csk_listen_stop(struct sock * sk)1476 void inet_csk_listen_stop(struct sock *sk)
1477 {
1478 struct inet_connection_sock *icsk = inet_csk(sk);
1479 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1480 struct request_sock *next, *req;
1481
1482 /* Following specs, it would be better either to send FIN
1483 * (and enter FIN-WAIT-1, it is normal close)
1484 * or to send active reset (abort).
1485 * Certainly, it is pretty dangerous while synflood, but it is
1486 * bad justification for our negligence 8)
1487 * To be honest, we are not able to make either
1488 * of the variants now. --ANK
1489 */
1490 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1491 struct sock *child = req->sk, *nsk;
1492 struct request_sock *nreq;
1493
1494 local_bh_disable();
1495 bh_lock_sock(child);
1496 WARN_ON(sock_owned_by_user(child));
1497 sock_hold(child);
1498
1499 nsk = reuseport_migrate_sock(sk, child, NULL);
1500 if (nsk) {
1501 nreq = inet_reqsk_clone(req, nsk);
1502 if (nreq) {
1503 refcount_set(&nreq->rsk_refcnt, 1);
1504
1505 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1506 __NET_INC_STATS(sock_net(nsk),
1507 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1508 reqsk_migrate_reset(req);
1509 } else {
1510 __NET_INC_STATS(sock_net(nsk),
1511 LINUX_MIB_TCPMIGRATEREQFAILURE);
1512 reqsk_migrate_reset(nreq);
1513 __reqsk_free(nreq);
1514 }
1515
1516 /* inet_csk_reqsk_queue_add() has already
1517 * called inet_child_forget() on failure case.
1518 */
1519 goto skip_child_forget;
1520 }
1521 }
1522
1523 inet_child_forget(sk, req, child);
1524 skip_child_forget:
1525 reqsk_put(req);
1526 bh_unlock_sock(child);
1527 local_bh_enable();
1528 sock_put(child);
1529
1530 cond_resched();
1531 }
1532 if (queue->fastopenq.rskq_rst_head) {
1533 /* Free all the reqs queued in rskq_rst_head. */
1534 spin_lock_bh(&queue->fastopenq.lock);
1535 req = queue->fastopenq.rskq_rst_head;
1536 queue->fastopenq.rskq_rst_head = NULL;
1537 spin_unlock_bh(&queue->fastopenq.lock);
1538 while (req != NULL) {
1539 next = req->dl_next;
1540 reqsk_put(req);
1541 req = next;
1542 }
1543 }
1544 WARN_ON_ONCE(sk->sk_ack_backlog);
1545 }
1546 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1547
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1548 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1549 {
1550 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1551 const struct inet_sock *inet = inet_sk(sk);
1552
1553 sin->sin_family = AF_INET;
1554 sin->sin_addr.s_addr = inet->inet_daddr;
1555 sin->sin_port = inet->inet_dport;
1556 }
1557 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1558
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1559 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1560 {
1561 const struct inet_sock *inet = inet_sk(sk);
1562 const struct ip_options_rcu *inet_opt;
1563 __be32 daddr = inet->inet_daddr;
1564 struct flowi4 *fl4;
1565 struct rtable *rt;
1566
1567 rcu_read_lock();
1568 inet_opt = rcu_dereference(inet->inet_opt);
1569 if (inet_opt && inet_opt->opt.srr)
1570 daddr = inet_opt->opt.faddr;
1571 fl4 = &fl->u.ip4;
1572 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1573 inet->inet_saddr, inet->inet_dport,
1574 inet->inet_sport, sk->sk_protocol,
1575 ip_sock_rt_tos(sk), sk->sk_bound_dev_if);
1576 if (IS_ERR(rt))
1577 rt = NULL;
1578 if (rt)
1579 sk_setup_caps(sk, &rt->dst);
1580 rcu_read_unlock();
1581
1582 return &rt->dst;
1583 }
1584
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1585 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1586 {
1587 struct dst_entry *dst = __sk_dst_check(sk, 0);
1588 struct inet_sock *inet = inet_sk(sk);
1589
1590 if (!dst) {
1591 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1592 if (!dst)
1593 goto out;
1594 }
1595 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1596
1597 dst = __sk_dst_check(sk, 0);
1598 if (!dst)
1599 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1600 out:
1601 return dst;
1602 }
1603 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1604