xref: /linux/net/ipv4/ipmr.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 #include <net/inet_dscp.h>
66 
67 #include <linux/nospec.h>
68 
69 struct ipmr_rule {
70 	struct fib_rule		common;
71 };
72 
73 struct ipmr_result {
74 	struct mr_table		*mrt;
75 };
76 
77 /* Big lock, protecting vif table, mrt cache and mroute socket state.
78  * Note that the changes are semaphored via rtnl_lock.
79  */
80 
81 static DEFINE_SPINLOCK(mrt_lock);
82 
vif_dev_read(const struct vif_device * vif)83 static struct net_device *vif_dev_read(const struct vif_device *vif)
84 {
85 	return rcu_dereference(vif->dev);
86 }
87 
88 /* Multicast router control variables */
89 
90 /* Special spinlock for queue of unresolved entries */
91 static DEFINE_SPINLOCK(mfc_unres_lock);
92 
93 /* We return to original Alan's scheme. Hash table of resolved
94  * entries is changed only in process context and protected
95  * with weak lock mrt_lock. Queue of unresolved entries is protected
96  * with strong spinlock mfc_unres_lock.
97  *
98  * In this case data path is free of exclusive locks at all.
99  */
100 
101 static struct kmem_cache *mrt_cachep __ro_after_init;
102 
103 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104 static void ipmr_free_table(struct mr_table *mrt);
105 
106 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 			  struct net_device *dev, struct sk_buff *skb,
108 			  struct mfc_cache *cache, int local);
109 static int ipmr_cache_report(const struct mr_table *mrt,
110 			     struct sk_buff *pkt, vifi_t vifi, int assert);
111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 				 int cmd);
113 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
114 static void mroute_clean_tables(struct mr_table *mrt, int flags);
115 static void ipmr_expire_process(struct timer_list *t);
116 
117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118 #define ipmr_for_each_table(mrt, net)					\
119 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
120 				lockdep_rtnl_is_held() ||		\
121 				list_empty(&net->ipv4.mr_tables))
122 
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)123 static struct mr_table *ipmr_mr_table_iter(struct net *net,
124 					   struct mr_table *mrt)
125 {
126 	struct mr_table *ret;
127 
128 	if (!mrt)
129 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
130 				     struct mr_table, list);
131 	else
132 		ret = list_entry_rcu(mrt->list.next,
133 				     struct mr_table, list);
134 
135 	if (&ret->list == &net->ipv4.mr_tables)
136 		return NULL;
137 	return ret;
138 }
139 
__ipmr_get_table(struct net * net,u32 id)140 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
141 {
142 	struct mr_table *mrt;
143 
144 	ipmr_for_each_table(mrt, net) {
145 		if (mrt->id == id)
146 			return mrt;
147 	}
148 	return NULL;
149 }
150 
ipmr_get_table(struct net * net,u32 id)151 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
152 {
153 	struct mr_table *mrt;
154 
155 	rcu_read_lock();
156 	mrt = __ipmr_get_table(net, id);
157 	rcu_read_unlock();
158 	return mrt;
159 }
160 
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)161 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
162 			   struct mr_table **mrt)
163 {
164 	int err;
165 	struct ipmr_result res;
166 	struct fib_lookup_arg arg = {
167 		.result = &res,
168 		.flags = FIB_LOOKUP_NOREF,
169 	};
170 
171 	/* update flow if oif or iif point to device enslaved to l3mdev */
172 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
173 
174 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
175 			       flowi4_to_flowi(flp4), 0, &arg);
176 	if (err < 0)
177 		return err;
178 	*mrt = res.mrt;
179 	return 0;
180 }
181 
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)182 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
183 			    int flags, struct fib_lookup_arg *arg)
184 {
185 	struct ipmr_result *res = arg->result;
186 	struct mr_table *mrt;
187 
188 	switch (rule->action) {
189 	case FR_ACT_TO_TBL:
190 		break;
191 	case FR_ACT_UNREACHABLE:
192 		return -ENETUNREACH;
193 	case FR_ACT_PROHIBIT:
194 		return -EACCES;
195 	case FR_ACT_BLACKHOLE:
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	arg->table = fib_rule_get_table(rule, arg);
201 
202 	mrt = __ipmr_get_table(rule->fr_net, arg->table);
203 	if (!mrt)
204 		return -EAGAIN;
205 	res->mrt = mrt;
206 	return 0;
207 }
208 
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)209 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
210 {
211 	return 1;
212 }
213 
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)214 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
215 			       struct fib_rule_hdr *frh, struct nlattr **tb,
216 			       struct netlink_ext_ack *extack)
217 {
218 	return 0;
219 }
220 
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)221 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
222 			     struct nlattr **tb)
223 {
224 	return 1;
225 }
226 
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)227 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
228 			  struct fib_rule_hdr *frh)
229 {
230 	frh->dst_len = 0;
231 	frh->src_len = 0;
232 	frh->tos     = 0;
233 	return 0;
234 }
235 
236 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
237 	.family		= RTNL_FAMILY_IPMR,
238 	.rule_size	= sizeof(struct ipmr_rule),
239 	.addr_size	= sizeof(u32),
240 	.action		= ipmr_rule_action,
241 	.match		= ipmr_rule_match,
242 	.configure	= ipmr_rule_configure,
243 	.compare	= ipmr_rule_compare,
244 	.fill		= ipmr_rule_fill,
245 	.nlgroup	= RTNLGRP_IPV4_RULE,
246 	.owner		= THIS_MODULE,
247 };
248 
ipmr_rules_init(struct net * net)249 static int __net_init ipmr_rules_init(struct net *net)
250 {
251 	struct fib_rules_ops *ops;
252 	struct mr_table *mrt;
253 	int err;
254 
255 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
256 	if (IS_ERR(ops))
257 		return PTR_ERR(ops);
258 
259 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
260 
261 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
262 	if (IS_ERR(mrt)) {
263 		err = PTR_ERR(mrt);
264 		goto err1;
265 	}
266 
267 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
268 	if (err < 0)
269 		goto err2;
270 
271 	net->ipv4.mr_rules_ops = ops;
272 	return 0;
273 
274 err2:
275 	rtnl_lock();
276 	ipmr_free_table(mrt);
277 	rtnl_unlock();
278 err1:
279 	fib_rules_unregister(ops);
280 	return err;
281 }
282 
ipmr_rules_exit(struct net * net)283 static void __net_exit ipmr_rules_exit(struct net *net)
284 {
285 	struct mr_table *mrt, *next;
286 
287 	ASSERT_RTNL();
288 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
289 		list_del(&mrt->list);
290 		ipmr_free_table(mrt);
291 	}
292 	fib_rules_unregister(net->ipv4.mr_rules_ops);
293 }
294 
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)295 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
296 			   struct netlink_ext_ack *extack)
297 {
298 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
299 }
300 
ipmr_rules_seq_read(const struct net * net)301 static unsigned int ipmr_rules_seq_read(const struct net *net)
302 {
303 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
304 }
305 
ipmr_rule_default(const struct fib_rule * rule)306 bool ipmr_rule_default(const struct fib_rule *rule)
307 {
308 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
309 }
310 EXPORT_SYMBOL(ipmr_rule_default);
311 #else
312 #define ipmr_for_each_table(mrt, net) \
313 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
314 
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)315 static struct mr_table *ipmr_mr_table_iter(struct net *net,
316 					   struct mr_table *mrt)
317 {
318 	if (!mrt)
319 		return net->ipv4.mrt;
320 	return NULL;
321 }
322 
ipmr_get_table(struct net * net,u32 id)323 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
324 {
325 	return net->ipv4.mrt;
326 }
327 
328 #define __ipmr_get_table ipmr_get_table
329 
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)330 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
331 			   struct mr_table **mrt)
332 {
333 	*mrt = net->ipv4.mrt;
334 	return 0;
335 }
336 
ipmr_rules_init(struct net * net)337 static int __net_init ipmr_rules_init(struct net *net)
338 {
339 	struct mr_table *mrt;
340 
341 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
342 	if (IS_ERR(mrt))
343 		return PTR_ERR(mrt);
344 	net->ipv4.mrt = mrt;
345 	return 0;
346 }
347 
ipmr_rules_exit(struct net * net)348 static void __net_exit ipmr_rules_exit(struct net *net)
349 {
350 	ASSERT_RTNL();
351 	ipmr_free_table(net->ipv4.mrt);
352 	net->ipv4.mrt = NULL;
353 }
354 
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)355 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
356 			   struct netlink_ext_ack *extack)
357 {
358 	return 0;
359 }
360 
ipmr_rules_seq_read(const struct net * net)361 static unsigned int ipmr_rules_seq_read(const struct net *net)
362 {
363 	return 0;
364 }
365 
ipmr_rule_default(const struct fib_rule * rule)366 bool ipmr_rule_default(const struct fib_rule *rule)
367 {
368 	return true;
369 }
370 EXPORT_SYMBOL(ipmr_rule_default);
371 #endif
372 
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)373 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
374 				const void *ptr)
375 {
376 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
377 	const struct mfc_cache *c = ptr;
378 
379 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
380 	       cmparg->mfc_origin != c->mfc_origin;
381 }
382 
383 static const struct rhashtable_params ipmr_rht_params = {
384 	.head_offset = offsetof(struct mr_mfc, mnode),
385 	.key_offset = offsetof(struct mfc_cache, cmparg),
386 	.key_len = sizeof(struct mfc_cache_cmp_arg),
387 	.nelem_hint = 3,
388 	.obj_cmpfn = ipmr_hash_cmp,
389 	.automatic_shrinking = true,
390 };
391 
ipmr_new_table_set(struct mr_table * mrt,struct net * net)392 static void ipmr_new_table_set(struct mr_table *mrt,
393 			       struct net *net)
394 {
395 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
396 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
397 #endif
398 }
399 
400 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
401 	.mfc_mcastgrp = htonl(INADDR_ANY),
402 	.mfc_origin = htonl(INADDR_ANY),
403 };
404 
405 static struct mr_table_ops ipmr_mr_table_ops = {
406 	.rht_params = &ipmr_rht_params,
407 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
408 };
409 
ipmr_new_table(struct net * net,u32 id)410 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
411 {
412 	struct mr_table *mrt;
413 
414 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
415 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
416 		return ERR_PTR(-EINVAL);
417 
418 	mrt = __ipmr_get_table(net, id);
419 	if (mrt)
420 		return mrt;
421 
422 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
423 			      ipmr_expire_process, ipmr_new_table_set);
424 }
425 
ipmr_free_table(struct mr_table * mrt)426 static void ipmr_free_table(struct mr_table *mrt)
427 {
428 	struct net *net = read_pnet(&mrt->net);
429 
430 	WARN_ON_ONCE(!mr_can_free_table(net));
431 
432 	timer_shutdown_sync(&mrt->ipmr_expire_timer);
433 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
434 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
435 	rhltable_destroy(&mrt->mfc_hash);
436 	kfree(mrt);
437 }
438 
439 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
440 
441 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)442 static bool ipmr_init_vif_indev(const struct net_device *dev)
443 {
444 	struct in_device *in_dev;
445 
446 	ASSERT_RTNL();
447 
448 	in_dev = __in_dev_get_rtnl(dev);
449 	if (!in_dev)
450 		return false;
451 	ipv4_devconf_setall(in_dev);
452 	neigh_parms_data_state_setall(in_dev->arp_parms);
453 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
454 
455 	return true;
456 }
457 
ipmr_new_tunnel(struct net * net,struct vifctl * v)458 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
459 {
460 	struct net_device *tunnel_dev, *new_dev;
461 	struct ip_tunnel_parm_kern p = { };
462 	int err;
463 
464 	tunnel_dev = __dev_get_by_name(net, "tunl0");
465 	if (!tunnel_dev)
466 		goto out;
467 
468 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
469 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
470 	p.iph.version = 4;
471 	p.iph.ihl = 5;
472 	p.iph.protocol = IPPROTO_IPIP;
473 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
474 
475 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
476 		goto out;
477 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
478 			SIOCADDTUNNEL);
479 	if (err)
480 		goto out;
481 
482 	new_dev = __dev_get_by_name(net, p.name);
483 	if (!new_dev)
484 		goto out;
485 
486 	new_dev->flags |= IFF_MULTICAST;
487 	if (!ipmr_init_vif_indev(new_dev))
488 		goto out_unregister;
489 	if (dev_open(new_dev, NULL))
490 		goto out_unregister;
491 	dev_hold(new_dev);
492 	err = dev_set_allmulti(new_dev, 1);
493 	if (err) {
494 		dev_close(new_dev);
495 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
496 				SIOCDELTUNNEL);
497 		dev_put(new_dev);
498 		new_dev = ERR_PTR(err);
499 	}
500 	return new_dev;
501 
502 out_unregister:
503 	unregister_netdevice(new_dev);
504 out:
505 	return ERR_PTR(-ENOBUFS);
506 }
507 
508 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)509 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
510 {
511 	struct net *net = dev_net(dev);
512 	struct mr_table *mrt;
513 	struct flowi4 fl4 = {
514 		.flowi4_oif	= dev->ifindex,
515 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
516 		.flowi4_mark	= skb->mark,
517 	};
518 	int err;
519 
520 	err = ipmr_fib_lookup(net, &fl4, &mrt);
521 	if (err < 0) {
522 		kfree_skb(skb);
523 		return err;
524 	}
525 
526 	DEV_STATS_ADD(dev, tx_bytes, skb->len);
527 	DEV_STATS_INC(dev, tx_packets);
528 	rcu_read_lock();
529 
530 	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
531 	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
532 			  IGMPMSG_WHOLEPKT);
533 
534 	rcu_read_unlock();
535 	kfree_skb(skb);
536 	return NETDEV_TX_OK;
537 }
538 
reg_vif_get_iflink(const struct net_device * dev)539 static int reg_vif_get_iflink(const struct net_device *dev)
540 {
541 	return 0;
542 }
543 
544 static const struct net_device_ops reg_vif_netdev_ops = {
545 	.ndo_start_xmit	= reg_vif_xmit,
546 	.ndo_get_iflink = reg_vif_get_iflink,
547 };
548 
reg_vif_setup(struct net_device * dev)549 static void reg_vif_setup(struct net_device *dev)
550 {
551 	dev->type		= ARPHRD_PIMREG;
552 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
553 	dev->flags		= IFF_NOARP;
554 	dev->netdev_ops		= &reg_vif_netdev_ops;
555 	dev->needs_free_netdev	= true;
556 	dev->netns_immutable	= true;
557 }
558 
ipmr_reg_vif(struct net * net,struct mr_table * mrt)559 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
560 {
561 	struct net_device *dev;
562 	char name[IFNAMSIZ];
563 
564 	if (mrt->id == RT_TABLE_DEFAULT)
565 		sprintf(name, "pimreg");
566 	else
567 		sprintf(name, "pimreg%u", mrt->id);
568 
569 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
570 
571 	if (!dev)
572 		return NULL;
573 
574 	dev_net_set(dev, net);
575 
576 	if (register_netdevice(dev)) {
577 		free_netdev(dev);
578 		return NULL;
579 	}
580 
581 	if (!ipmr_init_vif_indev(dev))
582 		goto failure;
583 	if (dev_open(dev, NULL))
584 		goto failure;
585 
586 	dev_hold(dev);
587 
588 	return dev;
589 
590 failure:
591 	unregister_netdevice(dev);
592 	return NULL;
593 }
594 
595 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)596 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
597 		     unsigned int pimlen)
598 {
599 	struct net_device *reg_dev = NULL;
600 	struct iphdr *encap;
601 	int vif_num;
602 
603 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
604 	/* Check that:
605 	 * a. packet is really sent to a multicast group
606 	 * b. packet is not a NULL-REGISTER
607 	 * c. packet is not truncated
608 	 */
609 	if (!ipv4_is_multicast(encap->daddr) ||
610 	    encap->tot_len == 0 ||
611 	    ntohs(encap->tot_len) + pimlen > skb->len)
612 		return 1;
613 
614 	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
615 	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
616 	if (vif_num >= 0)
617 		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
618 	if (!reg_dev)
619 		return 1;
620 
621 	skb->mac_header = skb->network_header;
622 	skb_pull(skb, (u8 *)encap - skb->data);
623 	skb_reset_network_header(skb);
624 	skb->protocol = htons(ETH_P_IP);
625 	skb->ip_summed = CHECKSUM_NONE;
626 
627 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
628 
629 	netif_rx(skb);
630 
631 	return NET_RX_SUCCESS;
632 }
633 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)634 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
635 {
636 	return NULL;
637 }
638 #endif
639 
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)640 static int call_ipmr_vif_entry_notifiers(struct net *net,
641 					 enum fib_event_type event_type,
642 					 struct vif_device *vif,
643 					 struct net_device *vif_dev,
644 					 vifi_t vif_index, u32 tb_id)
645 {
646 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
647 				     vif, vif_dev, vif_index, tb_id,
648 				     &net->ipv4.ipmr_seq);
649 }
650 
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)651 static int call_ipmr_mfc_entry_notifiers(struct net *net,
652 					 enum fib_event_type event_type,
653 					 struct mfc_cache *mfc, u32 tb_id)
654 {
655 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
656 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
657 }
658 
659 /**
660  *	vif_delete - Delete a VIF entry
661  *	@mrt: Table to delete from
662  *	@vifi: VIF identifier to delete
663  *	@notify: Set to 1, if the caller is a notifier_call
664  *	@head: if unregistering the VIF, place it on this queue
665  */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)666 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
667 		      struct list_head *head)
668 {
669 	struct net *net = read_pnet(&mrt->net);
670 	struct vif_device *v;
671 	struct net_device *dev;
672 	struct in_device *in_dev;
673 
674 	if (vifi < 0 || vifi >= mrt->maxvif)
675 		return -EADDRNOTAVAIL;
676 
677 	v = &mrt->vif_table[vifi];
678 
679 	dev = rtnl_dereference(v->dev);
680 	if (!dev)
681 		return -EADDRNOTAVAIL;
682 
683 	spin_lock(&mrt_lock);
684 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
685 				      vifi, mrt->id);
686 	RCU_INIT_POINTER(v->dev, NULL);
687 
688 	if (vifi == mrt->mroute_reg_vif_num) {
689 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
690 		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
691 	}
692 	if (vifi + 1 == mrt->maxvif) {
693 		int tmp;
694 
695 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
696 			if (VIF_EXISTS(mrt, tmp))
697 				break;
698 		}
699 		WRITE_ONCE(mrt->maxvif, tmp + 1);
700 	}
701 
702 	spin_unlock(&mrt_lock);
703 
704 	dev_set_allmulti(dev, -1);
705 
706 	in_dev = __in_dev_get_rtnl(dev);
707 	if (in_dev) {
708 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
709 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
710 					    NETCONFA_MC_FORWARDING,
711 					    dev->ifindex, &in_dev->cnf);
712 		ip_rt_multicast_event(in_dev);
713 	}
714 
715 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
716 		unregister_netdevice_queue(dev, head);
717 
718 	netdev_put(dev, &v->dev_tracker);
719 	return 0;
720 }
721 
ipmr_cache_free_rcu(struct rcu_head * head)722 static void ipmr_cache_free_rcu(struct rcu_head *head)
723 {
724 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
725 
726 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
727 }
728 
ipmr_cache_free(struct mfc_cache * c)729 static void ipmr_cache_free(struct mfc_cache *c)
730 {
731 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
732 }
733 
734 /* Destroy an unresolved cache entry, killing queued skbs
735  * and reporting error to netlink readers.
736  */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)737 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
738 {
739 	struct net *net = read_pnet(&mrt->net);
740 	struct sk_buff *skb;
741 	struct nlmsgerr *e;
742 
743 	atomic_dec(&mrt->cache_resolve_queue_len);
744 
745 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
746 		if (ip_hdr(skb)->version == 0) {
747 			struct nlmsghdr *nlh = skb_pull(skb,
748 							sizeof(struct iphdr));
749 			nlh->nlmsg_type = NLMSG_ERROR;
750 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
751 			skb_trim(skb, nlh->nlmsg_len);
752 			e = nlmsg_data(nlh);
753 			e->error = -ETIMEDOUT;
754 			memset(&e->msg, 0, sizeof(e->msg));
755 
756 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
757 		} else {
758 			kfree_skb(skb);
759 		}
760 	}
761 
762 	ipmr_cache_free(c);
763 }
764 
765 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)766 static void ipmr_expire_process(struct timer_list *t)
767 {
768 	struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer);
769 	struct mr_mfc *c, *next;
770 	unsigned long expires;
771 	unsigned long now;
772 
773 	if (!spin_trylock(&mfc_unres_lock)) {
774 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
775 		return;
776 	}
777 
778 	if (list_empty(&mrt->mfc_unres_queue))
779 		goto out;
780 
781 	now = jiffies;
782 	expires = 10*HZ;
783 
784 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
785 		if (time_after(c->mfc_un.unres.expires, now)) {
786 			unsigned long interval = c->mfc_un.unres.expires - now;
787 			if (interval < expires)
788 				expires = interval;
789 			continue;
790 		}
791 
792 		list_del(&c->list);
793 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
794 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
795 	}
796 
797 	if (!list_empty(&mrt->mfc_unres_queue))
798 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
799 
800 out:
801 	spin_unlock(&mfc_unres_lock);
802 }
803 
804 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)805 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
806 				   unsigned char *ttls)
807 {
808 	int vifi;
809 
810 	cache->mfc_un.res.minvif = MAXVIFS;
811 	cache->mfc_un.res.maxvif = 0;
812 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
813 
814 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
815 		if (VIF_EXISTS(mrt, vifi) &&
816 		    ttls[vifi] && ttls[vifi] < 255) {
817 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
818 			if (cache->mfc_un.res.minvif > vifi)
819 				cache->mfc_un.res.minvif = vifi;
820 			if (cache->mfc_un.res.maxvif <= vifi)
821 				cache->mfc_un.res.maxvif = vifi + 1;
822 		}
823 	}
824 	WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
825 }
826 
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)827 static int vif_add(struct net *net, struct mr_table *mrt,
828 		   struct vifctl *vifc, int mrtsock)
829 {
830 	struct netdev_phys_item_id ppid = { };
831 	int vifi = vifc->vifc_vifi;
832 	struct vif_device *v = &mrt->vif_table[vifi];
833 	struct net_device *dev;
834 	struct in_device *in_dev;
835 	int err;
836 
837 	/* Is vif busy ? */
838 	if (VIF_EXISTS(mrt, vifi))
839 		return -EADDRINUSE;
840 
841 	switch (vifc->vifc_flags) {
842 	case VIFF_REGISTER:
843 		if (!ipmr_pimsm_enabled())
844 			return -EINVAL;
845 		/* Special Purpose VIF in PIM
846 		 * All the packets will be sent to the daemon
847 		 */
848 		if (mrt->mroute_reg_vif_num >= 0)
849 			return -EADDRINUSE;
850 		dev = ipmr_reg_vif(net, mrt);
851 		if (!dev)
852 			return -ENOBUFS;
853 		err = dev_set_allmulti(dev, 1);
854 		if (err) {
855 			unregister_netdevice(dev);
856 			dev_put(dev);
857 			return err;
858 		}
859 		break;
860 	case VIFF_TUNNEL:
861 		dev = ipmr_new_tunnel(net, vifc);
862 		if (IS_ERR(dev))
863 			return PTR_ERR(dev);
864 		break;
865 	case VIFF_USE_IFINDEX:
866 	case 0:
867 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
868 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
869 			if (dev && !__in_dev_get_rtnl(dev)) {
870 				dev_put(dev);
871 				return -EADDRNOTAVAIL;
872 			}
873 		} else {
874 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
875 		}
876 		if (!dev)
877 			return -EADDRNOTAVAIL;
878 		err = dev_set_allmulti(dev, 1);
879 		if (err) {
880 			dev_put(dev);
881 			return err;
882 		}
883 		break;
884 	default:
885 		return -EINVAL;
886 	}
887 
888 	in_dev = __in_dev_get_rtnl(dev);
889 	if (!in_dev) {
890 		dev_put(dev);
891 		return -EADDRNOTAVAIL;
892 	}
893 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
894 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
895 				    dev->ifindex, &in_dev->cnf);
896 	ip_rt_multicast_event(in_dev);
897 
898 	/* Fill in the VIF structures */
899 	vif_device_init(v, dev, vifc->vifc_rate_limit,
900 			vifc->vifc_threshold,
901 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
902 			(VIFF_TUNNEL | VIFF_REGISTER));
903 
904 	err = netif_get_port_parent_id(dev, &ppid, true);
905 	if (err == 0) {
906 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
907 		v->dev_parent_id.id_len = ppid.id_len;
908 	} else {
909 		v->dev_parent_id.id_len = 0;
910 	}
911 
912 	v->local = vifc->vifc_lcl_addr.s_addr;
913 	v->remote = vifc->vifc_rmt_addr.s_addr;
914 
915 	/* And finish update writing critical data */
916 	spin_lock(&mrt_lock);
917 	rcu_assign_pointer(v->dev, dev);
918 	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
919 	if (v->flags & VIFF_REGISTER) {
920 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
921 		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
922 	}
923 	if (vifi+1 > mrt->maxvif)
924 		WRITE_ONCE(mrt->maxvif, vifi + 1);
925 	spin_unlock(&mrt_lock);
926 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
927 				      vifi, mrt->id);
928 	return 0;
929 }
930 
931 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)932 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
933 					 __be32 origin,
934 					 __be32 mcastgrp)
935 {
936 	struct mfc_cache_cmp_arg arg = {
937 			.mfc_mcastgrp = mcastgrp,
938 			.mfc_origin = origin
939 	};
940 
941 	return mr_mfc_find(mrt, &arg);
942 }
943 
944 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)945 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
946 					     __be32 mcastgrp, int vifi)
947 {
948 	struct mfc_cache_cmp_arg arg = {
949 			.mfc_mcastgrp = mcastgrp,
950 			.mfc_origin = htonl(INADDR_ANY)
951 	};
952 
953 	if (mcastgrp == htonl(INADDR_ANY))
954 		return mr_mfc_find_any_parent(mrt, vifi);
955 	return mr_mfc_find_any(mrt, vifi, &arg);
956 }
957 
958 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)959 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
960 						__be32 origin, __be32 mcastgrp,
961 						int parent)
962 {
963 	struct mfc_cache_cmp_arg arg = {
964 			.mfc_mcastgrp = mcastgrp,
965 			.mfc_origin = origin,
966 	};
967 
968 	return mr_mfc_find_parent(mrt, &arg, parent);
969 }
970 
971 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)972 static struct mfc_cache *ipmr_cache_alloc(void)
973 {
974 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
975 
976 	if (c) {
977 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
978 		c->_c.mfc_un.res.minvif = MAXVIFS;
979 		c->_c.free = ipmr_cache_free_rcu;
980 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
981 	}
982 	return c;
983 }
984 
ipmr_cache_alloc_unres(void)985 static struct mfc_cache *ipmr_cache_alloc_unres(void)
986 {
987 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
988 
989 	if (c) {
990 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
991 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
992 	}
993 	return c;
994 }
995 
996 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)997 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
998 			       struct mfc_cache *uc, struct mfc_cache *c)
999 {
1000 	struct sk_buff *skb;
1001 	struct nlmsgerr *e;
1002 
1003 	/* Play the pending entries through our router */
1004 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1005 		if (ip_hdr(skb)->version == 0) {
1006 			struct nlmsghdr *nlh = skb_pull(skb,
1007 							sizeof(struct iphdr));
1008 
1009 			if (mr_fill_mroute(mrt, skb, &c->_c,
1010 					   nlmsg_data(nlh)) > 0) {
1011 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1012 						 (u8 *)nlh;
1013 			} else {
1014 				nlh->nlmsg_type = NLMSG_ERROR;
1015 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1016 				skb_trim(skb, nlh->nlmsg_len);
1017 				e = nlmsg_data(nlh);
1018 				e->error = -EMSGSIZE;
1019 				memset(&e->msg, 0, sizeof(e->msg));
1020 			}
1021 
1022 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1023 		} else {
1024 			rcu_read_lock();
1025 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1026 			rcu_read_unlock();
1027 		}
1028 	}
1029 }
1030 
1031 /* Bounce a cache query up to mrouted and netlink.
1032  *
1033  * Called under rcu_read_lock().
1034  */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1035 static int ipmr_cache_report(const struct mr_table *mrt,
1036 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1037 {
1038 	const int ihl = ip_hdrlen(pkt);
1039 	struct sock *mroute_sk;
1040 	struct igmphdr *igmp;
1041 	struct igmpmsg *msg;
1042 	struct sk_buff *skb;
1043 	int ret;
1044 
1045 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1046 	if (!mroute_sk)
1047 		return -EINVAL;
1048 
1049 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1050 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1051 	else
1052 		skb = alloc_skb(128, GFP_ATOMIC);
1053 
1054 	if (!skb)
1055 		return -ENOBUFS;
1056 
1057 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1058 		/* Ugly, but we have no choice with this interface.
1059 		 * Duplicate old header, fix ihl, length etc.
1060 		 * And all this only to mangle msg->im_msgtype and
1061 		 * to set msg->im_mbz to "mbz" :-)
1062 		 */
1063 		skb_push(skb, sizeof(struct iphdr));
1064 		skb_reset_network_header(skb);
1065 		skb_reset_transport_header(skb);
1066 		msg = (struct igmpmsg *)skb_network_header(skb);
1067 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1068 		msg->im_msgtype = assert;
1069 		msg->im_mbz = 0;
1070 		if (assert == IGMPMSG_WRVIFWHOLE) {
1071 			msg->im_vif = vifi;
1072 			msg->im_vif_hi = vifi >> 8;
1073 		} else {
1074 			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1075 			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1076 
1077 			msg->im_vif = vif_num;
1078 			msg->im_vif_hi = vif_num >> 8;
1079 		}
1080 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1081 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1082 					     sizeof(struct iphdr));
1083 	} else {
1084 		/* Copy the IP header */
1085 		skb_set_network_header(skb, skb->len);
1086 		skb_put(skb, ihl);
1087 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1088 		/* Flag to the kernel this is a route add */
1089 		ip_hdr(skb)->protocol = 0;
1090 		msg = (struct igmpmsg *)skb_network_header(skb);
1091 		msg->im_vif = vifi;
1092 		msg->im_vif_hi = vifi >> 8;
1093 		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1094 		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1095 		/* Add our header */
1096 		igmp = skb_put(skb, sizeof(struct igmphdr));
1097 		igmp->type = assert;
1098 		msg->im_msgtype = assert;
1099 		igmp->code = 0;
1100 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1101 		skb->transport_header = skb->network_header;
1102 	}
1103 
1104 	igmpmsg_netlink_event(mrt, skb);
1105 
1106 	/* Deliver to mrouted */
1107 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1108 
1109 	if (ret < 0) {
1110 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1111 		kfree_skb(skb);
1112 	}
1113 
1114 	return ret;
1115 }
1116 
1117 /* Queue a packet for resolution. It gets locked cache entry! */
1118 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1119 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1120 				 struct sk_buff *skb, struct net_device *dev)
1121 {
1122 	const struct iphdr *iph = ip_hdr(skb);
1123 	struct mfc_cache *c;
1124 	bool found = false;
1125 	int err;
1126 
1127 	spin_lock_bh(&mfc_unres_lock);
1128 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1129 		if (c->mfc_mcastgrp == iph->daddr &&
1130 		    c->mfc_origin == iph->saddr) {
1131 			found = true;
1132 			break;
1133 		}
1134 	}
1135 
1136 	if (!found) {
1137 		/* Create a new entry if allowable */
1138 		c = ipmr_cache_alloc_unres();
1139 		if (!c) {
1140 			spin_unlock_bh(&mfc_unres_lock);
1141 
1142 			kfree_skb(skb);
1143 			return -ENOBUFS;
1144 		}
1145 
1146 		/* Fill in the new cache entry */
1147 		c->_c.mfc_parent = -1;
1148 		c->mfc_origin	= iph->saddr;
1149 		c->mfc_mcastgrp	= iph->daddr;
1150 
1151 		/* Reflect first query at mrouted. */
1152 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1153 
1154 		if (err < 0) {
1155 			/* If the report failed throw the cache entry
1156 			   out - Brad Parker
1157 			 */
1158 			spin_unlock_bh(&mfc_unres_lock);
1159 
1160 			ipmr_cache_free(c);
1161 			kfree_skb(skb);
1162 			return err;
1163 		}
1164 
1165 		atomic_inc(&mrt->cache_resolve_queue_len);
1166 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1167 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1168 
1169 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1170 			mod_timer(&mrt->ipmr_expire_timer,
1171 				  c->_c.mfc_un.unres.expires);
1172 	}
1173 
1174 	/* See if we can append the packet */
1175 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1176 		kfree_skb(skb);
1177 		err = -ENOBUFS;
1178 	} else {
1179 		if (dev) {
1180 			skb->dev = dev;
1181 			skb->skb_iif = dev->ifindex;
1182 		}
1183 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1184 		err = 0;
1185 	}
1186 
1187 	spin_unlock_bh(&mfc_unres_lock);
1188 	return err;
1189 }
1190 
1191 /* MFC cache manipulation by user space mroute daemon */
1192 
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1193 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1194 {
1195 	struct net *net = read_pnet(&mrt->net);
1196 	struct mfc_cache *c;
1197 
1198 	/* The entries are added/deleted only under RTNL */
1199 	rcu_read_lock();
1200 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1201 				   mfc->mfcc_mcastgrp.s_addr, parent);
1202 	rcu_read_unlock();
1203 	if (!c)
1204 		return -ENOENT;
1205 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1206 	list_del_rcu(&c->_c.list);
1207 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1208 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1209 	mr_cache_put(&c->_c);
1210 
1211 	return 0;
1212 }
1213 
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1214 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1215 			struct mfcctl *mfc, int mrtsock, int parent)
1216 {
1217 	struct mfc_cache *uc, *c;
1218 	struct mr_mfc *_uc;
1219 	bool found;
1220 	int ret;
1221 
1222 	if (mfc->mfcc_parent >= MAXVIFS)
1223 		return -ENFILE;
1224 
1225 	/* The entries are added/deleted only under RTNL */
1226 	rcu_read_lock();
1227 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1228 				   mfc->mfcc_mcastgrp.s_addr, parent);
1229 	rcu_read_unlock();
1230 	if (c) {
1231 		spin_lock(&mrt_lock);
1232 		c->_c.mfc_parent = mfc->mfcc_parent;
1233 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1234 		if (!mrtsock)
1235 			c->_c.mfc_flags |= MFC_STATIC;
1236 		spin_unlock(&mrt_lock);
1237 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1238 					      mrt->id);
1239 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1240 		return 0;
1241 	}
1242 
1243 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1244 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1245 		return -EINVAL;
1246 
1247 	c = ipmr_cache_alloc();
1248 	if (!c)
1249 		return -ENOMEM;
1250 
1251 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1252 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1253 	c->_c.mfc_parent = mfc->mfcc_parent;
1254 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1255 	if (!mrtsock)
1256 		c->_c.mfc_flags |= MFC_STATIC;
1257 
1258 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1259 				  ipmr_rht_params);
1260 	if (ret) {
1261 		pr_err("ipmr: rhtable insert error %d\n", ret);
1262 		ipmr_cache_free(c);
1263 		return ret;
1264 	}
1265 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1266 	/* Check to see if we resolved a queued list. If so we
1267 	 * need to send on the frames and tidy up.
1268 	 */
1269 	found = false;
1270 	spin_lock_bh(&mfc_unres_lock);
1271 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1272 		uc = (struct mfc_cache *)_uc;
1273 		if (uc->mfc_origin == c->mfc_origin &&
1274 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1275 			list_del(&_uc->list);
1276 			atomic_dec(&mrt->cache_resolve_queue_len);
1277 			found = true;
1278 			break;
1279 		}
1280 	}
1281 	if (list_empty(&mrt->mfc_unres_queue))
1282 		timer_delete(&mrt->ipmr_expire_timer);
1283 	spin_unlock_bh(&mfc_unres_lock);
1284 
1285 	if (found) {
1286 		ipmr_cache_resolve(net, mrt, uc, c);
1287 		ipmr_cache_free(uc);
1288 	}
1289 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1290 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1291 	return 0;
1292 }
1293 
1294 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1295 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1296 {
1297 	struct net *net = read_pnet(&mrt->net);
1298 	struct mr_mfc *c, *tmp;
1299 	struct mfc_cache *cache;
1300 	LIST_HEAD(list);
1301 	int i;
1302 
1303 	/* Shut down all active vif entries */
1304 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1305 		for (i = 0; i < mrt->maxvif; i++) {
1306 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1307 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1308 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1309 				continue;
1310 			vif_delete(mrt, i, 0, &list);
1311 		}
1312 		unregister_netdevice_many(&list);
1313 	}
1314 
1315 	/* Wipe the cache */
1316 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1317 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1318 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1319 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1320 				continue;
1321 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1322 			list_del_rcu(&c->list);
1323 			cache = (struct mfc_cache *)c;
1324 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1325 						      mrt->id);
1326 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1327 			mr_cache_put(c);
1328 		}
1329 	}
1330 
1331 	if (flags & MRT_FLUSH_MFC) {
1332 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1333 			spin_lock_bh(&mfc_unres_lock);
1334 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1335 				list_del(&c->list);
1336 				cache = (struct mfc_cache *)c;
1337 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1338 				ipmr_destroy_unres(mrt, cache);
1339 			}
1340 			spin_unlock_bh(&mfc_unres_lock);
1341 		}
1342 	}
1343 }
1344 
1345 /* called from ip_ra_control(), before an RCU grace period,
1346  * we don't need to call synchronize_rcu() here
1347  */
mrtsock_destruct(struct sock * sk)1348 static void mrtsock_destruct(struct sock *sk)
1349 {
1350 	struct net *net = sock_net(sk);
1351 	struct mr_table *mrt;
1352 
1353 	rtnl_lock();
1354 	ipmr_for_each_table(mrt, net) {
1355 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1356 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1357 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1358 						    NETCONFA_MC_FORWARDING,
1359 						    NETCONFA_IFINDEX_ALL,
1360 						    net->ipv4.devconf_all);
1361 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1362 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1363 		}
1364 	}
1365 	rtnl_unlock();
1366 }
1367 
1368 /* Socket options and virtual interface manipulation. The whole
1369  * virtual interface system is a complete heap, but unfortunately
1370  * that's how BSD mrouted happens to think. Maybe one day with a proper
1371  * MOSPF/PIM router set up we can clean this up.
1372  */
1373 
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1374 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1375 			 unsigned int optlen)
1376 {
1377 	struct net *net = sock_net(sk);
1378 	int val, ret = 0, parent = 0;
1379 	struct mr_table *mrt;
1380 	struct vifctl vif;
1381 	struct mfcctl mfc;
1382 	bool do_wrvifwhole;
1383 	u32 uval;
1384 
1385 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1386 	rtnl_lock();
1387 	if (sk->sk_type != SOCK_RAW ||
1388 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1389 		ret = -EOPNOTSUPP;
1390 		goto out_unlock;
1391 	}
1392 
1393 	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1394 	if (!mrt) {
1395 		ret = -ENOENT;
1396 		goto out_unlock;
1397 	}
1398 	if (optname != MRT_INIT) {
1399 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1400 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1401 			ret = -EACCES;
1402 			goto out_unlock;
1403 		}
1404 	}
1405 
1406 	switch (optname) {
1407 	case MRT_INIT:
1408 		if (optlen != sizeof(int)) {
1409 			ret = -EINVAL;
1410 			break;
1411 		}
1412 		if (rtnl_dereference(mrt->mroute_sk)) {
1413 			ret = -EADDRINUSE;
1414 			break;
1415 		}
1416 
1417 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1418 		if (ret == 0) {
1419 			rcu_assign_pointer(mrt->mroute_sk, sk);
1420 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1421 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1422 						    NETCONFA_MC_FORWARDING,
1423 						    NETCONFA_IFINDEX_ALL,
1424 						    net->ipv4.devconf_all);
1425 		}
1426 		break;
1427 	case MRT_DONE:
1428 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1429 			ret = -EACCES;
1430 		} else {
1431 			/* We need to unlock here because mrtsock_destruct takes
1432 			 * care of rtnl itself and we can't change that due to
1433 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1434 			 */
1435 			rtnl_unlock();
1436 			ret = ip_ra_control(sk, 0, NULL);
1437 			goto out;
1438 		}
1439 		break;
1440 	case MRT_ADD_VIF:
1441 	case MRT_DEL_VIF:
1442 		if (optlen != sizeof(vif)) {
1443 			ret = -EINVAL;
1444 			break;
1445 		}
1446 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1447 			ret = -EFAULT;
1448 			break;
1449 		}
1450 		if (vif.vifc_vifi >= MAXVIFS) {
1451 			ret = -ENFILE;
1452 			break;
1453 		}
1454 		if (optname == MRT_ADD_VIF) {
1455 			ret = vif_add(net, mrt, &vif,
1456 				      sk == rtnl_dereference(mrt->mroute_sk));
1457 		} else {
1458 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1459 		}
1460 		break;
1461 	/* Manipulate the forwarding caches. These live
1462 	 * in a sort of kernel/user symbiosis.
1463 	 */
1464 	case MRT_ADD_MFC:
1465 	case MRT_DEL_MFC:
1466 		parent = -1;
1467 		fallthrough;
1468 	case MRT_ADD_MFC_PROXY:
1469 	case MRT_DEL_MFC_PROXY:
1470 		if (optlen != sizeof(mfc)) {
1471 			ret = -EINVAL;
1472 			break;
1473 		}
1474 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1475 			ret = -EFAULT;
1476 			break;
1477 		}
1478 		if (parent == 0)
1479 			parent = mfc.mfcc_parent;
1480 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1481 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1482 		else
1483 			ret = ipmr_mfc_add(net, mrt, &mfc,
1484 					   sk == rtnl_dereference(mrt->mroute_sk),
1485 					   parent);
1486 		break;
1487 	case MRT_FLUSH:
1488 		if (optlen != sizeof(val)) {
1489 			ret = -EINVAL;
1490 			break;
1491 		}
1492 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1493 			ret = -EFAULT;
1494 			break;
1495 		}
1496 		mroute_clean_tables(mrt, val);
1497 		break;
1498 	/* Control PIM assert. */
1499 	case MRT_ASSERT:
1500 		if (optlen != sizeof(val)) {
1501 			ret = -EINVAL;
1502 			break;
1503 		}
1504 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1505 			ret = -EFAULT;
1506 			break;
1507 		}
1508 		mrt->mroute_do_assert = val;
1509 		break;
1510 	case MRT_PIM:
1511 		if (!ipmr_pimsm_enabled()) {
1512 			ret = -ENOPROTOOPT;
1513 			break;
1514 		}
1515 		if (optlen != sizeof(val)) {
1516 			ret = -EINVAL;
1517 			break;
1518 		}
1519 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1520 			ret = -EFAULT;
1521 			break;
1522 		}
1523 
1524 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1525 		val = !!val;
1526 		if (val != mrt->mroute_do_pim) {
1527 			mrt->mroute_do_pim = val;
1528 			mrt->mroute_do_assert = val;
1529 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1530 		}
1531 		break;
1532 	case MRT_TABLE:
1533 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1534 			ret = -ENOPROTOOPT;
1535 			break;
1536 		}
1537 		if (optlen != sizeof(uval)) {
1538 			ret = -EINVAL;
1539 			break;
1540 		}
1541 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1542 			ret = -EFAULT;
1543 			break;
1544 		}
1545 
1546 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1547 			ret = -EBUSY;
1548 		} else {
1549 			mrt = ipmr_new_table(net, uval);
1550 			if (IS_ERR(mrt))
1551 				ret = PTR_ERR(mrt);
1552 			else
1553 				raw_sk(sk)->ipmr_table = uval;
1554 		}
1555 		break;
1556 	/* Spurious command, or MRT_VERSION which you cannot set. */
1557 	default:
1558 		ret = -ENOPROTOOPT;
1559 	}
1560 out_unlock:
1561 	rtnl_unlock();
1562 out:
1563 	return ret;
1564 }
1565 
1566 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1567 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1568 {
1569 	switch (cmd) {
1570 	/* These userspace buffers will be consumed by ipmr_ioctl() */
1571 	case SIOCGETVIFCNT: {
1572 		struct sioc_vif_req buffer;
1573 
1574 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1575 				      sizeof(buffer));
1576 		}
1577 	case SIOCGETSGCNT: {
1578 		struct sioc_sg_req buffer;
1579 
1580 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1581 				      sizeof(buffer));
1582 		}
1583 	}
1584 	/* return code > 0 means that the ioctl was not executed */
1585 	return 1;
1586 }
1587 
1588 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1589 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1590 			 sockptr_t optlen)
1591 {
1592 	int olr;
1593 	int val;
1594 	struct net *net = sock_net(sk);
1595 	struct mr_table *mrt;
1596 
1597 	if (sk->sk_type != SOCK_RAW ||
1598 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1599 		return -EOPNOTSUPP;
1600 
1601 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1602 	if (!mrt)
1603 		return -ENOENT;
1604 
1605 	switch (optname) {
1606 	case MRT_VERSION:
1607 		val = 0x0305;
1608 		break;
1609 	case MRT_PIM:
1610 		if (!ipmr_pimsm_enabled())
1611 			return -ENOPROTOOPT;
1612 		val = mrt->mroute_do_pim;
1613 		break;
1614 	case MRT_ASSERT:
1615 		val = mrt->mroute_do_assert;
1616 		break;
1617 	default:
1618 		return -ENOPROTOOPT;
1619 	}
1620 
1621 	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1622 		return -EFAULT;
1623 	if (olr < 0)
1624 		return -EINVAL;
1625 
1626 	olr = min_t(unsigned int, olr, sizeof(int));
1627 
1628 	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1629 		return -EFAULT;
1630 	if (copy_to_sockptr(optval, &val, olr))
1631 		return -EFAULT;
1632 	return 0;
1633 }
1634 
1635 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1636 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1637 {
1638 	struct vif_device *vif;
1639 	struct mfc_cache *c;
1640 	struct net *net = sock_net(sk);
1641 	struct sioc_vif_req *vr;
1642 	struct sioc_sg_req *sr;
1643 	struct mr_table *mrt;
1644 
1645 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1646 	if (!mrt)
1647 		return -ENOENT;
1648 
1649 	switch (cmd) {
1650 	case SIOCGETVIFCNT:
1651 		vr = (struct sioc_vif_req *)arg;
1652 		if (vr->vifi >= mrt->maxvif)
1653 			return -EINVAL;
1654 		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1655 		rcu_read_lock();
1656 		vif = &mrt->vif_table[vr->vifi];
1657 		if (VIF_EXISTS(mrt, vr->vifi)) {
1658 			vr->icount = READ_ONCE(vif->pkt_in);
1659 			vr->ocount = READ_ONCE(vif->pkt_out);
1660 			vr->ibytes = READ_ONCE(vif->bytes_in);
1661 			vr->obytes = READ_ONCE(vif->bytes_out);
1662 			rcu_read_unlock();
1663 
1664 			return 0;
1665 		}
1666 		rcu_read_unlock();
1667 		return -EADDRNOTAVAIL;
1668 	case SIOCGETSGCNT:
1669 		sr = (struct sioc_sg_req *)arg;
1670 
1671 		rcu_read_lock();
1672 		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1673 		if (c) {
1674 			sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1675 			sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1676 			sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1677 			rcu_read_unlock();
1678 			return 0;
1679 		}
1680 		rcu_read_unlock();
1681 		return -EADDRNOTAVAIL;
1682 	default:
1683 		return -ENOIOCTLCMD;
1684 	}
1685 }
1686 
1687 #ifdef CONFIG_COMPAT
1688 struct compat_sioc_sg_req {
1689 	struct in_addr src;
1690 	struct in_addr grp;
1691 	compat_ulong_t pktcnt;
1692 	compat_ulong_t bytecnt;
1693 	compat_ulong_t wrong_if;
1694 };
1695 
1696 struct compat_sioc_vif_req {
1697 	vifi_t	vifi;		/* Which iface */
1698 	compat_ulong_t icount;
1699 	compat_ulong_t ocount;
1700 	compat_ulong_t ibytes;
1701 	compat_ulong_t obytes;
1702 };
1703 
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1704 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1705 {
1706 	struct compat_sioc_sg_req sr;
1707 	struct compat_sioc_vif_req vr;
1708 	struct vif_device *vif;
1709 	struct mfc_cache *c;
1710 	struct net *net = sock_net(sk);
1711 	struct mr_table *mrt;
1712 
1713 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1714 	if (!mrt)
1715 		return -ENOENT;
1716 
1717 	switch (cmd) {
1718 	case SIOCGETVIFCNT:
1719 		if (copy_from_user(&vr, arg, sizeof(vr)))
1720 			return -EFAULT;
1721 		if (vr.vifi >= mrt->maxvif)
1722 			return -EINVAL;
1723 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1724 		rcu_read_lock();
1725 		vif = &mrt->vif_table[vr.vifi];
1726 		if (VIF_EXISTS(mrt, vr.vifi)) {
1727 			vr.icount = READ_ONCE(vif->pkt_in);
1728 			vr.ocount = READ_ONCE(vif->pkt_out);
1729 			vr.ibytes = READ_ONCE(vif->bytes_in);
1730 			vr.obytes = READ_ONCE(vif->bytes_out);
1731 			rcu_read_unlock();
1732 
1733 			if (copy_to_user(arg, &vr, sizeof(vr)))
1734 				return -EFAULT;
1735 			return 0;
1736 		}
1737 		rcu_read_unlock();
1738 		return -EADDRNOTAVAIL;
1739 	case SIOCGETSGCNT:
1740 		if (copy_from_user(&sr, arg, sizeof(sr)))
1741 			return -EFAULT;
1742 
1743 		rcu_read_lock();
1744 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1745 		if (c) {
1746 			sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1747 			sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1748 			sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1749 			rcu_read_unlock();
1750 
1751 			if (copy_to_user(arg, &sr, sizeof(sr)))
1752 				return -EFAULT;
1753 			return 0;
1754 		}
1755 		rcu_read_unlock();
1756 		return -EADDRNOTAVAIL;
1757 	default:
1758 		return -ENOIOCTLCMD;
1759 	}
1760 }
1761 #endif
1762 
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1763 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1764 {
1765 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1766 	struct net *net = dev_net(dev);
1767 	struct mr_table *mrt;
1768 	struct vif_device *v;
1769 	int ct;
1770 
1771 	if (event != NETDEV_UNREGISTER)
1772 		return NOTIFY_DONE;
1773 
1774 	ipmr_for_each_table(mrt, net) {
1775 		v = &mrt->vif_table[0];
1776 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1777 			if (rcu_access_pointer(v->dev) == dev)
1778 				vif_delete(mrt, ct, 1, NULL);
1779 		}
1780 	}
1781 	return NOTIFY_DONE;
1782 }
1783 
1784 static struct notifier_block ip_mr_notifier = {
1785 	.notifier_call = ipmr_device_event,
1786 };
1787 
1788 /* Encapsulate a packet by attaching a valid IPIP header to it.
1789  * This avoids tunnel drivers and other mess and gives us the speed so
1790  * important for multicast video.
1791  */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1792 static void ip_encap(struct net *net, struct sk_buff *skb,
1793 		     __be32 saddr, __be32 daddr)
1794 {
1795 	struct iphdr *iph;
1796 	const struct iphdr *old_iph = ip_hdr(skb);
1797 
1798 	skb_push(skb, sizeof(struct iphdr));
1799 	skb->transport_header = skb->network_header;
1800 	skb_reset_network_header(skb);
1801 	iph = ip_hdr(skb);
1802 
1803 	iph->version	=	4;
1804 	iph->tos	=	old_iph->tos;
1805 	iph->ttl	=	old_iph->ttl;
1806 	iph->frag_off	=	0;
1807 	iph->daddr	=	daddr;
1808 	iph->saddr	=	saddr;
1809 	iph->protocol	=	IPPROTO_IPIP;
1810 	iph->ihl	=	5;
1811 	iph->tot_len	=	htons(skb->len);
1812 	ip_select_ident(net, skb, NULL);
1813 	ip_send_check(iph);
1814 
1815 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1816 	nf_reset_ct(skb);
1817 }
1818 
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1819 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1820 				      struct sk_buff *skb)
1821 {
1822 	struct ip_options *opt = &(IPCB(skb)->opt);
1823 
1824 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1825 
1826 	if (unlikely(opt->optlen))
1827 		ip_forward_options(skb);
1828 
1829 	return dst_output(net, sk, skb);
1830 }
1831 
1832 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1833 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1834 				   int in_vifi, int out_vifi)
1835 {
1836 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1837 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1838 
1839 	if (!skb->offload_l3_fwd_mark)
1840 		return false;
1841 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1842 		return false;
1843 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1844 					&in_vif->dev_parent_id);
1845 }
1846 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1847 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1848 				   int in_vifi, int out_vifi)
1849 {
1850 	return false;
1851 }
1852 #endif
1853 
1854 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1855 
ipmr_prepare_xmit(struct net * net,struct mr_table * mrt,struct sk_buff * skb,int vifi)1856 static int ipmr_prepare_xmit(struct net *net, struct mr_table *mrt,
1857 			     struct sk_buff *skb, int vifi)
1858 {
1859 	const struct iphdr *iph = ip_hdr(skb);
1860 	struct vif_device *vif = &mrt->vif_table[vifi];
1861 	struct net_device *vif_dev;
1862 	struct rtable *rt;
1863 	struct flowi4 fl4;
1864 	int    encap = 0;
1865 
1866 	vif_dev = vif_dev_read(vif);
1867 	if (!vif_dev)
1868 		return -1;
1869 
1870 	if (vif->flags & VIFF_REGISTER) {
1871 		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1872 		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1873 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1874 		DEV_STATS_INC(vif_dev, tx_packets);
1875 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1876 		return -1;
1877 	}
1878 
1879 	if (vif->flags & VIFF_TUNNEL) {
1880 		rt = ip_route_output_ports(net, &fl4, NULL,
1881 					   vif->remote, vif->local,
1882 					   0, 0,
1883 					   IPPROTO_IPIP,
1884 					   iph->tos & INET_DSCP_MASK, vif->link);
1885 		if (IS_ERR(rt))
1886 			return -1;
1887 		encap = sizeof(struct iphdr);
1888 	} else {
1889 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1890 					   0, 0,
1891 					   IPPROTO_IPIP,
1892 					   iph->tos & INET_DSCP_MASK, vif->link);
1893 		if (IS_ERR(rt))
1894 			return -1;
1895 	}
1896 
1897 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1898 		/* Do not fragment multicasts. Alas, IPv4 does not
1899 		 * allow to send ICMP, so that packets will disappear
1900 		 * to blackhole.
1901 		 */
1902 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1903 		ip_rt_put(rt);
1904 		return -1;
1905 	}
1906 
1907 	encap += LL_RESERVED_SPACE(rt->dst.dev) + rt->dst.header_len;
1908 
1909 	if (skb_cow(skb, encap)) {
1910 		ip_rt_put(rt);
1911 		return -1;
1912 	}
1913 
1914 	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1915 	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1916 
1917 	skb_dst_drop(skb);
1918 	skb_dst_set(skb, &rt->dst);
1919 	ip_decrease_ttl(ip_hdr(skb));
1920 
1921 	/* FIXME: forward and output firewalls used to be called here.
1922 	 * What do we do with netfilter? -- RR
1923 	 */
1924 	if (vif->flags & VIFF_TUNNEL) {
1925 		ip_encap(net, skb, vif->local, vif->remote);
1926 		/* FIXME: extra output firewall step used to be here. --RR */
1927 		DEV_STATS_INC(vif_dev, tx_packets);
1928 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1929 	}
1930 
1931 	return 0;
1932 }
1933 
ipmr_queue_fwd_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1934 static void ipmr_queue_fwd_xmit(struct net *net, struct mr_table *mrt,
1935 				int in_vifi, struct sk_buff *skb, int vifi)
1936 {
1937 	struct rtable *rt;
1938 
1939 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1940 		goto out_free;
1941 
1942 	if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1943 		goto out_free;
1944 
1945 	rt = skb_rtable(skb);
1946 
1947 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1948 
1949 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1950 	 * not only before forwarding, but after forwarding on all output
1951 	 * interfaces. It is clear, if mrouter runs a multicasting
1952 	 * program, it should receive packets not depending to what interface
1953 	 * program is joined.
1954 	 * If we will not make it, the program will have to join on all
1955 	 * interfaces. On the other hand, multihoming host (or router, but
1956 	 * not mrouter) cannot join to more than one interface - it will
1957 	 * result in receiving multiple packets.
1958 	 */
1959 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1960 		net, NULL, skb, skb->dev, rt->dst.dev,
1961 		ipmr_forward_finish);
1962 	return;
1963 
1964 out_free:
1965 	kfree_skb(skb);
1966 }
1967 
ipmr_queue_output_xmit(struct net * net,struct mr_table * mrt,struct sk_buff * skb,int vifi)1968 static void ipmr_queue_output_xmit(struct net *net, struct mr_table *mrt,
1969 				   struct sk_buff *skb, int vifi)
1970 {
1971 	if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1972 		goto out_free;
1973 
1974 	ip_mc_output(net, NULL, skb);
1975 	return;
1976 
1977 out_free:
1978 	kfree_skb(skb);
1979 }
1980 
1981 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1982 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1983 {
1984 	int ct;
1985 	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1986 	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1987 		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1988 			break;
1989 	}
1990 	return ct;
1991 }
1992 
1993 /* "local" means that we should preserve one skb (for local delivery) */
1994 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1995 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1996 			  struct net_device *dev, struct sk_buff *skb,
1997 			  struct mfc_cache *c, int local)
1998 {
1999 	int true_vifi = ipmr_find_vif(mrt, dev);
2000 	int psend = -1;
2001 	int vif, ct;
2002 
2003 	vif = c->_c.mfc_parent;
2004 	atomic_long_inc(&c->_c.mfc_un.res.pkt);
2005 	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2006 	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2007 
2008 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
2009 		struct mfc_cache *cache_proxy;
2010 
2011 		/* For an (*,G) entry, we only check that the incoming
2012 		 * interface is part of the static tree.
2013 		 */
2014 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2015 		if (cache_proxy &&
2016 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2017 			goto forward;
2018 	}
2019 
2020 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
2021 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
2022 		if (rt_is_output_route(skb_rtable(skb))) {
2023 			/* It is our own packet, looped back.
2024 			 * Very complicated situation...
2025 			 *
2026 			 * The best workaround until routing daemons will be
2027 			 * fixed is not to redistribute packet, if it was
2028 			 * send through wrong interface. It means, that
2029 			 * multicast applications WILL NOT work for
2030 			 * (S,G), which have default multicast route pointing
2031 			 * to wrong oif. In any case, it is not a good
2032 			 * idea to use multicasting applications on router.
2033 			 */
2034 			goto dont_forward;
2035 		}
2036 
2037 		atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2038 
2039 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2040 		    /* pimsm uses asserts, when switching from RPT to SPT,
2041 		     * so that we cannot check that packet arrived on an oif.
2042 		     * It is bad, but otherwise we would need to move pretty
2043 		     * large chunk of pimd to kernel. Ough... --ANK
2044 		     */
2045 		    (mrt->mroute_do_pim ||
2046 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2047 		    time_after(jiffies,
2048 			       c->_c.mfc_un.res.last_assert +
2049 			       MFC_ASSERT_THRESH)) {
2050 			c->_c.mfc_un.res.last_assert = jiffies;
2051 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2052 			if (mrt->mroute_do_wrvifwhole)
2053 				ipmr_cache_report(mrt, skb, true_vifi,
2054 						  IGMPMSG_WRVIFWHOLE);
2055 		}
2056 		goto dont_forward;
2057 	}
2058 
2059 forward:
2060 	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2061 		   mrt->vif_table[vif].pkt_in + 1);
2062 	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2063 		   mrt->vif_table[vif].bytes_in + skb->len);
2064 
2065 	/* Forward the frame */
2066 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2067 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2068 		if (true_vifi >= 0 &&
2069 		    true_vifi != c->_c.mfc_parent &&
2070 		    ip_hdr(skb)->ttl >
2071 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2072 			/* It's an (*,*) entry and the packet is not coming from
2073 			 * the upstream: forward the packet to the upstream
2074 			 * only.
2075 			 */
2076 			psend = c->_c.mfc_parent;
2077 			goto last_forward;
2078 		}
2079 		goto dont_forward;
2080 	}
2081 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2082 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2083 		/* For (*,G) entry, don't forward to the incoming interface */
2084 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2085 		     ct != true_vifi) &&
2086 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2087 			if (psend != -1) {
2088 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2089 
2090 				if (skb2)
2091 					ipmr_queue_fwd_xmit(net, mrt, true_vifi,
2092 							    skb2, psend);
2093 			}
2094 			psend = ct;
2095 		}
2096 	}
2097 last_forward:
2098 	if (psend != -1) {
2099 		if (local) {
2100 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2101 
2102 			if (skb2)
2103 				ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb2,
2104 						    psend);
2105 		} else {
2106 			ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb, psend);
2107 			return;
2108 		}
2109 	}
2110 
2111 dont_forward:
2112 	if (!local)
2113 		kfree_skb(skb);
2114 }
2115 
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2116 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2117 {
2118 	struct rtable *rt = skb_rtable(skb);
2119 	struct iphdr *iph = ip_hdr(skb);
2120 	struct flowi4 fl4 = {
2121 		.daddr = iph->daddr,
2122 		.saddr = iph->saddr,
2123 		.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(iph)),
2124 		.flowi4_oif = (rt_is_output_route(rt) ?
2125 			       skb->dev->ifindex : 0),
2126 		.flowi4_iif = (rt_is_output_route(rt) ?
2127 			       LOOPBACK_IFINDEX :
2128 			       skb->dev->ifindex),
2129 		.flowi4_mark = skb->mark,
2130 	};
2131 	struct mr_table *mrt;
2132 	int err;
2133 
2134 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2135 	if (err)
2136 		return ERR_PTR(err);
2137 	return mrt;
2138 }
2139 
2140 /* Multicast packets for forwarding arrive here
2141  * Called with rcu_read_lock();
2142  */
ip_mr_input(struct sk_buff * skb)2143 int ip_mr_input(struct sk_buff *skb)
2144 {
2145 	struct mfc_cache *cache;
2146 	struct net *net = dev_net(skb->dev);
2147 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2148 	struct mr_table *mrt;
2149 	struct net_device *dev;
2150 
2151 	/* skb->dev passed in is the loX master dev for vrfs.
2152 	 * As there are no vifs associated with loopback devices,
2153 	 * get the proper interface that does have a vif associated with it.
2154 	 */
2155 	dev = skb->dev;
2156 	if (netif_is_l3_master(skb->dev)) {
2157 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2158 		if (!dev) {
2159 			kfree_skb(skb);
2160 			return -ENODEV;
2161 		}
2162 	}
2163 
2164 	/* Packet is looped back after forward, it should not be
2165 	 * forwarded second time, but still can be delivered locally.
2166 	 */
2167 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2168 		goto dont_forward;
2169 
2170 	mrt = ipmr_rt_fib_lookup(net, skb);
2171 	if (IS_ERR(mrt)) {
2172 		kfree_skb(skb);
2173 		return PTR_ERR(mrt);
2174 	}
2175 	if (!local) {
2176 		if (IPCB(skb)->opt.router_alert) {
2177 			if (ip_call_ra_chain(skb))
2178 				return 0;
2179 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2180 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2181 			 * Cisco IOS <= 11.2(8)) do not put router alert
2182 			 * option to IGMP packets destined to routable
2183 			 * groups. It is very bad, because it means
2184 			 * that we can forward NO IGMP messages.
2185 			 */
2186 			struct sock *mroute_sk;
2187 
2188 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2189 			if (mroute_sk) {
2190 				nf_reset_ct(skb);
2191 				raw_rcv(mroute_sk, skb);
2192 				return 0;
2193 			}
2194 		}
2195 	}
2196 
2197 	/* already under rcu_read_lock() */
2198 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2199 	if (!cache) {
2200 		int vif = ipmr_find_vif(mrt, dev);
2201 
2202 		if (vif >= 0)
2203 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2204 						    vif);
2205 	}
2206 
2207 	/* No usable cache entry */
2208 	if (!cache) {
2209 		int vif;
2210 
2211 		if (local) {
2212 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2213 			ip_local_deliver(skb);
2214 			if (!skb2)
2215 				return -ENOBUFS;
2216 			skb = skb2;
2217 		}
2218 
2219 		vif = ipmr_find_vif(mrt, dev);
2220 		if (vif >= 0)
2221 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2222 		kfree_skb(skb);
2223 		return -ENODEV;
2224 	}
2225 
2226 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2227 
2228 	if (local)
2229 		return ip_local_deliver(skb);
2230 
2231 	return 0;
2232 
2233 dont_forward:
2234 	if (local)
2235 		return ip_local_deliver(skb);
2236 	kfree_skb(skb);
2237 	return 0;
2238 }
2239 
ip_mr_output_finish(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c)2240 static void ip_mr_output_finish(struct net *net, struct mr_table *mrt,
2241 				struct net_device *dev, struct sk_buff *skb,
2242 				struct mfc_cache *c)
2243 {
2244 	int psend = -1;
2245 	int ct;
2246 
2247 	atomic_long_inc(&c->_c.mfc_un.res.pkt);
2248 	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2249 	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2250 
2251 	/* Forward the frame */
2252 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2253 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2254 		if (ip_hdr(skb)->ttl >
2255 		    c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2256 			/* It's an (*,*) entry and the packet is not coming from
2257 			 * the upstream: forward the packet to the upstream
2258 			 * only.
2259 			 */
2260 			psend = c->_c.mfc_parent;
2261 			goto last_xmit;
2262 		}
2263 		goto dont_xmit;
2264 	}
2265 
2266 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2267 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2268 		if (ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2269 			if (psend != -1) {
2270 				struct sk_buff *skb2;
2271 
2272 				skb2 = skb_clone(skb, GFP_ATOMIC);
2273 				if (skb2)
2274 					ipmr_queue_output_xmit(net, mrt,
2275 							       skb2, psend);
2276 			}
2277 			psend = ct;
2278 		}
2279 	}
2280 
2281 last_xmit:
2282 	if (psend != -1) {
2283 		ipmr_queue_output_xmit(net, mrt, skb, psend);
2284 		return;
2285 	}
2286 
2287 dont_xmit:
2288 	kfree_skb(skb);
2289 }
2290 
2291 /* Multicast packets for forwarding arrive here
2292  * Called with rcu_read_lock();
2293  */
ip_mr_output(struct net * net,struct sock * sk,struct sk_buff * skb)2294 int ip_mr_output(struct net *net, struct sock *sk, struct sk_buff *skb)
2295 {
2296 	struct rtable *rt = skb_rtable(skb);
2297 	struct mfc_cache *cache;
2298 	struct net_device *dev;
2299 	struct mr_table *mrt;
2300 	int vif;
2301 
2302 	guard(rcu)();
2303 
2304 	dev = rt->dst.dev;
2305 
2306 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2307 		goto mc_output;
2308 	if (!(IPCB(skb)->flags & IPSKB_MCROUTE))
2309 		goto mc_output;
2310 
2311 	skb->dev = dev;
2312 
2313 	mrt = ipmr_rt_fib_lookup(net, skb);
2314 	if (IS_ERR(mrt))
2315 		goto mc_output;
2316 
2317 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2318 	if (!cache) {
2319 		vif = ipmr_find_vif(mrt, dev);
2320 		if (vif >= 0)
2321 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2322 						    vif);
2323 	}
2324 
2325 	/* No usable cache entry */
2326 	if (!cache) {
2327 		vif = ipmr_find_vif(mrt, dev);
2328 		if (vif >= 0)
2329 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2330 		goto mc_output;
2331 	}
2332 
2333 	vif = cache->_c.mfc_parent;
2334 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev)
2335 		goto mc_output;
2336 
2337 	ip_mr_output_finish(net, mrt, dev, skb, cache);
2338 	return 0;
2339 
2340 mc_output:
2341 	return ip_mc_output(net, sk, skb);
2342 }
2343 
2344 #ifdef CONFIG_IP_PIMSM_V1
2345 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2346 int pim_rcv_v1(struct sk_buff *skb)
2347 {
2348 	struct igmphdr *pim;
2349 	struct net *net = dev_net(skb->dev);
2350 	struct mr_table *mrt;
2351 
2352 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2353 		goto drop;
2354 
2355 	pim = igmp_hdr(skb);
2356 
2357 	mrt = ipmr_rt_fib_lookup(net, skb);
2358 	if (IS_ERR(mrt))
2359 		goto drop;
2360 	if (!mrt->mroute_do_pim ||
2361 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2362 		goto drop;
2363 
2364 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2365 drop:
2366 		kfree_skb(skb);
2367 	}
2368 	return 0;
2369 }
2370 #endif
2371 
2372 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2373 static int pim_rcv(struct sk_buff *skb)
2374 {
2375 	struct pimreghdr *pim;
2376 	struct net *net = dev_net(skb->dev);
2377 	struct mr_table *mrt;
2378 
2379 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2380 		goto drop;
2381 
2382 	pim = (struct pimreghdr *)skb_transport_header(skb);
2383 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2384 	    (pim->flags & PIM_NULL_REGISTER) ||
2385 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2386 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2387 		goto drop;
2388 
2389 	mrt = ipmr_rt_fib_lookup(net, skb);
2390 	if (IS_ERR(mrt))
2391 		goto drop;
2392 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2393 drop:
2394 		kfree_skb(skb);
2395 	}
2396 	return 0;
2397 }
2398 #endif
2399 
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2400 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2401 		   __be32 saddr, __be32 daddr,
2402 		   struct rtmsg *rtm, u32 portid)
2403 {
2404 	struct mfc_cache *cache;
2405 	struct mr_table *mrt;
2406 	int err;
2407 
2408 	rcu_read_lock();
2409 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2410 	if (!mrt) {
2411 		rcu_read_unlock();
2412 		return -ENOENT;
2413 	}
2414 
2415 	cache = ipmr_cache_find(mrt, saddr, daddr);
2416 	if (!cache && skb->dev) {
2417 		int vif = ipmr_find_vif(mrt, skb->dev);
2418 
2419 		if (vif >= 0)
2420 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2421 	}
2422 	if (!cache) {
2423 		struct sk_buff *skb2;
2424 		struct iphdr *iph;
2425 		struct net_device *dev;
2426 		int vif = -1;
2427 
2428 		dev = skb->dev;
2429 		if (dev)
2430 			vif = ipmr_find_vif(mrt, dev);
2431 		if (vif < 0) {
2432 			rcu_read_unlock();
2433 			return -ENODEV;
2434 		}
2435 
2436 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2437 		if (!skb2) {
2438 			rcu_read_unlock();
2439 			return -ENOMEM;
2440 		}
2441 
2442 		NETLINK_CB(skb2).portid = portid;
2443 		skb_push(skb2, sizeof(struct iphdr));
2444 		skb_reset_network_header(skb2);
2445 		iph = ip_hdr(skb2);
2446 		iph->ihl = sizeof(struct iphdr) >> 2;
2447 		iph->saddr = saddr;
2448 		iph->daddr = daddr;
2449 		iph->version = 0;
2450 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2451 		rcu_read_unlock();
2452 		return err;
2453 	}
2454 
2455 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2456 	rcu_read_unlock();
2457 	return err;
2458 }
2459 
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2460 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2461 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2462 			    int flags)
2463 {
2464 	struct nlmsghdr *nlh;
2465 	struct rtmsg *rtm;
2466 	int err;
2467 
2468 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2469 	if (!nlh)
2470 		return -EMSGSIZE;
2471 
2472 	rtm = nlmsg_data(nlh);
2473 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2474 	rtm->rtm_dst_len  = 32;
2475 	rtm->rtm_src_len  = 32;
2476 	rtm->rtm_tos      = 0;
2477 	rtm->rtm_table    = mrt->id;
2478 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2479 		goto nla_put_failure;
2480 	rtm->rtm_type     = RTN_MULTICAST;
2481 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2482 	if (c->_c.mfc_flags & MFC_STATIC)
2483 		rtm->rtm_protocol = RTPROT_STATIC;
2484 	else
2485 		rtm->rtm_protocol = RTPROT_MROUTED;
2486 	rtm->rtm_flags    = 0;
2487 
2488 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2489 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2490 		goto nla_put_failure;
2491 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2492 	/* do not break the dump if cache is unresolved */
2493 	if (err < 0 && err != -ENOENT)
2494 		goto nla_put_failure;
2495 
2496 	nlmsg_end(skb, nlh);
2497 	return 0;
2498 
2499 nla_put_failure:
2500 	nlmsg_cancel(skb, nlh);
2501 	return -EMSGSIZE;
2502 }
2503 
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2504 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2505 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2506 			     int flags)
2507 {
2508 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2509 				cmd, flags);
2510 }
2511 
mroute_msgsize(bool unresolved,int maxvif)2512 static size_t mroute_msgsize(bool unresolved, int maxvif)
2513 {
2514 	size_t len =
2515 		NLMSG_ALIGN(sizeof(struct rtmsg))
2516 		+ nla_total_size(4)	/* RTA_TABLE */
2517 		+ nla_total_size(4)	/* RTA_SRC */
2518 		+ nla_total_size(4)	/* RTA_DST */
2519 		;
2520 
2521 	if (!unresolved)
2522 		len = len
2523 		      + nla_total_size(4)	/* RTA_IIF */
2524 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2525 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2526 						/* RTA_MFC_STATS */
2527 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2528 		;
2529 
2530 	return len;
2531 }
2532 
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2533 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2534 				 int cmd)
2535 {
2536 	struct net *net = read_pnet(&mrt->net);
2537 	struct sk_buff *skb;
2538 	int err = -ENOBUFS;
2539 
2540 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2541 				       mrt->maxvif),
2542 			GFP_ATOMIC);
2543 	if (!skb)
2544 		goto errout;
2545 
2546 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2547 	if (err < 0)
2548 		goto errout;
2549 
2550 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2551 	return;
2552 
2553 errout:
2554 	kfree_skb(skb);
2555 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2556 }
2557 
igmpmsg_netlink_msgsize(size_t payloadlen)2558 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2559 {
2560 	size_t len =
2561 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2562 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2563 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2564 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2565 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2566 		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2567 					/* IPMRA_CREPORT_PKT */
2568 		+ nla_total_size(payloadlen)
2569 		;
2570 
2571 	return len;
2572 }
2573 
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2574 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2575 {
2576 	struct net *net = read_pnet(&mrt->net);
2577 	struct nlmsghdr *nlh;
2578 	struct rtgenmsg *rtgenm;
2579 	struct igmpmsg *msg;
2580 	struct sk_buff *skb;
2581 	struct nlattr *nla;
2582 	int payloadlen;
2583 
2584 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2585 	msg = (struct igmpmsg *)skb_network_header(pkt);
2586 
2587 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2588 	if (!skb)
2589 		goto errout;
2590 
2591 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2592 			sizeof(struct rtgenmsg), 0);
2593 	if (!nlh)
2594 		goto errout;
2595 	rtgenm = nlmsg_data(nlh);
2596 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2597 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2598 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2599 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2600 			    msg->im_src.s_addr) ||
2601 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2602 			    msg->im_dst.s_addr) ||
2603 	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2604 		goto nla_put_failure;
2605 
2606 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2607 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2608 				  nla_data(nla), payloadlen))
2609 		goto nla_put_failure;
2610 
2611 	nlmsg_end(skb, nlh);
2612 
2613 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2614 	return;
2615 
2616 nla_put_failure:
2617 	nlmsg_cancel(skb, nlh);
2618 errout:
2619 	kfree_skb(skb);
2620 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2621 }
2622 
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2623 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2624 				       const struct nlmsghdr *nlh,
2625 				       struct nlattr **tb,
2626 				       struct netlink_ext_ack *extack)
2627 {
2628 	struct rtmsg *rtm;
2629 	int i, err;
2630 
2631 	rtm = nlmsg_payload(nlh, sizeof(*rtm));
2632 	if (!rtm) {
2633 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2634 		return -EINVAL;
2635 	}
2636 
2637 	if (!netlink_strict_get_check(skb))
2638 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2639 					      rtm_ipv4_policy, extack);
2640 
2641 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2642 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2643 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2644 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2645 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2646 		return -EINVAL;
2647 	}
2648 
2649 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2650 					    rtm_ipv4_policy, extack);
2651 	if (err)
2652 		return err;
2653 
2654 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2655 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2656 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2657 		return -EINVAL;
2658 	}
2659 
2660 	for (i = 0; i <= RTA_MAX; i++) {
2661 		if (!tb[i])
2662 			continue;
2663 
2664 		switch (i) {
2665 		case RTA_SRC:
2666 		case RTA_DST:
2667 		case RTA_TABLE:
2668 			break;
2669 		default:
2670 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2671 			return -EINVAL;
2672 		}
2673 	}
2674 
2675 	return 0;
2676 }
2677 
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2678 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2679 			     struct netlink_ext_ack *extack)
2680 {
2681 	struct net *net = sock_net(in_skb->sk);
2682 	struct nlattr *tb[RTA_MAX + 1];
2683 	struct sk_buff *skb = NULL;
2684 	struct mfc_cache *cache;
2685 	struct mr_table *mrt;
2686 	__be32 src, grp;
2687 	u32 tableid;
2688 	int err;
2689 
2690 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2691 	if (err < 0)
2692 		goto errout;
2693 
2694 	src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2695 	grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2696 	tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2697 
2698 	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2699 	if (!mrt) {
2700 		err = -ENOENT;
2701 		goto errout_free;
2702 	}
2703 
2704 	/* entries are added/deleted only under RTNL */
2705 	rcu_read_lock();
2706 	cache = ipmr_cache_find(mrt, src, grp);
2707 	rcu_read_unlock();
2708 	if (!cache) {
2709 		err = -ENOENT;
2710 		goto errout_free;
2711 	}
2712 
2713 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2714 	if (!skb) {
2715 		err = -ENOBUFS;
2716 		goto errout_free;
2717 	}
2718 
2719 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2720 			       nlh->nlmsg_seq, cache,
2721 			       RTM_NEWROUTE, 0);
2722 	if (err < 0)
2723 		goto errout_free;
2724 
2725 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2726 
2727 errout:
2728 	return err;
2729 
2730 errout_free:
2731 	kfree_skb(skb);
2732 	goto errout;
2733 }
2734 
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2735 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2736 {
2737 	struct fib_dump_filter filter = {
2738 		.rtnl_held = true,
2739 	};
2740 	int err;
2741 
2742 	if (cb->strict_check) {
2743 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2744 					    &filter, cb);
2745 		if (err < 0)
2746 			return err;
2747 	}
2748 
2749 	if (filter.table_id) {
2750 		struct mr_table *mrt;
2751 
2752 		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2753 		if (!mrt) {
2754 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2755 				return skb->len;
2756 
2757 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2758 			return -ENOENT;
2759 		}
2760 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2761 				    &mfc_unres_lock, &filter);
2762 		return skb->len ? : err;
2763 	}
2764 
2765 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2766 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2767 }
2768 
2769 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2770 	[RTA_SRC]	= { .type = NLA_U32 },
2771 	[RTA_DST]	= { .type = NLA_U32 },
2772 	[RTA_IIF]	= { .type = NLA_U32 },
2773 	[RTA_TABLE]	= { .type = NLA_U32 },
2774 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2775 };
2776 
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2777 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2778 {
2779 	switch (rtm_protocol) {
2780 	case RTPROT_STATIC:
2781 	case RTPROT_MROUTED:
2782 		return true;
2783 	}
2784 	return false;
2785 }
2786 
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2787 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2788 {
2789 	struct rtnexthop *rtnh = nla_data(nla);
2790 	int remaining = nla_len(nla), vifi = 0;
2791 
2792 	while (rtnh_ok(rtnh, remaining)) {
2793 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2794 		if (++vifi == MAXVIFS)
2795 			break;
2796 		rtnh = rtnh_next(rtnh, &remaining);
2797 	}
2798 
2799 	return remaining > 0 ? -EINVAL : vifi;
2800 }
2801 
2802 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2803 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2804 			    struct mfcctl *mfcc, int *mrtsock,
2805 			    struct mr_table **mrtret,
2806 			    struct netlink_ext_ack *extack)
2807 {
2808 	struct net_device *dev = NULL;
2809 	u32 tblid = RT_TABLE_DEFAULT;
2810 	struct mr_table *mrt;
2811 	struct nlattr *attr;
2812 	struct rtmsg *rtm;
2813 	int ret, rem;
2814 
2815 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2816 					rtm_ipmr_policy, extack);
2817 	if (ret < 0)
2818 		goto out;
2819 	rtm = nlmsg_data(nlh);
2820 
2821 	ret = -EINVAL;
2822 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2823 	    rtm->rtm_type != RTN_MULTICAST ||
2824 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2825 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2826 		goto out;
2827 
2828 	memset(mfcc, 0, sizeof(*mfcc));
2829 	mfcc->mfcc_parent = -1;
2830 	ret = 0;
2831 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2832 		switch (nla_type(attr)) {
2833 		case RTA_SRC:
2834 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2835 			break;
2836 		case RTA_DST:
2837 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2838 			break;
2839 		case RTA_IIF:
2840 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2841 			if (!dev) {
2842 				ret = -ENODEV;
2843 				goto out;
2844 			}
2845 			break;
2846 		case RTA_MULTIPATH:
2847 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2848 				ret = -EINVAL;
2849 				goto out;
2850 			}
2851 			break;
2852 		case RTA_PREFSRC:
2853 			ret = 1;
2854 			break;
2855 		case RTA_TABLE:
2856 			tblid = nla_get_u32(attr);
2857 			break;
2858 		}
2859 	}
2860 	mrt = __ipmr_get_table(net, tblid);
2861 	if (!mrt) {
2862 		ret = -ENOENT;
2863 		goto out;
2864 	}
2865 	*mrtret = mrt;
2866 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2867 	if (dev)
2868 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2869 
2870 out:
2871 	return ret;
2872 }
2873 
2874 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2875 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2876 			  struct netlink_ext_ack *extack)
2877 {
2878 	struct net *net = sock_net(skb->sk);
2879 	int ret, mrtsock, parent;
2880 	struct mr_table *tbl;
2881 	struct mfcctl mfcc;
2882 
2883 	mrtsock = 0;
2884 	tbl = NULL;
2885 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2886 	if (ret < 0)
2887 		return ret;
2888 
2889 	parent = ret ? mfcc.mfcc_parent : -1;
2890 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2891 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2892 	else
2893 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2894 }
2895 
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2896 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2897 {
2898 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2899 
2900 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2901 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2902 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2903 			mrt->mroute_reg_vif_num) ||
2904 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2905 		       mrt->mroute_do_assert) ||
2906 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2907 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2908 		       mrt->mroute_do_wrvifwhole))
2909 		return false;
2910 
2911 	return true;
2912 }
2913 
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2914 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2915 {
2916 	struct net_device *vif_dev;
2917 	struct nlattr *vif_nest;
2918 	struct vif_device *vif;
2919 
2920 	vif = &mrt->vif_table[vifid];
2921 	vif_dev = rtnl_dereference(vif->dev);
2922 	/* if the VIF doesn't exist just continue */
2923 	if (!vif_dev)
2924 		return true;
2925 
2926 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2927 	if (!vif_nest)
2928 		return false;
2929 
2930 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2931 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2932 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2933 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2934 			      IPMRA_VIFA_PAD) ||
2935 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2936 			      IPMRA_VIFA_PAD) ||
2937 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2938 			      IPMRA_VIFA_PAD) ||
2939 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2940 			      IPMRA_VIFA_PAD) ||
2941 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2942 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2943 		nla_nest_cancel(skb, vif_nest);
2944 		return false;
2945 	}
2946 	nla_nest_end(skb, vif_nest);
2947 
2948 	return true;
2949 }
2950 
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2951 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2952 			       struct netlink_ext_ack *extack)
2953 {
2954 	struct ifinfomsg *ifm;
2955 
2956 	ifm = nlmsg_payload(nlh, sizeof(*ifm));
2957 	if (!ifm) {
2958 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2959 		return -EINVAL;
2960 	}
2961 
2962 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2963 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2964 		return -EINVAL;
2965 	}
2966 
2967 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2968 	    ifm->ifi_change || ifm->ifi_index) {
2969 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2970 		return -EINVAL;
2971 	}
2972 
2973 	return 0;
2974 }
2975 
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2976 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2977 {
2978 	struct net *net = sock_net(skb->sk);
2979 	struct nlmsghdr *nlh = NULL;
2980 	unsigned int t = 0, s_t;
2981 	unsigned int e = 0, s_e;
2982 	struct mr_table *mrt;
2983 
2984 	if (cb->strict_check) {
2985 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2986 
2987 		if (err < 0)
2988 			return err;
2989 	}
2990 
2991 	s_t = cb->args[0];
2992 	s_e = cb->args[1];
2993 
2994 	ipmr_for_each_table(mrt, net) {
2995 		struct nlattr *vifs, *af;
2996 		struct ifinfomsg *hdr;
2997 		u32 i;
2998 
2999 		if (t < s_t)
3000 			goto skip_table;
3001 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
3002 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
3003 				sizeof(*hdr), NLM_F_MULTI);
3004 		if (!nlh)
3005 			break;
3006 
3007 		hdr = nlmsg_data(nlh);
3008 		memset(hdr, 0, sizeof(*hdr));
3009 		hdr->ifi_family = RTNL_FAMILY_IPMR;
3010 
3011 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
3012 		if (!af) {
3013 			nlmsg_cancel(skb, nlh);
3014 			goto out;
3015 		}
3016 
3017 		if (!ipmr_fill_table(mrt, skb)) {
3018 			nlmsg_cancel(skb, nlh);
3019 			goto out;
3020 		}
3021 
3022 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
3023 		if (!vifs) {
3024 			nla_nest_end(skb, af);
3025 			nlmsg_end(skb, nlh);
3026 			goto out;
3027 		}
3028 		for (i = 0; i < mrt->maxvif; i++) {
3029 			if (e < s_e)
3030 				goto skip_entry;
3031 			if (!ipmr_fill_vif(mrt, i, skb)) {
3032 				nla_nest_end(skb, vifs);
3033 				nla_nest_end(skb, af);
3034 				nlmsg_end(skb, nlh);
3035 				goto out;
3036 			}
3037 skip_entry:
3038 			e++;
3039 		}
3040 		s_e = 0;
3041 		e = 0;
3042 		nla_nest_end(skb, vifs);
3043 		nla_nest_end(skb, af);
3044 		nlmsg_end(skb, nlh);
3045 skip_table:
3046 		t++;
3047 	}
3048 
3049 out:
3050 	cb->args[1] = e;
3051 	cb->args[0] = t;
3052 
3053 	return skb->len;
3054 }
3055 
3056 #ifdef CONFIG_PROC_FS
3057 /* The /proc interfaces to multicast routing :
3058  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
3059  */
3060 
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)3061 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
3062 	__acquires(RCU)
3063 {
3064 	struct mr_vif_iter *iter = seq->private;
3065 	struct net *net = seq_file_net(seq);
3066 	struct mr_table *mrt;
3067 
3068 	rcu_read_lock();
3069 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
3070 	if (!mrt) {
3071 		rcu_read_unlock();
3072 		return ERR_PTR(-ENOENT);
3073 	}
3074 
3075 	iter->mrt = mrt;
3076 
3077 	return mr_vif_seq_start(seq, pos);
3078 }
3079 
ipmr_vif_seq_stop(struct seq_file * seq,void * v)3080 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
3081 	__releases(RCU)
3082 {
3083 	rcu_read_unlock();
3084 }
3085 
ipmr_vif_seq_show(struct seq_file * seq,void * v)3086 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
3087 {
3088 	struct mr_vif_iter *iter = seq->private;
3089 	struct mr_table *mrt = iter->mrt;
3090 
3091 	if (v == SEQ_START_TOKEN) {
3092 		seq_puts(seq,
3093 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
3094 	} else {
3095 		const struct vif_device *vif = v;
3096 		const struct net_device *vif_dev;
3097 		const char *name;
3098 
3099 		vif_dev = vif_dev_read(vif);
3100 		name = vif_dev ? vif_dev->name : "none";
3101 		seq_printf(seq,
3102 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
3103 			   vif - mrt->vif_table,
3104 			   name, vif->bytes_in, vif->pkt_in,
3105 			   vif->bytes_out, vif->pkt_out,
3106 			   vif->flags, vif->local, vif->remote);
3107 	}
3108 	return 0;
3109 }
3110 
3111 static const struct seq_operations ipmr_vif_seq_ops = {
3112 	.start = ipmr_vif_seq_start,
3113 	.next  = mr_vif_seq_next,
3114 	.stop  = ipmr_vif_seq_stop,
3115 	.show  = ipmr_vif_seq_show,
3116 };
3117 
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)3118 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3119 {
3120 	struct net *net = seq_file_net(seq);
3121 	struct mr_table *mrt;
3122 
3123 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
3124 	if (!mrt)
3125 		return ERR_PTR(-ENOENT);
3126 
3127 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
3128 }
3129 
ipmr_mfc_seq_show(struct seq_file * seq,void * v)3130 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3131 {
3132 	int n;
3133 
3134 	if (v == SEQ_START_TOKEN) {
3135 		seq_puts(seq,
3136 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3137 	} else {
3138 		const struct mfc_cache *mfc = v;
3139 		const struct mr_mfc_iter *it = seq->private;
3140 		const struct mr_table *mrt = it->mrt;
3141 
3142 		seq_printf(seq, "%08X %08X %-3hd",
3143 			   (__force u32) mfc->mfc_mcastgrp,
3144 			   (__force u32) mfc->mfc_origin,
3145 			   mfc->_c.mfc_parent);
3146 
3147 		if (it->cache != &mrt->mfc_unres_queue) {
3148 			seq_printf(seq, " %8lu %8lu %8lu",
3149 				   atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3150 				   atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3151 				   atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3152 			for (n = mfc->_c.mfc_un.res.minvif;
3153 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3154 				if (VIF_EXISTS(mrt, n) &&
3155 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3156 					seq_printf(seq,
3157 					   " %2d:%-3d",
3158 					   n, mfc->_c.mfc_un.res.ttls[n]);
3159 			}
3160 		} else {
3161 			/* unresolved mfc_caches don't contain
3162 			 * pkt, bytes and wrong_if values
3163 			 */
3164 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3165 		}
3166 		seq_putc(seq, '\n');
3167 	}
3168 	return 0;
3169 }
3170 
3171 static const struct seq_operations ipmr_mfc_seq_ops = {
3172 	.start = ipmr_mfc_seq_start,
3173 	.next  = mr_mfc_seq_next,
3174 	.stop  = mr_mfc_seq_stop,
3175 	.show  = ipmr_mfc_seq_show,
3176 };
3177 #endif
3178 
3179 #ifdef CONFIG_IP_PIMSM_V2
3180 static const struct net_protocol pim_protocol = {
3181 	.handler	=	pim_rcv,
3182 };
3183 #endif
3184 
ipmr_seq_read(const struct net * net)3185 static unsigned int ipmr_seq_read(const struct net *net)
3186 {
3187 	return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3188 }
3189 
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3190 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3191 		     struct netlink_ext_ack *extack)
3192 {
3193 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3194 		       ipmr_mr_table_iter, extack);
3195 }
3196 
3197 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3198 	.family		= RTNL_FAMILY_IPMR,
3199 	.fib_seq_read	= ipmr_seq_read,
3200 	.fib_dump	= ipmr_dump,
3201 	.owner		= THIS_MODULE,
3202 };
3203 
ipmr_notifier_init(struct net * net)3204 static int __net_init ipmr_notifier_init(struct net *net)
3205 {
3206 	struct fib_notifier_ops *ops;
3207 
3208 	net->ipv4.ipmr_seq = 0;
3209 
3210 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3211 	if (IS_ERR(ops))
3212 		return PTR_ERR(ops);
3213 	net->ipv4.ipmr_notifier_ops = ops;
3214 
3215 	return 0;
3216 }
3217 
ipmr_notifier_exit(struct net * net)3218 static void __net_exit ipmr_notifier_exit(struct net *net)
3219 {
3220 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3221 	net->ipv4.ipmr_notifier_ops = NULL;
3222 }
3223 
3224 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3225 static int __net_init ipmr_net_init(struct net *net)
3226 {
3227 	int err;
3228 
3229 	err = ipmr_notifier_init(net);
3230 	if (err)
3231 		goto ipmr_notifier_fail;
3232 
3233 	err = ipmr_rules_init(net);
3234 	if (err < 0)
3235 		goto ipmr_rules_fail;
3236 
3237 #ifdef CONFIG_PROC_FS
3238 	err = -ENOMEM;
3239 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3240 			sizeof(struct mr_vif_iter)))
3241 		goto proc_vif_fail;
3242 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3243 			sizeof(struct mr_mfc_iter)))
3244 		goto proc_cache_fail;
3245 #endif
3246 	return 0;
3247 
3248 #ifdef CONFIG_PROC_FS
3249 proc_cache_fail:
3250 	remove_proc_entry("ip_mr_vif", net->proc_net);
3251 proc_vif_fail:
3252 	rtnl_lock();
3253 	ipmr_rules_exit(net);
3254 	rtnl_unlock();
3255 #endif
3256 ipmr_rules_fail:
3257 	ipmr_notifier_exit(net);
3258 ipmr_notifier_fail:
3259 	return err;
3260 }
3261 
ipmr_net_exit(struct net * net)3262 static void __net_exit ipmr_net_exit(struct net *net)
3263 {
3264 #ifdef CONFIG_PROC_FS
3265 	remove_proc_entry("ip_mr_cache", net->proc_net);
3266 	remove_proc_entry("ip_mr_vif", net->proc_net);
3267 #endif
3268 	ipmr_notifier_exit(net);
3269 }
3270 
ipmr_net_exit_batch(struct list_head * net_list)3271 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3272 {
3273 	struct net *net;
3274 
3275 	rtnl_lock();
3276 	list_for_each_entry(net, net_list, exit_list)
3277 		ipmr_rules_exit(net);
3278 	rtnl_unlock();
3279 }
3280 
3281 static struct pernet_operations ipmr_net_ops = {
3282 	.init = ipmr_net_init,
3283 	.exit = ipmr_net_exit,
3284 	.exit_batch = ipmr_net_exit_batch,
3285 };
3286 
3287 static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3288 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3289 	 .dumpit = ipmr_rtm_dumplink},
3290 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3291 	 .doit = ipmr_rtm_route},
3292 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3293 	 .doit = ipmr_rtm_route},
3294 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3295 	 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3296 };
3297 
ip_mr_init(void)3298 int __init ip_mr_init(void)
3299 {
3300 	int err;
3301 
3302 	mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3303 
3304 	err = register_pernet_subsys(&ipmr_net_ops);
3305 	if (err)
3306 		goto reg_pernet_fail;
3307 
3308 	err = register_netdevice_notifier(&ip_mr_notifier);
3309 	if (err)
3310 		goto reg_notif_fail;
3311 #ifdef CONFIG_IP_PIMSM_V2
3312 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3313 		pr_err("%s: can't add PIM protocol\n", __func__);
3314 		err = -EAGAIN;
3315 		goto add_proto_fail;
3316 	}
3317 #endif
3318 	rtnl_register_many(ipmr_rtnl_msg_handlers);
3319 
3320 	return 0;
3321 
3322 #ifdef CONFIG_IP_PIMSM_V2
3323 add_proto_fail:
3324 	unregister_netdevice_notifier(&ip_mr_notifier);
3325 #endif
3326 reg_notif_fail:
3327 	unregister_pernet_subsys(&ipmr_net_ops);
3328 reg_pernet_fail:
3329 	kmem_cache_destroy(mrt_cachep);
3330 	return err;
3331 }
3332