xref: /linux/net/ipv4/ipmr.c (revision 896d8946da97332d4dc80fa1937d8dd6b1c35ad4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 #include <net/inet_dscp.h>
66 
67 #include <linux/nospec.h>
68 
69 struct ipmr_rule {
70 	struct fib_rule		common;
71 };
72 
73 struct ipmr_result {
74 	struct mr_table		*mrt;
75 };
76 
77 /* Big lock, protecting vif table, mrt cache and mroute socket state.
78  * Note that the changes are semaphored via rtnl_lock.
79  */
80 
81 static DEFINE_SPINLOCK(mrt_lock);
82 
vif_dev_read(const struct vif_device * vif)83 static struct net_device *vif_dev_read(const struct vif_device *vif)
84 {
85 	return rcu_dereference(vif->dev);
86 }
87 
88 /* Multicast router control variables */
89 
90 /* Special spinlock for queue of unresolved entries */
91 static DEFINE_SPINLOCK(mfc_unres_lock);
92 
93 /* We return to original Alan's scheme. Hash table of resolved
94  * entries is changed only in process context and protected
95  * with weak lock mrt_lock. Queue of unresolved entries is protected
96  * with strong spinlock mfc_unres_lock.
97  *
98  * In this case data path is free of exclusive locks at all.
99  */
100 
101 static struct kmem_cache *mrt_cachep __ro_after_init;
102 
103 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104 static void ipmr_free_table(struct mr_table *mrt);
105 
106 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 			  struct net_device *dev, struct sk_buff *skb,
108 			  struct mfc_cache *cache, int local);
109 static int ipmr_cache_report(const struct mr_table *mrt,
110 			     struct sk_buff *pkt, vifi_t vifi, int assert);
111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 				 int cmd);
113 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
114 static void mroute_clean_tables(struct mr_table *mrt, int flags);
115 static void ipmr_expire_process(struct timer_list *t);
116 
117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118 #define ipmr_for_each_table(mrt, net)					\
119 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
120 				lockdep_rtnl_is_held() ||		\
121 				list_empty(&net->ipv4.mr_tables))
122 
ipmr_can_free_table(struct net * net)123 static bool ipmr_can_free_table(struct net *net)
124 {
125 	return !check_net(net) || !net_initialized(net);
126 }
127 
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)128 static struct mr_table *ipmr_mr_table_iter(struct net *net,
129 					   struct mr_table *mrt)
130 {
131 	struct mr_table *ret;
132 
133 	if (!mrt)
134 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
135 				     struct mr_table, list);
136 	else
137 		ret = list_entry_rcu(mrt->list.next,
138 				     struct mr_table, list);
139 
140 	if (&ret->list == &net->ipv4.mr_tables)
141 		return NULL;
142 	return ret;
143 }
144 
__ipmr_get_table(struct net * net,u32 id)145 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
146 {
147 	struct mr_table *mrt;
148 
149 	ipmr_for_each_table(mrt, net) {
150 		if (mrt->id == id)
151 			return mrt;
152 	}
153 	return NULL;
154 }
155 
ipmr_get_table(struct net * net,u32 id)156 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
157 {
158 	struct mr_table *mrt;
159 
160 	rcu_read_lock();
161 	mrt = __ipmr_get_table(net, id);
162 	rcu_read_unlock();
163 	return mrt;
164 }
165 
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)166 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
167 			   struct mr_table **mrt)
168 {
169 	int err;
170 	struct ipmr_result res;
171 	struct fib_lookup_arg arg = {
172 		.result = &res,
173 		.flags = FIB_LOOKUP_NOREF,
174 	};
175 
176 	/* update flow if oif or iif point to device enslaved to l3mdev */
177 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
178 
179 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
180 			       flowi4_to_flowi(flp4), 0, &arg);
181 	if (err < 0)
182 		return err;
183 	*mrt = res.mrt;
184 	return 0;
185 }
186 
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)187 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
188 			    int flags, struct fib_lookup_arg *arg)
189 {
190 	struct ipmr_result *res = arg->result;
191 	struct mr_table *mrt;
192 
193 	switch (rule->action) {
194 	case FR_ACT_TO_TBL:
195 		break;
196 	case FR_ACT_UNREACHABLE:
197 		return -ENETUNREACH;
198 	case FR_ACT_PROHIBIT:
199 		return -EACCES;
200 	case FR_ACT_BLACKHOLE:
201 	default:
202 		return -EINVAL;
203 	}
204 
205 	arg->table = fib_rule_get_table(rule, arg);
206 
207 	mrt = __ipmr_get_table(rule->fr_net, arg->table);
208 	if (!mrt)
209 		return -EAGAIN;
210 	res->mrt = mrt;
211 	return 0;
212 }
213 
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)214 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
215 {
216 	return 1;
217 }
218 
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)219 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
220 			       struct fib_rule_hdr *frh, struct nlattr **tb,
221 			       struct netlink_ext_ack *extack)
222 {
223 	return 0;
224 }
225 
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)226 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
227 			     struct nlattr **tb)
228 {
229 	return 1;
230 }
231 
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)232 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
233 			  struct fib_rule_hdr *frh)
234 {
235 	frh->dst_len = 0;
236 	frh->src_len = 0;
237 	frh->tos     = 0;
238 	return 0;
239 }
240 
241 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
242 	.family		= RTNL_FAMILY_IPMR,
243 	.rule_size	= sizeof(struct ipmr_rule),
244 	.addr_size	= sizeof(u32),
245 	.action		= ipmr_rule_action,
246 	.match		= ipmr_rule_match,
247 	.configure	= ipmr_rule_configure,
248 	.compare	= ipmr_rule_compare,
249 	.fill		= ipmr_rule_fill,
250 	.nlgroup	= RTNLGRP_IPV4_RULE,
251 	.owner		= THIS_MODULE,
252 };
253 
ipmr_rules_init(struct net * net)254 static int __net_init ipmr_rules_init(struct net *net)
255 {
256 	struct fib_rules_ops *ops;
257 	struct mr_table *mrt;
258 	int err;
259 
260 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
261 	if (IS_ERR(ops))
262 		return PTR_ERR(ops);
263 
264 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
265 
266 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
267 	if (IS_ERR(mrt)) {
268 		err = PTR_ERR(mrt);
269 		goto err1;
270 	}
271 
272 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
273 	if (err < 0)
274 		goto err2;
275 
276 	net->ipv4.mr_rules_ops = ops;
277 	return 0;
278 
279 err2:
280 	rtnl_lock();
281 	ipmr_free_table(mrt);
282 	rtnl_unlock();
283 err1:
284 	fib_rules_unregister(ops);
285 	return err;
286 }
287 
ipmr_rules_exit(struct net * net)288 static void __net_exit ipmr_rules_exit(struct net *net)
289 {
290 	struct mr_table *mrt, *next;
291 
292 	ASSERT_RTNL();
293 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
294 		list_del(&mrt->list);
295 		ipmr_free_table(mrt);
296 	}
297 	fib_rules_unregister(net->ipv4.mr_rules_ops);
298 }
299 
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)300 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
301 			   struct netlink_ext_ack *extack)
302 {
303 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
304 }
305 
ipmr_rules_seq_read(const struct net * net)306 static unsigned int ipmr_rules_seq_read(const struct net *net)
307 {
308 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
309 }
310 
ipmr_rule_default(const struct fib_rule * rule)311 bool ipmr_rule_default(const struct fib_rule *rule)
312 {
313 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
314 }
315 EXPORT_SYMBOL(ipmr_rule_default);
316 #else
317 #define ipmr_for_each_table(mrt, net) \
318 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
319 
ipmr_can_free_table(struct net * net)320 static bool ipmr_can_free_table(struct net *net)
321 {
322 	return !check_net(net);
323 }
324 
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)325 static struct mr_table *ipmr_mr_table_iter(struct net *net,
326 					   struct mr_table *mrt)
327 {
328 	if (!mrt)
329 		return net->ipv4.mrt;
330 	return NULL;
331 }
332 
ipmr_get_table(struct net * net,u32 id)333 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
334 {
335 	return net->ipv4.mrt;
336 }
337 
338 #define __ipmr_get_table ipmr_get_table
339 
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)340 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
341 			   struct mr_table **mrt)
342 {
343 	*mrt = net->ipv4.mrt;
344 	return 0;
345 }
346 
ipmr_rules_init(struct net * net)347 static int __net_init ipmr_rules_init(struct net *net)
348 {
349 	struct mr_table *mrt;
350 
351 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
352 	if (IS_ERR(mrt))
353 		return PTR_ERR(mrt);
354 	net->ipv4.mrt = mrt;
355 	return 0;
356 }
357 
ipmr_rules_exit(struct net * net)358 static void __net_exit ipmr_rules_exit(struct net *net)
359 {
360 	ASSERT_RTNL();
361 	ipmr_free_table(net->ipv4.mrt);
362 	net->ipv4.mrt = NULL;
363 }
364 
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)365 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
366 			   struct netlink_ext_ack *extack)
367 {
368 	return 0;
369 }
370 
ipmr_rules_seq_read(const struct net * net)371 static unsigned int ipmr_rules_seq_read(const struct net *net)
372 {
373 	return 0;
374 }
375 
ipmr_rule_default(const struct fib_rule * rule)376 bool ipmr_rule_default(const struct fib_rule *rule)
377 {
378 	return true;
379 }
380 EXPORT_SYMBOL(ipmr_rule_default);
381 #endif
382 
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)383 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
384 				const void *ptr)
385 {
386 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
387 	const struct mfc_cache *c = ptr;
388 
389 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
390 	       cmparg->mfc_origin != c->mfc_origin;
391 }
392 
393 static const struct rhashtable_params ipmr_rht_params = {
394 	.head_offset = offsetof(struct mr_mfc, mnode),
395 	.key_offset = offsetof(struct mfc_cache, cmparg),
396 	.key_len = sizeof(struct mfc_cache_cmp_arg),
397 	.nelem_hint = 3,
398 	.obj_cmpfn = ipmr_hash_cmp,
399 	.automatic_shrinking = true,
400 };
401 
ipmr_new_table_set(struct mr_table * mrt,struct net * net)402 static void ipmr_new_table_set(struct mr_table *mrt,
403 			       struct net *net)
404 {
405 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
406 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
407 #endif
408 }
409 
410 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
411 	.mfc_mcastgrp = htonl(INADDR_ANY),
412 	.mfc_origin = htonl(INADDR_ANY),
413 };
414 
415 static struct mr_table_ops ipmr_mr_table_ops = {
416 	.rht_params = &ipmr_rht_params,
417 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
418 };
419 
ipmr_new_table(struct net * net,u32 id)420 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
421 {
422 	struct mr_table *mrt;
423 
424 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
425 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
426 		return ERR_PTR(-EINVAL);
427 
428 	mrt = __ipmr_get_table(net, id);
429 	if (mrt)
430 		return mrt;
431 
432 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
433 			      ipmr_expire_process, ipmr_new_table_set);
434 }
435 
ipmr_free_table(struct mr_table * mrt)436 static void ipmr_free_table(struct mr_table *mrt)
437 {
438 	struct net *net = read_pnet(&mrt->net);
439 
440 	WARN_ON_ONCE(!ipmr_can_free_table(net));
441 
442 	timer_shutdown_sync(&mrt->ipmr_expire_timer);
443 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
444 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
445 	rhltable_destroy(&mrt->mfc_hash);
446 	kfree(mrt);
447 }
448 
449 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
450 
451 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)452 static bool ipmr_init_vif_indev(const struct net_device *dev)
453 {
454 	struct in_device *in_dev;
455 
456 	ASSERT_RTNL();
457 
458 	in_dev = __in_dev_get_rtnl(dev);
459 	if (!in_dev)
460 		return false;
461 	ipv4_devconf_setall(in_dev);
462 	neigh_parms_data_state_setall(in_dev->arp_parms);
463 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
464 
465 	return true;
466 }
467 
ipmr_new_tunnel(struct net * net,struct vifctl * v)468 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
469 {
470 	struct net_device *tunnel_dev, *new_dev;
471 	struct ip_tunnel_parm_kern p = { };
472 	int err;
473 
474 	tunnel_dev = __dev_get_by_name(net, "tunl0");
475 	if (!tunnel_dev)
476 		goto out;
477 
478 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
479 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
480 	p.iph.version = 4;
481 	p.iph.ihl = 5;
482 	p.iph.protocol = IPPROTO_IPIP;
483 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
484 
485 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
486 		goto out;
487 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
488 			SIOCADDTUNNEL);
489 	if (err)
490 		goto out;
491 
492 	new_dev = __dev_get_by_name(net, p.name);
493 	if (!new_dev)
494 		goto out;
495 
496 	new_dev->flags |= IFF_MULTICAST;
497 	if (!ipmr_init_vif_indev(new_dev))
498 		goto out_unregister;
499 	if (dev_open(new_dev, NULL))
500 		goto out_unregister;
501 	dev_hold(new_dev);
502 	err = dev_set_allmulti(new_dev, 1);
503 	if (err) {
504 		dev_close(new_dev);
505 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
506 				SIOCDELTUNNEL);
507 		dev_put(new_dev);
508 		new_dev = ERR_PTR(err);
509 	}
510 	return new_dev;
511 
512 out_unregister:
513 	unregister_netdevice(new_dev);
514 out:
515 	return ERR_PTR(-ENOBUFS);
516 }
517 
518 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)519 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
520 {
521 	struct net *net = dev_net(dev);
522 	struct mr_table *mrt;
523 	struct flowi4 fl4 = {
524 		.flowi4_oif	= dev->ifindex,
525 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
526 		.flowi4_mark	= skb->mark,
527 	};
528 	int err;
529 
530 	err = ipmr_fib_lookup(net, &fl4, &mrt);
531 	if (err < 0) {
532 		kfree_skb(skb);
533 		return err;
534 	}
535 
536 	DEV_STATS_ADD(dev, tx_bytes, skb->len);
537 	DEV_STATS_INC(dev, tx_packets);
538 	rcu_read_lock();
539 
540 	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
541 	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
542 			  IGMPMSG_WHOLEPKT);
543 
544 	rcu_read_unlock();
545 	kfree_skb(skb);
546 	return NETDEV_TX_OK;
547 }
548 
reg_vif_get_iflink(const struct net_device * dev)549 static int reg_vif_get_iflink(const struct net_device *dev)
550 {
551 	return 0;
552 }
553 
554 static const struct net_device_ops reg_vif_netdev_ops = {
555 	.ndo_start_xmit	= reg_vif_xmit,
556 	.ndo_get_iflink = reg_vif_get_iflink,
557 };
558 
reg_vif_setup(struct net_device * dev)559 static void reg_vif_setup(struct net_device *dev)
560 {
561 	dev->type		= ARPHRD_PIMREG;
562 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
563 	dev->flags		= IFF_NOARP;
564 	dev->netdev_ops		= &reg_vif_netdev_ops;
565 	dev->needs_free_netdev	= true;
566 	dev->netns_local	= true;
567 }
568 
ipmr_reg_vif(struct net * net,struct mr_table * mrt)569 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
570 {
571 	struct net_device *dev;
572 	char name[IFNAMSIZ];
573 
574 	if (mrt->id == RT_TABLE_DEFAULT)
575 		sprintf(name, "pimreg");
576 	else
577 		sprintf(name, "pimreg%u", mrt->id);
578 
579 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
580 
581 	if (!dev)
582 		return NULL;
583 
584 	dev_net_set(dev, net);
585 
586 	if (register_netdevice(dev)) {
587 		free_netdev(dev);
588 		return NULL;
589 	}
590 
591 	if (!ipmr_init_vif_indev(dev))
592 		goto failure;
593 	if (dev_open(dev, NULL))
594 		goto failure;
595 
596 	dev_hold(dev);
597 
598 	return dev;
599 
600 failure:
601 	unregister_netdevice(dev);
602 	return NULL;
603 }
604 
605 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)606 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
607 		     unsigned int pimlen)
608 {
609 	struct net_device *reg_dev = NULL;
610 	struct iphdr *encap;
611 	int vif_num;
612 
613 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
614 	/* Check that:
615 	 * a. packet is really sent to a multicast group
616 	 * b. packet is not a NULL-REGISTER
617 	 * c. packet is not truncated
618 	 */
619 	if (!ipv4_is_multicast(encap->daddr) ||
620 	    encap->tot_len == 0 ||
621 	    ntohs(encap->tot_len) + pimlen > skb->len)
622 		return 1;
623 
624 	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
625 	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
626 	if (vif_num >= 0)
627 		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
628 	if (!reg_dev)
629 		return 1;
630 
631 	skb->mac_header = skb->network_header;
632 	skb_pull(skb, (u8 *)encap - skb->data);
633 	skb_reset_network_header(skb);
634 	skb->protocol = htons(ETH_P_IP);
635 	skb->ip_summed = CHECKSUM_NONE;
636 
637 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
638 
639 	netif_rx(skb);
640 
641 	return NET_RX_SUCCESS;
642 }
643 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)644 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
645 {
646 	return NULL;
647 }
648 #endif
649 
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)650 static int call_ipmr_vif_entry_notifiers(struct net *net,
651 					 enum fib_event_type event_type,
652 					 struct vif_device *vif,
653 					 struct net_device *vif_dev,
654 					 vifi_t vif_index, u32 tb_id)
655 {
656 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
657 				     vif, vif_dev, vif_index, tb_id,
658 				     &net->ipv4.ipmr_seq);
659 }
660 
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)661 static int call_ipmr_mfc_entry_notifiers(struct net *net,
662 					 enum fib_event_type event_type,
663 					 struct mfc_cache *mfc, u32 tb_id)
664 {
665 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
666 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
667 }
668 
669 /**
670  *	vif_delete - Delete a VIF entry
671  *	@mrt: Table to delete from
672  *	@vifi: VIF identifier to delete
673  *	@notify: Set to 1, if the caller is a notifier_call
674  *	@head: if unregistering the VIF, place it on this queue
675  */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)676 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
677 		      struct list_head *head)
678 {
679 	struct net *net = read_pnet(&mrt->net);
680 	struct vif_device *v;
681 	struct net_device *dev;
682 	struct in_device *in_dev;
683 
684 	if (vifi < 0 || vifi >= mrt->maxvif)
685 		return -EADDRNOTAVAIL;
686 
687 	v = &mrt->vif_table[vifi];
688 
689 	dev = rtnl_dereference(v->dev);
690 	if (!dev)
691 		return -EADDRNOTAVAIL;
692 
693 	spin_lock(&mrt_lock);
694 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
695 				      vifi, mrt->id);
696 	RCU_INIT_POINTER(v->dev, NULL);
697 
698 	if (vifi == mrt->mroute_reg_vif_num) {
699 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
700 		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
701 	}
702 	if (vifi + 1 == mrt->maxvif) {
703 		int tmp;
704 
705 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
706 			if (VIF_EXISTS(mrt, tmp))
707 				break;
708 		}
709 		WRITE_ONCE(mrt->maxvif, tmp + 1);
710 	}
711 
712 	spin_unlock(&mrt_lock);
713 
714 	dev_set_allmulti(dev, -1);
715 
716 	in_dev = __in_dev_get_rtnl(dev);
717 	if (in_dev) {
718 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
719 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
720 					    NETCONFA_MC_FORWARDING,
721 					    dev->ifindex, &in_dev->cnf);
722 		ip_rt_multicast_event(in_dev);
723 	}
724 
725 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
726 		unregister_netdevice_queue(dev, head);
727 
728 	netdev_put(dev, &v->dev_tracker);
729 	return 0;
730 }
731 
ipmr_cache_free_rcu(struct rcu_head * head)732 static void ipmr_cache_free_rcu(struct rcu_head *head)
733 {
734 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
735 
736 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
737 }
738 
ipmr_cache_free(struct mfc_cache * c)739 static void ipmr_cache_free(struct mfc_cache *c)
740 {
741 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
742 }
743 
744 /* Destroy an unresolved cache entry, killing queued skbs
745  * and reporting error to netlink readers.
746  */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)747 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
748 {
749 	struct net *net = read_pnet(&mrt->net);
750 	struct sk_buff *skb;
751 	struct nlmsgerr *e;
752 
753 	atomic_dec(&mrt->cache_resolve_queue_len);
754 
755 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
756 		if (ip_hdr(skb)->version == 0) {
757 			struct nlmsghdr *nlh = skb_pull(skb,
758 							sizeof(struct iphdr));
759 			nlh->nlmsg_type = NLMSG_ERROR;
760 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
761 			skb_trim(skb, nlh->nlmsg_len);
762 			e = nlmsg_data(nlh);
763 			e->error = -ETIMEDOUT;
764 			memset(&e->msg, 0, sizeof(e->msg));
765 
766 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
767 		} else {
768 			kfree_skb(skb);
769 		}
770 	}
771 
772 	ipmr_cache_free(c);
773 }
774 
775 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)776 static void ipmr_expire_process(struct timer_list *t)
777 {
778 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
779 	struct mr_mfc *c, *next;
780 	unsigned long expires;
781 	unsigned long now;
782 
783 	if (!spin_trylock(&mfc_unres_lock)) {
784 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
785 		return;
786 	}
787 
788 	if (list_empty(&mrt->mfc_unres_queue))
789 		goto out;
790 
791 	now = jiffies;
792 	expires = 10*HZ;
793 
794 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
795 		if (time_after(c->mfc_un.unres.expires, now)) {
796 			unsigned long interval = c->mfc_un.unres.expires - now;
797 			if (interval < expires)
798 				expires = interval;
799 			continue;
800 		}
801 
802 		list_del(&c->list);
803 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
804 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
805 	}
806 
807 	if (!list_empty(&mrt->mfc_unres_queue))
808 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
809 
810 out:
811 	spin_unlock(&mfc_unres_lock);
812 }
813 
814 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)815 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
816 				   unsigned char *ttls)
817 {
818 	int vifi;
819 
820 	cache->mfc_un.res.minvif = MAXVIFS;
821 	cache->mfc_un.res.maxvif = 0;
822 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
823 
824 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
825 		if (VIF_EXISTS(mrt, vifi) &&
826 		    ttls[vifi] && ttls[vifi] < 255) {
827 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
828 			if (cache->mfc_un.res.minvif > vifi)
829 				cache->mfc_un.res.minvif = vifi;
830 			if (cache->mfc_un.res.maxvif <= vifi)
831 				cache->mfc_un.res.maxvif = vifi + 1;
832 		}
833 	}
834 	cache->mfc_un.res.lastuse = jiffies;
835 }
836 
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)837 static int vif_add(struct net *net, struct mr_table *mrt,
838 		   struct vifctl *vifc, int mrtsock)
839 {
840 	struct netdev_phys_item_id ppid = { };
841 	int vifi = vifc->vifc_vifi;
842 	struct vif_device *v = &mrt->vif_table[vifi];
843 	struct net_device *dev;
844 	struct in_device *in_dev;
845 	int err;
846 
847 	/* Is vif busy ? */
848 	if (VIF_EXISTS(mrt, vifi))
849 		return -EADDRINUSE;
850 
851 	switch (vifc->vifc_flags) {
852 	case VIFF_REGISTER:
853 		if (!ipmr_pimsm_enabled())
854 			return -EINVAL;
855 		/* Special Purpose VIF in PIM
856 		 * All the packets will be sent to the daemon
857 		 */
858 		if (mrt->mroute_reg_vif_num >= 0)
859 			return -EADDRINUSE;
860 		dev = ipmr_reg_vif(net, mrt);
861 		if (!dev)
862 			return -ENOBUFS;
863 		err = dev_set_allmulti(dev, 1);
864 		if (err) {
865 			unregister_netdevice(dev);
866 			dev_put(dev);
867 			return err;
868 		}
869 		break;
870 	case VIFF_TUNNEL:
871 		dev = ipmr_new_tunnel(net, vifc);
872 		if (IS_ERR(dev))
873 			return PTR_ERR(dev);
874 		break;
875 	case VIFF_USE_IFINDEX:
876 	case 0:
877 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
878 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
879 			if (dev && !__in_dev_get_rtnl(dev)) {
880 				dev_put(dev);
881 				return -EADDRNOTAVAIL;
882 			}
883 		} else {
884 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
885 		}
886 		if (!dev)
887 			return -EADDRNOTAVAIL;
888 		err = dev_set_allmulti(dev, 1);
889 		if (err) {
890 			dev_put(dev);
891 			return err;
892 		}
893 		break;
894 	default:
895 		return -EINVAL;
896 	}
897 
898 	in_dev = __in_dev_get_rtnl(dev);
899 	if (!in_dev) {
900 		dev_put(dev);
901 		return -EADDRNOTAVAIL;
902 	}
903 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
904 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
905 				    dev->ifindex, &in_dev->cnf);
906 	ip_rt_multicast_event(in_dev);
907 
908 	/* Fill in the VIF structures */
909 	vif_device_init(v, dev, vifc->vifc_rate_limit,
910 			vifc->vifc_threshold,
911 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
912 			(VIFF_TUNNEL | VIFF_REGISTER));
913 
914 	err = dev_get_port_parent_id(dev, &ppid, true);
915 	if (err == 0) {
916 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
917 		v->dev_parent_id.id_len = ppid.id_len;
918 	} else {
919 		v->dev_parent_id.id_len = 0;
920 	}
921 
922 	v->local = vifc->vifc_lcl_addr.s_addr;
923 	v->remote = vifc->vifc_rmt_addr.s_addr;
924 
925 	/* And finish update writing critical data */
926 	spin_lock(&mrt_lock);
927 	rcu_assign_pointer(v->dev, dev);
928 	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
929 	if (v->flags & VIFF_REGISTER) {
930 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
931 		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
932 	}
933 	if (vifi+1 > mrt->maxvif)
934 		WRITE_ONCE(mrt->maxvif, vifi + 1);
935 	spin_unlock(&mrt_lock);
936 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
937 				      vifi, mrt->id);
938 	return 0;
939 }
940 
941 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)942 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
943 					 __be32 origin,
944 					 __be32 mcastgrp)
945 {
946 	struct mfc_cache_cmp_arg arg = {
947 			.mfc_mcastgrp = mcastgrp,
948 			.mfc_origin = origin
949 	};
950 
951 	return mr_mfc_find(mrt, &arg);
952 }
953 
954 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)955 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
956 					     __be32 mcastgrp, int vifi)
957 {
958 	struct mfc_cache_cmp_arg arg = {
959 			.mfc_mcastgrp = mcastgrp,
960 			.mfc_origin = htonl(INADDR_ANY)
961 	};
962 
963 	if (mcastgrp == htonl(INADDR_ANY))
964 		return mr_mfc_find_any_parent(mrt, vifi);
965 	return mr_mfc_find_any(mrt, vifi, &arg);
966 }
967 
968 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)969 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
970 						__be32 origin, __be32 mcastgrp,
971 						int parent)
972 {
973 	struct mfc_cache_cmp_arg arg = {
974 			.mfc_mcastgrp = mcastgrp,
975 			.mfc_origin = origin,
976 	};
977 
978 	return mr_mfc_find_parent(mrt, &arg, parent);
979 }
980 
981 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)982 static struct mfc_cache *ipmr_cache_alloc(void)
983 {
984 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
985 
986 	if (c) {
987 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
988 		c->_c.mfc_un.res.minvif = MAXVIFS;
989 		c->_c.free = ipmr_cache_free_rcu;
990 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
991 	}
992 	return c;
993 }
994 
ipmr_cache_alloc_unres(void)995 static struct mfc_cache *ipmr_cache_alloc_unres(void)
996 {
997 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
998 
999 	if (c) {
1000 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1001 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1002 	}
1003 	return c;
1004 }
1005 
1006 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)1007 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1008 			       struct mfc_cache *uc, struct mfc_cache *c)
1009 {
1010 	struct sk_buff *skb;
1011 	struct nlmsgerr *e;
1012 
1013 	/* Play the pending entries through our router */
1014 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1015 		if (ip_hdr(skb)->version == 0) {
1016 			struct nlmsghdr *nlh = skb_pull(skb,
1017 							sizeof(struct iphdr));
1018 
1019 			if (mr_fill_mroute(mrt, skb, &c->_c,
1020 					   nlmsg_data(nlh)) > 0) {
1021 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1022 						 (u8 *)nlh;
1023 			} else {
1024 				nlh->nlmsg_type = NLMSG_ERROR;
1025 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1026 				skb_trim(skb, nlh->nlmsg_len);
1027 				e = nlmsg_data(nlh);
1028 				e->error = -EMSGSIZE;
1029 				memset(&e->msg, 0, sizeof(e->msg));
1030 			}
1031 
1032 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1033 		} else {
1034 			rcu_read_lock();
1035 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1036 			rcu_read_unlock();
1037 		}
1038 	}
1039 }
1040 
1041 /* Bounce a cache query up to mrouted and netlink.
1042  *
1043  * Called under rcu_read_lock().
1044  */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1045 static int ipmr_cache_report(const struct mr_table *mrt,
1046 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1047 {
1048 	const int ihl = ip_hdrlen(pkt);
1049 	struct sock *mroute_sk;
1050 	struct igmphdr *igmp;
1051 	struct igmpmsg *msg;
1052 	struct sk_buff *skb;
1053 	int ret;
1054 
1055 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1056 	if (!mroute_sk)
1057 		return -EINVAL;
1058 
1059 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1060 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1061 	else
1062 		skb = alloc_skb(128, GFP_ATOMIC);
1063 
1064 	if (!skb)
1065 		return -ENOBUFS;
1066 
1067 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1068 		/* Ugly, but we have no choice with this interface.
1069 		 * Duplicate old header, fix ihl, length etc.
1070 		 * And all this only to mangle msg->im_msgtype and
1071 		 * to set msg->im_mbz to "mbz" :-)
1072 		 */
1073 		skb_push(skb, sizeof(struct iphdr));
1074 		skb_reset_network_header(skb);
1075 		skb_reset_transport_header(skb);
1076 		msg = (struct igmpmsg *)skb_network_header(skb);
1077 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1078 		msg->im_msgtype = assert;
1079 		msg->im_mbz = 0;
1080 		if (assert == IGMPMSG_WRVIFWHOLE) {
1081 			msg->im_vif = vifi;
1082 			msg->im_vif_hi = vifi >> 8;
1083 		} else {
1084 			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1085 			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1086 
1087 			msg->im_vif = vif_num;
1088 			msg->im_vif_hi = vif_num >> 8;
1089 		}
1090 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1091 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1092 					     sizeof(struct iphdr));
1093 	} else {
1094 		/* Copy the IP header */
1095 		skb_set_network_header(skb, skb->len);
1096 		skb_put(skb, ihl);
1097 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1098 		/* Flag to the kernel this is a route add */
1099 		ip_hdr(skb)->protocol = 0;
1100 		msg = (struct igmpmsg *)skb_network_header(skb);
1101 		msg->im_vif = vifi;
1102 		msg->im_vif_hi = vifi >> 8;
1103 		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1104 		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1105 		/* Add our header */
1106 		igmp = skb_put(skb, sizeof(struct igmphdr));
1107 		igmp->type = assert;
1108 		msg->im_msgtype = assert;
1109 		igmp->code = 0;
1110 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1111 		skb->transport_header = skb->network_header;
1112 	}
1113 
1114 	igmpmsg_netlink_event(mrt, skb);
1115 
1116 	/* Deliver to mrouted */
1117 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1118 
1119 	if (ret < 0) {
1120 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1121 		kfree_skb(skb);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 /* Queue a packet for resolution. It gets locked cache entry! */
1128 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1129 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1130 				 struct sk_buff *skb, struct net_device *dev)
1131 {
1132 	const struct iphdr *iph = ip_hdr(skb);
1133 	struct mfc_cache *c;
1134 	bool found = false;
1135 	int err;
1136 
1137 	spin_lock_bh(&mfc_unres_lock);
1138 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1139 		if (c->mfc_mcastgrp == iph->daddr &&
1140 		    c->mfc_origin == iph->saddr) {
1141 			found = true;
1142 			break;
1143 		}
1144 	}
1145 
1146 	if (!found) {
1147 		/* Create a new entry if allowable */
1148 		c = ipmr_cache_alloc_unres();
1149 		if (!c) {
1150 			spin_unlock_bh(&mfc_unres_lock);
1151 
1152 			kfree_skb(skb);
1153 			return -ENOBUFS;
1154 		}
1155 
1156 		/* Fill in the new cache entry */
1157 		c->_c.mfc_parent = -1;
1158 		c->mfc_origin	= iph->saddr;
1159 		c->mfc_mcastgrp	= iph->daddr;
1160 
1161 		/* Reflect first query at mrouted. */
1162 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1163 
1164 		if (err < 0) {
1165 			/* If the report failed throw the cache entry
1166 			   out - Brad Parker
1167 			 */
1168 			spin_unlock_bh(&mfc_unres_lock);
1169 
1170 			ipmr_cache_free(c);
1171 			kfree_skb(skb);
1172 			return err;
1173 		}
1174 
1175 		atomic_inc(&mrt->cache_resolve_queue_len);
1176 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1177 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1178 
1179 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1180 			mod_timer(&mrt->ipmr_expire_timer,
1181 				  c->_c.mfc_un.unres.expires);
1182 	}
1183 
1184 	/* See if we can append the packet */
1185 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1186 		kfree_skb(skb);
1187 		err = -ENOBUFS;
1188 	} else {
1189 		if (dev) {
1190 			skb->dev = dev;
1191 			skb->skb_iif = dev->ifindex;
1192 		}
1193 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1194 		err = 0;
1195 	}
1196 
1197 	spin_unlock_bh(&mfc_unres_lock);
1198 	return err;
1199 }
1200 
1201 /* MFC cache manipulation by user space mroute daemon */
1202 
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1203 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1204 {
1205 	struct net *net = read_pnet(&mrt->net);
1206 	struct mfc_cache *c;
1207 
1208 	/* The entries are added/deleted only under RTNL */
1209 	rcu_read_lock();
1210 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1211 				   mfc->mfcc_mcastgrp.s_addr, parent);
1212 	rcu_read_unlock();
1213 	if (!c)
1214 		return -ENOENT;
1215 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1216 	list_del_rcu(&c->_c.list);
1217 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1218 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1219 	mr_cache_put(&c->_c);
1220 
1221 	return 0;
1222 }
1223 
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1224 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1225 			struct mfcctl *mfc, int mrtsock, int parent)
1226 {
1227 	struct mfc_cache *uc, *c;
1228 	struct mr_mfc *_uc;
1229 	bool found;
1230 	int ret;
1231 
1232 	if (mfc->mfcc_parent >= MAXVIFS)
1233 		return -ENFILE;
1234 
1235 	/* The entries are added/deleted only under RTNL */
1236 	rcu_read_lock();
1237 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1238 				   mfc->mfcc_mcastgrp.s_addr, parent);
1239 	rcu_read_unlock();
1240 	if (c) {
1241 		spin_lock(&mrt_lock);
1242 		c->_c.mfc_parent = mfc->mfcc_parent;
1243 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1244 		if (!mrtsock)
1245 			c->_c.mfc_flags |= MFC_STATIC;
1246 		spin_unlock(&mrt_lock);
1247 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1248 					      mrt->id);
1249 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1250 		return 0;
1251 	}
1252 
1253 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1254 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1255 		return -EINVAL;
1256 
1257 	c = ipmr_cache_alloc();
1258 	if (!c)
1259 		return -ENOMEM;
1260 
1261 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1262 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1263 	c->_c.mfc_parent = mfc->mfcc_parent;
1264 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1265 	if (!mrtsock)
1266 		c->_c.mfc_flags |= MFC_STATIC;
1267 
1268 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1269 				  ipmr_rht_params);
1270 	if (ret) {
1271 		pr_err("ipmr: rhtable insert error %d\n", ret);
1272 		ipmr_cache_free(c);
1273 		return ret;
1274 	}
1275 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1276 	/* Check to see if we resolved a queued list. If so we
1277 	 * need to send on the frames and tidy up.
1278 	 */
1279 	found = false;
1280 	spin_lock_bh(&mfc_unres_lock);
1281 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1282 		uc = (struct mfc_cache *)_uc;
1283 		if (uc->mfc_origin == c->mfc_origin &&
1284 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1285 			list_del(&_uc->list);
1286 			atomic_dec(&mrt->cache_resolve_queue_len);
1287 			found = true;
1288 			break;
1289 		}
1290 	}
1291 	if (list_empty(&mrt->mfc_unres_queue))
1292 		del_timer(&mrt->ipmr_expire_timer);
1293 	spin_unlock_bh(&mfc_unres_lock);
1294 
1295 	if (found) {
1296 		ipmr_cache_resolve(net, mrt, uc, c);
1297 		ipmr_cache_free(uc);
1298 	}
1299 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1300 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1301 	return 0;
1302 }
1303 
1304 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1305 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1306 {
1307 	struct net *net = read_pnet(&mrt->net);
1308 	struct mr_mfc *c, *tmp;
1309 	struct mfc_cache *cache;
1310 	LIST_HEAD(list);
1311 	int i;
1312 
1313 	/* Shut down all active vif entries */
1314 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1315 		for (i = 0; i < mrt->maxvif; i++) {
1316 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1317 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1318 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1319 				continue;
1320 			vif_delete(mrt, i, 0, &list);
1321 		}
1322 		unregister_netdevice_many(&list);
1323 	}
1324 
1325 	/* Wipe the cache */
1326 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1327 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1328 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1329 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1330 				continue;
1331 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1332 			list_del_rcu(&c->list);
1333 			cache = (struct mfc_cache *)c;
1334 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1335 						      mrt->id);
1336 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1337 			mr_cache_put(c);
1338 		}
1339 	}
1340 
1341 	if (flags & MRT_FLUSH_MFC) {
1342 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1343 			spin_lock_bh(&mfc_unres_lock);
1344 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1345 				list_del(&c->list);
1346 				cache = (struct mfc_cache *)c;
1347 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1348 				ipmr_destroy_unres(mrt, cache);
1349 			}
1350 			spin_unlock_bh(&mfc_unres_lock);
1351 		}
1352 	}
1353 }
1354 
1355 /* called from ip_ra_control(), before an RCU grace period,
1356  * we don't need to call synchronize_rcu() here
1357  */
mrtsock_destruct(struct sock * sk)1358 static void mrtsock_destruct(struct sock *sk)
1359 {
1360 	struct net *net = sock_net(sk);
1361 	struct mr_table *mrt;
1362 
1363 	rtnl_lock();
1364 	ipmr_for_each_table(mrt, net) {
1365 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1366 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1367 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1368 						    NETCONFA_MC_FORWARDING,
1369 						    NETCONFA_IFINDEX_ALL,
1370 						    net->ipv4.devconf_all);
1371 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1372 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1373 		}
1374 	}
1375 	rtnl_unlock();
1376 }
1377 
1378 /* Socket options and virtual interface manipulation. The whole
1379  * virtual interface system is a complete heap, but unfortunately
1380  * that's how BSD mrouted happens to think. Maybe one day with a proper
1381  * MOSPF/PIM router set up we can clean this up.
1382  */
1383 
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1384 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1385 			 unsigned int optlen)
1386 {
1387 	struct net *net = sock_net(sk);
1388 	int val, ret = 0, parent = 0;
1389 	struct mr_table *mrt;
1390 	struct vifctl vif;
1391 	struct mfcctl mfc;
1392 	bool do_wrvifwhole;
1393 	u32 uval;
1394 
1395 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1396 	rtnl_lock();
1397 	if (sk->sk_type != SOCK_RAW ||
1398 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1399 		ret = -EOPNOTSUPP;
1400 		goto out_unlock;
1401 	}
1402 
1403 	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1404 	if (!mrt) {
1405 		ret = -ENOENT;
1406 		goto out_unlock;
1407 	}
1408 	if (optname != MRT_INIT) {
1409 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1410 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1411 			ret = -EACCES;
1412 			goto out_unlock;
1413 		}
1414 	}
1415 
1416 	switch (optname) {
1417 	case MRT_INIT:
1418 		if (optlen != sizeof(int)) {
1419 			ret = -EINVAL;
1420 			break;
1421 		}
1422 		if (rtnl_dereference(mrt->mroute_sk)) {
1423 			ret = -EADDRINUSE;
1424 			break;
1425 		}
1426 
1427 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1428 		if (ret == 0) {
1429 			rcu_assign_pointer(mrt->mroute_sk, sk);
1430 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1431 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1432 						    NETCONFA_MC_FORWARDING,
1433 						    NETCONFA_IFINDEX_ALL,
1434 						    net->ipv4.devconf_all);
1435 		}
1436 		break;
1437 	case MRT_DONE:
1438 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1439 			ret = -EACCES;
1440 		} else {
1441 			/* We need to unlock here because mrtsock_destruct takes
1442 			 * care of rtnl itself and we can't change that due to
1443 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1444 			 */
1445 			rtnl_unlock();
1446 			ret = ip_ra_control(sk, 0, NULL);
1447 			goto out;
1448 		}
1449 		break;
1450 	case MRT_ADD_VIF:
1451 	case MRT_DEL_VIF:
1452 		if (optlen != sizeof(vif)) {
1453 			ret = -EINVAL;
1454 			break;
1455 		}
1456 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1457 			ret = -EFAULT;
1458 			break;
1459 		}
1460 		if (vif.vifc_vifi >= MAXVIFS) {
1461 			ret = -ENFILE;
1462 			break;
1463 		}
1464 		if (optname == MRT_ADD_VIF) {
1465 			ret = vif_add(net, mrt, &vif,
1466 				      sk == rtnl_dereference(mrt->mroute_sk));
1467 		} else {
1468 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1469 		}
1470 		break;
1471 	/* Manipulate the forwarding caches. These live
1472 	 * in a sort of kernel/user symbiosis.
1473 	 */
1474 	case MRT_ADD_MFC:
1475 	case MRT_DEL_MFC:
1476 		parent = -1;
1477 		fallthrough;
1478 	case MRT_ADD_MFC_PROXY:
1479 	case MRT_DEL_MFC_PROXY:
1480 		if (optlen != sizeof(mfc)) {
1481 			ret = -EINVAL;
1482 			break;
1483 		}
1484 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1485 			ret = -EFAULT;
1486 			break;
1487 		}
1488 		if (parent == 0)
1489 			parent = mfc.mfcc_parent;
1490 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1491 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1492 		else
1493 			ret = ipmr_mfc_add(net, mrt, &mfc,
1494 					   sk == rtnl_dereference(mrt->mroute_sk),
1495 					   parent);
1496 		break;
1497 	case MRT_FLUSH:
1498 		if (optlen != sizeof(val)) {
1499 			ret = -EINVAL;
1500 			break;
1501 		}
1502 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1503 			ret = -EFAULT;
1504 			break;
1505 		}
1506 		mroute_clean_tables(mrt, val);
1507 		break;
1508 	/* Control PIM assert. */
1509 	case MRT_ASSERT:
1510 		if (optlen != sizeof(val)) {
1511 			ret = -EINVAL;
1512 			break;
1513 		}
1514 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1515 			ret = -EFAULT;
1516 			break;
1517 		}
1518 		mrt->mroute_do_assert = val;
1519 		break;
1520 	case MRT_PIM:
1521 		if (!ipmr_pimsm_enabled()) {
1522 			ret = -ENOPROTOOPT;
1523 			break;
1524 		}
1525 		if (optlen != sizeof(val)) {
1526 			ret = -EINVAL;
1527 			break;
1528 		}
1529 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1530 			ret = -EFAULT;
1531 			break;
1532 		}
1533 
1534 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1535 		val = !!val;
1536 		if (val != mrt->mroute_do_pim) {
1537 			mrt->mroute_do_pim = val;
1538 			mrt->mroute_do_assert = val;
1539 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1540 		}
1541 		break;
1542 	case MRT_TABLE:
1543 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1544 			ret = -ENOPROTOOPT;
1545 			break;
1546 		}
1547 		if (optlen != sizeof(uval)) {
1548 			ret = -EINVAL;
1549 			break;
1550 		}
1551 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1552 			ret = -EFAULT;
1553 			break;
1554 		}
1555 
1556 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1557 			ret = -EBUSY;
1558 		} else {
1559 			mrt = ipmr_new_table(net, uval);
1560 			if (IS_ERR(mrt))
1561 				ret = PTR_ERR(mrt);
1562 			else
1563 				raw_sk(sk)->ipmr_table = uval;
1564 		}
1565 		break;
1566 	/* Spurious command, or MRT_VERSION which you cannot set. */
1567 	default:
1568 		ret = -ENOPROTOOPT;
1569 	}
1570 out_unlock:
1571 	rtnl_unlock();
1572 out:
1573 	return ret;
1574 }
1575 
1576 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1577 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1578 {
1579 	switch (cmd) {
1580 	/* These userspace buffers will be consumed by ipmr_ioctl() */
1581 	case SIOCGETVIFCNT: {
1582 		struct sioc_vif_req buffer;
1583 
1584 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1585 				      sizeof(buffer));
1586 		}
1587 	case SIOCGETSGCNT: {
1588 		struct sioc_sg_req buffer;
1589 
1590 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1591 				      sizeof(buffer));
1592 		}
1593 	}
1594 	/* return code > 0 means that the ioctl was not executed */
1595 	return 1;
1596 }
1597 
1598 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1599 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1600 			 sockptr_t optlen)
1601 {
1602 	int olr;
1603 	int val;
1604 	struct net *net = sock_net(sk);
1605 	struct mr_table *mrt;
1606 
1607 	if (sk->sk_type != SOCK_RAW ||
1608 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1609 		return -EOPNOTSUPP;
1610 
1611 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1612 	if (!mrt)
1613 		return -ENOENT;
1614 
1615 	switch (optname) {
1616 	case MRT_VERSION:
1617 		val = 0x0305;
1618 		break;
1619 	case MRT_PIM:
1620 		if (!ipmr_pimsm_enabled())
1621 			return -ENOPROTOOPT;
1622 		val = mrt->mroute_do_pim;
1623 		break;
1624 	case MRT_ASSERT:
1625 		val = mrt->mroute_do_assert;
1626 		break;
1627 	default:
1628 		return -ENOPROTOOPT;
1629 	}
1630 
1631 	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1632 		return -EFAULT;
1633 	if (olr < 0)
1634 		return -EINVAL;
1635 
1636 	olr = min_t(unsigned int, olr, sizeof(int));
1637 
1638 	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1639 		return -EFAULT;
1640 	if (copy_to_sockptr(optval, &val, olr))
1641 		return -EFAULT;
1642 	return 0;
1643 }
1644 
1645 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1646 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1647 {
1648 	struct vif_device *vif;
1649 	struct mfc_cache *c;
1650 	struct net *net = sock_net(sk);
1651 	struct sioc_vif_req *vr;
1652 	struct sioc_sg_req *sr;
1653 	struct mr_table *mrt;
1654 
1655 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1656 	if (!mrt)
1657 		return -ENOENT;
1658 
1659 	switch (cmd) {
1660 	case SIOCGETVIFCNT:
1661 		vr = (struct sioc_vif_req *)arg;
1662 		if (vr->vifi >= mrt->maxvif)
1663 			return -EINVAL;
1664 		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1665 		rcu_read_lock();
1666 		vif = &mrt->vif_table[vr->vifi];
1667 		if (VIF_EXISTS(mrt, vr->vifi)) {
1668 			vr->icount = READ_ONCE(vif->pkt_in);
1669 			vr->ocount = READ_ONCE(vif->pkt_out);
1670 			vr->ibytes = READ_ONCE(vif->bytes_in);
1671 			vr->obytes = READ_ONCE(vif->bytes_out);
1672 			rcu_read_unlock();
1673 
1674 			return 0;
1675 		}
1676 		rcu_read_unlock();
1677 		return -EADDRNOTAVAIL;
1678 	case SIOCGETSGCNT:
1679 		sr = (struct sioc_sg_req *)arg;
1680 
1681 		rcu_read_lock();
1682 		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1683 		if (c) {
1684 			sr->pktcnt = c->_c.mfc_un.res.pkt;
1685 			sr->bytecnt = c->_c.mfc_un.res.bytes;
1686 			sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1687 			rcu_read_unlock();
1688 			return 0;
1689 		}
1690 		rcu_read_unlock();
1691 		return -EADDRNOTAVAIL;
1692 	default:
1693 		return -ENOIOCTLCMD;
1694 	}
1695 }
1696 
1697 #ifdef CONFIG_COMPAT
1698 struct compat_sioc_sg_req {
1699 	struct in_addr src;
1700 	struct in_addr grp;
1701 	compat_ulong_t pktcnt;
1702 	compat_ulong_t bytecnt;
1703 	compat_ulong_t wrong_if;
1704 };
1705 
1706 struct compat_sioc_vif_req {
1707 	vifi_t	vifi;		/* Which iface */
1708 	compat_ulong_t icount;
1709 	compat_ulong_t ocount;
1710 	compat_ulong_t ibytes;
1711 	compat_ulong_t obytes;
1712 };
1713 
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1714 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1715 {
1716 	struct compat_sioc_sg_req sr;
1717 	struct compat_sioc_vif_req vr;
1718 	struct vif_device *vif;
1719 	struct mfc_cache *c;
1720 	struct net *net = sock_net(sk);
1721 	struct mr_table *mrt;
1722 
1723 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1724 	if (!mrt)
1725 		return -ENOENT;
1726 
1727 	switch (cmd) {
1728 	case SIOCGETVIFCNT:
1729 		if (copy_from_user(&vr, arg, sizeof(vr)))
1730 			return -EFAULT;
1731 		if (vr.vifi >= mrt->maxvif)
1732 			return -EINVAL;
1733 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1734 		rcu_read_lock();
1735 		vif = &mrt->vif_table[vr.vifi];
1736 		if (VIF_EXISTS(mrt, vr.vifi)) {
1737 			vr.icount = READ_ONCE(vif->pkt_in);
1738 			vr.ocount = READ_ONCE(vif->pkt_out);
1739 			vr.ibytes = READ_ONCE(vif->bytes_in);
1740 			vr.obytes = READ_ONCE(vif->bytes_out);
1741 			rcu_read_unlock();
1742 
1743 			if (copy_to_user(arg, &vr, sizeof(vr)))
1744 				return -EFAULT;
1745 			return 0;
1746 		}
1747 		rcu_read_unlock();
1748 		return -EADDRNOTAVAIL;
1749 	case SIOCGETSGCNT:
1750 		if (copy_from_user(&sr, arg, sizeof(sr)))
1751 			return -EFAULT;
1752 
1753 		rcu_read_lock();
1754 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1755 		if (c) {
1756 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1757 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1758 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1759 			rcu_read_unlock();
1760 
1761 			if (copy_to_user(arg, &sr, sizeof(sr)))
1762 				return -EFAULT;
1763 			return 0;
1764 		}
1765 		rcu_read_unlock();
1766 		return -EADDRNOTAVAIL;
1767 	default:
1768 		return -ENOIOCTLCMD;
1769 	}
1770 }
1771 #endif
1772 
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1773 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1774 {
1775 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1776 	struct net *net = dev_net(dev);
1777 	struct mr_table *mrt;
1778 	struct vif_device *v;
1779 	int ct;
1780 
1781 	if (event != NETDEV_UNREGISTER)
1782 		return NOTIFY_DONE;
1783 
1784 	ipmr_for_each_table(mrt, net) {
1785 		v = &mrt->vif_table[0];
1786 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1787 			if (rcu_access_pointer(v->dev) == dev)
1788 				vif_delete(mrt, ct, 1, NULL);
1789 		}
1790 	}
1791 	return NOTIFY_DONE;
1792 }
1793 
1794 static struct notifier_block ip_mr_notifier = {
1795 	.notifier_call = ipmr_device_event,
1796 };
1797 
1798 /* Encapsulate a packet by attaching a valid IPIP header to it.
1799  * This avoids tunnel drivers and other mess and gives us the speed so
1800  * important for multicast video.
1801  */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1802 static void ip_encap(struct net *net, struct sk_buff *skb,
1803 		     __be32 saddr, __be32 daddr)
1804 {
1805 	struct iphdr *iph;
1806 	const struct iphdr *old_iph = ip_hdr(skb);
1807 
1808 	skb_push(skb, sizeof(struct iphdr));
1809 	skb->transport_header = skb->network_header;
1810 	skb_reset_network_header(skb);
1811 	iph = ip_hdr(skb);
1812 
1813 	iph->version	=	4;
1814 	iph->tos	=	old_iph->tos;
1815 	iph->ttl	=	old_iph->ttl;
1816 	iph->frag_off	=	0;
1817 	iph->daddr	=	daddr;
1818 	iph->saddr	=	saddr;
1819 	iph->protocol	=	IPPROTO_IPIP;
1820 	iph->ihl	=	5;
1821 	iph->tot_len	=	htons(skb->len);
1822 	ip_select_ident(net, skb, NULL);
1823 	ip_send_check(iph);
1824 
1825 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1826 	nf_reset_ct(skb);
1827 }
1828 
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1829 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1830 				      struct sk_buff *skb)
1831 {
1832 	struct ip_options *opt = &(IPCB(skb)->opt);
1833 
1834 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1835 
1836 	if (unlikely(opt->optlen))
1837 		ip_forward_options(skb);
1838 
1839 	return dst_output(net, sk, skb);
1840 }
1841 
1842 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1843 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1844 				   int in_vifi, int out_vifi)
1845 {
1846 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1847 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1848 
1849 	if (!skb->offload_l3_fwd_mark)
1850 		return false;
1851 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1852 		return false;
1853 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1854 					&in_vif->dev_parent_id);
1855 }
1856 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1857 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1858 				   int in_vifi, int out_vifi)
1859 {
1860 	return false;
1861 }
1862 #endif
1863 
1864 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1865 
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1866 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1867 			    int in_vifi, struct sk_buff *skb, int vifi)
1868 {
1869 	const struct iphdr *iph = ip_hdr(skb);
1870 	struct vif_device *vif = &mrt->vif_table[vifi];
1871 	struct net_device *vif_dev;
1872 	struct net_device *dev;
1873 	struct rtable *rt;
1874 	struct flowi4 fl4;
1875 	int    encap = 0;
1876 
1877 	vif_dev = vif_dev_read(vif);
1878 	if (!vif_dev)
1879 		goto out_free;
1880 
1881 	if (vif->flags & VIFF_REGISTER) {
1882 		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1883 		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1884 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1885 		DEV_STATS_INC(vif_dev, tx_packets);
1886 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1887 		goto out_free;
1888 	}
1889 
1890 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1891 		goto out_free;
1892 
1893 	if (vif->flags & VIFF_TUNNEL) {
1894 		rt = ip_route_output_ports(net, &fl4, NULL,
1895 					   vif->remote, vif->local,
1896 					   0, 0,
1897 					   IPPROTO_IPIP,
1898 					   iph->tos & INET_DSCP_MASK, vif->link);
1899 		if (IS_ERR(rt))
1900 			goto out_free;
1901 		encap = sizeof(struct iphdr);
1902 	} else {
1903 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1904 					   0, 0,
1905 					   IPPROTO_IPIP,
1906 					   iph->tos & INET_DSCP_MASK, vif->link);
1907 		if (IS_ERR(rt))
1908 			goto out_free;
1909 	}
1910 
1911 	dev = rt->dst.dev;
1912 
1913 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1914 		/* Do not fragment multicasts. Alas, IPv4 does not
1915 		 * allow to send ICMP, so that packets will disappear
1916 		 * to blackhole.
1917 		 */
1918 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1919 		ip_rt_put(rt);
1920 		goto out_free;
1921 	}
1922 
1923 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1924 
1925 	if (skb_cow(skb, encap)) {
1926 		ip_rt_put(rt);
1927 		goto out_free;
1928 	}
1929 
1930 	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1931 	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1932 
1933 	skb_dst_drop(skb);
1934 	skb_dst_set(skb, &rt->dst);
1935 	ip_decrease_ttl(ip_hdr(skb));
1936 
1937 	/* FIXME: forward and output firewalls used to be called here.
1938 	 * What do we do with netfilter? -- RR
1939 	 */
1940 	if (vif->flags & VIFF_TUNNEL) {
1941 		ip_encap(net, skb, vif->local, vif->remote);
1942 		/* FIXME: extra output firewall step used to be here. --RR */
1943 		DEV_STATS_INC(vif_dev, tx_packets);
1944 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1945 	}
1946 
1947 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1948 
1949 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1950 	 * not only before forwarding, but after forwarding on all output
1951 	 * interfaces. It is clear, if mrouter runs a multicasting
1952 	 * program, it should receive packets not depending to what interface
1953 	 * program is joined.
1954 	 * If we will not make it, the program will have to join on all
1955 	 * interfaces. On the other hand, multihoming host (or router, but
1956 	 * not mrouter) cannot join to more than one interface - it will
1957 	 * result in receiving multiple packets.
1958 	 */
1959 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1960 		net, NULL, skb, skb->dev, dev,
1961 		ipmr_forward_finish);
1962 	return;
1963 
1964 out_free:
1965 	kfree_skb(skb);
1966 }
1967 
1968 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1969 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1970 {
1971 	int ct;
1972 	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1973 	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1974 		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1975 			break;
1976 	}
1977 	return ct;
1978 }
1979 
1980 /* "local" means that we should preserve one skb (for local delivery) */
1981 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1982 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1983 			  struct net_device *dev, struct sk_buff *skb,
1984 			  struct mfc_cache *c, int local)
1985 {
1986 	int true_vifi = ipmr_find_vif(mrt, dev);
1987 	int psend = -1;
1988 	int vif, ct;
1989 
1990 	vif = c->_c.mfc_parent;
1991 	c->_c.mfc_un.res.pkt++;
1992 	c->_c.mfc_un.res.bytes += skb->len;
1993 	c->_c.mfc_un.res.lastuse = jiffies;
1994 
1995 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1996 		struct mfc_cache *cache_proxy;
1997 
1998 		/* For an (*,G) entry, we only check that the incoming
1999 		 * interface is part of the static tree.
2000 		 */
2001 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2002 		if (cache_proxy &&
2003 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2004 			goto forward;
2005 	}
2006 
2007 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
2008 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
2009 		if (rt_is_output_route(skb_rtable(skb))) {
2010 			/* It is our own packet, looped back.
2011 			 * Very complicated situation...
2012 			 *
2013 			 * The best workaround until routing daemons will be
2014 			 * fixed is not to redistribute packet, if it was
2015 			 * send through wrong interface. It means, that
2016 			 * multicast applications WILL NOT work for
2017 			 * (S,G), which have default multicast route pointing
2018 			 * to wrong oif. In any case, it is not a good
2019 			 * idea to use multicasting applications on router.
2020 			 */
2021 			goto dont_forward;
2022 		}
2023 
2024 		c->_c.mfc_un.res.wrong_if++;
2025 
2026 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2027 		    /* pimsm uses asserts, when switching from RPT to SPT,
2028 		     * so that we cannot check that packet arrived on an oif.
2029 		     * It is bad, but otherwise we would need to move pretty
2030 		     * large chunk of pimd to kernel. Ough... --ANK
2031 		     */
2032 		    (mrt->mroute_do_pim ||
2033 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2034 		    time_after(jiffies,
2035 			       c->_c.mfc_un.res.last_assert +
2036 			       MFC_ASSERT_THRESH)) {
2037 			c->_c.mfc_un.res.last_assert = jiffies;
2038 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2039 			if (mrt->mroute_do_wrvifwhole)
2040 				ipmr_cache_report(mrt, skb, true_vifi,
2041 						  IGMPMSG_WRVIFWHOLE);
2042 		}
2043 		goto dont_forward;
2044 	}
2045 
2046 forward:
2047 	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2048 		   mrt->vif_table[vif].pkt_in + 1);
2049 	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2050 		   mrt->vif_table[vif].bytes_in + skb->len);
2051 
2052 	/* Forward the frame */
2053 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2054 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2055 		if (true_vifi >= 0 &&
2056 		    true_vifi != c->_c.mfc_parent &&
2057 		    ip_hdr(skb)->ttl >
2058 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2059 			/* It's an (*,*) entry and the packet is not coming from
2060 			 * the upstream: forward the packet to the upstream
2061 			 * only.
2062 			 */
2063 			psend = c->_c.mfc_parent;
2064 			goto last_forward;
2065 		}
2066 		goto dont_forward;
2067 	}
2068 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2069 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2070 		/* For (*,G) entry, don't forward to the incoming interface */
2071 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2072 		     ct != true_vifi) &&
2073 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2074 			if (psend != -1) {
2075 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2076 
2077 				if (skb2)
2078 					ipmr_queue_xmit(net, mrt, true_vifi,
2079 							skb2, psend);
2080 			}
2081 			psend = ct;
2082 		}
2083 	}
2084 last_forward:
2085 	if (psend != -1) {
2086 		if (local) {
2087 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2088 
2089 			if (skb2)
2090 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2091 						psend);
2092 		} else {
2093 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2094 			return;
2095 		}
2096 	}
2097 
2098 dont_forward:
2099 	if (!local)
2100 		kfree_skb(skb);
2101 }
2102 
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2103 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2104 {
2105 	struct rtable *rt = skb_rtable(skb);
2106 	struct iphdr *iph = ip_hdr(skb);
2107 	struct flowi4 fl4 = {
2108 		.daddr = iph->daddr,
2109 		.saddr = iph->saddr,
2110 		.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(iph)),
2111 		.flowi4_oif = (rt_is_output_route(rt) ?
2112 			       skb->dev->ifindex : 0),
2113 		.flowi4_iif = (rt_is_output_route(rt) ?
2114 			       LOOPBACK_IFINDEX :
2115 			       skb->dev->ifindex),
2116 		.flowi4_mark = skb->mark,
2117 	};
2118 	struct mr_table *mrt;
2119 	int err;
2120 
2121 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2122 	if (err)
2123 		return ERR_PTR(err);
2124 	return mrt;
2125 }
2126 
2127 /* Multicast packets for forwarding arrive here
2128  * Called with rcu_read_lock();
2129  */
ip_mr_input(struct sk_buff * skb)2130 int ip_mr_input(struct sk_buff *skb)
2131 {
2132 	struct mfc_cache *cache;
2133 	struct net *net = dev_net(skb->dev);
2134 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2135 	struct mr_table *mrt;
2136 	struct net_device *dev;
2137 
2138 	/* skb->dev passed in is the loX master dev for vrfs.
2139 	 * As there are no vifs associated with loopback devices,
2140 	 * get the proper interface that does have a vif associated with it.
2141 	 */
2142 	dev = skb->dev;
2143 	if (netif_is_l3_master(skb->dev)) {
2144 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2145 		if (!dev) {
2146 			kfree_skb(skb);
2147 			return -ENODEV;
2148 		}
2149 	}
2150 
2151 	/* Packet is looped back after forward, it should not be
2152 	 * forwarded second time, but still can be delivered locally.
2153 	 */
2154 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2155 		goto dont_forward;
2156 
2157 	mrt = ipmr_rt_fib_lookup(net, skb);
2158 	if (IS_ERR(mrt)) {
2159 		kfree_skb(skb);
2160 		return PTR_ERR(mrt);
2161 	}
2162 	if (!local) {
2163 		if (IPCB(skb)->opt.router_alert) {
2164 			if (ip_call_ra_chain(skb))
2165 				return 0;
2166 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2167 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2168 			 * Cisco IOS <= 11.2(8)) do not put router alert
2169 			 * option to IGMP packets destined to routable
2170 			 * groups. It is very bad, because it means
2171 			 * that we can forward NO IGMP messages.
2172 			 */
2173 			struct sock *mroute_sk;
2174 
2175 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2176 			if (mroute_sk) {
2177 				nf_reset_ct(skb);
2178 				raw_rcv(mroute_sk, skb);
2179 				return 0;
2180 			}
2181 		}
2182 	}
2183 
2184 	/* already under rcu_read_lock() */
2185 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2186 	if (!cache) {
2187 		int vif = ipmr_find_vif(mrt, dev);
2188 
2189 		if (vif >= 0)
2190 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2191 						    vif);
2192 	}
2193 
2194 	/* No usable cache entry */
2195 	if (!cache) {
2196 		int vif;
2197 
2198 		if (local) {
2199 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2200 			ip_local_deliver(skb);
2201 			if (!skb2)
2202 				return -ENOBUFS;
2203 			skb = skb2;
2204 		}
2205 
2206 		vif = ipmr_find_vif(mrt, dev);
2207 		if (vif >= 0)
2208 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2209 		kfree_skb(skb);
2210 		return -ENODEV;
2211 	}
2212 
2213 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2214 
2215 	if (local)
2216 		return ip_local_deliver(skb);
2217 
2218 	return 0;
2219 
2220 dont_forward:
2221 	if (local)
2222 		return ip_local_deliver(skb);
2223 	kfree_skb(skb);
2224 	return 0;
2225 }
2226 
2227 #ifdef CONFIG_IP_PIMSM_V1
2228 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2229 int pim_rcv_v1(struct sk_buff *skb)
2230 {
2231 	struct igmphdr *pim;
2232 	struct net *net = dev_net(skb->dev);
2233 	struct mr_table *mrt;
2234 
2235 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2236 		goto drop;
2237 
2238 	pim = igmp_hdr(skb);
2239 
2240 	mrt = ipmr_rt_fib_lookup(net, skb);
2241 	if (IS_ERR(mrt))
2242 		goto drop;
2243 	if (!mrt->mroute_do_pim ||
2244 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2245 		goto drop;
2246 
2247 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2248 drop:
2249 		kfree_skb(skb);
2250 	}
2251 	return 0;
2252 }
2253 #endif
2254 
2255 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2256 static int pim_rcv(struct sk_buff *skb)
2257 {
2258 	struct pimreghdr *pim;
2259 	struct net *net = dev_net(skb->dev);
2260 	struct mr_table *mrt;
2261 
2262 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2263 		goto drop;
2264 
2265 	pim = (struct pimreghdr *)skb_transport_header(skb);
2266 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2267 	    (pim->flags & PIM_NULL_REGISTER) ||
2268 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2269 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2270 		goto drop;
2271 
2272 	mrt = ipmr_rt_fib_lookup(net, skb);
2273 	if (IS_ERR(mrt))
2274 		goto drop;
2275 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2276 drop:
2277 		kfree_skb(skb);
2278 	}
2279 	return 0;
2280 }
2281 #endif
2282 
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2283 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2284 		   __be32 saddr, __be32 daddr,
2285 		   struct rtmsg *rtm, u32 portid)
2286 {
2287 	struct mfc_cache *cache;
2288 	struct mr_table *mrt;
2289 	int err;
2290 
2291 	rcu_read_lock();
2292 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2293 	if (!mrt) {
2294 		rcu_read_unlock();
2295 		return -ENOENT;
2296 	}
2297 
2298 	cache = ipmr_cache_find(mrt, saddr, daddr);
2299 	if (!cache && skb->dev) {
2300 		int vif = ipmr_find_vif(mrt, skb->dev);
2301 
2302 		if (vif >= 0)
2303 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2304 	}
2305 	if (!cache) {
2306 		struct sk_buff *skb2;
2307 		struct iphdr *iph;
2308 		struct net_device *dev;
2309 		int vif = -1;
2310 
2311 		dev = skb->dev;
2312 		if (dev)
2313 			vif = ipmr_find_vif(mrt, dev);
2314 		if (vif < 0) {
2315 			rcu_read_unlock();
2316 			return -ENODEV;
2317 		}
2318 
2319 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2320 		if (!skb2) {
2321 			rcu_read_unlock();
2322 			return -ENOMEM;
2323 		}
2324 
2325 		NETLINK_CB(skb2).portid = portid;
2326 		skb_push(skb2, sizeof(struct iphdr));
2327 		skb_reset_network_header(skb2);
2328 		iph = ip_hdr(skb2);
2329 		iph->ihl = sizeof(struct iphdr) >> 2;
2330 		iph->saddr = saddr;
2331 		iph->daddr = daddr;
2332 		iph->version = 0;
2333 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2334 		rcu_read_unlock();
2335 		return err;
2336 	}
2337 
2338 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2339 	rcu_read_unlock();
2340 	return err;
2341 }
2342 
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2343 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2344 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2345 			    int flags)
2346 {
2347 	struct nlmsghdr *nlh;
2348 	struct rtmsg *rtm;
2349 	int err;
2350 
2351 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2352 	if (!nlh)
2353 		return -EMSGSIZE;
2354 
2355 	rtm = nlmsg_data(nlh);
2356 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2357 	rtm->rtm_dst_len  = 32;
2358 	rtm->rtm_src_len  = 32;
2359 	rtm->rtm_tos      = 0;
2360 	rtm->rtm_table    = mrt->id;
2361 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2362 		goto nla_put_failure;
2363 	rtm->rtm_type     = RTN_MULTICAST;
2364 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2365 	if (c->_c.mfc_flags & MFC_STATIC)
2366 		rtm->rtm_protocol = RTPROT_STATIC;
2367 	else
2368 		rtm->rtm_protocol = RTPROT_MROUTED;
2369 	rtm->rtm_flags    = 0;
2370 
2371 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2372 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2373 		goto nla_put_failure;
2374 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2375 	/* do not break the dump if cache is unresolved */
2376 	if (err < 0 && err != -ENOENT)
2377 		goto nla_put_failure;
2378 
2379 	nlmsg_end(skb, nlh);
2380 	return 0;
2381 
2382 nla_put_failure:
2383 	nlmsg_cancel(skb, nlh);
2384 	return -EMSGSIZE;
2385 }
2386 
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2387 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2388 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2389 			     int flags)
2390 {
2391 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2392 				cmd, flags);
2393 }
2394 
mroute_msgsize(bool unresolved,int maxvif)2395 static size_t mroute_msgsize(bool unresolved, int maxvif)
2396 {
2397 	size_t len =
2398 		NLMSG_ALIGN(sizeof(struct rtmsg))
2399 		+ nla_total_size(4)	/* RTA_TABLE */
2400 		+ nla_total_size(4)	/* RTA_SRC */
2401 		+ nla_total_size(4)	/* RTA_DST */
2402 		;
2403 
2404 	if (!unresolved)
2405 		len = len
2406 		      + nla_total_size(4)	/* RTA_IIF */
2407 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2408 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2409 						/* RTA_MFC_STATS */
2410 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2411 		;
2412 
2413 	return len;
2414 }
2415 
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2416 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2417 				 int cmd)
2418 {
2419 	struct net *net = read_pnet(&mrt->net);
2420 	struct sk_buff *skb;
2421 	int err = -ENOBUFS;
2422 
2423 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2424 				       mrt->maxvif),
2425 			GFP_ATOMIC);
2426 	if (!skb)
2427 		goto errout;
2428 
2429 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2430 	if (err < 0)
2431 		goto errout;
2432 
2433 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2434 	return;
2435 
2436 errout:
2437 	kfree_skb(skb);
2438 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2439 }
2440 
igmpmsg_netlink_msgsize(size_t payloadlen)2441 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2442 {
2443 	size_t len =
2444 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2445 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2446 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2447 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2448 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2449 		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2450 					/* IPMRA_CREPORT_PKT */
2451 		+ nla_total_size(payloadlen)
2452 		;
2453 
2454 	return len;
2455 }
2456 
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2457 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2458 {
2459 	struct net *net = read_pnet(&mrt->net);
2460 	struct nlmsghdr *nlh;
2461 	struct rtgenmsg *rtgenm;
2462 	struct igmpmsg *msg;
2463 	struct sk_buff *skb;
2464 	struct nlattr *nla;
2465 	int payloadlen;
2466 
2467 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2468 	msg = (struct igmpmsg *)skb_network_header(pkt);
2469 
2470 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2471 	if (!skb)
2472 		goto errout;
2473 
2474 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2475 			sizeof(struct rtgenmsg), 0);
2476 	if (!nlh)
2477 		goto errout;
2478 	rtgenm = nlmsg_data(nlh);
2479 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2480 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2481 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2482 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2483 			    msg->im_src.s_addr) ||
2484 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2485 			    msg->im_dst.s_addr) ||
2486 	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2487 		goto nla_put_failure;
2488 
2489 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2490 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2491 				  nla_data(nla), payloadlen))
2492 		goto nla_put_failure;
2493 
2494 	nlmsg_end(skb, nlh);
2495 
2496 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2497 	return;
2498 
2499 nla_put_failure:
2500 	nlmsg_cancel(skb, nlh);
2501 errout:
2502 	kfree_skb(skb);
2503 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2504 }
2505 
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2506 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2507 				       const struct nlmsghdr *nlh,
2508 				       struct nlattr **tb,
2509 				       struct netlink_ext_ack *extack)
2510 {
2511 	struct rtmsg *rtm;
2512 	int i, err;
2513 
2514 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2515 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2516 		return -EINVAL;
2517 	}
2518 
2519 	if (!netlink_strict_get_check(skb))
2520 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2521 					      rtm_ipv4_policy, extack);
2522 
2523 	rtm = nlmsg_data(nlh);
2524 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2525 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2526 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2527 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2528 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2529 		return -EINVAL;
2530 	}
2531 
2532 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2533 					    rtm_ipv4_policy, extack);
2534 	if (err)
2535 		return err;
2536 
2537 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2538 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2539 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2540 		return -EINVAL;
2541 	}
2542 
2543 	for (i = 0; i <= RTA_MAX; i++) {
2544 		if (!tb[i])
2545 			continue;
2546 
2547 		switch (i) {
2548 		case RTA_SRC:
2549 		case RTA_DST:
2550 		case RTA_TABLE:
2551 			break;
2552 		default:
2553 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2554 			return -EINVAL;
2555 		}
2556 	}
2557 
2558 	return 0;
2559 }
2560 
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2561 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2562 			     struct netlink_ext_ack *extack)
2563 {
2564 	struct net *net = sock_net(in_skb->sk);
2565 	struct nlattr *tb[RTA_MAX + 1];
2566 	struct sk_buff *skb = NULL;
2567 	struct mfc_cache *cache;
2568 	struct mr_table *mrt;
2569 	__be32 src, grp;
2570 	u32 tableid;
2571 	int err;
2572 
2573 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2574 	if (err < 0)
2575 		goto errout;
2576 
2577 	src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2578 	grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2579 	tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2580 
2581 	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2582 	if (!mrt) {
2583 		err = -ENOENT;
2584 		goto errout_free;
2585 	}
2586 
2587 	/* entries are added/deleted only under RTNL */
2588 	rcu_read_lock();
2589 	cache = ipmr_cache_find(mrt, src, grp);
2590 	rcu_read_unlock();
2591 	if (!cache) {
2592 		err = -ENOENT;
2593 		goto errout_free;
2594 	}
2595 
2596 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2597 	if (!skb) {
2598 		err = -ENOBUFS;
2599 		goto errout_free;
2600 	}
2601 
2602 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2603 			       nlh->nlmsg_seq, cache,
2604 			       RTM_NEWROUTE, 0);
2605 	if (err < 0)
2606 		goto errout_free;
2607 
2608 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2609 
2610 errout:
2611 	return err;
2612 
2613 errout_free:
2614 	kfree_skb(skb);
2615 	goto errout;
2616 }
2617 
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2618 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2619 {
2620 	struct fib_dump_filter filter = {
2621 		.rtnl_held = true,
2622 	};
2623 	int err;
2624 
2625 	if (cb->strict_check) {
2626 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2627 					    &filter, cb);
2628 		if (err < 0)
2629 			return err;
2630 	}
2631 
2632 	if (filter.table_id) {
2633 		struct mr_table *mrt;
2634 
2635 		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2636 		if (!mrt) {
2637 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2638 				return skb->len;
2639 
2640 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2641 			return -ENOENT;
2642 		}
2643 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2644 				    &mfc_unres_lock, &filter);
2645 		return skb->len ? : err;
2646 	}
2647 
2648 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2649 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2650 }
2651 
2652 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2653 	[RTA_SRC]	= { .type = NLA_U32 },
2654 	[RTA_DST]	= { .type = NLA_U32 },
2655 	[RTA_IIF]	= { .type = NLA_U32 },
2656 	[RTA_TABLE]	= { .type = NLA_U32 },
2657 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2658 };
2659 
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2660 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2661 {
2662 	switch (rtm_protocol) {
2663 	case RTPROT_STATIC:
2664 	case RTPROT_MROUTED:
2665 		return true;
2666 	}
2667 	return false;
2668 }
2669 
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2670 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2671 {
2672 	struct rtnexthop *rtnh = nla_data(nla);
2673 	int remaining = nla_len(nla), vifi = 0;
2674 
2675 	while (rtnh_ok(rtnh, remaining)) {
2676 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2677 		if (++vifi == MAXVIFS)
2678 			break;
2679 		rtnh = rtnh_next(rtnh, &remaining);
2680 	}
2681 
2682 	return remaining > 0 ? -EINVAL : vifi;
2683 }
2684 
2685 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2686 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2687 			    struct mfcctl *mfcc, int *mrtsock,
2688 			    struct mr_table **mrtret,
2689 			    struct netlink_ext_ack *extack)
2690 {
2691 	struct net_device *dev = NULL;
2692 	u32 tblid = RT_TABLE_DEFAULT;
2693 	struct mr_table *mrt;
2694 	struct nlattr *attr;
2695 	struct rtmsg *rtm;
2696 	int ret, rem;
2697 
2698 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2699 					rtm_ipmr_policy, extack);
2700 	if (ret < 0)
2701 		goto out;
2702 	rtm = nlmsg_data(nlh);
2703 
2704 	ret = -EINVAL;
2705 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2706 	    rtm->rtm_type != RTN_MULTICAST ||
2707 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2708 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2709 		goto out;
2710 
2711 	memset(mfcc, 0, sizeof(*mfcc));
2712 	mfcc->mfcc_parent = -1;
2713 	ret = 0;
2714 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2715 		switch (nla_type(attr)) {
2716 		case RTA_SRC:
2717 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2718 			break;
2719 		case RTA_DST:
2720 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2721 			break;
2722 		case RTA_IIF:
2723 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2724 			if (!dev) {
2725 				ret = -ENODEV;
2726 				goto out;
2727 			}
2728 			break;
2729 		case RTA_MULTIPATH:
2730 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2731 				ret = -EINVAL;
2732 				goto out;
2733 			}
2734 			break;
2735 		case RTA_PREFSRC:
2736 			ret = 1;
2737 			break;
2738 		case RTA_TABLE:
2739 			tblid = nla_get_u32(attr);
2740 			break;
2741 		}
2742 	}
2743 	mrt = __ipmr_get_table(net, tblid);
2744 	if (!mrt) {
2745 		ret = -ENOENT;
2746 		goto out;
2747 	}
2748 	*mrtret = mrt;
2749 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2750 	if (dev)
2751 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2752 
2753 out:
2754 	return ret;
2755 }
2756 
2757 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2758 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2759 			  struct netlink_ext_ack *extack)
2760 {
2761 	struct net *net = sock_net(skb->sk);
2762 	int ret, mrtsock, parent;
2763 	struct mr_table *tbl;
2764 	struct mfcctl mfcc;
2765 
2766 	mrtsock = 0;
2767 	tbl = NULL;
2768 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2769 	if (ret < 0)
2770 		return ret;
2771 
2772 	parent = ret ? mfcc.mfcc_parent : -1;
2773 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2774 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2775 	else
2776 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2777 }
2778 
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2779 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2780 {
2781 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2782 
2783 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2784 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2785 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2786 			mrt->mroute_reg_vif_num) ||
2787 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2788 		       mrt->mroute_do_assert) ||
2789 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2790 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2791 		       mrt->mroute_do_wrvifwhole))
2792 		return false;
2793 
2794 	return true;
2795 }
2796 
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2797 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2798 {
2799 	struct net_device *vif_dev;
2800 	struct nlattr *vif_nest;
2801 	struct vif_device *vif;
2802 
2803 	vif = &mrt->vif_table[vifid];
2804 	vif_dev = rtnl_dereference(vif->dev);
2805 	/* if the VIF doesn't exist just continue */
2806 	if (!vif_dev)
2807 		return true;
2808 
2809 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2810 	if (!vif_nest)
2811 		return false;
2812 
2813 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2814 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2815 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2816 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2817 			      IPMRA_VIFA_PAD) ||
2818 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2819 			      IPMRA_VIFA_PAD) ||
2820 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2821 			      IPMRA_VIFA_PAD) ||
2822 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2823 			      IPMRA_VIFA_PAD) ||
2824 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2825 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2826 		nla_nest_cancel(skb, vif_nest);
2827 		return false;
2828 	}
2829 	nla_nest_end(skb, vif_nest);
2830 
2831 	return true;
2832 }
2833 
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2834 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2835 			       struct netlink_ext_ack *extack)
2836 {
2837 	struct ifinfomsg *ifm;
2838 
2839 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2840 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2841 		return -EINVAL;
2842 	}
2843 
2844 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2845 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2846 		return -EINVAL;
2847 	}
2848 
2849 	ifm = nlmsg_data(nlh);
2850 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2851 	    ifm->ifi_change || ifm->ifi_index) {
2852 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2853 		return -EINVAL;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2859 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2860 {
2861 	struct net *net = sock_net(skb->sk);
2862 	struct nlmsghdr *nlh = NULL;
2863 	unsigned int t = 0, s_t;
2864 	unsigned int e = 0, s_e;
2865 	struct mr_table *mrt;
2866 
2867 	if (cb->strict_check) {
2868 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2869 
2870 		if (err < 0)
2871 			return err;
2872 	}
2873 
2874 	s_t = cb->args[0];
2875 	s_e = cb->args[1];
2876 
2877 	ipmr_for_each_table(mrt, net) {
2878 		struct nlattr *vifs, *af;
2879 		struct ifinfomsg *hdr;
2880 		u32 i;
2881 
2882 		if (t < s_t)
2883 			goto skip_table;
2884 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2885 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2886 				sizeof(*hdr), NLM_F_MULTI);
2887 		if (!nlh)
2888 			break;
2889 
2890 		hdr = nlmsg_data(nlh);
2891 		memset(hdr, 0, sizeof(*hdr));
2892 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2893 
2894 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2895 		if (!af) {
2896 			nlmsg_cancel(skb, nlh);
2897 			goto out;
2898 		}
2899 
2900 		if (!ipmr_fill_table(mrt, skb)) {
2901 			nlmsg_cancel(skb, nlh);
2902 			goto out;
2903 		}
2904 
2905 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2906 		if (!vifs) {
2907 			nla_nest_end(skb, af);
2908 			nlmsg_end(skb, nlh);
2909 			goto out;
2910 		}
2911 		for (i = 0; i < mrt->maxvif; i++) {
2912 			if (e < s_e)
2913 				goto skip_entry;
2914 			if (!ipmr_fill_vif(mrt, i, skb)) {
2915 				nla_nest_end(skb, vifs);
2916 				nla_nest_end(skb, af);
2917 				nlmsg_end(skb, nlh);
2918 				goto out;
2919 			}
2920 skip_entry:
2921 			e++;
2922 		}
2923 		s_e = 0;
2924 		e = 0;
2925 		nla_nest_end(skb, vifs);
2926 		nla_nest_end(skb, af);
2927 		nlmsg_end(skb, nlh);
2928 skip_table:
2929 		t++;
2930 	}
2931 
2932 out:
2933 	cb->args[1] = e;
2934 	cb->args[0] = t;
2935 
2936 	return skb->len;
2937 }
2938 
2939 #ifdef CONFIG_PROC_FS
2940 /* The /proc interfaces to multicast routing :
2941  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2942  */
2943 
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2944 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2945 	__acquires(RCU)
2946 {
2947 	struct mr_vif_iter *iter = seq->private;
2948 	struct net *net = seq_file_net(seq);
2949 	struct mr_table *mrt;
2950 
2951 	rcu_read_lock();
2952 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2953 	if (!mrt) {
2954 		rcu_read_unlock();
2955 		return ERR_PTR(-ENOENT);
2956 	}
2957 
2958 	iter->mrt = mrt;
2959 
2960 	return mr_vif_seq_start(seq, pos);
2961 }
2962 
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2963 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2964 	__releases(RCU)
2965 {
2966 	rcu_read_unlock();
2967 }
2968 
ipmr_vif_seq_show(struct seq_file * seq,void * v)2969 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2970 {
2971 	struct mr_vif_iter *iter = seq->private;
2972 	struct mr_table *mrt = iter->mrt;
2973 
2974 	if (v == SEQ_START_TOKEN) {
2975 		seq_puts(seq,
2976 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2977 	} else {
2978 		const struct vif_device *vif = v;
2979 		const struct net_device *vif_dev;
2980 		const char *name;
2981 
2982 		vif_dev = vif_dev_read(vif);
2983 		name = vif_dev ? vif_dev->name : "none";
2984 		seq_printf(seq,
2985 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2986 			   vif - mrt->vif_table,
2987 			   name, vif->bytes_in, vif->pkt_in,
2988 			   vif->bytes_out, vif->pkt_out,
2989 			   vif->flags, vif->local, vif->remote);
2990 	}
2991 	return 0;
2992 }
2993 
2994 static const struct seq_operations ipmr_vif_seq_ops = {
2995 	.start = ipmr_vif_seq_start,
2996 	.next  = mr_vif_seq_next,
2997 	.stop  = ipmr_vif_seq_stop,
2998 	.show  = ipmr_vif_seq_show,
2999 };
3000 
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)3001 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3002 {
3003 	struct net *net = seq_file_net(seq);
3004 	struct mr_table *mrt;
3005 
3006 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
3007 	if (!mrt)
3008 		return ERR_PTR(-ENOENT);
3009 
3010 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
3011 }
3012 
ipmr_mfc_seq_show(struct seq_file * seq,void * v)3013 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3014 {
3015 	int n;
3016 
3017 	if (v == SEQ_START_TOKEN) {
3018 		seq_puts(seq,
3019 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3020 	} else {
3021 		const struct mfc_cache *mfc = v;
3022 		const struct mr_mfc_iter *it = seq->private;
3023 		const struct mr_table *mrt = it->mrt;
3024 
3025 		seq_printf(seq, "%08X %08X %-3hd",
3026 			   (__force u32) mfc->mfc_mcastgrp,
3027 			   (__force u32) mfc->mfc_origin,
3028 			   mfc->_c.mfc_parent);
3029 
3030 		if (it->cache != &mrt->mfc_unres_queue) {
3031 			seq_printf(seq, " %8lu %8lu %8lu",
3032 				   mfc->_c.mfc_un.res.pkt,
3033 				   mfc->_c.mfc_un.res.bytes,
3034 				   mfc->_c.mfc_un.res.wrong_if);
3035 			for (n = mfc->_c.mfc_un.res.minvif;
3036 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3037 				if (VIF_EXISTS(mrt, n) &&
3038 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3039 					seq_printf(seq,
3040 					   " %2d:%-3d",
3041 					   n, mfc->_c.mfc_un.res.ttls[n]);
3042 			}
3043 		} else {
3044 			/* unresolved mfc_caches don't contain
3045 			 * pkt, bytes and wrong_if values
3046 			 */
3047 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3048 		}
3049 		seq_putc(seq, '\n');
3050 	}
3051 	return 0;
3052 }
3053 
3054 static const struct seq_operations ipmr_mfc_seq_ops = {
3055 	.start = ipmr_mfc_seq_start,
3056 	.next  = mr_mfc_seq_next,
3057 	.stop  = mr_mfc_seq_stop,
3058 	.show  = ipmr_mfc_seq_show,
3059 };
3060 #endif
3061 
3062 #ifdef CONFIG_IP_PIMSM_V2
3063 static const struct net_protocol pim_protocol = {
3064 	.handler	=	pim_rcv,
3065 };
3066 #endif
3067 
ipmr_seq_read(const struct net * net)3068 static unsigned int ipmr_seq_read(const struct net *net)
3069 {
3070 	return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3071 }
3072 
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3073 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3074 		     struct netlink_ext_ack *extack)
3075 {
3076 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3077 		       ipmr_mr_table_iter, extack);
3078 }
3079 
3080 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3081 	.family		= RTNL_FAMILY_IPMR,
3082 	.fib_seq_read	= ipmr_seq_read,
3083 	.fib_dump	= ipmr_dump,
3084 	.owner		= THIS_MODULE,
3085 };
3086 
ipmr_notifier_init(struct net * net)3087 static int __net_init ipmr_notifier_init(struct net *net)
3088 {
3089 	struct fib_notifier_ops *ops;
3090 
3091 	net->ipv4.ipmr_seq = 0;
3092 
3093 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3094 	if (IS_ERR(ops))
3095 		return PTR_ERR(ops);
3096 	net->ipv4.ipmr_notifier_ops = ops;
3097 
3098 	return 0;
3099 }
3100 
ipmr_notifier_exit(struct net * net)3101 static void __net_exit ipmr_notifier_exit(struct net *net)
3102 {
3103 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3104 	net->ipv4.ipmr_notifier_ops = NULL;
3105 }
3106 
3107 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3108 static int __net_init ipmr_net_init(struct net *net)
3109 {
3110 	int err;
3111 
3112 	err = ipmr_notifier_init(net);
3113 	if (err)
3114 		goto ipmr_notifier_fail;
3115 
3116 	err = ipmr_rules_init(net);
3117 	if (err < 0)
3118 		goto ipmr_rules_fail;
3119 
3120 #ifdef CONFIG_PROC_FS
3121 	err = -ENOMEM;
3122 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3123 			sizeof(struct mr_vif_iter)))
3124 		goto proc_vif_fail;
3125 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3126 			sizeof(struct mr_mfc_iter)))
3127 		goto proc_cache_fail;
3128 #endif
3129 	return 0;
3130 
3131 #ifdef CONFIG_PROC_FS
3132 proc_cache_fail:
3133 	remove_proc_entry("ip_mr_vif", net->proc_net);
3134 proc_vif_fail:
3135 	rtnl_lock();
3136 	ipmr_rules_exit(net);
3137 	rtnl_unlock();
3138 #endif
3139 ipmr_rules_fail:
3140 	ipmr_notifier_exit(net);
3141 ipmr_notifier_fail:
3142 	return err;
3143 }
3144 
ipmr_net_exit(struct net * net)3145 static void __net_exit ipmr_net_exit(struct net *net)
3146 {
3147 #ifdef CONFIG_PROC_FS
3148 	remove_proc_entry("ip_mr_cache", net->proc_net);
3149 	remove_proc_entry("ip_mr_vif", net->proc_net);
3150 #endif
3151 	ipmr_notifier_exit(net);
3152 }
3153 
ipmr_net_exit_batch(struct list_head * net_list)3154 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3155 {
3156 	struct net *net;
3157 
3158 	rtnl_lock();
3159 	list_for_each_entry(net, net_list, exit_list)
3160 		ipmr_rules_exit(net);
3161 	rtnl_unlock();
3162 }
3163 
3164 static struct pernet_operations ipmr_net_ops = {
3165 	.init = ipmr_net_init,
3166 	.exit = ipmr_net_exit,
3167 	.exit_batch = ipmr_net_exit_batch,
3168 };
3169 
3170 static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3171 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3172 	 .dumpit = ipmr_rtm_dumplink},
3173 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3174 	 .doit = ipmr_rtm_route},
3175 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3176 	 .doit = ipmr_rtm_route},
3177 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3178 	 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3179 };
3180 
ip_mr_init(void)3181 int __init ip_mr_init(void)
3182 {
3183 	int err;
3184 
3185 	mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3186 
3187 	err = register_pernet_subsys(&ipmr_net_ops);
3188 	if (err)
3189 		goto reg_pernet_fail;
3190 
3191 	err = register_netdevice_notifier(&ip_mr_notifier);
3192 	if (err)
3193 		goto reg_notif_fail;
3194 #ifdef CONFIG_IP_PIMSM_V2
3195 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3196 		pr_err("%s: can't add PIM protocol\n", __func__);
3197 		err = -EAGAIN;
3198 		goto add_proto_fail;
3199 	}
3200 #endif
3201 	rtnl_register_many(ipmr_rtnl_msg_handlers);
3202 
3203 	return 0;
3204 
3205 #ifdef CONFIG_IP_PIMSM_V2
3206 add_proto_fail:
3207 	unregister_netdevice_notifier(&ip_mr_notifier);
3208 #endif
3209 reg_notif_fail:
3210 	unregister_pernet_subsys(&ipmr_net_ops);
3211 reg_pernet_fail:
3212 	kmem_cache_destroy(mrt_cachep);
3213 	return err;
3214 }
3215