1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 */
15
16 /*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
46
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
49
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC 10000
52 #define SI_USEC_PER_JIFFY (1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
55 short timeout */
56
57 enum si_intf_state {
58 SI_NORMAL,
59 SI_GETTING_FLAGS,
60 SI_GETTING_EVENTS,
61 SI_CLEARING_FLAGS,
62 SI_GETTING_MESSAGES,
63 SI_CHECKING_ENABLES,
64 SI_SETTING_ENABLES
65 /* FIXME - add watchdog stuff. */
66 };
67
68 /* Some BT-specific defines we need here. */
69 #define IPMI_BT_INTMASK_REG 2
70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72
73 /* 'invalid' to allow a firmware-specified interface to be disabled */
74 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
75
76 const struct ipmi_match_info ipmi_kcs_si_info = { .type = SI_KCS };
77 const struct ipmi_match_info ipmi_smic_si_info = { .type = SI_SMIC };
78 const struct ipmi_match_info ipmi_bt_si_info = { .type = SI_BT };
79
80 static bool initialized;
81
82 /*
83 * Indexes into stats[] in smi_info below.
84 */
85 enum si_stat_indexes {
86 /*
87 * Number of times the driver requested a timer while an operation
88 * was in progress.
89 */
90 SI_STAT_short_timeouts = 0,
91
92 /*
93 * Number of times the driver requested a timer while nothing was in
94 * progress.
95 */
96 SI_STAT_long_timeouts,
97
98 /* Number of times the interface was idle while being polled. */
99 SI_STAT_idles,
100
101 /* Number of interrupts the driver handled. */
102 SI_STAT_interrupts,
103
104 /* Number of time the driver got an ATTN from the hardware. */
105 SI_STAT_attentions,
106
107 /* Number of times the driver requested flags from the hardware. */
108 SI_STAT_flag_fetches,
109
110 /* Number of times the hardware didn't follow the state machine. */
111 SI_STAT_hosed_count,
112
113 /* Number of completed messages. */
114 SI_STAT_complete_transactions,
115
116 /* Number of IPMI events received from the hardware. */
117 SI_STAT_events,
118
119 /* Number of watchdog pretimeouts. */
120 SI_STAT_watchdog_pretimeouts,
121
122 /* Number of asynchronous messages received. */
123 SI_STAT_incoming_messages,
124
125
126 /* This *must* remain last, add new values above this. */
127 SI_NUM_STATS
128 };
129
130 struct smi_info {
131 int si_num;
132 struct ipmi_smi *intf;
133 struct si_sm_data *si_sm;
134 const struct si_sm_handlers *handlers;
135 spinlock_t si_lock;
136 struct ipmi_smi_msg *waiting_msg;
137 struct ipmi_smi_msg *curr_msg;
138 enum si_intf_state si_state;
139
140 /*
141 * Used to handle the various types of I/O that can occur with
142 * IPMI
143 */
144 struct si_sm_io io;
145
146 /*
147 * Per-OEM handler, called from handle_flags(). Returns 1
148 * when handle_flags() needs to be re-run or 0 indicating it
149 * set si_state itself.
150 */
151 int (*oem_data_avail_handler)(struct smi_info *smi_info);
152
153 /*
154 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
155 * is set to hold the flags until we are done handling everything
156 * from the flags.
157 */
158 #define RECEIVE_MSG_AVAIL 0x01
159 #define EVENT_MSG_BUFFER_FULL 0x02
160 #define WDT_PRE_TIMEOUT_INT 0x08
161 #define OEM0_DATA_AVAIL 0x20
162 #define OEM1_DATA_AVAIL 0x40
163 #define OEM2_DATA_AVAIL 0x80
164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
165 OEM1_DATA_AVAIL | \
166 OEM2_DATA_AVAIL)
167 unsigned char msg_flags;
168
169 /* Does the BMC have an event buffer? */
170 bool has_event_buffer;
171
172 /*
173 * If set to true, this will request events the next time the
174 * state machine is idle.
175 */
176 atomic_t req_events;
177
178 /*
179 * If true, run the state machine to completion on every send
180 * call. Generally used after a panic to make sure stuff goes
181 * out.
182 */
183 bool run_to_completion;
184
185 /* The timer for this si. */
186 struct timer_list si_timer;
187
188 /* This flag is set, if the timer can be set */
189 bool timer_can_start;
190
191 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
192 bool timer_running;
193
194 /* The time (in jiffies) the last timeout occurred at. */
195 unsigned long last_timeout_jiffies;
196
197 /* Are we waiting for the events, pretimeouts, received msgs? */
198 atomic_t need_watch;
199
200 /*
201 * The driver will disable interrupts when it gets into a
202 * situation where it cannot handle messages due to lack of
203 * memory. Once that situation clears up, it will re-enable
204 * interrupts.
205 */
206 bool interrupt_disabled;
207
208 /*
209 * Does the BMC support events?
210 */
211 bool supports_event_msg_buff;
212
213 /*
214 * Can we disable interrupts the global enables receive irq
215 * bit? There are currently two forms of brokenness, some
216 * systems cannot disable the bit (which is technically within
217 * the spec but a bad idea) and some systems have the bit
218 * forced to zero even though interrupts work (which is
219 * clearly outside the spec). The next bool tells which form
220 * of brokenness is present.
221 */
222 bool cannot_disable_irq;
223
224 /*
225 * Some systems are broken and cannot set the irq enable
226 * bit, even if they support interrupts.
227 */
228 bool irq_enable_broken;
229
230 /* Is the driver in maintenance mode? */
231 bool in_maintenance_mode;
232
233 /*
234 * Did we get an attention that we did not handle?
235 */
236 bool got_attn;
237
238 /* From the get device id response... */
239 struct ipmi_device_id device_id;
240
241 /* Have we added the device group to the device? */
242 bool dev_group_added;
243
244 /* Counters and things for the proc filesystem. */
245 atomic_t stats[SI_NUM_STATS];
246
247 struct task_struct *thread;
248
249 struct list_head link;
250 };
251
252 #define smi_inc_stat(smi, stat) \
253 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
254 #define smi_get_stat(smi, stat) \
255 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
256
257 #define IPMI_MAX_INTFS 4
258 static int force_kipmid[IPMI_MAX_INTFS];
259 static int num_force_kipmid;
260
261 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
262 static int num_max_busy_us;
263
264 static bool unload_when_empty = true;
265
266 static int try_smi_init(struct smi_info *smi);
267 static void cleanup_one_si(struct smi_info *smi_info);
268 static void cleanup_ipmi_si(void);
269
270 #ifdef DEBUG_TIMING
debug_timestamp(struct smi_info * smi_info,char * msg)271 void debug_timestamp(struct smi_info *smi_info, char *msg)
272 {
273 struct timespec64 t;
274
275 ktime_get_ts64(&t);
276 dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
277 msg, t.tv_sec, t.tv_nsec);
278 }
279 #else
280 #define debug_timestamp(smi_info, x)
281 #endif
282
283 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)284 static int register_xaction_notifier(struct notifier_block *nb)
285 {
286 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
287 }
288
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)289 static void deliver_recv_msg(struct smi_info *smi_info,
290 struct ipmi_smi_msg *msg)
291 {
292 /* Deliver the message to the upper layer. */
293 ipmi_smi_msg_received(smi_info->intf, msg);
294 }
295
return_hosed_msg(struct smi_info * smi_info,int cCode)296 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
297 {
298 struct ipmi_smi_msg *msg = smi_info->curr_msg;
299
300 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
301 cCode = IPMI_ERR_UNSPECIFIED;
302 /* else use it as is */
303
304 /* Make it a response */
305 msg->rsp[0] = msg->data[0] | 4;
306 msg->rsp[1] = msg->data[1];
307 msg->rsp[2] = cCode;
308 msg->rsp_size = 3;
309
310 smi_info->curr_msg = NULL;
311 deliver_recv_msg(smi_info, msg);
312 }
313
start_next_msg(struct smi_info * smi_info)314 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
315 {
316 int rv;
317
318 if (!smi_info->waiting_msg) {
319 smi_info->curr_msg = NULL;
320 rv = SI_SM_IDLE;
321 } else {
322 int err;
323
324 smi_info->curr_msg = smi_info->waiting_msg;
325 smi_info->waiting_msg = NULL;
326 debug_timestamp(smi_info, "Start2");
327 err = atomic_notifier_call_chain(&xaction_notifier_list,
328 0, smi_info);
329 if (err & NOTIFY_STOP_MASK) {
330 rv = SI_SM_CALL_WITHOUT_DELAY;
331 goto out;
332 }
333 err = smi_info->handlers->start_transaction(
334 smi_info->si_sm,
335 smi_info->curr_msg->data,
336 smi_info->curr_msg->data_size);
337 if (err)
338 return_hosed_msg(smi_info, err);
339
340 rv = SI_SM_CALL_WITHOUT_DELAY;
341 }
342 out:
343 return rv;
344 }
345
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)346 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
347 {
348 if (!smi_info->timer_can_start)
349 return;
350 smi_info->last_timeout_jiffies = jiffies;
351 mod_timer(&smi_info->si_timer, new_val);
352 smi_info->timer_running = true;
353 }
354
355 /*
356 * Start a new message and (re)start the timer and thread.
357 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)358 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
359 unsigned int size)
360 {
361 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
362
363 if (smi_info->thread)
364 wake_up_process(smi_info->thread);
365
366 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
367 }
368
start_check_enables(struct smi_info * smi_info)369 static void start_check_enables(struct smi_info *smi_info)
370 {
371 unsigned char msg[2];
372
373 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
374 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
375
376 start_new_msg(smi_info, msg, 2);
377 smi_info->si_state = SI_CHECKING_ENABLES;
378 }
379
start_clear_flags(struct smi_info * smi_info)380 static void start_clear_flags(struct smi_info *smi_info)
381 {
382 unsigned char msg[3];
383
384 /* Make sure the watchdog pre-timeout flag is not set at startup. */
385 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
387 msg[2] = WDT_PRE_TIMEOUT_INT;
388
389 start_new_msg(smi_info, msg, 3);
390 smi_info->si_state = SI_CLEARING_FLAGS;
391 }
392
start_getting_msg_queue(struct smi_info * smi_info)393 static void start_getting_msg_queue(struct smi_info *smi_info)
394 {
395 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
396 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
397 smi_info->curr_msg->data_size = 2;
398
399 start_new_msg(smi_info, smi_info->curr_msg->data,
400 smi_info->curr_msg->data_size);
401 smi_info->si_state = SI_GETTING_MESSAGES;
402 }
403
start_getting_events(struct smi_info * smi_info)404 static void start_getting_events(struct smi_info *smi_info)
405 {
406 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
408 smi_info->curr_msg->data_size = 2;
409
410 start_new_msg(smi_info, smi_info->curr_msg->data,
411 smi_info->curr_msg->data_size);
412 smi_info->si_state = SI_GETTING_EVENTS;
413 }
414
415 /*
416 * When we have a situtaion where we run out of memory and cannot
417 * allocate messages, we just leave them in the BMC and run the system
418 * polled until we can allocate some memory. Once we have some
419 * memory, we will re-enable the interrupt.
420 *
421 * Note that we cannot just use disable_irq(), since the interrupt may
422 * be shared.
423 */
disable_si_irq(struct smi_info * smi_info)424 static inline bool disable_si_irq(struct smi_info *smi_info)
425 {
426 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
427 smi_info->interrupt_disabled = true;
428 start_check_enables(smi_info);
429 return true;
430 }
431 return false;
432 }
433
enable_si_irq(struct smi_info * smi_info)434 static inline bool enable_si_irq(struct smi_info *smi_info)
435 {
436 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
437 smi_info->interrupt_disabled = false;
438 start_check_enables(smi_info);
439 return true;
440 }
441 return false;
442 }
443
444 /*
445 * Allocate a message. If unable to allocate, start the interrupt
446 * disable process and return NULL. If able to allocate but
447 * interrupts are disabled, free the message and return NULL after
448 * starting the interrupt enable process.
449 */
alloc_msg_handle_irq(struct smi_info * smi_info)450 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
451 {
452 struct ipmi_smi_msg *msg;
453
454 msg = ipmi_alloc_smi_msg();
455 if (!msg) {
456 if (!disable_si_irq(smi_info))
457 smi_info->si_state = SI_NORMAL;
458 } else if (enable_si_irq(smi_info)) {
459 ipmi_free_smi_msg(msg);
460 msg = NULL;
461 }
462 return msg;
463 }
464
handle_flags(struct smi_info * smi_info)465 static void handle_flags(struct smi_info *smi_info)
466 {
467 retry:
468 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
469 /* Watchdog pre-timeout */
470 smi_inc_stat(smi_info, watchdog_pretimeouts);
471
472 start_clear_flags(smi_info);
473 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
474 ipmi_smi_watchdog_pretimeout(smi_info->intf);
475 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
476 /* Messages available. */
477 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
478 if (!smi_info->curr_msg)
479 return;
480
481 start_getting_msg_queue(smi_info);
482 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
483 /* Events available. */
484 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
485 if (!smi_info->curr_msg)
486 return;
487
488 start_getting_events(smi_info);
489 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
490 smi_info->oem_data_avail_handler) {
491 if (smi_info->oem_data_avail_handler(smi_info))
492 goto retry;
493 } else
494 smi_info->si_state = SI_NORMAL;
495 }
496
497 /*
498 * Global enables we care about.
499 */
500 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
501 IPMI_BMC_EVT_MSG_INTR)
502
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)503 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
504 bool *irq_on)
505 {
506 u8 enables = 0;
507
508 if (smi_info->supports_event_msg_buff)
509 enables |= IPMI_BMC_EVT_MSG_BUFF;
510
511 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
512 smi_info->cannot_disable_irq) &&
513 !smi_info->irq_enable_broken)
514 enables |= IPMI_BMC_RCV_MSG_INTR;
515
516 if (smi_info->supports_event_msg_buff &&
517 smi_info->io.irq && !smi_info->interrupt_disabled &&
518 !smi_info->irq_enable_broken)
519 enables |= IPMI_BMC_EVT_MSG_INTR;
520
521 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
522
523 return enables;
524 }
525
check_bt_irq(struct smi_info * smi_info,bool irq_on)526 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
527 {
528 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
529
530 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
531
532 if ((bool)irqstate == irq_on)
533 return;
534
535 if (irq_on)
536 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
537 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
538 else
539 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
540 }
541
handle_transaction_done(struct smi_info * smi_info)542 static void handle_transaction_done(struct smi_info *smi_info)
543 {
544 struct ipmi_smi_msg *msg;
545
546 debug_timestamp(smi_info, "Done");
547 switch (smi_info->si_state) {
548 case SI_NORMAL:
549 if (!smi_info->curr_msg)
550 break;
551
552 smi_info->curr_msg->rsp_size
553 = smi_info->handlers->get_result(
554 smi_info->si_sm,
555 smi_info->curr_msg->rsp,
556 IPMI_MAX_MSG_LENGTH);
557
558 /*
559 * Do this here becase deliver_recv_msg() releases the
560 * lock, and a new message can be put in during the
561 * time the lock is released.
562 */
563 msg = smi_info->curr_msg;
564 smi_info->curr_msg = NULL;
565 deliver_recv_msg(smi_info, msg);
566 break;
567
568 case SI_GETTING_FLAGS:
569 {
570 unsigned char msg[4];
571 unsigned int len;
572
573 /* We got the flags from the SMI, now handle them. */
574 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
575 if (msg[2] != 0) {
576 /* Error fetching flags, just give up for now. */
577 smi_info->si_state = SI_NORMAL;
578 } else if (len < 4) {
579 /*
580 * Hmm, no flags. That's technically illegal, but
581 * don't use uninitialized data.
582 */
583 smi_info->si_state = SI_NORMAL;
584 } else {
585 smi_info->msg_flags = msg[3];
586 handle_flags(smi_info);
587 }
588 break;
589 }
590
591 case SI_CLEARING_FLAGS:
592 {
593 unsigned char msg[3];
594
595 /* We cleared the flags. */
596 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
597 if (msg[2] != 0) {
598 /* Error clearing flags */
599 dev_warn_ratelimited(smi_info->io.dev,
600 "Error clearing flags: %2.2x\n", msg[2]);
601 }
602 smi_info->si_state = SI_NORMAL;
603 break;
604 }
605
606 case SI_GETTING_EVENTS:
607 {
608 smi_info->curr_msg->rsp_size
609 = smi_info->handlers->get_result(
610 smi_info->si_sm,
611 smi_info->curr_msg->rsp,
612 IPMI_MAX_MSG_LENGTH);
613
614 /*
615 * Do this here becase deliver_recv_msg() releases the
616 * lock, and a new message can be put in during the
617 * time the lock is released.
618 */
619 msg = smi_info->curr_msg;
620 smi_info->curr_msg = NULL;
621 if (msg->rsp[2] != 0) {
622 /* Error getting event, probably done. */
623 msg->done(msg);
624
625 /* Take off the event flag. */
626 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
627 handle_flags(smi_info);
628 } else {
629 smi_inc_stat(smi_info, events);
630
631 /*
632 * Do this before we deliver the message
633 * because delivering the message releases the
634 * lock and something else can mess with the
635 * state.
636 */
637 handle_flags(smi_info);
638
639 deliver_recv_msg(smi_info, msg);
640 }
641 break;
642 }
643
644 case SI_GETTING_MESSAGES:
645 {
646 smi_info->curr_msg->rsp_size
647 = smi_info->handlers->get_result(
648 smi_info->si_sm,
649 smi_info->curr_msg->rsp,
650 IPMI_MAX_MSG_LENGTH);
651
652 /*
653 * Do this here becase deliver_recv_msg() releases the
654 * lock, and a new message can be put in during the
655 * time the lock is released.
656 */
657 msg = smi_info->curr_msg;
658 smi_info->curr_msg = NULL;
659 if (msg->rsp[2] != 0) {
660 /* Error getting event, probably done. */
661 msg->done(msg);
662
663 /* Take off the msg flag. */
664 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
665 handle_flags(smi_info);
666 } else {
667 smi_inc_stat(smi_info, incoming_messages);
668
669 /*
670 * Do this before we deliver the message
671 * because delivering the message releases the
672 * lock and something else can mess with the
673 * state.
674 */
675 handle_flags(smi_info);
676
677 deliver_recv_msg(smi_info, msg);
678 }
679 break;
680 }
681
682 case SI_CHECKING_ENABLES:
683 {
684 unsigned char msg[4];
685 u8 enables;
686 bool irq_on;
687
688 /* We got the flags from the SMI, now handle them. */
689 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
690 if (msg[2] != 0) {
691 dev_warn_ratelimited(smi_info->io.dev,
692 "Couldn't get irq info: %x,\n"
693 "Maybe ok, but ipmi might run very slowly.\n",
694 msg[2]);
695 smi_info->si_state = SI_NORMAL;
696 break;
697 }
698 enables = current_global_enables(smi_info, 0, &irq_on);
699 if (smi_info->io.si_info->type == SI_BT)
700 /* BT has its own interrupt enable bit. */
701 check_bt_irq(smi_info, irq_on);
702 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
703 /* Enables are not correct, fix them. */
704 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
705 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
706 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
707 smi_info->handlers->start_transaction(
708 smi_info->si_sm, msg, 3);
709 smi_info->si_state = SI_SETTING_ENABLES;
710 } else if (smi_info->supports_event_msg_buff) {
711 smi_info->curr_msg = ipmi_alloc_smi_msg();
712 if (!smi_info->curr_msg) {
713 smi_info->si_state = SI_NORMAL;
714 break;
715 }
716 start_getting_events(smi_info);
717 } else {
718 smi_info->si_state = SI_NORMAL;
719 }
720 break;
721 }
722
723 case SI_SETTING_ENABLES:
724 {
725 unsigned char msg[4];
726
727 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
728 if (msg[2] != 0)
729 dev_warn_ratelimited(smi_info->io.dev,
730 "Could not set the global enables: 0x%x.\n",
731 msg[2]);
732
733 if (smi_info->supports_event_msg_buff) {
734 smi_info->curr_msg = ipmi_alloc_smi_msg();
735 if (!smi_info->curr_msg) {
736 smi_info->si_state = SI_NORMAL;
737 break;
738 }
739 start_getting_events(smi_info);
740 } else {
741 smi_info->si_state = SI_NORMAL;
742 }
743 break;
744 }
745 }
746 }
747
748 /*
749 * Called on timeouts and events. Timeouts should pass the elapsed
750 * time, interrupts should pass in zero. Must be called with
751 * si_lock held and interrupts disabled.
752 */
smi_event_handler(struct smi_info * smi_info,int time)753 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
754 int time)
755 {
756 enum si_sm_result si_sm_result;
757
758 restart:
759 /*
760 * There used to be a loop here that waited a little while
761 * (around 25us) before giving up. That turned out to be
762 * pointless, the minimum delays I was seeing were in the 300us
763 * range, which is far too long to wait in an interrupt. So
764 * we just run until the state machine tells us something
765 * happened or it needs a delay.
766 */
767 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
768 time = 0;
769 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
770 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771
772 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
773 smi_inc_stat(smi_info, complete_transactions);
774
775 handle_transaction_done(smi_info);
776 goto restart;
777 } else if (si_sm_result == SI_SM_HOSED) {
778 smi_inc_stat(smi_info, hosed_count);
779
780 /*
781 * Do the before return_hosed_msg, because that
782 * releases the lock.
783 */
784 smi_info->si_state = SI_NORMAL;
785 if (smi_info->curr_msg != NULL) {
786 /*
787 * If we were handling a user message, format
788 * a response to send to the upper layer to
789 * tell it about the error.
790 */
791 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
792 }
793 goto restart;
794 }
795
796 /*
797 * We prefer handling attn over new messages. But don't do
798 * this if there is not yet an upper layer to handle anything.
799 */
800 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
801 unsigned char msg[2];
802
803 if (smi_info->si_state != SI_NORMAL) {
804 /*
805 * We got an ATTN, but we are doing something else.
806 * Handle the ATTN later.
807 */
808 smi_info->got_attn = true;
809 } else {
810 smi_info->got_attn = false;
811 smi_inc_stat(smi_info, attentions);
812
813 /*
814 * Got a attn, send down a get message flags to see
815 * what's causing it. It would be better to handle
816 * this in the upper layer, but due to the way
817 * interrupts work with the SMI, that's not really
818 * possible.
819 */
820 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
821 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
822
823 start_new_msg(smi_info, msg, 2);
824 smi_info->si_state = SI_GETTING_FLAGS;
825 goto restart;
826 }
827 }
828
829 /* If we are currently idle, try to start the next message. */
830 if (si_sm_result == SI_SM_IDLE) {
831 smi_inc_stat(smi_info, idles);
832
833 si_sm_result = start_next_msg(smi_info);
834 if (si_sm_result != SI_SM_IDLE)
835 goto restart;
836 }
837
838 if ((si_sm_result == SI_SM_IDLE)
839 && (atomic_read(&smi_info->req_events))) {
840 /*
841 * We are idle and the upper layer requested that I fetch
842 * events, so do so.
843 */
844 atomic_set(&smi_info->req_events, 0);
845
846 /*
847 * Take this opportunity to check the interrupt and
848 * message enable state for the BMC. The BMC can be
849 * asynchronously reset, and may thus get interrupts
850 * disable and messages disabled.
851 */
852 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
853 start_check_enables(smi_info);
854 } else {
855 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
856 if (!smi_info->curr_msg)
857 goto out;
858
859 start_getting_events(smi_info);
860 }
861 goto restart;
862 }
863
864 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
865 /* Ok it if fails, the timer will just go off. */
866 if (timer_delete(&smi_info->si_timer))
867 smi_info->timer_running = false;
868 }
869
870 out:
871 return si_sm_result;
872 }
873
check_start_timer_thread(struct smi_info * smi_info)874 static void check_start_timer_thread(struct smi_info *smi_info)
875 {
876 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
877 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
878
879 if (smi_info->thread)
880 wake_up_process(smi_info->thread);
881
882 start_next_msg(smi_info);
883 smi_event_handler(smi_info, 0);
884 }
885 }
886
flush_messages(void * send_info)887 static void flush_messages(void *send_info)
888 {
889 struct smi_info *smi_info = send_info;
890 enum si_sm_result result;
891
892 /*
893 * Currently, this function is called only in run-to-completion
894 * mode. This means we are single-threaded, no need for locks.
895 */
896 result = smi_event_handler(smi_info, 0);
897 while (result != SI_SM_IDLE) {
898 udelay(SI_SHORT_TIMEOUT_USEC);
899 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
900 }
901 }
902
sender(void * send_info,struct ipmi_smi_msg * msg)903 static void sender(void *send_info,
904 struct ipmi_smi_msg *msg)
905 {
906 struct smi_info *smi_info = send_info;
907 unsigned long flags;
908
909 debug_timestamp(smi_info, "Enqueue");
910
911 if (smi_info->run_to_completion) {
912 /*
913 * If we are running to completion, start it. Upper
914 * layer will call flush_messages to clear it out.
915 */
916 smi_info->waiting_msg = msg;
917 return;
918 }
919
920 spin_lock_irqsave(&smi_info->si_lock, flags);
921 /*
922 * The following two lines don't need to be under the lock for
923 * the lock's sake, but they do need SMP memory barriers to
924 * avoid getting things out of order. We are already claiming
925 * the lock, anyway, so just do it under the lock to avoid the
926 * ordering problem.
927 */
928 BUG_ON(smi_info->waiting_msg);
929 smi_info->waiting_msg = msg;
930 check_start_timer_thread(smi_info);
931 spin_unlock_irqrestore(&smi_info->si_lock, flags);
932 }
933
set_run_to_completion(void * send_info,bool i_run_to_completion)934 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
935 {
936 struct smi_info *smi_info = send_info;
937
938 smi_info->run_to_completion = i_run_to_completion;
939 if (i_run_to_completion)
940 flush_messages(smi_info);
941 }
942
943 /*
944 * Use -1 as a special constant to tell that we are spinning in kipmid
945 * looking for something and not delaying between checks
946 */
947 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,ktime_t * busy_until)948 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 const struct smi_info *smi_info,
950 ktime_t *busy_until)
951 {
952 unsigned int max_busy_us = 0;
953
954 if (smi_info->si_num < num_max_busy_us)
955 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 *busy_until = IPMI_TIME_NOT_BUSY;
958 else if (*busy_until == IPMI_TIME_NOT_BUSY) {
959 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
960 } else {
961 if (unlikely(ktime_get() > *busy_until)) {
962 *busy_until = IPMI_TIME_NOT_BUSY;
963 return false;
964 }
965 }
966 return true;
967 }
968
969
970 /*
971 * A busy-waiting loop for speeding up IPMI operation.
972 *
973 * Lousy hardware makes this hard. This is only enabled for systems
974 * that are not BT and do not have interrupts. It starts spinning
975 * when an operation is complete or until max_busy tells it to stop
976 * (if that is enabled). See the paragraph on kimid_max_busy_us in
977 * Documentation/driver-api/ipmi.rst for details.
978 */
ipmi_thread(void * data)979 static int ipmi_thread(void *data)
980 {
981 struct smi_info *smi_info = data;
982 unsigned long flags;
983 enum si_sm_result smi_result;
984 ktime_t busy_until = IPMI_TIME_NOT_BUSY;
985
986 set_user_nice(current, MAX_NICE);
987 while (!kthread_should_stop()) {
988 int busy_wait;
989
990 spin_lock_irqsave(&(smi_info->si_lock), flags);
991 smi_result = smi_event_handler(smi_info, 0);
992
993 /*
994 * If the driver is doing something, there is a possible
995 * race with the timer. If the timer handler see idle,
996 * and the thread here sees something else, the timer
997 * handler won't restart the timer even though it is
998 * required. So start it here if necessary.
999 */
1000 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1001 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1002
1003 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1004 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1005 &busy_until);
1006 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1007 ; /* do nothing */
1008 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1009 /*
1010 * In maintenance mode we run as fast as
1011 * possible to allow firmware updates to
1012 * complete as fast as possible, but normally
1013 * don't bang on the scheduler.
1014 */
1015 if (smi_info->in_maintenance_mode)
1016 schedule();
1017 else
1018 usleep_range(100, 200);
1019 } else if (smi_result == SI_SM_IDLE) {
1020 if (atomic_read(&smi_info->need_watch)) {
1021 schedule_timeout_interruptible(100);
1022 } else {
1023 /* Wait to be woken up when we are needed. */
1024 __set_current_state(TASK_INTERRUPTIBLE);
1025 schedule();
1026 }
1027 } else {
1028 schedule_timeout_interruptible(1);
1029 }
1030 }
1031 return 0;
1032 }
1033
1034
poll(void * send_info)1035 static void poll(void *send_info)
1036 {
1037 struct smi_info *smi_info = send_info;
1038 unsigned long flags = 0;
1039 bool run_to_completion = smi_info->run_to_completion;
1040
1041 /*
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1044 */
1045 udelay(10);
1046 if (!run_to_completion)
1047 spin_lock_irqsave(&smi_info->si_lock, flags);
1048 smi_event_handler(smi_info, 10);
1049 if (!run_to_completion)
1050 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1051 }
1052
request_events(void * send_info)1053 static void request_events(void *send_info)
1054 {
1055 struct smi_info *smi_info = send_info;
1056
1057 if (!smi_info->has_event_buffer)
1058 return;
1059
1060 atomic_set(&smi_info->req_events, 1);
1061 }
1062
set_need_watch(void * send_info,unsigned int watch_mask)1063 static void set_need_watch(void *send_info, unsigned int watch_mask)
1064 {
1065 struct smi_info *smi_info = send_info;
1066 unsigned long flags;
1067 int enable;
1068
1069 enable = !!watch_mask;
1070
1071 atomic_set(&smi_info->need_watch, enable);
1072 spin_lock_irqsave(&smi_info->si_lock, flags);
1073 check_start_timer_thread(smi_info);
1074 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1075 }
1076
smi_timeout(struct timer_list * t)1077 static void smi_timeout(struct timer_list *t)
1078 {
1079 struct smi_info *smi_info = timer_container_of(smi_info, t,
1080 si_timer);
1081 enum si_sm_result smi_result;
1082 unsigned long flags;
1083 unsigned long jiffies_now;
1084 long time_diff;
1085 long timeout;
1086
1087 spin_lock_irqsave(&(smi_info->si_lock), flags);
1088 debug_timestamp(smi_info, "Timer");
1089
1090 jiffies_now = jiffies;
1091 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1092 * SI_USEC_PER_JIFFY);
1093 smi_result = smi_event_handler(smi_info, time_diff);
1094
1095 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1096 /* Running with interrupts, only do long timeouts. */
1097 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1098 smi_inc_stat(smi_info, long_timeouts);
1099 goto do_mod_timer;
1100 }
1101
1102 /*
1103 * If the state machine asks for a short delay, then shorten
1104 * the timer timeout.
1105 */
1106 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1107 smi_inc_stat(smi_info, short_timeouts);
1108 timeout = jiffies + 1;
1109 } else {
1110 smi_inc_stat(smi_info, long_timeouts);
1111 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1112 }
1113
1114 do_mod_timer:
1115 if (smi_result != SI_SM_IDLE)
1116 smi_mod_timer(smi_info, timeout);
1117 else
1118 smi_info->timer_running = false;
1119 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1120 }
1121
ipmi_si_irq_handler(int irq,void * data)1122 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1123 {
1124 struct smi_info *smi_info = data;
1125 unsigned long flags;
1126
1127 if (smi_info->io.si_info->type == SI_BT)
1128 /* We need to clear the IRQ flag for the BT interface. */
1129 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1130 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1131 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1132
1133 spin_lock_irqsave(&(smi_info->si_lock), flags);
1134
1135 smi_inc_stat(smi_info, interrupts);
1136
1137 debug_timestamp(smi_info, "Interrupt");
1138
1139 smi_event_handler(smi_info, 0);
1140 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1141 return IRQ_HANDLED;
1142 }
1143
smi_start_processing(void * send_info,struct ipmi_smi * intf)1144 static int smi_start_processing(void *send_info,
1145 struct ipmi_smi *intf)
1146 {
1147 struct smi_info *new_smi = send_info;
1148 int enable = 0;
1149
1150 new_smi->intf = intf;
1151
1152 /* Set up the timer that drives the interface. */
1153 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1154 new_smi->timer_can_start = true;
1155 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1156
1157 /* Try to claim any interrupts. */
1158 if (new_smi->io.irq_setup) {
1159 new_smi->io.irq_handler_data = new_smi;
1160 new_smi->io.irq_setup(&new_smi->io);
1161 }
1162
1163 /*
1164 * Check if the user forcefully enabled the daemon.
1165 */
1166 if (new_smi->si_num < num_force_kipmid)
1167 enable = force_kipmid[new_smi->si_num];
1168 /*
1169 * The BT interface is efficient enough to not need a thread,
1170 * and there is no need for a thread if we have interrupts.
1171 */
1172 else if (new_smi->io.si_info->type != SI_BT && !new_smi->io.irq)
1173 enable = 1;
1174
1175 if (enable) {
1176 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1177 "kipmi%d", new_smi->si_num);
1178 if (IS_ERR(new_smi->thread)) {
1179 dev_notice(new_smi->io.dev,
1180 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1181 PTR_ERR(new_smi->thread));
1182 new_smi->thread = NULL;
1183 }
1184 }
1185
1186 return 0;
1187 }
1188
get_smi_info(void * send_info,struct ipmi_smi_info * data)1189 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1190 {
1191 struct smi_info *smi = send_info;
1192
1193 data->addr_src = smi->io.addr_source;
1194 data->dev = smi->io.dev;
1195 data->addr_info = smi->io.addr_info;
1196 get_device(smi->io.dev);
1197
1198 return 0;
1199 }
1200
set_maintenance_mode(void * send_info,bool enable)1201 static void set_maintenance_mode(void *send_info, bool enable)
1202 {
1203 struct smi_info *smi_info = send_info;
1204
1205 if (!enable)
1206 atomic_set(&smi_info->req_events, 0);
1207 smi_info->in_maintenance_mode = enable;
1208 }
1209
1210 static void shutdown_smi(void *send_info);
1211 static const struct ipmi_smi_handlers handlers = {
1212 .owner = THIS_MODULE,
1213 .start_processing = smi_start_processing,
1214 .shutdown = shutdown_smi,
1215 .get_smi_info = get_smi_info,
1216 .sender = sender,
1217 .request_events = request_events,
1218 .set_need_watch = set_need_watch,
1219 .set_maintenance_mode = set_maintenance_mode,
1220 .set_run_to_completion = set_run_to_completion,
1221 .flush_messages = flush_messages,
1222 .poll = poll,
1223 };
1224
1225 static LIST_HEAD(smi_infos);
1226 static DEFINE_MUTEX(smi_infos_lock);
1227 static int smi_num; /* Used to sequence the SMIs */
1228
1229 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1230
1231 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1232 MODULE_PARM_DESC(force_kipmid,
1233 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1234 module_param(unload_when_empty, bool, 0);
1235 MODULE_PARM_DESC(unload_when_empty,
1236 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod.");
1237 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1238 MODULE_PARM_DESC(kipmid_max_busy_us,
1239 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1240
ipmi_irq_finish_setup(struct si_sm_io * io)1241 void ipmi_irq_finish_setup(struct si_sm_io *io)
1242 {
1243 if (io->si_info->type == SI_BT)
1244 /* Enable the interrupt in the BT interface. */
1245 io->outputb(io, IPMI_BT_INTMASK_REG,
1246 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1247 }
1248
ipmi_irq_start_cleanup(struct si_sm_io * io)1249 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1250 {
1251 if (io->si_info->type == SI_BT)
1252 /* Disable the interrupt in the BT interface. */
1253 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1254 }
1255
std_irq_cleanup(struct si_sm_io * io)1256 static void std_irq_cleanup(struct si_sm_io *io)
1257 {
1258 ipmi_irq_start_cleanup(io);
1259 free_irq(io->irq, io->irq_handler_data);
1260 }
1261
ipmi_std_irq_setup(struct si_sm_io * io)1262 int ipmi_std_irq_setup(struct si_sm_io *io)
1263 {
1264 int rv;
1265
1266 if (!io->irq)
1267 return 0;
1268
1269 rv = request_irq(io->irq,
1270 ipmi_si_irq_handler,
1271 IRQF_SHARED,
1272 SI_DEVICE_NAME,
1273 io->irq_handler_data);
1274 if (rv) {
1275 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1276 SI_DEVICE_NAME, io->irq);
1277 io->irq = 0;
1278 } else {
1279 io->irq_cleanup = std_irq_cleanup;
1280 ipmi_irq_finish_setup(io);
1281 dev_info(io->dev, "Using irq %d\n", io->irq);
1282 }
1283
1284 return rv;
1285 }
1286
wait_for_msg_done(struct smi_info * smi_info)1287 static int wait_for_msg_done(struct smi_info *smi_info)
1288 {
1289 enum si_sm_result smi_result;
1290
1291 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1292 for (;;) {
1293 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1294 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1295 schedule_timeout_uninterruptible(1);
1296 smi_result = smi_info->handlers->event(
1297 smi_info->si_sm, jiffies_to_usecs(1));
1298 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1299 smi_result = smi_info->handlers->event(
1300 smi_info->si_sm, 0);
1301 } else
1302 break;
1303 }
1304 if (smi_result == SI_SM_HOSED)
1305 /*
1306 * We couldn't get the state machine to run, so whatever's at
1307 * the port is probably not an IPMI SMI interface.
1308 */
1309 return -ENODEV;
1310
1311 return 0;
1312 }
1313
try_get_dev_id(struct smi_info * smi_info)1314 static int try_get_dev_id(struct smi_info *smi_info)
1315 {
1316 unsigned char msg[2];
1317 unsigned char *resp;
1318 unsigned long resp_len;
1319 int rv = 0;
1320 unsigned int retry_count = 0;
1321
1322 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1323 if (!resp)
1324 return -ENOMEM;
1325
1326 /*
1327 * Do a Get Device ID command, since it comes back with some
1328 * useful info.
1329 */
1330 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1331 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1332
1333 retry:
1334 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1335
1336 rv = wait_for_msg_done(smi_info);
1337 if (rv)
1338 goto out;
1339
1340 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1341 resp, IPMI_MAX_MSG_LENGTH);
1342
1343 /* Check and record info from the get device id, in case we need it. */
1344 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1345 resp + 2, resp_len - 2, &smi_info->device_id);
1346 if (rv) {
1347 /* record completion code */
1348 unsigned char cc = *(resp + 2);
1349
1350 if (cc != IPMI_CC_NO_ERROR &&
1351 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1352 dev_warn_ratelimited(smi_info->io.dev,
1353 "BMC returned 0x%2.2x, retry get bmc device id\n",
1354 cc);
1355 goto retry;
1356 }
1357 }
1358
1359 out:
1360 kfree(resp);
1361 return rv;
1362 }
1363
get_global_enables(struct smi_info * smi_info,u8 * enables)1364 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1365 {
1366 unsigned char msg[3];
1367 unsigned char *resp;
1368 unsigned long resp_len;
1369 int rv;
1370
1371 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1372 if (!resp)
1373 return -ENOMEM;
1374
1375 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1376 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1377 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1378
1379 rv = wait_for_msg_done(smi_info);
1380 if (rv) {
1381 dev_warn(smi_info->io.dev,
1382 "Error getting response from get global enables command: %d\n",
1383 rv);
1384 goto out;
1385 }
1386
1387 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1388 resp, IPMI_MAX_MSG_LENGTH);
1389
1390 if (resp_len < 4 ||
1391 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1392 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1393 resp[2] != 0) {
1394 dev_warn(smi_info->io.dev,
1395 "Invalid return from get global enables command: %ld %x %x %x\n",
1396 resp_len, resp[0], resp[1], resp[2]);
1397 rv = -EINVAL;
1398 goto out;
1399 } else {
1400 *enables = resp[3];
1401 }
1402
1403 out:
1404 kfree(resp);
1405 return rv;
1406 }
1407
1408 /*
1409 * Returns 1 if it gets an error from the command.
1410 */
set_global_enables(struct smi_info * smi_info,u8 enables)1411 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1412 {
1413 unsigned char msg[3];
1414 unsigned char *resp;
1415 unsigned long resp_len;
1416 int rv;
1417
1418 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1419 if (!resp)
1420 return -ENOMEM;
1421
1422 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1423 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1424 msg[2] = enables;
1425 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1426
1427 rv = wait_for_msg_done(smi_info);
1428 if (rv) {
1429 dev_warn(smi_info->io.dev,
1430 "Error getting response from set global enables command: %d\n",
1431 rv);
1432 goto out;
1433 }
1434
1435 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1436 resp, IPMI_MAX_MSG_LENGTH);
1437
1438 if (resp_len < 3 ||
1439 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1440 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1441 dev_warn(smi_info->io.dev,
1442 "Invalid return from set global enables command: %ld %x %x\n",
1443 resp_len, resp[0], resp[1]);
1444 rv = -EINVAL;
1445 goto out;
1446 }
1447
1448 if (resp[2] != 0)
1449 rv = 1;
1450
1451 out:
1452 kfree(resp);
1453 return rv;
1454 }
1455
1456 /*
1457 * Some BMCs do not support clearing the receive irq bit in the global
1458 * enables (even if they don't support interrupts on the BMC). Check
1459 * for this and handle it properly.
1460 */
check_clr_rcv_irq(struct smi_info * smi_info)1461 static void check_clr_rcv_irq(struct smi_info *smi_info)
1462 {
1463 u8 enables = 0;
1464 int rv;
1465
1466 rv = get_global_enables(smi_info, &enables);
1467 if (!rv) {
1468 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1469 /* Already clear, should work ok. */
1470 return;
1471
1472 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1473 rv = set_global_enables(smi_info, enables);
1474 }
1475
1476 if (rv < 0) {
1477 dev_err(smi_info->io.dev,
1478 "Cannot check clearing the rcv irq: %d\n", rv);
1479 return;
1480 }
1481
1482 if (rv) {
1483 /*
1484 * An error when setting the event buffer bit means
1485 * clearing the bit is not supported.
1486 */
1487 dev_warn(smi_info->io.dev,
1488 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1489 smi_info->cannot_disable_irq = true;
1490 }
1491 }
1492
1493 /*
1494 * Some BMCs do not support setting the interrupt bits in the global
1495 * enables even if they support interrupts. Clearly bad, but we can
1496 * compensate.
1497 */
check_set_rcv_irq(struct smi_info * smi_info)1498 static void check_set_rcv_irq(struct smi_info *smi_info)
1499 {
1500 u8 enables = 0;
1501 int rv;
1502
1503 if (!smi_info->io.irq)
1504 return;
1505
1506 rv = get_global_enables(smi_info, &enables);
1507 if (!rv) {
1508 enables |= IPMI_BMC_RCV_MSG_INTR;
1509 rv = set_global_enables(smi_info, enables);
1510 }
1511
1512 if (rv < 0) {
1513 dev_err(smi_info->io.dev,
1514 "Cannot check setting the rcv irq: %d\n", rv);
1515 return;
1516 }
1517
1518 if (rv) {
1519 /*
1520 * An error when setting the event buffer bit means
1521 * setting the bit is not supported.
1522 */
1523 dev_warn(smi_info->io.dev,
1524 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1525 smi_info->cannot_disable_irq = true;
1526 smi_info->irq_enable_broken = true;
1527 }
1528 }
1529
try_enable_event_buffer(struct smi_info * smi_info)1530 static int try_enable_event_buffer(struct smi_info *smi_info)
1531 {
1532 unsigned char msg[3];
1533 unsigned char *resp;
1534 unsigned long resp_len;
1535 int rv = 0;
1536
1537 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1538 if (!resp)
1539 return -ENOMEM;
1540
1541 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1542 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1543 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1544
1545 rv = wait_for_msg_done(smi_info);
1546 if (rv) {
1547 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1548 goto out;
1549 }
1550
1551 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1552 resp, IPMI_MAX_MSG_LENGTH);
1553
1554 if (resp_len < 4 ||
1555 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1556 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1557 resp[2] != 0) {
1558 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1559 rv = -EINVAL;
1560 goto out;
1561 }
1562
1563 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1564 /* buffer is already enabled, nothing to do. */
1565 smi_info->supports_event_msg_buff = true;
1566 goto out;
1567 }
1568
1569 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1570 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1571 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1572 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1573
1574 rv = wait_for_msg_done(smi_info);
1575 if (rv) {
1576 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1577 goto out;
1578 }
1579
1580 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1581 resp, IPMI_MAX_MSG_LENGTH);
1582
1583 if (resp_len < 3 ||
1584 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1585 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1586 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1587 rv = -EINVAL;
1588 goto out;
1589 }
1590
1591 if (resp[2] != 0)
1592 /*
1593 * An error when setting the event buffer bit means
1594 * that the event buffer is not supported.
1595 */
1596 rv = -ENOENT;
1597 else
1598 smi_info->supports_event_msg_buff = true;
1599
1600 out:
1601 kfree(resp);
1602 return rv;
1603 }
1604
1605 #define IPMI_SI_ATTR(name) \
1606 static ssize_t name##_show(struct device *dev, \
1607 struct device_attribute *attr, \
1608 char *buf) \
1609 { \
1610 struct smi_info *smi_info = dev_get_drvdata(dev); \
1611 \
1612 return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \
1613 } \
1614 static DEVICE_ATTR_RO(name)
1615
type_show(struct device * dev,struct device_attribute * attr,char * buf)1616 static ssize_t type_show(struct device *dev,
1617 struct device_attribute *attr,
1618 char *buf)
1619 {
1620 struct smi_info *smi_info = dev_get_drvdata(dev);
1621
1622 return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_info->type]);
1623 }
1624 static DEVICE_ATTR_RO(type);
1625
interrupts_enabled_show(struct device * dev,struct device_attribute * attr,char * buf)1626 static ssize_t interrupts_enabled_show(struct device *dev,
1627 struct device_attribute *attr,
1628 char *buf)
1629 {
1630 struct smi_info *smi_info = dev_get_drvdata(dev);
1631 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1632
1633 return sysfs_emit(buf, "%d\n", enabled);
1634 }
1635 static DEVICE_ATTR_RO(interrupts_enabled);
1636
1637 IPMI_SI_ATTR(short_timeouts);
1638 IPMI_SI_ATTR(long_timeouts);
1639 IPMI_SI_ATTR(idles);
1640 IPMI_SI_ATTR(interrupts);
1641 IPMI_SI_ATTR(attentions);
1642 IPMI_SI_ATTR(flag_fetches);
1643 IPMI_SI_ATTR(hosed_count);
1644 IPMI_SI_ATTR(complete_transactions);
1645 IPMI_SI_ATTR(events);
1646 IPMI_SI_ATTR(watchdog_pretimeouts);
1647 IPMI_SI_ATTR(incoming_messages);
1648
params_show(struct device * dev,struct device_attribute * attr,char * buf)1649 static ssize_t params_show(struct device *dev,
1650 struct device_attribute *attr,
1651 char *buf)
1652 {
1653 struct smi_info *smi_info = dev_get_drvdata(dev);
1654
1655 return sysfs_emit(buf,
1656 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1657 si_to_str[smi_info->io.si_info->type],
1658 addr_space_to_str[smi_info->io.addr_space],
1659 smi_info->io.addr_data,
1660 smi_info->io.regspacing,
1661 smi_info->io.regsize,
1662 smi_info->io.regshift,
1663 smi_info->io.irq,
1664 smi_info->io.slave_addr);
1665 }
1666 static DEVICE_ATTR_RO(params);
1667
1668 static struct attribute *ipmi_si_dev_attrs[] = {
1669 &dev_attr_type.attr,
1670 &dev_attr_interrupts_enabled.attr,
1671 &dev_attr_short_timeouts.attr,
1672 &dev_attr_long_timeouts.attr,
1673 &dev_attr_idles.attr,
1674 &dev_attr_interrupts.attr,
1675 &dev_attr_attentions.attr,
1676 &dev_attr_flag_fetches.attr,
1677 &dev_attr_hosed_count.attr,
1678 &dev_attr_complete_transactions.attr,
1679 &dev_attr_events.attr,
1680 &dev_attr_watchdog_pretimeouts.attr,
1681 &dev_attr_incoming_messages.attr,
1682 &dev_attr_params.attr,
1683 NULL
1684 };
1685
1686 static const struct attribute_group ipmi_si_dev_attr_group = {
1687 .attrs = ipmi_si_dev_attrs,
1688 };
1689
1690 /*
1691 * oem_data_avail_to_receive_msg_avail
1692 * @info - smi_info structure with msg_flags set
1693 *
1694 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1695 * Returns 1 indicating need to re-run handle_flags().
1696 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)1697 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1698 {
1699 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1700 RECEIVE_MSG_AVAIL);
1701 return 1;
1702 }
1703
1704 /*
1705 * setup_dell_poweredge_oem_data_handler
1706 * @info - smi_info.device_id must be populated
1707 *
1708 * Systems that match, but have firmware version < 1.40 may assert
1709 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1710 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1711 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1712 * as RECEIVE_MSG_AVAIL instead.
1713 *
1714 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1715 * assert the OEM[012] bits, and if it did, the driver would have to
1716 * change to handle that properly, we don't actually check for the
1717 * firmware version.
1718 * Device ID = 0x20 BMC on PowerEdge 8G servers
1719 * Device Revision = 0x80
1720 * Firmware Revision1 = 0x01 BMC version 1.40
1721 * Firmware Revision2 = 0x40 BCD encoded
1722 * IPMI Version = 0x51 IPMI 1.5
1723 * Manufacturer ID = A2 02 00 Dell IANA
1724 *
1725 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1726 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1727 *
1728 */
1729 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1730 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1731 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1732 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)1733 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1734 {
1735 struct ipmi_device_id *id = &smi_info->device_id;
1736 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1737 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1738 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1739 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1740 smi_info->oem_data_avail_handler =
1741 oem_data_avail_to_receive_msg_avail;
1742 } else if (ipmi_version_major(id) < 1 ||
1743 (ipmi_version_major(id) == 1 &&
1744 ipmi_version_minor(id) < 5)) {
1745 smi_info->oem_data_avail_handler =
1746 oem_data_avail_to_receive_msg_avail;
1747 }
1748 }
1749 }
1750
1751 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)1752 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1753 {
1754 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1755
1756 /* Make it a response */
1757 msg->rsp[0] = msg->data[0] | 4;
1758 msg->rsp[1] = msg->data[1];
1759 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1760 msg->rsp_size = 3;
1761 smi_info->curr_msg = NULL;
1762 deliver_recv_msg(smi_info, msg);
1763 }
1764
1765 /*
1766 * dell_poweredge_bt_xaction_handler
1767 * @info - smi_info.device_id must be populated
1768 *
1769 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1770 * not respond to a Get SDR command if the length of the data
1771 * requested is exactly 0x3A, which leads to command timeouts and no
1772 * data returned. This intercepts such commands, and causes userspace
1773 * callers to try again with a different-sized buffer, which succeeds.
1774 */
1775
1776 #define STORAGE_NETFN 0x0A
1777 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)1778 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1779 unsigned long unused,
1780 void *in)
1781 {
1782 struct smi_info *smi_info = in;
1783 unsigned char *data = smi_info->curr_msg->data;
1784 unsigned int size = smi_info->curr_msg->data_size;
1785 if (size >= 8 &&
1786 (data[0]>>2) == STORAGE_NETFN &&
1787 data[1] == STORAGE_CMD_GET_SDR &&
1788 data[7] == 0x3A) {
1789 return_hosed_msg_badsize(smi_info);
1790 return NOTIFY_STOP;
1791 }
1792 return NOTIFY_DONE;
1793 }
1794
1795 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1796 .notifier_call = dell_poweredge_bt_xaction_handler,
1797 };
1798
1799 /*
1800 * setup_dell_poweredge_bt_xaction_handler
1801 * @info - smi_info.device_id must be filled in already
1802 *
1803 * Fills in smi_info.device_id.start_transaction_pre_hook
1804 * when we know what function to use there.
1805 */
1806 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)1807 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1808 {
1809 struct ipmi_device_id *id = &smi_info->device_id;
1810 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1811 smi_info->io.si_info->type == SI_BT)
1812 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1813 }
1814
1815 /*
1816 * setup_oem_data_handler
1817 * @info - smi_info.device_id must be filled in already
1818 *
1819 * Fills in smi_info.device_id.oem_data_available_handler
1820 * when we know what function to use there.
1821 */
1822
setup_oem_data_handler(struct smi_info * smi_info)1823 static void setup_oem_data_handler(struct smi_info *smi_info)
1824 {
1825 setup_dell_poweredge_oem_data_handler(smi_info);
1826 }
1827
setup_xaction_handlers(struct smi_info * smi_info)1828 static void setup_xaction_handlers(struct smi_info *smi_info)
1829 {
1830 setup_dell_poweredge_bt_xaction_handler(smi_info);
1831 }
1832
check_for_broken_irqs(struct smi_info * smi_info)1833 static void check_for_broken_irqs(struct smi_info *smi_info)
1834 {
1835 check_clr_rcv_irq(smi_info);
1836 check_set_rcv_irq(smi_info);
1837 }
1838
stop_timer_and_thread(struct smi_info * smi_info)1839 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1840 {
1841 if (smi_info->thread != NULL) {
1842 kthread_stop(smi_info->thread);
1843 smi_info->thread = NULL;
1844 }
1845
1846 smi_info->timer_can_start = false;
1847 timer_delete_sync(&smi_info->si_timer);
1848 }
1849
find_dup_si(struct smi_info * info)1850 static struct smi_info *find_dup_si(struct smi_info *info)
1851 {
1852 struct smi_info *e;
1853
1854 list_for_each_entry(e, &smi_infos, link) {
1855 if (e->io.addr_space != info->io.addr_space)
1856 continue;
1857 if (e->io.addr_data == info->io.addr_data) {
1858 /*
1859 * This is a cheap hack, ACPI doesn't have a defined
1860 * slave address but SMBIOS does. Pick it up from
1861 * any source that has it available.
1862 */
1863 if (info->io.slave_addr && !e->io.slave_addr)
1864 e->io.slave_addr = info->io.slave_addr;
1865 return e;
1866 }
1867 }
1868
1869 return NULL;
1870 }
1871
ipmi_si_add_smi(struct si_sm_io * io)1872 int ipmi_si_add_smi(struct si_sm_io *io)
1873 {
1874 int rv = 0;
1875 struct smi_info *new_smi, *dup;
1876
1877 /*
1878 * If the user gave us a hard-coded device at the same
1879 * address, they presumably want us to use it and not what is
1880 * in the firmware.
1881 */
1882 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1883 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1884 dev_info(io->dev,
1885 "Hard-coded device at this address already exists");
1886 return -ENODEV;
1887 }
1888
1889 if (!io->io_setup) {
1890 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1891 io->addr_space == IPMI_IO_ADDR_SPACE) {
1892 io->io_setup = ipmi_si_port_setup;
1893 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1894 io->io_setup = ipmi_si_mem_setup;
1895 } else {
1896 return -EINVAL;
1897 }
1898 }
1899
1900 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1901 if (!new_smi)
1902 return -ENOMEM;
1903 spin_lock_init(&new_smi->si_lock);
1904
1905 new_smi->io = *io;
1906
1907 mutex_lock(&smi_infos_lock);
1908 dup = find_dup_si(new_smi);
1909 if (dup) {
1910 if (new_smi->io.addr_source == SI_ACPI &&
1911 dup->io.addr_source == SI_SMBIOS) {
1912 /* We prefer ACPI over SMBIOS. */
1913 dev_info(dup->io.dev,
1914 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1915 si_to_str[new_smi->io.si_info->type]);
1916 cleanup_one_si(dup);
1917 } else {
1918 dev_info(new_smi->io.dev,
1919 "%s-specified %s state machine: duplicate\n",
1920 ipmi_addr_src_to_str(new_smi->io.addr_source),
1921 si_to_str[new_smi->io.si_info->type]);
1922 rv = -EBUSY;
1923 kfree(new_smi);
1924 goto out_err;
1925 }
1926 }
1927
1928 pr_info("Adding %s-specified %s state machine\n",
1929 ipmi_addr_src_to_str(new_smi->io.addr_source),
1930 si_to_str[new_smi->io.si_info->type]);
1931
1932 list_add_tail(&new_smi->link, &smi_infos);
1933
1934 if (initialized)
1935 rv = try_smi_init(new_smi);
1936 out_err:
1937 mutex_unlock(&smi_infos_lock);
1938 return rv;
1939 }
1940
1941 /*
1942 * Try to start up an interface. Must be called with smi_infos_lock
1943 * held, primarily to keep smi_num consistent, we only one to do these
1944 * one at a time.
1945 */
try_smi_init(struct smi_info * new_smi)1946 static int try_smi_init(struct smi_info *new_smi)
1947 {
1948 int rv = 0;
1949 int i;
1950
1951 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1952 ipmi_addr_src_to_str(new_smi->io.addr_source),
1953 si_to_str[new_smi->io.si_info->type],
1954 addr_space_to_str[new_smi->io.addr_space],
1955 new_smi->io.addr_data,
1956 new_smi->io.slave_addr, new_smi->io.irq);
1957
1958 switch (new_smi->io.si_info->type) {
1959 case SI_KCS:
1960 new_smi->handlers = &kcs_smi_handlers;
1961 break;
1962
1963 case SI_SMIC:
1964 new_smi->handlers = &smic_smi_handlers;
1965 break;
1966
1967 case SI_BT:
1968 new_smi->handlers = &bt_smi_handlers;
1969 break;
1970
1971 default:
1972 /* No support for anything else yet. */
1973 rv = -EIO;
1974 goto out_err;
1975 }
1976
1977 new_smi->si_num = smi_num;
1978
1979 /* Do this early so it's available for logs. */
1980 if (!new_smi->io.dev) {
1981 pr_err("IPMI interface added with no device\n");
1982 rv = -EIO;
1983 goto out_err;
1984 }
1985
1986 /* Allocate the state machine's data and initialize it. */
1987 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1988 if (!new_smi->si_sm) {
1989 rv = -ENOMEM;
1990 goto out_err;
1991 }
1992 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1993 &new_smi->io);
1994
1995 /* Now that we know the I/O size, we can set up the I/O. */
1996 rv = new_smi->io.io_setup(&new_smi->io);
1997 if (rv) {
1998 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1999 goto out_err;
2000 }
2001
2002 /* Do low-level detection first. */
2003 if (new_smi->handlers->detect(new_smi->si_sm)) {
2004 if (new_smi->io.addr_source)
2005 dev_err(new_smi->io.dev,
2006 "Interface detection failed\n");
2007 rv = -ENODEV;
2008 goto out_err;
2009 }
2010
2011 /*
2012 * Attempt a get device id command. If it fails, we probably
2013 * don't have a BMC here.
2014 */
2015 rv = try_get_dev_id(new_smi);
2016 if (rv) {
2017 if (new_smi->io.addr_source)
2018 dev_err(new_smi->io.dev,
2019 "There appears to be no BMC at this location\n");
2020 goto out_err;
2021 }
2022
2023 setup_oem_data_handler(new_smi);
2024 setup_xaction_handlers(new_smi);
2025 check_for_broken_irqs(new_smi);
2026
2027 new_smi->waiting_msg = NULL;
2028 new_smi->curr_msg = NULL;
2029 atomic_set(&new_smi->req_events, 0);
2030 new_smi->run_to_completion = false;
2031 for (i = 0; i < SI_NUM_STATS; i++)
2032 atomic_set(&new_smi->stats[i], 0);
2033
2034 new_smi->interrupt_disabled = true;
2035 atomic_set(&new_smi->need_watch, 0);
2036
2037 rv = try_enable_event_buffer(new_smi);
2038 if (rv == 0)
2039 new_smi->has_event_buffer = true;
2040
2041 /*
2042 * Start clearing the flags before we enable interrupts or the
2043 * timer to avoid racing with the timer.
2044 */
2045 start_clear_flags(new_smi);
2046
2047 /*
2048 * IRQ is defined to be set when non-zero. req_events will
2049 * cause a global flags check that will enable interrupts.
2050 */
2051 if (new_smi->io.irq) {
2052 new_smi->interrupt_disabled = false;
2053 atomic_set(&new_smi->req_events, 1);
2054 }
2055
2056 dev_set_drvdata(new_smi->io.dev, new_smi);
2057 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2058 if (rv) {
2059 dev_err(new_smi->io.dev,
2060 "Unable to add device attributes: error %d\n",
2061 rv);
2062 goto out_err;
2063 }
2064 new_smi->dev_group_added = true;
2065
2066 rv = ipmi_register_smi(&handlers,
2067 new_smi,
2068 new_smi->io.dev,
2069 new_smi->io.slave_addr);
2070 if (rv) {
2071 dev_err(new_smi->io.dev,
2072 "Unable to register device: error %d\n",
2073 rv);
2074 goto out_err;
2075 }
2076
2077 /* Don't increment till we know we have succeeded. */
2078 smi_num++;
2079
2080 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2081 si_to_str[new_smi->io.si_info->type]);
2082
2083 WARN_ON(new_smi->io.dev->init_name != NULL);
2084
2085 out_err:
2086 if (rv && new_smi->io.io_cleanup) {
2087 new_smi->io.io_cleanup(&new_smi->io);
2088 new_smi->io.io_cleanup = NULL;
2089 }
2090
2091 if (rv && new_smi->si_sm) {
2092 kfree(new_smi->si_sm);
2093 new_smi->si_sm = NULL;
2094 }
2095
2096 return rv;
2097 }
2098
2099 /*
2100 * Devices in the same address space at the same address are the same.
2101 */
ipmi_smi_info_same(struct smi_info * e1,struct smi_info * e2)2102 static bool __init ipmi_smi_info_same(struct smi_info *e1, struct smi_info *e2)
2103 {
2104 return (e1->io.addr_space == e2->io.addr_space &&
2105 e1->io.addr_data == e2->io.addr_data);
2106 }
2107
init_ipmi_si(void)2108 static int __init init_ipmi_si(void)
2109 {
2110 struct smi_info *e, *e2;
2111 enum ipmi_addr_src type = SI_INVALID;
2112
2113 if (initialized)
2114 return 0;
2115
2116 ipmi_hardcode_init();
2117
2118 pr_info("IPMI System Interface driver\n");
2119
2120 ipmi_si_platform_init();
2121
2122 ipmi_si_pci_init();
2123
2124 ipmi_si_parisc_init();
2125
2126 mutex_lock(&smi_infos_lock);
2127
2128 /*
2129 * Scan through all the devices. We prefer devices with
2130 * interrupts, so go through those first in case there are any
2131 * duplicates that don't have the interrupt set.
2132 */
2133 list_for_each_entry(e, &smi_infos, link) {
2134 bool dup = false;
2135
2136 /* Register ones with interrupts first. */
2137 if (!e->io.irq)
2138 continue;
2139
2140 /*
2141 * Go through the ones we have already seen to see if this
2142 * is a dup.
2143 */
2144 list_for_each_entry(e2, &smi_infos, link) {
2145 if (e2 == e)
2146 break;
2147 if (e2->io.irq && ipmi_smi_info_same(e, e2)) {
2148 dup = true;
2149 break;
2150 }
2151 }
2152 if (!dup)
2153 try_smi_init(e);
2154 }
2155
2156 /*
2157 * Now try devices without interrupts.
2158 */
2159 list_for_each_entry(e, &smi_infos, link) {
2160 bool dup = false;
2161
2162 if (e->io.irq)
2163 continue;
2164
2165 /*
2166 * Go through the ones we have already seen to see if
2167 * this is a dup. We have already looked at the ones
2168 * with interrupts.
2169 */
2170 list_for_each_entry(e2, &smi_infos, link) {
2171 if (!e2->io.irq)
2172 continue;
2173 if (ipmi_smi_info_same(e, e2)) {
2174 dup = true;
2175 break;
2176 }
2177 }
2178 list_for_each_entry(e2, &smi_infos, link) {
2179 if (e2 == e)
2180 break;
2181 if (ipmi_smi_info_same(e, e2)) {
2182 dup = true;
2183 break;
2184 }
2185 }
2186 if (!dup)
2187 try_smi_init(e);
2188 }
2189
2190 initialized = true;
2191 mutex_unlock(&smi_infos_lock);
2192
2193 if (type)
2194 return 0;
2195
2196 mutex_lock(&smi_infos_lock);
2197 if (unload_when_empty && list_empty(&smi_infos)) {
2198 mutex_unlock(&smi_infos_lock);
2199 cleanup_ipmi_si();
2200 pr_warn("Unable to find any System Interface(s)\n");
2201 return -ENODEV;
2202 } else {
2203 mutex_unlock(&smi_infos_lock);
2204 return 0;
2205 }
2206 }
2207 module_init(init_ipmi_si);
2208
wait_msg_processed(struct smi_info * smi_info)2209 static void wait_msg_processed(struct smi_info *smi_info)
2210 {
2211 unsigned long jiffies_now;
2212 long time_diff;
2213
2214 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2215 jiffies_now = jiffies;
2216 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2217 * SI_USEC_PER_JIFFY);
2218 smi_event_handler(smi_info, time_diff);
2219 schedule_timeout_uninterruptible(1);
2220 }
2221 }
2222
shutdown_smi(void * send_info)2223 static void shutdown_smi(void *send_info)
2224 {
2225 struct smi_info *smi_info = send_info;
2226
2227 if (smi_info->dev_group_added) {
2228 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2229 smi_info->dev_group_added = false;
2230 }
2231 if (smi_info->io.dev)
2232 dev_set_drvdata(smi_info->io.dev, NULL);
2233
2234 /*
2235 * Make sure that interrupts, the timer and the thread are
2236 * stopped and will not run again.
2237 */
2238 smi_info->interrupt_disabled = true;
2239 if (smi_info->io.irq_cleanup) {
2240 smi_info->io.irq_cleanup(&smi_info->io);
2241 smi_info->io.irq_cleanup = NULL;
2242 }
2243 stop_timer_and_thread(smi_info);
2244
2245 /*
2246 * Wait until we know that we are out of any interrupt
2247 * handlers might have been running before we freed the
2248 * interrupt.
2249 */
2250 synchronize_rcu();
2251
2252 /*
2253 * Timeouts are stopped, now make sure the interrupts are off
2254 * in the BMC. Note that timers and CPU interrupts are off,
2255 * so no need for locks.
2256 */
2257 wait_msg_processed(smi_info);
2258
2259 if (smi_info->handlers)
2260 disable_si_irq(smi_info);
2261
2262 wait_msg_processed(smi_info);
2263
2264 if (smi_info->handlers)
2265 smi_info->handlers->cleanup(smi_info->si_sm);
2266
2267 if (smi_info->io.io_cleanup) {
2268 smi_info->io.io_cleanup(&smi_info->io);
2269 smi_info->io.io_cleanup = NULL;
2270 }
2271
2272 kfree(smi_info->si_sm);
2273 smi_info->si_sm = NULL;
2274
2275 smi_info->intf = NULL;
2276 }
2277
2278 /*
2279 * Must be called with smi_infos_lock held, to serialize the
2280 * smi_info->intf check.
2281 */
cleanup_one_si(struct smi_info * smi_info)2282 static void cleanup_one_si(struct smi_info *smi_info)
2283 {
2284 if (!smi_info)
2285 return;
2286
2287 list_del(&smi_info->link);
2288 ipmi_unregister_smi(smi_info->intf);
2289 kfree(smi_info);
2290 }
2291
ipmi_si_remove_by_dev(struct device * dev)2292 void ipmi_si_remove_by_dev(struct device *dev)
2293 {
2294 struct smi_info *e;
2295
2296 mutex_lock(&smi_infos_lock);
2297 list_for_each_entry(e, &smi_infos, link) {
2298 if (e->io.dev == dev) {
2299 cleanup_one_si(e);
2300 break;
2301 }
2302 }
2303 mutex_unlock(&smi_infos_lock);
2304 }
2305
ipmi_si_remove_by_data(int addr_space,enum si_type si_type,unsigned long addr)2306 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2307 unsigned long addr)
2308 {
2309 /* remove */
2310 struct smi_info *e, *tmp_e;
2311 struct device *dev = NULL;
2312
2313 mutex_lock(&smi_infos_lock);
2314 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2315 if (e->io.addr_space != addr_space)
2316 continue;
2317 if (e->io.si_info->type != si_type)
2318 continue;
2319 if (e->io.addr_data == addr) {
2320 dev = get_device(e->io.dev);
2321 cleanup_one_si(e);
2322 }
2323 }
2324 mutex_unlock(&smi_infos_lock);
2325
2326 return dev;
2327 }
2328
cleanup_ipmi_si(void)2329 static void cleanup_ipmi_si(void)
2330 {
2331 struct smi_info *e, *tmp_e;
2332
2333 if (!initialized)
2334 return;
2335
2336 ipmi_si_pci_shutdown();
2337
2338 ipmi_si_parisc_shutdown();
2339
2340 ipmi_si_platform_shutdown();
2341
2342 mutex_lock(&smi_infos_lock);
2343 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2344 cleanup_one_si(e);
2345 mutex_unlock(&smi_infos_lock);
2346
2347 ipmi_si_hardcode_exit();
2348 ipmi_si_hotmod_exit();
2349 }
2350 module_exit(cleanup_ipmi_si);
2351
2352 MODULE_ALIAS("platform:dmi-ipmi-si");
2353 MODULE_LICENSE("GPL");
2354 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2355 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
2356