1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38
39 #define IPMI_DRIVER_VERSION "39.2"
40
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user);
42 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg,
43 struct ipmi_user *user);
44 static int ipmi_init_msghandler(void);
45 static void smi_work(struct work_struct *t);
46 static void handle_new_recv_msgs(struct ipmi_smi *intf);
47 static void need_waiter(struct ipmi_smi *intf);
48 static int handle_one_recv_msg(struct ipmi_smi *intf,
49 struct ipmi_smi_msg *msg);
50 static void intf_free(struct kref *ref);
51
52 static bool initialized;
53 static bool drvregistered;
54
55 static struct timer_list ipmi_timer;
56
57 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
58 enum ipmi_panic_event_op {
59 IPMI_SEND_PANIC_EVENT_NONE,
60 IPMI_SEND_PANIC_EVENT,
61 IPMI_SEND_PANIC_EVENT_STRING,
62 IPMI_SEND_PANIC_EVENT_MAX
63 };
64
65 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
66 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
67
68 #ifdef CONFIG_IPMI_PANIC_STRING
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
70 #elif defined(CONFIG_IPMI_PANIC_EVENT)
71 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
72 #else
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
74 #endif
75
76 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
77
panic_op_write_handler(const char * val,const struct kernel_param * kp)78 static int panic_op_write_handler(const char *val,
79 const struct kernel_param *kp)
80 {
81 char valcp[16];
82 int e;
83
84 strscpy(valcp, val, sizeof(valcp));
85 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
86 if (e < 0)
87 return e;
88
89 ipmi_send_panic_event = e;
90 return 0;
91 }
92
panic_op_read_handler(char * buffer,const struct kernel_param * kp)93 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
94 {
95 const char *event_str;
96
97 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
98 event_str = "???";
99 else
100 event_str = ipmi_panic_event_str[ipmi_send_panic_event];
101
102 return sprintf(buffer, "%s\n", event_str);
103 }
104
105 static const struct kernel_param_ops panic_op_ops = {
106 .set = panic_op_write_handler,
107 .get = panic_op_read_handler
108 };
109 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
110 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
111
112
113 #define MAX_EVENTS_IN_QUEUE 25
114
115 /* Remain in auto-maintenance mode for this amount of time (in ms). */
116 static unsigned long maintenance_mode_timeout_ms = 30000;
117 module_param(maintenance_mode_timeout_ms, ulong, 0644);
118 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
119 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
120
121 /*
122 * Don't let a message sit in a queue forever, always time it with at lest
123 * the max message timer. This is in milliseconds.
124 */
125 #define MAX_MSG_TIMEOUT 60000
126
127 /*
128 * Timeout times below are in milliseconds, and are done off a 1
129 * second timer. So setting the value to 1000 would mean anything
130 * between 0 and 1000ms. So really the only reasonable minimum
131 * setting it 2000ms, which is between 1 and 2 seconds.
132 */
133
134 /* The default timeout for message retries. */
135 static unsigned long default_retry_ms = 2000;
136 module_param(default_retry_ms, ulong, 0644);
137 MODULE_PARM_DESC(default_retry_ms,
138 "The time (milliseconds) between retry sends");
139
140 /* The default timeout for maintenance mode message retries. */
141 static unsigned long default_maintenance_retry_ms = 3000;
142 module_param(default_maintenance_retry_ms, ulong, 0644);
143 MODULE_PARM_DESC(default_maintenance_retry_ms,
144 "The time (milliseconds) between retry sends in maintenance mode");
145
146 /* The default maximum number of retries */
147 static unsigned int default_max_retries = 4;
148 module_param(default_max_retries, uint, 0644);
149 MODULE_PARM_DESC(default_max_retries,
150 "The time (milliseconds) between retry sends in maintenance mode");
151
152 /* The default maximum number of users that may register. */
153 static unsigned int max_users = 30;
154 module_param(max_users, uint, 0644);
155 MODULE_PARM_DESC(max_users,
156 "The most users that may use the IPMI stack at one time.");
157
158 /* The default maximum number of message a user may have outstanding. */
159 static unsigned int max_msgs_per_user = 100;
160 module_param(max_msgs_per_user, uint, 0644);
161 MODULE_PARM_DESC(max_msgs_per_user,
162 "The most message a user may have outstanding.");
163
164 /* Call every ~1000 ms. */
165 #define IPMI_TIMEOUT_TIME 1000
166
167 /* How many jiffies does it take to get to the timeout time. */
168 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
169
170 /*
171 * Request events from the queue every second (this is the number of
172 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
173 * future, IPMI will add a way to know immediately if an event is in
174 * the queue and this silliness can go away.
175 */
176 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
177
178 /* How long should we cache dynamic device IDs? */
179 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
180
181 /*
182 * The main "user" data structure.
183 */
184 struct ipmi_user {
185 struct list_head link;
186
187 struct kref refcount;
188 refcount_t destroyed;
189
190 /* The upper layer that handles receive messages. */
191 const struct ipmi_user_hndl *handler;
192 void *handler_data;
193
194 /* The interface this user is bound to. */
195 struct ipmi_smi *intf;
196
197 /* Does this interface receive IPMI events? */
198 bool gets_events;
199
200 atomic_t nr_msgs;
201 };
202
203 struct cmd_rcvr {
204 struct list_head link;
205
206 struct ipmi_user *user;
207 unsigned char netfn;
208 unsigned char cmd;
209 unsigned int chans;
210
211 /*
212 * This is used to form a linked lised during mass deletion.
213 * Since this is in an RCU list, we cannot use the link above
214 * or change any data until the RCU period completes. So we
215 * use this next variable during mass deletion so we can have
216 * a list and don't have to wait and restart the search on
217 * every individual deletion of a command.
218 */
219 struct cmd_rcvr *next;
220 };
221
222 struct seq_table {
223 unsigned int inuse : 1;
224 unsigned int broadcast : 1;
225
226 unsigned long timeout;
227 unsigned long orig_timeout;
228 unsigned int retries_left;
229
230 /*
231 * To verify on an incoming send message response that this is
232 * the message that the response is for, we keep a sequence id
233 * and increment it every time we send a message.
234 */
235 long seqid;
236
237 /*
238 * This is held so we can properly respond to the message on a
239 * timeout, and it is used to hold the temporary data for
240 * retransmission, too.
241 */
242 struct ipmi_recv_msg *recv_msg;
243 };
244
245 /*
246 * Store the information in a msgid (long) to allow us to find a
247 * sequence table entry from the msgid.
248 */
249 #define STORE_SEQ_IN_MSGID(seq, seqid) \
250 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
251
252 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
253 do { \
254 seq = (((msgid) >> 26) & 0x3f); \
255 seqid = ((msgid) & 0x3ffffff); \
256 } while (0)
257
258 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
259
260 #define IPMI_MAX_CHANNELS 16
261 struct ipmi_channel {
262 unsigned char medium;
263 unsigned char protocol;
264 };
265
266 struct ipmi_channel_set {
267 struct ipmi_channel c[IPMI_MAX_CHANNELS];
268 };
269
270 struct ipmi_my_addrinfo {
271 /*
272 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
273 * but may be changed by the user.
274 */
275 unsigned char address;
276
277 /*
278 * My LUN. This should generally stay the SMS LUN, but just in
279 * case...
280 */
281 unsigned char lun;
282 };
283
284 /*
285 * Note that the product id, manufacturer id, guid, and device id are
286 * immutable in this structure, so dyn_mutex is not required for
287 * accessing those. If those change on a BMC, a new BMC is allocated.
288 */
289 struct bmc_device {
290 struct platform_device pdev;
291 struct list_head intfs; /* Interfaces on this BMC. */
292 struct ipmi_device_id id;
293 struct ipmi_device_id fetch_id;
294 int dyn_id_set;
295 unsigned long dyn_id_expiry;
296 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
297 guid_t guid;
298 guid_t fetch_guid;
299 int dyn_guid_set;
300 struct kref usecount;
301 struct work_struct remove_work;
302 unsigned char cc; /* completion code */
303 };
304 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
305
306 static struct workqueue_struct *bmc_remove_work_wq;
307
308 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
309 struct ipmi_device_id *id,
310 bool *guid_set, guid_t *guid);
311
312 /*
313 * Various statistics for IPMI, these index stats[] in the ipmi_smi
314 * structure.
315 */
316 enum ipmi_stat_indexes {
317 /* Commands we got from the user that were invalid. */
318 IPMI_STAT_sent_invalid_commands = 0,
319
320 /* Commands we sent to the MC. */
321 IPMI_STAT_sent_local_commands,
322
323 /* Responses from the MC that were delivered to a user. */
324 IPMI_STAT_handled_local_responses,
325
326 /* Responses from the MC that were not delivered to a user. */
327 IPMI_STAT_unhandled_local_responses,
328
329 /* Commands we sent out to the IPMB bus. */
330 IPMI_STAT_sent_ipmb_commands,
331
332 /* Commands sent on the IPMB that had errors on the SEND CMD */
333 IPMI_STAT_sent_ipmb_command_errs,
334
335 /* Each retransmit increments this count. */
336 IPMI_STAT_retransmitted_ipmb_commands,
337
338 /*
339 * When a message times out (runs out of retransmits) this is
340 * incremented.
341 */
342 IPMI_STAT_timed_out_ipmb_commands,
343
344 /*
345 * This is like above, but for broadcasts. Broadcasts are
346 * *not* included in the above count (they are expected to
347 * time out).
348 */
349 IPMI_STAT_timed_out_ipmb_broadcasts,
350
351 /* Responses I have sent to the IPMB bus. */
352 IPMI_STAT_sent_ipmb_responses,
353
354 /* The response was delivered to the user. */
355 IPMI_STAT_handled_ipmb_responses,
356
357 /* The response had invalid data in it. */
358 IPMI_STAT_invalid_ipmb_responses,
359
360 /* The response didn't have anyone waiting for it. */
361 IPMI_STAT_unhandled_ipmb_responses,
362
363 /* Commands we sent out to the IPMB bus. */
364 IPMI_STAT_sent_lan_commands,
365
366 /* Commands sent on the IPMB that had errors on the SEND CMD */
367 IPMI_STAT_sent_lan_command_errs,
368
369 /* Each retransmit increments this count. */
370 IPMI_STAT_retransmitted_lan_commands,
371
372 /*
373 * When a message times out (runs out of retransmits) this is
374 * incremented.
375 */
376 IPMI_STAT_timed_out_lan_commands,
377
378 /* Responses I have sent to the IPMB bus. */
379 IPMI_STAT_sent_lan_responses,
380
381 /* The response was delivered to the user. */
382 IPMI_STAT_handled_lan_responses,
383
384 /* The response had invalid data in it. */
385 IPMI_STAT_invalid_lan_responses,
386
387 /* The response didn't have anyone waiting for it. */
388 IPMI_STAT_unhandled_lan_responses,
389
390 /* The command was delivered to the user. */
391 IPMI_STAT_handled_commands,
392
393 /* The command had invalid data in it. */
394 IPMI_STAT_invalid_commands,
395
396 /* The command didn't have anyone waiting for it. */
397 IPMI_STAT_unhandled_commands,
398
399 /* Invalid data in an event. */
400 IPMI_STAT_invalid_events,
401
402 /* Events that were received with the proper format. */
403 IPMI_STAT_events,
404
405 /* Retransmissions on IPMB that failed. */
406 IPMI_STAT_dropped_rexmit_ipmb_commands,
407
408 /* Retransmissions on LAN that failed. */
409 IPMI_STAT_dropped_rexmit_lan_commands,
410
411 /* This *must* remain last, add new values above this. */
412 IPMI_NUM_STATS
413 };
414
415
416 #define IPMI_IPMB_NUM_SEQ 64
417 struct ipmi_smi {
418 struct module *owner;
419
420 /* What interface number are we? */
421 int intf_num;
422
423 struct kref refcount;
424
425 /* Set when the interface is being unregistered. */
426 bool in_shutdown;
427
428 /* Used for a list of interfaces. */
429 struct list_head link;
430
431 /*
432 * The list of upper layers that are using me.
433 */
434 struct list_head users;
435 struct mutex users_mutex;
436 atomic_t nr_users;
437 struct device_attribute nr_users_devattr;
438 struct device_attribute nr_msgs_devattr;
439 struct device_attribute maintenance_mode_devattr;
440
441
442 /* Used for wake ups at startup. */
443 wait_queue_head_t waitq;
444
445 /*
446 * Prevents the interface from being unregistered when the
447 * interface is used by being looked up through the BMC
448 * structure.
449 */
450 struct mutex bmc_reg_mutex;
451
452 struct bmc_device tmp_bmc;
453 struct bmc_device *bmc;
454 bool bmc_registered;
455 struct list_head bmc_link;
456 char *my_dev_name;
457 bool in_bmc_register; /* Handle recursive situations. Yuck. */
458 struct work_struct bmc_reg_work;
459
460 const struct ipmi_smi_handlers *handlers;
461 void *send_info;
462
463 /* Driver-model device for the system interface. */
464 struct device *si_dev;
465
466 /*
467 * A table of sequence numbers for this interface. We use the
468 * sequence numbers for IPMB messages that go out of the
469 * interface to match them up with their responses. A routine
470 * is called periodically to time the items in this list.
471 */
472 struct mutex seq_lock;
473 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
474 int curr_seq;
475
476 /*
477 * Messages queued for deliver to the user.
478 */
479 struct mutex user_msgs_mutex;
480 struct list_head user_msgs;
481
482 /*
483 * Messages queued for processing. If processing fails (out
484 * of memory for instance), They will stay in here to be
485 * processed later in a periodic timer interrupt. The
486 * workqueue is for handling received messages directly from
487 * the handler.
488 */
489 spinlock_t waiting_rcv_msgs_lock;
490 struct list_head waiting_rcv_msgs;
491 atomic_t watchdog_pretimeouts_to_deliver;
492 struct work_struct smi_work;
493
494 spinlock_t xmit_msgs_lock;
495 struct list_head xmit_msgs;
496 struct ipmi_smi_msg *curr_msg;
497 struct list_head hp_xmit_msgs;
498
499 /*
500 * The list of command receivers that are registered for commands
501 * on this interface.
502 */
503 struct mutex cmd_rcvrs_mutex;
504 struct list_head cmd_rcvrs;
505
506 /*
507 * Events that were queues because no one was there to receive
508 * them.
509 */
510 struct mutex events_mutex; /* For dealing with event stuff. */
511 struct list_head waiting_events;
512 unsigned int waiting_events_count; /* How many events in queue? */
513 char event_msg_printed;
514
515 /* How many users are waiting for events? */
516 atomic_t event_waiters;
517 unsigned int ticks_to_req_ev;
518
519 spinlock_t watch_lock; /* For dealing with watch stuff below. */
520
521 /* How many users are waiting for commands? */
522 unsigned int command_waiters;
523
524 /* How many users are waiting for watchdogs? */
525 unsigned int watchdog_waiters;
526
527 /* How many users are waiting for message responses? */
528 unsigned int response_waiters;
529
530 /*
531 * Tells what the lower layer has last been asked to watch for,
532 * messages and/or watchdogs. Protected by watch_lock.
533 */
534 unsigned int last_watch_mask;
535
536 /*
537 * The event receiver for my BMC, only really used at panic
538 * shutdown as a place to store this.
539 */
540 unsigned char event_receiver;
541 unsigned char event_receiver_lun;
542 unsigned char local_sel_device;
543 unsigned char local_event_generator;
544
545 /* For handling of maintenance mode. */
546 int maintenance_mode;
547
548 #define IPMI_MAINTENANCE_MODE_STATE_OFF 0
549 #define IPMI_MAINTENANCE_MODE_STATE_FIRMWARE 1
550 #define IPMI_MAINTENANCE_MODE_STATE_RESET 2
551 int maintenance_mode_state;
552 int auto_maintenance_timeout;
553 spinlock_t maintenance_mode_lock; /* Used in a timer... */
554
555 /*
556 * If we are doing maintenance on something on IPMB, extend
557 * the timeout time to avoid timeouts writing firmware and
558 * such.
559 */
560 int ipmb_maintenance_mode_timeout;
561
562 /*
563 * A cheap hack, if this is non-null and a message to an
564 * interface comes in with a NULL user, call this routine with
565 * it. Note that the message will still be freed by the
566 * caller. This only works on the system interface.
567 *
568 * Protected by bmc_reg_mutex.
569 */
570 void (*null_user_handler)(struct ipmi_smi *intf,
571 struct ipmi_recv_msg *msg);
572
573 /*
574 * When we are scanning the channels for an SMI, this will
575 * tell which channel we are scanning.
576 */
577 int curr_channel;
578
579 /* Channel information */
580 struct ipmi_channel_set *channel_list;
581 unsigned int curr_working_cset; /* First index into the following. */
582 struct ipmi_channel_set wchannels[2];
583 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
584 bool channels_ready;
585
586 atomic_t stats[IPMI_NUM_STATS];
587
588 /*
589 * run_to_completion duplicate of smb_info, smi_info
590 * and ipmi_serial_info structures. Used to decrease numbers of
591 * parameters passed by "low" level IPMI code.
592 */
593 int run_to_completion;
594 };
595 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
596
597 static void __get_guid(struct ipmi_smi *intf);
598 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
599 static int __ipmi_bmc_register(struct ipmi_smi *intf,
600 struct ipmi_device_id *id,
601 bool guid_set, guid_t *guid, int intf_num);
602 static int __scan_channels(struct ipmi_smi *intf,
603 struct ipmi_device_id *id, bool rescan);
604
free_ipmi_user(struct kref * ref)605 static void free_ipmi_user(struct kref *ref)
606 {
607 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
608 struct module *owner;
609
610 owner = user->intf->owner;
611 kref_put(&user->intf->refcount, intf_free);
612 module_put(owner);
613 vfree(user);
614 }
615
release_ipmi_user(struct ipmi_user * user)616 static void release_ipmi_user(struct ipmi_user *user)
617 {
618 kref_put(&user->refcount, free_ipmi_user);
619 }
620
acquire_ipmi_user(struct ipmi_user * user)621 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user)
622 {
623 if (!kref_get_unless_zero(&user->refcount))
624 return NULL;
625 return user;
626 }
627
628 /*
629 * The driver model view of the IPMI messaging driver.
630 */
631 static struct platform_driver ipmidriver = {
632 .driver = {
633 .name = "ipmi",
634 .bus = &platform_bus_type
635 }
636 };
637 /*
638 * This mutex keeps us from adding the same BMC twice.
639 */
640 static DEFINE_MUTEX(ipmidriver_mutex);
641
642 static LIST_HEAD(ipmi_interfaces);
643 static DEFINE_MUTEX(ipmi_interfaces_mutex);
644
645 /*
646 * List of watchers that want to know when smi's are added and deleted.
647 */
648 static LIST_HEAD(smi_watchers);
649 static DEFINE_MUTEX(smi_watchers_mutex);
650
651 #define ipmi_inc_stat(intf, stat) \
652 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
653 #define ipmi_get_stat(intf, stat) \
654 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
655
656 static const char * const addr_src_to_str[] = {
657 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
658 "device-tree", "platform"
659 };
660
ipmi_addr_src_to_str(enum ipmi_addr_src src)661 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
662 {
663 if (src >= SI_LAST)
664 src = 0; /* Invalid */
665 return addr_src_to_str[src];
666 }
667 EXPORT_SYMBOL(ipmi_addr_src_to_str);
668
is_lan_addr(struct ipmi_addr * addr)669 static int is_lan_addr(struct ipmi_addr *addr)
670 {
671 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
672 }
673
is_ipmb_addr(struct ipmi_addr * addr)674 static int is_ipmb_addr(struct ipmi_addr *addr)
675 {
676 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
677 }
678
is_ipmb_bcast_addr(struct ipmi_addr * addr)679 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
680 {
681 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
682 }
683
is_ipmb_direct_addr(struct ipmi_addr * addr)684 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
685 {
686 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
687 }
688
free_recv_msg_list(struct list_head * q)689 static void free_recv_msg_list(struct list_head *q)
690 {
691 struct ipmi_recv_msg *msg, *msg2;
692
693 list_for_each_entry_safe(msg, msg2, q, link) {
694 list_del(&msg->link);
695 ipmi_free_recv_msg(msg);
696 }
697 }
698
free_smi_msg_list(struct list_head * q)699 static void free_smi_msg_list(struct list_head *q)
700 {
701 struct ipmi_smi_msg *msg, *msg2;
702
703 list_for_each_entry_safe(msg, msg2, q, link) {
704 list_del(&msg->link);
705 ipmi_free_smi_msg(msg);
706 }
707 }
708
intf_free(struct kref * ref)709 static void intf_free(struct kref *ref)
710 {
711 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
712 int i;
713 struct cmd_rcvr *rcvr, *rcvr2;
714
715 free_smi_msg_list(&intf->waiting_rcv_msgs);
716 free_recv_msg_list(&intf->waiting_events);
717
718 /*
719 * Wholesale remove all the entries from the list in the
720 * interface. No need for locks, this is single-threaded.
721 */
722 list_for_each_entry_safe(rcvr, rcvr2, &intf->cmd_rcvrs, link)
723 kfree(rcvr);
724
725 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
726 if ((intf->seq_table[i].inuse)
727 && (intf->seq_table[i].recv_msg))
728 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
729 }
730
731 kfree(intf);
732 }
733
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)734 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
735 {
736 struct ipmi_smi *intf;
737 unsigned int count = 0, i;
738 int *interfaces = NULL;
739 struct device **devices = NULL;
740 int rv = 0;
741
742 /*
743 * Make sure the driver is actually initialized, this handles
744 * problems with initialization order.
745 */
746 rv = ipmi_init_msghandler();
747 if (rv)
748 return rv;
749
750 mutex_lock(&smi_watchers_mutex);
751
752 list_add(&watcher->link, &smi_watchers);
753
754 /*
755 * Build an array of ipmi interfaces and fill it in, and
756 * another array of the devices. We can't call the callback
757 * with ipmi_interfaces_mutex held. smi_watchers_mutex will
758 * keep things in order for the user.
759 */
760 mutex_lock(&ipmi_interfaces_mutex);
761 list_for_each_entry(intf, &ipmi_interfaces, link)
762 count++;
763 if (count > 0) {
764 interfaces = kmalloc_array(count, sizeof(*interfaces),
765 GFP_KERNEL);
766 if (!interfaces) {
767 rv = -ENOMEM;
768 } else {
769 devices = kmalloc_array(count, sizeof(*devices),
770 GFP_KERNEL);
771 if (!devices) {
772 kfree(interfaces);
773 interfaces = NULL;
774 rv = -ENOMEM;
775 }
776 }
777 count = 0;
778 }
779 if (interfaces) {
780 list_for_each_entry(intf, &ipmi_interfaces, link) {
781 int intf_num = READ_ONCE(intf->intf_num);
782
783 if (intf_num == -1)
784 continue;
785 devices[count] = intf->si_dev;
786 interfaces[count++] = intf_num;
787 }
788 }
789 mutex_unlock(&ipmi_interfaces_mutex);
790
791 if (interfaces) {
792 for (i = 0; i < count; i++)
793 watcher->new_smi(interfaces[i], devices[i]);
794 kfree(interfaces);
795 kfree(devices);
796 }
797
798 mutex_unlock(&smi_watchers_mutex);
799
800 return rv;
801 }
802 EXPORT_SYMBOL(ipmi_smi_watcher_register);
803
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)804 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
805 {
806 mutex_lock(&smi_watchers_mutex);
807 list_del(&watcher->link);
808 mutex_unlock(&smi_watchers_mutex);
809 return 0;
810 }
811 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
812
813 static void
call_smi_watchers(int i,struct device * dev)814 call_smi_watchers(int i, struct device *dev)
815 {
816 struct ipmi_smi_watcher *w;
817
818 list_for_each_entry(w, &smi_watchers, link) {
819 if (try_module_get(w->owner)) {
820 w->new_smi(i, dev);
821 module_put(w->owner);
822 }
823 }
824 }
825
826 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)827 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
828 {
829 if (addr1->addr_type != addr2->addr_type)
830 return 0;
831
832 if (addr1->channel != addr2->channel)
833 return 0;
834
835 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
836 struct ipmi_system_interface_addr *smi_addr1
837 = (struct ipmi_system_interface_addr *) addr1;
838 struct ipmi_system_interface_addr *smi_addr2
839 = (struct ipmi_system_interface_addr *) addr2;
840 return (smi_addr1->lun == smi_addr2->lun);
841 }
842
843 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
844 struct ipmi_ipmb_addr *ipmb_addr1
845 = (struct ipmi_ipmb_addr *) addr1;
846 struct ipmi_ipmb_addr *ipmb_addr2
847 = (struct ipmi_ipmb_addr *) addr2;
848
849 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
850 && (ipmb_addr1->lun == ipmb_addr2->lun));
851 }
852
853 if (is_ipmb_direct_addr(addr1)) {
854 struct ipmi_ipmb_direct_addr *daddr1
855 = (struct ipmi_ipmb_direct_addr *) addr1;
856 struct ipmi_ipmb_direct_addr *daddr2
857 = (struct ipmi_ipmb_direct_addr *) addr2;
858
859 return daddr1->slave_addr == daddr2->slave_addr &&
860 daddr1->rq_lun == daddr2->rq_lun &&
861 daddr1->rs_lun == daddr2->rs_lun;
862 }
863
864 if (is_lan_addr(addr1)) {
865 struct ipmi_lan_addr *lan_addr1
866 = (struct ipmi_lan_addr *) addr1;
867 struct ipmi_lan_addr *lan_addr2
868 = (struct ipmi_lan_addr *) addr2;
869
870 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
871 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
872 && (lan_addr1->session_handle
873 == lan_addr2->session_handle)
874 && (lan_addr1->lun == lan_addr2->lun));
875 }
876
877 return 1;
878 }
879
ipmi_validate_addr(struct ipmi_addr * addr,int len)880 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
881 {
882 if (len < sizeof(struct ipmi_system_interface_addr))
883 return -EINVAL;
884
885 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
886 if (addr->channel != IPMI_BMC_CHANNEL)
887 return -EINVAL;
888 return 0;
889 }
890
891 if ((addr->channel == IPMI_BMC_CHANNEL)
892 || (addr->channel >= IPMI_MAX_CHANNELS)
893 || (addr->channel < 0))
894 return -EINVAL;
895
896 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
897 if (len < sizeof(struct ipmi_ipmb_addr))
898 return -EINVAL;
899 return 0;
900 }
901
902 if (is_ipmb_direct_addr(addr)) {
903 struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
904
905 if (addr->channel != 0)
906 return -EINVAL;
907 if (len < sizeof(struct ipmi_ipmb_direct_addr))
908 return -EINVAL;
909
910 if (daddr->slave_addr & 0x01)
911 return -EINVAL;
912 if (daddr->rq_lun >= 4)
913 return -EINVAL;
914 if (daddr->rs_lun >= 4)
915 return -EINVAL;
916 return 0;
917 }
918
919 if (is_lan_addr(addr)) {
920 if (len < sizeof(struct ipmi_lan_addr))
921 return -EINVAL;
922 return 0;
923 }
924
925 return -EINVAL;
926 }
927 EXPORT_SYMBOL(ipmi_validate_addr);
928
ipmi_addr_length(int addr_type)929 unsigned int ipmi_addr_length(int addr_type)
930 {
931 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
932 return sizeof(struct ipmi_system_interface_addr);
933
934 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
935 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
936 return sizeof(struct ipmi_ipmb_addr);
937
938 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
939 return sizeof(struct ipmi_ipmb_direct_addr);
940
941 if (addr_type == IPMI_LAN_ADDR_TYPE)
942 return sizeof(struct ipmi_lan_addr);
943
944 return 0;
945 }
946 EXPORT_SYMBOL(ipmi_addr_length);
947
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)948 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
949 {
950 int rv = 0;
951
952 if (!msg->user) {
953 /* Special handling for NULL users. */
954 if (intf->null_user_handler) {
955 intf->null_user_handler(intf, msg);
956 } else {
957 /* No handler, so give up. */
958 rv = -EINVAL;
959 }
960 ipmi_free_recv_msg(msg);
961 } else if (oops_in_progress) {
962 /*
963 * If we are running in the panic context, calling the
964 * receive handler doesn't much meaning and has a deadlock
965 * risk. At this moment, simply skip it in that case.
966 */
967 ipmi_free_recv_msg(msg);
968 } else {
969 /*
970 * Deliver it in smi_work. The message will hold a
971 * refcount to the user.
972 */
973 mutex_lock(&intf->user_msgs_mutex);
974 list_add_tail(&msg->link, &intf->user_msgs);
975 mutex_unlock(&intf->user_msgs_mutex);
976 queue_work(system_wq, &intf->smi_work);
977 }
978
979 return rv;
980 }
981
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)982 static void deliver_local_response(struct ipmi_smi *intf,
983 struct ipmi_recv_msg *msg)
984 {
985 if (deliver_response(intf, msg))
986 ipmi_inc_stat(intf, unhandled_local_responses);
987 else
988 ipmi_inc_stat(intf, handled_local_responses);
989 }
990
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)991 static void deliver_err_response(struct ipmi_smi *intf,
992 struct ipmi_recv_msg *msg, int err)
993 {
994 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
995 msg->msg_data[0] = err;
996 msg->msg.netfn |= 1; /* Convert to a response. */
997 msg->msg.data_len = 1;
998 msg->msg.data = msg->msg_data;
999 deliver_local_response(intf, msg);
1000 }
1001
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)1002 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
1003 {
1004 unsigned long iflags;
1005
1006 if (!intf->handlers->set_need_watch)
1007 return;
1008
1009 spin_lock_irqsave(&intf->watch_lock, iflags);
1010 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1011 intf->response_waiters++;
1012
1013 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1014 intf->watchdog_waiters++;
1015
1016 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1017 intf->command_waiters++;
1018
1019 if ((intf->last_watch_mask & flags) != flags) {
1020 intf->last_watch_mask |= flags;
1021 intf->handlers->set_need_watch(intf->send_info,
1022 intf->last_watch_mask);
1023 }
1024 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1025 }
1026
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1027 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1028 {
1029 unsigned long iflags;
1030
1031 if (!intf->handlers->set_need_watch)
1032 return;
1033
1034 spin_lock_irqsave(&intf->watch_lock, iflags);
1035 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1036 intf->response_waiters--;
1037
1038 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1039 intf->watchdog_waiters--;
1040
1041 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1042 intf->command_waiters--;
1043
1044 flags = 0;
1045 if (intf->response_waiters)
1046 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1047 if (intf->watchdog_waiters)
1048 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1049 if (intf->command_waiters)
1050 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1051
1052 if (intf->last_watch_mask != flags) {
1053 intf->last_watch_mask = flags;
1054 intf->handlers->set_need_watch(intf->send_info,
1055 intf->last_watch_mask);
1056 }
1057 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1058 }
1059
1060 /*
1061 * Find the next sequence number not being used and add the given
1062 * message with the given timeout to the sequence table. This must be
1063 * called with the interface's seq_lock held.
1064 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1065 static int intf_next_seq(struct ipmi_smi *intf,
1066 struct ipmi_recv_msg *recv_msg,
1067 unsigned long timeout,
1068 int retries,
1069 int broadcast,
1070 unsigned char *seq,
1071 long *seqid)
1072 {
1073 int rv = 0;
1074 unsigned int i;
1075
1076 if (timeout == 0)
1077 timeout = default_retry_ms;
1078 if (retries < 0)
1079 retries = default_max_retries;
1080
1081 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1082 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1083 if (!intf->seq_table[i].inuse)
1084 break;
1085 }
1086
1087 if (!intf->seq_table[i].inuse) {
1088 intf->seq_table[i].recv_msg = recv_msg;
1089
1090 /*
1091 * Start with the maximum timeout, when the send response
1092 * comes in we will start the real timer.
1093 */
1094 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1095 intf->seq_table[i].orig_timeout = timeout;
1096 intf->seq_table[i].retries_left = retries;
1097 intf->seq_table[i].broadcast = broadcast;
1098 intf->seq_table[i].inuse = 1;
1099 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1100 *seq = i;
1101 *seqid = intf->seq_table[i].seqid;
1102 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1103 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1104 need_waiter(intf);
1105 } else {
1106 rv = -EAGAIN;
1107 }
1108
1109 return rv;
1110 }
1111
1112 /*
1113 * Return the receive message for the given sequence number and
1114 * release the sequence number so it can be reused. Some other data
1115 * is passed in to be sure the message matches up correctly (to help
1116 * guard against message coming in after their timeout and the
1117 * sequence number being reused).
1118 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1119 static int intf_find_seq(struct ipmi_smi *intf,
1120 unsigned char seq,
1121 short channel,
1122 unsigned char cmd,
1123 unsigned char netfn,
1124 struct ipmi_addr *addr,
1125 struct ipmi_recv_msg **recv_msg)
1126 {
1127 int rv = -ENODEV;
1128
1129 if (seq >= IPMI_IPMB_NUM_SEQ)
1130 return -EINVAL;
1131
1132 mutex_lock(&intf->seq_lock);
1133 if (intf->seq_table[seq].inuse) {
1134 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1135
1136 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1137 && (msg->msg.netfn == netfn)
1138 && (ipmi_addr_equal(addr, &msg->addr))) {
1139 *recv_msg = msg;
1140 intf->seq_table[seq].inuse = 0;
1141 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1142 rv = 0;
1143 }
1144 }
1145 mutex_unlock(&intf->seq_lock);
1146
1147 return rv;
1148 }
1149
1150
1151 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1152 static int intf_start_seq_timer(struct ipmi_smi *intf,
1153 long msgid)
1154 {
1155 int rv = -ENODEV;
1156 unsigned char seq;
1157 unsigned long seqid;
1158
1159
1160 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1161
1162 mutex_lock(&intf->seq_lock);
1163 /*
1164 * We do this verification because the user can be deleted
1165 * while a message is outstanding.
1166 */
1167 if ((intf->seq_table[seq].inuse)
1168 && (intf->seq_table[seq].seqid == seqid)) {
1169 struct seq_table *ent = &intf->seq_table[seq];
1170 ent->timeout = ent->orig_timeout;
1171 rv = 0;
1172 }
1173 mutex_unlock(&intf->seq_lock);
1174
1175 return rv;
1176 }
1177
1178 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1179 static int intf_err_seq(struct ipmi_smi *intf,
1180 long msgid,
1181 unsigned int err)
1182 {
1183 int rv = -ENODEV;
1184 unsigned char seq;
1185 unsigned long seqid;
1186 struct ipmi_recv_msg *msg = NULL;
1187
1188
1189 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1190
1191 mutex_lock(&intf->seq_lock);
1192 /*
1193 * We do this verification because the user can be deleted
1194 * while a message is outstanding.
1195 */
1196 if ((intf->seq_table[seq].inuse)
1197 && (intf->seq_table[seq].seqid == seqid)) {
1198 struct seq_table *ent = &intf->seq_table[seq];
1199
1200 ent->inuse = 0;
1201 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1202 msg = ent->recv_msg;
1203 rv = 0;
1204 }
1205 mutex_unlock(&intf->seq_lock);
1206
1207 if (msg)
1208 deliver_err_response(intf, msg, err);
1209
1210 return rv;
1211 }
1212
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1213 int ipmi_create_user(unsigned int if_num,
1214 const struct ipmi_user_hndl *handler,
1215 void *handler_data,
1216 struct ipmi_user **user)
1217 {
1218 struct ipmi_user *new_user = NULL;
1219 int rv = 0;
1220 struct ipmi_smi *intf;
1221
1222 /*
1223 * There is no module usecount here, because it's not
1224 * required. Since this can only be used by and called from
1225 * other modules, they will implicitly use this module, and
1226 * thus this can't be removed unless the other modules are
1227 * removed.
1228 */
1229
1230 if (handler == NULL)
1231 return -EINVAL;
1232
1233 /*
1234 * Make sure the driver is actually initialized, this handles
1235 * problems with initialization order.
1236 */
1237 rv = ipmi_init_msghandler();
1238 if (rv)
1239 return rv;
1240
1241 mutex_lock(&ipmi_interfaces_mutex);
1242 list_for_each_entry(intf, &ipmi_interfaces, link) {
1243 if (intf->intf_num == if_num)
1244 goto found;
1245 }
1246 /* Not found, return an error */
1247 rv = -EINVAL;
1248 goto out_unlock;
1249
1250 found:
1251 if (intf->in_shutdown) {
1252 rv = -ENODEV;
1253 goto out_unlock;
1254 }
1255
1256 if (atomic_add_return(1, &intf->nr_users) > max_users) {
1257 rv = -EBUSY;
1258 goto out_kfree;
1259 }
1260
1261 new_user = vzalloc(sizeof(*new_user));
1262 if (!new_user) {
1263 rv = -ENOMEM;
1264 goto out_kfree;
1265 }
1266
1267 if (!try_module_get(intf->owner)) {
1268 rv = -ENODEV;
1269 goto out_kfree;
1270 }
1271
1272 /* Note that each existing user holds a refcount to the interface. */
1273 kref_get(&intf->refcount);
1274
1275 atomic_set(&new_user->nr_msgs, 0);
1276 kref_init(&new_user->refcount);
1277 refcount_set(&new_user->destroyed, 1);
1278 kref_get(&new_user->refcount); /* Destroy owns a refcount. */
1279 new_user->handler = handler;
1280 new_user->handler_data = handler_data;
1281 new_user->intf = intf;
1282 new_user->gets_events = false;
1283
1284 mutex_lock(&intf->users_mutex);
1285 mutex_lock(&intf->seq_lock);
1286 list_add(&new_user->link, &intf->users);
1287 mutex_unlock(&intf->seq_lock);
1288 mutex_unlock(&intf->users_mutex);
1289
1290 if (handler->ipmi_watchdog_pretimeout)
1291 /* User wants pretimeouts, so make sure to watch for them. */
1292 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1293
1294 out_kfree:
1295 if (rv) {
1296 atomic_dec(&intf->nr_users);
1297 vfree(new_user);
1298 } else {
1299 *user = new_user;
1300 }
1301 out_unlock:
1302 mutex_unlock(&ipmi_interfaces_mutex);
1303 return rv;
1304 }
1305 EXPORT_SYMBOL(ipmi_create_user);
1306
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1307 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1308 {
1309 int rv = -EINVAL;
1310 struct ipmi_smi *intf;
1311
1312 mutex_lock(&ipmi_interfaces_mutex);
1313 list_for_each_entry(intf, &ipmi_interfaces, link) {
1314 if (intf->intf_num == if_num) {
1315 if (!intf->handlers->get_smi_info)
1316 rv = -ENOTTY;
1317 else
1318 rv = intf->handlers->get_smi_info(intf->send_info, data);
1319 break;
1320 }
1321 }
1322 mutex_unlock(&ipmi_interfaces_mutex);
1323
1324 return rv;
1325 }
1326 EXPORT_SYMBOL(ipmi_get_smi_info);
1327
1328 /* Must be called with intf->users_mutex held. */
_ipmi_destroy_user(struct ipmi_user * user)1329 static void _ipmi_destroy_user(struct ipmi_user *user)
1330 {
1331 struct ipmi_smi *intf = user->intf;
1332 int i;
1333 struct cmd_rcvr *rcvr;
1334 struct cmd_rcvr *rcvrs = NULL;
1335 struct ipmi_recv_msg *msg, *msg2;
1336
1337 if (!refcount_dec_if_one(&user->destroyed))
1338 return;
1339
1340 if (user->handler->shutdown)
1341 user->handler->shutdown(user->handler_data);
1342
1343 if (user->handler->ipmi_watchdog_pretimeout)
1344 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1345
1346 if (user->gets_events)
1347 atomic_dec(&intf->event_waiters);
1348
1349 /* Remove the user from the interface's list and sequence table. */
1350 list_del(&user->link);
1351 atomic_dec(&intf->nr_users);
1352
1353 mutex_lock(&intf->seq_lock);
1354 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1355 if (intf->seq_table[i].inuse
1356 && (intf->seq_table[i].recv_msg->user == user)) {
1357 intf->seq_table[i].inuse = 0;
1358 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1359 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1360 }
1361 }
1362 mutex_unlock(&intf->seq_lock);
1363
1364 /*
1365 * Remove the user from the command receiver's table. First
1366 * we build a list of everything (not using the standard link,
1367 * since other things may be using it till we do
1368 * synchronize_rcu()) then free everything in that list.
1369 */
1370 mutex_lock(&intf->cmd_rcvrs_mutex);
1371 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1372 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1373 if (rcvr->user == user) {
1374 list_del_rcu(&rcvr->link);
1375 rcvr->next = rcvrs;
1376 rcvrs = rcvr;
1377 }
1378 }
1379 mutex_unlock(&intf->cmd_rcvrs_mutex);
1380 while (rcvrs) {
1381 rcvr = rcvrs;
1382 rcvrs = rcvr->next;
1383 kfree(rcvr);
1384 }
1385
1386 mutex_lock(&intf->user_msgs_mutex);
1387 list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
1388 if (msg->user != user)
1389 continue;
1390 list_del(&msg->link);
1391 ipmi_free_recv_msg(msg);
1392 }
1393 mutex_unlock(&intf->user_msgs_mutex);
1394
1395 release_ipmi_user(user);
1396 }
1397
ipmi_destroy_user(struct ipmi_user * user)1398 void ipmi_destroy_user(struct ipmi_user *user)
1399 {
1400 struct ipmi_smi *intf = user->intf;
1401
1402 mutex_lock(&intf->users_mutex);
1403 _ipmi_destroy_user(user);
1404 mutex_unlock(&intf->users_mutex);
1405
1406 kref_put(&user->refcount, free_ipmi_user);
1407 }
1408 EXPORT_SYMBOL(ipmi_destroy_user);
1409
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1410 int ipmi_get_version(struct ipmi_user *user,
1411 unsigned char *major,
1412 unsigned char *minor)
1413 {
1414 struct ipmi_device_id id;
1415 int rv;
1416
1417 user = acquire_ipmi_user(user);
1418 if (!user)
1419 return -ENODEV;
1420
1421 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1422 if (!rv) {
1423 *major = ipmi_version_major(&id);
1424 *minor = ipmi_version_minor(&id);
1425 }
1426 release_ipmi_user(user);
1427
1428 return rv;
1429 }
1430 EXPORT_SYMBOL(ipmi_get_version);
1431
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1432 int ipmi_set_my_address(struct ipmi_user *user,
1433 unsigned int channel,
1434 unsigned char address)
1435 {
1436 int rv = 0;
1437
1438 user = acquire_ipmi_user(user);
1439 if (!user)
1440 return -ENODEV;
1441
1442 if (channel >= IPMI_MAX_CHANNELS) {
1443 rv = -EINVAL;
1444 } else {
1445 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1446 user->intf->addrinfo[channel].address = address;
1447 }
1448 release_ipmi_user(user);
1449
1450 return rv;
1451 }
1452 EXPORT_SYMBOL(ipmi_set_my_address);
1453
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1454 int ipmi_get_my_address(struct ipmi_user *user,
1455 unsigned int channel,
1456 unsigned char *address)
1457 {
1458 int rv = 0;
1459
1460 user = acquire_ipmi_user(user);
1461 if (!user)
1462 return -ENODEV;
1463
1464 if (channel >= IPMI_MAX_CHANNELS) {
1465 rv = -EINVAL;
1466 } else {
1467 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1468 *address = user->intf->addrinfo[channel].address;
1469 }
1470 release_ipmi_user(user);
1471
1472 return rv;
1473 }
1474 EXPORT_SYMBOL(ipmi_get_my_address);
1475
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1476 int ipmi_set_my_LUN(struct ipmi_user *user,
1477 unsigned int channel,
1478 unsigned char LUN)
1479 {
1480 int rv = 0;
1481
1482 user = acquire_ipmi_user(user);
1483 if (!user)
1484 return -ENODEV;
1485
1486 if (channel >= IPMI_MAX_CHANNELS) {
1487 rv = -EINVAL;
1488 } else {
1489 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1490 user->intf->addrinfo[channel].lun = LUN & 0x3;
1491 }
1492 release_ipmi_user(user);
1493
1494 return rv;
1495 }
1496 EXPORT_SYMBOL(ipmi_set_my_LUN);
1497
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1498 int ipmi_get_my_LUN(struct ipmi_user *user,
1499 unsigned int channel,
1500 unsigned char *address)
1501 {
1502 int rv = 0;
1503
1504 user = acquire_ipmi_user(user);
1505 if (!user)
1506 return -ENODEV;
1507
1508 if (channel >= IPMI_MAX_CHANNELS) {
1509 rv = -EINVAL;
1510 } else {
1511 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1512 *address = user->intf->addrinfo[channel].lun;
1513 }
1514 release_ipmi_user(user);
1515
1516 return rv;
1517 }
1518 EXPORT_SYMBOL(ipmi_get_my_LUN);
1519
ipmi_get_maintenance_mode(struct ipmi_user * user)1520 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1521 {
1522 int mode;
1523 unsigned long flags;
1524
1525 user = acquire_ipmi_user(user);
1526 if (!user)
1527 return -ENODEV;
1528
1529 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1530 mode = user->intf->maintenance_mode;
1531 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1532 release_ipmi_user(user);
1533
1534 return mode;
1535 }
1536 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1537
maintenance_mode_update(struct ipmi_smi * intf)1538 static void maintenance_mode_update(struct ipmi_smi *intf)
1539 {
1540 if (intf->handlers->set_maintenance_mode)
1541 /*
1542 * Lower level drivers only care about firmware mode
1543 * as it affects their timing. They don't care about
1544 * reset, which disables all commands for a while.
1545 */
1546 intf->handlers->set_maintenance_mode(
1547 intf->send_info,
1548 (intf->maintenance_mode_state ==
1549 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE));
1550 }
1551
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1552 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1553 {
1554 int rv = 0;
1555 unsigned long flags;
1556 struct ipmi_smi *intf = user->intf;
1557
1558 user = acquire_ipmi_user(user);
1559 if (!user)
1560 return -ENODEV;
1561
1562 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1563 if (intf->maintenance_mode != mode) {
1564 switch (mode) {
1565 case IPMI_MAINTENANCE_MODE_AUTO:
1566 /* Just leave it alone. */
1567 break;
1568
1569 case IPMI_MAINTENANCE_MODE_OFF:
1570 intf->maintenance_mode_state =
1571 IPMI_MAINTENANCE_MODE_STATE_OFF;
1572 break;
1573
1574 case IPMI_MAINTENANCE_MODE_ON:
1575 intf->maintenance_mode_state =
1576 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE;
1577 break;
1578
1579 default:
1580 rv = -EINVAL;
1581 goto out_unlock;
1582 }
1583 intf->maintenance_mode = mode;
1584
1585 maintenance_mode_update(intf);
1586 }
1587 out_unlock:
1588 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1589 release_ipmi_user(user);
1590
1591 return rv;
1592 }
1593 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1594
ipmi_set_gets_events(struct ipmi_user * user,bool val)1595 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1596 {
1597 struct ipmi_smi *intf = user->intf;
1598 struct ipmi_recv_msg *msg, *msg2;
1599 struct list_head msgs;
1600
1601 user = acquire_ipmi_user(user);
1602 if (!user)
1603 return -ENODEV;
1604
1605 INIT_LIST_HEAD(&msgs);
1606
1607 mutex_lock(&intf->events_mutex);
1608 if (user->gets_events == val)
1609 goto out;
1610
1611 user->gets_events = val;
1612
1613 if (val) {
1614 if (atomic_inc_return(&intf->event_waiters) == 1)
1615 need_waiter(intf);
1616 } else {
1617 atomic_dec(&intf->event_waiters);
1618 }
1619
1620 /* Deliver any queued events. */
1621 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1622 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1623 list_move_tail(&msg->link, &msgs);
1624 intf->waiting_events_count = 0;
1625 if (intf->event_msg_printed) {
1626 dev_warn(intf->si_dev, "Event queue no longer full\n");
1627 intf->event_msg_printed = 0;
1628 }
1629
1630 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1631 ipmi_set_recv_msg_user(msg, user);
1632 deliver_local_response(intf, msg);
1633 }
1634 }
1635
1636 out:
1637 mutex_unlock(&intf->events_mutex);
1638 release_ipmi_user(user);
1639
1640 return 0;
1641 }
1642 EXPORT_SYMBOL(ipmi_set_gets_events);
1643
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1644 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1645 unsigned char netfn,
1646 unsigned char cmd,
1647 unsigned char chan)
1648 {
1649 struct cmd_rcvr *rcvr;
1650
1651 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1652 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1653 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1654 && (rcvr->chans & (1 << chan)))
1655 return rcvr;
1656 }
1657 return NULL;
1658 }
1659
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1660 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1661 unsigned char netfn,
1662 unsigned char cmd,
1663 unsigned int chans)
1664 {
1665 struct cmd_rcvr *rcvr;
1666
1667 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1668 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1669 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1670 && (rcvr->chans & chans))
1671 return 0;
1672 }
1673 return 1;
1674 }
1675
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1676 int ipmi_register_for_cmd(struct ipmi_user *user,
1677 unsigned char netfn,
1678 unsigned char cmd,
1679 unsigned int chans)
1680 {
1681 struct ipmi_smi *intf = user->intf;
1682 struct cmd_rcvr *rcvr;
1683 int rv = 0;
1684
1685 user = acquire_ipmi_user(user);
1686 if (!user)
1687 return -ENODEV;
1688
1689 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1690 if (!rcvr) {
1691 rv = -ENOMEM;
1692 goto out_release;
1693 }
1694 rcvr->cmd = cmd;
1695 rcvr->netfn = netfn;
1696 rcvr->chans = chans;
1697 rcvr->user = user;
1698
1699 mutex_lock(&intf->cmd_rcvrs_mutex);
1700 /* Make sure the command/netfn is not already registered. */
1701 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1702 rv = -EBUSY;
1703 goto out_unlock;
1704 }
1705
1706 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1707
1708 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1709
1710 out_unlock:
1711 mutex_unlock(&intf->cmd_rcvrs_mutex);
1712 if (rv)
1713 kfree(rcvr);
1714 out_release:
1715 release_ipmi_user(user);
1716
1717 return rv;
1718 }
1719 EXPORT_SYMBOL(ipmi_register_for_cmd);
1720
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1721 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1722 unsigned char netfn,
1723 unsigned char cmd,
1724 unsigned int chans)
1725 {
1726 struct ipmi_smi *intf = user->intf;
1727 struct cmd_rcvr *rcvr;
1728 struct cmd_rcvr *rcvrs = NULL;
1729 int i, rv = -ENOENT;
1730
1731 user = acquire_ipmi_user(user);
1732 if (!user)
1733 return -ENODEV;
1734
1735 mutex_lock(&intf->cmd_rcvrs_mutex);
1736 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1737 if (((1 << i) & chans) == 0)
1738 continue;
1739 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1740 if (rcvr == NULL)
1741 continue;
1742 if (rcvr->user == user) {
1743 rv = 0;
1744 rcvr->chans &= ~chans;
1745 if (rcvr->chans == 0) {
1746 list_del_rcu(&rcvr->link);
1747 rcvr->next = rcvrs;
1748 rcvrs = rcvr;
1749 }
1750 }
1751 }
1752 mutex_unlock(&intf->cmd_rcvrs_mutex);
1753 synchronize_rcu();
1754 release_ipmi_user(user);
1755 while (rcvrs) {
1756 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1757 rcvr = rcvrs;
1758 rcvrs = rcvr->next;
1759 kfree(rcvr);
1760 }
1761
1762 return rv;
1763 }
1764 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1765
1766 unsigned char
ipmb_checksum(unsigned char * data,int size)1767 ipmb_checksum(unsigned char *data, int size)
1768 {
1769 unsigned char csum = 0;
1770
1771 for (; size > 0; size--, data++)
1772 csum += *data;
1773
1774 return -csum;
1775 }
1776 EXPORT_SYMBOL(ipmb_checksum);
1777
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1778 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1779 struct kernel_ipmi_msg *msg,
1780 struct ipmi_ipmb_addr *ipmb_addr,
1781 long msgid,
1782 unsigned char ipmb_seq,
1783 int broadcast,
1784 unsigned char source_address,
1785 unsigned char source_lun)
1786 {
1787 int i = broadcast;
1788
1789 /* Format the IPMB header data. */
1790 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1791 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1792 smi_msg->data[2] = ipmb_addr->channel;
1793 if (broadcast)
1794 smi_msg->data[3] = 0;
1795 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1796 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1797 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1798 smi_msg->data[i+6] = source_address;
1799 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1800 smi_msg->data[i+8] = msg->cmd;
1801
1802 /* Now tack on the data to the message. */
1803 if (msg->data_len > 0)
1804 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1805 smi_msg->data_size = msg->data_len + 9;
1806
1807 /* Now calculate the checksum and tack it on. */
1808 smi_msg->data[i+smi_msg->data_size]
1809 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1810
1811 /*
1812 * Add on the checksum size and the offset from the
1813 * broadcast.
1814 */
1815 smi_msg->data_size += 1 + i;
1816
1817 smi_msg->msgid = msgid;
1818 }
1819
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1820 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1821 struct kernel_ipmi_msg *msg,
1822 struct ipmi_lan_addr *lan_addr,
1823 long msgid,
1824 unsigned char ipmb_seq,
1825 unsigned char source_lun)
1826 {
1827 /* Format the IPMB header data. */
1828 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1829 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1830 smi_msg->data[2] = lan_addr->channel;
1831 smi_msg->data[3] = lan_addr->session_handle;
1832 smi_msg->data[4] = lan_addr->remote_SWID;
1833 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1834 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1835 smi_msg->data[7] = lan_addr->local_SWID;
1836 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1837 smi_msg->data[9] = msg->cmd;
1838
1839 /* Now tack on the data to the message. */
1840 if (msg->data_len > 0)
1841 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1842 smi_msg->data_size = msg->data_len + 10;
1843
1844 /* Now calculate the checksum and tack it on. */
1845 smi_msg->data[smi_msg->data_size]
1846 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1847
1848 /*
1849 * Add on the checksum size and the offset from the
1850 * broadcast.
1851 */
1852 smi_msg->data_size += 1;
1853
1854 smi_msg->msgid = msgid;
1855 }
1856
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1857 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1858 struct ipmi_smi_msg *smi_msg,
1859 int priority)
1860 {
1861 if (intf->curr_msg) {
1862 if (priority > 0)
1863 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1864 else
1865 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1866 smi_msg = NULL;
1867 } else {
1868 intf->curr_msg = smi_msg;
1869 }
1870
1871 return smi_msg;
1872 }
1873
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1874 static void smi_send(struct ipmi_smi *intf,
1875 const struct ipmi_smi_handlers *handlers,
1876 struct ipmi_smi_msg *smi_msg, int priority)
1877 {
1878 int run_to_completion = READ_ONCE(intf->run_to_completion);
1879 unsigned long flags = 0;
1880
1881 if (!run_to_completion)
1882 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1883 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1884 if (!run_to_completion)
1885 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1886
1887 if (smi_msg)
1888 handlers->sender(intf->send_info, smi_msg);
1889 }
1890
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1891 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1892 {
1893 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1894 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1895 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1896 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1897 }
1898
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1899 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1900 struct ipmi_addr *addr,
1901 long msgid,
1902 struct kernel_ipmi_msg *msg,
1903 struct ipmi_smi_msg *smi_msg,
1904 struct ipmi_recv_msg *recv_msg,
1905 int retries,
1906 unsigned int retry_time_ms)
1907 {
1908 struct ipmi_system_interface_addr *smi_addr;
1909
1910 if (msg->netfn & 1)
1911 /* Responses are not allowed to the SMI. */
1912 return -EINVAL;
1913
1914 smi_addr = (struct ipmi_system_interface_addr *) addr;
1915 if (smi_addr->lun > 3) {
1916 ipmi_inc_stat(intf, sent_invalid_commands);
1917 return -EINVAL;
1918 }
1919
1920 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1921
1922 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1923 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1924 || (msg->cmd == IPMI_GET_MSG_CMD)
1925 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1926 /*
1927 * We don't let the user do these, since we manage
1928 * the sequence numbers.
1929 */
1930 ipmi_inc_stat(intf, sent_invalid_commands);
1931 return -EINVAL;
1932 }
1933
1934 if (is_maintenance_mode_cmd(msg)) {
1935 unsigned long flags;
1936 int newst;
1937
1938 if (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)
1939 newst = IPMI_MAINTENANCE_MODE_STATE_FIRMWARE;
1940 else
1941 newst = IPMI_MAINTENANCE_MODE_STATE_RESET;
1942
1943 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1944 intf->auto_maintenance_timeout = maintenance_mode_timeout_ms;
1945 if (!intf->maintenance_mode
1946 && intf->maintenance_mode_state < newst) {
1947 intf->maintenance_mode_state = newst;
1948 maintenance_mode_update(intf);
1949 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
1950 }
1951 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1952 flags);
1953 }
1954
1955 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1956 ipmi_inc_stat(intf, sent_invalid_commands);
1957 return -EMSGSIZE;
1958 }
1959
1960 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1961 smi_msg->data[1] = msg->cmd;
1962 smi_msg->msgid = msgid;
1963 smi_msg->recv_msg = recv_msg;
1964 if (msg->data_len > 0)
1965 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1966 smi_msg->data_size = msg->data_len + 2;
1967 ipmi_inc_stat(intf, sent_local_commands);
1968
1969 return 0;
1970 }
1971
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1972 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1973 struct ipmi_addr *addr,
1974 long msgid,
1975 struct kernel_ipmi_msg *msg,
1976 struct ipmi_smi_msg *smi_msg,
1977 struct ipmi_recv_msg *recv_msg,
1978 unsigned char source_address,
1979 unsigned char source_lun,
1980 int retries,
1981 unsigned int retry_time_ms)
1982 {
1983 struct ipmi_ipmb_addr *ipmb_addr;
1984 unsigned char ipmb_seq;
1985 long seqid;
1986 int broadcast = 0;
1987 struct ipmi_channel *chans;
1988 int rv = 0;
1989
1990 if (addr->channel >= IPMI_MAX_CHANNELS) {
1991 ipmi_inc_stat(intf, sent_invalid_commands);
1992 return -EINVAL;
1993 }
1994
1995 chans = READ_ONCE(intf->channel_list)->c;
1996
1997 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1998 ipmi_inc_stat(intf, sent_invalid_commands);
1999 return -EINVAL;
2000 }
2001
2002 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2003 /*
2004 * Broadcasts add a zero at the beginning of the
2005 * message, but otherwise is the same as an IPMB
2006 * address.
2007 */
2008 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2009 broadcast = 1;
2010 retries = 0; /* Don't retry broadcasts. */
2011 }
2012
2013 /*
2014 * 9 for the header and 1 for the checksum, plus
2015 * possibly one for the broadcast.
2016 */
2017 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2018 ipmi_inc_stat(intf, sent_invalid_commands);
2019 return -EMSGSIZE;
2020 }
2021
2022 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2023 if (ipmb_addr->lun > 3) {
2024 ipmi_inc_stat(intf, sent_invalid_commands);
2025 return -EINVAL;
2026 }
2027
2028 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2029
2030 if (recv_msg->msg.netfn & 0x1) {
2031 /*
2032 * It's a response, so use the user's sequence
2033 * from msgid.
2034 */
2035 ipmi_inc_stat(intf, sent_ipmb_responses);
2036 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2037 msgid, broadcast,
2038 source_address, source_lun);
2039
2040 /*
2041 * Save the receive message so we can use it
2042 * to deliver the response.
2043 */
2044 smi_msg->recv_msg = recv_msg;
2045 } else {
2046 mutex_lock(&intf->seq_lock);
2047
2048 if (is_maintenance_mode_cmd(msg))
2049 intf->ipmb_maintenance_mode_timeout =
2050 maintenance_mode_timeout_ms;
2051
2052 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2053 /* Different default in maintenance mode */
2054 retry_time_ms = default_maintenance_retry_ms;
2055
2056 /*
2057 * Create a sequence number with a 1 second
2058 * timeout and 4 retries.
2059 */
2060 rv = intf_next_seq(intf,
2061 recv_msg,
2062 retry_time_ms,
2063 retries,
2064 broadcast,
2065 &ipmb_seq,
2066 &seqid);
2067 if (rv)
2068 /*
2069 * We have used up all the sequence numbers,
2070 * probably, so abort.
2071 */
2072 goto out_err;
2073
2074 ipmi_inc_stat(intf, sent_ipmb_commands);
2075
2076 /*
2077 * Store the sequence number in the message,
2078 * so that when the send message response
2079 * comes back we can start the timer.
2080 */
2081 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2082 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2083 ipmb_seq, broadcast,
2084 source_address, source_lun);
2085
2086 /*
2087 * Copy the message into the recv message data, so we
2088 * can retransmit it later if necessary.
2089 */
2090 memcpy(recv_msg->msg_data, smi_msg->data,
2091 smi_msg->data_size);
2092 recv_msg->msg.data = recv_msg->msg_data;
2093 recv_msg->msg.data_len = smi_msg->data_size;
2094
2095 /*
2096 * We don't unlock until here, because we need
2097 * to copy the completed message into the
2098 * recv_msg before we release the lock.
2099 * Otherwise, race conditions may bite us. I
2100 * know that's pretty paranoid, but I prefer
2101 * to be correct.
2102 */
2103 out_err:
2104 mutex_unlock(&intf->seq_lock);
2105 }
2106
2107 return rv;
2108 }
2109
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2110 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf,
2111 struct ipmi_addr *addr,
2112 long msgid,
2113 struct kernel_ipmi_msg *msg,
2114 struct ipmi_smi_msg *smi_msg,
2115 struct ipmi_recv_msg *recv_msg,
2116 unsigned char source_lun)
2117 {
2118 struct ipmi_ipmb_direct_addr *daddr;
2119 bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2120
2121 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2122 return -EAFNOSUPPORT;
2123
2124 /* Responses must have a completion code. */
2125 if (!is_cmd && msg->data_len < 1) {
2126 ipmi_inc_stat(intf, sent_invalid_commands);
2127 return -EINVAL;
2128 }
2129
2130 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2131 ipmi_inc_stat(intf, sent_invalid_commands);
2132 return -EMSGSIZE;
2133 }
2134
2135 daddr = (struct ipmi_ipmb_direct_addr *) addr;
2136 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2137 ipmi_inc_stat(intf, sent_invalid_commands);
2138 return -EINVAL;
2139 }
2140
2141 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2142 smi_msg->msgid = msgid;
2143
2144 if (is_cmd) {
2145 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2146 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2147 } else {
2148 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2149 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2150 }
2151 smi_msg->data[1] = daddr->slave_addr;
2152 smi_msg->data[3] = msg->cmd;
2153
2154 memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2155 smi_msg->data_size = msg->data_len + 4;
2156
2157 smi_msg->recv_msg = recv_msg;
2158
2159 return 0;
2160 }
2161
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2162 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2163 struct ipmi_addr *addr,
2164 long msgid,
2165 struct kernel_ipmi_msg *msg,
2166 struct ipmi_smi_msg *smi_msg,
2167 struct ipmi_recv_msg *recv_msg,
2168 unsigned char source_lun,
2169 int retries,
2170 unsigned int retry_time_ms)
2171 {
2172 struct ipmi_lan_addr *lan_addr;
2173 unsigned char ipmb_seq;
2174 long seqid;
2175 struct ipmi_channel *chans;
2176 int rv = 0;
2177
2178 if (addr->channel >= IPMI_MAX_CHANNELS) {
2179 ipmi_inc_stat(intf, sent_invalid_commands);
2180 return -EINVAL;
2181 }
2182
2183 chans = READ_ONCE(intf->channel_list)->c;
2184
2185 if ((chans[addr->channel].medium
2186 != IPMI_CHANNEL_MEDIUM_8023LAN)
2187 && (chans[addr->channel].medium
2188 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2189 ipmi_inc_stat(intf, sent_invalid_commands);
2190 return -EINVAL;
2191 }
2192
2193 /* 11 for the header and 1 for the checksum. */
2194 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2195 ipmi_inc_stat(intf, sent_invalid_commands);
2196 return -EMSGSIZE;
2197 }
2198
2199 lan_addr = (struct ipmi_lan_addr *) addr;
2200 if (lan_addr->lun > 3) {
2201 ipmi_inc_stat(intf, sent_invalid_commands);
2202 return -EINVAL;
2203 }
2204
2205 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2206
2207 if (recv_msg->msg.netfn & 0x1) {
2208 /*
2209 * It's a response, so use the user's sequence
2210 * from msgid.
2211 */
2212 ipmi_inc_stat(intf, sent_lan_responses);
2213 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2214 msgid, source_lun);
2215
2216 /*
2217 * Save the receive message so we can use it
2218 * to deliver the response.
2219 */
2220 smi_msg->recv_msg = recv_msg;
2221 } else {
2222 mutex_lock(&intf->seq_lock);
2223
2224 /*
2225 * Create a sequence number with a 1 second
2226 * timeout and 4 retries.
2227 */
2228 rv = intf_next_seq(intf,
2229 recv_msg,
2230 retry_time_ms,
2231 retries,
2232 0,
2233 &ipmb_seq,
2234 &seqid);
2235 if (rv)
2236 /*
2237 * We have used up all the sequence numbers,
2238 * probably, so abort.
2239 */
2240 goto out_err;
2241
2242 ipmi_inc_stat(intf, sent_lan_commands);
2243
2244 /*
2245 * Store the sequence number in the message,
2246 * so that when the send message response
2247 * comes back we can start the timer.
2248 */
2249 format_lan_msg(smi_msg, msg, lan_addr,
2250 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2251 ipmb_seq, source_lun);
2252
2253 /*
2254 * Copy the message into the recv message data, so we
2255 * can retransmit it later if necessary.
2256 */
2257 memcpy(recv_msg->msg_data, smi_msg->data,
2258 smi_msg->data_size);
2259 recv_msg->msg.data = recv_msg->msg_data;
2260 recv_msg->msg.data_len = smi_msg->data_size;
2261
2262 /*
2263 * We don't unlock until here, because we need
2264 * to copy the completed message into the
2265 * recv_msg before we release the lock.
2266 * Otherwise, race conditions may bite us. I
2267 * know that's pretty paranoid, but I prefer
2268 * to be correct.
2269 */
2270 out_err:
2271 mutex_unlock(&intf->seq_lock);
2272 }
2273
2274 return rv;
2275 }
2276
2277 /*
2278 * Separate from ipmi_request so that the user does not have to be
2279 * supplied in certain circumstances (mainly at panic time). If
2280 * messages are supplied, they will be freed, even if an error
2281 * occurs.
2282 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2283 static int i_ipmi_request(struct ipmi_user *user,
2284 struct ipmi_smi *intf,
2285 struct ipmi_addr *addr,
2286 long msgid,
2287 struct kernel_ipmi_msg *msg,
2288 void *user_msg_data,
2289 void *supplied_smi,
2290 struct ipmi_recv_msg *supplied_recv,
2291 int priority,
2292 unsigned char source_address,
2293 unsigned char source_lun,
2294 int retries,
2295 unsigned int retry_time_ms)
2296 {
2297 struct ipmi_smi_msg *smi_msg;
2298 struct ipmi_recv_msg *recv_msg;
2299 int run_to_completion = READ_ONCE(intf->run_to_completion);
2300 int rv = 0;
2301
2302 if (supplied_recv) {
2303 recv_msg = supplied_recv;
2304 recv_msg->user = user;
2305 if (user) {
2306 atomic_inc(&user->nr_msgs);
2307 /* The put happens when the message is freed. */
2308 kref_get(&user->refcount);
2309 }
2310 } else {
2311 recv_msg = ipmi_alloc_recv_msg(user);
2312 if (IS_ERR(recv_msg))
2313 return PTR_ERR(recv_msg);
2314 }
2315 recv_msg->user_msg_data = user_msg_data;
2316
2317 if (supplied_smi)
2318 smi_msg = supplied_smi;
2319 else {
2320 smi_msg = ipmi_alloc_smi_msg();
2321 if (smi_msg == NULL) {
2322 if (!supplied_recv)
2323 ipmi_free_recv_msg(recv_msg);
2324 return -ENOMEM;
2325 }
2326 }
2327
2328 if (!run_to_completion)
2329 mutex_lock(&intf->users_mutex);
2330 if (intf->maintenance_mode_state == IPMI_MAINTENANCE_MODE_STATE_RESET) {
2331 /* No messages while the BMC is in reset. */
2332 rv = -EBUSY;
2333 goto out_err;
2334 }
2335 if (intf->in_shutdown) {
2336 rv = -ENODEV;
2337 goto out_err;
2338 }
2339
2340 recv_msg->msgid = msgid;
2341 /*
2342 * Store the message to send in the receive message so timeout
2343 * responses can get the proper response data.
2344 */
2345 recv_msg->msg = *msg;
2346
2347 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2348 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2349 recv_msg, retries, retry_time_ms);
2350 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2351 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2352 source_address, source_lun,
2353 retries, retry_time_ms);
2354 } else if (is_ipmb_direct_addr(addr)) {
2355 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2356 recv_msg, source_lun);
2357 } else if (is_lan_addr(addr)) {
2358 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2359 source_lun, retries, retry_time_ms);
2360 } else {
2361 /* Unknown address type. */
2362 ipmi_inc_stat(intf, sent_invalid_commands);
2363 rv = -EINVAL;
2364 }
2365
2366 if (rv) {
2367 out_err:
2368 if (!supplied_smi)
2369 ipmi_free_smi_msg(smi_msg);
2370 if (!supplied_recv)
2371 ipmi_free_recv_msg(recv_msg);
2372 } else {
2373 dev_dbg(intf->si_dev, "Send: %*ph\n",
2374 smi_msg->data_size, smi_msg->data);
2375
2376 smi_send(intf, intf->handlers, smi_msg, priority);
2377 }
2378 if (!run_to_completion)
2379 mutex_unlock(&intf->users_mutex);
2380
2381 return rv;
2382 }
2383
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2384 static int check_addr(struct ipmi_smi *intf,
2385 struct ipmi_addr *addr,
2386 unsigned char *saddr,
2387 unsigned char *lun)
2388 {
2389 if (addr->channel >= IPMI_MAX_CHANNELS)
2390 return -EINVAL;
2391 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2392 *lun = intf->addrinfo[addr->channel].lun;
2393 *saddr = intf->addrinfo[addr->channel].address;
2394 return 0;
2395 }
2396
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2397 int ipmi_request_settime(struct ipmi_user *user,
2398 struct ipmi_addr *addr,
2399 long msgid,
2400 struct kernel_ipmi_msg *msg,
2401 void *user_msg_data,
2402 int priority,
2403 int retries,
2404 unsigned int retry_time_ms)
2405 {
2406 unsigned char saddr = 0, lun = 0;
2407 int rv;
2408
2409 if (!user)
2410 return -EINVAL;
2411
2412 user = acquire_ipmi_user(user);
2413 if (!user)
2414 return -ENODEV;
2415
2416 rv = check_addr(user->intf, addr, &saddr, &lun);
2417 if (!rv)
2418 rv = i_ipmi_request(user,
2419 user->intf,
2420 addr,
2421 msgid,
2422 msg,
2423 user_msg_data,
2424 NULL, NULL,
2425 priority,
2426 saddr,
2427 lun,
2428 retries,
2429 retry_time_ms);
2430
2431 release_ipmi_user(user);
2432 return rv;
2433 }
2434 EXPORT_SYMBOL(ipmi_request_settime);
2435
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2436 int ipmi_request_supply_msgs(struct ipmi_user *user,
2437 struct ipmi_addr *addr,
2438 long msgid,
2439 struct kernel_ipmi_msg *msg,
2440 void *user_msg_data,
2441 void *supplied_smi,
2442 struct ipmi_recv_msg *supplied_recv,
2443 int priority)
2444 {
2445 unsigned char saddr = 0, lun = 0;
2446 int rv;
2447
2448 if (!user)
2449 return -EINVAL;
2450
2451 user = acquire_ipmi_user(user);
2452 if (!user)
2453 return -ENODEV;
2454
2455 rv = check_addr(user->intf, addr, &saddr, &lun);
2456 if (!rv)
2457 rv = i_ipmi_request(user,
2458 user->intf,
2459 addr,
2460 msgid,
2461 msg,
2462 user_msg_data,
2463 supplied_smi,
2464 supplied_recv,
2465 priority,
2466 saddr,
2467 lun,
2468 -1, 0);
2469
2470 release_ipmi_user(user);
2471 return rv;
2472 }
2473 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2474
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2475 static void bmc_device_id_handler(struct ipmi_smi *intf,
2476 struct ipmi_recv_msg *msg)
2477 {
2478 int rv;
2479
2480 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2481 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2482 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2483 dev_warn(intf->si_dev,
2484 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2485 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2486 return;
2487 }
2488
2489 if (msg->msg.data[0]) {
2490 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2491 msg->msg.data[0]);
2492 intf->bmc->dyn_id_set = 0;
2493 goto out;
2494 }
2495
2496 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2497 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2498 if (rv) {
2499 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2500 /* record completion code when error */
2501 intf->bmc->cc = msg->msg.data[0];
2502 intf->bmc->dyn_id_set = 0;
2503 } else {
2504 /*
2505 * Make sure the id data is available before setting
2506 * dyn_id_set.
2507 */
2508 smp_wmb();
2509 intf->bmc->dyn_id_set = 1;
2510 }
2511 out:
2512 wake_up(&intf->waitq);
2513 }
2514
2515 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2516 send_get_device_id_cmd(struct ipmi_smi *intf)
2517 {
2518 struct ipmi_system_interface_addr si;
2519 struct kernel_ipmi_msg msg;
2520
2521 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2522 si.channel = IPMI_BMC_CHANNEL;
2523 si.lun = 0;
2524
2525 msg.netfn = IPMI_NETFN_APP_REQUEST;
2526 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2527 msg.data = NULL;
2528 msg.data_len = 0;
2529
2530 return i_ipmi_request(NULL,
2531 intf,
2532 (struct ipmi_addr *) &si,
2533 0,
2534 &msg,
2535 intf,
2536 NULL,
2537 NULL,
2538 0,
2539 intf->addrinfo[0].address,
2540 intf->addrinfo[0].lun,
2541 -1, 0);
2542 }
2543
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2544 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2545 {
2546 int rv;
2547 unsigned int retry_count = 0;
2548
2549 intf->null_user_handler = bmc_device_id_handler;
2550
2551 retry:
2552 bmc->cc = 0;
2553 bmc->dyn_id_set = 2;
2554
2555 rv = send_get_device_id_cmd(intf);
2556 if (rv)
2557 goto out_reset_handler;
2558
2559 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2560
2561 if (!bmc->dyn_id_set) {
2562 if (bmc->cc != IPMI_CC_NO_ERROR &&
2563 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2564 msleep(500);
2565 dev_warn(intf->si_dev,
2566 "BMC returned 0x%2.2x, retry get bmc device id\n",
2567 bmc->cc);
2568 goto retry;
2569 }
2570
2571 rv = -EIO; /* Something went wrong in the fetch. */
2572 }
2573
2574 /* dyn_id_set makes the id data available. */
2575 smp_rmb();
2576
2577 out_reset_handler:
2578 intf->null_user_handler = NULL;
2579
2580 return rv;
2581 }
2582
2583 /*
2584 * Fetch the device id for the bmc/interface. You must pass in either
2585 * bmc or intf, this code will get the other one. If the data has
2586 * been recently fetched, this will just use the cached data. Otherwise
2587 * it will run a new fetch.
2588 *
2589 * Except for the first time this is called (in ipmi_add_smi()),
2590 * this will always return good data;
2591 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2592 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2593 struct ipmi_device_id *id,
2594 bool *guid_set, guid_t *guid, int intf_num)
2595 {
2596 int rv = 0;
2597 int prev_dyn_id_set, prev_guid_set;
2598 bool intf_set = intf != NULL;
2599
2600 if (!intf) {
2601 mutex_lock(&bmc->dyn_mutex);
2602 retry_bmc_lock:
2603 if (list_empty(&bmc->intfs)) {
2604 mutex_unlock(&bmc->dyn_mutex);
2605 return -ENOENT;
2606 }
2607 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2608 bmc_link);
2609 kref_get(&intf->refcount);
2610 mutex_unlock(&bmc->dyn_mutex);
2611 mutex_lock(&intf->bmc_reg_mutex);
2612 mutex_lock(&bmc->dyn_mutex);
2613 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2614 bmc_link)) {
2615 mutex_unlock(&intf->bmc_reg_mutex);
2616 kref_put(&intf->refcount, intf_free);
2617 goto retry_bmc_lock;
2618 }
2619 } else {
2620 mutex_lock(&intf->bmc_reg_mutex);
2621 bmc = intf->bmc;
2622 mutex_lock(&bmc->dyn_mutex);
2623 kref_get(&intf->refcount);
2624 }
2625
2626 /* If we have a valid and current ID, just return that. */
2627 if (intf->in_bmc_register ||
2628 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2629 goto out_noprocessing;
2630
2631 /* Don't allow sysfs access when in maintenance mode. */
2632 if (intf->maintenance_mode_state) {
2633 rv = -EBUSY;
2634 goto out_noprocessing;
2635 }
2636
2637 prev_guid_set = bmc->dyn_guid_set;
2638 __get_guid(intf);
2639
2640 prev_dyn_id_set = bmc->dyn_id_set;
2641 rv = __get_device_id(intf, bmc);
2642 if (rv)
2643 goto out;
2644
2645 /*
2646 * The guid, device id, manufacturer id, and product id should
2647 * not change on a BMC. If it does we have to do some dancing.
2648 */
2649 if (!intf->bmc_registered
2650 || (!prev_guid_set && bmc->dyn_guid_set)
2651 || (!prev_dyn_id_set && bmc->dyn_id_set)
2652 || (prev_guid_set && bmc->dyn_guid_set
2653 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2654 || bmc->id.device_id != bmc->fetch_id.device_id
2655 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2656 || bmc->id.product_id != bmc->fetch_id.product_id) {
2657 struct ipmi_device_id id = bmc->fetch_id;
2658 int guid_set = bmc->dyn_guid_set;
2659 guid_t guid;
2660
2661 guid = bmc->fetch_guid;
2662 mutex_unlock(&bmc->dyn_mutex);
2663
2664 __ipmi_bmc_unregister(intf);
2665 /* Fill in the temporary BMC for good measure. */
2666 intf->bmc->id = id;
2667 intf->bmc->dyn_guid_set = guid_set;
2668 intf->bmc->guid = guid;
2669 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2670 need_waiter(intf); /* Retry later on an error. */
2671 else
2672 __scan_channels(intf, &id, false);
2673
2674
2675 if (!intf_set) {
2676 /*
2677 * We weren't given the interface on the
2678 * command line, so restart the operation on
2679 * the next interface for the BMC.
2680 */
2681 mutex_unlock(&intf->bmc_reg_mutex);
2682 mutex_lock(&bmc->dyn_mutex);
2683 goto retry_bmc_lock;
2684 }
2685
2686 /* We have a new BMC, set it up. */
2687 bmc = intf->bmc;
2688 mutex_lock(&bmc->dyn_mutex);
2689 goto out_noprocessing;
2690 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2691 /* Version info changes, scan the channels again. */
2692 __scan_channels(intf, &bmc->fetch_id, true);
2693
2694 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2695
2696 out:
2697 if (rv && prev_dyn_id_set) {
2698 rv = 0; /* Ignore failures if we have previous data. */
2699 bmc->dyn_id_set = prev_dyn_id_set;
2700 }
2701 if (!rv) {
2702 bmc->id = bmc->fetch_id;
2703 if (bmc->dyn_guid_set)
2704 bmc->guid = bmc->fetch_guid;
2705 else if (prev_guid_set)
2706 /*
2707 * The guid used to be valid and it failed to fetch,
2708 * just use the cached value.
2709 */
2710 bmc->dyn_guid_set = prev_guid_set;
2711 }
2712 out_noprocessing:
2713 if (!rv) {
2714 if (id)
2715 *id = bmc->id;
2716
2717 if (guid_set)
2718 *guid_set = bmc->dyn_guid_set;
2719
2720 if (guid && bmc->dyn_guid_set)
2721 *guid = bmc->guid;
2722 }
2723
2724 mutex_unlock(&bmc->dyn_mutex);
2725 mutex_unlock(&intf->bmc_reg_mutex);
2726
2727 kref_put(&intf->refcount, intf_free);
2728 return rv;
2729 }
2730
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2731 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2732 struct ipmi_device_id *id,
2733 bool *guid_set, guid_t *guid)
2734 {
2735 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2736 }
2737
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2738 static ssize_t device_id_show(struct device *dev,
2739 struct device_attribute *attr,
2740 char *buf)
2741 {
2742 struct bmc_device *bmc = to_bmc_device(dev);
2743 struct ipmi_device_id id;
2744 int rv;
2745
2746 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2747 if (rv)
2748 return rv;
2749
2750 return sysfs_emit(buf, "%u\n", id.device_id);
2751 }
2752 static DEVICE_ATTR_RO(device_id);
2753
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2754 static ssize_t provides_device_sdrs_show(struct device *dev,
2755 struct device_attribute *attr,
2756 char *buf)
2757 {
2758 struct bmc_device *bmc = to_bmc_device(dev);
2759 struct ipmi_device_id id;
2760 int rv;
2761
2762 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2763 if (rv)
2764 return rv;
2765
2766 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2767 }
2768 static DEVICE_ATTR_RO(provides_device_sdrs);
2769
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2770 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2771 char *buf)
2772 {
2773 struct bmc_device *bmc = to_bmc_device(dev);
2774 struct ipmi_device_id id;
2775 int rv;
2776
2777 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2778 if (rv)
2779 return rv;
2780
2781 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2782 }
2783 static DEVICE_ATTR_RO(revision);
2784
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2785 static ssize_t firmware_revision_show(struct device *dev,
2786 struct device_attribute *attr,
2787 char *buf)
2788 {
2789 struct bmc_device *bmc = to_bmc_device(dev);
2790 struct ipmi_device_id id;
2791 int rv;
2792
2793 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2794 if (rv)
2795 return rv;
2796
2797 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2798 id.firmware_revision_2);
2799 }
2800 static DEVICE_ATTR_RO(firmware_revision);
2801
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2802 static ssize_t ipmi_version_show(struct device *dev,
2803 struct device_attribute *attr,
2804 char *buf)
2805 {
2806 struct bmc_device *bmc = to_bmc_device(dev);
2807 struct ipmi_device_id id;
2808 int rv;
2809
2810 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2811 if (rv)
2812 return rv;
2813
2814 return sysfs_emit(buf, "%u.%u\n",
2815 ipmi_version_major(&id),
2816 ipmi_version_minor(&id));
2817 }
2818 static DEVICE_ATTR_RO(ipmi_version);
2819
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2820 static ssize_t add_dev_support_show(struct device *dev,
2821 struct device_attribute *attr,
2822 char *buf)
2823 {
2824 struct bmc_device *bmc = to_bmc_device(dev);
2825 struct ipmi_device_id id;
2826 int rv;
2827
2828 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2829 if (rv)
2830 return rv;
2831
2832 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2833 }
2834 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2835 NULL);
2836
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2837 static ssize_t manufacturer_id_show(struct device *dev,
2838 struct device_attribute *attr,
2839 char *buf)
2840 {
2841 struct bmc_device *bmc = to_bmc_device(dev);
2842 struct ipmi_device_id id;
2843 int rv;
2844
2845 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2846 if (rv)
2847 return rv;
2848
2849 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2850 }
2851 static DEVICE_ATTR_RO(manufacturer_id);
2852
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2853 static ssize_t product_id_show(struct device *dev,
2854 struct device_attribute *attr,
2855 char *buf)
2856 {
2857 struct bmc_device *bmc = to_bmc_device(dev);
2858 struct ipmi_device_id id;
2859 int rv;
2860
2861 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2862 if (rv)
2863 return rv;
2864
2865 return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2866 }
2867 static DEVICE_ATTR_RO(product_id);
2868
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2869 static ssize_t aux_firmware_rev_show(struct device *dev,
2870 struct device_attribute *attr,
2871 char *buf)
2872 {
2873 struct bmc_device *bmc = to_bmc_device(dev);
2874 struct ipmi_device_id id;
2875 int rv;
2876
2877 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2878 if (rv)
2879 return rv;
2880
2881 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2882 id.aux_firmware_revision[3],
2883 id.aux_firmware_revision[2],
2884 id.aux_firmware_revision[1],
2885 id.aux_firmware_revision[0]);
2886 }
2887 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2888
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2889 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2890 char *buf)
2891 {
2892 struct bmc_device *bmc = to_bmc_device(dev);
2893 bool guid_set;
2894 guid_t guid;
2895 int rv;
2896
2897 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2898 if (rv)
2899 return rv;
2900 if (!guid_set)
2901 return -ENOENT;
2902
2903 return sysfs_emit(buf, "%pUl\n", &guid);
2904 }
2905 static DEVICE_ATTR_RO(guid);
2906
2907 static struct attribute *bmc_dev_attrs[] = {
2908 &dev_attr_device_id.attr,
2909 &dev_attr_provides_device_sdrs.attr,
2910 &dev_attr_revision.attr,
2911 &dev_attr_firmware_revision.attr,
2912 &dev_attr_ipmi_version.attr,
2913 &dev_attr_additional_device_support.attr,
2914 &dev_attr_manufacturer_id.attr,
2915 &dev_attr_product_id.attr,
2916 &dev_attr_aux_firmware_revision.attr,
2917 &dev_attr_guid.attr,
2918 NULL
2919 };
2920
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2921 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2922 struct attribute *attr, int idx)
2923 {
2924 struct device *dev = kobj_to_dev(kobj);
2925 struct bmc_device *bmc = to_bmc_device(dev);
2926 umode_t mode = attr->mode;
2927 int rv;
2928
2929 if (attr == &dev_attr_aux_firmware_revision.attr) {
2930 struct ipmi_device_id id;
2931
2932 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2933 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2934 }
2935 if (attr == &dev_attr_guid.attr) {
2936 bool guid_set;
2937
2938 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2939 return (!rv && guid_set) ? mode : 0;
2940 }
2941 return mode;
2942 }
2943
2944 static const struct attribute_group bmc_dev_attr_group = {
2945 .attrs = bmc_dev_attrs,
2946 .is_visible = bmc_dev_attr_is_visible,
2947 };
2948
2949 static const struct attribute_group *bmc_dev_attr_groups[] = {
2950 &bmc_dev_attr_group,
2951 NULL
2952 };
2953
2954 static const struct device_type bmc_device_type = {
2955 .groups = bmc_dev_attr_groups,
2956 };
2957
__find_bmc_guid(struct device * dev,const void * data)2958 static int __find_bmc_guid(struct device *dev, const void *data)
2959 {
2960 const guid_t *guid = data;
2961 struct bmc_device *bmc;
2962 int rv;
2963
2964 if (dev->type != &bmc_device_type)
2965 return 0;
2966
2967 bmc = to_bmc_device(dev);
2968 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2969 if (rv)
2970 rv = kref_get_unless_zero(&bmc->usecount);
2971 return rv;
2972 }
2973
2974 /*
2975 * Returns with the bmc's usecount incremented, if it is non-NULL.
2976 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2977 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2978 guid_t *guid)
2979 {
2980 struct device *dev;
2981 struct bmc_device *bmc = NULL;
2982
2983 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2984 if (dev) {
2985 bmc = to_bmc_device(dev);
2986 put_device(dev);
2987 }
2988 return bmc;
2989 }
2990
2991 struct prod_dev_id {
2992 unsigned int product_id;
2993 unsigned char device_id;
2994 };
2995
__find_bmc_prod_dev_id(struct device * dev,const void * data)2996 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2997 {
2998 const struct prod_dev_id *cid = data;
2999 struct bmc_device *bmc;
3000 int rv;
3001
3002 if (dev->type != &bmc_device_type)
3003 return 0;
3004
3005 bmc = to_bmc_device(dev);
3006 rv = (bmc->id.product_id == cid->product_id
3007 && bmc->id.device_id == cid->device_id);
3008 if (rv)
3009 rv = kref_get_unless_zero(&bmc->usecount);
3010 return rv;
3011 }
3012
3013 /*
3014 * Returns with the bmc's usecount incremented, if it is non-NULL.
3015 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3016 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3017 struct device_driver *drv,
3018 unsigned int product_id, unsigned char device_id)
3019 {
3020 struct prod_dev_id id = {
3021 .product_id = product_id,
3022 .device_id = device_id,
3023 };
3024 struct device *dev;
3025 struct bmc_device *bmc = NULL;
3026
3027 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3028 if (dev) {
3029 bmc = to_bmc_device(dev);
3030 put_device(dev);
3031 }
3032 return bmc;
3033 }
3034
3035 static DEFINE_IDA(ipmi_bmc_ida);
3036
3037 static void
release_bmc_device(struct device * dev)3038 release_bmc_device(struct device *dev)
3039 {
3040 kfree(to_bmc_device(dev));
3041 }
3042
cleanup_bmc_work(struct work_struct * work)3043 static void cleanup_bmc_work(struct work_struct *work)
3044 {
3045 struct bmc_device *bmc = container_of(work, struct bmc_device,
3046 remove_work);
3047 int id = bmc->pdev.id; /* Unregister overwrites id */
3048
3049 platform_device_unregister(&bmc->pdev);
3050 ida_free(&ipmi_bmc_ida, id);
3051 }
3052
3053 static void
cleanup_bmc_device(struct kref * ref)3054 cleanup_bmc_device(struct kref *ref)
3055 {
3056 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3057
3058 /*
3059 * Remove the platform device in a work queue to avoid issues
3060 * with removing the device attributes while reading a device
3061 * attribute.
3062 */
3063 queue_work(bmc_remove_work_wq, &bmc->remove_work);
3064 }
3065
3066 /*
3067 * Must be called with intf->bmc_reg_mutex held.
3068 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3069 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3070 {
3071 struct bmc_device *bmc = intf->bmc;
3072
3073 if (!intf->bmc_registered)
3074 return;
3075
3076 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3077 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3078 kfree(intf->my_dev_name);
3079 intf->my_dev_name = NULL;
3080
3081 mutex_lock(&bmc->dyn_mutex);
3082 list_del(&intf->bmc_link);
3083 mutex_unlock(&bmc->dyn_mutex);
3084 intf->bmc = &intf->tmp_bmc;
3085 kref_put(&bmc->usecount, cleanup_bmc_device);
3086 intf->bmc_registered = false;
3087 }
3088
ipmi_bmc_unregister(struct ipmi_smi * intf)3089 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3090 {
3091 mutex_lock(&intf->bmc_reg_mutex);
3092 __ipmi_bmc_unregister(intf);
3093 mutex_unlock(&intf->bmc_reg_mutex);
3094 }
3095
3096 /*
3097 * Must be called with intf->bmc_reg_mutex held.
3098 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3099 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3100 struct ipmi_device_id *id,
3101 bool guid_set, guid_t *guid, int intf_num)
3102 {
3103 int rv;
3104 struct bmc_device *bmc;
3105 struct bmc_device *old_bmc;
3106
3107 /*
3108 * platform_device_register() can cause bmc_reg_mutex to
3109 * be claimed because of the is_visible functions of
3110 * the attributes. Eliminate possible recursion and
3111 * release the lock.
3112 */
3113 intf->in_bmc_register = true;
3114 mutex_unlock(&intf->bmc_reg_mutex);
3115
3116 /*
3117 * Try to find if there is an bmc_device struct
3118 * representing the interfaced BMC already
3119 */
3120 mutex_lock(&ipmidriver_mutex);
3121 if (guid_set)
3122 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3123 else
3124 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3125 id->product_id,
3126 id->device_id);
3127
3128 /*
3129 * If there is already an bmc_device, free the new one,
3130 * otherwise register the new BMC device
3131 */
3132 if (old_bmc) {
3133 bmc = old_bmc;
3134 /*
3135 * Note: old_bmc already has usecount incremented by
3136 * the BMC find functions.
3137 */
3138 intf->bmc = old_bmc;
3139 mutex_lock(&bmc->dyn_mutex);
3140 list_add_tail(&intf->bmc_link, &bmc->intfs);
3141 mutex_unlock(&bmc->dyn_mutex);
3142
3143 dev_info(intf->si_dev,
3144 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3145 bmc->id.manufacturer_id,
3146 bmc->id.product_id,
3147 bmc->id.device_id);
3148 } else {
3149 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3150 if (!bmc) {
3151 rv = -ENOMEM;
3152 goto out;
3153 }
3154 INIT_LIST_HEAD(&bmc->intfs);
3155 mutex_init(&bmc->dyn_mutex);
3156 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3157
3158 bmc->id = *id;
3159 bmc->dyn_id_set = 1;
3160 bmc->dyn_guid_set = guid_set;
3161 bmc->guid = *guid;
3162 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3163
3164 bmc->pdev.name = "ipmi_bmc";
3165
3166 rv = ida_alloc(&ipmi_bmc_ida, GFP_KERNEL);
3167 if (rv < 0) {
3168 kfree(bmc);
3169 goto out;
3170 }
3171
3172 bmc->pdev.dev.driver = &ipmidriver.driver;
3173 bmc->pdev.id = rv;
3174 bmc->pdev.dev.release = release_bmc_device;
3175 bmc->pdev.dev.type = &bmc_device_type;
3176 kref_init(&bmc->usecount);
3177
3178 intf->bmc = bmc;
3179 mutex_lock(&bmc->dyn_mutex);
3180 list_add_tail(&intf->bmc_link, &bmc->intfs);
3181 mutex_unlock(&bmc->dyn_mutex);
3182
3183 rv = platform_device_register(&bmc->pdev);
3184 if (rv) {
3185 dev_err(intf->si_dev,
3186 "Unable to register bmc device: %d\n",
3187 rv);
3188 goto out_list_del;
3189 }
3190
3191 dev_info(intf->si_dev,
3192 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3193 bmc->id.manufacturer_id,
3194 bmc->id.product_id,
3195 bmc->id.device_id);
3196 }
3197
3198 /*
3199 * create symlink from system interface device to bmc device
3200 * and back.
3201 */
3202 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3203 if (rv) {
3204 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3205 goto out_put_bmc;
3206 }
3207
3208 if (intf_num == -1)
3209 intf_num = intf->intf_num;
3210 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3211 if (!intf->my_dev_name) {
3212 rv = -ENOMEM;
3213 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3214 rv);
3215 goto out_unlink1;
3216 }
3217
3218 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3219 intf->my_dev_name);
3220 if (rv) {
3221 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3222 rv);
3223 goto out_free_my_dev_name;
3224 }
3225
3226 intf->bmc_registered = true;
3227
3228 out:
3229 mutex_unlock(&ipmidriver_mutex);
3230 mutex_lock(&intf->bmc_reg_mutex);
3231 intf->in_bmc_register = false;
3232 return rv;
3233
3234
3235 out_free_my_dev_name:
3236 kfree(intf->my_dev_name);
3237 intf->my_dev_name = NULL;
3238
3239 out_unlink1:
3240 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3241
3242 out_put_bmc:
3243 mutex_lock(&bmc->dyn_mutex);
3244 list_del(&intf->bmc_link);
3245 mutex_unlock(&bmc->dyn_mutex);
3246 intf->bmc = &intf->tmp_bmc;
3247 kref_put(&bmc->usecount, cleanup_bmc_device);
3248 goto out;
3249
3250 out_list_del:
3251 mutex_lock(&bmc->dyn_mutex);
3252 list_del(&intf->bmc_link);
3253 mutex_unlock(&bmc->dyn_mutex);
3254 intf->bmc = &intf->tmp_bmc;
3255 put_device(&bmc->pdev.dev);
3256 goto out;
3257 }
3258
3259 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3260 send_guid_cmd(struct ipmi_smi *intf, int chan)
3261 {
3262 struct kernel_ipmi_msg msg;
3263 struct ipmi_system_interface_addr si;
3264
3265 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3266 si.channel = IPMI_BMC_CHANNEL;
3267 si.lun = 0;
3268
3269 msg.netfn = IPMI_NETFN_APP_REQUEST;
3270 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3271 msg.data = NULL;
3272 msg.data_len = 0;
3273 return i_ipmi_request(NULL,
3274 intf,
3275 (struct ipmi_addr *) &si,
3276 0,
3277 &msg,
3278 intf,
3279 NULL,
3280 NULL,
3281 0,
3282 intf->addrinfo[0].address,
3283 intf->addrinfo[0].lun,
3284 -1, 0);
3285 }
3286
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3287 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3288 {
3289 struct bmc_device *bmc = intf->bmc;
3290
3291 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3292 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3293 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3294 /* Not for me */
3295 return;
3296
3297 if (msg->msg.data[0] != 0) {
3298 /* Error from getting the GUID, the BMC doesn't have one. */
3299 bmc->dyn_guid_set = 0;
3300 goto out;
3301 }
3302
3303 if (msg->msg.data_len < UUID_SIZE + 1) {
3304 bmc->dyn_guid_set = 0;
3305 dev_warn(intf->si_dev,
3306 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3307 msg->msg.data_len, UUID_SIZE + 1);
3308 goto out;
3309 }
3310
3311 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3312 /*
3313 * Make sure the guid data is available before setting
3314 * dyn_guid_set.
3315 */
3316 smp_wmb();
3317 bmc->dyn_guid_set = 1;
3318 out:
3319 wake_up(&intf->waitq);
3320 }
3321
__get_guid(struct ipmi_smi * intf)3322 static void __get_guid(struct ipmi_smi *intf)
3323 {
3324 int rv;
3325 struct bmc_device *bmc = intf->bmc;
3326
3327 bmc->dyn_guid_set = 2;
3328 intf->null_user_handler = guid_handler;
3329 rv = send_guid_cmd(intf, 0);
3330 if (rv)
3331 /* Send failed, no GUID available. */
3332 bmc->dyn_guid_set = 0;
3333 else
3334 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3335
3336 /* dyn_guid_set makes the guid data available. */
3337 smp_rmb();
3338
3339 intf->null_user_handler = NULL;
3340 }
3341
3342 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3343 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3344 {
3345 struct kernel_ipmi_msg msg;
3346 unsigned char data[1];
3347 struct ipmi_system_interface_addr si;
3348
3349 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3350 si.channel = IPMI_BMC_CHANNEL;
3351 si.lun = 0;
3352
3353 msg.netfn = IPMI_NETFN_APP_REQUEST;
3354 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3355 msg.data = data;
3356 msg.data_len = 1;
3357 data[0] = chan;
3358 return i_ipmi_request(NULL,
3359 intf,
3360 (struct ipmi_addr *) &si,
3361 0,
3362 &msg,
3363 intf,
3364 NULL,
3365 NULL,
3366 0,
3367 intf->addrinfo[0].address,
3368 intf->addrinfo[0].lun,
3369 -1, 0);
3370 }
3371
3372 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3373 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3374 {
3375 int rv = 0;
3376 int ch;
3377 unsigned int set = intf->curr_working_cset;
3378 struct ipmi_channel *chans;
3379
3380 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3381 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3382 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3383 /* It's the one we want */
3384 if (msg->msg.data[0] != 0) {
3385 /* Got an error from the channel, just go on. */
3386 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3387 /*
3388 * If the MC does not support this
3389 * command, that is legal. We just
3390 * assume it has one IPMB at channel
3391 * zero.
3392 */
3393 intf->wchannels[set].c[0].medium
3394 = IPMI_CHANNEL_MEDIUM_IPMB;
3395 intf->wchannels[set].c[0].protocol
3396 = IPMI_CHANNEL_PROTOCOL_IPMB;
3397
3398 intf->channel_list = intf->wchannels + set;
3399 intf->channels_ready = true;
3400 wake_up(&intf->waitq);
3401 goto out;
3402 }
3403 goto next_channel;
3404 }
3405 if (msg->msg.data_len < 4) {
3406 /* Message not big enough, just go on. */
3407 goto next_channel;
3408 }
3409 ch = intf->curr_channel;
3410 chans = intf->wchannels[set].c;
3411 chans[ch].medium = msg->msg.data[2] & 0x7f;
3412 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3413
3414 next_channel:
3415 intf->curr_channel++;
3416 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3417 intf->channel_list = intf->wchannels + set;
3418 intf->channels_ready = true;
3419 wake_up(&intf->waitq);
3420 } else {
3421 rv = send_channel_info_cmd(intf, intf->curr_channel);
3422 }
3423
3424 if (rv) {
3425 /* Got an error somehow, just give up. */
3426 dev_warn(intf->si_dev,
3427 "Error sending channel information for channel %d: %d\n",
3428 intf->curr_channel, rv);
3429
3430 intf->channel_list = intf->wchannels + set;
3431 intf->channels_ready = true;
3432 wake_up(&intf->waitq);
3433 }
3434 }
3435 out:
3436 return;
3437 }
3438
3439 /*
3440 * Must be holding intf->bmc_reg_mutex to call this.
3441 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id,bool rescan)3442 static int __scan_channels(struct ipmi_smi *intf,
3443 struct ipmi_device_id *id,
3444 bool rescan)
3445 {
3446 int rv;
3447
3448 if (rescan) {
3449 /* Clear channels_ready to force channels rescan. */
3450 intf->channels_ready = false;
3451 }
3452
3453 /* Skip channel scan if channels are already marked ready */
3454 if (intf->channels_ready)
3455 return 0;
3456
3457 if (ipmi_version_major(id) > 1
3458 || (ipmi_version_major(id) == 1
3459 && ipmi_version_minor(id) >= 5)) {
3460 unsigned int set;
3461
3462 /*
3463 * Start scanning the channels to see what is
3464 * available.
3465 */
3466 set = !intf->curr_working_cset;
3467 intf->curr_working_cset = set;
3468 memset(&intf->wchannels[set], 0,
3469 sizeof(struct ipmi_channel_set));
3470
3471 intf->null_user_handler = channel_handler;
3472 intf->curr_channel = 0;
3473 rv = send_channel_info_cmd(intf, 0);
3474 if (rv) {
3475 dev_warn(intf->si_dev,
3476 "Error sending channel information for channel 0, %d\n",
3477 rv);
3478 intf->null_user_handler = NULL;
3479 return -EIO;
3480 }
3481
3482 /* Wait for the channel info to be read. */
3483 wait_event(intf->waitq, intf->channels_ready);
3484 intf->null_user_handler = NULL;
3485 } else {
3486 unsigned int set = intf->curr_working_cset;
3487
3488 /* Assume a single IPMB channel at zero. */
3489 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3490 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3491 intf->channel_list = intf->wchannels + set;
3492 intf->channels_ready = true;
3493 }
3494
3495 return 0;
3496 }
3497
ipmi_poll(struct ipmi_smi * intf)3498 static void ipmi_poll(struct ipmi_smi *intf)
3499 {
3500 if (intf->handlers->poll)
3501 intf->handlers->poll(intf->send_info);
3502 /* In case something came in */
3503 handle_new_recv_msgs(intf);
3504 }
3505
ipmi_poll_interface(struct ipmi_user * user)3506 void ipmi_poll_interface(struct ipmi_user *user)
3507 {
3508 ipmi_poll(user->intf);
3509 }
3510 EXPORT_SYMBOL(ipmi_poll_interface);
3511
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3512 static ssize_t nr_users_show(struct device *dev,
3513 struct device_attribute *attr,
3514 char *buf)
3515 {
3516 struct ipmi_smi *intf = container_of(attr,
3517 struct ipmi_smi, nr_users_devattr);
3518
3519 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3520 }
3521 static DEVICE_ATTR_RO(nr_users);
3522
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3523 static ssize_t nr_msgs_show(struct device *dev,
3524 struct device_attribute *attr,
3525 char *buf)
3526 {
3527 struct ipmi_smi *intf = container_of(attr,
3528 struct ipmi_smi, nr_msgs_devattr);
3529 struct ipmi_user *user;
3530 unsigned int count = 0;
3531
3532 mutex_lock(&intf->users_mutex);
3533 list_for_each_entry(user, &intf->users, link)
3534 count += atomic_read(&user->nr_msgs);
3535 mutex_unlock(&intf->users_mutex);
3536
3537 return sysfs_emit(buf, "%u\n", count);
3538 }
3539 static DEVICE_ATTR_RO(nr_msgs);
3540
maintenance_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3541 static ssize_t maintenance_mode_show(struct device *dev,
3542 struct device_attribute *attr,
3543 char *buf)
3544 {
3545 struct ipmi_smi *intf = container_of(attr,
3546 struct ipmi_smi,
3547 maintenance_mode_devattr);
3548
3549 return sysfs_emit(buf, "%u %d\n", intf->maintenance_mode_state,
3550 intf->auto_maintenance_timeout);
3551 }
3552 static DEVICE_ATTR_RO(maintenance_mode);
3553
redo_bmc_reg(struct work_struct * work)3554 static void redo_bmc_reg(struct work_struct *work)
3555 {
3556 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3557 bmc_reg_work);
3558
3559 if (!intf->in_shutdown)
3560 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3561
3562 kref_put(&intf->refcount, intf_free);
3563 }
3564
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3565 int ipmi_add_smi(struct module *owner,
3566 const struct ipmi_smi_handlers *handlers,
3567 void *send_info,
3568 struct device *si_dev,
3569 unsigned char slave_addr)
3570 {
3571 int i, j;
3572 int rv;
3573 struct ipmi_smi *intf, *tintf;
3574 struct list_head *link;
3575 struct ipmi_device_id id;
3576
3577 /*
3578 * Make sure the driver is actually initialized, this handles
3579 * problems with initialization order.
3580 */
3581 rv = ipmi_init_msghandler();
3582 if (rv)
3583 return rv;
3584
3585 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3586 if (!intf)
3587 return -ENOMEM;
3588
3589 intf->owner = owner;
3590 intf->bmc = &intf->tmp_bmc;
3591 INIT_LIST_HEAD(&intf->bmc->intfs);
3592 mutex_init(&intf->bmc->dyn_mutex);
3593 INIT_LIST_HEAD(&intf->bmc_link);
3594 mutex_init(&intf->bmc_reg_mutex);
3595 intf->intf_num = -1; /* Mark it invalid for now. */
3596 kref_init(&intf->refcount);
3597 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3598 intf->si_dev = si_dev;
3599 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3600 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3601 intf->addrinfo[j].lun = 2;
3602 }
3603 if (slave_addr != 0)
3604 intf->addrinfo[0].address = slave_addr;
3605 INIT_LIST_HEAD(&intf->user_msgs);
3606 mutex_init(&intf->user_msgs_mutex);
3607 INIT_LIST_HEAD(&intf->users);
3608 mutex_init(&intf->users_mutex);
3609 atomic_set(&intf->nr_users, 0);
3610 intf->handlers = handlers;
3611 intf->send_info = send_info;
3612 mutex_init(&intf->seq_lock);
3613 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3614 intf->seq_table[j].inuse = 0;
3615 intf->seq_table[j].seqid = 0;
3616 }
3617 intf->curr_seq = 0;
3618 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3619 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3620 INIT_WORK(&intf->smi_work, smi_work);
3621 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3622 spin_lock_init(&intf->xmit_msgs_lock);
3623 INIT_LIST_HEAD(&intf->xmit_msgs);
3624 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3625 mutex_init(&intf->events_mutex);
3626 spin_lock_init(&intf->watch_lock);
3627 atomic_set(&intf->event_waiters, 0);
3628 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3629 INIT_LIST_HEAD(&intf->waiting_events);
3630 intf->waiting_events_count = 0;
3631 mutex_init(&intf->cmd_rcvrs_mutex);
3632 spin_lock_init(&intf->maintenance_mode_lock);
3633 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3634 init_waitqueue_head(&intf->waitq);
3635 for (i = 0; i < IPMI_NUM_STATS; i++)
3636 atomic_set(&intf->stats[i], 0);
3637
3638 /*
3639 * Grab the watchers mutex so we can deliver the new interface
3640 * without races.
3641 */
3642 mutex_lock(&smi_watchers_mutex);
3643 mutex_lock(&ipmi_interfaces_mutex);
3644 /* Look for a hole in the numbers. */
3645 i = 0;
3646 link = &ipmi_interfaces;
3647 list_for_each_entry(tintf, &ipmi_interfaces, link) {
3648 if (tintf->intf_num != i) {
3649 link = &tintf->link;
3650 break;
3651 }
3652 i++;
3653 }
3654 /* Add the new interface in numeric order. */
3655 if (i == 0)
3656 list_add(&intf->link, &ipmi_interfaces);
3657 else
3658 list_add_tail(&intf->link, link);
3659
3660 rv = handlers->start_processing(send_info, intf);
3661 if (rv)
3662 goto out_err;
3663
3664 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3665 if (rv) {
3666 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3667 goto out_err_started;
3668 }
3669
3670 mutex_lock(&intf->bmc_reg_mutex);
3671 rv = __scan_channels(intf, &id, false);
3672 mutex_unlock(&intf->bmc_reg_mutex);
3673 if (rv)
3674 goto out_err_bmc_reg;
3675
3676 intf->nr_users_devattr = dev_attr_nr_users;
3677 sysfs_attr_init(&intf->nr_users_devattr.attr);
3678 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3679 if (rv)
3680 goto out_err_bmc_reg;
3681
3682 intf->nr_msgs_devattr = dev_attr_nr_msgs;
3683 sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3684 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3685 if (rv) {
3686 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3687 goto out_err_bmc_reg;
3688 }
3689
3690 intf->maintenance_mode_devattr = dev_attr_maintenance_mode;
3691 sysfs_attr_init(&intf->maintenance_mode_devattr.attr);
3692 rv = device_create_file(intf->si_dev, &intf->maintenance_mode_devattr);
3693 if (rv) {
3694 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3695 goto out_err_bmc_reg;
3696 }
3697
3698 intf->intf_num = i;
3699 mutex_unlock(&ipmi_interfaces_mutex);
3700
3701 /* After this point the interface is legal to use. */
3702 call_smi_watchers(i, intf->si_dev);
3703
3704 mutex_unlock(&smi_watchers_mutex);
3705
3706 return 0;
3707
3708 out_err_bmc_reg:
3709 ipmi_bmc_unregister(intf);
3710 out_err_started:
3711 if (intf->handlers->shutdown)
3712 intf->handlers->shutdown(intf->send_info);
3713 out_err:
3714 list_del(&intf->link);
3715 mutex_unlock(&ipmi_interfaces_mutex);
3716 mutex_unlock(&smi_watchers_mutex);
3717 kref_put(&intf->refcount, intf_free);
3718
3719 return rv;
3720 }
3721 EXPORT_SYMBOL(ipmi_add_smi);
3722
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3723 static void deliver_smi_err_response(struct ipmi_smi *intf,
3724 struct ipmi_smi_msg *msg,
3725 unsigned char err)
3726 {
3727 int rv;
3728 msg->rsp[0] = msg->data[0] | 4;
3729 msg->rsp[1] = msg->data[1];
3730 msg->rsp[2] = err;
3731 msg->rsp_size = 3;
3732
3733 /* This will never requeue, but it may ask us to free the message. */
3734 rv = handle_one_recv_msg(intf, msg);
3735 if (rv == 0)
3736 ipmi_free_smi_msg(msg);
3737 }
3738
cleanup_smi_msgs(struct ipmi_smi * intf)3739 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3740 {
3741 int i;
3742 struct seq_table *ent;
3743 struct ipmi_smi_msg *msg;
3744 struct list_head *entry;
3745 struct list_head tmplist;
3746
3747 /* Clear out our transmit queues and hold the messages. */
3748 INIT_LIST_HEAD(&tmplist);
3749 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3750 list_splice_tail(&intf->xmit_msgs, &tmplist);
3751
3752 /* Current message first, to preserve order */
3753 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3754 /* Wait for the message to clear out. */
3755 schedule_timeout(1);
3756 }
3757
3758 /* No need for locks, the interface is down. */
3759
3760 /*
3761 * Return errors for all pending messages in queue and in the
3762 * tables waiting for remote responses.
3763 */
3764 while (!list_empty(&tmplist)) {
3765 entry = tmplist.next;
3766 list_del(entry);
3767 msg = list_entry(entry, struct ipmi_smi_msg, link);
3768 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3769 }
3770
3771 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3772 ent = &intf->seq_table[i];
3773 if (!ent->inuse)
3774 continue;
3775 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3776 }
3777 }
3778
ipmi_unregister_smi(struct ipmi_smi * intf)3779 void ipmi_unregister_smi(struct ipmi_smi *intf)
3780 {
3781 struct ipmi_smi_watcher *w;
3782 int intf_num;
3783
3784 if (!intf)
3785 return;
3786
3787 intf_num = intf->intf_num;
3788 mutex_lock(&ipmi_interfaces_mutex);
3789 cancel_work_sync(&intf->smi_work);
3790 /* smi_work() can no longer be in progress after this. */
3791
3792 intf->intf_num = -1;
3793 intf->in_shutdown = true;
3794 list_del(&intf->link);
3795 mutex_unlock(&ipmi_interfaces_mutex);
3796
3797 /*
3798 * At this point no users can be added to the interface and no
3799 * new messages can be sent.
3800 */
3801
3802 if (intf->handlers->shutdown)
3803 intf->handlers->shutdown(intf->send_info);
3804
3805 device_remove_file(intf->si_dev, &intf->maintenance_mode_devattr);
3806 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3807 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3808
3809 /*
3810 * Call all the watcher interfaces to tell them that
3811 * an interface is going away.
3812 */
3813 mutex_lock(&smi_watchers_mutex);
3814 list_for_each_entry(w, &smi_watchers, link)
3815 w->smi_gone(intf_num);
3816 mutex_unlock(&smi_watchers_mutex);
3817
3818 mutex_lock(&intf->users_mutex);
3819 while (!list_empty(&intf->users)) {
3820 struct ipmi_user *user = list_first_entry(&intf->users,
3821 struct ipmi_user, link);
3822
3823 _ipmi_destroy_user(user);
3824 }
3825 mutex_unlock(&intf->users_mutex);
3826
3827 cleanup_smi_msgs(intf);
3828
3829 ipmi_bmc_unregister(intf);
3830
3831 kref_put(&intf->refcount, intf_free);
3832 }
3833 EXPORT_SYMBOL(ipmi_unregister_smi);
3834
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3835 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3836 struct ipmi_smi_msg *msg)
3837 {
3838 struct ipmi_ipmb_addr ipmb_addr;
3839 struct ipmi_recv_msg *recv_msg;
3840
3841 /*
3842 * This is 11, not 10, because the response must contain a
3843 * completion code.
3844 */
3845 if (msg->rsp_size < 11) {
3846 /* Message not big enough, just ignore it. */
3847 ipmi_inc_stat(intf, invalid_ipmb_responses);
3848 return 0;
3849 }
3850
3851 if (msg->rsp[2] != 0) {
3852 /* An error getting the response, just ignore it. */
3853 return 0;
3854 }
3855
3856 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3857 ipmb_addr.slave_addr = msg->rsp[6];
3858 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3859 ipmb_addr.lun = msg->rsp[7] & 3;
3860
3861 /*
3862 * It's a response from a remote entity. Look up the sequence
3863 * number and handle the response.
3864 */
3865 if (intf_find_seq(intf,
3866 msg->rsp[7] >> 2,
3867 msg->rsp[3] & 0x0f,
3868 msg->rsp[8],
3869 (msg->rsp[4] >> 2) & (~1),
3870 (struct ipmi_addr *) &ipmb_addr,
3871 &recv_msg)) {
3872 /*
3873 * We were unable to find the sequence number,
3874 * so just nuke the message.
3875 */
3876 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3877 return 0;
3878 }
3879
3880 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3881 /*
3882 * The other fields matched, so no need to set them, except
3883 * for netfn, which needs to be the response that was
3884 * returned, not the request value.
3885 */
3886 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3887 recv_msg->msg.data = recv_msg->msg_data;
3888 recv_msg->msg.data_len = msg->rsp_size - 10;
3889 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3890 if (deliver_response(intf, recv_msg))
3891 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3892 else
3893 ipmi_inc_stat(intf, handled_ipmb_responses);
3894
3895 return 0;
3896 }
3897
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3898 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3899 struct ipmi_smi_msg *msg)
3900 {
3901 struct cmd_rcvr *rcvr;
3902 int rv = 0;
3903 unsigned char netfn;
3904 unsigned char cmd;
3905 unsigned char chan;
3906 struct ipmi_user *user = NULL;
3907 struct ipmi_ipmb_addr *ipmb_addr;
3908 struct ipmi_recv_msg *recv_msg = NULL;
3909
3910 if (msg->rsp_size < 10) {
3911 /* Message not big enough, just ignore it. */
3912 ipmi_inc_stat(intf, invalid_commands);
3913 return 0;
3914 }
3915
3916 if (msg->rsp[2] != 0) {
3917 /* An error getting the response, just ignore it. */
3918 return 0;
3919 }
3920
3921 netfn = msg->rsp[4] >> 2;
3922 cmd = msg->rsp[8];
3923 chan = msg->rsp[3] & 0xf;
3924
3925 rcu_read_lock();
3926 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3927 if (rcvr) {
3928 user = rcvr->user;
3929 recv_msg = ipmi_alloc_recv_msg(user);
3930 }
3931 rcu_read_unlock();
3932
3933 if (user == NULL) {
3934 /* We didn't find a user, deliver an error response. */
3935 ipmi_inc_stat(intf, unhandled_commands);
3936
3937 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3938 msg->data[1] = IPMI_SEND_MSG_CMD;
3939 msg->data[2] = msg->rsp[3];
3940 msg->data[3] = msg->rsp[6];
3941 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3942 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3943 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3944 /* rqseq/lun */
3945 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3946 msg->data[8] = msg->rsp[8]; /* cmd */
3947 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3948 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3949 msg->data_size = 11;
3950
3951 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3952 msg->data_size, msg->data);
3953
3954 smi_send(intf, intf->handlers, msg, 0);
3955 /*
3956 * We used the message, so return the value that
3957 * causes it to not be freed or queued.
3958 */
3959 rv = -1;
3960 } else if (!IS_ERR(recv_msg)) {
3961 /* Extract the source address from the data. */
3962 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3963 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3964 ipmb_addr->slave_addr = msg->rsp[6];
3965 ipmb_addr->lun = msg->rsp[7] & 3;
3966 ipmb_addr->channel = msg->rsp[3] & 0xf;
3967
3968 /*
3969 * Extract the rest of the message information
3970 * from the IPMB header.
3971 */
3972 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3973 recv_msg->msgid = msg->rsp[7] >> 2;
3974 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3975 recv_msg->msg.cmd = msg->rsp[8];
3976 recv_msg->msg.data = recv_msg->msg_data;
3977
3978 /*
3979 * We chop off 10, not 9 bytes because the checksum
3980 * at the end also needs to be removed.
3981 */
3982 recv_msg->msg.data_len = msg->rsp_size - 10;
3983 memcpy(recv_msg->msg_data, &msg->rsp[9],
3984 msg->rsp_size - 10);
3985 if (deliver_response(intf, recv_msg))
3986 ipmi_inc_stat(intf, unhandled_commands);
3987 else
3988 ipmi_inc_stat(intf, handled_commands);
3989 } else {
3990 /*
3991 * We couldn't allocate memory for the message, so
3992 * requeue it for handling later.
3993 */
3994 rv = 1;
3995 }
3996
3997 return rv;
3998 }
3999
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4000 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
4001 struct ipmi_smi_msg *msg)
4002 {
4003 struct cmd_rcvr *rcvr;
4004 int rv = 0;
4005 struct ipmi_user *user = NULL;
4006 struct ipmi_ipmb_direct_addr *daddr;
4007 struct ipmi_recv_msg *recv_msg = NULL;
4008 unsigned char netfn = msg->rsp[0] >> 2;
4009 unsigned char cmd = msg->rsp[3];
4010
4011 rcu_read_lock();
4012 /* We always use channel 0 for direct messages. */
4013 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4014 if (rcvr) {
4015 user = rcvr->user;
4016 recv_msg = ipmi_alloc_recv_msg(user);
4017 }
4018 rcu_read_unlock();
4019
4020 if (user == NULL) {
4021 /* We didn't find a user, deliver an error response. */
4022 ipmi_inc_stat(intf, unhandled_commands);
4023
4024 msg->data[0] = (netfn + 1) << 2;
4025 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4026 msg->data[1] = msg->rsp[1]; /* Addr */
4027 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4028 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4029 msg->data[3] = cmd;
4030 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4031 msg->data_size = 5;
4032
4033 smi_send(intf, intf->handlers, msg, 0);
4034 /*
4035 * We used the message, so return the value that
4036 * causes it to not be freed or queued.
4037 */
4038 rv = -1;
4039 } else if (!IS_ERR(recv_msg)) {
4040 /* Extract the source address from the data. */
4041 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4042 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4043 daddr->channel = 0;
4044 daddr->slave_addr = msg->rsp[1];
4045 daddr->rs_lun = msg->rsp[0] & 3;
4046 daddr->rq_lun = msg->rsp[2] & 3;
4047
4048 /*
4049 * Extract the rest of the message information
4050 * from the IPMB header.
4051 */
4052 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4053 recv_msg->msgid = (msg->rsp[2] >> 2);
4054 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4055 recv_msg->msg.cmd = msg->rsp[3];
4056 recv_msg->msg.data = recv_msg->msg_data;
4057
4058 recv_msg->msg.data_len = msg->rsp_size - 4;
4059 memcpy(recv_msg->msg_data, msg->rsp + 4,
4060 msg->rsp_size - 4);
4061 if (deliver_response(intf, recv_msg))
4062 ipmi_inc_stat(intf, unhandled_commands);
4063 else
4064 ipmi_inc_stat(intf, handled_commands);
4065 } else {
4066 /*
4067 * We couldn't allocate memory for the message, so
4068 * requeue it for handling later.
4069 */
4070 rv = 1;
4071 }
4072
4073 return rv;
4074 }
4075
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4076 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4077 struct ipmi_smi_msg *msg)
4078 {
4079 struct ipmi_recv_msg *recv_msg;
4080 struct ipmi_ipmb_direct_addr *daddr;
4081
4082 recv_msg = msg->recv_msg;
4083 if (recv_msg == NULL) {
4084 dev_warn(intf->si_dev,
4085 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4086 return 0;
4087 }
4088
4089 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4090 recv_msg->msgid = msg->msgid;
4091 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4092 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4093 daddr->channel = 0;
4094 daddr->slave_addr = msg->rsp[1];
4095 daddr->rq_lun = msg->rsp[0] & 3;
4096 daddr->rs_lun = msg->rsp[2] & 3;
4097 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4098 recv_msg->msg.cmd = msg->rsp[3];
4099 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4100 recv_msg->msg.data = recv_msg->msg_data;
4101 recv_msg->msg.data_len = msg->rsp_size - 4;
4102 deliver_local_response(intf, recv_msg);
4103
4104 return 0;
4105 }
4106
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4107 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4108 struct ipmi_smi_msg *msg)
4109 {
4110 struct ipmi_lan_addr lan_addr;
4111 struct ipmi_recv_msg *recv_msg;
4112
4113
4114 /*
4115 * This is 13, not 12, because the response must contain a
4116 * completion code.
4117 */
4118 if (msg->rsp_size < 13) {
4119 /* Message not big enough, just ignore it. */
4120 ipmi_inc_stat(intf, invalid_lan_responses);
4121 return 0;
4122 }
4123
4124 if (msg->rsp[2] != 0) {
4125 /* An error getting the response, just ignore it. */
4126 return 0;
4127 }
4128
4129 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4130 lan_addr.session_handle = msg->rsp[4];
4131 lan_addr.remote_SWID = msg->rsp[8];
4132 lan_addr.local_SWID = msg->rsp[5];
4133 lan_addr.channel = msg->rsp[3] & 0x0f;
4134 lan_addr.privilege = msg->rsp[3] >> 4;
4135 lan_addr.lun = msg->rsp[9] & 3;
4136
4137 /*
4138 * It's a response from a remote entity. Look up the sequence
4139 * number and handle the response.
4140 */
4141 if (intf_find_seq(intf,
4142 msg->rsp[9] >> 2,
4143 msg->rsp[3] & 0x0f,
4144 msg->rsp[10],
4145 (msg->rsp[6] >> 2) & (~1),
4146 (struct ipmi_addr *) &lan_addr,
4147 &recv_msg)) {
4148 /*
4149 * We were unable to find the sequence number,
4150 * so just nuke the message.
4151 */
4152 ipmi_inc_stat(intf, unhandled_lan_responses);
4153 return 0;
4154 }
4155
4156 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4157 /*
4158 * The other fields matched, so no need to set them, except
4159 * for netfn, which needs to be the response that was
4160 * returned, not the request value.
4161 */
4162 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4163 recv_msg->msg.data = recv_msg->msg_data;
4164 recv_msg->msg.data_len = msg->rsp_size - 12;
4165 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4166 if (deliver_response(intf, recv_msg))
4167 ipmi_inc_stat(intf, unhandled_lan_responses);
4168 else
4169 ipmi_inc_stat(intf, handled_lan_responses);
4170
4171 return 0;
4172 }
4173
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4174 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4175 struct ipmi_smi_msg *msg)
4176 {
4177 struct cmd_rcvr *rcvr;
4178 int rv = 0;
4179 unsigned char netfn;
4180 unsigned char cmd;
4181 unsigned char chan;
4182 struct ipmi_user *user = NULL;
4183 struct ipmi_lan_addr *lan_addr;
4184 struct ipmi_recv_msg *recv_msg = NULL;
4185
4186 if (msg->rsp_size < 12) {
4187 /* Message not big enough, just ignore it. */
4188 ipmi_inc_stat(intf, invalid_commands);
4189 return 0;
4190 }
4191
4192 if (msg->rsp[2] != 0) {
4193 /* An error getting the response, just ignore it. */
4194 return 0;
4195 }
4196
4197 netfn = msg->rsp[6] >> 2;
4198 cmd = msg->rsp[10];
4199 chan = msg->rsp[3] & 0xf;
4200
4201 rcu_read_lock();
4202 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4203 if (rcvr) {
4204 user = rcvr->user;
4205 recv_msg = ipmi_alloc_recv_msg(user);
4206 }
4207 rcu_read_unlock();
4208
4209 if (user == NULL) {
4210 /* We didn't find a user, just give up and return an error. */
4211 ipmi_inc_stat(intf, unhandled_commands);
4212
4213 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
4214 msg->data[1] = IPMI_SEND_MSG_CMD;
4215 msg->data[2] = chan;
4216 msg->data[3] = msg->rsp[4]; /* handle */
4217 msg->data[4] = msg->rsp[8]; /* rsSWID */
4218 msg->data[5] = ((netfn + 1) << 2) | (msg->rsp[9] & 0x3);
4219 msg->data[6] = ipmb_checksum(&msg->data[3], 3);
4220 msg->data[7] = msg->rsp[5]; /* rqSWID */
4221 /* rqseq/lun */
4222 msg->data[8] = (msg->rsp[9] & 0xfc) | (msg->rsp[6] & 0x3);
4223 msg->data[9] = cmd;
4224 msg->data[10] = IPMI_INVALID_CMD_COMPLETION_CODE;
4225 msg->data[11] = ipmb_checksum(&msg->data[7], 4);
4226 msg->data_size = 12;
4227
4228 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
4229 msg->data_size, msg->data);
4230
4231 smi_send(intf, intf->handlers, msg, 0);
4232 /*
4233 * We used the message, so return the value that
4234 * causes it to not be freed or queued.
4235 */
4236 rv = -1;
4237 } else if (!IS_ERR(recv_msg)) {
4238 /* Extract the source address from the data. */
4239 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4240 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4241 lan_addr->session_handle = msg->rsp[4];
4242 lan_addr->remote_SWID = msg->rsp[8];
4243 lan_addr->local_SWID = msg->rsp[5];
4244 lan_addr->lun = msg->rsp[9] & 3;
4245 lan_addr->channel = msg->rsp[3] & 0xf;
4246 lan_addr->privilege = msg->rsp[3] >> 4;
4247
4248 /*
4249 * Extract the rest of the message information
4250 * from the IPMB header.
4251 */
4252 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4253 recv_msg->msgid = msg->rsp[9] >> 2;
4254 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4255 recv_msg->msg.cmd = msg->rsp[10];
4256 recv_msg->msg.data = recv_msg->msg_data;
4257
4258 /*
4259 * We chop off 12, not 11 bytes because the checksum
4260 * at the end also needs to be removed.
4261 */
4262 recv_msg->msg.data_len = msg->rsp_size - 12;
4263 memcpy(recv_msg->msg_data, &msg->rsp[11],
4264 msg->rsp_size - 12);
4265 if (deliver_response(intf, recv_msg))
4266 ipmi_inc_stat(intf, unhandled_commands);
4267 else
4268 ipmi_inc_stat(intf, handled_commands);
4269 } else {
4270 /*
4271 * We couldn't allocate memory for the message, so
4272 * requeue it for handling later.
4273 */
4274 rv = 1;
4275 }
4276
4277 return rv;
4278 }
4279
4280 /*
4281 * This routine will handle "Get Message" command responses with
4282 * channels that use an OEM Medium. The message format belongs to
4283 * the OEM. See IPMI 2.0 specification, Chapter 6 and
4284 * Chapter 22, sections 22.6 and 22.24 for more details.
4285 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4286 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4287 struct ipmi_smi_msg *msg)
4288 {
4289 struct cmd_rcvr *rcvr;
4290 int rv = 0;
4291 unsigned char netfn;
4292 unsigned char cmd;
4293 unsigned char chan;
4294 struct ipmi_user *user = NULL;
4295 struct ipmi_system_interface_addr *smi_addr;
4296 struct ipmi_recv_msg *recv_msg = NULL;
4297
4298 /*
4299 * We expect the OEM SW to perform error checking
4300 * so we just do some basic sanity checks
4301 */
4302 if (msg->rsp_size < 4) {
4303 /* Message not big enough, just ignore it. */
4304 ipmi_inc_stat(intf, invalid_commands);
4305 return 0;
4306 }
4307
4308 if (msg->rsp[2] != 0) {
4309 /* An error getting the response, just ignore it. */
4310 return 0;
4311 }
4312
4313 /*
4314 * This is an OEM Message so the OEM needs to know how
4315 * handle the message. We do no interpretation.
4316 */
4317 netfn = msg->rsp[0] >> 2;
4318 cmd = msg->rsp[1];
4319 chan = msg->rsp[3] & 0xf;
4320
4321 rcu_read_lock();
4322 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4323 if (rcvr) {
4324 user = rcvr->user;
4325 recv_msg = ipmi_alloc_recv_msg(user);
4326 }
4327 rcu_read_unlock();
4328
4329 if (user == NULL) {
4330 /* We didn't find a user, just give up. */
4331 ipmi_inc_stat(intf, unhandled_commands);
4332
4333 /*
4334 * Don't do anything with these messages, just allow
4335 * them to be freed.
4336 */
4337
4338 rv = 0;
4339 } else if (!IS_ERR(recv_msg)) {
4340 /*
4341 * OEM Messages are expected to be delivered via
4342 * the system interface to SMS software. We might
4343 * need to visit this again depending on OEM
4344 * requirements
4345 */
4346 smi_addr = ((struct ipmi_system_interface_addr *)
4347 &recv_msg->addr);
4348 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4349 smi_addr->channel = IPMI_BMC_CHANNEL;
4350 smi_addr->lun = msg->rsp[0] & 3;
4351
4352 recv_msg->user_msg_data = NULL;
4353 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4354 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4355 recv_msg->msg.cmd = msg->rsp[1];
4356 recv_msg->msg.data = recv_msg->msg_data;
4357
4358 /*
4359 * The message starts at byte 4 which follows the
4360 * Channel Byte in the "GET MESSAGE" command
4361 */
4362 recv_msg->msg.data_len = msg->rsp_size - 4;
4363 memcpy(recv_msg->msg_data, &msg->rsp[4],
4364 msg->rsp_size - 4);
4365 if (deliver_response(intf, recv_msg))
4366 ipmi_inc_stat(intf, unhandled_commands);
4367 else
4368 ipmi_inc_stat(intf, handled_commands);
4369 } else {
4370 /*
4371 * We couldn't allocate memory for the message, so
4372 * requeue it for handling later.
4373 */
4374 rv = 1;
4375 }
4376
4377 return rv;
4378 }
4379
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4380 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4381 struct ipmi_smi_msg *msg)
4382 {
4383 struct ipmi_system_interface_addr *smi_addr;
4384
4385 recv_msg->msgid = 0;
4386 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4387 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4388 smi_addr->channel = IPMI_BMC_CHANNEL;
4389 smi_addr->lun = msg->rsp[0] & 3;
4390 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4391 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4392 recv_msg->msg.cmd = msg->rsp[1];
4393 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4394 recv_msg->msg.data = recv_msg->msg_data;
4395 recv_msg->msg.data_len = msg->rsp_size - 3;
4396 }
4397
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4398 static int handle_read_event_rsp(struct ipmi_smi *intf,
4399 struct ipmi_smi_msg *msg)
4400 {
4401 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4402 struct list_head msgs;
4403 struct ipmi_user *user;
4404 int rv = 0, deliver_count = 0;
4405
4406 if (msg->rsp_size < 19) {
4407 /* Message is too small to be an IPMB event. */
4408 ipmi_inc_stat(intf, invalid_events);
4409 return 0;
4410 }
4411
4412 if (msg->rsp[2] != 0) {
4413 /* An error getting the event, just ignore it. */
4414 return 0;
4415 }
4416
4417 INIT_LIST_HEAD(&msgs);
4418
4419 mutex_lock(&intf->events_mutex);
4420
4421 ipmi_inc_stat(intf, events);
4422
4423 /*
4424 * Allocate and fill in one message for every user that is
4425 * getting events.
4426 */
4427 mutex_lock(&intf->users_mutex);
4428 list_for_each_entry(user, &intf->users, link) {
4429 if (!user->gets_events)
4430 continue;
4431
4432 recv_msg = ipmi_alloc_recv_msg(user);
4433 if (IS_ERR(recv_msg)) {
4434 mutex_unlock(&intf->users_mutex);
4435 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4436 link) {
4437 user = recv_msg->user;
4438 list_del(&recv_msg->link);
4439 ipmi_free_recv_msg(recv_msg);
4440 kref_put(&user->refcount, free_ipmi_user);
4441 }
4442 /*
4443 * We couldn't allocate memory for the
4444 * message, so requeue it for handling
4445 * later.
4446 */
4447 rv = 1;
4448 goto out;
4449 }
4450
4451 deliver_count++;
4452
4453 copy_event_into_recv_msg(recv_msg, msg);
4454 list_add_tail(&recv_msg->link, &msgs);
4455 }
4456 mutex_unlock(&intf->users_mutex);
4457
4458 if (deliver_count) {
4459 /* Now deliver all the messages. */
4460 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4461 list_del(&recv_msg->link);
4462 deliver_local_response(intf, recv_msg);
4463 }
4464 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4465 /*
4466 * No one to receive the message, put it in queue if there's
4467 * not already too many things in the queue.
4468 */
4469 recv_msg = ipmi_alloc_recv_msg(NULL);
4470 if (IS_ERR(recv_msg)) {
4471 /*
4472 * We couldn't allocate memory for the
4473 * message, so requeue it for handling
4474 * later.
4475 */
4476 rv = 1;
4477 goto out;
4478 }
4479
4480 copy_event_into_recv_msg(recv_msg, msg);
4481 list_add_tail(&recv_msg->link, &intf->waiting_events);
4482 intf->waiting_events_count++;
4483 } else if (!intf->event_msg_printed) {
4484 /*
4485 * There's too many things in the queue, discard this
4486 * message.
4487 */
4488 dev_warn(intf->si_dev,
4489 "Event queue full, discarding incoming events\n");
4490 intf->event_msg_printed = 1;
4491 }
4492
4493 out:
4494 mutex_unlock(&intf->events_mutex);
4495
4496 return rv;
4497 }
4498
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4499 static int handle_bmc_rsp(struct ipmi_smi *intf,
4500 struct ipmi_smi_msg *msg)
4501 {
4502 struct ipmi_recv_msg *recv_msg;
4503 struct ipmi_system_interface_addr *smi_addr;
4504
4505 recv_msg = msg->recv_msg;
4506 if (recv_msg == NULL) {
4507 dev_warn(intf->si_dev,
4508 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4509 return 0;
4510 }
4511
4512 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4513 recv_msg->msgid = msg->msgid;
4514 smi_addr = ((struct ipmi_system_interface_addr *)
4515 &recv_msg->addr);
4516 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4517 smi_addr->channel = IPMI_BMC_CHANNEL;
4518 smi_addr->lun = msg->rsp[0] & 3;
4519 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4520 recv_msg->msg.cmd = msg->rsp[1];
4521 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4522 recv_msg->msg.data = recv_msg->msg_data;
4523 recv_msg->msg.data_len = msg->rsp_size - 2;
4524 deliver_local_response(intf, recv_msg);
4525
4526 return 0;
4527 }
4528
4529 /*
4530 * Handle a received message. Return 1 if the message should be requeued,
4531 * 0 if the message should be freed, or -1 if the message should not
4532 * be freed or requeued.
4533 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4534 static int handle_one_recv_msg(struct ipmi_smi *intf,
4535 struct ipmi_smi_msg *msg)
4536 {
4537 int requeue = 0;
4538 int chan;
4539 unsigned char cc;
4540 bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4541
4542 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4543
4544 if (msg->rsp_size < 2) {
4545 /* Message is too small to be correct. */
4546 dev_warn_ratelimited(intf->si_dev,
4547 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4548 (msg->data[0] >> 2) | 1,
4549 msg->data[1], msg->rsp_size);
4550
4551 return_unspecified:
4552 /* Generate an error response for the message. */
4553 msg->rsp[0] = msg->data[0] | (1 << 2);
4554 msg->rsp[1] = msg->data[1];
4555 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4556 msg->rsp_size = 3;
4557 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4558 /* commands must have at least 4 bytes, responses 5. */
4559 if (is_cmd && (msg->rsp_size < 4)) {
4560 ipmi_inc_stat(intf, invalid_commands);
4561 goto out;
4562 }
4563 if (!is_cmd && (msg->rsp_size < 5)) {
4564 ipmi_inc_stat(intf, invalid_ipmb_responses);
4565 /* Construct a valid error response. */
4566 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4567 msg->rsp[0] |= (1 << 2); /* Make it a response */
4568 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4569 msg->rsp[1] = msg->data[1]; /* Addr */
4570 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4571 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4572 msg->rsp[3] = msg->data[3]; /* Cmd */
4573 msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4574 msg->rsp_size = 5;
4575 }
4576 } else if ((msg->data_size >= 2)
4577 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4578 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4579 && (msg->recv_msg == NULL)) {
4580
4581 if (intf->in_shutdown || intf->run_to_completion)
4582 goto out;
4583
4584 /*
4585 * This is the local response to a command send, start
4586 * the timer for these. The recv_msg will not be
4587 * NULL if this is a response send, and we will let
4588 * response sends just go through.
4589 */
4590
4591 /*
4592 * Check for errors, if we get certain errors (ones
4593 * that mean basically we can try again later), we
4594 * ignore them and start the timer. Otherwise we
4595 * report the error immediately.
4596 */
4597 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4598 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4599 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4600 && (msg->rsp[2] != IPMI_BUS_ERR)
4601 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4602 int ch = msg->rsp[3] & 0xf;
4603 struct ipmi_channel *chans;
4604
4605 /* Got an error sending the message, handle it. */
4606
4607 chans = READ_ONCE(intf->channel_list)->c;
4608 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4609 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4610 ipmi_inc_stat(intf, sent_lan_command_errs);
4611 else
4612 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4613 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4614 } else
4615 /* The message was sent, start the timer. */
4616 intf_start_seq_timer(intf, msg->msgid);
4617 requeue = 0;
4618 goto out;
4619 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4620 || (msg->rsp[1] != msg->data[1])) {
4621 /*
4622 * The NetFN and Command in the response is not even
4623 * marginally correct.
4624 */
4625 dev_warn_ratelimited(intf->si_dev,
4626 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4627 (msg->data[0] >> 2) | 1, msg->data[1],
4628 msg->rsp[0] >> 2, msg->rsp[1]);
4629
4630 goto return_unspecified;
4631 }
4632
4633 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4634 if ((msg->data[0] >> 2) & 1) {
4635 /* It's a response to a sent response. */
4636 chan = 0;
4637 cc = msg->rsp[4];
4638 goto process_response_response;
4639 }
4640 if (is_cmd)
4641 requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4642 else
4643 requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4644 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4645 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4646 && (msg->recv_msg != NULL)) {
4647 /*
4648 * It's a response to a response we sent. For this we
4649 * deliver a send message response to the user.
4650 */
4651 struct ipmi_recv_msg *recv_msg;
4652
4653 if (intf->run_to_completion)
4654 goto out;
4655
4656 chan = msg->data[2] & 0x0f;
4657 if (chan >= IPMI_MAX_CHANNELS)
4658 /* Invalid channel number */
4659 goto out;
4660 cc = msg->rsp[2];
4661
4662 process_response_response:
4663 recv_msg = msg->recv_msg;
4664
4665 requeue = 0;
4666 if (!recv_msg)
4667 goto out;
4668
4669 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4670 recv_msg->msg.data = recv_msg->msg_data;
4671 recv_msg->msg_data[0] = cc;
4672 recv_msg->msg.data_len = 1;
4673 deliver_local_response(intf, recv_msg);
4674 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4675 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4676 struct ipmi_channel *chans;
4677
4678 if (intf->run_to_completion)
4679 goto out;
4680
4681 /* It's from the receive queue. */
4682 chan = msg->rsp[3] & 0xf;
4683 if (chan >= IPMI_MAX_CHANNELS) {
4684 /* Invalid channel number */
4685 requeue = 0;
4686 goto out;
4687 }
4688
4689 /*
4690 * We need to make sure the channels have been initialized.
4691 * The channel_handler routine will set the "curr_channel"
4692 * equal to or greater than IPMI_MAX_CHANNELS when all the
4693 * channels for this interface have been initialized.
4694 */
4695 if (!intf->channels_ready) {
4696 requeue = 0; /* Throw the message away */
4697 goto out;
4698 }
4699
4700 chans = READ_ONCE(intf->channel_list)->c;
4701
4702 switch (chans[chan].medium) {
4703 case IPMI_CHANNEL_MEDIUM_IPMB:
4704 if (msg->rsp[4] & 0x04) {
4705 /*
4706 * It's a response, so find the
4707 * requesting message and send it up.
4708 */
4709 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4710 } else {
4711 /*
4712 * It's a command to the SMS from some other
4713 * entity. Handle that.
4714 */
4715 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4716 }
4717 break;
4718
4719 case IPMI_CHANNEL_MEDIUM_8023LAN:
4720 case IPMI_CHANNEL_MEDIUM_ASYNC:
4721 if (msg->rsp[6] & 0x04) {
4722 /*
4723 * It's a response, so find the
4724 * requesting message and send it up.
4725 */
4726 requeue = handle_lan_get_msg_rsp(intf, msg);
4727 } else {
4728 /*
4729 * It's a command to the SMS from some other
4730 * entity. Handle that.
4731 */
4732 requeue = handle_lan_get_msg_cmd(intf, msg);
4733 }
4734 break;
4735
4736 default:
4737 /* Check for OEM Channels. Clients had better
4738 register for these commands. */
4739 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4740 && (chans[chan].medium
4741 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4742 requeue = handle_oem_get_msg_cmd(intf, msg);
4743 } else {
4744 /*
4745 * We don't handle the channel type, so just
4746 * free the message.
4747 */
4748 requeue = 0;
4749 }
4750 }
4751
4752 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4753 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4754 /* It's an asynchronous event. */
4755 if (intf->run_to_completion)
4756 goto out;
4757
4758 requeue = handle_read_event_rsp(intf, msg);
4759 } else {
4760 /* It's a response from the local BMC. */
4761 requeue = handle_bmc_rsp(intf, msg);
4762 }
4763
4764 out:
4765 return requeue;
4766 }
4767
4768 /*
4769 * If there are messages in the queue or pretimeouts, handle them.
4770 */
handle_new_recv_msgs(struct ipmi_smi * intf)4771 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4772 {
4773 struct ipmi_smi_msg *smi_msg;
4774 unsigned long flags = 0;
4775 int rv;
4776 int run_to_completion = READ_ONCE(intf->run_to_completion);
4777
4778 /* See if any waiting messages need to be processed. */
4779 if (!run_to_completion)
4780 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4781 while (!list_empty(&intf->waiting_rcv_msgs)) {
4782 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4783 struct ipmi_smi_msg, link);
4784 list_del(&smi_msg->link);
4785 if (!run_to_completion)
4786 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4787 flags);
4788 rv = handle_one_recv_msg(intf, smi_msg);
4789 if (!run_to_completion)
4790 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4791 if (rv > 0) {
4792 /*
4793 * To preserve message order, quit if we
4794 * can't handle a message. Add the message
4795 * back at the head, this is safe because this
4796 * workqueue is the only thing that pulls the
4797 * messages.
4798 */
4799 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4800 break;
4801 } else {
4802 if (rv == 0)
4803 /* Message handled */
4804 ipmi_free_smi_msg(smi_msg);
4805 /* If rv < 0, fatal error, del but don't free. */
4806 }
4807 }
4808 if (!run_to_completion)
4809 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4810 }
4811
smi_work(struct work_struct * t)4812 static void smi_work(struct work_struct *t)
4813 {
4814 unsigned long flags = 0; /* keep us warning-free. */
4815 struct ipmi_smi *intf = from_work(intf, t, smi_work);
4816 int run_to_completion = READ_ONCE(intf->run_to_completion);
4817 struct ipmi_smi_msg *newmsg = NULL;
4818 struct ipmi_recv_msg *msg, *msg2;
4819 int cc;
4820
4821 /*
4822 * Start the next message if available.
4823 *
4824 * Do this here, not in the actual receiver, because we may deadlock
4825 * because the lower layer is allowed to hold locks while calling
4826 * message delivery.
4827 */
4828 restart:
4829 if (!run_to_completion)
4830 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4831 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4832 struct list_head *entry = NULL;
4833
4834 /* Pick the high priority queue first. */
4835 if (!list_empty(&intf->hp_xmit_msgs))
4836 entry = intf->hp_xmit_msgs.next;
4837 else if (!list_empty(&intf->xmit_msgs))
4838 entry = intf->xmit_msgs.next;
4839
4840 if (entry) {
4841 list_del(entry);
4842 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4843 intf->curr_msg = newmsg;
4844 }
4845 }
4846 if (!run_to_completion)
4847 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4848
4849 if (newmsg) {
4850 cc = intf->handlers->sender(intf->send_info, newmsg);
4851 if (cc) {
4852 if (newmsg->recv_msg)
4853 deliver_err_response(intf,
4854 newmsg->recv_msg, cc);
4855 else
4856 ipmi_free_smi_msg(newmsg);
4857 goto restart;
4858 }
4859 }
4860
4861 handle_new_recv_msgs(intf);
4862
4863 /* Nothing below applies during panic time. */
4864 if (run_to_completion)
4865 return;
4866
4867 /*
4868 * If the pretimout count is non-zero, decrement one from it and
4869 * deliver pretimeouts to all the users.
4870 */
4871 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4872 struct ipmi_user *user;
4873
4874 mutex_lock(&intf->users_mutex);
4875 list_for_each_entry(user, &intf->users, link) {
4876 if (user->handler->ipmi_watchdog_pretimeout)
4877 user->handler->ipmi_watchdog_pretimeout(
4878 user->handler_data);
4879 }
4880 mutex_unlock(&intf->users_mutex);
4881 }
4882
4883 /*
4884 * Freeing the message can cause a user to be released, which
4885 * can then cause the interface to be freed. Make sure that
4886 * doesn't happen until we are ready.
4887 */
4888 kref_get(&intf->refcount);
4889
4890 mutex_lock(&intf->user_msgs_mutex);
4891 list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
4892 struct ipmi_user *user = msg->user;
4893
4894 list_del(&msg->link);
4895
4896 if (refcount_read(&user->destroyed) == 0)
4897 ipmi_free_recv_msg(msg);
4898 else
4899 user->handler->ipmi_recv_hndl(msg, user->handler_data);
4900 }
4901 mutex_unlock(&intf->user_msgs_mutex);
4902
4903 kref_put(&intf->refcount, intf_free);
4904 }
4905
4906 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4907 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4908 struct ipmi_smi_msg *msg)
4909 {
4910 unsigned long flags = 0; /* keep us warning-free. */
4911 int run_to_completion = READ_ONCE(intf->run_to_completion);
4912
4913 /*
4914 * To preserve message order, we keep a queue and deliver from
4915 * a workqueue.
4916 */
4917 if (!run_to_completion)
4918 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4919 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4920 if (!run_to_completion)
4921 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4922 flags);
4923
4924 if (!run_to_completion)
4925 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4926 /*
4927 * We can get an asynchronous event or receive message in addition
4928 * to commands we send.
4929 */
4930 if (msg == intf->curr_msg)
4931 intf->curr_msg = NULL;
4932 if (!run_to_completion)
4933 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4934
4935 if (run_to_completion)
4936 smi_work(&intf->smi_work);
4937 else
4938 queue_work(system_wq, &intf->smi_work);
4939 }
4940 EXPORT_SYMBOL(ipmi_smi_msg_received);
4941
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4942 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4943 {
4944 if (intf->in_shutdown)
4945 return;
4946
4947 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4948 queue_work(system_wq, &intf->smi_work);
4949 }
4950 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4951
4952 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4953 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4954 unsigned char seq, long seqid)
4955 {
4956 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4957 if (!smi_msg)
4958 /*
4959 * If we can't allocate the message, then just return, we
4960 * get 4 retries, so this should be ok.
4961 */
4962 return NULL;
4963
4964 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4965 smi_msg->data_size = recv_msg->msg.data_len;
4966 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4967
4968 dev_dbg(intf->si_dev, "Resend: %*ph\n",
4969 smi_msg->data_size, smi_msg->data);
4970
4971 return smi_msg;
4972 }
4973
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,bool * need_timer)4974 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4975 struct list_head *timeouts,
4976 unsigned long timeout_period,
4977 int slot, bool *need_timer)
4978 {
4979 struct ipmi_recv_msg *msg;
4980
4981 if (intf->in_shutdown)
4982 return;
4983
4984 if (!ent->inuse)
4985 return;
4986
4987 if (timeout_period < ent->timeout) {
4988 ent->timeout -= timeout_period;
4989 *need_timer = true;
4990 return;
4991 }
4992
4993 if (ent->retries_left == 0) {
4994 /* The message has used all its retries. */
4995 ent->inuse = 0;
4996 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4997 msg = ent->recv_msg;
4998 list_add_tail(&msg->link, timeouts);
4999 if (ent->broadcast)
5000 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
5001 else if (is_lan_addr(&ent->recv_msg->addr))
5002 ipmi_inc_stat(intf, timed_out_lan_commands);
5003 else
5004 ipmi_inc_stat(intf, timed_out_ipmb_commands);
5005 } else {
5006 struct ipmi_smi_msg *smi_msg;
5007 /* More retries, send again. */
5008
5009 *need_timer = true;
5010
5011 /*
5012 * Start with the max timer, set to normal timer after
5013 * the message is sent.
5014 */
5015 ent->timeout = MAX_MSG_TIMEOUT;
5016 ent->retries_left--;
5017 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
5018 ent->seqid);
5019 if (!smi_msg) {
5020 if (is_lan_addr(&ent->recv_msg->addr))
5021 ipmi_inc_stat(intf,
5022 dropped_rexmit_lan_commands);
5023 else
5024 ipmi_inc_stat(intf,
5025 dropped_rexmit_ipmb_commands);
5026 return;
5027 }
5028
5029 mutex_unlock(&intf->seq_lock);
5030
5031 /*
5032 * Send the new message. We send with a zero
5033 * priority. It timed out, I doubt time is that
5034 * critical now, and high priority messages are really
5035 * only for messages to the local MC, which don't get
5036 * resent.
5037 */
5038 if (intf->handlers) {
5039 if (is_lan_addr(&ent->recv_msg->addr))
5040 ipmi_inc_stat(intf,
5041 retransmitted_lan_commands);
5042 else
5043 ipmi_inc_stat(intf,
5044 retransmitted_ipmb_commands);
5045
5046 smi_send(intf, intf->handlers, smi_msg, 0);
5047 } else
5048 ipmi_free_smi_msg(smi_msg);
5049
5050 mutex_lock(&intf->seq_lock);
5051 }
5052 }
5053
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5054 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5055 unsigned long timeout_period)
5056 {
5057 struct list_head timeouts;
5058 struct ipmi_recv_msg *msg, *msg2;
5059 unsigned long flags;
5060 int i;
5061 bool need_timer = false;
5062
5063 if (!intf->bmc_registered) {
5064 kref_get(&intf->refcount);
5065 if (!schedule_work(&intf->bmc_reg_work)) {
5066 kref_put(&intf->refcount, intf_free);
5067 need_timer = true;
5068 }
5069 }
5070
5071 /*
5072 * Go through the seq table and find any messages that
5073 * have timed out, putting them in the timeouts
5074 * list.
5075 */
5076 INIT_LIST_HEAD(&timeouts);
5077 mutex_lock(&intf->seq_lock);
5078 if (intf->ipmb_maintenance_mode_timeout) {
5079 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5080 intf->ipmb_maintenance_mode_timeout = 0;
5081 else
5082 intf->ipmb_maintenance_mode_timeout -= timeout_period;
5083 }
5084 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5085 check_msg_timeout(intf, &intf->seq_table[i],
5086 &timeouts, timeout_period, i,
5087 &need_timer);
5088 mutex_unlock(&intf->seq_lock);
5089
5090 list_for_each_entry_safe(msg, msg2, &timeouts, link)
5091 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5092
5093 /*
5094 * Maintenance mode handling. Check the timeout
5095 * optimistically before we claim the lock. It may
5096 * mean a timeout gets missed occasionally, but that
5097 * only means the timeout gets extended by one period
5098 * in that case. No big deal, and it avoids the lock
5099 * most of the time.
5100 */
5101 if (intf->auto_maintenance_timeout > 0) {
5102 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5103 if (intf->auto_maintenance_timeout > 0) {
5104 intf->auto_maintenance_timeout
5105 -= timeout_period;
5106 if (!intf->maintenance_mode
5107 && (intf->auto_maintenance_timeout <= 0)) {
5108 intf->maintenance_mode_state =
5109 IPMI_MAINTENANCE_MODE_STATE_OFF;
5110 intf->auto_maintenance_timeout = 0;
5111 maintenance_mode_update(intf);
5112 }
5113 }
5114 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5115 flags);
5116 }
5117
5118 queue_work(system_wq, &intf->smi_work);
5119
5120 return need_timer;
5121 }
5122
ipmi_request_event(struct ipmi_smi * intf)5123 static void ipmi_request_event(struct ipmi_smi *intf)
5124 {
5125 /* No event requests when in maintenance mode. */
5126 if (intf->maintenance_mode_state)
5127 return;
5128
5129 if (!intf->in_shutdown)
5130 intf->handlers->request_events(intf->send_info);
5131 }
5132
5133 static atomic_t stop_operation;
5134
ipmi_timeout_work(struct work_struct * work)5135 static void ipmi_timeout_work(struct work_struct *work)
5136 {
5137 if (atomic_read(&stop_operation))
5138 return;
5139
5140 struct ipmi_smi *intf;
5141 bool need_timer = false;
5142
5143 if (atomic_read(&stop_operation))
5144 return;
5145
5146 mutex_lock(&ipmi_interfaces_mutex);
5147 list_for_each_entry(intf, &ipmi_interfaces, link) {
5148 if (atomic_read(&intf->event_waiters)) {
5149 intf->ticks_to_req_ev--;
5150 if (intf->ticks_to_req_ev == 0) {
5151 ipmi_request_event(intf);
5152 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5153 }
5154 need_timer = true;
5155 }
5156 if (intf->maintenance_mode_state)
5157 need_timer = true;
5158
5159 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5160 }
5161 mutex_unlock(&ipmi_interfaces_mutex);
5162
5163 if (need_timer)
5164 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5165 }
5166
5167 static DECLARE_WORK(ipmi_timer_work, ipmi_timeout_work);
5168
ipmi_timeout(struct timer_list * unused)5169 static void ipmi_timeout(struct timer_list *unused)
5170 {
5171 if (atomic_read(&stop_operation))
5172 return;
5173
5174 queue_work(system_wq, &ipmi_timer_work);
5175 }
5176
need_waiter(struct ipmi_smi * intf)5177 static void need_waiter(struct ipmi_smi *intf)
5178 {
5179 /* Racy, but worst case we start the timer twice. */
5180 if (!timer_pending(&ipmi_timer))
5181 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5182 }
5183
5184 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5185 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5186
free_smi_msg(struct ipmi_smi_msg * msg)5187 static void free_smi_msg(struct ipmi_smi_msg *msg)
5188 {
5189 atomic_dec(&smi_msg_inuse_count);
5190 /* Try to keep as much stuff out of the panic path as possible. */
5191 if (!oops_in_progress)
5192 kfree(msg);
5193 }
5194
ipmi_alloc_smi_msg(void)5195 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5196 {
5197 struct ipmi_smi_msg *rv;
5198 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5199 if (rv) {
5200 rv->done = free_smi_msg;
5201 rv->recv_msg = NULL;
5202 rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5203 atomic_inc(&smi_msg_inuse_count);
5204 }
5205 return rv;
5206 }
5207 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5208
free_recv_msg(struct ipmi_recv_msg * msg)5209 static void free_recv_msg(struct ipmi_recv_msg *msg)
5210 {
5211 atomic_dec(&recv_msg_inuse_count);
5212 /* Try to keep as much stuff out of the panic path as possible. */
5213 if (!oops_in_progress)
5214 kfree(msg);
5215 }
5216
ipmi_alloc_recv_msg(struct ipmi_user * user)5217 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user)
5218 {
5219 struct ipmi_recv_msg *rv;
5220
5221 if (user) {
5222 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
5223 atomic_dec(&user->nr_msgs);
5224 return ERR_PTR(-EBUSY);
5225 }
5226 }
5227
5228 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5229 if (!rv) {
5230 if (user)
5231 atomic_dec(&user->nr_msgs);
5232 return ERR_PTR(-ENOMEM);
5233 }
5234
5235 rv->user = user;
5236 rv->done = free_recv_msg;
5237 if (user)
5238 kref_get(&user->refcount);
5239 atomic_inc(&recv_msg_inuse_count);
5240 return rv;
5241 }
5242
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5243 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5244 {
5245 if (msg->user && !oops_in_progress) {
5246 atomic_dec(&msg->user->nr_msgs);
5247 kref_put(&msg->user->refcount, free_ipmi_user);
5248 }
5249 msg->done(msg);
5250 }
5251 EXPORT_SYMBOL(ipmi_free_recv_msg);
5252
ipmi_set_recv_msg_user(struct ipmi_recv_msg * msg,struct ipmi_user * user)5253 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg,
5254 struct ipmi_user *user)
5255 {
5256 WARN_ON_ONCE(msg->user); /* User should not be set. */
5257 msg->user = user;
5258 atomic_inc(&user->nr_msgs);
5259 kref_get(&user->refcount);
5260 }
5261
5262 static atomic_t panic_done_count = ATOMIC_INIT(0);
5263
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5264 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5265 {
5266 atomic_dec(&panic_done_count);
5267 }
5268
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5269 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5270 {
5271 atomic_dec(&panic_done_count);
5272 }
5273
5274 /*
5275 * Inside a panic, send a message and wait for a response.
5276 */
_ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5277 static void _ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5278 struct ipmi_addr *addr,
5279 struct kernel_ipmi_msg *msg)
5280 {
5281 struct ipmi_smi_msg smi_msg;
5282 struct ipmi_recv_msg recv_msg;
5283 int rv;
5284
5285 smi_msg.done = dummy_smi_done_handler;
5286 recv_msg.done = dummy_recv_done_handler;
5287 atomic_add(2, &panic_done_count);
5288 rv = i_ipmi_request(NULL,
5289 intf,
5290 addr,
5291 0,
5292 msg,
5293 intf,
5294 &smi_msg,
5295 &recv_msg,
5296 0,
5297 intf->addrinfo[0].address,
5298 intf->addrinfo[0].lun,
5299 0, 1); /* Don't retry, and don't wait. */
5300 if (rv)
5301 atomic_sub(2, &panic_done_count);
5302 else if (intf->handlers->flush_messages)
5303 intf->handlers->flush_messages(intf->send_info);
5304
5305 while (atomic_read(&panic_done_count) != 0)
5306 ipmi_poll(intf);
5307 }
5308
ipmi_panic_request_and_wait(struct ipmi_user * user,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5309 void ipmi_panic_request_and_wait(struct ipmi_user *user,
5310 struct ipmi_addr *addr,
5311 struct kernel_ipmi_msg *msg)
5312 {
5313 user->intf->run_to_completion = 1;
5314 _ipmi_panic_request_and_wait(user->intf, addr, msg);
5315 }
5316 EXPORT_SYMBOL(ipmi_panic_request_and_wait);
5317
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5318 static void event_receiver_fetcher(struct ipmi_smi *intf,
5319 struct ipmi_recv_msg *msg)
5320 {
5321 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5322 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5323 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5324 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5325 /* A get event receiver command, save it. */
5326 intf->event_receiver = msg->msg.data[1];
5327 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5328 }
5329 }
5330
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5331 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5332 {
5333 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5334 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5335 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5336 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5337 /*
5338 * A get device id command, save if we are an event
5339 * receiver or generator.
5340 */
5341 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5342 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5343 }
5344 }
5345
send_panic_events(struct ipmi_smi * intf,char * str)5346 static void send_panic_events(struct ipmi_smi *intf, char *str)
5347 {
5348 struct kernel_ipmi_msg msg;
5349 unsigned char data[16];
5350 struct ipmi_system_interface_addr *si;
5351 struct ipmi_addr addr;
5352 char *p = str;
5353 struct ipmi_ipmb_addr *ipmb;
5354 int j;
5355
5356 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5357 return;
5358
5359 si = (struct ipmi_system_interface_addr *) &addr;
5360 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5361 si->channel = IPMI_BMC_CHANNEL;
5362 si->lun = 0;
5363
5364 /* Fill in an event telling that we have failed. */
5365 msg.netfn = 0x04; /* Sensor or Event. */
5366 msg.cmd = 2; /* Platform event command. */
5367 msg.data = data;
5368 msg.data_len = 8;
5369 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5370 data[1] = 0x03; /* This is for IPMI 1.0. */
5371 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5372 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5373 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5374
5375 /*
5376 * Put a few breadcrumbs in. Hopefully later we can add more things
5377 * to make the panic events more useful.
5378 */
5379 if (str) {
5380 data[3] = str[0];
5381 data[6] = str[1];
5382 data[7] = str[2];
5383 }
5384
5385 /* Send the event announcing the panic. */
5386 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5387
5388 /*
5389 * On every interface, dump a bunch of OEM event holding the
5390 * string.
5391 */
5392 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5393 return;
5394
5395 /*
5396 * intf_num is used as an marker to tell if the
5397 * interface is valid. Thus we need a read barrier to
5398 * make sure data fetched before checking intf_num
5399 * won't be used.
5400 */
5401 smp_rmb();
5402
5403 /*
5404 * First job here is to figure out where to send the
5405 * OEM events. There's no way in IPMI to send OEM
5406 * events using an event send command, so we have to
5407 * find the SEL to put them in and stick them in
5408 * there.
5409 */
5410
5411 /* Get capabilities from the get device id. */
5412 intf->local_sel_device = 0;
5413 intf->local_event_generator = 0;
5414 intf->event_receiver = 0;
5415
5416 /* Request the device info from the local MC. */
5417 msg.netfn = IPMI_NETFN_APP_REQUEST;
5418 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5419 msg.data = NULL;
5420 msg.data_len = 0;
5421 intf->null_user_handler = device_id_fetcher;
5422 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5423
5424 if (intf->local_event_generator) {
5425 /* Request the event receiver from the local MC. */
5426 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5427 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5428 msg.data = NULL;
5429 msg.data_len = 0;
5430 intf->null_user_handler = event_receiver_fetcher;
5431 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5432 }
5433 intf->null_user_handler = NULL;
5434
5435 /*
5436 * Validate the event receiver. The low bit must not
5437 * be 1 (it must be a valid IPMB address), it cannot
5438 * be zero, and it must not be my address.
5439 */
5440 if (((intf->event_receiver & 1) == 0)
5441 && (intf->event_receiver != 0)
5442 && (intf->event_receiver != intf->addrinfo[0].address)) {
5443 /*
5444 * The event receiver is valid, send an IPMB
5445 * message.
5446 */
5447 ipmb = (struct ipmi_ipmb_addr *) &addr;
5448 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5449 ipmb->channel = 0; /* FIXME - is this right? */
5450 ipmb->lun = intf->event_receiver_lun;
5451 ipmb->slave_addr = intf->event_receiver;
5452 } else if (intf->local_sel_device) {
5453 /*
5454 * The event receiver was not valid (or was
5455 * me), but I am an SEL device, just dump it
5456 * in my SEL.
5457 */
5458 si = (struct ipmi_system_interface_addr *) &addr;
5459 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5460 si->channel = IPMI_BMC_CHANNEL;
5461 si->lun = 0;
5462 } else
5463 return; /* No where to send the event. */
5464
5465 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5466 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5467 msg.data = data;
5468 msg.data_len = 16;
5469
5470 j = 0;
5471 while (*p) {
5472 int size = strnlen(p, 11);
5473
5474 data[0] = 0;
5475 data[1] = 0;
5476 data[2] = 0xf0; /* OEM event without timestamp. */
5477 data[3] = intf->addrinfo[0].address;
5478 data[4] = j++; /* sequence # */
5479
5480 memcpy_and_pad(data+5, 11, p, size, '\0');
5481 p += size;
5482
5483 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5484 }
5485 }
5486
5487 static int has_panicked;
5488
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5489 static int panic_event(struct notifier_block *this,
5490 unsigned long event,
5491 void *ptr)
5492 {
5493 struct ipmi_smi *intf;
5494 struct ipmi_user *user;
5495
5496 if (has_panicked)
5497 return NOTIFY_DONE;
5498 has_panicked = 1;
5499
5500 /* For every registered interface, set it to run to completion. */
5501 list_for_each_entry(intf, &ipmi_interfaces, link) {
5502 if (!intf->handlers || intf->intf_num == -1)
5503 /* Interface is not ready. */
5504 continue;
5505
5506 if (!intf->handlers->poll)
5507 continue;
5508
5509 /*
5510 * If we were interrupted while locking xmit_msgs_lock or
5511 * waiting_rcv_msgs_lock, the corresponding list may be
5512 * corrupted. In this case, drop items on the list for
5513 * the safety.
5514 */
5515 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5516 INIT_LIST_HEAD(&intf->xmit_msgs);
5517 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5518 } else
5519 spin_unlock(&intf->xmit_msgs_lock);
5520
5521 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5522 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5523 else
5524 spin_unlock(&intf->waiting_rcv_msgs_lock);
5525
5526 intf->run_to_completion = 1;
5527 if (intf->handlers->set_run_to_completion)
5528 intf->handlers->set_run_to_completion(intf->send_info,
5529 1);
5530
5531 list_for_each_entry(user, &intf->users, link) {
5532 if (user->handler->ipmi_panic_handler)
5533 user->handler->ipmi_panic_handler(
5534 user->handler_data);
5535 }
5536
5537 send_panic_events(intf, ptr);
5538 }
5539
5540 return NOTIFY_DONE;
5541 }
5542
5543 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5544 static int ipmi_register_driver(void)
5545 {
5546 int rv;
5547
5548 if (drvregistered)
5549 return 0;
5550
5551 rv = driver_register(&ipmidriver.driver);
5552 if (rv)
5553 pr_err("Could not register IPMI driver\n");
5554 else
5555 drvregistered = true;
5556 return rv;
5557 }
5558
5559 static struct notifier_block panic_block = {
5560 .notifier_call = panic_event,
5561 .next = NULL,
5562 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5563 };
5564
ipmi_init_msghandler(void)5565 static int ipmi_init_msghandler(void)
5566 {
5567 int rv;
5568
5569 mutex_lock(&ipmi_interfaces_mutex);
5570 rv = ipmi_register_driver();
5571 if (rv)
5572 goto out;
5573 if (initialized)
5574 goto out;
5575
5576 bmc_remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5577 if (!bmc_remove_work_wq) {
5578 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5579 rv = -ENOMEM;
5580 goto out;
5581 }
5582
5583 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5584 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5585
5586 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5587
5588 initialized = true;
5589
5590 out:
5591 mutex_unlock(&ipmi_interfaces_mutex);
5592 return rv;
5593 }
5594
ipmi_init_msghandler_mod(void)5595 static int __init ipmi_init_msghandler_mod(void)
5596 {
5597 int rv;
5598
5599 pr_info("version " IPMI_DRIVER_VERSION "\n");
5600
5601 mutex_lock(&ipmi_interfaces_mutex);
5602 rv = ipmi_register_driver();
5603 mutex_unlock(&ipmi_interfaces_mutex);
5604
5605 return rv;
5606 }
5607
cleanup_ipmi(void)5608 static void __exit cleanup_ipmi(void)
5609 {
5610 int count;
5611
5612 if (initialized) {
5613 destroy_workqueue(bmc_remove_work_wq);
5614
5615 atomic_notifier_chain_unregister(&panic_notifier_list,
5616 &panic_block);
5617
5618 /*
5619 * This can't be called if any interfaces exist, so no worry
5620 * about shutting down the interfaces.
5621 */
5622
5623 /*
5624 * Tell the timer to stop, then wait for it to stop. This
5625 * avoids problems with race conditions removing the timer
5626 * here.
5627 */
5628 atomic_set(&stop_operation, 1);
5629 timer_delete_sync(&ipmi_timer);
5630 cancel_work_sync(&ipmi_timer_work);
5631
5632 initialized = false;
5633
5634 /* Check for buffer leaks. */
5635 count = atomic_read(&smi_msg_inuse_count);
5636 if (count != 0)
5637 pr_warn("SMI message count %d at exit\n", count);
5638 count = atomic_read(&recv_msg_inuse_count);
5639 if (count != 0)
5640 pr_warn("recv message count %d at exit\n", count);
5641 }
5642 if (drvregistered)
5643 driver_unregister(&ipmidriver.driver);
5644 }
5645 module_exit(cleanup_ipmi);
5646
5647 module_init(ipmi_init_msghandler_mod);
5648 MODULE_LICENSE("GPL");
5649 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5650 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5651 MODULE_VERSION(IPMI_DRIVER_VERSION);
5652 MODULE_SOFTDEP("post: ipmi_devintf");
5653