xref: /linux/drivers/iommu/iommu.c (revision 8477ab143069c6b05d6da4a8184ded8b969240f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/iommufd.h>
22 #include <linux/idr.h>
23 #include <linux/err.h>
24 #include <linux/pci.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/property.h>
29 #include <linux/fsl/mc.h>
30 #include <linux/module.h>
31 #include <linux/cc_platform.h>
32 #include <linux/cdx/cdx_bus.h>
33 #include <trace/events/iommu.h>
34 #include <linux/sched/mm.h>
35 #include <linux/msi.h>
36 #include <uapi/linux/iommufd.h>
37 
38 #include "dma-iommu.h"
39 #include "iommu-priv.h"
40 
41 static struct kset *iommu_group_kset;
42 static DEFINE_IDA(iommu_group_ida);
43 static DEFINE_IDA(iommu_global_pasid_ida);
44 
45 static unsigned int iommu_def_domain_type __read_mostly;
46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
47 static u32 iommu_cmd_line __read_mostly;
48 
49 /* Tags used with xa_tag_pointer() in group->pasid_array */
50 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 };
51 
52 struct iommu_group {
53 	struct kobject kobj;
54 	struct kobject *devices_kobj;
55 	struct list_head devices;
56 	struct xarray pasid_array;
57 	struct mutex mutex;
58 	void *iommu_data;
59 	void (*iommu_data_release)(void *iommu_data);
60 	char *name;
61 	int id;
62 	struct iommu_domain *default_domain;
63 	struct iommu_domain *blocking_domain;
64 	struct iommu_domain *domain;
65 	struct list_head entry;
66 	unsigned int owner_cnt;
67 	void *owner;
68 };
69 
70 struct group_device {
71 	struct list_head list;
72 	struct device *dev;
73 	char *name;
74 };
75 
76 /* Iterate over each struct group_device in a struct iommu_group */
77 #define for_each_group_device(group, pos) \
78 	list_for_each_entry(pos, &(group)->devices, list)
79 
80 struct iommu_group_attribute {
81 	struct attribute attr;
82 	ssize_t (*show)(struct iommu_group *group, char *buf);
83 	ssize_t (*store)(struct iommu_group *group,
84 			 const char *buf, size_t count);
85 };
86 
87 static const char * const iommu_group_resv_type_string[] = {
88 	[IOMMU_RESV_DIRECT]			= "direct",
89 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
90 	[IOMMU_RESV_RESERVED]			= "reserved",
91 	[IOMMU_RESV_MSI]			= "msi",
92 	[IOMMU_RESV_SW_MSI]			= "msi",
93 };
94 
95 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
96 #define IOMMU_CMD_LINE_STRICT		BIT(1)
97 
98 static int bus_iommu_probe(const struct bus_type *bus);
99 static int iommu_bus_notifier(struct notifier_block *nb,
100 			      unsigned long action, void *data);
101 static void iommu_release_device(struct device *dev);
102 static int __iommu_attach_device(struct iommu_domain *domain,
103 				 struct device *dev);
104 static int __iommu_attach_group(struct iommu_domain *domain,
105 				struct iommu_group *group);
106 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev,
107 						       unsigned int type,
108 						       unsigned int flags);
109 
110 enum {
111 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
112 };
113 
114 static int __iommu_device_set_domain(struct iommu_group *group,
115 				     struct device *dev,
116 				     struct iommu_domain *new_domain,
117 				     unsigned int flags);
118 static int __iommu_group_set_domain_internal(struct iommu_group *group,
119 					     struct iommu_domain *new_domain,
120 					     unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)121 static int __iommu_group_set_domain(struct iommu_group *group,
122 				    struct iommu_domain *new_domain)
123 {
124 	return __iommu_group_set_domain_internal(group, new_domain, 0);
125 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)126 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
127 					    struct iommu_domain *new_domain)
128 {
129 	WARN_ON(__iommu_group_set_domain_internal(
130 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
131 }
132 
133 static int iommu_setup_default_domain(struct iommu_group *group,
134 				      int target_type);
135 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
136 					       struct device *dev);
137 static ssize_t iommu_group_store_type(struct iommu_group *group,
138 				      const char *buf, size_t count);
139 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
140 						     struct device *dev);
141 static void __iommu_group_free_device(struct iommu_group *group,
142 				      struct group_device *grp_dev);
143 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
144 			      const struct iommu_ops *ops);
145 
146 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
147 struct iommu_group_attribute iommu_group_attr_##_name =		\
148 	__ATTR(_name, _mode, _show, _store)
149 
150 #define to_iommu_group_attr(_attr)	\
151 	container_of(_attr, struct iommu_group_attribute, attr)
152 #define to_iommu_group(_kobj)		\
153 	container_of(_kobj, struct iommu_group, kobj)
154 
155 static LIST_HEAD(iommu_device_list);
156 static DEFINE_SPINLOCK(iommu_device_lock);
157 
158 static const struct bus_type * const iommu_buses[] = {
159 	&platform_bus_type,
160 #ifdef CONFIG_PCI
161 	&pci_bus_type,
162 #endif
163 #ifdef CONFIG_ARM_AMBA
164 	&amba_bustype,
165 #endif
166 #ifdef CONFIG_FSL_MC_BUS
167 	&fsl_mc_bus_type,
168 #endif
169 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
170 	&host1x_context_device_bus_type,
171 #endif
172 #ifdef CONFIG_CDX_BUS
173 	&cdx_bus_type,
174 #endif
175 };
176 
177 /*
178  * Use a function instead of an array here because the domain-type is a
179  * bit-field, so an array would waste memory.
180  */
iommu_domain_type_str(unsigned int t)181 static const char *iommu_domain_type_str(unsigned int t)
182 {
183 	switch (t) {
184 	case IOMMU_DOMAIN_BLOCKED:
185 		return "Blocked";
186 	case IOMMU_DOMAIN_IDENTITY:
187 		return "Passthrough";
188 	case IOMMU_DOMAIN_UNMANAGED:
189 		return "Unmanaged";
190 	case IOMMU_DOMAIN_DMA:
191 	case IOMMU_DOMAIN_DMA_FQ:
192 		return "Translated";
193 	case IOMMU_DOMAIN_PLATFORM:
194 		return "Platform";
195 	default:
196 		return "Unknown";
197 	}
198 }
199 
iommu_subsys_init(void)200 static int __init iommu_subsys_init(void)
201 {
202 	struct notifier_block *nb;
203 
204 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
205 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
206 			iommu_set_default_passthrough(false);
207 		else
208 			iommu_set_default_translated(false);
209 
210 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
211 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
212 			iommu_set_default_translated(false);
213 		}
214 	}
215 
216 	if (!iommu_default_passthrough() && !iommu_dma_strict)
217 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
218 
219 	pr_info("Default domain type: %s%s\n",
220 		iommu_domain_type_str(iommu_def_domain_type),
221 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
222 			" (set via kernel command line)" : "");
223 
224 	if (!iommu_default_passthrough())
225 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
226 			iommu_dma_strict ? "strict" : "lazy",
227 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
228 				" (set via kernel command line)" : "");
229 
230 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
231 	if (!nb)
232 		return -ENOMEM;
233 
234 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
235 		nb[i].notifier_call = iommu_bus_notifier;
236 		bus_register_notifier(iommu_buses[i], &nb[i]);
237 	}
238 
239 	return 0;
240 }
241 subsys_initcall(iommu_subsys_init);
242 
remove_iommu_group(struct device * dev,void * data)243 static int remove_iommu_group(struct device *dev, void *data)
244 {
245 	if (dev->iommu && dev->iommu->iommu_dev == data)
246 		iommu_release_device(dev);
247 
248 	return 0;
249 }
250 
251 /**
252  * iommu_device_register() - Register an IOMMU hardware instance
253  * @iommu: IOMMU handle for the instance
254  * @ops:   IOMMU ops to associate with the instance
255  * @hwdev: (optional) actual instance device, used for fwnode lookup
256  *
257  * Return: 0 on success, or an error.
258  */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)259 int iommu_device_register(struct iommu_device *iommu,
260 			  const struct iommu_ops *ops, struct device *hwdev)
261 {
262 	int err = 0;
263 
264 	/* We need to be able to take module references appropriately */
265 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
266 		return -EINVAL;
267 
268 	iommu->ops = ops;
269 	if (hwdev)
270 		iommu->fwnode = dev_fwnode(hwdev);
271 
272 	spin_lock(&iommu_device_lock);
273 	list_add_tail(&iommu->list, &iommu_device_list);
274 	spin_unlock(&iommu_device_lock);
275 
276 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
277 		err = bus_iommu_probe(iommu_buses[i]);
278 	if (err)
279 		iommu_device_unregister(iommu);
280 	else
281 		WRITE_ONCE(iommu->ready, true);
282 	return err;
283 }
284 EXPORT_SYMBOL_GPL(iommu_device_register);
285 
iommu_device_unregister(struct iommu_device * iommu)286 void iommu_device_unregister(struct iommu_device *iommu)
287 {
288 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
289 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
290 
291 	spin_lock(&iommu_device_lock);
292 	list_del(&iommu->list);
293 	spin_unlock(&iommu_device_lock);
294 
295 	/* Pairs with the alloc in generic_single_device_group() */
296 	iommu_group_put(iommu->singleton_group);
297 	iommu->singleton_group = NULL;
298 }
299 EXPORT_SYMBOL_GPL(iommu_device_unregister);
300 
301 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)302 void iommu_device_unregister_bus(struct iommu_device *iommu,
303 				 const struct bus_type *bus,
304 				 struct notifier_block *nb)
305 {
306 	bus_unregister_notifier(bus, nb);
307 	iommu_device_unregister(iommu);
308 }
309 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
310 
311 /*
312  * Register an iommu driver against a single bus. This is only used by iommufd
313  * selftest to create a mock iommu driver. The caller must provide
314  * some memory to hold a notifier_block.
315  */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)316 int iommu_device_register_bus(struct iommu_device *iommu,
317 			      const struct iommu_ops *ops,
318 			      const struct bus_type *bus,
319 			      struct notifier_block *nb)
320 {
321 	int err;
322 
323 	iommu->ops = ops;
324 	nb->notifier_call = iommu_bus_notifier;
325 	err = bus_register_notifier(bus, nb);
326 	if (err)
327 		return err;
328 
329 	spin_lock(&iommu_device_lock);
330 	list_add_tail(&iommu->list, &iommu_device_list);
331 	spin_unlock(&iommu_device_lock);
332 
333 	err = bus_iommu_probe(bus);
334 	if (err) {
335 		iommu_device_unregister_bus(iommu, bus, nb);
336 		return err;
337 	}
338 	return 0;
339 }
340 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
341 #endif
342 
dev_iommu_get(struct device * dev)343 static struct dev_iommu *dev_iommu_get(struct device *dev)
344 {
345 	struct dev_iommu *param = dev->iommu;
346 
347 	lockdep_assert_held(&iommu_probe_device_lock);
348 
349 	if (param)
350 		return param;
351 
352 	param = kzalloc(sizeof(*param), GFP_KERNEL);
353 	if (!param)
354 		return NULL;
355 
356 	mutex_init(&param->lock);
357 	dev->iommu = param;
358 	return param;
359 }
360 
dev_iommu_free(struct device * dev)361 void dev_iommu_free(struct device *dev)
362 {
363 	struct dev_iommu *param = dev->iommu;
364 
365 	dev->iommu = NULL;
366 	if (param->fwspec) {
367 		fwnode_handle_put(param->fwspec->iommu_fwnode);
368 		kfree(param->fwspec);
369 	}
370 	kfree(param);
371 }
372 
373 /*
374  * Internal equivalent of device_iommu_mapped() for when we care that a device
375  * actually has API ops, and don't want false positives from VFIO-only groups.
376  */
dev_has_iommu(struct device * dev)377 static bool dev_has_iommu(struct device *dev)
378 {
379 	return dev->iommu && dev->iommu->iommu_dev;
380 }
381 
dev_iommu_get_max_pasids(struct device * dev)382 static u32 dev_iommu_get_max_pasids(struct device *dev)
383 {
384 	u32 max_pasids = 0, bits = 0;
385 	int ret;
386 
387 	if (dev_is_pci(dev)) {
388 		ret = pci_max_pasids(to_pci_dev(dev));
389 		if (ret > 0)
390 			max_pasids = ret;
391 	} else {
392 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
393 		if (!ret)
394 			max_pasids = 1UL << bits;
395 	}
396 
397 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
398 }
399 
dev_iommu_priv_set(struct device * dev,void * priv)400 void dev_iommu_priv_set(struct device *dev, void *priv)
401 {
402 	/* FSL_PAMU does something weird */
403 	if (!IS_ENABLED(CONFIG_FSL_PAMU))
404 		lockdep_assert_held(&iommu_probe_device_lock);
405 	dev->iommu->priv = priv;
406 }
407 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
408 
409 /*
410  * Init the dev->iommu and dev->iommu_group in the struct device and get the
411  * driver probed
412  */
iommu_init_device(struct device * dev)413 static int iommu_init_device(struct device *dev)
414 {
415 	const struct iommu_ops *ops;
416 	struct iommu_device *iommu_dev;
417 	struct iommu_group *group;
418 	int ret;
419 
420 	if (!dev_iommu_get(dev))
421 		return -ENOMEM;
422 	/*
423 	 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing
424 	 * is buried in the bus dma_configure path. Properly unpicking that is
425 	 * still a big job, so for now just invoke the whole thing. The device
426 	 * already having a driver bound means dma_configure has already run and
427 	 * found no IOMMU to wait for, so there's no point calling it again.
428 	 */
429 	if (!dev->iommu->fwspec && !dev->driver && dev->bus->dma_configure) {
430 		mutex_unlock(&iommu_probe_device_lock);
431 		dev->bus->dma_configure(dev);
432 		mutex_lock(&iommu_probe_device_lock);
433 		/* If another instance finished the job for us, skip it */
434 		if (!dev->iommu || dev->iommu_group)
435 			return -ENODEV;
436 	}
437 	/*
438 	 * At this point, relevant devices either now have a fwspec which will
439 	 * match ops registered with a non-NULL fwnode, or we can reasonably
440 	 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
441 	 * be present, and that any of their registered instances has suitable
442 	 * ops for probing, and thus cheekily co-opt the same mechanism.
443 	 */
444 	ops = iommu_fwspec_ops(dev->iommu->fwspec);
445 	if (!ops) {
446 		ret = -ENODEV;
447 		goto err_free;
448 	}
449 
450 	if (!try_module_get(ops->owner)) {
451 		ret = -EINVAL;
452 		goto err_free;
453 	}
454 
455 	iommu_dev = ops->probe_device(dev);
456 	if (IS_ERR(iommu_dev)) {
457 		ret = PTR_ERR(iommu_dev);
458 		goto err_module_put;
459 	}
460 	dev->iommu->iommu_dev = iommu_dev;
461 
462 	ret = iommu_device_link(iommu_dev, dev);
463 	if (ret)
464 		goto err_release;
465 
466 	group = ops->device_group(dev);
467 	if (WARN_ON_ONCE(group == NULL))
468 		group = ERR_PTR(-EINVAL);
469 	if (IS_ERR(group)) {
470 		ret = PTR_ERR(group);
471 		goto err_unlink;
472 	}
473 	dev->iommu_group = group;
474 
475 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
476 	if (ops->is_attach_deferred)
477 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
478 	return 0;
479 
480 err_unlink:
481 	iommu_device_unlink(iommu_dev, dev);
482 err_release:
483 	if (ops->release_device)
484 		ops->release_device(dev);
485 err_module_put:
486 	module_put(ops->owner);
487 err_free:
488 	dev->iommu->iommu_dev = NULL;
489 	dev_iommu_free(dev);
490 	return ret;
491 }
492 
iommu_deinit_device(struct device * dev)493 static void iommu_deinit_device(struct device *dev)
494 {
495 	struct iommu_group *group = dev->iommu_group;
496 	const struct iommu_ops *ops = dev_iommu_ops(dev);
497 
498 	lockdep_assert_held(&group->mutex);
499 
500 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
501 
502 	/*
503 	 * release_device() must stop using any attached domain on the device.
504 	 * If there are still other devices in the group, they are not affected
505 	 * by this callback.
506 	 *
507 	 * If the iommu driver provides release_domain, the core code ensures
508 	 * that domain is attached prior to calling release_device. Drivers can
509 	 * use this to enforce a translation on the idle iommu. Typically, the
510 	 * global static blocked_domain is a good choice.
511 	 *
512 	 * Otherwise, the iommu driver must set the device to either an identity
513 	 * or a blocking translation in release_device() and stop using any
514 	 * domain pointer, as it is going to be freed.
515 	 *
516 	 * Regardless, if a delayed attach never occurred, then the release
517 	 * should still avoid touching any hardware configuration either.
518 	 */
519 	if (!dev->iommu->attach_deferred && ops->release_domain)
520 		ops->release_domain->ops->attach_dev(ops->release_domain, dev);
521 
522 	if (ops->release_device)
523 		ops->release_device(dev);
524 
525 	/*
526 	 * If this is the last driver to use the group then we must free the
527 	 * domains before we do the module_put().
528 	 */
529 	if (list_empty(&group->devices)) {
530 		if (group->default_domain) {
531 			iommu_domain_free(group->default_domain);
532 			group->default_domain = NULL;
533 		}
534 		if (group->blocking_domain) {
535 			iommu_domain_free(group->blocking_domain);
536 			group->blocking_domain = NULL;
537 		}
538 		group->domain = NULL;
539 	}
540 
541 	/* Caller must put iommu_group */
542 	dev->iommu_group = NULL;
543 	module_put(ops->owner);
544 	dev_iommu_free(dev);
545 #ifdef CONFIG_IOMMU_DMA
546 	dev->dma_iommu = false;
547 #endif
548 }
549 
pasid_array_entry_to_domain(void * entry)550 static struct iommu_domain *pasid_array_entry_to_domain(void *entry)
551 {
552 	if (xa_pointer_tag(entry) == IOMMU_PASID_ARRAY_DOMAIN)
553 		return xa_untag_pointer(entry);
554 	return ((struct iommu_attach_handle *)xa_untag_pointer(entry))->domain;
555 }
556 
557 DEFINE_MUTEX(iommu_probe_device_lock);
558 
__iommu_probe_device(struct device * dev,struct list_head * group_list)559 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
560 {
561 	struct iommu_group *group;
562 	struct group_device *gdev;
563 	int ret;
564 
565 	/*
566 	 * Serialise to avoid races between IOMMU drivers registering in
567 	 * parallel and/or the "replay" calls from ACPI/OF code via client
568 	 * driver probe. Once the latter have been cleaned up we should
569 	 * probably be able to use device_lock() here to minimise the scope,
570 	 * but for now enforcing a simple global ordering is fine.
571 	 */
572 	lockdep_assert_held(&iommu_probe_device_lock);
573 
574 	/* Device is probed already if in a group */
575 	if (dev->iommu_group)
576 		return 0;
577 
578 	ret = iommu_init_device(dev);
579 	if (ret)
580 		return ret;
581 	/*
582 	 * And if we do now see any replay calls, they would indicate someone
583 	 * misusing the dma_configure path outside bus code.
584 	 */
585 	if (dev->driver)
586 		dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n");
587 
588 	group = dev->iommu_group;
589 	gdev = iommu_group_alloc_device(group, dev);
590 	mutex_lock(&group->mutex);
591 	if (IS_ERR(gdev)) {
592 		ret = PTR_ERR(gdev);
593 		goto err_put_group;
594 	}
595 
596 	/*
597 	 * The gdev must be in the list before calling
598 	 * iommu_setup_default_domain()
599 	 */
600 	list_add_tail(&gdev->list, &group->devices);
601 	WARN_ON(group->default_domain && !group->domain);
602 	if (group->default_domain)
603 		iommu_create_device_direct_mappings(group->default_domain, dev);
604 	if (group->domain) {
605 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
606 		if (ret)
607 			goto err_remove_gdev;
608 	} else if (!group->default_domain && !group_list) {
609 		ret = iommu_setup_default_domain(group, 0);
610 		if (ret)
611 			goto err_remove_gdev;
612 	} else if (!group->default_domain) {
613 		/*
614 		 * With a group_list argument we defer the default_domain setup
615 		 * to the caller by providing a de-duplicated list of groups
616 		 * that need further setup.
617 		 */
618 		if (list_empty(&group->entry))
619 			list_add_tail(&group->entry, group_list);
620 	}
621 
622 	if (group->default_domain)
623 		iommu_setup_dma_ops(dev);
624 
625 	mutex_unlock(&group->mutex);
626 
627 	return 0;
628 
629 err_remove_gdev:
630 	list_del(&gdev->list);
631 	__iommu_group_free_device(group, gdev);
632 err_put_group:
633 	iommu_deinit_device(dev);
634 	mutex_unlock(&group->mutex);
635 	iommu_group_put(group);
636 
637 	return ret;
638 }
639 
iommu_probe_device(struct device * dev)640 int iommu_probe_device(struct device *dev)
641 {
642 	const struct iommu_ops *ops;
643 	int ret;
644 
645 	mutex_lock(&iommu_probe_device_lock);
646 	ret = __iommu_probe_device(dev, NULL);
647 	mutex_unlock(&iommu_probe_device_lock);
648 	if (ret)
649 		return ret;
650 
651 	ops = dev_iommu_ops(dev);
652 	if (ops->probe_finalize)
653 		ops->probe_finalize(dev);
654 
655 	return 0;
656 }
657 
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)658 static void __iommu_group_free_device(struct iommu_group *group,
659 				      struct group_device *grp_dev)
660 {
661 	struct device *dev = grp_dev->dev;
662 
663 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
664 	sysfs_remove_link(&dev->kobj, "iommu_group");
665 
666 	trace_remove_device_from_group(group->id, dev);
667 
668 	/*
669 	 * If the group has become empty then ownership must have been
670 	 * released, and the current domain must be set back to NULL or
671 	 * the default domain.
672 	 */
673 	if (list_empty(&group->devices))
674 		WARN_ON(group->owner_cnt ||
675 			group->domain != group->default_domain);
676 
677 	kfree(grp_dev->name);
678 	kfree(grp_dev);
679 }
680 
681 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)682 static void __iommu_group_remove_device(struct device *dev)
683 {
684 	struct iommu_group *group = dev->iommu_group;
685 	struct group_device *device;
686 
687 	mutex_lock(&group->mutex);
688 	for_each_group_device(group, device) {
689 		if (device->dev != dev)
690 			continue;
691 
692 		list_del(&device->list);
693 		__iommu_group_free_device(group, device);
694 		if (dev_has_iommu(dev))
695 			iommu_deinit_device(dev);
696 		else
697 			dev->iommu_group = NULL;
698 		break;
699 	}
700 	mutex_unlock(&group->mutex);
701 
702 	/*
703 	 * Pairs with the get in iommu_init_device() or
704 	 * iommu_group_add_device()
705 	 */
706 	iommu_group_put(group);
707 }
708 
iommu_release_device(struct device * dev)709 static void iommu_release_device(struct device *dev)
710 {
711 	struct iommu_group *group = dev->iommu_group;
712 
713 	if (group)
714 		__iommu_group_remove_device(dev);
715 
716 	/* Free any fwspec if no iommu_driver was ever attached */
717 	if (dev->iommu)
718 		dev_iommu_free(dev);
719 }
720 
iommu_set_def_domain_type(char * str)721 static int __init iommu_set_def_domain_type(char *str)
722 {
723 	bool pt;
724 	int ret;
725 
726 	ret = kstrtobool(str, &pt);
727 	if (ret)
728 		return ret;
729 
730 	if (pt)
731 		iommu_set_default_passthrough(true);
732 	else
733 		iommu_set_default_translated(true);
734 
735 	return 0;
736 }
737 early_param("iommu.passthrough", iommu_set_def_domain_type);
738 
iommu_dma_setup(char * str)739 static int __init iommu_dma_setup(char *str)
740 {
741 	int ret = kstrtobool(str, &iommu_dma_strict);
742 
743 	if (!ret)
744 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
745 	return ret;
746 }
747 early_param("iommu.strict", iommu_dma_setup);
748 
iommu_set_dma_strict(void)749 void iommu_set_dma_strict(void)
750 {
751 	iommu_dma_strict = true;
752 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
753 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
754 }
755 
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)756 static ssize_t iommu_group_attr_show(struct kobject *kobj,
757 				     struct attribute *__attr, char *buf)
758 {
759 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
760 	struct iommu_group *group = to_iommu_group(kobj);
761 	ssize_t ret = -EIO;
762 
763 	if (attr->show)
764 		ret = attr->show(group, buf);
765 	return ret;
766 }
767 
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)768 static ssize_t iommu_group_attr_store(struct kobject *kobj,
769 				      struct attribute *__attr,
770 				      const char *buf, size_t count)
771 {
772 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
773 	struct iommu_group *group = to_iommu_group(kobj);
774 	ssize_t ret = -EIO;
775 
776 	if (attr->store)
777 		ret = attr->store(group, buf, count);
778 	return ret;
779 }
780 
781 static const struct sysfs_ops iommu_group_sysfs_ops = {
782 	.show = iommu_group_attr_show,
783 	.store = iommu_group_attr_store,
784 };
785 
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)786 static int iommu_group_create_file(struct iommu_group *group,
787 				   struct iommu_group_attribute *attr)
788 {
789 	return sysfs_create_file(&group->kobj, &attr->attr);
790 }
791 
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)792 static void iommu_group_remove_file(struct iommu_group *group,
793 				    struct iommu_group_attribute *attr)
794 {
795 	sysfs_remove_file(&group->kobj, &attr->attr);
796 }
797 
iommu_group_show_name(struct iommu_group * group,char * buf)798 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
799 {
800 	return sysfs_emit(buf, "%s\n", group->name);
801 }
802 
803 /**
804  * iommu_insert_resv_region - Insert a new region in the
805  * list of reserved regions.
806  * @new: new region to insert
807  * @regions: list of regions
808  *
809  * Elements are sorted by start address and overlapping segments
810  * of the same type are merged.
811  */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)812 static int iommu_insert_resv_region(struct iommu_resv_region *new,
813 				    struct list_head *regions)
814 {
815 	struct iommu_resv_region *iter, *tmp, *nr, *top;
816 	LIST_HEAD(stack);
817 
818 	nr = iommu_alloc_resv_region(new->start, new->length,
819 				     new->prot, new->type, GFP_KERNEL);
820 	if (!nr)
821 		return -ENOMEM;
822 
823 	/* First add the new element based on start address sorting */
824 	list_for_each_entry(iter, regions, list) {
825 		if (nr->start < iter->start ||
826 		    (nr->start == iter->start && nr->type <= iter->type))
827 			break;
828 	}
829 	list_add_tail(&nr->list, &iter->list);
830 
831 	/* Merge overlapping segments of type nr->type in @regions, if any */
832 	list_for_each_entry_safe(iter, tmp, regions, list) {
833 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
834 
835 		/* no merge needed on elements of different types than @new */
836 		if (iter->type != new->type) {
837 			list_move_tail(&iter->list, &stack);
838 			continue;
839 		}
840 
841 		/* look for the last stack element of same type as @iter */
842 		list_for_each_entry_reverse(top, &stack, list)
843 			if (top->type == iter->type)
844 				goto check_overlap;
845 
846 		list_move_tail(&iter->list, &stack);
847 		continue;
848 
849 check_overlap:
850 		top_end = top->start + top->length - 1;
851 
852 		if (iter->start > top_end + 1) {
853 			list_move_tail(&iter->list, &stack);
854 		} else {
855 			top->length = max(top_end, iter_end) - top->start + 1;
856 			list_del(&iter->list);
857 			kfree(iter);
858 		}
859 	}
860 	list_splice(&stack, regions);
861 	return 0;
862 }
863 
864 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)865 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
866 				 struct list_head *group_resv_regions)
867 {
868 	struct iommu_resv_region *entry;
869 	int ret = 0;
870 
871 	list_for_each_entry(entry, dev_resv_regions, list) {
872 		ret = iommu_insert_resv_region(entry, group_resv_regions);
873 		if (ret)
874 			break;
875 	}
876 	return ret;
877 }
878 
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)879 int iommu_get_group_resv_regions(struct iommu_group *group,
880 				 struct list_head *head)
881 {
882 	struct group_device *device;
883 	int ret = 0;
884 
885 	mutex_lock(&group->mutex);
886 	for_each_group_device(group, device) {
887 		struct list_head dev_resv_regions;
888 
889 		/*
890 		 * Non-API groups still expose reserved_regions in sysfs,
891 		 * so filter out calls that get here that way.
892 		 */
893 		if (!dev_has_iommu(device->dev))
894 			break;
895 
896 		INIT_LIST_HEAD(&dev_resv_regions);
897 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
898 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
899 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
900 		if (ret)
901 			break;
902 	}
903 	mutex_unlock(&group->mutex);
904 	return ret;
905 }
906 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
907 
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)908 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
909 					     char *buf)
910 {
911 	struct iommu_resv_region *region, *next;
912 	struct list_head group_resv_regions;
913 	int offset = 0;
914 
915 	INIT_LIST_HEAD(&group_resv_regions);
916 	iommu_get_group_resv_regions(group, &group_resv_regions);
917 
918 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
919 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
920 					(long long)region->start,
921 					(long long)(region->start +
922 						    region->length - 1),
923 					iommu_group_resv_type_string[region->type]);
924 		kfree(region);
925 	}
926 
927 	return offset;
928 }
929 
iommu_group_show_type(struct iommu_group * group,char * buf)930 static ssize_t iommu_group_show_type(struct iommu_group *group,
931 				     char *buf)
932 {
933 	char *type = "unknown";
934 
935 	mutex_lock(&group->mutex);
936 	if (group->default_domain) {
937 		switch (group->default_domain->type) {
938 		case IOMMU_DOMAIN_BLOCKED:
939 			type = "blocked";
940 			break;
941 		case IOMMU_DOMAIN_IDENTITY:
942 			type = "identity";
943 			break;
944 		case IOMMU_DOMAIN_UNMANAGED:
945 			type = "unmanaged";
946 			break;
947 		case IOMMU_DOMAIN_DMA:
948 			type = "DMA";
949 			break;
950 		case IOMMU_DOMAIN_DMA_FQ:
951 			type = "DMA-FQ";
952 			break;
953 		}
954 	}
955 	mutex_unlock(&group->mutex);
956 
957 	return sysfs_emit(buf, "%s\n", type);
958 }
959 
960 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
961 
962 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
963 			iommu_group_show_resv_regions, NULL);
964 
965 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
966 			iommu_group_store_type);
967 
iommu_group_release(struct kobject * kobj)968 static void iommu_group_release(struct kobject *kobj)
969 {
970 	struct iommu_group *group = to_iommu_group(kobj);
971 
972 	pr_debug("Releasing group %d\n", group->id);
973 
974 	if (group->iommu_data_release)
975 		group->iommu_data_release(group->iommu_data);
976 
977 	ida_free(&iommu_group_ida, group->id);
978 
979 	/* Domains are free'd by iommu_deinit_device() */
980 	WARN_ON(group->default_domain);
981 	WARN_ON(group->blocking_domain);
982 
983 	kfree(group->name);
984 	kfree(group);
985 }
986 
987 static const struct kobj_type iommu_group_ktype = {
988 	.sysfs_ops = &iommu_group_sysfs_ops,
989 	.release = iommu_group_release,
990 };
991 
992 /**
993  * iommu_group_alloc - Allocate a new group
994  *
995  * This function is called by an iommu driver to allocate a new iommu
996  * group.  The iommu group represents the minimum granularity of the iommu.
997  * Upon successful return, the caller holds a reference to the supplied
998  * group in order to hold the group until devices are added.  Use
999  * iommu_group_put() to release this extra reference count, allowing the
1000  * group to be automatically reclaimed once it has no devices or external
1001  * references.
1002  */
iommu_group_alloc(void)1003 struct iommu_group *iommu_group_alloc(void)
1004 {
1005 	struct iommu_group *group;
1006 	int ret;
1007 
1008 	group = kzalloc(sizeof(*group), GFP_KERNEL);
1009 	if (!group)
1010 		return ERR_PTR(-ENOMEM);
1011 
1012 	group->kobj.kset = iommu_group_kset;
1013 	mutex_init(&group->mutex);
1014 	INIT_LIST_HEAD(&group->devices);
1015 	INIT_LIST_HEAD(&group->entry);
1016 	xa_init(&group->pasid_array);
1017 
1018 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
1019 	if (ret < 0) {
1020 		kfree(group);
1021 		return ERR_PTR(ret);
1022 	}
1023 	group->id = ret;
1024 
1025 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
1026 				   NULL, "%d", group->id);
1027 	if (ret) {
1028 		kobject_put(&group->kobj);
1029 		return ERR_PTR(ret);
1030 	}
1031 
1032 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
1033 	if (!group->devices_kobj) {
1034 		kobject_put(&group->kobj); /* triggers .release & free */
1035 		return ERR_PTR(-ENOMEM);
1036 	}
1037 
1038 	/*
1039 	 * The devices_kobj holds a reference on the group kobject, so
1040 	 * as long as that exists so will the group.  We can therefore
1041 	 * use the devices_kobj for reference counting.
1042 	 */
1043 	kobject_put(&group->kobj);
1044 
1045 	ret = iommu_group_create_file(group,
1046 				      &iommu_group_attr_reserved_regions);
1047 	if (ret) {
1048 		kobject_put(group->devices_kobj);
1049 		return ERR_PTR(ret);
1050 	}
1051 
1052 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
1053 	if (ret) {
1054 		kobject_put(group->devices_kobj);
1055 		return ERR_PTR(ret);
1056 	}
1057 
1058 	pr_debug("Allocated group %d\n", group->id);
1059 
1060 	return group;
1061 }
1062 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1063 
1064 /**
1065  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1066  * @group: the group
1067  *
1068  * iommu drivers can store data in the group for use when doing iommu
1069  * operations.  This function provides a way to retrieve it.  Caller
1070  * should hold a group reference.
1071  */
iommu_group_get_iommudata(struct iommu_group * group)1072 void *iommu_group_get_iommudata(struct iommu_group *group)
1073 {
1074 	return group->iommu_data;
1075 }
1076 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1077 
1078 /**
1079  * iommu_group_set_iommudata - set iommu_data for a group
1080  * @group: the group
1081  * @iommu_data: new data
1082  * @release: release function for iommu_data
1083  *
1084  * iommu drivers can store data in the group for use when doing iommu
1085  * operations.  This function provides a way to set the data after
1086  * the group has been allocated.  Caller should hold a group reference.
1087  */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1088 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1089 			       void (*release)(void *iommu_data))
1090 {
1091 	group->iommu_data = iommu_data;
1092 	group->iommu_data_release = release;
1093 }
1094 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1095 
1096 /**
1097  * iommu_group_set_name - set name for a group
1098  * @group: the group
1099  * @name: name
1100  *
1101  * Allow iommu driver to set a name for a group.  When set it will
1102  * appear in a name attribute file under the group in sysfs.
1103  */
iommu_group_set_name(struct iommu_group * group,const char * name)1104 int iommu_group_set_name(struct iommu_group *group, const char *name)
1105 {
1106 	int ret;
1107 
1108 	if (group->name) {
1109 		iommu_group_remove_file(group, &iommu_group_attr_name);
1110 		kfree(group->name);
1111 		group->name = NULL;
1112 		if (!name)
1113 			return 0;
1114 	}
1115 
1116 	group->name = kstrdup(name, GFP_KERNEL);
1117 	if (!group->name)
1118 		return -ENOMEM;
1119 
1120 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1121 	if (ret) {
1122 		kfree(group->name);
1123 		group->name = NULL;
1124 		return ret;
1125 	}
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1130 
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1131 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1132 					       struct device *dev)
1133 {
1134 	struct iommu_resv_region *entry;
1135 	struct list_head mappings;
1136 	unsigned long pg_size;
1137 	int ret = 0;
1138 
1139 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1140 	INIT_LIST_HEAD(&mappings);
1141 
1142 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1143 		return -EINVAL;
1144 
1145 	iommu_get_resv_regions(dev, &mappings);
1146 
1147 	/* We need to consider overlapping regions for different devices */
1148 	list_for_each_entry(entry, &mappings, list) {
1149 		dma_addr_t start, end, addr;
1150 		size_t map_size = 0;
1151 
1152 		if (entry->type == IOMMU_RESV_DIRECT)
1153 			dev->iommu->require_direct = 1;
1154 
1155 		if ((entry->type != IOMMU_RESV_DIRECT &&
1156 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1157 		    !iommu_is_dma_domain(domain))
1158 			continue;
1159 
1160 		start = ALIGN(entry->start, pg_size);
1161 		end   = ALIGN(entry->start + entry->length, pg_size);
1162 
1163 		for (addr = start; addr <= end; addr += pg_size) {
1164 			phys_addr_t phys_addr;
1165 
1166 			if (addr == end)
1167 				goto map_end;
1168 
1169 			phys_addr = iommu_iova_to_phys(domain, addr);
1170 			if (!phys_addr) {
1171 				map_size += pg_size;
1172 				continue;
1173 			}
1174 
1175 map_end:
1176 			if (map_size) {
1177 				ret = iommu_map(domain, addr - map_size,
1178 						addr - map_size, map_size,
1179 						entry->prot, GFP_KERNEL);
1180 				if (ret)
1181 					goto out;
1182 				map_size = 0;
1183 			}
1184 		}
1185 
1186 	}
1187 out:
1188 	iommu_put_resv_regions(dev, &mappings);
1189 
1190 	return ret;
1191 }
1192 
1193 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1194 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1195 						     struct device *dev)
1196 {
1197 	int ret, i = 0;
1198 	struct group_device *device;
1199 
1200 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1201 	if (!device)
1202 		return ERR_PTR(-ENOMEM);
1203 
1204 	device->dev = dev;
1205 
1206 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1207 	if (ret)
1208 		goto err_free_device;
1209 
1210 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1211 rename:
1212 	if (!device->name) {
1213 		ret = -ENOMEM;
1214 		goto err_remove_link;
1215 	}
1216 
1217 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1218 				       &dev->kobj, device->name);
1219 	if (ret) {
1220 		if (ret == -EEXIST && i >= 0) {
1221 			/*
1222 			 * Account for the slim chance of collision
1223 			 * and append an instance to the name.
1224 			 */
1225 			kfree(device->name);
1226 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1227 						 kobject_name(&dev->kobj), i++);
1228 			goto rename;
1229 		}
1230 		goto err_free_name;
1231 	}
1232 
1233 	trace_add_device_to_group(group->id, dev);
1234 
1235 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1236 
1237 	return device;
1238 
1239 err_free_name:
1240 	kfree(device->name);
1241 err_remove_link:
1242 	sysfs_remove_link(&dev->kobj, "iommu_group");
1243 err_free_device:
1244 	kfree(device);
1245 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1246 	return ERR_PTR(ret);
1247 }
1248 
1249 /**
1250  * iommu_group_add_device - add a device to an iommu group
1251  * @group: the group into which to add the device (reference should be held)
1252  * @dev: the device
1253  *
1254  * This function is called by an iommu driver to add a device into a
1255  * group.  Adding a device increments the group reference count.
1256  */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1257 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1258 {
1259 	struct group_device *gdev;
1260 
1261 	gdev = iommu_group_alloc_device(group, dev);
1262 	if (IS_ERR(gdev))
1263 		return PTR_ERR(gdev);
1264 
1265 	iommu_group_ref_get(group);
1266 	dev->iommu_group = group;
1267 
1268 	mutex_lock(&group->mutex);
1269 	list_add_tail(&gdev->list, &group->devices);
1270 	mutex_unlock(&group->mutex);
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1274 
1275 /**
1276  * iommu_group_remove_device - remove a device from it's current group
1277  * @dev: device to be removed
1278  *
1279  * This function is called by an iommu driver to remove the device from
1280  * it's current group.  This decrements the iommu group reference count.
1281  */
iommu_group_remove_device(struct device * dev)1282 void iommu_group_remove_device(struct device *dev)
1283 {
1284 	struct iommu_group *group = dev->iommu_group;
1285 
1286 	if (!group)
1287 		return;
1288 
1289 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1290 
1291 	__iommu_group_remove_device(dev);
1292 }
1293 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1294 
1295 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1296 /**
1297  * iommu_group_mutex_assert - Check device group mutex lock
1298  * @dev: the device that has group param set
1299  *
1300  * This function is called by an iommu driver to check whether it holds
1301  * group mutex lock for the given device or not.
1302  *
1303  * Note that this function must be called after device group param is set.
1304  */
iommu_group_mutex_assert(struct device * dev)1305 void iommu_group_mutex_assert(struct device *dev)
1306 {
1307 	struct iommu_group *group = dev->iommu_group;
1308 
1309 	lockdep_assert_held(&group->mutex);
1310 }
1311 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1312 #endif
1313 
iommu_group_first_dev(struct iommu_group * group)1314 static struct device *iommu_group_first_dev(struct iommu_group *group)
1315 {
1316 	lockdep_assert_held(&group->mutex);
1317 	return list_first_entry(&group->devices, struct group_device, list)->dev;
1318 }
1319 
1320 /**
1321  * iommu_group_for_each_dev - iterate over each device in the group
1322  * @group: the group
1323  * @data: caller opaque data to be passed to callback function
1324  * @fn: caller supplied callback function
1325  *
1326  * This function is called by group users to iterate over group devices.
1327  * Callers should hold a reference count to the group during callback.
1328  * The group->mutex is held across callbacks, which will block calls to
1329  * iommu_group_add/remove_device.
1330  */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1331 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1332 			     int (*fn)(struct device *, void *))
1333 {
1334 	struct group_device *device;
1335 	int ret = 0;
1336 
1337 	mutex_lock(&group->mutex);
1338 	for_each_group_device(group, device) {
1339 		ret = fn(device->dev, data);
1340 		if (ret)
1341 			break;
1342 	}
1343 	mutex_unlock(&group->mutex);
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1348 
1349 /**
1350  * iommu_group_get - Return the group for a device and increment reference
1351  * @dev: get the group that this device belongs to
1352  *
1353  * This function is called by iommu drivers and users to get the group
1354  * for the specified device.  If found, the group is returned and the group
1355  * reference in incremented, else NULL.
1356  */
iommu_group_get(struct device * dev)1357 struct iommu_group *iommu_group_get(struct device *dev)
1358 {
1359 	struct iommu_group *group = dev->iommu_group;
1360 
1361 	if (group)
1362 		kobject_get(group->devices_kobj);
1363 
1364 	return group;
1365 }
1366 EXPORT_SYMBOL_GPL(iommu_group_get);
1367 
1368 /**
1369  * iommu_group_ref_get - Increment reference on a group
1370  * @group: the group to use, must not be NULL
1371  *
1372  * This function is called by iommu drivers to take additional references on an
1373  * existing group.  Returns the given group for convenience.
1374  */
iommu_group_ref_get(struct iommu_group * group)1375 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1376 {
1377 	kobject_get(group->devices_kobj);
1378 	return group;
1379 }
1380 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1381 
1382 /**
1383  * iommu_group_put - Decrement group reference
1384  * @group: the group to use
1385  *
1386  * This function is called by iommu drivers and users to release the
1387  * iommu group.  Once the reference count is zero, the group is released.
1388  */
iommu_group_put(struct iommu_group * group)1389 void iommu_group_put(struct iommu_group *group)
1390 {
1391 	if (group)
1392 		kobject_put(group->devices_kobj);
1393 }
1394 EXPORT_SYMBOL_GPL(iommu_group_put);
1395 
1396 /**
1397  * iommu_group_id - Return ID for a group
1398  * @group: the group to ID
1399  *
1400  * Return the unique ID for the group matching the sysfs group number.
1401  */
iommu_group_id(struct iommu_group * group)1402 int iommu_group_id(struct iommu_group *group)
1403 {
1404 	return group->id;
1405 }
1406 EXPORT_SYMBOL_GPL(iommu_group_id);
1407 
1408 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1409 					       unsigned long *devfns);
1410 
1411 /*
1412  * To consider a PCI device isolated, we require ACS to support Source
1413  * Validation, Request Redirection, Completer Redirection, and Upstream
1414  * Forwarding.  This effectively means that devices cannot spoof their
1415  * requester ID, requests and completions cannot be redirected, and all
1416  * transactions are forwarded upstream, even as it passes through a
1417  * bridge where the target device is downstream.
1418  */
1419 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1420 
1421 /*
1422  * For multifunction devices which are not isolated from each other, find
1423  * all the other non-isolated functions and look for existing groups.  For
1424  * each function, we also need to look for aliases to or from other devices
1425  * that may already have a group.
1426  */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1427 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1428 							unsigned long *devfns)
1429 {
1430 	struct pci_dev *tmp = NULL;
1431 	struct iommu_group *group;
1432 
1433 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1434 		return NULL;
1435 
1436 	for_each_pci_dev(tmp) {
1437 		if (tmp == pdev || tmp->bus != pdev->bus ||
1438 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1439 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1440 			continue;
1441 
1442 		group = get_pci_alias_group(tmp, devfns);
1443 		if (group) {
1444 			pci_dev_put(tmp);
1445 			return group;
1446 		}
1447 	}
1448 
1449 	return NULL;
1450 }
1451 
1452 /*
1453  * Look for aliases to or from the given device for existing groups. DMA
1454  * aliases are only supported on the same bus, therefore the search
1455  * space is quite small (especially since we're really only looking at pcie
1456  * device, and therefore only expect multiple slots on the root complex or
1457  * downstream switch ports).  It's conceivable though that a pair of
1458  * multifunction devices could have aliases between them that would cause a
1459  * loop.  To prevent this, we use a bitmap to track where we've been.
1460  */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1461 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1462 					       unsigned long *devfns)
1463 {
1464 	struct pci_dev *tmp = NULL;
1465 	struct iommu_group *group;
1466 
1467 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1468 		return NULL;
1469 
1470 	group = iommu_group_get(&pdev->dev);
1471 	if (group)
1472 		return group;
1473 
1474 	for_each_pci_dev(tmp) {
1475 		if (tmp == pdev || tmp->bus != pdev->bus)
1476 			continue;
1477 
1478 		/* We alias them or they alias us */
1479 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1480 			group = get_pci_alias_group(tmp, devfns);
1481 			if (group) {
1482 				pci_dev_put(tmp);
1483 				return group;
1484 			}
1485 
1486 			group = get_pci_function_alias_group(tmp, devfns);
1487 			if (group) {
1488 				pci_dev_put(tmp);
1489 				return group;
1490 			}
1491 		}
1492 	}
1493 
1494 	return NULL;
1495 }
1496 
1497 struct group_for_pci_data {
1498 	struct pci_dev *pdev;
1499 	struct iommu_group *group;
1500 };
1501 
1502 /*
1503  * DMA alias iterator callback, return the last seen device.  Stop and return
1504  * the IOMMU group if we find one along the way.
1505  */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1506 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1507 {
1508 	struct group_for_pci_data *data = opaque;
1509 
1510 	data->pdev = pdev;
1511 	data->group = iommu_group_get(&pdev->dev);
1512 
1513 	return data->group != NULL;
1514 }
1515 
1516 /*
1517  * Generic device_group call-back function. It just allocates one
1518  * iommu-group per device.
1519  */
generic_device_group(struct device * dev)1520 struct iommu_group *generic_device_group(struct device *dev)
1521 {
1522 	return iommu_group_alloc();
1523 }
1524 EXPORT_SYMBOL_GPL(generic_device_group);
1525 
1526 /*
1527  * Generic device_group call-back function. It just allocates one
1528  * iommu-group per iommu driver instance shared by every device
1529  * probed by that iommu driver.
1530  */
generic_single_device_group(struct device * dev)1531 struct iommu_group *generic_single_device_group(struct device *dev)
1532 {
1533 	struct iommu_device *iommu = dev->iommu->iommu_dev;
1534 
1535 	if (!iommu->singleton_group) {
1536 		struct iommu_group *group;
1537 
1538 		group = iommu_group_alloc();
1539 		if (IS_ERR(group))
1540 			return group;
1541 		iommu->singleton_group = group;
1542 	}
1543 	return iommu_group_ref_get(iommu->singleton_group);
1544 }
1545 EXPORT_SYMBOL_GPL(generic_single_device_group);
1546 
1547 /*
1548  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1549  * to find or create an IOMMU group for a device.
1550  */
pci_device_group(struct device * dev)1551 struct iommu_group *pci_device_group(struct device *dev)
1552 {
1553 	struct pci_dev *pdev = to_pci_dev(dev);
1554 	struct group_for_pci_data data;
1555 	struct pci_bus *bus;
1556 	struct iommu_group *group = NULL;
1557 	u64 devfns[4] = { 0 };
1558 
1559 	if (WARN_ON(!dev_is_pci(dev)))
1560 		return ERR_PTR(-EINVAL);
1561 
1562 	/*
1563 	 * Find the upstream DMA alias for the device.  A device must not
1564 	 * be aliased due to topology in order to have its own IOMMU group.
1565 	 * If we find an alias along the way that already belongs to a
1566 	 * group, use it.
1567 	 */
1568 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1569 		return data.group;
1570 
1571 	pdev = data.pdev;
1572 
1573 	/*
1574 	 * Continue upstream from the point of minimum IOMMU granularity
1575 	 * due to aliases to the point where devices are protected from
1576 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1577 	 * group, use it.
1578 	 */
1579 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1580 		if (!bus->self)
1581 			continue;
1582 
1583 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1584 			break;
1585 
1586 		pdev = bus->self;
1587 
1588 		group = iommu_group_get(&pdev->dev);
1589 		if (group)
1590 			return group;
1591 	}
1592 
1593 	/*
1594 	 * Look for existing groups on device aliases.  If we alias another
1595 	 * device or another device aliases us, use the same group.
1596 	 */
1597 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1598 	if (group)
1599 		return group;
1600 
1601 	/*
1602 	 * Look for existing groups on non-isolated functions on the same
1603 	 * slot and aliases of those funcions, if any.  No need to clear
1604 	 * the search bitmap, the tested devfns are still valid.
1605 	 */
1606 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1607 	if (group)
1608 		return group;
1609 
1610 	/* No shared group found, allocate new */
1611 	return iommu_group_alloc();
1612 }
1613 EXPORT_SYMBOL_GPL(pci_device_group);
1614 
1615 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1616 struct iommu_group *fsl_mc_device_group(struct device *dev)
1617 {
1618 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1619 	struct iommu_group *group;
1620 
1621 	group = iommu_group_get(cont_dev);
1622 	if (!group)
1623 		group = iommu_group_alloc();
1624 	return group;
1625 }
1626 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1627 
__iommu_alloc_identity_domain(struct device * dev)1628 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev)
1629 {
1630 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1631 	struct iommu_domain *domain;
1632 
1633 	if (ops->identity_domain)
1634 		return ops->identity_domain;
1635 
1636 	if (ops->domain_alloc_identity) {
1637 		domain = ops->domain_alloc_identity(dev);
1638 		if (IS_ERR(domain))
1639 			return domain;
1640 	} else {
1641 		return ERR_PTR(-EOPNOTSUPP);
1642 	}
1643 
1644 	iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops);
1645 	return domain;
1646 }
1647 
1648 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1649 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1650 {
1651 	struct device *dev = iommu_group_first_dev(group);
1652 	struct iommu_domain *dom;
1653 
1654 	if (group->default_domain && group->default_domain->type == req_type)
1655 		return group->default_domain;
1656 
1657 	/*
1658 	 * When allocating the DMA API domain assume that the driver is going to
1659 	 * use PASID and make sure the RID's domain is PASID compatible.
1660 	 */
1661 	if (req_type & __IOMMU_DOMAIN_PAGING) {
1662 		dom = __iommu_paging_domain_alloc_flags(dev, req_type,
1663 			   dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0);
1664 
1665 		/*
1666 		 * If driver does not support PASID feature then
1667 		 * try to allocate non-PASID domain
1668 		 */
1669 		if (PTR_ERR(dom) == -EOPNOTSUPP)
1670 			dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0);
1671 
1672 		return dom;
1673 	}
1674 
1675 	if (req_type == IOMMU_DOMAIN_IDENTITY)
1676 		return __iommu_alloc_identity_domain(dev);
1677 
1678 	return ERR_PTR(-EINVAL);
1679 }
1680 
1681 /*
1682  * req_type of 0 means "auto" which means to select a domain based on
1683  * iommu_def_domain_type or what the driver actually supports.
1684  */
1685 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1686 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1687 {
1688 	const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1689 	struct iommu_domain *dom;
1690 
1691 	lockdep_assert_held(&group->mutex);
1692 
1693 	/*
1694 	 * Allow legacy drivers to specify the domain that will be the default
1695 	 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1696 	 * domain. Do not use in new drivers.
1697 	 */
1698 	if (ops->default_domain) {
1699 		if (req_type != ops->default_domain->type)
1700 			return ERR_PTR(-EINVAL);
1701 		return ops->default_domain;
1702 	}
1703 
1704 	if (req_type)
1705 		return __iommu_group_alloc_default_domain(group, req_type);
1706 
1707 	/* The driver gave no guidance on what type to use, try the default */
1708 	dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1709 	if (!IS_ERR(dom))
1710 		return dom;
1711 
1712 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1713 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1714 		return ERR_PTR(-EINVAL);
1715 	dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1716 	if (IS_ERR(dom))
1717 		return dom;
1718 
1719 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1720 		iommu_def_domain_type, group->name);
1721 	return dom;
1722 }
1723 
iommu_group_default_domain(struct iommu_group * group)1724 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1725 {
1726 	return group->default_domain;
1727 }
1728 
probe_iommu_group(struct device * dev,void * data)1729 static int probe_iommu_group(struct device *dev, void *data)
1730 {
1731 	struct list_head *group_list = data;
1732 	int ret;
1733 
1734 	mutex_lock(&iommu_probe_device_lock);
1735 	ret = __iommu_probe_device(dev, group_list);
1736 	mutex_unlock(&iommu_probe_device_lock);
1737 	if (ret == -ENODEV)
1738 		ret = 0;
1739 
1740 	return ret;
1741 }
1742 
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1743 static int iommu_bus_notifier(struct notifier_block *nb,
1744 			      unsigned long action, void *data)
1745 {
1746 	struct device *dev = data;
1747 
1748 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1749 		int ret;
1750 
1751 		ret = iommu_probe_device(dev);
1752 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1753 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1754 		iommu_release_device(dev);
1755 		return NOTIFY_OK;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /*
1762  * Combine the driver's chosen def_domain_type across all the devices in a
1763  * group. Drivers must give a consistent result.
1764  */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1765 static int iommu_get_def_domain_type(struct iommu_group *group,
1766 				     struct device *dev, int cur_type)
1767 {
1768 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1769 	int type;
1770 
1771 	if (ops->default_domain) {
1772 		/*
1773 		 * Drivers that declare a global static default_domain will
1774 		 * always choose that.
1775 		 */
1776 		type = ops->default_domain->type;
1777 	} else {
1778 		if (ops->def_domain_type)
1779 			type = ops->def_domain_type(dev);
1780 		else
1781 			return cur_type;
1782 	}
1783 	if (!type || cur_type == type)
1784 		return cur_type;
1785 	if (!cur_type)
1786 		return type;
1787 
1788 	dev_err_ratelimited(
1789 		dev,
1790 		"IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1791 		iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1792 		group->id);
1793 
1794 	/*
1795 	 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY
1796 	 * takes precedence.
1797 	 */
1798 	if (type == IOMMU_DOMAIN_IDENTITY)
1799 		return type;
1800 	return cur_type;
1801 }
1802 
1803 /*
1804  * A target_type of 0 will select the best domain type. 0 can be returned in
1805  * this case meaning the global default should be used.
1806  */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1807 static int iommu_get_default_domain_type(struct iommu_group *group,
1808 					 int target_type)
1809 {
1810 	struct device *untrusted = NULL;
1811 	struct group_device *gdev;
1812 	int driver_type = 0;
1813 
1814 	lockdep_assert_held(&group->mutex);
1815 
1816 	/*
1817 	 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1818 	 * identity_domain and it will automatically become their default
1819 	 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1820 	 * Override the selection to IDENTITY.
1821 	 */
1822 	if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1823 		static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1824 				IS_ENABLED(CONFIG_IOMMU_DMA)));
1825 		driver_type = IOMMU_DOMAIN_IDENTITY;
1826 	}
1827 
1828 	for_each_group_device(group, gdev) {
1829 		driver_type = iommu_get_def_domain_type(group, gdev->dev,
1830 							driver_type);
1831 
1832 		if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1833 			/*
1834 			 * No ARM32 using systems will set untrusted, it cannot
1835 			 * work.
1836 			 */
1837 			if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1838 				return -1;
1839 			untrusted = gdev->dev;
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * If the common dma ops are not selected in kconfig then we cannot use
1845 	 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1846 	 * selected.
1847 	 */
1848 	if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1849 		if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1850 			return -1;
1851 		if (!driver_type)
1852 			driver_type = IOMMU_DOMAIN_IDENTITY;
1853 	}
1854 
1855 	if (untrusted) {
1856 		if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1857 			dev_err_ratelimited(
1858 				untrusted,
1859 				"Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1860 				group->id, iommu_domain_type_str(driver_type));
1861 			return -1;
1862 		}
1863 		driver_type = IOMMU_DOMAIN_DMA;
1864 	}
1865 
1866 	if (target_type) {
1867 		if (driver_type && target_type != driver_type)
1868 			return -1;
1869 		return target_type;
1870 	}
1871 	return driver_type;
1872 }
1873 
iommu_group_do_probe_finalize(struct device * dev)1874 static void iommu_group_do_probe_finalize(struct device *dev)
1875 {
1876 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1877 
1878 	if (ops->probe_finalize)
1879 		ops->probe_finalize(dev);
1880 }
1881 
bus_iommu_probe(const struct bus_type * bus)1882 static int bus_iommu_probe(const struct bus_type *bus)
1883 {
1884 	struct iommu_group *group, *next;
1885 	LIST_HEAD(group_list);
1886 	int ret;
1887 
1888 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1889 	if (ret)
1890 		return ret;
1891 
1892 	list_for_each_entry_safe(group, next, &group_list, entry) {
1893 		struct group_device *gdev;
1894 
1895 		mutex_lock(&group->mutex);
1896 
1897 		/* Remove item from the list */
1898 		list_del_init(&group->entry);
1899 
1900 		/*
1901 		 * We go to the trouble of deferred default domain creation so
1902 		 * that the cross-group default domain type and the setup of the
1903 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1904 		 */
1905 		ret = iommu_setup_default_domain(group, 0);
1906 		if (ret) {
1907 			mutex_unlock(&group->mutex);
1908 			return ret;
1909 		}
1910 		for_each_group_device(group, gdev)
1911 			iommu_setup_dma_ops(gdev->dev);
1912 		mutex_unlock(&group->mutex);
1913 
1914 		/*
1915 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1916 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1917 		 * in-turn might call back into IOMMU core code, where it tries
1918 		 * to take group->mutex, resulting in a deadlock.
1919 		 */
1920 		for_each_group_device(group, gdev)
1921 			iommu_group_do_probe_finalize(gdev->dev);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 /**
1928  * device_iommu_capable() - check for a general IOMMU capability
1929  * @dev: device to which the capability would be relevant, if available
1930  * @cap: IOMMU capability
1931  *
1932  * Return: true if an IOMMU is present and supports the given capability
1933  * for the given device, otherwise false.
1934  */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1935 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1936 {
1937 	const struct iommu_ops *ops;
1938 
1939 	if (!dev_has_iommu(dev))
1940 		return false;
1941 
1942 	ops = dev_iommu_ops(dev);
1943 	if (!ops->capable)
1944 		return false;
1945 
1946 	return ops->capable(dev, cap);
1947 }
1948 EXPORT_SYMBOL_GPL(device_iommu_capable);
1949 
1950 /**
1951  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1952  *       for a group
1953  * @group: Group to query
1954  *
1955  * IOMMU groups should not have differing values of
1956  * msi_device_has_isolated_msi() for devices in a group. However nothing
1957  * directly prevents this, so ensure mistakes don't result in isolation failures
1958  * by checking that all the devices are the same.
1959  */
iommu_group_has_isolated_msi(struct iommu_group * group)1960 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1961 {
1962 	struct group_device *group_dev;
1963 	bool ret = true;
1964 
1965 	mutex_lock(&group->mutex);
1966 	for_each_group_device(group, group_dev)
1967 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1968 	mutex_unlock(&group->mutex);
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1972 
1973 /**
1974  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1975  * @domain: iommu domain
1976  * @handler: fault handler
1977  * @token: user data, will be passed back to the fault handler
1978  *
1979  * This function should be used by IOMMU users which want to be notified
1980  * whenever an IOMMU fault happens.
1981  *
1982  * The fault handler itself should return 0 on success, and an appropriate
1983  * error code otherwise.
1984  */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1985 void iommu_set_fault_handler(struct iommu_domain *domain,
1986 					iommu_fault_handler_t handler,
1987 					void *token)
1988 {
1989 	if (WARN_ON(!domain || domain->cookie_type != IOMMU_COOKIE_NONE))
1990 		return;
1991 
1992 	domain->cookie_type = IOMMU_COOKIE_FAULT_HANDLER;
1993 	domain->handler = handler;
1994 	domain->handler_token = token;
1995 }
1996 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1997 
iommu_domain_init(struct iommu_domain * domain,unsigned int type,const struct iommu_ops * ops)1998 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
1999 			      const struct iommu_ops *ops)
2000 {
2001 	domain->type = type;
2002 	domain->owner = ops;
2003 	if (!domain->ops)
2004 		domain->ops = ops->default_domain_ops;
2005 
2006 	/*
2007 	 * If not already set, assume all sizes by default; the driver
2008 	 * may override this later
2009 	 */
2010 	if (!domain->pgsize_bitmap)
2011 		domain->pgsize_bitmap = ops->pgsize_bitmap;
2012 }
2013 
2014 static struct iommu_domain *
__iommu_paging_domain_alloc_flags(struct device * dev,unsigned int type,unsigned int flags)2015 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type,
2016 				  unsigned int flags)
2017 {
2018 	const struct iommu_ops *ops;
2019 	struct iommu_domain *domain;
2020 
2021 	if (!dev_has_iommu(dev))
2022 		return ERR_PTR(-ENODEV);
2023 
2024 	ops = dev_iommu_ops(dev);
2025 
2026 	if (ops->domain_alloc_paging && !flags)
2027 		domain = ops->domain_alloc_paging(dev);
2028 	else if (ops->domain_alloc_paging_flags)
2029 		domain = ops->domain_alloc_paging_flags(dev, flags, NULL);
2030 #if IS_ENABLED(CONFIG_FSL_PAMU)
2031 	else if (ops->domain_alloc && !flags)
2032 		domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED);
2033 #endif
2034 	else
2035 		return ERR_PTR(-EOPNOTSUPP);
2036 
2037 	if (IS_ERR(domain))
2038 		return domain;
2039 	if (!domain)
2040 		return ERR_PTR(-ENOMEM);
2041 
2042 	iommu_domain_init(domain, type, ops);
2043 	return domain;
2044 }
2045 
2046 /**
2047  * iommu_paging_domain_alloc_flags() - Allocate a paging domain
2048  * @dev: device for which the domain is allocated
2049  * @flags: Bitmap of iommufd_hwpt_alloc_flags
2050  *
2051  * Allocate a paging domain which will be managed by a kernel driver. Return
2052  * allocated domain if successful, or an ERR pointer for failure.
2053  */
iommu_paging_domain_alloc_flags(struct device * dev,unsigned int flags)2054 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev,
2055 						     unsigned int flags)
2056 {
2057 	return __iommu_paging_domain_alloc_flags(dev,
2058 					 IOMMU_DOMAIN_UNMANAGED, flags);
2059 }
2060 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags);
2061 
iommu_domain_free(struct iommu_domain * domain)2062 void iommu_domain_free(struct iommu_domain *domain)
2063 {
2064 	switch (domain->cookie_type) {
2065 	case IOMMU_COOKIE_DMA_IOVA:
2066 		iommu_put_dma_cookie(domain);
2067 		break;
2068 	case IOMMU_COOKIE_DMA_MSI:
2069 		iommu_put_msi_cookie(domain);
2070 		break;
2071 	case IOMMU_COOKIE_SVA:
2072 		mmdrop(domain->mm);
2073 		break;
2074 	default:
2075 		break;
2076 	}
2077 	if (domain->ops->free)
2078 		domain->ops->free(domain);
2079 }
2080 EXPORT_SYMBOL_GPL(iommu_domain_free);
2081 
2082 /*
2083  * Put the group's domain back to the appropriate core-owned domain - either the
2084  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2085  */
__iommu_group_set_core_domain(struct iommu_group * group)2086 static void __iommu_group_set_core_domain(struct iommu_group *group)
2087 {
2088 	struct iommu_domain *new_domain;
2089 
2090 	if (group->owner)
2091 		new_domain = group->blocking_domain;
2092 	else
2093 		new_domain = group->default_domain;
2094 
2095 	__iommu_group_set_domain_nofail(group, new_domain);
2096 }
2097 
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2098 static int __iommu_attach_device(struct iommu_domain *domain,
2099 				 struct device *dev)
2100 {
2101 	int ret;
2102 
2103 	if (unlikely(domain->ops->attach_dev == NULL))
2104 		return -ENODEV;
2105 
2106 	ret = domain->ops->attach_dev(domain, dev);
2107 	if (ret)
2108 		return ret;
2109 	dev->iommu->attach_deferred = 0;
2110 	trace_attach_device_to_domain(dev);
2111 	return 0;
2112 }
2113 
2114 /**
2115  * iommu_attach_device - Attach an IOMMU domain to a device
2116  * @domain: IOMMU domain to attach
2117  * @dev: Device that will be attached
2118  *
2119  * Returns 0 on success and error code on failure
2120  *
2121  * Note that EINVAL can be treated as a soft failure, indicating
2122  * that certain configuration of the domain is incompatible with
2123  * the device. In this case attaching a different domain to the
2124  * device may succeed.
2125  */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2126 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2127 {
2128 	/* Caller must be a probed driver on dev */
2129 	struct iommu_group *group = dev->iommu_group;
2130 	int ret;
2131 
2132 	if (!group)
2133 		return -ENODEV;
2134 
2135 	/*
2136 	 * Lock the group to make sure the device-count doesn't
2137 	 * change while we are attaching
2138 	 */
2139 	mutex_lock(&group->mutex);
2140 	ret = -EINVAL;
2141 	if (list_count_nodes(&group->devices) != 1)
2142 		goto out_unlock;
2143 
2144 	ret = __iommu_attach_group(domain, group);
2145 
2146 out_unlock:
2147 	mutex_unlock(&group->mutex);
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(iommu_attach_device);
2151 
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2152 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2153 {
2154 	if (dev->iommu && dev->iommu->attach_deferred)
2155 		return __iommu_attach_device(domain, dev);
2156 
2157 	return 0;
2158 }
2159 
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2160 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2161 {
2162 	/* Caller must be a probed driver on dev */
2163 	struct iommu_group *group = dev->iommu_group;
2164 
2165 	if (!group)
2166 		return;
2167 
2168 	mutex_lock(&group->mutex);
2169 	if (WARN_ON(domain != group->domain) ||
2170 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2171 		goto out_unlock;
2172 	__iommu_group_set_core_domain(group);
2173 
2174 out_unlock:
2175 	mutex_unlock(&group->mutex);
2176 }
2177 EXPORT_SYMBOL_GPL(iommu_detach_device);
2178 
iommu_get_domain_for_dev(struct device * dev)2179 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2180 {
2181 	/* Caller must be a probed driver on dev */
2182 	struct iommu_group *group = dev->iommu_group;
2183 
2184 	if (!group)
2185 		return NULL;
2186 
2187 	return group->domain;
2188 }
2189 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2190 
2191 /*
2192  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2193  * guarantees that the group and its default domain are valid and correct.
2194  */
iommu_get_dma_domain(struct device * dev)2195 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2196 {
2197 	return dev->iommu_group->default_domain;
2198 }
2199 
iommu_make_pasid_array_entry(struct iommu_domain * domain,struct iommu_attach_handle * handle)2200 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain,
2201 					  struct iommu_attach_handle *handle)
2202 {
2203 	if (handle) {
2204 		handle->domain = domain;
2205 		return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE);
2206 	}
2207 
2208 	return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN);
2209 }
2210 
domain_iommu_ops_compatible(const struct iommu_ops * ops,struct iommu_domain * domain)2211 static bool domain_iommu_ops_compatible(const struct iommu_ops *ops,
2212 					struct iommu_domain *domain)
2213 {
2214 	if (domain->owner == ops)
2215 		return true;
2216 
2217 	/* For static domains, owner isn't set. */
2218 	if (domain == ops->blocked_domain || domain == ops->identity_domain)
2219 		return true;
2220 
2221 	return false;
2222 }
2223 
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2224 static int __iommu_attach_group(struct iommu_domain *domain,
2225 				struct iommu_group *group)
2226 {
2227 	struct device *dev;
2228 
2229 	if (group->domain && group->domain != group->default_domain &&
2230 	    group->domain != group->blocking_domain)
2231 		return -EBUSY;
2232 
2233 	dev = iommu_group_first_dev(group);
2234 	if (!dev_has_iommu(dev) ||
2235 	    !domain_iommu_ops_compatible(dev_iommu_ops(dev), domain))
2236 		return -EINVAL;
2237 
2238 	return __iommu_group_set_domain(group, domain);
2239 }
2240 
2241 /**
2242  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2243  * @domain: IOMMU domain to attach
2244  * @group: IOMMU group that will be attached
2245  *
2246  * Returns 0 on success and error code on failure
2247  *
2248  * Note that EINVAL can be treated as a soft failure, indicating
2249  * that certain configuration of the domain is incompatible with
2250  * the group. In this case attaching a different domain to the
2251  * group may succeed.
2252  */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2253 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2254 {
2255 	int ret;
2256 
2257 	mutex_lock(&group->mutex);
2258 	ret = __iommu_attach_group(domain, group);
2259 	mutex_unlock(&group->mutex);
2260 
2261 	return ret;
2262 }
2263 EXPORT_SYMBOL_GPL(iommu_attach_group);
2264 
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2265 static int __iommu_device_set_domain(struct iommu_group *group,
2266 				     struct device *dev,
2267 				     struct iommu_domain *new_domain,
2268 				     unsigned int flags)
2269 {
2270 	int ret;
2271 
2272 	/*
2273 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2274 	 * the blocking domain to be attached as it does not contain the
2275 	 * required 1:1 mapping. This test effectively excludes the device
2276 	 * being used with iommu_group_claim_dma_owner() which will block
2277 	 * vfio and iommufd as well.
2278 	 */
2279 	if (dev->iommu->require_direct &&
2280 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2281 	     new_domain == group->blocking_domain)) {
2282 		dev_warn(dev,
2283 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2284 		return -EINVAL;
2285 	}
2286 
2287 	if (dev->iommu->attach_deferred) {
2288 		if (new_domain == group->default_domain)
2289 			return 0;
2290 		dev->iommu->attach_deferred = 0;
2291 	}
2292 
2293 	ret = __iommu_attach_device(new_domain, dev);
2294 	if (ret) {
2295 		/*
2296 		 * If we have a blocking domain then try to attach that in hopes
2297 		 * of avoiding a UAF. Modern drivers should implement blocking
2298 		 * domains as global statics that cannot fail.
2299 		 */
2300 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2301 		    group->blocking_domain &&
2302 		    group->blocking_domain != new_domain)
2303 			__iommu_attach_device(group->blocking_domain, dev);
2304 		return ret;
2305 	}
2306 	return 0;
2307 }
2308 
2309 /*
2310  * If 0 is returned the group's domain is new_domain. If an error is returned
2311  * then the group's domain will be set back to the existing domain unless
2312  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2313  * domains is left inconsistent. This is a driver bug to fail attach with a
2314  * previously good domain. We try to avoid a kernel UAF because of this.
2315  *
2316  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2317  * API works on domains and devices.  Bridge that gap by iterating over the
2318  * devices in a group.  Ideally we'd have a single device which represents the
2319  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2320  * defined minimum sets, where the physical hardware may be able to distiguish
2321  * members, but we wish to group them at a higher level (ex. untrusted
2322  * multi-function PCI devices).  Thus we attach each device.
2323  */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2324 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2325 					     struct iommu_domain *new_domain,
2326 					     unsigned int flags)
2327 {
2328 	struct group_device *last_gdev;
2329 	struct group_device *gdev;
2330 	int result;
2331 	int ret;
2332 
2333 	lockdep_assert_held(&group->mutex);
2334 
2335 	if (group->domain == new_domain)
2336 		return 0;
2337 
2338 	if (WARN_ON(!new_domain))
2339 		return -EINVAL;
2340 
2341 	/*
2342 	 * Changing the domain is done by calling attach_dev() on the new
2343 	 * domain. This switch does not have to be atomic and DMA can be
2344 	 * discarded during the transition. DMA must only be able to access
2345 	 * either new_domain or group->domain, never something else.
2346 	 */
2347 	result = 0;
2348 	for_each_group_device(group, gdev) {
2349 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2350 						flags);
2351 		if (ret) {
2352 			result = ret;
2353 			/*
2354 			 * Keep trying the other devices in the group. If a
2355 			 * driver fails attach to an otherwise good domain, and
2356 			 * does not support blocking domains, it should at least
2357 			 * drop its reference on the current domain so we don't
2358 			 * UAF.
2359 			 */
2360 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2361 				continue;
2362 			goto err_revert;
2363 		}
2364 	}
2365 	group->domain = new_domain;
2366 	return result;
2367 
2368 err_revert:
2369 	/*
2370 	 * This is called in error unwind paths. A well behaved driver should
2371 	 * always allow us to attach to a domain that was already attached.
2372 	 */
2373 	last_gdev = gdev;
2374 	for_each_group_device(group, gdev) {
2375 		/*
2376 		 * A NULL domain can happen only for first probe, in which case
2377 		 * we leave group->domain as NULL and let release clean
2378 		 * everything up.
2379 		 */
2380 		if (group->domain)
2381 			WARN_ON(__iommu_device_set_domain(
2382 				group, gdev->dev, group->domain,
2383 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2384 		if (gdev == last_gdev)
2385 			break;
2386 	}
2387 	return ret;
2388 }
2389 
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2390 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2391 {
2392 	mutex_lock(&group->mutex);
2393 	__iommu_group_set_core_domain(group);
2394 	mutex_unlock(&group->mutex);
2395 }
2396 EXPORT_SYMBOL_GPL(iommu_detach_group);
2397 
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2398 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2399 {
2400 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2401 		return iova;
2402 
2403 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2404 		return 0;
2405 
2406 	return domain->ops->iova_to_phys(domain, iova);
2407 }
2408 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2409 
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2410 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2411 			   phys_addr_t paddr, size_t size, size_t *count)
2412 {
2413 	unsigned int pgsize_idx, pgsize_idx_next;
2414 	unsigned long pgsizes;
2415 	size_t offset, pgsize, pgsize_next;
2416 	size_t offset_end;
2417 	unsigned long addr_merge = paddr | iova;
2418 
2419 	/* Page sizes supported by the hardware and small enough for @size */
2420 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2421 
2422 	/* Constrain the page sizes further based on the maximum alignment */
2423 	if (likely(addr_merge))
2424 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2425 
2426 	/* Make sure we have at least one suitable page size */
2427 	BUG_ON(!pgsizes);
2428 
2429 	/* Pick the biggest page size remaining */
2430 	pgsize_idx = __fls(pgsizes);
2431 	pgsize = BIT(pgsize_idx);
2432 	if (!count)
2433 		return pgsize;
2434 
2435 	/* Find the next biggest support page size, if it exists */
2436 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2437 	if (!pgsizes)
2438 		goto out_set_count;
2439 
2440 	pgsize_idx_next = __ffs(pgsizes);
2441 	pgsize_next = BIT(pgsize_idx_next);
2442 
2443 	/*
2444 	 * There's no point trying a bigger page size unless the virtual
2445 	 * and physical addresses are similarly offset within the larger page.
2446 	 */
2447 	if ((iova ^ paddr) & (pgsize_next - 1))
2448 		goto out_set_count;
2449 
2450 	/* Calculate the offset to the next page size alignment boundary */
2451 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2452 
2453 	/*
2454 	 * If size is big enough to accommodate the larger page, reduce
2455 	 * the number of smaller pages.
2456 	 */
2457 	if (!check_add_overflow(offset, pgsize_next, &offset_end) &&
2458 	    offset_end <= size)
2459 		size = offset;
2460 
2461 out_set_count:
2462 	*count = size >> pgsize_idx;
2463 	return pgsize;
2464 }
2465 
iommu_map_nosync(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2466 int iommu_map_nosync(struct iommu_domain *domain, unsigned long iova,
2467 		phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2468 {
2469 	const struct iommu_domain_ops *ops = domain->ops;
2470 	unsigned long orig_iova = iova;
2471 	unsigned int min_pagesz;
2472 	size_t orig_size = size;
2473 	phys_addr_t orig_paddr = paddr;
2474 	int ret = 0;
2475 
2476 	might_sleep_if(gfpflags_allow_blocking(gfp));
2477 
2478 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2479 		return -EINVAL;
2480 
2481 	if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2482 		return -ENODEV;
2483 
2484 	/* Discourage passing strange GFP flags */
2485 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2486 				__GFP_HIGHMEM)))
2487 		return -EINVAL;
2488 
2489 	/* find out the minimum page size supported */
2490 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2491 
2492 	/*
2493 	 * both the virtual address and the physical one, as well as
2494 	 * the size of the mapping, must be aligned (at least) to the
2495 	 * size of the smallest page supported by the hardware
2496 	 */
2497 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2498 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2499 		       iova, &paddr, size, min_pagesz);
2500 		return -EINVAL;
2501 	}
2502 
2503 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2504 
2505 	while (size) {
2506 		size_t pgsize, count, mapped = 0;
2507 
2508 		pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2509 
2510 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2511 			 iova, &paddr, pgsize, count);
2512 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2513 				     gfp, &mapped);
2514 		/*
2515 		 * Some pages may have been mapped, even if an error occurred,
2516 		 * so we should account for those so they can be unmapped.
2517 		 */
2518 		size -= mapped;
2519 
2520 		if (ret)
2521 			break;
2522 
2523 		iova += mapped;
2524 		paddr += mapped;
2525 	}
2526 
2527 	/* unroll mapping in case something went wrong */
2528 	if (ret)
2529 		iommu_unmap(domain, orig_iova, orig_size - size);
2530 	else
2531 		trace_map(orig_iova, orig_paddr, orig_size);
2532 
2533 	return ret;
2534 }
2535 
iommu_sync_map(struct iommu_domain * domain,unsigned long iova,size_t size)2536 int iommu_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size)
2537 {
2538 	const struct iommu_domain_ops *ops = domain->ops;
2539 
2540 	if (!ops->iotlb_sync_map)
2541 		return 0;
2542 	return ops->iotlb_sync_map(domain, iova, size);
2543 }
2544 
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2545 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2546 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2547 {
2548 	int ret;
2549 
2550 	ret = iommu_map_nosync(domain, iova, paddr, size, prot, gfp);
2551 	if (ret)
2552 		return ret;
2553 
2554 	ret = iommu_sync_map(domain, iova, size);
2555 	if (ret)
2556 		iommu_unmap(domain, iova, size);
2557 
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(iommu_map);
2561 
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2562 static size_t __iommu_unmap(struct iommu_domain *domain,
2563 			    unsigned long iova, size_t size,
2564 			    struct iommu_iotlb_gather *iotlb_gather)
2565 {
2566 	const struct iommu_domain_ops *ops = domain->ops;
2567 	size_t unmapped_page, unmapped = 0;
2568 	unsigned long orig_iova = iova;
2569 	unsigned int min_pagesz;
2570 
2571 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2572 		return 0;
2573 
2574 	if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2575 		return 0;
2576 
2577 	/* find out the minimum page size supported */
2578 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2579 
2580 	/*
2581 	 * The virtual address, as well as the size of the mapping, must be
2582 	 * aligned (at least) to the size of the smallest page supported
2583 	 * by the hardware
2584 	 */
2585 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2586 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2587 		       iova, size, min_pagesz);
2588 		return 0;
2589 	}
2590 
2591 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2592 
2593 	/*
2594 	 * Keep iterating until we either unmap 'size' bytes (or more)
2595 	 * or we hit an area that isn't mapped.
2596 	 */
2597 	while (unmapped < size) {
2598 		size_t pgsize, count;
2599 
2600 		pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2601 		unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2602 		if (!unmapped_page)
2603 			break;
2604 
2605 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2606 			 iova, unmapped_page);
2607 
2608 		iova += unmapped_page;
2609 		unmapped += unmapped_page;
2610 	}
2611 
2612 	trace_unmap(orig_iova, size, unmapped);
2613 	return unmapped;
2614 }
2615 
2616 /**
2617  * iommu_unmap() - Remove mappings from a range of IOVA
2618  * @domain: Domain to manipulate
2619  * @iova: IO virtual address to start
2620  * @size: Length of the range starting from @iova
2621  *
2622  * iommu_unmap() will remove a translation created by iommu_map(). It cannot
2623  * subdivide a mapping created by iommu_map(), so it should be called with IOVA
2624  * ranges that match what was passed to iommu_map(). The range can aggregate
2625  * contiguous iommu_map() calls so long as no individual range is split.
2626  *
2627  * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2628  * unmapping stopped.
2629  */
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2630 size_t iommu_unmap(struct iommu_domain *domain,
2631 		   unsigned long iova, size_t size)
2632 {
2633 	struct iommu_iotlb_gather iotlb_gather;
2634 	size_t ret;
2635 
2636 	iommu_iotlb_gather_init(&iotlb_gather);
2637 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2638 	iommu_iotlb_sync(domain, &iotlb_gather);
2639 
2640 	return ret;
2641 }
2642 EXPORT_SYMBOL_GPL(iommu_unmap);
2643 
2644 /**
2645  * iommu_unmap_fast() - Remove mappings from a range of IOVA without IOTLB sync
2646  * @domain: Domain to manipulate
2647  * @iova: IO virtual address to start
2648  * @size: Length of the range starting from @iova
2649  * @iotlb_gather: range information for a pending IOTLB flush
2650  *
2651  * iommu_unmap_fast() will remove a translation created by iommu_map().
2652  * It can't subdivide a mapping created by iommu_map(), so it should be
2653  * called with IOVA ranges that match what was passed to iommu_map(). The
2654  * range can aggregate contiguous iommu_map() calls so long as no individual
2655  * range is split.
2656  *
2657  * Basically iommu_unmap_fast() is the same as iommu_unmap() but for callers
2658  * which manage the IOTLB flushing externally to perform a batched sync.
2659  *
2660  * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2661  * unmapping stopped.
2662  */
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2663 size_t iommu_unmap_fast(struct iommu_domain *domain,
2664 			unsigned long iova, size_t size,
2665 			struct iommu_iotlb_gather *iotlb_gather)
2666 {
2667 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2668 }
2669 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2670 
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2671 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2672 		     struct scatterlist *sg, unsigned int nents, int prot,
2673 		     gfp_t gfp)
2674 {
2675 	size_t len = 0, mapped = 0;
2676 	phys_addr_t start;
2677 	unsigned int i = 0;
2678 	int ret;
2679 
2680 	while (i <= nents) {
2681 		phys_addr_t s_phys = sg_phys(sg);
2682 
2683 		if (len && s_phys != start + len) {
2684 			ret = iommu_map_nosync(domain, iova + mapped, start,
2685 					len, prot, gfp);
2686 			if (ret)
2687 				goto out_err;
2688 
2689 			mapped += len;
2690 			len = 0;
2691 		}
2692 
2693 		if (sg_dma_is_bus_address(sg))
2694 			goto next;
2695 
2696 		if (len) {
2697 			len += sg->length;
2698 		} else {
2699 			len = sg->length;
2700 			start = s_phys;
2701 		}
2702 
2703 next:
2704 		if (++i < nents)
2705 			sg = sg_next(sg);
2706 	}
2707 
2708 	ret = iommu_sync_map(domain, iova, mapped);
2709 	if (ret)
2710 		goto out_err;
2711 
2712 	return mapped;
2713 
2714 out_err:
2715 	/* undo mappings already done */
2716 	iommu_unmap(domain, iova, mapped);
2717 
2718 	return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(iommu_map_sg);
2721 
2722 /**
2723  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2724  * @domain: the iommu domain where the fault has happened
2725  * @dev: the device where the fault has happened
2726  * @iova: the faulting address
2727  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2728  *
2729  * This function should be called by the low-level IOMMU implementations
2730  * whenever IOMMU faults happen, to allow high-level users, that are
2731  * interested in such events, to know about them.
2732  *
2733  * This event may be useful for several possible use cases:
2734  * - mere logging of the event
2735  * - dynamic TLB/PTE loading
2736  * - if restarting of the faulting device is required
2737  *
2738  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2739  * PTE/TLB loading will one day be supported, implementations will be able
2740  * to tell whether it succeeded or not according to this return value).
2741  *
2742  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2743  * (though fault handlers can also return -ENOSYS, in case they want to
2744  * elicit the default behavior of the IOMMU drivers).
2745  */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2746 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2747 		       unsigned long iova, int flags)
2748 {
2749 	int ret = -ENOSYS;
2750 
2751 	/*
2752 	 * if upper layers showed interest and installed a fault handler,
2753 	 * invoke it.
2754 	 */
2755 	if (domain->cookie_type == IOMMU_COOKIE_FAULT_HANDLER &&
2756 	    domain->handler)
2757 		ret = domain->handler(domain, dev, iova, flags,
2758 						domain->handler_token);
2759 
2760 	trace_io_page_fault(dev, iova, flags);
2761 	return ret;
2762 }
2763 EXPORT_SYMBOL_GPL(report_iommu_fault);
2764 
iommu_init(void)2765 static int __init iommu_init(void)
2766 {
2767 	iommu_group_kset = kset_create_and_add("iommu_groups",
2768 					       NULL, kernel_kobj);
2769 	BUG_ON(!iommu_group_kset);
2770 
2771 	iommu_debugfs_setup();
2772 
2773 	return 0;
2774 }
2775 core_initcall(iommu_init);
2776 
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2777 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2778 		unsigned long quirk)
2779 {
2780 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2781 		return -EINVAL;
2782 	if (!domain->ops->set_pgtable_quirks)
2783 		return -EINVAL;
2784 	return domain->ops->set_pgtable_quirks(domain, quirk);
2785 }
2786 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2787 
2788 /**
2789  * iommu_get_resv_regions - get reserved regions
2790  * @dev: device for which to get reserved regions
2791  * @list: reserved region list for device
2792  *
2793  * This returns a list of reserved IOVA regions specific to this device.
2794  * A domain user should not map IOVA in these ranges.
2795  */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2796 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2797 {
2798 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2799 
2800 	if (ops->get_resv_regions)
2801 		ops->get_resv_regions(dev, list);
2802 }
2803 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2804 
2805 /**
2806  * iommu_put_resv_regions - release reserved regions
2807  * @dev: device for which to free reserved regions
2808  * @list: reserved region list for device
2809  *
2810  * This releases a reserved region list acquired by iommu_get_resv_regions().
2811  */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2812 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2813 {
2814 	struct iommu_resv_region *entry, *next;
2815 
2816 	list_for_each_entry_safe(entry, next, list, list) {
2817 		if (entry->free)
2818 			entry->free(dev, entry);
2819 		else
2820 			kfree(entry);
2821 	}
2822 }
2823 EXPORT_SYMBOL(iommu_put_resv_regions);
2824 
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2825 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2826 						  size_t length, int prot,
2827 						  enum iommu_resv_type type,
2828 						  gfp_t gfp)
2829 {
2830 	struct iommu_resv_region *region;
2831 
2832 	region = kzalloc(sizeof(*region), gfp);
2833 	if (!region)
2834 		return NULL;
2835 
2836 	INIT_LIST_HEAD(&region->list);
2837 	region->start = start;
2838 	region->length = length;
2839 	region->prot = prot;
2840 	region->type = type;
2841 	return region;
2842 }
2843 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2844 
iommu_set_default_passthrough(bool cmd_line)2845 void iommu_set_default_passthrough(bool cmd_line)
2846 {
2847 	if (cmd_line)
2848 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2849 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2850 }
2851 
iommu_set_default_translated(bool cmd_line)2852 void iommu_set_default_translated(bool cmd_line)
2853 {
2854 	if (cmd_line)
2855 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2856 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2857 }
2858 
iommu_default_passthrough(void)2859 bool iommu_default_passthrough(void)
2860 {
2861 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2862 }
2863 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2864 
iommu_from_fwnode(const struct fwnode_handle * fwnode)2865 static const struct iommu_device *iommu_from_fwnode(const struct fwnode_handle *fwnode)
2866 {
2867 	const struct iommu_device *iommu, *ret = NULL;
2868 
2869 	spin_lock(&iommu_device_lock);
2870 	list_for_each_entry(iommu, &iommu_device_list, list)
2871 		if (iommu->fwnode == fwnode) {
2872 			ret = iommu;
2873 			break;
2874 		}
2875 	spin_unlock(&iommu_device_lock);
2876 	return ret;
2877 }
2878 
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2879 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2880 {
2881 	const struct iommu_device *iommu = iommu_from_fwnode(fwnode);
2882 
2883 	return iommu ? iommu->ops : NULL;
2884 }
2885 
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2886 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2887 {
2888 	const struct iommu_device *iommu = iommu_from_fwnode(iommu_fwnode);
2889 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2890 
2891 	if (!iommu)
2892 		return driver_deferred_probe_check_state(dev);
2893 	if (!dev->iommu && !READ_ONCE(iommu->ready))
2894 		return -EPROBE_DEFER;
2895 
2896 	if (fwspec)
2897 		return iommu->ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2898 
2899 	if (!dev_iommu_get(dev))
2900 		return -ENOMEM;
2901 
2902 	/* Preallocate for the overwhelmingly common case of 1 ID */
2903 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2904 	if (!fwspec)
2905 		return -ENOMEM;
2906 
2907 	fwnode_handle_get(iommu_fwnode);
2908 	fwspec->iommu_fwnode = iommu_fwnode;
2909 	dev_iommu_fwspec_set(dev, fwspec);
2910 	return 0;
2911 }
2912 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2913 
iommu_fwspec_free(struct device * dev)2914 void iommu_fwspec_free(struct device *dev)
2915 {
2916 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2917 
2918 	if (fwspec) {
2919 		fwnode_handle_put(fwspec->iommu_fwnode);
2920 		kfree(fwspec);
2921 		dev_iommu_fwspec_set(dev, NULL);
2922 	}
2923 }
2924 
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2925 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2926 {
2927 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2928 	int i, new_num;
2929 
2930 	if (!fwspec)
2931 		return -EINVAL;
2932 
2933 	new_num = fwspec->num_ids + num_ids;
2934 	if (new_num > 1) {
2935 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2936 				  GFP_KERNEL);
2937 		if (!fwspec)
2938 			return -ENOMEM;
2939 
2940 		dev_iommu_fwspec_set(dev, fwspec);
2941 	}
2942 
2943 	for (i = 0; i < num_ids; i++)
2944 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2945 
2946 	fwspec->num_ids = new_num;
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2950 
2951 /**
2952  * iommu_setup_default_domain - Set the default_domain for the group
2953  * @group: Group to change
2954  * @target_type: Domain type to set as the default_domain
2955  *
2956  * Allocate a default domain and set it as the current domain on the group. If
2957  * the group already has a default domain it will be changed to the target_type.
2958  * When target_type is 0 the default domain is selected based on driver and
2959  * system preferences.
2960  */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2961 static int iommu_setup_default_domain(struct iommu_group *group,
2962 				      int target_type)
2963 {
2964 	struct iommu_domain *old_dom = group->default_domain;
2965 	struct group_device *gdev;
2966 	struct iommu_domain *dom;
2967 	bool direct_failed;
2968 	int req_type;
2969 	int ret;
2970 
2971 	lockdep_assert_held(&group->mutex);
2972 
2973 	req_type = iommu_get_default_domain_type(group, target_type);
2974 	if (req_type < 0)
2975 		return -EINVAL;
2976 
2977 	dom = iommu_group_alloc_default_domain(group, req_type);
2978 	if (IS_ERR(dom))
2979 		return PTR_ERR(dom);
2980 
2981 	if (group->default_domain == dom)
2982 		return 0;
2983 
2984 	if (iommu_is_dma_domain(dom)) {
2985 		ret = iommu_get_dma_cookie(dom);
2986 		if (ret) {
2987 			iommu_domain_free(dom);
2988 			return ret;
2989 		}
2990 	}
2991 
2992 	/*
2993 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2994 	 * mapped before their device is attached, in order to guarantee
2995 	 * continuity with any FW activity
2996 	 */
2997 	direct_failed = false;
2998 	for_each_group_device(group, gdev) {
2999 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
3000 			direct_failed = true;
3001 			dev_warn_once(
3002 				gdev->dev->iommu->iommu_dev->dev,
3003 				"IOMMU driver was not able to establish FW requested direct mapping.");
3004 		}
3005 	}
3006 
3007 	/* We must set default_domain early for __iommu_device_set_domain */
3008 	group->default_domain = dom;
3009 	if (!group->domain) {
3010 		/*
3011 		 * Drivers are not allowed to fail the first domain attach.
3012 		 * The only way to recover from this is to fail attaching the
3013 		 * iommu driver and call ops->release_device. Put the domain
3014 		 * in group->default_domain so it is freed after.
3015 		 */
3016 		ret = __iommu_group_set_domain_internal(
3017 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3018 		if (WARN_ON(ret))
3019 			goto out_free_old;
3020 	} else {
3021 		ret = __iommu_group_set_domain(group, dom);
3022 		if (ret)
3023 			goto err_restore_def_domain;
3024 	}
3025 
3026 	/*
3027 	 * Drivers are supposed to allow mappings to be installed in a domain
3028 	 * before device attachment, but some don't. Hack around this defect by
3029 	 * trying again after attaching. If this happens it means the device
3030 	 * will not continuously have the IOMMU_RESV_DIRECT map.
3031 	 */
3032 	if (direct_failed) {
3033 		for_each_group_device(group, gdev) {
3034 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3035 			if (ret)
3036 				goto err_restore_domain;
3037 		}
3038 	}
3039 
3040 out_free_old:
3041 	if (old_dom)
3042 		iommu_domain_free(old_dom);
3043 	return ret;
3044 
3045 err_restore_domain:
3046 	if (old_dom)
3047 		__iommu_group_set_domain_internal(
3048 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3049 err_restore_def_domain:
3050 	if (old_dom) {
3051 		iommu_domain_free(dom);
3052 		group->default_domain = old_dom;
3053 	}
3054 	return ret;
3055 }
3056 
3057 /*
3058  * Changing the default domain through sysfs requires the users to unbind the
3059  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3060  * transition. Return failure if this isn't met.
3061  *
3062  * We need to consider the race between this and the device release path.
3063  * group->mutex is used here to guarantee that the device release path
3064  * will not be entered at the same time.
3065  */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3066 static ssize_t iommu_group_store_type(struct iommu_group *group,
3067 				      const char *buf, size_t count)
3068 {
3069 	struct group_device *gdev;
3070 	int ret, req_type;
3071 
3072 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3073 		return -EACCES;
3074 
3075 	if (WARN_ON(!group) || !group->default_domain)
3076 		return -EINVAL;
3077 
3078 	if (sysfs_streq(buf, "identity"))
3079 		req_type = IOMMU_DOMAIN_IDENTITY;
3080 	else if (sysfs_streq(buf, "DMA"))
3081 		req_type = IOMMU_DOMAIN_DMA;
3082 	else if (sysfs_streq(buf, "DMA-FQ"))
3083 		req_type = IOMMU_DOMAIN_DMA_FQ;
3084 	else if (sysfs_streq(buf, "auto"))
3085 		req_type = 0;
3086 	else
3087 		return -EINVAL;
3088 
3089 	mutex_lock(&group->mutex);
3090 	/* We can bring up a flush queue without tearing down the domain. */
3091 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3092 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3093 		ret = iommu_dma_init_fq(group->default_domain);
3094 		if (ret)
3095 			goto out_unlock;
3096 
3097 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3098 		ret = count;
3099 		goto out_unlock;
3100 	}
3101 
3102 	/* Otherwise, ensure that device exists and no driver is bound. */
3103 	if (list_empty(&group->devices) || group->owner_cnt) {
3104 		ret = -EPERM;
3105 		goto out_unlock;
3106 	}
3107 
3108 	ret = iommu_setup_default_domain(group, req_type);
3109 	if (ret)
3110 		goto out_unlock;
3111 
3112 	/* Make sure dma_ops is appropriatley set */
3113 	for_each_group_device(group, gdev)
3114 		iommu_setup_dma_ops(gdev->dev);
3115 
3116 out_unlock:
3117 	mutex_unlock(&group->mutex);
3118 	return ret ?: count;
3119 }
3120 
3121 /**
3122  * iommu_device_use_default_domain() - Device driver wants to handle device
3123  *                                     DMA through the kernel DMA API.
3124  * @dev: The device.
3125  *
3126  * The device driver about to bind @dev wants to do DMA through the kernel
3127  * DMA API. Return 0 if it is allowed, otherwise an error.
3128  */
iommu_device_use_default_domain(struct device * dev)3129 int iommu_device_use_default_domain(struct device *dev)
3130 {
3131 	/* Caller is the driver core during the pre-probe path */
3132 	struct iommu_group *group = dev->iommu_group;
3133 	int ret = 0;
3134 
3135 	if (!group)
3136 		return 0;
3137 
3138 	mutex_lock(&group->mutex);
3139 	/* We may race against bus_iommu_probe() finalising groups here */
3140 	if (!group->default_domain) {
3141 		ret = -EPROBE_DEFER;
3142 		goto unlock_out;
3143 	}
3144 	if (group->owner_cnt) {
3145 		if (group->domain != group->default_domain || group->owner ||
3146 		    !xa_empty(&group->pasid_array)) {
3147 			ret = -EBUSY;
3148 			goto unlock_out;
3149 		}
3150 	}
3151 
3152 	group->owner_cnt++;
3153 
3154 unlock_out:
3155 	mutex_unlock(&group->mutex);
3156 	return ret;
3157 }
3158 
3159 /**
3160  * iommu_device_unuse_default_domain() - Device driver stops handling device
3161  *                                       DMA through the kernel DMA API.
3162  * @dev: The device.
3163  *
3164  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3165  * It must be called after iommu_device_use_default_domain().
3166  */
iommu_device_unuse_default_domain(struct device * dev)3167 void iommu_device_unuse_default_domain(struct device *dev)
3168 {
3169 	/* Caller is the driver core during the post-probe path */
3170 	struct iommu_group *group = dev->iommu_group;
3171 
3172 	if (!group)
3173 		return;
3174 
3175 	mutex_lock(&group->mutex);
3176 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3177 		group->owner_cnt--;
3178 
3179 	mutex_unlock(&group->mutex);
3180 }
3181 
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3182 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3183 {
3184 	struct device *dev = iommu_group_first_dev(group);
3185 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3186 	struct iommu_domain *domain;
3187 
3188 	if (group->blocking_domain)
3189 		return 0;
3190 
3191 	if (ops->blocked_domain) {
3192 		group->blocking_domain = ops->blocked_domain;
3193 		return 0;
3194 	}
3195 
3196 	/*
3197 	 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an
3198 	 * empty PAGING domain instead.
3199 	 */
3200 	domain = iommu_paging_domain_alloc(dev);
3201 	if (IS_ERR(domain))
3202 		return PTR_ERR(domain);
3203 	group->blocking_domain = domain;
3204 	return 0;
3205 }
3206 
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3207 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3208 {
3209 	int ret;
3210 
3211 	if ((group->domain && group->domain != group->default_domain) ||
3212 	    !xa_empty(&group->pasid_array))
3213 		return -EBUSY;
3214 
3215 	ret = __iommu_group_alloc_blocking_domain(group);
3216 	if (ret)
3217 		return ret;
3218 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3219 	if (ret)
3220 		return ret;
3221 
3222 	group->owner = owner;
3223 	group->owner_cnt++;
3224 	return 0;
3225 }
3226 
3227 /**
3228  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3229  * @group: The group.
3230  * @owner: Caller specified pointer. Used for exclusive ownership.
3231  *
3232  * This is to support backward compatibility for vfio which manages the dma
3233  * ownership in iommu_group level. New invocations on this interface should be
3234  * prohibited. Only a single owner may exist for a group.
3235  */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3236 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3237 {
3238 	int ret = 0;
3239 
3240 	if (WARN_ON(!owner))
3241 		return -EINVAL;
3242 
3243 	mutex_lock(&group->mutex);
3244 	if (group->owner_cnt) {
3245 		ret = -EPERM;
3246 		goto unlock_out;
3247 	}
3248 
3249 	ret = __iommu_take_dma_ownership(group, owner);
3250 unlock_out:
3251 	mutex_unlock(&group->mutex);
3252 
3253 	return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3256 
3257 /**
3258  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3259  * @dev: The device.
3260  * @owner: Caller specified pointer. Used for exclusive ownership.
3261  *
3262  * Claim the DMA ownership of a device. Multiple devices in the same group may
3263  * concurrently claim ownership if they present the same owner value. Returns 0
3264  * on success and error code on failure
3265  */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3266 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3267 {
3268 	/* Caller must be a probed driver on dev */
3269 	struct iommu_group *group = dev->iommu_group;
3270 	int ret = 0;
3271 
3272 	if (WARN_ON(!owner))
3273 		return -EINVAL;
3274 
3275 	if (!group)
3276 		return -ENODEV;
3277 
3278 	mutex_lock(&group->mutex);
3279 	if (group->owner_cnt) {
3280 		if (group->owner != owner) {
3281 			ret = -EPERM;
3282 			goto unlock_out;
3283 		}
3284 		group->owner_cnt++;
3285 		goto unlock_out;
3286 	}
3287 
3288 	ret = __iommu_take_dma_ownership(group, owner);
3289 unlock_out:
3290 	mutex_unlock(&group->mutex);
3291 	return ret;
3292 }
3293 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3294 
__iommu_release_dma_ownership(struct iommu_group * group)3295 static void __iommu_release_dma_ownership(struct iommu_group *group)
3296 {
3297 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3298 		    !xa_empty(&group->pasid_array)))
3299 		return;
3300 
3301 	group->owner_cnt = 0;
3302 	group->owner = NULL;
3303 	__iommu_group_set_domain_nofail(group, group->default_domain);
3304 }
3305 
3306 /**
3307  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3308  * @group: The group
3309  *
3310  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3311  */
iommu_group_release_dma_owner(struct iommu_group * group)3312 void iommu_group_release_dma_owner(struct iommu_group *group)
3313 {
3314 	mutex_lock(&group->mutex);
3315 	__iommu_release_dma_ownership(group);
3316 	mutex_unlock(&group->mutex);
3317 }
3318 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3319 
3320 /**
3321  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3322  * @dev: The device.
3323  *
3324  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3325  */
iommu_device_release_dma_owner(struct device * dev)3326 void iommu_device_release_dma_owner(struct device *dev)
3327 {
3328 	/* Caller must be a probed driver on dev */
3329 	struct iommu_group *group = dev->iommu_group;
3330 
3331 	mutex_lock(&group->mutex);
3332 	if (group->owner_cnt > 1)
3333 		group->owner_cnt--;
3334 	else
3335 		__iommu_release_dma_ownership(group);
3336 	mutex_unlock(&group->mutex);
3337 }
3338 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3339 
3340 /**
3341  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3342  * @group: The group.
3343  *
3344  * This provides status query on a given group. It is racy and only for
3345  * non-binding status reporting.
3346  */
iommu_group_dma_owner_claimed(struct iommu_group * group)3347 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3348 {
3349 	unsigned int user;
3350 
3351 	mutex_lock(&group->mutex);
3352 	user = group->owner_cnt;
3353 	mutex_unlock(&group->mutex);
3354 
3355 	return user;
3356 }
3357 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3358 
iommu_remove_dev_pasid(struct device * dev,ioasid_t pasid,struct iommu_domain * domain)3359 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
3360 				   struct iommu_domain *domain)
3361 {
3362 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3363 	struct iommu_domain *blocked_domain = ops->blocked_domain;
3364 
3365 	WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain,
3366 						   dev, pasid, domain));
3367 }
3368 
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid,struct iommu_domain * old)3369 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3370 				   struct iommu_group *group, ioasid_t pasid,
3371 				   struct iommu_domain *old)
3372 {
3373 	struct group_device *device, *last_gdev;
3374 	int ret;
3375 
3376 	for_each_group_device(group, device) {
3377 		if (device->dev->iommu->max_pasids > 0) {
3378 			ret = domain->ops->set_dev_pasid(domain, device->dev,
3379 							 pasid, old);
3380 			if (ret)
3381 				goto err_revert;
3382 		}
3383 	}
3384 
3385 	return 0;
3386 
3387 err_revert:
3388 	last_gdev = device;
3389 	for_each_group_device(group, device) {
3390 		if (device == last_gdev)
3391 			break;
3392 		if (device->dev->iommu->max_pasids > 0) {
3393 			/*
3394 			 * If no old domain, undo the succeeded devices/pasid.
3395 			 * Otherwise, rollback the succeeded devices/pasid to
3396 			 * the old domain. And it is a driver bug to fail
3397 			 * attaching with a previously good domain.
3398 			 */
3399 			if (!old ||
3400 			    WARN_ON(old->ops->set_dev_pasid(old, device->dev,
3401 							    pasid, domain)))
3402 				iommu_remove_dev_pasid(device->dev, pasid, domain);
3403 		}
3404 	}
3405 	return ret;
3406 }
3407 
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3408 static void __iommu_remove_group_pasid(struct iommu_group *group,
3409 				       ioasid_t pasid,
3410 				       struct iommu_domain *domain)
3411 {
3412 	struct group_device *device;
3413 
3414 	for_each_group_device(group, device) {
3415 		if (device->dev->iommu->max_pasids > 0)
3416 			iommu_remove_dev_pasid(device->dev, pasid, domain);
3417 	}
3418 }
3419 
3420 /*
3421  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3422  * @domain: the iommu domain.
3423  * @dev: the attached device.
3424  * @pasid: the pasid of the device.
3425  * @handle: the attach handle.
3426  *
3427  * Caller should always provide a new handle to avoid race with the paths
3428  * that have lockless reference to handle if it intends to pass a valid handle.
3429  *
3430  * Return: 0 on success, or an error.
3431  */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3432 int iommu_attach_device_pasid(struct iommu_domain *domain,
3433 			      struct device *dev, ioasid_t pasid,
3434 			      struct iommu_attach_handle *handle)
3435 {
3436 	/* Caller must be a probed driver on dev */
3437 	struct iommu_group *group = dev->iommu_group;
3438 	struct group_device *device;
3439 	const struct iommu_ops *ops;
3440 	void *entry;
3441 	int ret;
3442 
3443 	if (!group)
3444 		return -ENODEV;
3445 
3446 	ops = dev_iommu_ops(dev);
3447 
3448 	if (!domain->ops->set_dev_pasid ||
3449 	    !ops->blocked_domain ||
3450 	    !ops->blocked_domain->ops->set_dev_pasid)
3451 		return -EOPNOTSUPP;
3452 
3453 	if (!domain_iommu_ops_compatible(ops, domain) ||
3454 	    pasid == IOMMU_NO_PASID)
3455 		return -EINVAL;
3456 
3457 	mutex_lock(&group->mutex);
3458 	for_each_group_device(group, device) {
3459 		/*
3460 		 * Skip PASID validation for devices without PASID support
3461 		 * (max_pasids = 0). These devices cannot issue transactions
3462 		 * with PASID, so they don't affect group's PASID usage.
3463 		 */
3464 		if ((device->dev->iommu->max_pasids > 0) &&
3465 		    (pasid >= device->dev->iommu->max_pasids)) {
3466 			ret = -EINVAL;
3467 			goto out_unlock;
3468 		}
3469 	}
3470 
3471 	entry = iommu_make_pasid_array_entry(domain, handle);
3472 
3473 	/*
3474 	 * Entry present is a failure case. Use xa_insert() instead of
3475 	 * xa_reserve().
3476 	 */
3477 	ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL);
3478 	if (ret)
3479 		goto out_unlock;
3480 
3481 	ret = __iommu_set_group_pasid(domain, group, pasid, NULL);
3482 	if (ret) {
3483 		xa_release(&group->pasid_array, pasid);
3484 		goto out_unlock;
3485 	}
3486 
3487 	/*
3488 	 * The xa_insert() above reserved the memory, and the group->mutex is
3489 	 * held, this cannot fail. The new domain cannot be visible until the
3490 	 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3491 	 * queued and then failing attach.
3492 	 */
3493 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3494 				   pasid, entry, GFP_KERNEL)));
3495 
3496 out_unlock:
3497 	mutex_unlock(&group->mutex);
3498 	return ret;
3499 }
3500 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3501 
3502 /**
3503  * iommu_replace_device_pasid - Replace the domain that a specific pasid
3504  *                              of the device is attached to
3505  * @domain: the new iommu domain
3506  * @dev: the attached device.
3507  * @pasid: the pasid of the device.
3508  * @handle: the attach handle.
3509  *
3510  * This API allows the pasid to switch domains. The @pasid should have been
3511  * attached. Otherwise, this fails. The pasid will keep the old configuration
3512  * if replacement failed.
3513  *
3514  * Caller should always provide a new handle to avoid race with the paths
3515  * that have lockless reference to handle if it intends to pass a valid handle.
3516  *
3517  * Return 0 on success, or an error.
3518  */
iommu_replace_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3519 int iommu_replace_device_pasid(struct iommu_domain *domain,
3520 			       struct device *dev, ioasid_t pasid,
3521 			       struct iommu_attach_handle *handle)
3522 {
3523 	/* Caller must be a probed driver on dev */
3524 	struct iommu_group *group = dev->iommu_group;
3525 	struct iommu_attach_handle *entry;
3526 	struct iommu_domain *curr_domain;
3527 	void *curr;
3528 	int ret;
3529 
3530 	if (!group)
3531 		return -ENODEV;
3532 
3533 	if (!domain->ops->set_dev_pasid)
3534 		return -EOPNOTSUPP;
3535 
3536 	if (!domain_iommu_ops_compatible(dev_iommu_ops(dev), domain) ||
3537 	    pasid == IOMMU_NO_PASID || !handle)
3538 		return -EINVAL;
3539 
3540 	mutex_lock(&group->mutex);
3541 	entry = iommu_make_pasid_array_entry(domain, handle);
3542 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL,
3543 			  XA_ZERO_ENTRY, GFP_KERNEL);
3544 	if (xa_is_err(curr)) {
3545 		ret = xa_err(curr);
3546 		goto out_unlock;
3547 	}
3548 
3549 	/*
3550 	 * No domain (with or without handle) attached, hence not
3551 	 * a replace case.
3552 	 */
3553 	if (!curr) {
3554 		xa_release(&group->pasid_array, pasid);
3555 		ret = -EINVAL;
3556 		goto out_unlock;
3557 	}
3558 
3559 	/*
3560 	 * Reusing handle is problematic as there are paths that refers
3561 	 * the handle without lock. To avoid race, reject the callers that
3562 	 * attempt it.
3563 	 */
3564 	if (curr == entry) {
3565 		WARN_ON(1);
3566 		ret = -EINVAL;
3567 		goto out_unlock;
3568 	}
3569 
3570 	curr_domain = pasid_array_entry_to_domain(curr);
3571 	ret = 0;
3572 
3573 	if (curr_domain != domain) {
3574 		ret = __iommu_set_group_pasid(domain, group,
3575 					      pasid, curr_domain);
3576 		if (ret)
3577 			goto out_unlock;
3578 	}
3579 
3580 	/*
3581 	 * The above xa_cmpxchg() reserved the memory, and the
3582 	 * group->mutex is held, this cannot fail.
3583 	 */
3584 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3585 				   pasid, entry, GFP_KERNEL)));
3586 
3587 out_unlock:
3588 	mutex_unlock(&group->mutex);
3589 	return ret;
3590 }
3591 EXPORT_SYMBOL_NS_GPL(iommu_replace_device_pasid, "IOMMUFD_INTERNAL");
3592 
3593 /*
3594  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3595  * @domain: the iommu domain.
3596  * @dev: the attached device.
3597  * @pasid: the pasid of the device.
3598  *
3599  * The @domain must have been attached to @pasid of the @dev with
3600  * iommu_attach_device_pasid().
3601  */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3602 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3603 			       ioasid_t pasid)
3604 {
3605 	/* Caller must be a probed driver on dev */
3606 	struct iommu_group *group = dev->iommu_group;
3607 
3608 	mutex_lock(&group->mutex);
3609 	__iommu_remove_group_pasid(group, pasid, domain);
3610 	xa_erase(&group->pasid_array, pasid);
3611 	mutex_unlock(&group->mutex);
3612 }
3613 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3614 
iommu_alloc_global_pasid(struct device * dev)3615 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3616 {
3617 	int ret;
3618 
3619 	/* max_pasids == 0 means that the device does not support PASID */
3620 	if (!dev->iommu->max_pasids)
3621 		return IOMMU_PASID_INVALID;
3622 
3623 	/*
3624 	 * max_pasids is set up by vendor driver based on number of PASID bits
3625 	 * supported but the IDA allocation is inclusive.
3626 	 */
3627 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3628 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3629 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3630 }
3631 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3632 
iommu_free_global_pasid(ioasid_t pasid)3633 void iommu_free_global_pasid(ioasid_t pasid)
3634 {
3635 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3636 		return;
3637 
3638 	ida_free(&iommu_global_pasid_ida, pasid);
3639 }
3640 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3641 
3642 /**
3643  * iommu_attach_handle_get - Return the attach handle
3644  * @group: the iommu group that domain was attached to
3645  * @pasid: the pasid within the group
3646  * @type: matched domain type, 0 for any match
3647  *
3648  * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3649  *
3650  * Return the attach handle to the caller. The life cycle of an iommu attach
3651  * handle is from the time when the domain is attached to the time when the
3652  * domain is detached. Callers are required to synchronize the call of
3653  * iommu_attach_handle_get() with domain attachment and detachment. The attach
3654  * handle can only be used during its life cycle.
3655  */
3656 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3657 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3658 {
3659 	struct iommu_attach_handle *handle;
3660 	void *entry;
3661 
3662 	xa_lock(&group->pasid_array);
3663 	entry = xa_load(&group->pasid_array, pasid);
3664 	if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) {
3665 		handle = ERR_PTR(-ENOENT);
3666 	} else {
3667 		handle = xa_untag_pointer(entry);
3668 		if (type && handle->domain->type != type)
3669 			handle = ERR_PTR(-EBUSY);
3670 	}
3671 	xa_unlock(&group->pasid_array);
3672 
3673 	return handle;
3674 }
3675 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL");
3676 
3677 /**
3678  * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3679  * @domain: IOMMU domain to attach
3680  * @group: IOMMU group that will be attached
3681  * @handle: attach handle
3682  *
3683  * Returns 0 on success and error code on failure.
3684  *
3685  * This is a variant of iommu_attach_group(). It allows the caller to provide
3686  * an attach handle and use it when the domain is attached. This is currently
3687  * used by IOMMUFD to deliver the I/O page faults.
3688  *
3689  * Caller should always provide a new handle to avoid race with the paths
3690  * that have lockless reference to handle.
3691  */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3692 int iommu_attach_group_handle(struct iommu_domain *domain,
3693 			      struct iommu_group *group,
3694 			      struct iommu_attach_handle *handle)
3695 {
3696 	void *entry;
3697 	int ret;
3698 
3699 	if (!handle)
3700 		return -EINVAL;
3701 
3702 	mutex_lock(&group->mutex);
3703 	entry = iommu_make_pasid_array_entry(domain, handle);
3704 	ret = xa_insert(&group->pasid_array,
3705 			IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL);
3706 	if (ret)
3707 		goto out_unlock;
3708 
3709 	ret = __iommu_attach_group(domain, group);
3710 	if (ret) {
3711 		xa_release(&group->pasid_array, IOMMU_NO_PASID);
3712 		goto out_unlock;
3713 	}
3714 
3715 	/*
3716 	 * The xa_insert() above reserved the memory, and the group->mutex is
3717 	 * held, this cannot fail. The new domain cannot be visible until the
3718 	 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3719 	 * queued and then failing attach.
3720 	 */
3721 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3722 				   IOMMU_NO_PASID, entry, GFP_KERNEL)));
3723 
3724 out_unlock:
3725 	mutex_unlock(&group->mutex);
3726 	return ret;
3727 }
3728 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL");
3729 
3730 /**
3731  * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3732  * @domain: IOMMU domain to attach
3733  * @group: IOMMU group that will be attached
3734  *
3735  * Detach the specified IOMMU domain from the specified IOMMU group.
3736  * It must be used in conjunction with iommu_attach_group_handle().
3737  */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3738 void iommu_detach_group_handle(struct iommu_domain *domain,
3739 			       struct iommu_group *group)
3740 {
3741 	mutex_lock(&group->mutex);
3742 	__iommu_group_set_core_domain(group);
3743 	xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3744 	mutex_unlock(&group->mutex);
3745 }
3746 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL");
3747 
3748 /**
3749  * iommu_replace_group_handle - replace the domain that a group is attached to
3750  * @group: IOMMU group that will be attached to the new domain
3751  * @new_domain: new IOMMU domain to replace with
3752  * @handle: attach handle
3753  *
3754  * This API allows the group to switch domains without being forced to go to
3755  * the blocking domain in-between. It allows the caller to provide an attach
3756  * handle for the new domain and use it when the domain is attached.
3757  *
3758  * If the currently attached domain is a core domain (e.g. a default_domain),
3759  * it will act just like the iommu_attach_group_handle().
3760  *
3761  * Caller should always provide a new handle to avoid race with the paths
3762  * that have lockless reference to handle.
3763  */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3764 int iommu_replace_group_handle(struct iommu_group *group,
3765 			       struct iommu_domain *new_domain,
3766 			       struct iommu_attach_handle *handle)
3767 {
3768 	void *curr, *entry;
3769 	int ret;
3770 
3771 	if (!new_domain || !handle)
3772 		return -EINVAL;
3773 
3774 	mutex_lock(&group->mutex);
3775 	entry = iommu_make_pasid_array_entry(new_domain, handle);
3776 	ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3777 	if (ret)
3778 		goto err_unlock;
3779 
3780 	ret = __iommu_group_set_domain(group, new_domain);
3781 	if (ret)
3782 		goto err_release;
3783 
3784 	curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL);
3785 	WARN_ON(xa_is_err(curr));
3786 
3787 	mutex_unlock(&group->mutex);
3788 
3789 	return 0;
3790 err_release:
3791 	xa_release(&group->pasid_array, IOMMU_NO_PASID);
3792 err_unlock:
3793 	mutex_unlock(&group->mutex);
3794 	return ret;
3795 }
3796 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL");
3797 
3798 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
3799 /**
3800  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
3801  * @desc: MSI descriptor, will store the MSI page
3802  * @msi_addr: MSI target address to be mapped
3803  *
3804  * The implementation of sw_msi() should take msi_addr and map it to
3805  * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the
3806  * mapping information.
3807  *
3808  * Return: 0 on success or negative error code if the mapping failed.
3809  */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)3810 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
3811 {
3812 	struct device *dev = msi_desc_to_dev(desc);
3813 	struct iommu_group *group = dev->iommu_group;
3814 	int ret = 0;
3815 
3816 	if (!group)
3817 		return 0;
3818 
3819 	mutex_lock(&group->mutex);
3820 	/* An IDENTITY domain must pass through */
3821 	if (group->domain && group->domain->type != IOMMU_DOMAIN_IDENTITY) {
3822 		switch (group->domain->cookie_type) {
3823 		case IOMMU_COOKIE_DMA_MSI:
3824 		case IOMMU_COOKIE_DMA_IOVA:
3825 			ret = iommu_dma_sw_msi(group->domain, desc, msi_addr);
3826 			break;
3827 		case IOMMU_COOKIE_IOMMUFD:
3828 			ret = iommufd_sw_msi(group->domain, desc, msi_addr);
3829 			break;
3830 		default:
3831 			ret = -EOPNOTSUPP;
3832 			break;
3833 		}
3834 	}
3835 	mutex_unlock(&group->mutex);
3836 	return ret;
3837 }
3838 #endif /* CONFIG_IRQ_MSI_IOMMU */
3839