xref: /linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision 2bd1bea5fa6aa79bc563a57919730eb809651b28)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/pci-bridge.h>
30 #include <asm/machdep.h>
31 #include <asm/msi_bitmap.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/opal.h>
34 #include <asm/iommu.h>
35 #include <asm/tce.h>
36 #include <asm/xics.h>
37 #include <asm/firmware.h>
38 #include <asm/pnv-pci.h>
39 #include <asm/mmzone.h>
40 #include <asm/xive.h>
41 
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45 
46 /* This array is indexed with enum pnv_phb_type */
47 static const char * const pnv_phb_names[] = { "IODA2", "NPU_OCAPI" };
48 
49 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
50 static void pnv_pci_configure_bus(struct pci_bus *bus);
51 
pe_level_printk(const struct pnv_ioda_pe * pe,const char * level,const char * fmt,...)52 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
53 			    const char *fmt, ...)
54 {
55 	struct va_format vaf;
56 	va_list args;
57 	char pfix[32];
58 
59 	va_start(args, fmt);
60 
61 	vaf.fmt = fmt;
62 	vaf.va = &args;
63 
64 	if (pe->flags & PNV_IODA_PE_DEV)
65 		strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
66 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
67 		sprintf(pfix, "%04x:%02x     ",
68 			pci_domain_nr(pe->pbus), pe->pbus->number);
69 #ifdef CONFIG_PCI_IOV
70 	else if (pe->flags & PNV_IODA_PE_VF)
71 		sprintf(pfix, "%04x:%02x:%2x.%d",
72 			pci_domain_nr(pe->parent_dev->bus),
73 			(pe->rid & 0xff00) >> 8,
74 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
75 #endif /* CONFIG_PCI_IOV*/
76 
77 	printk("%spci %s: [PE# %.2x] %pV",
78 	       level, pfix, pe->pe_number, &vaf);
79 
80 	va_end(args);
81 }
82 
83 static bool pnv_iommu_bypass_disabled __read_mostly;
84 static bool pci_reset_phbs __read_mostly;
85 
iommu_setup(char * str)86 static int __init iommu_setup(char *str)
87 {
88 	if (!str)
89 		return -EINVAL;
90 
91 	while (*str) {
92 		if (!strncmp(str, "nobypass", 8)) {
93 			pnv_iommu_bypass_disabled = true;
94 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
95 			break;
96 		}
97 		str += strcspn(str, ",");
98 		if (*str == ',')
99 			str++;
100 	}
101 
102 	return 0;
103 }
104 early_param("iommu", iommu_setup);
105 
pci_reset_phbs_setup(char * str)106 static int __init pci_reset_phbs_setup(char *str)
107 {
108 	pci_reset_phbs = true;
109 	return 0;
110 }
111 
112 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
113 
pnv_ioda_init_pe(struct pnv_phb * phb,int pe_no)114 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
115 {
116 	s64 rc;
117 
118 	phb->ioda.pe_array[pe_no].phb = phb;
119 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
120 	phb->ioda.pe_array[pe_no].dma_setup_done = false;
121 
122 	/*
123 	 * Clear the PE frozen state as it might be put into frozen state
124 	 * in the last PCI remove path. It's not harmful to do so when the
125 	 * PE is already in unfrozen state.
126 	 */
127 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
128 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
129 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
130 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
131 			__func__, rc, phb->hose->global_number, pe_no);
132 
133 	return &phb->ioda.pe_array[pe_no];
134 }
135 
pnv_ioda_reserve_pe(struct pnv_phb * phb,int pe_no)136 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
137 {
138 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
139 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
140 			__func__, pe_no, phb->hose->global_number);
141 		return;
142 	}
143 
144 	mutex_lock(&phb->ioda.pe_alloc_mutex);
145 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
146 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
147 			 __func__, pe_no, phb->hose->global_number);
148 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
149 
150 	pnv_ioda_init_pe(phb, pe_no);
151 }
152 
pnv_ioda_alloc_pe(struct pnv_phb * phb,int count)153 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
154 {
155 	struct pnv_ioda_pe *ret = NULL;
156 	int run = 0, pe, i;
157 
158 	mutex_lock(&phb->ioda.pe_alloc_mutex);
159 
160 	/* scan backwards for a run of @count cleared bits */
161 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
162 		if (test_bit(pe, phb->ioda.pe_alloc)) {
163 			run = 0;
164 			continue;
165 		}
166 
167 		run++;
168 		if (run == count)
169 			break;
170 	}
171 	if (run != count)
172 		goto out;
173 
174 	for (i = pe; i < pe + count; i++) {
175 		set_bit(i, phb->ioda.pe_alloc);
176 		pnv_ioda_init_pe(phb, i);
177 	}
178 	ret = &phb->ioda.pe_array[pe];
179 
180 out:
181 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
182 	return ret;
183 }
184 
pnv_ioda_free_pe(struct pnv_ioda_pe * pe)185 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
186 {
187 	struct pnv_phb *phb = pe->phb;
188 	unsigned int pe_num = pe->pe_number;
189 
190 	WARN_ON(pe->pdev);
191 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
192 
193 	mutex_lock(&phb->ioda.pe_alloc_mutex);
194 	clear_bit(pe_num, phb->ioda.pe_alloc);
195 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
196 }
197 
198 /* The default M64 BAR is shared by all PEs */
pnv_ioda2_init_m64(struct pnv_phb * phb)199 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
200 {
201 	const char *desc;
202 	struct resource *r;
203 	s64 rc;
204 
205 	/* Configure the default M64 BAR */
206 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
207 					 OPAL_M64_WINDOW_TYPE,
208 					 phb->ioda.m64_bar_idx,
209 					 phb->ioda.m64_base,
210 					 0, /* unused */
211 					 phb->ioda.m64_size);
212 	if (rc != OPAL_SUCCESS) {
213 		desc = "configuring";
214 		goto fail;
215 	}
216 
217 	/* Enable the default M64 BAR */
218 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
219 				      OPAL_M64_WINDOW_TYPE,
220 				      phb->ioda.m64_bar_idx,
221 				      OPAL_ENABLE_M64_SPLIT);
222 	if (rc != OPAL_SUCCESS) {
223 		desc = "enabling";
224 		goto fail;
225 	}
226 
227 	/*
228 	 * Exclude the segments for reserved and root bus PE, which
229 	 * are first or last two PEs.
230 	 */
231 	r = &phb->hose->mem_resources[1];
232 	if (phb->ioda.reserved_pe_idx == 0)
233 		r->start += (2 * phb->ioda.m64_segsize);
234 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
235 		r->end -= (2 * phb->ioda.m64_segsize);
236 	else
237 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
238 			phb->ioda.reserved_pe_idx);
239 
240 	return 0;
241 
242 fail:
243 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
244 		rc, desc, phb->ioda.m64_bar_idx);
245 	opal_pci_phb_mmio_enable(phb->opal_id,
246 				 OPAL_M64_WINDOW_TYPE,
247 				 phb->ioda.m64_bar_idx,
248 				 OPAL_DISABLE_M64);
249 	return -EIO;
250 }
251 
pnv_ioda_reserve_dev_m64_pe(struct pci_dev * pdev,unsigned long * pe_bitmap)252 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
253 					 unsigned long *pe_bitmap)
254 {
255 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
256 	struct resource *r;
257 	resource_size_t base, sgsz, start, end;
258 	int segno, i;
259 
260 	base = phb->ioda.m64_base;
261 	sgsz = phb->ioda.m64_segsize;
262 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
263 		r = &pdev->resource[i];
264 		if (!r->parent || !pnv_pci_is_m64(phb, r))
265 			continue;
266 
267 		start = ALIGN_DOWN(r->start - base, sgsz);
268 		end = ALIGN(r->end - base, sgsz);
269 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
270 			if (pe_bitmap)
271 				set_bit(segno, pe_bitmap);
272 			else
273 				pnv_ioda_reserve_pe(phb, segno);
274 		}
275 	}
276 }
277 
pnv_ioda_reserve_m64_pe(struct pci_bus * bus,unsigned long * pe_bitmap,bool all)278 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
279 				    unsigned long *pe_bitmap,
280 				    bool all)
281 {
282 	struct pci_dev *pdev;
283 
284 	list_for_each_entry(pdev, &bus->devices, bus_list) {
285 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
286 
287 		if (all && pdev->subordinate)
288 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
289 						pe_bitmap, all);
290 	}
291 }
292 
pnv_ioda_pick_m64_pe(struct pci_bus * bus,bool all)293 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
294 {
295 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
296 	struct pnv_ioda_pe *master_pe, *pe;
297 	unsigned long size, *pe_alloc;
298 	int i;
299 
300 	/* Root bus shouldn't use M64 */
301 	if (pci_is_root_bus(bus))
302 		return NULL;
303 
304 	/* Allocate bitmap */
305 	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
306 	pe_alloc = kzalloc(size, GFP_KERNEL);
307 	if (!pe_alloc) {
308 		pr_warn("%s: Out of memory !\n",
309 			__func__);
310 		return NULL;
311 	}
312 
313 	/* Figure out reserved PE numbers by the PE */
314 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
315 
316 	/*
317 	 * the current bus might not own M64 window and that's all
318 	 * contributed by its child buses. For the case, we needn't
319 	 * pick M64 dependent PE#.
320 	 */
321 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
322 		kfree(pe_alloc);
323 		return NULL;
324 	}
325 
326 	/*
327 	 * Figure out the master PE and put all slave PEs to master
328 	 * PE's list to form compound PE.
329 	 */
330 	master_pe = NULL;
331 	i = -1;
332 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
333 		phb->ioda.total_pe_num) {
334 		pe = &phb->ioda.pe_array[i];
335 
336 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
337 		if (!master_pe) {
338 			pe->flags |= PNV_IODA_PE_MASTER;
339 			INIT_LIST_HEAD(&pe->slaves);
340 			master_pe = pe;
341 		} else {
342 			pe->flags |= PNV_IODA_PE_SLAVE;
343 			pe->master = master_pe;
344 			list_add_tail(&pe->list, &master_pe->slaves);
345 		}
346 	}
347 
348 	kfree(pe_alloc);
349 	return master_pe;
350 }
351 
pnv_ioda_parse_m64_window(struct pnv_phb * phb)352 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
353 {
354 	struct pci_controller *hose = phb->hose;
355 	struct device_node *dn = hose->dn;
356 	struct resource *res;
357 	u32 m64_range[2], i;
358 	const __be32 *r;
359 	u64 pci_addr;
360 
361 	if (phb->type != PNV_PHB_IODA2) {
362 		pr_info("  Not support M64 window\n");
363 		return;
364 	}
365 
366 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
367 		pr_info("  Firmware too old to support M64 window\n");
368 		return;
369 	}
370 
371 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
372 	if (!r) {
373 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
374 			dn);
375 		return;
376 	}
377 
378 	/*
379 	 * Find the available M64 BAR range and pickup the last one for
380 	 * covering the whole 64-bits space. We support only one range.
381 	 */
382 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
383 				       m64_range, 2)) {
384 		/* In absence of the property, assume 0..15 */
385 		m64_range[0] = 0;
386 		m64_range[1] = 16;
387 	}
388 	/* We only support 64 bits in our allocator */
389 	if (m64_range[1] > 63) {
390 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
391 			__func__, m64_range[1], phb->hose->global_number);
392 		m64_range[1] = 63;
393 	}
394 	/* Empty range, no m64 */
395 	if (m64_range[1] <= m64_range[0]) {
396 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
397 			__func__, phb->hose->global_number);
398 		return;
399 	}
400 
401 	/* Configure M64 informations */
402 	res = &hose->mem_resources[1];
403 	res->name = dn->full_name;
404 	res->start = of_translate_address(dn, r + 2);
405 	res->end = res->start + of_read_number(r + 4, 2) - 1;
406 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
407 	pci_addr = of_read_number(r, 2);
408 	hose->mem_offset[1] = res->start - pci_addr;
409 
410 	phb->ioda.m64_size = resource_size(res);
411 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
412 	phb->ioda.m64_base = pci_addr;
413 
414 	/* This lines up nicely with the display from processing OF ranges */
415 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
416 		res->start, res->end, pci_addr, m64_range[0],
417 		m64_range[0] + m64_range[1] - 1);
418 
419 	/* Mark all M64 used up by default */
420 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
421 
422 	/* Use last M64 BAR to cover M64 window */
423 	m64_range[1]--;
424 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
425 
426 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
427 
428 	/* Mark remaining ones free */
429 	for (i = m64_range[0]; i < m64_range[1]; i++)
430 		clear_bit(i, &phb->ioda.m64_bar_alloc);
431 
432 	/*
433 	 * Setup init functions for M64 based on IODA version, IODA3 uses
434 	 * the IODA2 code.
435 	 */
436 	phb->init_m64 = pnv_ioda2_init_m64;
437 }
438 
pnv_ioda_freeze_pe(struct pnv_phb * phb,int pe_no)439 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
440 {
441 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
442 	struct pnv_ioda_pe *slave;
443 	s64 rc;
444 
445 	/* Fetch master PE */
446 	if (pe->flags & PNV_IODA_PE_SLAVE) {
447 		pe = pe->master;
448 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
449 			return;
450 
451 		pe_no = pe->pe_number;
452 	}
453 
454 	/* Freeze master PE */
455 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
456 				     pe_no,
457 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
458 	if (rc != OPAL_SUCCESS) {
459 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
460 			__func__, rc, phb->hose->global_number, pe_no);
461 		return;
462 	}
463 
464 	/* Freeze slave PEs */
465 	if (!(pe->flags & PNV_IODA_PE_MASTER))
466 		return;
467 
468 	list_for_each_entry(slave, &pe->slaves, list) {
469 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
470 					     slave->pe_number,
471 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
472 		if (rc != OPAL_SUCCESS)
473 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
474 				__func__, rc, phb->hose->global_number,
475 				slave->pe_number);
476 	}
477 }
478 
pnv_ioda_unfreeze_pe(struct pnv_phb * phb,int pe_no,int opt)479 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
480 {
481 	struct pnv_ioda_pe *pe, *slave;
482 	s64 rc;
483 
484 	/* Find master PE */
485 	pe = &phb->ioda.pe_array[pe_no];
486 	if (pe->flags & PNV_IODA_PE_SLAVE) {
487 		pe = pe->master;
488 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
489 		pe_no = pe->pe_number;
490 	}
491 
492 	/* Clear frozen state for master PE */
493 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
494 	if (rc != OPAL_SUCCESS) {
495 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
496 			__func__, rc, opt, phb->hose->global_number, pe_no);
497 		return -EIO;
498 	}
499 
500 	if (!(pe->flags & PNV_IODA_PE_MASTER))
501 		return 0;
502 
503 	/* Clear frozen state for slave PEs */
504 	list_for_each_entry(slave, &pe->slaves, list) {
505 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
506 					     slave->pe_number,
507 					     opt);
508 		if (rc != OPAL_SUCCESS) {
509 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
510 				__func__, rc, opt, phb->hose->global_number,
511 				slave->pe_number);
512 			return -EIO;
513 		}
514 	}
515 
516 	return 0;
517 }
518 
pnv_ioda_get_pe_state(struct pnv_phb * phb,int pe_no)519 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
520 {
521 	struct pnv_ioda_pe *slave, *pe;
522 	u8 fstate = 0, state;
523 	__be16 pcierr = 0;
524 	s64 rc;
525 
526 	/* Sanity check on PE number */
527 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
528 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
529 
530 	/*
531 	 * Fetch the master PE and the PE instance might be
532 	 * not initialized yet.
533 	 */
534 	pe = &phb->ioda.pe_array[pe_no];
535 	if (pe->flags & PNV_IODA_PE_SLAVE) {
536 		pe = pe->master;
537 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
538 		pe_no = pe->pe_number;
539 	}
540 
541 	/* Check the master PE */
542 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
543 					&state, &pcierr, NULL);
544 	if (rc != OPAL_SUCCESS) {
545 		pr_warn("%s: Failure %lld getting "
546 			"PHB#%x-PE#%x state\n",
547 			__func__, rc,
548 			phb->hose->global_number, pe_no);
549 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
550 	}
551 
552 	/* Check the slave PE */
553 	if (!(pe->flags & PNV_IODA_PE_MASTER))
554 		return state;
555 
556 	list_for_each_entry(slave, &pe->slaves, list) {
557 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
558 						slave->pe_number,
559 						&fstate,
560 						&pcierr,
561 						NULL);
562 		if (rc != OPAL_SUCCESS) {
563 			pr_warn("%s: Failure %lld getting "
564 				"PHB#%x-PE#%x state\n",
565 				__func__, rc,
566 				phb->hose->global_number, slave->pe_number);
567 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
568 		}
569 
570 		/*
571 		 * Override the result based on the ascending
572 		 * priority.
573 		 */
574 		if (fstate > state)
575 			state = fstate;
576 	}
577 
578 	return state;
579 }
580 
pnv_pci_bdfn_to_pe(struct pnv_phb * phb,u16 bdfn)581 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
582 {
583 	int pe_number = phb->ioda.pe_rmap[bdfn];
584 
585 	if (pe_number == IODA_INVALID_PE)
586 		return NULL;
587 
588 	return &phb->ioda.pe_array[pe_number];
589 }
590 
pnv_ioda_get_pe(struct pci_dev * dev)591 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
592 {
593 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
594 	struct pci_dn *pdn = pci_get_pdn(dev);
595 
596 	if (!pdn)
597 		return NULL;
598 	if (pdn->pe_number == IODA_INVALID_PE)
599 		return NULL;
600 	return &phb->ioda.pe_array[pdn->pe_number];
601 }
602 
pnv_ioda_set_one_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * parent,struct pnv_ioda_pe * child,bool is_add)603 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
604 				  struct pnv_ioda_pe *parent,
605 				  struct pnv_ioda_pe *child,
606 				  bool is_add)
607 {
608 	const char *desc = is_add ? "adding" : "removing";
609 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
610 			      OPAL_REMOVE_PE_FROM_DOMAIN;
611 	struct pnv_ioda_pe *slave;
612 	long rc;
613 
614 	/* Parent PE affects child PE */
615 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
616 				child->pe_number, op);
617 	if (rc != OPAL_SUCCESS) {
618 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
619 			rc, desc);
620 		return -ENXIO;
621 	}
622 
623 	if (!(child->flags & PNV_IODA_PE_MASTER))
624 		return 0;
625 
626 	/* Compound case: parent PE affects slave PEs */
627 	list_for_each_entry(slave, &child->slaves, list) {
628 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
629 					slave->pe_number, op);
630 		if (rc != OPAL_SUCCESS) {
631 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
632 				rc, desc);
633 			return -ENXIO;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
pnv_ioda_set_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,bool is_add)640 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
641 			      struct pnv_ioda_pe *pe,
642 			      bool is_add)
643 {
644 	struct pnv_ioda_pe *slave;
645 	struct pci_dev *pdev = NULL;
646 	int ret;
647 
648 	/*
649 	 * Clear PE frozen state. If it's master PE, we need
650 	 * clear slave PE frozen state as well.
651 	 */
652 	if (is_add) {
653 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
654 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
655 		if (pe->flags & PNV_IODA_PE_MASTER) {
656 			list_for_each_entry(slave, &pe->slaves, list)
657 				opal_pci_eeh_freeze_clear(phb->opal_id,
658 							  slave->pe_number,
659 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
660 		}
661 	}
662 
663 	/*
664 	 * Associate PE in PELT. We need add the PE into the
665 	 * corresponding PELT-V as well. Otherwise, the error
666 	 * originated from the PE might contribute to other
667 	 * PEs.
668 	 */
669 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
670 	if (ret)
671 		return ret;
672 
673 	/* For compound PEs, any one affects all of them */
674 	if (pe->flags & PNV_IODA_PE_MASTER) {
675 		list_for_each_entry(slave, &pe->slaves, list) {
676 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
677 			if (ret)
678 				return ret;
679 		}
680 	}
681 
682 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
683 		pdev = pe->pbus->self;
684 	else if (pe->flags & PNV_IODA_PE_DEV)
685 		pdev = pe->pdev->bus->self;
686 #ifdef CONFIG_PCI_IOV
687 	else if (pe->flags & PNV_IODA_PE_VF)
688 		pdev = pe->parent_dev;
689 #endif /* CONFIG_PCI_IOV */
690 	while (pdev) {
691 		struct pci_dn *pdn = pci_get_pdn(pdev);
692 		struct pnv_ioda_pe *parent;
693 
694 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
695 			parent = &phb->ioda.pe_array[pdn->pe_number];
696 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
697 			if (ret)
698 				return ret;
699 		}
700 
701 		pdev = pdev->bus->self;
702 	}
703 
704 	return 0;
705 }
706 
pnv_ioda_unset_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,struct pci_dev * parent)707 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
708 				 struct pnv_ioda_pe *pe,
709 				 struct pci_dev *parent)
710 {
711 	int64_t rc;
712 
713 	while (parent) {
714 		struct pci_dn *pdn = pci_get_pdn(parent);
715 
716 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
717 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
718 						pe->pe_number,
719 						OPAL_REMOVE_PE_FROM_DOMAIN);
720 			/* XXX What to do in case of error ? */
721 		}
722 		parent = parent->bus->self;
723 	}
724 
725 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
726 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
727 
728 	/* Disassociate PE in PELT */
729 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
730 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
731 	if (rc)
732 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
733 }
734 
pnv_ioda_deconfigure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)735 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
736 {
737 	struct pci_dev *parent;
738 	uint8_t bcomp, dcomp, fcomp;
739 	int64_t rc;
740 	long rid_end, rid;
741 
742 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
743 	if (pe->pbus) {
744 		int count;
745 
746 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
747 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
748 		parent = pe->pbus->self;
749 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
750 			count = resource_size(&pe->pbus->busn_res);
751 		else
752 			count = 1;
753 
754 		switch(count) {
755 		case  1: bcomp = OpalPciBusAll;         break;
756 		case  2: bcomp = OpalPciBus7Bits;       break;
757 		case  4: bcomp = OpalPciBus6Bits;       break;
758 		case  8: bcomp = OpalPciBus5Bits;       break;
759 		case 16: bcomp = OpalPciBus4Bits;       break;
760 		case 32: bcomp = OpalPciBus3Bits;       break;
761 		default:
762 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
763 			        count);
764 			/* Do an exact match only */
765 			bcomp = OpalPciBusAll;
766 		}
767 		rid_end = pe->rid + (count << 8);
768 	} else {
769 #ifdef CONFIG_PCI_IOV
770 		if (pe->flags & PNV_IODA_PE_VF)
771 			parent = pe->parent_dev;
772 		else
773 #endif
774 			parent = pe->pdev->bus->self;
775 		bcomp = OpalPciBusAll;
776 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
777 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
778 		rid_end = pe->rid + 1;
779 	}
780 
781 	/* Clear the reverse map */
782 	for (rid = pe->rid; rid < rid_end; rid++)
783 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
784 
785 	/*
786 	 * Release from all parents PELT-V. NPUs don't have a PELTV
787 	 * table
788 	 */
789 	if (phb->type != PNV_PHB_NPU_OCAPI)
790 		pnv_ioda_unset_peltv(phb, pe, parent);
791 
792 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
793 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
794 	if (rc)
795 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
796 
797 	pe->pbus = NULL;
798 	pe->pdev = NULL;
799 #ifdef CONFIG_PCI_IOV
800 	pe->parent_dev = NULL;
801 #endif
802 
803 	return 0;
804 }
805 
pnv_ioda_configure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)806 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
807 {
808 	uint8_t bcomp, dcomp, fcomp;
809 	long rc, rid_end, rid;
810 
811 	/* Bus validation ? */
812 	if (pe->pbus) {
813 		int count;
814 
815 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
816 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
817 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
818 			count = resource_size(&pe->pbus->busn_res);
819 		else
820 			count = 1;
821 
822 		switch(count) {
823 		case  1: bcomp = OpalPciBusAll;		break;
824 		case  2: bcomp = OpalPciBus7Bits;	break;
825 		case  4: bcomp = OpalPciBus6Bits;	break;
826 		case  8: bcomp = OpalPciBus5Bits;	break;
827 		case 16: bcomp = OpalPciBus4Bits;	break;
828 		case 32: bcomp = OpalPciBus3Bits;	break;
829 		default:
830 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
831 			        count);
832 			/* Do an exact match only */
833 			bcomp = OpalPciBusAll;
834 		}
835 		rid_end = pe->rid + (count << 8);
836 	} else {
837 		bcomp = OpalPciBusAll;
838 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
839 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
840 		rid_end = pe->rid + 1;
841 	}
842 
843 	/*
844 	 * Associate PE in PELT. We need add the PE into the
845 	 * corresponding PELT-V as well. Otherwise, the error
846 	 * originated from the PE might contribute to other
847 	 * PEs.
848 	 */
849 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
851 	if (rc) {
852 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
853 		return -ENXIO;
854 	}
855 
856 	/*
857 	 * Configure PELTV. NPUs don't have a PELTV table so skip
858 	 * configuration on them.
859 	 */
860 	if (phb->type != PNV_PHB_NPU_OCAPI)
861 		pnv_ioda_set_peltv(phb, pe, true);
862 
863 	/* Setup reverse map */
864 	for (rid = pe->rid; rid < rid_end; rid++)
865 		phb->ioda.pe_rmap[rid] = pe->pe_number;
866 
867 	pe->mve_number = 0;
868 
869 	return 0;
870 }
871 
pnv_ioda_setup_dev_PE(struct pci_dev * dev)872 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
873 {
874 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
875 	struct pci_dn *pdn = pci_get_pdn(dev);
876 	struct pnv_ioda_pe *pe;
877 
878 	if (!pdn) {
879 		pr_err("%s: Device tree node not associated properly\n",
880 			   pci_name(dev));
881 		return NULL;
882 	}
883 	if (pdn->pe_number != IODA_INVALID_PE)
884 		return NULL;
885 
886 	pe = pnv_ioda_alloc_pe(phb, 1);
887 	if (!pe) {
888 		pr_warn("%s: Not enough PE# available, disabling device\n",
889 			pci_name(dev));
890 		return NULL;
891 	}
892 
893 	/* NOTE: We don't get a reference for the pointer in the PE
894 	 * data structure, both the device and PE structures should be
895 	 * destroyed at the same time.
896 	 *
897 	 * At some point we want to remove the PDN completely anyways
898 	 */
899 	pdn->pe_number = pe->pe_number;
900 	pe->flags = PNV_IODA_PE_DEV;
901 	pe->pdev = dev;
902 	pe->pbus = NULL;
903 	pe->mve_number = -1;
904 	pe->rid = dev->bus->number << 8 | pdn->devfn;
905 	pe->device_count++;
906 
907 	pe_info(pe, "Associated device to PE\n");
908 
909 	if (pnv_ioda_configure_pe(phb, pe)) {
910 		/* XXX What do we do here ? */
911 		pnv_ioda_free_pe(pe);
912 		pdn->pe_number = IODA_INVALID_PE;
913 		pe->pdev = NULL;
914 		return NULL;
915 	}
916 
917 	/* Put PE to the list */
918 	mutex_lock(&phb->ioda.pe_list_mutex);
919 	list_add_tail(&pe->list, &phb->ioda.pe_list);
920 	mutex_unlock(&phb->ioda.pe_list_mutex);
921 	return pe;
922 }
923 
924 /*
925  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
926  * single PCI bus. Another one that contains the primary PCI bus and its
927  * subordinate PCI devices and buses. The second type of PE is normally
928  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
929  */
pnv_ioda_setup_bus_PE(struct pci_bus * bus,bool all)930 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
931 {
932 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
933 	struct pnv_ioda_pe *pe = NULL;
934 	unsigned int pe_num;
935 
936 	/*
937 	 * In partial hotplug case, the PE instance might be still alive.
938 	 * We should reuse it instead of allocating a new one.
939 	 */
940 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
941 	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
942 		pe = &phb->ioda.pe_array[pe_num];
943 		return NULL;
944 	}
945 
946 	/* PE number for root bus should have been reserved */
947 	if (pci_is_root_bus(bus))
948 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
949 
950 	/* Check if PE is determined by M64 */
951 	if (!pe)
952 		pe = pnv_ioda_pick_m64_pe(bus, all);
953 
954 	/* The PE number isn't pinned by M64 */
955 	if (!pe)
956 		pe = pnv_ioda_alloc_pe(phb, 1);
957 
958 	if (!pe) {
959 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
960 			__func__, pci_domain_nr(bus), bus->number);
961 		return NULL;
962 	}
963 
964 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
965 	pe->pbus = bus;
966 	pe->pdev = NULL;
967 	pe->mve_number = -1;
968 	pe->rid = bus->busn_res.start << 8;
969 
970 	if (all)
971 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
972 			&bus->busn_res.start, &bus->busn_res.end,
973 			pe->pe_number);
974 	else
975 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
976 			&bus->busn_res.start, pe->pe_number);
977 
978 	if (pnv_ioda_configure_pe(phb, pe)) {
979 		/* XXX What do we do here ? */
980 		pnv_ioda_free_pe(pe);
981 		pe->pbus = NULL;
982 		return NULL;
983 	}
984 
985 	/* Put PE to the list */
986 	list_add_tail(&pe->list, &phb->ioda.pe_list);
987 
988 	return pe;
989 }
990 
pnv_pci_ioda_dma_dev_setup(struct pci_dev * pdev)991 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
992 {
993 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
994 	struct pci_dn *pdn = pci_get_pdn(pdev);
995 	struct pnv_ioda_pe *pe;
996 
997 	/* Check if the BDFN for this device is associated with a PE yet */
998 	pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
999 	if (!pe) {
1000 		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1001 		if (WARN_ON(pdev->is_virtfn))
1002 			return;
1003 
1004 		pnv_pci_configure_bus(pdev->bus);
1005 		pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1006 		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1007 
1008 
1009 		/*
1010 		 * If we can't setup the IODA PE something has gone horribly
1011 		 * wrong and we can't enable DMA for the device.
1012 		 */
1013 		if (WARN_ON(!pe))
1014 			return;
1015 	} else {
1016 		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1017 	}
1018 
1019 	/*
1020 	 * We assume that bridges *probably* don't need to do any DMA so we can
1021 	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1022 	 */
1023 	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1024 		switch (phb->type) {
1025 		case PNV_PHB_IODA2:
1026 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1027 			break;
1028 		default:
1029 			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1030 				__func__, phb->hose->global_number, phb->type);
1031 		}
1032 	}
1033 
1034 	if (pdn)
1035 		pdn->pe_number = pe->pe_number;
1036 	pe->device_count++;
1037 
1038 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1039 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1040 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1041 
1042 	/* PEs with a DMA weight of zero won't have a group */
1043 	if (pe->table_group.group)
1044 		iommu_add_device(&pe->table_group, &pdev->dev);
1045 }
1046 
1047 /*
1048  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1049  *
1050  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1051  * Devices can only access more than that if bit 59 of the PCI address is set
1052  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1053  * Many PCI devices are not capable of addressing that many bits, and as a
1054  * result are limited to the 4GB of virtual memory made available to 32-bit
1055  * devices in TVE#0.
1056  *
1057  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1058  * devices by configuring the virtual memory past the first 4GB inaccessible
1059  * by 64-bit DMAs.  This should only be used by devices that want more than
1060  * 4GB, and only on PEs that have no 32-bit devices.
1061  *
1062  * Currently this will only work on PHB3 (POWER8).
1063  */
pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe * pe)1064 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1065 {
1066 	u64 window_size, table_size, tce_count, addr;
1067 	struct page *table_pages;
1068 	u64 tce_order = 28; /* 256MB TCEs */
1069 	__be64 *tces;
1070 	s64 rc;
1071 
1072 	/*
1073 	 * Window size needs to be a power of two, but needs to account for
1074 	 * shifting memory by the 4GB offset required to skip 32bit space.
1075 	 */
1076 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1077 	tce_count = window_size >> tce_order;
1078 	table_size = tce_count << 3;
1079 
1080 	if (table_size < PAGE_SIZE)
1081 		table_size = PAGE_SIZE;
1082 
1083 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1084 				       get_order(table_size));
1085 	if (!table_pages)
1086 		goto err;
1087 
1088 	tces = page_address(table_pages);
1089 	if (!tces)
1090 		goto err;
1091 
1092 	memset(tces, 0, table_size);
1093 
1094 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1095 		tces[(addr + (1ULL << 32)) >> tce_order] =
1096 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1097 	}
1098 
1099 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1100 					pe->pe_number,
1101 					/* reconfigure window 0 */
1102 					(pe->pe_number << 1) + 0,
1103 					1,
1104 					__pa(tces),
1105 					table_size,
1106 					1 << tce_order);
1107 	if (rc == OPAL_SUCCESS) {
1108 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1109 		return 0;
1110 	}
1111 err:
1112 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1113 	return -EIO;
1114 }
1115 
pnv_pci_ioda_iommu_bypass_supported(struct pci_dev * pdev,u64 dma_mask)1116 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1117 		u64 dma_mask)
1118 {
1119 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1120 	struct pci_dn *pdn = pci_get_pdn(pdev);
1121 	struct pnv_ioda_pe *pe;
1122 
1123 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1124 		return false;
1125 
1126 	pe = &phb->ioda.pe_array[pdn->pe_number];
1127 	if (pe->tce_bypass_enabled) {
1128 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1129 		if (dma_mask >= top)
1130 			return true;
1131 	}
1132 
1133 	/*
1134 	 * If the device can't set the TCE bypass bit but still wants
1135 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1136 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1137 	 * The device needs to be able to address all of this space.
1138 	 */
1139 	if (dma_mask >> 32 &&
1140 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1141 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1142 	    (pe->device_count == 1 || !pe->pbus) &&
1143 	    phb->model == PNV_PHB_MODEL_PHB3) {
1144 		/* Configure the bypass mode */
1145 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1146 		if (rc)
1147 			return false;
1148 		/* 4GB offset bypasses 32-bit space */
1149 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1150 		return true;
1151 	}
1152 
1153 	return false;
1154 }
1155 
pnv_ioda_get_inval_reg(struct pnv_phb * phb)1156 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1157 {
1158 	return phb->regs + 0x210;
1159 }
1160 
1161 #ifdef CONFIG_IOMMU_API
1162 /* Common for IODA1 and IODA2 */
pnv_ioda_tce_xchg_no_kill(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)1163 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1164 		unsigned long *hpa, enum dma_data_direction *direction)
1165 {
1166 	return pnv_tce_xchg(tbl, index, hpa, direction);
1167 }
1168 #endif
1169 
1170 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1171 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1172 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1173 
pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe * pe)1174 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1175 {
1176 	/* 01xb - invalidate TCEs that match the specified PE# */
1177 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1178 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1179 
1180 	mb(); /* Ensure above stores are visible */
1181 	__raw_writeq_be(val, invalidate);
1182 }
1183 
pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe * pe,unsigned shift,unsigned long index,unsigned long npages)1184 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1185 					unsigned shift, unsigned long index,
1186 					unsigned long npages)
1187 {
1188 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1189 	unsigned long start, end, inc;
1190 
1191 	/* We'll invalidate DMA address in PE scope */
1192 	start = PHB3_TCE_KILL_INVAL_ONE;
1193 	start |= (pe->pe_number & 0xFF);
1194 	end = start;
1195 
1196 	/* Figure out the start, end and step */
1197 	start |= (index << shift);
1198 	end |= ((index + npages - 1) << shift);
1199 	inc = (0x1ull << shift);
1200 	mb();
1201 
1202 	while (start <= end) {
1203 		__raw_writeq_be(start, invalidate);
1204 		start += inc;
1205 	}
1206 }
1207 
pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe * pe)1208 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1209 {
1210 	struct pnv_phb *phb = pe->phb;
1211 
1212 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1213 		pnv_pci_phb3_tce_invalidate_pe(pe);
1214 	else
1215 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1216 				  pe->pe_number, 0, 0, 0);
1217 }
1218 
pnv_pci_ioda2_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages)1219 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1220 		unsigned long index, unsigned long npages)
1221 {
1222 	struct iommu_table_group_link *tgl;
1223 
1224 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1225 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1226 				struct pnv_ioda_pe, table_group);
1227 		struct pnv_phb *phb = pe->phb;
1228 		unsigned int shift = tbl->it_page_shift;
1229 
1230 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1231 			pnv_pci_phb3_tce_invalidate(pe, shift,
1232 						    index, npages);
1233 		else
1234 			opal_pci_tce_kill(phb->opal_id,
1235 					  OPAL_PCI_TCE_KILL_PAGES,
1236 					  pe->pe_number, 1u << shift,
1237 					  index << shift, npages);
1238 	}
1239 }
1240 
pnv_ioda2_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)1241 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1242 		long npages, unsigned long uaddr,
1243 		enum dma_data_direction direction,
1244 		unsigned long attrs)
1245 {
1246 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1247 			attrs);
1248 
1249 	if (!ret)
1250 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1251 
1252 	return ret;
1253 }
1254 
pnv_ioda2_tce_free(struct iommu_table * tbl,long index,long npages)1255 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1256 		long npages)
1257 {
1258 	pnv_tce_free(tbl, index, npages);
1259 
1260 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1261 }
1262 
1263 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1264 	.set = pnv_ioda2_tce_build,
1265 #ifdef CONFIG_IOMMU_API
1266 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1267 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1268 	.useraddrptr = pnv_tce_useraddrptr,
1269 #endif
1270 	.clear = pnv_ioda2_tce_free,
1271 	.get = pnv_tce_get,
1272 	.free = pnv_pci_ioda2_table_free_pages,
1273 };
1274 
pnv_pci_ioda2_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)1275 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1276 		int num, struct iommu_table *tbl)
1277 {
1278 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1279 			table_group);
1280 	struct pnv_phb *phb = pe->phb;
1281 	int64_t rc;
1282 	const unsigned long size = tbl->it_indirect_levels ?
1283 			tbl->it_level_size : tbl->it_size;
1284 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1285 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1286 
1287 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1288 		num, start_addr, start_addr + win_size - 1,
1289 		IOMMU_PAGE_SIZE(tbl));
1290 
1291 	/*
1292 	 * Map TCE table through TVT. The TVE index is the PE number
1293 	 * shifted by 1 bit for 32-bits DMA space.
1294 	 */
1295 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1296 			pe->pe_number,
1297 			(pe->pe_number << 1) + num,
1298 			tbl->it_indirect_levels + 1,
1299 			__pa(tbl->it_base),
1300 			size << 3,
1301 			IOMMU_PAGE_SIZE(tbl));
1302 	if (rc) {
1303 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1304 		return rc;
1305 	}
1306 
1307 	pnv_pci_link_table_and_group(phb->hose->node, num,
1308 			tbl, &pe->table_group);
1309 	pnv_pci_ioda2_tce_invalidate_pe(pe);
1310 
1311 	return 0;
1312 }
1313 
pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe * pe,bool enable)1314 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1315 {
1316 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1317 	int64_t rc;
1318 
1319 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1320 	if (enable) {
1321 		phys_addr_t top = memblock_end_of_DRAM();
1322 
1323 		top = roundup_pow_of_two(top);
1324 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1325 						     pe->pe_number,
1326 						     window_id,
1327 						     pe->tce_bypass_base,
1328 						     top);
1329 	} else {
1330 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1331 						     pe->pe_number,
1332 						     window_id,
1333 						     pe->tce_bypass_base,
1334 						     0);
1335 	}
1336 	if (rc)
1337 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1338 	else
1339 		pe->tce_bypass_enabled = enable;
1340 }
1341 
pnv_pci_ioda2_create_table(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,bool alloc_userspace_copy,struct iommu_table ** ptbl)1342 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1343 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1344 		bool alloc_userspace_copy, struct iommu_table **ptbl)
1345 {
1346 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1347 			table_group);
1348 	int nid = pe->phb->hose->node;
1349 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1350 	long ret;
1351 	struct iommu_table *tbl;
1352 
1353 	tbl = pnv_pci_table_alloc(nid);
1354 	if (!tbl)
1355 		return -ENOMEM;
1356 
1357 	tbl->it_ops = &pnv_ioda2_iommu_ops;
1358 
1359 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1360 			bus_offset, page_shift, window_size,
1361 			levels, alloc_userspace_copy, tbl);
1362 	if (ret) {
1363 		iommu_tce_table_put(tbl);
1364 		return ret;
1365 	}
1366 
1367 	*ptbl = tbl;
1368 
1369 	return 0;
1370 }
1371 
pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe * pe)1372 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1373 {
1374 	struct iommu_table *tbl = NULL;
1375 	long rc;
1376 	unsigned long res_start, res_end;
1377 
1378 	/*
1379 	 * crashkernel= specifies the kdump kernel's maximum memory at
1380 	 * some offset and there is no guaranteed the result is a power
1381 	 * of 2, which will cause errors later.
1382 	 */
1383 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1384 
1385 	/*
1386 	 * In memory constrained environments, e.g. kdump kernel, the
1387 	 * DMA window can be larger than available memory, which will
1388 	 * cause errors later.
1389 	 */
1390 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_PAGE_ORDER);
1391 
1392 	/*
1393 	 * We create the default window as big as we can. The constraint is
1394 	 * the max order of allocation possible. The TCE table is likely to
1395 	 * end up being multilevel and with on-demand allocation in place,
1396 	 * the initial use is not going to be huge as the default window aims
1397 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1398 	 */
1399 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1400 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1401 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1402 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1403 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1404 	unsigned int levels = tces_order / tcelevel_order;
1405 
1406 	if (tces_order % tcelevel_order)
1407 		levels += 1;
1408 	/*
1409 	 * We try to stick to default levels (which is >1 at the moment) in
1410 	 * order to save memory by relying on on-demain TCE level allocation.
1411 	 */
1412 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1413 
1414 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1415 			window_size, levels, false, &tbl);
1416 	if (rc) {
1417 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1418 				rc);
1419 		return rc;
1420 	}
1421 
1422 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1423 	res_start = 0;
1424 	res_end = 0;
1425 	if (window_size > pe->phb->ioda.m32_pci_base) {
1426 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1427 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1428 	}
1429 
1430 	tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1431 	if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1432 		rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1433 	else
1434 		rc = -ENOMEM;
1435 	if (rc) {
1436 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1437 		iommu_tce_table_put(tbl);
1438 		tbl = NULL; /* This clears iommu_table_base below */
1439 	}
1440 	if (!pnv_iommu_bypass_disabled)
1441 		pnv_pci_ioda2_set_bypass(pe, true);
1442 
1443 	/*
1444 	 * Set table base for the case of IOMMU DMA use. Usually this is done
1445 	 * from dma_dev_setup() which is not called when a device is returned
1446 	 * from VFIO so do it here.
1447 	 */
1448 	if (pe->pdev)
1449 		set_iommu_table_base(&pe->pdev->dev, tbl);
1450 
1451 	return 0;
1452 }
1453 
pnv_pci_ioda2_unset_window(struct iommu_table_group * table_group,int num)1454 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1455 		int num)
1456 {
1457 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1458 			table_group);
1459 	struct pnv_phb *phb = pe->phb;
1460 	long ret;
1461 
1462 	pe_info(pe, "Removing DMA window #%d\n", num);
1463 
1464 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1465 			(pe->pe_number << 1) + num,
1466 			0/* levels */, 0/* table address */,
1467 			0/* table size */, 0/* page size */);
1468 	if (ret)
1469 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1470 	else
1471 		pnv_pci_ioda2_tce_invalidate_pe(pe);
1472 
1473 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1474 
1475 	return ret;
1476 }
1477 
1478 #ifdef CONFIG_IOMMU_API
pnv_pci_ioda2_get_table_size(__u32 page_shift,__u64 window_size,__u32 levels)1479 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1480 		__u64 window_size, __u32 levels)
1481 {
1482 	unsigned long bytes = 0;
1483 	const unsigned window_shift = ilog2(window_size);
1484 	unsigned entries_shift = window_shift - page_shift;
1485 	unsigned table_shift = entries_shift + 3;
1486 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1487 	unsigned long direct_table_size;
1488 
1489 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1490 			!is_power_of_2(window_size))
1491 		return 0;
1492 
1493 	/* Calculate a direct table size from window_size and levels */
1494 	entries_shift = (entries_shift + levels - 1) / levels;
1495 	table_shift = entries_shift + 3;
1496 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1497 	direct_table_size =  1UL << table_shift;
1498 
1499 	for ( ; levels; --levels) {
1500 		bytes += ALIGN(tce_table_size, direct_table_size);
1501 
1502 		tce_table_size /= direct_table_size;
1503 		tce_table_size <<= 3;
1504 		tce_table_size = max_t(unsigned long,
1505 				tce_table_size, direct_table_size);
1506 	}
1507 
1508 	return bytes + bytes; /* one for HW table, one for userspace copy */
1509 }
1510 
pnv_pci_ioda2_create_table_userspace(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table ** ptbl)1511 static long pnv_pci_ioda2_create_table_userspace(
1512 		struct iommu_table_group *table_group,
1513 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1514 		struct iommu_table **ptbl)
1515 {
1516 	long ret = pnv_pci_ioda2_create_table(table_group,
1517 			num, page_shift, window_size, levels, true, ptbl);
1518 
1519 	if (!ret)
1520 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1521 				page_shift, window_size, levels);
1522 	return ret;
1523 }
1524 
pnv_ioda_setup_bus_dma(struct pnv_ioda_pe * pe,struct pci_bus * bus)1525 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1526 {
1527 	struct pci_dev *dev;
1528 
1529 	list_for_each_entry(dev, &bus->devices, bus_list) {
1530 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1531 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1532 
1533 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1534 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1535 	}
1536 }
1537 
pnv_ioda2_take_ownership(struct iommu_table_group * table_group,struct device * dev __maybe_unused)1538 static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group,
1539 				     struct device *dev __maybe_unused)
1540 {
1541 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1542 						table_group);
1543 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1544 	struct iommu_table *tbl = pe->table_group.tables[0];
1545 
1546 	/*
1547 	 * iommu_ops transfers the ownership per a device and we mode
1548 	 * the group ownership with the first device in the group.
1549 	 */
1550 	if (!tbl)
1551 		return 0;
1552 
1553 	pnv_pci_ioda2_set_bypass(pe, false);
1554 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1555 	if (pe->pbus)
1556 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1557 	else if (pe->pdev)
1558 		set_iommu_table_base(&pe->pdev->dev, NULL);
1559 	iommu_tce_table_put(tbl);
1560 
1561 	return 0;
1562 }
1563 
pnv_ioda2_release_ownership(struct iommu_table_group * table_group,struct device * dev __maybe_unused)1564 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group,
1565 					struct device *dev __maybe_unused)
1566 {
1567 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1568 						table_group);
1569 
1570 	/* See the comment about iommu_ops above */
1571 	if (pe->table_group.tables[0])
1572 		return;
1573 	pnv_pci_ioda2_setup_default_config(pe);
1574 	if (pe->pbus)
1575 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1576 }
1577 
1578 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1579 	.get_table_size = pnv_pci_ioda2_get_table_size,
1580 	.create_table = pnv_pci_ioda2_create_table_userspace,
1581 	.set_window = pnv_pci_ioda2_set_window,
1582 	.unset_window = pnv_pci_ioda2_unset_window,
1583 	.take_ownership = pnv_ioda2_take_ownership,
1584 	.release_ownership = pnv_ioda2_release_ownership,
1585 };
1586 #endif
1587 
pnv_pci_ioda2_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)1588 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1589 				struct pnv_ioda_pe *pe)
1590 {
1591 	int64_t rc;
1592 
1593 	/* TVE #1 is selected by PCI address bit 59 */
1594 	pe->tce_bypass_base = 1ull << 59;
1595 
1596 	/* The PE will reserve all possible 32-bits space */
1597 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1598 		phb->ioda.m32_pci_base);
1599 
1600 	/* Setup linux iommu table */
1601 	pe->table_group.tce32_start = 0;
1602 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1603 	pe->table_group.max_dynamic_windows_supported =
1604 			IOMMU_TABLE_GROUP_MAX_TABLES;
1605 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1606 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1607 
1608 	rc = pnv_pci_ioda2_setup_default_config(pe);
1609 	if (rc)
1610 		return;
1611 
1612 #ifdef CONFIG_IOMMU_API
1613 	pe->table_group.ops = &pnv_pci_ioda2_ops;
1614 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1615 			     pe->pe_number);
1616 #endif
1617 	pe->dma_setup_done = true;
1618 }
1619 
1620 /*
1621  * Called from KVM in real mode to EOI passthru interrupts. The ICP
1622  * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1623  *
1624  * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1625  * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1626  * numbers of the in-the-middle MSI domain are vector numbers and it's
1627  * good enough for OPAL. Use that.
1628  */
pnv_opal_pci_msi_eoi(struct irq_data * d)1629 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1630 {
1631 	struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1632 	struct pnv_phb *phb = hose->private_data;
1633 
1634 	return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1635 }
1636 
1637 static struct irq_chip pnv_pci_msi_irq_chip;
1638 
1639 /*
1640  * Returns true iff chip is something that we could call
1641  * pnv_opal_pci_msi_eoi for.
1642  */
is_pnv_opal_msi(struct irq_chip * chip)1643 bool is_pnv_opal_msi(struct irq_chip *chip)
1644 {
1645 	return chip == &pnv_pci_msi_irq_chip;
1646 }
1647 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
1648 
__pnv_pci_ioda_msi_setup(struct pnv_phb * phb,struct pci_dev * dev,unsigned int xive_num,unsigned int is_64,struct msi_msg * msg)1649 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1650 				    unsigned int xive_num,
1651 				    unsigned int is_64, struct msi_msg *msg)
1652 {
1653 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1654 	__be32 data;
1655 	int rc;
1656 
1657 	dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
1658 		is_64 ? "64" : "32", xive_num);
1659 
1660 	/* No PE assigned ? bail out ... no MSI for you ! */
1661 	if (pe == NULL)
1662 		return -ENXIO;
1663 
1664 	/* Check if we have an MVE */
1665 	if (pe->mve_number < 0)
1666 		return -ENXIO;
1667 
1668 	/* Force 32-bit MSI on some broken devices */
1669 	if (dev->no_64bit_msi)
1670 		is_64 = 0;
1671 
1672 	/* Assign XIVE to PE */
1673 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1674 	if (rc) {
1675 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1676 			pci_name(dev), rc, xive_num);
1677 		return -EIO;
1678 	}
1679 
1680 	if (is_64) {
1681 		__be64 addr64;
1682 
1683 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1684 				     &addr64, &data);
1685 		if (rc) {
1686 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1687 				pci_name(dev), rc);
1688 			return -EIO;
1689 		}
1690 		msg->address_hi = be64_to_cpu(addr64) >> 32;
1691 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1692 	} else {
1693 		__be32 addr32;
1694 
1695 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1696 				     &addr32, &data);
1697 		if (rc) {
1698 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1699 				pci_name(dev), rc);
1700 			return -EIO;
1701 		}
1702 		msg->address_hi = 0;
1703 		msg->address_lo = be32_to_cpu(addr32);
1704 	}
1705 	msg->data = be32_to_cpu(data);
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * The msi_free() op is called before irq_domain_free_irqs_top() when
1712  * the handler data is still available. Use that to clear the XIVE
1713  * controller.
1714  */
pnv_msi_ops_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)1715 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
1716 				 struct msi_domain_info *info,
1717 				 unsigned int irq)
1718 {
1719 	if (xive_enabled())
1720 		xive_irq_free_data(irq);
1721 }
1722 
1723 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
1724 	.msi_free	= pnv_msi_ops_msi_free,
1725 };
1726 
pnv_msi_shutdown(struct irq_data * d)1727 static void pnv_msi_shutdown(struct irq_data *d)
1728 {
1729 	d = d->parent_data;
1730 	if (d->chip->irq_shutdown)
1731 		d->chip->irq_shutdown(d);
1732 }
1733 
pnv_msi_mask(struct irq_data * d)1734 static void pnv_msi_mask(struct irq_data *d)
1735 {
1736 	pci_msi_mask_irq(d);
1737 	irq_chip_mask_parent(d);
1738 }
1739 
pnv_msi_unmask(struct irq_data * d)1740 static void pnv_msi_unmask(struct irq_data *d)
1741 {
1742 	pci_msi_unmask_irq(d);
1743 	irq_chip_unmask_parent(d);
1744 }
1745 
1746 static struct irq_chip pnv_pci_msi_irq_chip = {
1747 	.name		= "PNV-PCI-MSI",
1748 	.irq_shutdown	= pnv_msi_shutdown,
1749 	.irq_mask	= pnv_msi_mask,
1750 	.irq_unmask	= pnv_msi_unmask,
1751 	.irq_eoi	= irq_chip_eoi_parent,
1752 };
1753 
1754 static struct msi_domain_info pnv_msi_domain_info = {
1755 	.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1756 		  MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
1757 	.ops   = &pnv_pci_msi_domain_ops,
1758 	.chip  = &pnv_pci_msi_irq_chip,
1759 };
1760 
pnv_msi_compose_msg(struct irq_data * d,struct msi_msg * msg)1761 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
1762 {
1763 	struct msi_desc *entry = irq_data_get_msi_desc(d);
1764 	struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
1765 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1766 	struct pnv_phb *phb = hose->private_data;
1767 	int rc;
1768 
1769 	rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
1770 				      entry->pci.msi_attrib.is_64, msg);
1771 	if (rc)
1772 		dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
1773 			entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
1774 }
1775 
1776 /*
1777  * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
1778  * correspond to vector numbers.
1779  */
pnv_msi_eoi(struct irq_data * d)1780 static void pnv_msi_eoi(struct irq_data *d)
1781 {
1782 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1783 	struct pnv_phb *phb = hose->private_data;
1784 
1785 	if (phb->model == PNV_PHB_MODEL_PHB3) {
1786 		/*
1787 		 * The EOI OPAL call takes an OPAL HW IRQ number but
1788 		 * since it is translated into a vector number in
1789 		 * OPAL, use that directly.
1790 		 */
1791 		WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
1792 	}
1793 
1794 	irq_chip_eoi_parent(d);
1795 }
1796 
1797 static struct irq_chip pnv_msi_irq_chip = {
1798 	.name			= "PNV-MSI",
1799 	.irq_shutdown		= pnv_msi_shutdown,
1800 	.irq_mask		= irq_chip_mask_parent,
1801 	.irq_unmask		= irq_chip_unmask_parent,
1802 	.irq_eoi		= pnv_msi_eoi,
1803 	.irq_set_affinity	= irq_chip_set_affinity_parent,
1804 	.irq_compose_msi_msg	= pnv_msi_compose_msg,
1805 };
1806 
pnv_irq_parent_domain_alloc(struct irq_domain * domain,unsigned int virq,int hwirq)1807 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
1808 				       unsigned int virq, int hwirq)
1809 {
1810 	struct irq_fwspec parent_fwspec;
1811 	int ret;
1812 
1813 	parent_fwspec.fwnode = domain->parent->fwnode;
1814 	parent_fwspec.param_count = 2;
1815 	parent_fwspec.param[0] = hwirq;
1816 	parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1817 
1818 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
1819 	if (ret)
1820 		return ret;
1821 
1822 	return 0;
1823 }
1824 
pnv_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1825 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1826 				unsigned int nr_irqs, void *arg)
1827 {
1828 	struct pci_controller *hose = domain->host_data;
1829 	struct pnv_phb *phb = hose->private_data;
1830 	msi_alloc_info_t *info = arg;
1831 	struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
1832 	int hwirq;
1833 	int i, ret;
1834 
1835 	hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
1836 	if (hwirq < 0) {
1837 		dev_warn(&pdev->dev, "failed to find a free MSI\n");
1838 		return -ENOSPC;
1839 	}
1840 
1841 	dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
1842 		hose->dn, virq, hwirq, nr_irqs);
1843 
1844 	for (i = 0; i < nr_irqs; i++) {
1845 		ret = pnv_irq_parent_domain_alloc(domain, virq + i,
1846 						  phb->msi_base + hwirq + i);
1847 		if (ret)
1848 			goto out;
1849 
1850 		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1851 					      &pnv_msi_irq_chip, hose);
1852 	}
1853 
1854 	return 0;
1855 
1856 out:
1857 	irq_domain_free_irqs_parent(domain, virq, i - 1);
1858 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
1859 	return ret;
1860 }
1861 
pnv_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1862 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1863 				unsigned int nr_irqs)
1864 {
1865 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1866 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1867 	struct pnv_phb *phb = hose->private_data;
1868 
1869 	pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
1870 		 virq, d->hwirq, nr_irqs);
1871 
1872 	msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
1873 	/* XIVE domain is cleared through ->msi_free() */
1874 }
1875 
1876 static const struct irq_domain_ops pnv_irq_domain_ops = {
1877 	.alloc  = pnv_irq_domain_alloc,
1878 	.free   = pnv_irq_domain_free,
1879 };
1880 
pnv_msi_allocate_domains(struct pci_controller * hose,unsigned int count)1881 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
1882 {
1883 	struct pnv_phb *phb = hose->private_data;
1884 	struct irq_domain *parent = irq_get_default_domain();
1885 
1886 	hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
1887 	if (!hose->fwnode)
1888 		return -ENOMEM;
1889 
1890 	hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
1891 						       hose->fwnode,
1892 						       &pnv_irq_domain_ops, hose);
1893 	if (!hose->dev_domain) {
1894 		pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
1895 		       hose->dn, hose->global_number);
1896 		irq_domain_free_fwnode(hose->fwnode);
1897 		return -ENOMEM;
1898 	}
1899 
1900 	hose->msi_domain = pci_msi_create_irq_domain(of_fwnode_handle(hose->dn),
1901 						     &pnv_msi_domain_info,
1902 						     hose->dev_domain);
1903 	if (!hose->msi_domain) {
1904 		pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
1905 		       hose->dn, hose->global_number);
1906 		irq_domain_free_fwnode(hose->fwnode);
1907 		irq_domain_remove(hose->dev_domain);
1908 		return -ENOMEM;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
pnv_pci_init_ioda_msis(struct pnv_phb * phb)1914 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1915 {
1916 	unsigned int count;
1917 	const __be32 *prop = of_get_property(phb->hose->dn,
1918 					     "ibm,opal-msi-ranges", NULL);
1919 	if (!prop) {
1920 		/* BML Fallback */
1921 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1922 	}
1923 	if (!prop)
1924 		return;
1925 
1926 	phb->msi_base = be32_to_cpup(prop);
1927 	count = be32_to_cpup(prop + 1);
1928 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1929 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1930 		       phb->hose->global_number);
1931 		return;
1932 	}
1933 
1934 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1935 		count, phb->msi_base);
1936 
1937 	pnv_msi_allocate_domains(phb->hose, count);
1938 }
1939 
pnv_ioda_setup_pe_res(struct pnv_ioda_pe * pe,struct resource * res)1940 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
1941 				  struct resource *res)
1942 {
1943 	struct pnv_phb *phb = pe->phb;
1944 	struct pci_bus_region region;
1945 	int index;
1946 	int64_t rc;
1947 
1948 	if (!res || !res->flags || res->start > res->end ||
1949 	    res->flags & IORESOURCE_UNSET)
1950 		return;
1951 
1952 	if (res->flags & IORESOURCE_IO) {
1953 		region.start = res->start - phb->ioda.io_pci_base;
1954 		region.end   = res->end - phb->ioda.io_pci_base;
1955 		index = region.start / phb->ioda.io_segsize;
1956 
1957 		while (index < phb->ioda.total_pe_num &&
1958 		       region.start <= region.end) {
1959 			phb->ioda.io_segmap[index] = pe->pe_number;
1960 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1961 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1962 			if (rc != OPAL_SUCCESS) {
1963 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
1964 				       __func__, rc, index, pe->pe_number);
1965 				break;
1966 			}
1967 
1968 			region.start += phb->ioda.io_segsize;
1969 			index++;
1970 		}
1971 	} else if ((res->flags & IORESOURCE_MEM) &&
1972 		   !pnv_pci_is_m64(phb, res)) {
1973 		region.start = res->start -
1974 			       phb->hose->mem_offset[0] -
1975 			       phb->ioda.m32_pci_base;
1976 		region.end   = res->end -
1977 			       phb->hose->mem_offset[0] -
1978 			       phb->ioda.m32_pci_base;
1979 		index = region.start / phb->ioda.m32_segsize;
1980 
1981 		while (index < phb->ioda.total_pe_num &&
1982 		       region.start <= region.end) {
1983 			phb->ioda.m32_segmap[index] = pe->pe_number;
1984 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1985 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1986 			if (rc != OPAL_SUCCESS) {
1987 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
1988 				       __func__, rc, index, pe->pe_number);
1989 				break;
1990 			}
1991 
1992 			region.start += phb->ioda.m32_segsize;
1993 			index++;
1994 		}
1995 	}
1996 }
1997 
1998 /*
1999  * This function is supposed to be called on basis of PE from top
2000  * to bottom style. So the I/O or MMIO segment assigned to
2001  * parent PE could be overridden by its child PEs if necessary.
2002  */
pnv_ioda_setup_pe_seg(struct pnv_ioda_pe * pe)2003 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2004 {
2005 	struct pci_dev *pdev;
2006 	int i;
2007 
2008 	/*
2009 	 * NOTE: We only care PCI bus based PE for now. For PCI
2010 	 * device based PE, for example SRIOV sensitive VF should
2011 	 * be figured out later.
2012 	 */
2013 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2014 
2015 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2016 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2017 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2018 
2019 		/*
2020 		 * If the PE contains all subordinate PCI buses, the
2021 		 * windows of the child bridges should be mapped to
2022 		 * the PE as well.
2023 		 */
2024 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2025 			continue;
2026 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2027 			pnv_ioda_setup_pe_res(pe,
2028 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2029 	}
2030 }
2031 
2032 #ifdef CONFIG_DEBUG_FS
pnv_pci_diag_data_set(void * data,u64 val)2033 static int pnv_pci_diag_data_set(void *data, u64 val)
2034 {
2035 	struct pnv_phb *phb = data;
2036 	s64 ret;
2037 
2038 	/* Retrieve the diag data from firmware */
2039 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2040 					  phb->diag_data_size);
2041 	if (ret != OPAL_SUCCESS)
2042 		return -EIO;
2043 
2044 	/* Print the diag data to the kernel log */
2045 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2046 	return 0;
2047 }
2048 
2049 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2050 			 "%llu\n");
2051 
pnv_pci_ioda_pe_dump(void * data,u64 val)2052 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2053 {
2054 	struct pnv_phb *phb = data;
2055 	int pe_num;
2056 
2057 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2058 		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2059 
2060 		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2061 			continue;
2062 
2063 		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2064 			pe->rid, pe->device_count,
2065 			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2066 			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2067 			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2068 			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2069 			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2070 			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2077 			 pnv_pci_ioda_pe_dump, "%llu\n");
2078 
2079 #endif /* CONFIG_DEBUG_FS */
2080 
pnv_pci_ioda_create_dbgfs(void)2081 static void pnv_pci_ioda_create_dbgfs(void)
2082 {
2083 #ifdef CONFIG_DEBUG_FS
2084 	struct pci_controller *hose, *tmp;
2085 	struct pnv_phb *phb;
2086 	char name[16];
2087 
2088 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2089 		phb = hose->private_data;
2090 
2091 		sprintf(name, "PCI%04x", hose->global_number);
2092 		phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2093 
2094 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2095 					   phb, &pnv_pci_diag_data_fops);
2096 		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2097 					   phb, &pnv_pci_ioda_pe_dump_fops);
2098 	}
2099 #endif /* CONFIG_DEBUG_FS */
2100 }
2101 
pnv_pci_enable_bridge(struct pci_bus * bus)2102 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2103 {
2104 	struct pci_dev *dev = bus->self;
2105 	struct pci_bus *child;
2106 
2107 	/* Empty bus ? bail */
2108 	if (list_empty(&bus->devices))
2109 		return;
2110 
2111 	/*
2112 	 * If there's a bridge associated with that bus enable it. This works
2113 	 * around races in the generic code if the enabling is done during
2114 	 * parallel probing. This can be removed once those races have been
2115 	 * fixed.
2116 	 */
2117 	if (dev) {
2118 		int rc = pci_enable_device(dev);
2119 		if (rc)
2120 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2121 		pci_set_master(dev);
2122 	}
2123 
2124 	/* Perform the same to child busses */
2125 	list_for_each_entry(child, &bus->children, node)
2126 		pnv_pci_enable_bridge(child);
2127 }
2128 
pnv_pci_enable_bridges(void)2129 static void pnv_pci_enable_bridges(void)
2130 {
2131 	struct pci_controller *hose;
2132 
2133 	list_for_each_entry(hose, &hose_list, list_node)
2134 		pnv_pci_enable_bridge(hose->bus);
2135 }
2136 
pnv_pci_ioda_fixup(void)2137 static void pnv_pci_ioda_fixup(void)
2138 {
2139 	pnv_pci_ioda_create_dbgfs();
2140 
2141 	pnv_pci_enable_bridges();
2142 
2143 #ifdef CONFIG_EEH
2144 	pnv_eeh_post_init();
2145 #endif
2146 }
2147 
2148 /*
2149  * Returns the alignment for I/O or memory windows for P2P
2150  * bridges. That actually depends on how PEs are segmented.
2151  * For now, we return I/O or M32 segment size for PE sensitive
2152  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2153  * 1MiB for memory) will be returned.
2154  *
2155  * The current PCI bus might be put into one PE, which was
2156  * create against the parent PCI bridge. For that case, we
2157  * needn't enlarge the alignment so that we can save some
2158  * resources.
2159  */
pnv_pci_window_alignment(struct pci_bus * bus,unsigned long type)2160 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2161 						unsigned long type)
2162 {
2163 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2164 	int num_pci_bridges = 0;
2165 	struct pci_dev *bridge;
2166 
2167 	bridge = bus->self;
2168 	while (bridge) {
2169 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2170 			num_pci_bridges++;
2171 			if (num_pci_bridges >= 2)
2172 				return 1;
2173 		}
2174 
2175 		bridge = bridge->bus->self;
2176 	}
2177 
2178 	/*
2179 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2180 	 * alignment for any 64-bit resource, PCIe doesn't care and
2181 	 * bridges only do 64-bit prefetchable anyway.
2182 	 */
2183 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2184 		return phb->ioda.m64_segsize;
2185 	if (type & IORESOURCE_MEM)
2186 		return phb->ioda.m32_segsize;
2187 
2188 	return phb->ioda.io_segsize;
2189 }
2190 
2191 /*
2192  * We are updating root port or the upstream port of the
2193  * bridge behind the root port with PHB's windows in order
2194  * to accommodate the changes on required resources during
2195  * PCI (slot) hotplug, which is connected to either root
2196  * port or the downstream ports of PCIe switch behind the
2197  * root port.
2198  */
pnv_pci_fixup_bridge_resources(struct pci_bus * bus,unsigned long type)2199 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2200 					   unsigned long type)
2201 {
2202 	struct pci_controller *hose = pci_bus_to_host(bus);
2203 	struct pnv_phb *phb = hose->private_data;
2204 	struct pci_dev *bridge = bus->self;
2205 	struct resource *r, *w;
2206 	bool msi_region = false;
2207 	int i;
2208 
2209 	/* Check if we need apply fixup to the bridge's windows */
2210 	if (!pci_is_root_bus(bridge->bus) &&
2211 	    !pci_is_root_bus(bridge->bus->self->bus))
2212 		return;
2213 
2214 	/* Fixup the resources */
2215 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2216 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2217 		if (!r->flags || !r->parent)
2218 			continue;
2219 
2220 		w = NULL;
2221 		if (r->flags & type & IORESOURCE_IO)
2222 			w = &hose->io_resource;
2223 		else if (pnv_pci_is_m64(phb, r) &&
2224 			 (type & IORESOURCE_PREFETCH) &&
2225 			 phb->ioda.m64_segsize)
2226 			w = &hose->mem_resources[1];
2227 		else if (r->flags & type & IORESOURCE_MEM) {
2228 			w = &hose->mem_resources[0];
2229 			msi_region = true;
2230 		}
2231 
2232 		r->start = w->start;
2233 		r->end = w->end;
2234 
2235 		/* The 64KB 32-bits MSI region shouldn't be included in
2236 		 * the 32-bits bridge window. Otherwise, we can see strange
2237 		 * issues. One of them is EEH error observed on Garrison.
2238 		 *
2239 		 * Exclude top 1MB region which is the minimal alignment of
2240 		 * 32-bits bridge window.
2241 		 */
2242 		if (msi_region) {
2243 			r->end += 0x10000;
2244 			r->end -= 0x100000;
2245 		}
2246 	}
2247 }
2248 
pnv_pci_configure_bus(struct pci_bus * bus)2249 static void pnv_pci_configure_bus(struct pci_bus *bus)
2250 {
2251 	struct pci_dev *bridge = bus->self;
2252 	struct pnv_ioda_pe *pe;
2253 	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2254 
2255 	dev_info(&bus->dev, "Configuring PE for bus\n");
2256 
2257 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2258 	if (WARN_ON(list_empty(&bus->devices)))
2259 		return;
2260 
2261 	/* Reserve PEs according to used M64 resources */
2262 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2263 
2264 	/*
2265 	 * Assign PE. We might run here because of partial hotplug.
2266 	 * For the case, we just pick up the existing PE and should
2267 	 * not allocate resources again.
2268 	 */
2269 	pe = pnv_ioda_setup_bus_PE(bus, all);
2270 	if (!pe)
2271 		return;
2272 
2273 	pnv_ioda_setup_pe_seg(pe);
2274 }
2275 
pnv_pci_default_alignment(void)2276 static resource_size_t pnv_pci_default_alignment(void)
2277 {
2278 	return PAGE_SIZE;
2279 }
2280 
2281 /* Prevent enabling devices for which we couldn't properly
2282  * assign a PE
2283  */
pnv_pci_enable_device_hook(struct pci_dev * dev)2284 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2285 {
2286 	struct pci_dn *pdn;
2287 
2288 	pdn = pci_get_pdn(dev);
2289 	if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2290 		pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2291 		return false;
2292 	}
2293 
2294 	return true;
2295 }
2296 
pnv_ocapi_enable_device_hook(struct pci_dev * dev)2297 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2298 {
2299 	struct pci_dn *pdn;
2300 	struct pnv_ioda_pe *pe;
2301 
2302 	pdn = pci_get_pdn(dev);
2303 	if (!pdn)
2304 		return false;
2305 
2306 	if (pdn->pe_number == IODA_INVALID_PE) {
2307 		pe = pnv_ioda_setup_dev_PE(dev);
2308 		if (!pe)
2309 			return false;
2310 	}
2311 	return true;
2312 }
2313 
pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe * pe)2314 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2315 {
2316 	struct iommu_table *tbl = pe->table_group.tables[0];
2317 	int64_t rc;
2318 
2319 	if (!pe->dma_setup_done)
2320 		return;
2321 
2322 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2323 	if (rc)
2324 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2325 
2326 	pnv_pci_ioda2_set_bypass(pe, false);
2327 	if (pe->table_group.group) {
2328 		iommu_group_put(pe->table_group.group);
2329 		WARN_ON(pe->table_group.group);
2330 	}
2331 
2332 	iommu_tce_table_put(tbl);
2333 }
2334 
pnv_ioda_free_pe_seg(struct pnv_ioda_pe * pe,unsigned short win,unsigned int * map)2335 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2336 				 unsigned short win,
2337 				 unsigned int *map)
2338 {
2339 	struct pnv_phb *phb = pe->phb;
2340 	int idx;
2341 	int64_t rc;
2342 
2343 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2344 		if (map[idx] != pe->pe_number)
2345 			continue;
2346 
2347 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2348 				phb->ioda.reserved_pe_idx, win, 0, idx);
2349 
2350 		if (rc != OPAL_SUCCESS)
2351 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2352 				rc, win, idx);
2353 
2354 		map[idx] = IODA_INVALID_PE;
2355 	}
2356 }
2357 
pnv_ioda_release_pe_seg(struct pnv_ioda_pe * pe)2358 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2359 {
2360 	struct pnv_phb *phb = pe->phb;
2361 
2362 	if (phb->type == PNV_PHB_IODA2) {
2363 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2364 				     phb->ioda.m32_segmap);
2365 	}
2366 }
2367 
pnv_ioda_release_pe(struct pnv_ioda_pe * pe)2368 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2369 {
2370 	struct pnv_phb *phb = pe->phb;
2371 	struct pnv_ioda_pe *slave, *tmp;
2372 
2373 	pe_info(pe, "Releasing PE\n");
2374 
2375 	mutex_lock(&phb->ioda.pe_list_mutex);
2376 	list_del(&pe->list);
2377 	mutex_unlock(&phb->ioda.pe_list_mutex);
2378 
2379 	switch (phb->type) {
2380 	case PNV_PHB_IODA2:
2381 		pnv_pci_ioda2_release_pe_dma(pe);
2382 		break;
2383 	case PNV_PHB_NPU_OCAPI:
2384 		break;
2385 	default:
2386 		WARN_ON(1);
2387 	}
2388 
2389 	pnv_ioda_release_pe_seg(pe);
2390 	pnv_ioda_deconfigure_pe(pe->phb, pe);
2391 
2392 	/* Release slave PEs in the compound PE */
2393 	if (pe->flags & PNV_IODA_PE_MASTER) {
2394 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2395 			list_del(&slave->list);
2396 			pnv_ioda_free_pe(slave);
2397 		}
2398 	}
2399 
2400 	/*
2401 	 * The PE for root bus can be removed because of hotplug in EEH
2402 	 * recovery for fenced PHB error. We need to mark the PE dead so
2403 	 * that it can be populated again in PCI hot add path. The PE
2404 	 * shouldn't be destroyed as it's the global reserved resource.
2405 	 */
2406 	if (phb->ioda.root_pe_idx == pe->pe_number)
2407 		return;
2408 
2409 	pnv_ioda_free_pe(pe);
2410 }
2411 
pnv_pci_release_device(struct pci_dev * pdev)2412 static void pnv_pci_release_device(struct pci_dev *pdev)
2413 {
2414 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2415 	struct pci_dn *pdn = pci_get_pdn(pdev);
2416 	struct pnv_ioda_pe *pe;
2417 
2418 	/* The VF PE state is torn down when sriov_disable() is called */
2419 	if (pdev->is_virtfn)
2420 		return;
2421 
2422 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2423 		return;
2424 
2425 #ifdef CONFIG_PCI_IOV
2426 	/*
2427 	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2428 	 * the iov state at probe time since we need to fiddle with the IOV
2429 	 * resources.
2430 	 */
2431 	if (pdev->is_physfn)
2432 		kfree(pdev->dev.archdata.iov_data);
2433 #endif
2434 
2435 	/*
2436 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2437 	 * isn't removed and added afterwards in this scenario. We should
2438 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2439 	 * device count is decreased on removing devices while failing to
2440 	 * be increased on adding devices. It leads to unbalanced PE's device
2441 	 * count and eventually make normal PCI hotplug path broken.
2442 	 */
2443 	pe = &phb->ioda.pe_array[pdn->pe_number];
2444 	pdn->pe_number = IODA_INVALID_PE;
2445 
2446 	WARN_ON(--pe->device_count < 0);
2447 	if (pe->device_count == 0)
2448 		pnv_ioda_release_pe(pe);
2449 }
2450 
pnv_pci_ioda_shutdown(struct pci_controller * hose)2451 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2452 {
2453 	struct pnv_phb *phb = hose->private_data;
2454 
2455 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2456 		       OPAL_ASSERT_RESET);
2457 }
2458 
pnv_pci_ioda_dma_bus_setup(struct pci_bus * bus)2459 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2460 {
2461 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2462 	struct pnv_ioda_pe *pe;
2463 
2464 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2465 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2466 			continue;
2467 
2468 		if (!pe->pbus)
2469 			continue;
2470 
2471 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2472 			pe->pbus = bus;
2473 			break;
2474 		}
2475 	}
2476 }
2477 
2478 #ifdef CONFIG_IOMMU_API
pnv_pci_device_group(struct pci_controller * hose,struct pci_dev * pdev)2479 static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose,
2480 						struct pci_dev *pdev)
2481 {
2482 	struct pnv_phb *phb = hose->private_data;
2483 	struct pnv_ioda_pe *pe;
2484 
2485 	if (WARN_ON(!phb))
2486 		return ERR_PTR(-ENODEV);
2487 
2488 	pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
2489 	if (!pe)
2490 		return ERR_PTR(-ENODEV);
2491 
2492 	if (!pe->table_group.group)
2493 		return ERR_PTR(-ENODEV);
2494 
2495 	return iommu_group_ref_get(pe->table_group.group);
2496 }
2497 #endif
2498 
2499 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2500 	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2501 	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2502 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2503 	.enable_device_hook	= pnv_pci_enable_device_hook,
2504 	.release_device		= pnv_pci_release_device,
2505 	.window_alignment	= pnv_pci_window_alignment,
2506 	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2507 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2508 	.shutdown		= pnv_pci_ioda_shutdown,
2509 #ifdef CONFIG_IOMMU_API
2510 	.device_group		= pnv_pci_device_group,
2511 #endif
2512 };
2513 
2514 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2515 	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2516 	.release_device		= pnv_pci_release_device,
2517 	.window_alignment	= pnv_pci_window_alignment,
2518 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2519 	.shutdown		= pnv_pci_ioda_shutdown,
2520 };
2521 
pnv_pci_init_ioda_phb(struct device_node * np,u64 hub_id,int ioda_type)2522 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2523 					 u64 hub_id, int ioda_type)
2524 {
2525 	struct pci_controller *hose;
2526 	struct pnv_phb *phb;
2527 	unsigned long size, m64map_off, m32map_off, pemap_off;
2528 	struct pnv_ioda_pe *root_pe;
2529 	struct resource r;
2530 	const __be64 *prop64;
2531 	const __be32 *prop32;
2532 	int len;
2533 	unsigned int segno;
2534 	u64 phb_id;
2535 	void *aux;
2536 	long rc;
2537 
2538 	if (!of_device_is_available(np))
2539 		return;
2540 
2541 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2542 
2543 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2544 	if (!prop64) {
2545 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2546 		return;
2547 	}
2548 	phb_id = be64_to_cpup(prop64);
2549 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2550 
2551 	phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2552 	if (!phb)
2553 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2554 		      sizeof(*phb));
2555 
2556 	/* Allocate PCI controller */
2557 	phb->hose = hose = pcibios_alloc_controller(np);
2558 	if (!phb->hose) {
2559 		pr_err("  Can't allocate PCI controller for %pOF\n",
2560 		       np);
2561 		memblock_free(phb, sizeof(struct pnv_phb));
2562 		return;
2563 	}
2564 
2565 	spin_lock_init(&phb->lock);
2566 	prop32 = of_get_property(np, "bus-range", &len);
2567 	if (prop32 && len == 8) {
2568 		hose->first_busno = be32_to_cpu(prop32[0]);
2569 		hose->last_busno = be32_to_cpu(prop32[1]);
2570 	} else {
2571 		pr_warn("  Broken <bus-range> on %pOF\n", np);
2572 		hose->first_busno = 0;
2573 		hose->last_busno = 0xff;
2574 	}
2575 	hose->private_data = phb;
2576 	phb->hub_id = hub_id;
2577 	phb->opal_id = phb_id;
2578 	phb->type = ioda_type;
2579 	mutex_init(&phb->ioda.pe_alloc_mutex);
2580 
2581 	/* Detect specific models for error handling */
2582 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2583 		phb->model = PNV_PHB_MODEL_P7IOC;
2584 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2585 		phb->model = PNV_PHB_MODEL_PHB3;
2586 	else
2587 		phb->model = PNV_PHB_MODEL_UNKNOWN;
2588 
2589 	/* Initialize diagnostic data buffer */
2590 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2591 	if (prop32)
2592 		phb->diag_data_size = be32_to_cpup(prop32);
2593 	else
2594 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2595 
2596 	phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
2597 	if (!phb->diag_data)
2598 		panic("%s: Failed to allocate %u bytes\n", __func__,
2599 		      phb->diag_data_size);
2600 
2601 	/* Parse 32-bit and IO ranges (if any) */
2602 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2603 
2604 	/* Get registers */
2605 	if (!of_address_to_resource(np, 0, &r)) {
2606 		phb->regs_phys = r.start;
2607 		phb->regs = ioremap(r.start, resource_size(&r));
2608 		if (phb->regs == NULL)
2609 			pr_err("  Failed to map registers !\n");
2610 	}
2611 
2612 	/* Initialize more IODA stuff */
2613 	phb->ioda.total_pe_num = 1;
2614 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2615 	if (prop32)
2616 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
2617 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2618 	if (prop32)
2619 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
2620 
2621 	/* Invalidate RID to PE# mapping */
2622 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
2623 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
2624 
2625 	/* Parse 64-bit MMIO range */
2626 	pnv_ioda_parse_m64_window(phb);
2627 
2628 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2629 	/* FW Has already off top 64k of M32 space (MSI space) */
2630 	phb->ioda.m32_size += 0x10000;
2631 
2632 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
2633 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2634 	phb->ioda.io_size = hose->pci_io_size;
2635 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
2636 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2637 
2638 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2639 	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
2640 			sizeof(unsigned long));
2641 	m64map_off = size;
2642 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
2643 	m32map_off = size;
2644 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
2645 	pemap_off = size;
2646 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
2647 	aux = kzalloc(size, GFP_KERNEL);
2648 	if (!aux)
2649 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
2650 
2651 	phb->ioda.pe_alloc = aux;
2652 	phb->ioda.m64_segmap = aux + m64map_off;
2653 	phb->ioda.m32_segmap = aux + m32map_off;
2654 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
2655 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
2656 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
2657 	}
2658 	phb->ioda.pe_array = aux + pemap_off;
2659 
2660 	/*
2661 	 * Choose PE number for root bus, which shouldn't have
2662 	 * M64 resources consumed by its child devices. To pick
2663 	 * the PE number adjacent to the reserved one if possible.
2664 	 */
2665 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
2666 	if (phb->ioda.reserved_pe_idx == 0) {
2667 		phb->ioda.root_pe_idx = 1;
2668 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2669 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
2670 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
2671 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2672 	} else {
2673 		/* otherwise just allocate one */
2674 		root_pe = pnv_ioda_alloc_pe(phb, 1);
2675 		phb->ioda.root_pe_idx = root_pe->pe_number;
2676 	}
2677 
2678 	INIT_LIST_HEAD(&phb->ioda.pe_list);
2679 	mutex_init(&phb->ioda.pe_list_mutex);
2680 
2681 #if 0 /* We should really do that ... */
2682 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
2683 					 window_type,
2684 					 window_num,
2685 					 starting_real_address,
2686 					 starting_pci_address,
2687 					 segment_size);
2688 #endif
2689 
2690 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2691 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
2692 		phb->ioda.m32_size, phb->ioda.m32_segsize);
2693 	if (phb->ioda.m64_size)
2694 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2695 			phb->ioda.m64_size, phb->ioda.m64_segsize);
2696 	if (phb->ioda.io_size)
2697 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
2698 			phb->ioda.io_size, phb->ioda.io_segsize);
2699 
2700 
2701 	phb->hose->ops = &pnv_pci_ops;
2702 	phb->get_pe_state = pnv_ioda_get_pe_state;
2703 	phb->freeze_pe = pnv_ioda_freeze_pe;
2704 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2705 
2706 	/* Setup MSI support */
2707 	pnv_pci_init_ioda_msis(phb);
2708 
2709 	/*
2710 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2711 	 * to let the PCI core do resource assignment. It's supposed
2712 	 * that the PCI core will do correct I/O and MMIO alignment
2713 	 * for the P2P bridge bars so that each PCI bus (excluding
2714 	 * the child P2P bridges) can form individual PE.
2715 	 */
2716 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2717 
2718 	switch (phb->type) {
2719 	case PNV_PHB_NPU_OCAPI:
2720 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
2721 		break;
2722 	default:
2723 		hose->controller_ops = pnv_pci_ioda_controller_ops;
2724 	}
2725 
2726 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
2727 
2728 #ifdef CONFIG_PCI_IOV
2729 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
2730 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2731 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
2732 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
2733 #endif
2734 
2735 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2736 
2737 	/* Reset IODA tables to a clean state */
2738 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2739 	if (rc)
2740 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
2741 
2742 	/*
2743 	 * If we're running in kdump kernel, the previous kernel never
2744 	 * shutdown PCI devices correctly. We already got IODA table
2745 	 * cleaned out. So we have to issue PHB reset to stop all PCI
2746 	 * transactions from previous kernel. The ppc_pci_reset_phbs
2747 	 * kernel parameter will force this reset too. Additionally,
2748 	 * if the IODA reset above failed then use a bigger hammer.
2749 	 * This can happen if we get a PHB fatal error in very early
2750 	 * boot.
2751 	 */
2752 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
2753 		pr_info("  Issue PHB reset ...\n");
2754 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2755 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2756 	}
2757 
2758 	/* Remove M64 resource if we can't configure it successfully */
2759 	if (!phb->init_m64 || phb->init_m64(phb))
2760 		hose->mem_resources[1].flags = 0;
2761 
2762 	/* create pci_dn's for DT nodes under this PHB */
2763 	pci_devs_phb_init_dynamic(hose);
2764 }
2765 
pnv_pci_init_ioda2_phb(struct device_node * np)2766 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2767 {
2768 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2769 }
2770 
pnv_pci_init_npu2_opencapi_phb(struct device_node * np)2771 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
2772 {
2773 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
2774 }
2775 
pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev * dev)2776 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
2777 {
2778 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2779 
2780 	if (!machine_is(powernv))
2781 		return;
2782 
2783 	if (phb->type == PNV_PHB_NPU_OCAPI)
2784 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
2785 }
2786 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
2787