1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "filetable.h"
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "register.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 #include "napi.h"
98 #include "uring_cmd.h"
99 #include "msg_ring.h"
100 #include "memmap.h"
101 #include "zcrx.h"
102
103 #include "timeout.h"
104 #include "poll.h"
105 #include "rw.h"
106 #include "alloc_cache.h"
107 #include "eventfd.h"
108
109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111
112 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
113
114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115 REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
118 REQ_F_REISSUE | REQ_F_POLLED | \
119 IO_REQ_CLEAN_FLAGS)
120
121 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122
123 #define IO_COMPL_BATCH 32
124 #define IO_REQ_ALLOC_BATCH 8
125 #define IO_LOCAL_TW_DEFAULT_MAX 20
126
127 /* requests with any of those set should undergo io_disarm_next() */
128 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
129
130 /*
131 * No waiters. It's larger than any valid value of the tw counter
132 * so that tests against ->cq_wait_nr would fail and skip wake_up().
133 */
134 #define IO_CQ_WAKE_INIT (-1U)
135 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
136 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
137
138 static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
139 static void __io_req_caches_free(struct io_ring_ctx *ctx);
140
141 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
142
143 struct kmem_cache *req_cachep;
144 static struct workqueue_struct *iou_wq __ro_after_init;
145
146 static int __read_mostly sysctl_io_uring_disabled;
147 static int __read_mostly sysctl_io_uring_group = -1;
148
149 #ifdef CONFIG_SYSCTL
150 static const struct ctl_table kernel_io_uring_disabled_table[] = {
151 {
152 .procname = "io_uring_disabled",
153 .data = &sysctl_io_uring_disabled,
154 .maxlen = sizeof(sysctl_io_uring_disabled),
155 .mode = 0644,
156 .proc_handler = proc_dointvec_minmax,
157 .extra1 = SYSCTL_ZERO,
158 .extra2 = SYSCTL_TWO,
159 },
160 {
161 .procname = "io_uring_group",
162 .data = &sysctl_io_uring_group,
163 .maxlen = sizeof(gid_t),
164 .mode = 0644,
165 .proc_handler = proc_dointvec,
166 },
167 };
168 #endif
169
io_poison_cached_req(struct io_kiocb * req)170 static void io_poison_cached_req(struct io_kiocb *req)
171 {
172 req->ctx = IO_URING_PTR_POISON;
173 req->tctx = IO_URING_PTR_POISON;
174 req->file = IO_URING_PTR_POISON;
175 req->creds = IO_URING_PTR_POISON;
176 req->io_task_work.func = IO_URING_PTR_POISON;
177 req->apoll = IO_URING_PTR_POISON;
178 }
179
io_poison_req(struct io_kiocb * req)180 static void io_poison_req(struct io_kiocb *req)
181 {
182 io_poison_cached_req(req);
183 req->async_data = IO_URING_PTR_POISON;
184 req->kbuf = IO_URING_PTR_POISON;
185 req->comp_list.next = IO_URING_PTR_POISON;
186 req->file_node = IO_URING_PTR_POISON;
187 req->link = IO_URING_PTR_POISON;
188 }
189
__io_cqring_events(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
191 {
192 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
193 }
194
__io_cqring_events_user(struct io_ring_ctx * ctx)195 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
196 {
197 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
198 }
199
req_fail_link_node(struct io_kiocb * req,int res)200 static inline void req_fail_link_node(struct io_kiocb *req, int res)
201 {
202 req_set_fail(req);
203 io_req_set_res(req, res, 0);
204 }
205
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)206 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
207 {
208 if (IS_ENABLED(CONFIG_KASAN))
209 io_poison_cached_req(req);
210 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
211 }
212
io_ring_ctx_ref_free(struct percpu_ref * ref)213 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
214 {
215 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
216
217 complete(&ctx->ref_comp);
218 }
219
220 /*
221 * Terminate the request if either of these conditions are true:
222 *
223 * 1) It's being executed by the original task, but that task is marked
224 * with PF_EXITING as it's exiting.
225 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
226 * our fallback task_work.
227 * 3) The ring has been closed and is going away.
228 */
io_should_terminate_tw(struct io_ring_ctx * ctx)229 static inline bool io_should_terminate_tw(struct io_ring_ctx *ctx)
230 {
231 return (current->flags & (PF_EXITING | PF_KTHREAD)) || percpu_ref_is_dying(&ctx->refs);
232 }
233
io_fallback_req_func(struct work_struct * work)234 static __cold void io_fallback_req_func(struct work_struct *work)
235 {
236 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
237 fallback_work.work);
238 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
239 struct io_kiocb *req, *tmp;
240 struct io_tw_state ts = {};
241
242 percpu_ref_get(&ctx->refs);
243 mutex_lock(&ctx->uring_lock);
244 ts.cancel = io_should_terminate_tw(ctx);
245 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
246 req->io_task_work.func((struct io_tw_req){req}, ts);
247 io_submit_flush_completions(ctx);
248 mutex_unlock(&ctx->uring_lock);
249 percpu_ref_put(&ctx->refs);
250 }
251
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)252 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
253 {
254 unsigned int hash_buckets;
255 int i;
256
257 do {
258 hash_buckets = 1U << bits;
259 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
260 GFP_KERNEL_ACCOUNT);
261 if (table->hbs)
262 break;
263 if (bits == 1)
264 return -ENOMEM;
265 bits--;
266 } while (1);
267
268 table->hash_bits = bits;
269 for (i = 0; i < hash_buckets; i++)
270 INIT_HLIST_HEAD(&table->hbs[i].list);
271 return 0;
272 }
273
io_free_alloc_caches(struct io_ring_ctx * ctx)274 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
275 {
276 io_alloc_cache_free(&ctx->apoll_cache, kfree);
277 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
278 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
279 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
280 io_futex_cache_free(ctx);
281 io_rsrc_cache_free(ctx);
282 }
283
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288 bool ret;
289
290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
291 if (!ctx)
292 return NULL;
293
294 xa_init(&ctx->io_bl_xa);
295
296 /*
297 * Use 5 bits less than the max cq entries, that should give us around
298 * 32 entries per hash list if totally full and uniformly spread, but
299 * don't keep too many buckets to not overconsume memory.
300 */
301 hash_bits = ilog2(p->cq_entries) - 5;
302 hash_bits = clamp(hash_bits, 1, 8);
303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
304 goto err;
305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 0, GFP_KERNEL))
307 goto err;
308
309 ctx->flags = p->flags;
310 ctx->hybrid_poll_time = LLONG_MAX;
311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 init_waitqueue_head(&ctx->sqo_sq_wait);
313 INIT_LIST_HEAD(&ctx->sqd_list);
314 INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
316 sizeof(struct async_poll), 0);
317 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct io_async_msghdr),
319 offsetof(struct io_async_msghdr, clear));
320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_rw),
322 offsetof(struct io_async_rw, clear));
323 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
324 sizeof(struct io_async_cmd),
325 sizeof(struct io_async_cmd));
326 ret |= io_futex_cache_init(ctx);
327 ret |= io_rsrc_cache_init(ctx);
328 if (ret)
329 goto free_ref;
330 init_completion(&ctx->ref_comp);
331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 mutex_init(&ctx->uring_lock);
333 init_waitqueue_head(&ctx->cq_wait);
334 init_waitqueue_head(&ctx->poll_wq);
335 spin_lock_init(&ctx->completion_lock);
336 raw_spin_lock_init(&ctx->timeout_lock);
337 INIT_WQ_LIST(&ctx->iopoll_list);
338 INIT_LIST_HEAD(&ctx->defer_list);
339 INIT_LIST_HEAD(&ctx->timeout_list);
340 INIT_LIST_HEAD(&ctx->ltimeout_list);
341 init_llist_head(&ctx->work_llist);
342 INIT_LIST_HEAD(&ctx->tctx_list);
343 ctx->submit_state.free_list.next = NULL;
344 INIT_HLIST_HEAD(&ctx->waitid_list);
345 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
346 #ifdef CONFIG_FUTEX
347 INIT_HLIST_HEAD(&ctx->futex_list);
348 #endif
349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
352 io_napi_init(ctx);
353 mutex_init(&ctx->mmap_lock);
354
355 return ctx;
356
357 free_ref:
358 percpu_ref_exit(&ctx->refs);
359 err:
360 io_free_alloc_caches(ctx);
361 kvfree(ctx->cancel_table.hbs);
362 xa_destroy(&ctx->io_bl_xa);
363 kfree(ctx);
364 return NULL;
365 }
366
io_clean_op(struct io_kiocb * req)367 static void io_clean_op(struct io_kiocb *req)
368 {
369 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
370 io_kbuf_drop_legacy(req);
371
372 if (req->flags & REQ_F_NEED_CLEANUP) {
373 const struct io_cold_def *def = &io_cold_defs[req->opcode];
374
375 if (def->cleanup)
376 def->cleanup(req);
377 }
378 if (req->flags & REQ_F_INFLIGHT)
379 atomic_dec(&req->tctx->inflight_tracked);
380 if (req->flags & REQ_F_CREDS)
381 put_cred(req->creds);
382 if (req->flags & REQ_F_ASYNC_DATA) {
383 kfree(req->async_data);
384 req->async_data = NULL;
385 }
386 req->flags &= ~IO_REQ_CLEAN_FLAGS;
387 }
388
389 /*
390 * Mark the request as inflight, so that file cancelation will find it.
391 * Can be used if the file is an io_uring instance, or if the request itself
392 * relies on ->mm being alive for the duration of the request.
393 */
io_req_track_inflight(struct io_kiocb * req)394 inline void io_req_track_inflight(struct io_kiocb *req)
395 {
396 if (!(req->flags & REQ_F_INFLIGHT)) {
397 req->flags |= REQ_F_INFLIGHT;
398 atomic_inc(&req->tctx->inflight_tracked);
399 }
400 }
401
__io_prep_linked_timeout(struct io_kiocb * req)402 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
403 {
404 if (WARN_ON_ONCE(!req->link))
405 return NULL;
406
407 req->flags &= ~REQ_F_ARM_LTIMEOUT;
408 req->flags |= REQ_F_LINK_TIMEOUT;
409
410 /* linked timeouts should have two refs once prep'ed */
411 io_req_set_refcount(req);
412 __io_req_set_refcount(req->link, 2);
413 return req->link;
414 }
415
io_prep_async_work(struct io_kiocb * req)416 static void io_prep_async_work(struct io_kiocb *req)
417 {
418 const struct io_issue_def *def = &io_issue_defs[req->opcode];
419 struct io_ring_ctx *ctx = req->ctx;
420
421 if (!(req->flags & REQ_F_CREDS)) {
422 req->flags |= REQ_F_CREDS;
423 req->creds = get_current_cred();
424 }
425
426 req->work.list.next = NULL;
427 atomic_set(&req->work.flags, 0);
428 if (req->flags & REQ_F_FORCE_ASYNC)
429 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
430
431 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
432 req->flags |= io_file_get_flags(req->file);
433
434 if (req->file && (req->flags & REQ_F_ISREG)) {
435 bool should_hash = def->hash_reg_file;
436
437 /* don't serialize this request if the fs doesn't need it */
438 if (should_hash && (req->file->f_flags & O_DIRECT) &&
439 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
440 should_hash = false;
441 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
442 io_wq_hash_work(&req->work, file_inode(req->file));
443 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
444 if (def->unbound_nonreg_file)
445 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
446 }
447 }
448
io_prep_async_link(struct io_kiocb * req)449 static void io_prep_async_link(struct io_kiocb *req)
450 {
451 struct io_kiocb *cur;
452
453 if (req->flags & REQ_F_LINK_TIMEOUT) {
454 struct io_ring_ctx *ctx = req->ctx;
455
456 raw_spin_lock_irq(&ctx->timeout_lock);
457 io_for_each_link(cur, req)
458 io_prep_async_work(cur);
459 raw_spin_unlock_irq(&ctx->timeout_lock);
460 } else {
461 io_for_each_link(cur, req)
462 io_prep_async_work(cur);
463 }
464 }
465
io_queue_iowq(struct io_kiocb * req)466 static void io_queue_iowq(struct io_kiocb *req)
467 {
468 struct io_uring_task *tctx = req->tctx;
469
470 BUG_ON(!tctx);
471
472 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
473 io_req_task_queue_fail(req, -ECANCELED);
474 return;
475 }
476
477 /* init ->work of the whole link before punting */
478 io_prep_async_link(req);
479
480 /*
481 * Not expected to happen, but if we do have a bug where this _can_
482 * happen, catch it here and ensure the request is marked as
483 * canceled. That will make io-wq go through the usual work cancel
484 * procedure rather than attempt to run this request (or create a new
485 * worker for it).
486 */
487 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
488 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
489
490 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
491 io_wq_enqueue(tctx->io_wq, &req->work);
492 }
493
io_req_queue_iowq_tw(struct io_tw_req tw_req,io_tw_token_t tw)494 static void io_req_queue_iowq_tw(struct io_tw_req tw_req, io_tw_token_t tw)
495 {
496 io_queue_iowq(tw_req.req);
497 }
498
io_req_queue_iowq(struct io_kiocb * req)499 void io_req_queue_iowq(struct io_kiocb *req)
500 {
501 req->io_task_work.func = io_req_queue_iowq_tw;
502 io_req_task_work_add(req);
503 }
504
io_linked_nr(struct io_kiocb * req)505 unsigned io_linked_nr(struct io_kiocb *req)
506 {
507 struct io_kiocb *tmp;
508 unsigned nr = 0;
509
510 io_for_each_link(tmp, req)
511 nr++;
512 return nr;
513 }
514
io_queue_deferred(struct io_ring_ctx * ctx)515 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
516 {
517 bool drain_seen = false, first = true;
518
519 lockdep_assert_held(&ctx->uring_lock);
520 __io_req_caches_free(ctx);
521
522 while (!list_empty(&ctx->defer_list)) {
523 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
524 struct io_defer_entry, list);
525
526 drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
527 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
528 return;
529
530 list_del_init(&de->list);
531 ctx->nr_drained -= io_linked_nr(de->req);
532 io_req_task_queue(de->req);
533 kfree(de);
534 first = false;
535 }
536 }
537
__io_commit_cqring_flush(struct io_ring_ctx * ctx)538 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
539 {
540 if (ctx->poll_activated)
541 io_poll_wq_wake(ctx);
542 if (ctx->off_timeout_used)
543 io_flush_timeouts(ctx);
544 if (ctx->has_evfd)
545 io_eventfd_signal(ctx, true);
546 }
547
__io_cq_lock(struct io_ring_ctx * ctx)548 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
549 {
550 if (!ctx->lockless_cq)
551 spin_lock(&ctx->completion_lock);
552 }
553
io_cq_lock(struct io_ring_ctx * ctx)554 static inline void io_cq_lock(struct io_ring_ctx *ctx)
555 __acquires(ctx->completion_lock)
556 {
557 spin_lock(&ctx->completion_lock);
558 }
559
__io_cq_unlock_post(struct io_ring_ctx * ctx)560 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
561 {
562 io_commit_cqring(ctx);
563 if (!ctx->task_complete) {
564 if (!ctx->lockless_cq)
565 spin_unlock(&ctx->completion_lock);
566 /* IOPOLL rings only need to wake up if it's also SQPOLL */
567 if (!ctx->syscall_iopoll)
568 io_cqring_wake(ctx);
569 }
570 io_commit_cqring_flush(ctx);
571 }
572
io_cq_unlock_post(struct io_ring_ctx * ctx)573 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
574 __releases(ctx->completion_lock)
575 {
576 io_commit_cqring(ctx);
577 spin_unlock(&ctx->completion_lock);
578 io_cqring_wake(ctx);
579 io_commit_cqring_flush(ctx);
580 }
581
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)582 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
583 {
584 lockdep_assert_held(&ctx->uring_lock);
585
586 /* don't abort if we're dying, entries must get freed */
587 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
588 return;
589
590 io_cq_lock(ctx);
591 while (!list_empty(&ctx->cq_overflow_list)) {
592 size_t cqe_size = sizeof(struct io_uring_cqe);
593 struct io_uring_cqe *cqe;
594 struct io_overflow_cqe *ocqe;
595 bool is_cqe32 = false;
596
597 ocqe = list_first_entry(&ctx->cq_overflow_list,
598 struct io_overflow_cqe, list);
599 if (ocqe->cqe.flags & IORING_CQE_F_32 ||
600 ctx->flags & IORING_SETUP_CQE32) {
601 is_cqe32 = true;
602 cqe_size <<= 1;
603 }
604 if (ctx->flags & IORING_SETUP_CQE32)
605 is_cqe32 = false;
606
607 if (!dying) {
608 if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
609 break;
610 memcpy(cqe, &ocqe->cqe, cqe_size);
611 }
612 list_del(&ocqe->list);
613 kfree(ocqe);
614
615 /*
616 * For silly syzbot cases that deliberately overflow by huge
617 * amounts, check if we need to resched and drop and
618 * reacquire the locks if so. Nothing real would ever hit this.
619 * Ideally we'd have a non-posting unlock for this, but hard
620 * to care for a non-real case.
621 */
622 if (need_resched()) {
623 ctx->cqe_sentinel = ctx->cqe_cached;
624 io_cq_unlock_post(ctx);
625 mutex_unlock(&ctx->uring_lock);
626 cond_resched();
627 mutex_lock(&ctx->uring_lock);
628 io_cq_lock(ctx);
629 }
630 }
631
632 if (list_empty(&ctx->cq_overflow_list)) {
633 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
634 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
635 }
636 io_cq_unlock_post(ctx);
637 }
638
io_cqring_overflow_kill(struct io_ring_ctx * ctx)639 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
640 {
641 if (ctx->rings)
642 __io_cqring_overflow_flush(ctx, true);
643 }
644
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)645 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
646 {
647 mutex_lock(&ctx->uring_lock);
648 __io_cqring_overflow_flush(ctx, false);
649 mutex_unlock(&ctx->uring_lock);
650 }
651
652 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)653 static inline void io_put_task(struct io_kiocb *req)
654 {
655 struct io_uring_task *tctx = req->tctx;
656
657 if (likely(tctx->task == current)) {
658 tctx->cached_refs++;
659 } else {
660 percpu_counter_sub(&tctx->inflight, 1);
661 if (unlikely(atomic_read(&tctx->in_cancel)))
662 wake_up(&tctx->wait);
663 put_task_struct(tctx->task);
664 }
665 }
666
io_task_refs_refill(struct io_uring_task * tctx)667 void io_task_refs_refill(struct io_uring_task *tctx)
668 {
669 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
670
671 percpu_counter_add(&tctx->inflight, refill);
672 refcount_add(refill, ¤t->usage);
673 tctx->cached_refs += refill;
674 }
675
io_uring_drop_tctx_refs(struct task_struct * task)676 __cold void io_uring_drop_tctx_refs(struct task_struct *task)
677 {
678 struct io_uring_task *tctx = task->io_uring;
679 unsigned int refs = tctx->cached_refs;
680
681 if (refs) {
682 tctx->cached_refs = 0;
683 percpu_counter_sub(&tctx->inflight, refs);
684 put_task_struct_many(task, refs);
685 }
686 }
687
io_cqring_add_overflow(struct io_ring_ctx * ctx,struct io_overflow_cqe * ocqe)688 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
689 struct io_overflow_cqe *ocqe)
690 {
691 lockdep_assert_held(&ctx->completion_lock);
692
693 if (!ocqe) {
694 struct io_rings *r = ctx->rings;
695
696 /*
697 * If we're in ring overflow flush mode, or in task cancel mode,
698 * or cannot allocate an overflow entry, then we need to drop it
699 * on the floor.
700 */
701 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
702 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
703 return false;
704 }
705 if (list_empty(&ctx->cq_overflow_list)) {
706 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
707 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
708
709 }
710 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
711 return true;
712 }
713
io_alloc_ocqe(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe,gfp_t gfp)714 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
715 struct io_cqe *cqe,
716 struct io_big_cqe *big_cqe, gfp_t gfp)
717 {
718 struct io_overflow_cqe *ocqe;
719 size_t ocq_size = sizeof(struct io_overflow_cqe);
720 bool is_cqe32 = false;
721
722 if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
723 is_cqe32 = true;
724 ocq_size += sizeof(struct io_uring_cqe);
725 }
726
727 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
728 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
729 if (ocqe) {
730 ocqe->cqe.user_data = cqe->user_data;
731 ocqe->cqe.res = cqe->res;
732 ocqe->cqe.flags = cqe->flags;
733 if (is_cqe32 && big_cqe) {
734 ocqe->cqe.big_cqe[0] = big_cqe->extra1;
735 ocqe->cqe.big_cqe[1] = big_cqe->extra2;
736 }
737 }
738 if (big_cqe)
739 big_cqe->extra1 = big_cqe->extra2 = 0;
740 return ocqe;
741 }
742
743 /*
744 * Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
745 * because the ring is a single 16b entry away from wrapping.
746 */
io_fill_nop_cqe(struct io_ring_ctx * ctx,unsigned int off)747 static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
748 {
749 if (__io_cqring_events(ctx) < ctx->cq_entries) {
750 struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
751
752 cqe->user_data = 0;
753 cqe->res = 0;
754 cqe->flags = IORING_CQE_F_SKIP;
755 ctx->cached_cq_tail++;
756 return true;
757 }
758 return false;
759 }
760
761 /*
762 * writes to the cq entry need to come after reading head; the
763 * control dependency is enough as we're using WRITE_ONCE to
764 * fill the cq entry
765 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow,bool cqe32)766 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
767 {
768 struct io_rings *rings = ctx->rings;
769 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
770 unsigned int free, queued, len;
771
772 /*
773 * Posting into the CQ when there are pending overflowed CQEs may break
774 * ordering guarantees, which will affect links, F_MORE users and more.
775 * Force overflow the completion.
776 */
777 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
778 return false;
779
780 /*
781 * Post dummy CQE if a 32b CQE is needed and there's only room for a
782 * 16b CQE before the ring wraps.
783 */
784 if (cqe32 && off + 1 == ctx->cq_entries) {
785 if (!io_fill_nop_cqe(ctx, off))
786 return false;
787 off = 0;
788 }
789
790 /* userspace may cheat modifying the tail, be safe and do min */
791 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
792 free = ctx->cq_entries - queued;
793 /* we need a contiguous range, limit based on the current array offset */
794 len = min(free, ctx->cq_entries - off);
795 if (len < (cqe32 + 1))
796 return false;
797
798 if (ctx->flags & IORING_SETUP_CQE32) {
799 off <<= 1;
800 len <<= 1;
801 }
802
803 ctx->cqe_cached = &rings->cqes[off];
804 ctx->cqe_sentinel = ctx->cqe_cached + len;
805 return true;
806 }
807
io_fill_cqe_aux32(struct io_ring_ctx * ctx,struct io_uring_cqe src_cqe[2])808 static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
809 struct io_uring_cqe src_cqe[2])
810 {
811 struct io_uring_cqe *cqe;
812
813 if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
814 return false;
815 if (unlikely(!io_get_cqe(ctx, &cqe, true)))
816 return false;
817
818 memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
819 trace_io_uring_complete(ctx, NULL, cqe);
820 return true;
821 }
822
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)823 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
824 u32 cflags)
825 {
826 bool cqe32 = cflags & IORING_CQE_F_32;
827 struct io_uring_cqe *cqe;
828
829 if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
830 WRITE_ONCE(cqe->user_data, user_data);
831 WRITE_ONCE(cqe->res, res);
832 WRITE_ONCE(cqe->flags, cflags);
833
834 if (cqe32) {
835 WRITE_ONCE(cqe->big_cqe[0], 0);
836 WRITE_ONCE(cqe->big_cqe[1], 0);
837 }
838
839 trace_io_uring_complete(ctx, NULL, cqe);
840 return true;
841 }
842 return false;
843 }
844
io_init_cqe(u64 user_data,s32 res,u32 cflags)845 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
846 {
847 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
848 }
849
io_cqe_overflow(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)850 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
851 struct io_big_cqe *big_cqe)
852 {
853 struct io_overflow_cqe *ocqe;
854
855 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
856 spin_lock(&ctx->completion_lock);
857 io_cqring_add_overflow(ctx, ocqe);
858 spin_unlock(&ctx->completion_lock);
859 }
860
io_cqe_overflow_locked(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)861 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
862 struct io_cqe *cqe,
863 struct io_big_cqe *big_cqe)
864 {
865 struct io_overflow_cqe *ocqe;
866
867 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
868 return io_cqring_add_overflow(ctx, ocqe);
869 }
870
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)871 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
872 {
873 bool filled;
874
875 io_cq_lock(ctx);
876 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
877 if (unlikely(!filled)) {
878 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
879
880 filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
881 }
882 io_cq_unlock_post(ctx);
883 return filled;
884 }
885
886 /*
887 * Must be called from inline task_work so we know a flush will happen later,
888 * and obviously with ctx->uring_lock held (tw always has that).
889 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)890 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
891 {
892 lockdep_assert_held(&ctx->uring_lock);
893 lockdep_assert(ctx->lockless_cq);
894
895 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
896 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
897
898 io_cqe_overflow(ctx, &cqe, NULL);
899 }
900 ctx->submit_state.cq_flush = true;
901 }
902
903 /*
904 * A helper for multishot requests posting additional CQEs.
905 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
906 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)907 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
908 {
909 struct io_ring_ctx *ctx = req->ctx;
910 bool posted;
911
912 /*
913 * If multishot has already posted deferred completions, ensure that
914 * those are flushed first before posting this one. If not, CQEs
915 * could get reordered.
916 */
917 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
918 __io_submit_flush_completions(ctx);
919
920 lockdep_assert(!io_wq_current_is_worker());
921 lockdep_assert_held(&ctx->uring_lock);
922
923 if (!ctx->lockless_cq) {
924 spin_lock(&ctx->completion_lock);
925 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
926 spin_unlock(&ctx->completion_lock);
927 } else {
928 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
929 }
930
931 ctx->submit_state.cq_flush = true;
932 return posted;
933 }
934
935 /*
936 * A helper for multishot requests posting additional CQEs.
937 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
938 */
io_req_post_cqe32(struct io_kiocb * req,struct io_uring_cqe cqe[2])939 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
940 {
941 struct io_ring_ctx *ctx = req->ctx;
942 bool posted;
943
944 lockdep_assert(!io_wq_current_is_worker());
945 lockdep_assert_held(&ctx->uring_lock);
946
947 cqe[0].user_data = req->cqe.user_data;
948 if (!ctx->lockless_cq) {
949 spin_lock(&ctx->completion_lock);
950 posted = io_fill_cqe_aux32(ctx, cqe);
951 spin_unlock(&ctx->completion_lock);
952 } else {
953 posted = io_fill_cqe_aux32(ctx, cqe);
954 }
955
956 ctx->submit_state.cq_flush = true;
957 return posted;
958 }
959
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)960 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
961 {
962 struct io_ring_ctx *ctx = req->ctx;
963 bool completed = true;
964
965 /*
966 * All execution paths but io-wq use the deferred completions by
967 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
968 */
969 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
970 return;
971
972 /*
973 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
974 * the submitter task context, IOPOLL protects with uring_lock.
975 */
976 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
977 defer_complete:
978 req->io_task_work.func = io_req_task_complete;
979 io_req_task_work_add(req);
980 return;
981 }
982
983 io_cq_lock(ctx);
984 if (!(req->flags & REQ_F_CQE_SKIP))
985 completed = io_fill_cqe_req(ctx, req);
986 io_cq_unlock_post(ctx);
987
988 if (!completed)
989 goto defer_complete;
990
991 /*
992 * We don't free the request here because we know it's called from
993 * io-wq only, which holds a reference, so it cannot be the last put.
994 */
995 req_ref_put(req);
996 }
997
io_req_defer_failed(struct io_kiocb * req,s32 res)998 void io_req_defer_failed(struct io_kiocb *req, s32 res)
999 __must_hold(&ctx->uring_lock)
1000 {
1001 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1002
1003 lockdep_assert_held(&req->ctx->uring_lock);
1004
1005 req_set_fail(req);
1006 io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
1007 if (def->fail)
1008 def->fail(req);
1009 io_req_complete_defer(req);
1010 }
1011
1012 /*
1013 * A request might get retired back into the request caches even before opcode
1014 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1015 * Because of that, io_alloc_req() should be called only under ->uring_lock
1016 * and with extra caution to not get a request that is still worked on.
1017 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1018 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1019 __must_hold(&ctx->uring_lock)
1020 {
1021 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
1022 void *reqs[IO_REQ_ALLOC_BATCH];
1023 int ret;
1024
1025 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1026
1027 /*
1028 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1029 * retry single alloc to be on the safe side.
1030 */
1031 if (unlikely(ret <= 0)) {
1032 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1033 if (!reqs[0])
1034 return false;
1035 ret = 1;
1036 }
1037
1038 percpu_ref_get_many(&ctx->refs, ret);
1039 ctx->nr_req_allocated += ret;
1040
1041 while (ret--) {
1042 struct io_kiocb *req = reqs[ret];
1043
1044 io_req_add_to_cache(req, ctx);
1045 }
1046 return true;
1047 }
1048
io_free_req(struct io_kiocb * req)1049 __cold void io_free_req(struct io_kiocb *req)
1050 {
1051 /* refs were already put, restore them for io_req_task_complete() */
1052 req->flags &= ~REQ_F_REFCOUNT;
1053 /* we only want to free it, don't post CQEs */
1054 req->flags |= REQ_F_CQE_SKIP;
1055 req->io_task_work.func = io_req_task_complete;
1056 io_req_task_work_add(req);
1057 }
1058
__io_req_find_next_prep(struct io_kiocb * req)1059 static void __io_req_find_next_prep(struct io_kiocb *req)
1060 {
1061 struct io_ring_ctx *ctx = req->ctx;
1062
1063 spin_lock(&ctx->completion_lock);
1064 io_disarm_next(req);
1065 spin_unlock(&ctx->completion_lock);
1066 }
1067
io_req_find_next(struct io_kiocb * req)1068 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1069 {
1070 struct io_kiocb *nxt;
1071
1072 /*
1073 * If LINK is set, we have dependent requests in this chain. If we
1074 * didn't fail this request, queue the first one up, moving any other
1075 * dependencies to the next request. In case of failure, fail the rest
1076 * of the chain.
1077 */
1078 if (unlikely(req->flags & IO_DISARM_MASK))
1079 __io_req_find_next_prep(req);
1080 nxt = req->link;
1081 req->link = NULL;
1082 return nxt;
1083 }
1084
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1085 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1086 {
1087 if (!ctx)
1088 return;
1089 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1090 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1091
1092 io_submit_flush_completions(ctx);
1093 mutex_unlock(&ctx->uring_lock);
1094 percpu_ref_put(&ctx->refs);
1095 }
1096
1097 /*
1098 * Run queued task_work, returning the number of entries processed in *count.
1099 * If more entries than max_entries are available, stop processing once this
1100 * is reached and return the rest of the list.
1101 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1102 struct llist_node *io_handle_tw_list(struct llist_node *node,
1103 unsigned int *count,
1104 unsigned int max_entries)
1105 {
1106 struct io_ring_ctx *ctx = NULL;
1107 struct io_tw_state ts = { };
1108
1109 do {
1110 struct llist_node *next = node->next;
1111 struct io_kiocb *req = container_of(node, struct io_kiocb,
1112 io_task_work.node);
1113
1114 if (req->ctx != ctx) {
1115 ctx_flush_and_put(ctx, ts);
1116 ctx = req->ctx;
1117 mutex_lock(&ctx->uring_lock);
1118 percpu_ref_get(&ctx->refs);
1119 ts.cancel = io_should_terminate_tw(ctx);
1120 }
1121 INDIRECT_CALL_2(req->io_task_work.func,
1122 io_poll_task_func, io_req_rw_complete,
1123 (struct io_tw_req){req}, ts);
1124 node = next;
1125 (*count)++;
1126 if (unlikely(need_resched())) {
1127 ctx_flush_and_put(ctx, ts);
1128 ctx = NULL;
1129 cond_resched();
1130 }
1131 } while (node && *count < max_entries);
1132
1133 ctx_flush_and_put(ctx, ts);
1134 return node;
1135 }
1136
__io_fallback_tw(struct llist_node * node,bool sync)1137 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1138 {
1139 struct io_ring_ctx *last_ctx = NULL;
1140 struct io_kiocb *req;
1141
1142 while (node) {
1143 req = container_of(node, struct io_kiocb, io_task_work.node);
1144 node = node->next;
1145 if (last_ctx != req->ctx) {
1146 if (last_ctx) {
1147 if (sync)
1148 flush_delayed_work(&last_ctx->fallback_work);
1149 percpu_ref_put(&last_ctx->refs);
1150 }
1151 last_ctx = req->ctx;
1152 percpu_ref_get(&last_ctx->refs);
1153 }
1154 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1155 schedule_delayed_work(&last_ctx->fallback_work, 1);
1156 }
1157
1158 if (last_ctx) {
1159 if (sync)
1160 flush_delayed_work(&last_ctx->fallback_work);
1161 percpu_ref_put(&last_ctx->refs);
1162 }
1163 }
1164
io_fallback_tw(struct io_uring_task * tctx,bool sync)1165 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1166 {
1167 struct llist_node *node = llist_del_all(&tctx->task_list);
1168
1169 __io_fallback_tw(node, sync);
1170 }
1171
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1172 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1173 unsigned int max_entries,
1174 unsigned int *count)
1175 {
1176 struct llist_node *node;
1177
1178 node = llist_del_all(&tctx->task_list);
1179 if (node) {
1180 node = llist_reverse_order(node);
1181 node = io_handle_tw_list(node, count, max_entries);
1182 }
1183
1184 /* relaxed read is enough as only the task itself sets ->in_cancel */
1185 if (unlikely(atomic_read(&tctx->in_cancel)))
1186 io_uring_drop_tctx_refs(current);
1187
1188 trace_io_uring_task_work_run(tctx, *count);
1189 return node;
1190 }
1191
tctx_task_work(struct callback_head * cb)1192 void tctx_task_work(struct callback_head *cb)
1193 {
1194 struct io_uring_task *tctx;
1195 struct llist_node *ret;
1196 unsigned int count = 0;
1197
1198 tctx = container_of(cb, struct io_uring_task, task_work);
1199 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1200 /* can't happen */
1201 WARN_ON_ONCE(ret);
1202 }
1203
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1204 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1205 {
1206 struct io_ring_ctx *ctx = req->ctx;
1207 unsigned nr_wait, nr_tw, nr_tw_prev;
1208 struct llist_node *head;
1209
1210 /* See comment above IO_CQ_WAKE_INIT */
1211 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1212
1213 /*
1214 * We don't know how many requests there are in the link and whether
1215 * they can even be queued lazily, fall back to non-lazy.
1216 */
1217 if (req->flags & IO_REQ_LINK_FLAGS)
1218 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1219
1220 guard(rcu)();
1221
1222 head = READ_ONCE(ctx->work_llist.first);
1223 do {
1224 nr_tw_prev = 0;
1225 if (head) {
1226 struct io_kiocb *first_req = container_of(head,
1227 struct io_kiocb,
1228 io_task_work.node);
1229 /*
1230 * Might be executed at any moment, rely on
1231 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1232 */
1233 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1234 }
1235
1236 /*
1237 * Theoretically, it can overflow, but that's fine as one of
1238 * previous adds should've tried to wake the task.
1239 */
1240 nr_tw = nr_tw_prev + 1;
1241 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1242 nr_tw = IO_CQ_WAKE_FORCE;
1243
1244 req->nr_tw = nr_tw;
1245 req->io_task_work.node.next = head;
1246 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1247 &req->io_task_work.node));
1248
1249 /*
1250 * cmpxchg implies a full barrier, which pairs with the barrier
1251 * in set_current_state() on the io_cqring_wait() side. It's used
1252 * to ensure that either we see updated ->cq_wait_nr, or waiters
1253 * going to sleep will observe the work added to the list, which
1254 * is similar to the wait/wawke task state sync.
1255 */
1256
1257 if (!head) {
1258 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1259 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1260 if (ctx->has_evfd)
1261 io_eventfd_signal(ctx, false);
1262 }
1263
1264 nr_wait = atomic_read(&ctx->cq_wait_nr);
1265 /* not enough or no one is waiting */
1266 if (nr_tw < nr_wait)
1267 return;
1268 /* the previous add has already woken it up */
1269 if (nr_tw_prev >= nr_wait)
1270 return;
1271 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1272 }
1273
io_req_normal_work_add(struct io_kiocb * req)1274 static void io_req_normal_work_add(struct io_kiocb *req)
1275 {
1276 struct io_uring_task *tctx = req->tctx;
1277 struct io_ring_ctx *ctx = req->ctx;
1278
1279 /* task_work already pending, we're done */
1280 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1281 return;
1282
1283 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1284 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1285
1286 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1287 if (ctx->flags & IORING_SETUP_SQPOLL) {
1288 __set_notify_signal(tctx->task);
1289 return;
1290 }
1291
1292 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1293 return;
1294
1295 io_fallback_tw(tctx, false);
1296 }
1297
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1298 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1299 {
1300 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1301 io_req_local_work_add(req, flags);
1302 else
1303 io_req_normal_work_add(req);
1304 }
1305
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1306 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1307 {
1308 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1309 return;
1310 __io_req_task_work_add(req, flags);
1311 }
1312
io_move_task_work_from_local(struct io_ring_ctx * ctx)1313 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1314 {
1315 struct llist_node *node = llist_del_all(&ctx->work_llist);
1316
1317 __io_fallback_tw(node, false);
1318 node = llist_del_all(&ctx->retry_llist);
1319 __io_fallback_tw(node, false);
1320 }
1321
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1322 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1323 int min_events)
1324 {
1325 if (!io_local_work_pending(ctx))
1326 return false;
1327 if (events < min_events)
1328 return true;
1329 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1330 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1331 return false;
1332 }
1333
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1334 static int __io_run_local_work_loop(struct llist_node **node,
1335 io_tw_token_t tw,
1336 int events)
1337 {
1338 int ret = 0;
1339
1340 while (*node) {
1341 struct llist_node *next = (*node)->next;
1342 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1343 io_task_work.node);
1344 INDIRECT_CALL_2(req->io_task_work.func,
1345 io_poll_task_func, io_req_rw_complete,
1346 (struct io_tw_req){req}, tw);
1347 *node = next;
1348 if (++ret >= events)
1349 break;
1350 }
1351
1352 return ret;
1353 }
1354
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1355 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1356 int min_events, int max_events)
1357 {
1358 struct llist_node *node;
1359 unsigned int loops = 0;
1360 int ret = 0;
1361
1362 if (WARN_ON_ONCE(ctx->submitter_task != current))
1363 return -EEXIST;
1364 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1365 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1366 again:
1367 tw.cancel = io_should_terminate_tw(ctx);
1368 min_events -= ret;
1369 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1370 if (ctx->retry_llist.first)
1371 goto retry_done;
1372
1373 /*
1374 * llists are in reverse order, flip it back the right way before
1375 * running the pending items.
1376 */
1377 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1378 ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1379 ctx->retry_llist.first = node;
1380 loops++;
1381
1382 if (io_run_local_work_continue(ctx, ret, min_events))
1383 goto again;
1384 retry_done:
1385 io_submit_flush_completions(ctx);
1386 if (io_run_local_work_continue(ctx, ret, min_events))
1387 goto again;
1388
1389 trace_io_uring_local_work_run(ctx, ret, loops);
1390 return ret;
1391 }
1392
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1393 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1394 int min_events)
1395 {
1396 struct io_tw_state ts = {};
1397
1398 if (!io_local_work_pending(ctx))
1399 return 0;
1400 return __io_run_local_work(ctx, ts, min_events,
1401 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1402 }
1403
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1404 int io_run_local_work(struct io_ring_ctx *ctx, int min_events, int max_events)
1405 {
1406 struct io_tw_state ts = {};
1407 int ret;
1408
1409 mutex_lock(&ctx->uring_lock);
1410 ret = __io_run_local_work(ctx, ts, min_events, max_events);
1411 mutex_unlock(&ctx->uring_lock);
1412 return ret;
1413 }
1414
io_req_task_cancel(struct io_tw_req tw_req,io_tw_token_t tw)1415 static void io_req_task_cancel(struct io_tw_req tw_req, io_tw_token_t tw)
1416 {
1417 struct io_kiocb *req = tw_req.req;
1418
1419 io_tw_lock(req->ctx, tw);
1420 io_req_defer_failed(req, req->cqe.res);
1421 }
1422
io_req_task_submit(struct io_tw_req tw_req,io_tw_token_t tw)1423 void io_req_task_submit(struct io_tw_req tw_req, io_tw_token_t tw)
1424 {
1425 struct io_kiocb *req = tw_req.req;
1426 struct io_ring_ctx *ctx = req->ctx;
1427
1428 io_tw_lock(ctx, tw);
1429 if (unlikely(tw.cancel))
1430 io_req_defer_failed(req, -EFAULT);
1431 else if (req->flags & REQ_F_FORCE_ASYNC)
1432 io_queue_iowq(req);
1433 else
1434 io_queue_sqe(req, 0);
1435 }
1436
io_req_task_queue_fail(struct io_kiocb * req,int ret)1437 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1438 {
1439 io_req_set_res(req, ret, 0);
1440 req->io_task_work.func = io_req_task_cancel;
1441 io_req_task_work_add(req);
1442 }
1443
io_req_task_queue(struct io_kiocb * req)1444 void io_req_task_queue(struct io_kiocb *req)
1445 {
1446 req->io_task_work.func = io_req_task_submit;
1447 io_req_task_work_add(req);
1448 }
1449
io_queue_next(struct io_kiocb * req)1450 void io_queue_next(struct io_kiocb *req)
1451 {
1452 struct io_kiocb *nxt = io_req_find_next(req);
1453
1454 if (nxt)
1455 io_req_task_queue(nxt);
1456 }
1457
io_req_put_rsrc_nodes(struct io_kiocb * req)1458 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1459 {
1460 if (req->file_node) {
1461 io_put_rsrc_node(req->ctx, req->file_node);
1462 req->file_node = NULL;
1463 }
1464 if (req->flags & REQ_F_BUF_NODE)
1465 io_put_rsrc_node(req->ctx, req->buf_node);
1466 }
1467
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1468 static void io_free_batch_list(struct io_ring_ctx *ctx,
1469 struct io_wq_work_node *node)
1470 __must_hold(&ctx->uring_lock)
1471 {
1472 do {
1473 struct io_kiocb *req = container_of(node, struct io_kiocb,
1474 comp_list);
1475
1476 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1477 if (req->flags & REQ_F_REISSUE) {
1478 node = req->comp_list.next;
1479 req->flags &= ~REQ_F_REISSUE;
1480 io_queue_iowq(req);
1481 continue;
1482 }
1483 if (req->flags & REQ_F_REFCOUNT) {
1484 node = req->comp_list.next;
1485 if (!req_ref_put_and_test(req))
1486 continue;
1487 }
1488 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1489 struct async_poll *apoll = req->apoll;
1490
1491 if (apoll->double_poll)
1492 kfree(apoll->double_poll);
1493 io_cache_free(&ctx->apoll_cache, apoll);
1494 req->flags &= ~REQ_F_POLLED;
1495 }
1496 if (req->flags & IO_REQ_LINK_FLAGS)
1497 io_queue_next(req);
1498 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1499 io_clean_op(req);
1500 }
1501 io_put_file(req);
1502 io_req_put_rsrc_nodes(req);
1503 io_put_task(req);
1504
1505 node = req->comp_list.next;
1506 io_req_add_to_cache(req, ctx);
1507 } while (node);
1508 }
1509
__io_submit_flush_completions(struct io_ring_ctx * ctx)1510 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1511 __must_hold(&ctx->uring_lock)
1512 {
1513 struct io_submit_state *state = &ctx->submit_state;
1514 struct io_wq_work_node *node;
1515
1516 __io_cq_lock(ctx);
1517 __wq_list_for_each(node, &state->compl_reqs) {
1518 struct io_kiocb *req = container_of(node, struct io_kiocb,
1519 comp_list);
1520
1521 /*
1522 * Requests marked with REQUEUE should not post a CQE, they
1523 * will go through the io-wq retry machinery and post one
1524 * later.
1525 */
1526 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1527 unlikely(!io_fill_cqe_req(ctx, req))) {
1528 if (ctx->lockless_cq)
1529 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1530 else
1531 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1532 }
1533 }
1534 __io_cq_unlock_post(ctx);
1535
1536 if (!wq_list_empty(&state->compl_reqs)) {
1537 io_free_batch_list(ctx, state->compl_reqs.first);
1538 INIT_WQ_LIST(&state->compl_reqs);
1539 }
1540
1541 if (unlikely(ctx->drain_active))
1542 io_queue_deferred(ctx);
1543
1544 ctx->submit_state.cq_flush = false;
1545 }
1546
io_cqring_events(struct io_ring_ctx * ctx)1547 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1548 {
1549 /* See comment at the top of this file */
1550 smp_rmb();
1551 return __io_cqring_events(ctx);
1552 }
1553
1554 /*
1555 * We can't just wait for polled events to come to us, we have to actively
1556 * find and complete them.
1557 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1558 __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1559 {
1560 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1561 return;
1562
1563 mutex_lock(&ctx->uring_lock);
1564 while (!wq_list_empty(&ctx->iopoll_list)) {
1565 /* let it sleep and repeat later if can't complete a request */
1566 if (io_do_iopoll(ctx, true) == 0)
1567 break;
1568 /*
1569 * Ensure we allow local-to-the-cpu processing to take place,
1570 * in this case we need to ensure that we reap all events.
1571 * Also let task_work, etc. to progress by releasing the mutex
1572 */
1573 if (need_resched()) {
1574 mutex_unlock(&ctx->uring_lock);
1575 cond_resched();
1576 mutex_lock(&ctx->uring_lock);
1577 }
1578 }
1579 mutex_unlock(&ctx->uring_lock);
1580
1581 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1582 io_move_task_work_from_local(ctx);
1583 }
1584
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1585 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1586 {
1587 unsigned int nr_events = 0;
1588 unsigned long check_cq;
1589
1590 min_events = min(min_events, ctx->cq_entries);
1591
1592 lockdep_assert_held(&ctx->uring_lock);
1593
1594 if (!io_allowed_run_tw(ctx))
1595 return -EEXIST;
1596
1597 check_cq = READ_ONCE(ctx->check_cq);
1598 if (unlikely(check_cq)) {
1599 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1600 __io_cqring_overflow_flush(ctx, false);
1601 /*
1602 * Similarly do not spin if we have not informed the user of any
1603 * dropped CQE.
1604 */
1605 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1606 return -EBADR;
1607 }
1608 /*
1609 * Don't enter poll loop if we already have events pending.
1610 * If we do, we can potentially be spinning for commands that
1611 * already triggered a CQE (eg in error).
1612 */
1613 if (io_cqring_events(ctx))
1614 return 0;
1615
1616 do {
1617 int ret = 0;
1618
1619 /*
1620 * If a submit got punted to a workqueue, we can have the
1621 * application entering polling for a command before it gets
1622 * issued. That app will hold the uring_lock for the duration
1623 * of the poll right here, so we need to take a breather every
1624 * now and then to ensure that the issue has a chance to add
1625 * the poll to the issued list. Otherwise we can spin here
1626 * forever, while the workqueue is stuck trying to acquire the
1627 * very same mutex.
1628 */
1629 if (wq_list_empty(&ctx->iopoll_list) ||
1630 io_task_work_pending(ctx)) {
1631 u32 tail = ctx->cached_cq_tail;
1632
1633 (void) io_run_local_work_locked(ctx, min_events);
1634
1635 if (task_work_pending(current) ||
1636 wq_list_empty(&ctx->iopoll_list)) {
1637 mutex_unlock(&ctx->uring_lock);
1638 io_run_task_work();
1639 mutex_lock(&ctx->uring_lock);
1640 }
1641 /* some requests don't go through iopoll_list */
1642 if (tail != ctx->cached_cq_tail ||
1643 wq_list_empty(&ctx->iopoll_list))
1644 break;
1645 }
1646 ret = io_do_iopoll(ctx, !min_events);
1647 if (unlikely(ret < 0))
1648 return ret;
1649
1650 if (task_sigpending(current))
1651 return -EINTR;
1652 if (need_resched())
1653 break;
1654
1655 nr_events += ret;
1656 } while (nr_events < min_events);
1657
1658 return 0;
1659 }
1660
io_req_task_complete(struct io_tw_req tw_req,io_tw_token_t tw)1661 void io_req_task_complete(struct io_tw_req tw_req, io_tw_token_t tw)
1662 {
1663 io_req_complete_defer(tw_req.req);
1664 }
1665
1666 /*
1667 * After the iocb has been issued, it's safe to be found on the poll list.
1668 * Adding the kiocb to the list AFTER submission ensures that we don't
1669 * find it from a io_do_iopoll() thread before the issuer is done
1670 * accessing the kiocb cookie.
1671 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1672 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1673 {
1674 struct io_ring_ctx *ctx = req->ctx;
1675 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1676
1677 /* workqueue context doesn't hold uring_lock, grab it now */
1678 if (unlikely(needs_lock))
1679 mutex_lock(&ctx->uring_lock);
1680
1681 /*
1682 * Track whether we have multiple files in our lists. This will impact
1683 * how we do polling eventually, not spinning if we're on potentially
1684 * different devices.
1685 */
1686 if (wq_list_empty(&ctx->iopoll_list)) {
1687 ctx->poll_multi_queue = false;
1688 } else if (!ctx->poll_multi_queue) {
1689 struct io_kiocb *list_req;
1690
1691 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1692 comp_list);
1693 if (list_req->file != req->file)
1694 ctx->poll_multi_queue = true;
1695 }
1696
1697 /*
1698 * For fast devices, IO may have already completed. If it has, add
1699 * it to the front so we find it first.
1700 */
1701 if (READ_ONCE(req->iopoll_completed))
1702 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1703 else
1704 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1705
1706 if (unlikely(needs_lock)) {
1707 /*
1708 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1709 * in sq thread task context or in io worker task context. If
1710 * current task context is sq thread, we don't need to check
1711 * whether should wake up sq thread.
1712 */
1713 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1714 wq_has_sleeper(&ctx->sq_data->wait))
1715 wake_up(&ctx->sq_data->wait);
1716
1717 mutex_unlock(&ctx->uring_lock);
1718 }
1719 }
1720
io_file_get_flags(struct file * file)1721 io_req_flags_t io_file_get_flags(struct file *file)
1722 {
1723 io_req_flags_t res = 0;
1724
1725 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1726
1727 if (S_ISREG(file_inode(file)->i_mode))
1728 res |= REQ_F_ISREG;
1729 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1730 res |= REQ_F_SUPPORT_NOWAIT;
1731 return res;
1732 }
1733
io_drain_req(struct io_kiocb * req)1734 static __cold void io_drain_req(struct io_kiocb *req)
1735 __must_hold(&ctx->uring_lock)
1736 {
1737 struct io_ring_ctx *ctx = req->ctx;
1738 bool drain = req->flags & IOSQE_IO_DRAIN;
1739 struct io_defer_entry *de;
1740
1741 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1742 if (!de) {
1743 io_req_defer_failed(req, -ENOMEM);
1744 return;
1745 }
1746
1747 io_prep_async_link(req);
1748 trace_io_uring_defer(req);
1749 de->req = req;
1750
1751 ctx->nr_drained += io_linked_nr(req);
1752 list_add_tail(&de->list, &ctx->defer_list);
1753 io_queue_deferred(ctx);
1754 if (!drain && list_empty(&ctx->defer_list))
1755 ctx->drain_active = false;
1756 }
1757
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1758 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1759 unsigned int issue_flags)
1760 {
1761 if (req->file || !def->needs_file)
1762 return true;
1763
1764 if (req->flags & REQ_F_FIXED_FILE)
1765 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1766 else
1767 req->file = io_file_get_normal(req, req->cqe.fd);
1768
1769 return !!req->file;
1770 }
1771
1772 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1773
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1774 static inline int __io_issue_sqe(struct io_kiocb *req,
1775 unsigned int issue_flags,
1776 const struct io_issue_def *def)
1777 {
1778 const struct cred *creds = NULL;
1779 struct io_kiocb *link = NULL;
1780 int ret;
1781
1782 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1783 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1784 creds = override_creds(req->creds);
1785 if (req->flags & REQ_F_ARM_LTIMEOUT)
1786 link = __io_prep_linked_timeout(req);
1787 }
1788
1789 if (!def->audit_skip)
1790 audit_uring_entry(req->opcode);
1791
1792 ret = def->issue(req, issue_flags);
1793
1794 if (!def->audit_skip)
1795 audit_uring_exit(!ret, ret);
1796
1797 if (unlikely(creds || link)) {
1798 if (creds)
1799 revert_creds(creds);
1800 if (link)
1801 io_queue_linked_timeout(link);
1802 }
1803
1804 return ret;
1805 }
1806
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1807 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1808 {
1809 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1810 int ret;
1811
1812 if (unlikely(!io_assign_file(req, def, issue_flags)))
1813 return -EBADF;
1814
1815 ret = __io_issue_sqe(req, issue_flags, def);
1816
1817 if (ret == IOU_COMPLETE) {
1818 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1819 io_req_complete_defer(req);
1820 else
1821 io_req_complete_post(req, issue_flags);
1822
1823 return 0;
1824 }
1825
1826 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1827 ret = 0;
1828
1829 /* If the op doesn't have a file, we're not polling for it */
1830 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1831 io_iopoll_req_issued(req, issue_flags);
1832 }
1833 return ret;
1834 }
1835
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1836 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1837 {
1838 const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1839 IO_URING_F_MULTISHOT |
1840 IO_URING_F_COMPLETE_DEFER;
1841 int ret;
1842
1843 io_tw_lock(req->ctx, tw);
1844
1845 WARN_ON_ONCE(!req->file);
1846 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1847 return -EFAULT;
1848
1849 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1850
1851 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1852 return ret;
1853 }
1854
io_wq_free_work(struct io_wq_work * work)1855 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1856 {
1857 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1858 struct io_kiocb *nxt = NULL;
1859
1860 if (req_ref_put_and_test_atomic(req)) {
1861 if (req->flags & IO_REQ_LINK_FLAGS)
1862 nxt = io_req_find_next(req);
1863 io_free_req(req);
1864 }
1865 return nxt ? &nxt->work : NULL;
1866 }
1867
io_wq_submit_work(struct io_wq_work * work)1868 void io_wq_submit_work(struct io_wq_work *work)
1869 {
1870 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1871 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1872 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1873 bool needs_poll = false;
1874 int ret = 0, err = -ECANCELED;
1875
1876 /* one will be dropped by io_wq_free_work() after returning to io-wq */
1877 if (!(req->flags & REQ_F_REFCOUNT))
1878 __io_req_set_refcount(req, 2);
1879 else
1880 req_ref_get(req);
1881
1882 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1883 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1884 fail:
1885 io_req_task_queue_fail(req, err);
1886 return;
1887 }
1888 if (!io_assign_file(req, def, issue_flags)) {
1889 err = -EBADF;
1890 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1891 goto fail;
1892 }
1893
1894 /*
1895 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1896 * submitter task context. Final request completions are handed to the
1897 * right context, however this is not the case of auxiliary CQEs,
1898 * which is the main mean of operation for multishot requests.
1899 * Don't allow any multishot execution from io-wq. It's more restrictive
1900 * than necessary and also cleaner.
1901 */
1902 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1903 err = -EBADFD;
1904 if (!io_file_can_poll(req))
1905 goto fail;
1906 if (req->file->f_flags & O_NONBLOCK ||
1907 req->file->f_mode & FMODE_NOWAIT) {
1908 err = -ECANCELED;
1909 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1910 goto fail;
1911 return;
1912 } else {
1913 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1914 }
1915 }
1916
1917 if (req->flags & REQ_F_FORCE_ASYNC) {
1918 bool opcode_poll = def->pollin || def->pollout;
1919
1920 if (opcode_poll && io_file_can_poll(req)) {
1921 needs_poll = true;
1922 issue_flags |= IO_URING_F_NONBLOCK;
1923 }
1924 }
1925
1926 do {
1927 ret = io_issue_sqe(req, issue_flags);
1928 if (ret != -EAGAIN)
1929 break;
1930
1931 /*
1932 * If REQ_F_NOWAIT is set, then don't wait or retry with
1933 * poll. -EAGAIN is final for that case.
1934 */
1935 if (req->flags & REQ_F_NOWAIT)
1936 break;
1937
1938 /*
1939 * We can get EAGAIN for iopolled IO even though we're
1940 * forcing a sync submission from here, since we can't
1941 * wait for request slots on the block side.
1942 */
1943 if (!needs_poll) {
1944 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1945 break;
1946 if (io_wq_worker_stopped())
1947 break;
1948 cond_resched();
1949 continue;
1950 }
1951
1952 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1953 return;
1954 /* aborted or ready, in either case retry blocking */
1955 needs_poll = false;
1956 issue_flags &= ~IO_URING_F_NONBLOCK;
1957 } while (1);
1958
1959 /* avoid locking problems by failing it from a clean context */
1960 if (ret)
1961 io_req_task_queue_fail(req, ret);
1962 }
1963
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1964 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1965 unsigned int issue_flags)
1966 {
1967 struct io_ring_ctx *ctx = req->ctx;
1968 struct io_rsrc_node *node;
1969 struct file *file = NULL;
1970
1971 io_ring_submit_lock(ctx, issue_flags);
1972 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1973 if (node) {
1974 node->refs++;
1975 req->file_node = node;
1976 req->flags |= io_slot_flags(node);
1977 file = io_slot_file(node);
1978 }
1979 io_ring_submit_unlock(ctx, issue_flags);
1980 return file;
1981 }
1982
io_file_get_normal(struct io_kiocb * req,int fd)1983 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1984 {
1985 struct file *file = fget(fd);
1986
1987 trace_io_uring_file_get(req, fd);
1988
1989 /* we don't allow fixed io_uring files */
1990 if (file && io_is_uring_fops(file))
1991 io_req_track_inflight(req);
1992 return file;
1993 }
1994
io_req_sqe_copy(struct io_kiocb * req,unsigned int issue_flags)1995 static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
1996 {
1997 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1998
1999 if (req->flags & REQ_F_SQE_COPIED)
2000 return 0;
2001 req->flags |= REQ_F_SQE_COPIED;
2002 if (!def->sqe_copy)
2003 return 0;
2004 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
2005 return -EFAULT;
2006 def->sqe_copy(req);
2007 return 0;
2008 }
2009
io_queue_async(struct io_kiocb * req,unsigned int issue_flags,int ret)2010 static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
2011 __must_hold(&req->ctx->uring_lock)
2012 {
2013 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2014 fail:
2015 io_req_defer_failed(req, ret);
2016 return;
2017 }
2018
2019 ret = io_req_sqe_copy(req, issue_flags);
2020 if (unlikely(ret))
2021 goto fail;
2022
2023 switch (io_arm_poll_handler(req, 0)) {
2024 case IO_APOLL_READY:
2025 io_req_task_queue(req);
2026 break;
2027 case IO_APOLL_ABORTED:
2028 io_queue_iowq(req);
2029 break;
2030 case IO_APOLL_OK:
2031 break;
2032 }
2033 }
2034
io_queue_sqe(struct io_kiocb * req,unsigned int extra_flags)2035 static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
2036 __must_hold(&req->ctx->uring_lock)
2037 {
2038 unsigned int issue_flags = IO_URING_F_NONBLOCK |
2039 IO_URING_F_COMPLETE_DEFER | extra_flags;
2040 int ret;
2041
2042 ret = io_issue_sqe(req, issue_flags);
2043
2044 /*
2045 * We async punt it if the file wasn't marked NOWAIT, or if the file
2046 * doesn't support non-blocking read/write attempts
2047 */
2048 if (unlikely(ret))
2049 io_queue_async(req, issue_flags, ret);
2050 }
2051
io_queue_sqe_fallback(struct io_kiocb * req)2052 static void io_queue_sqe_fallback(struct io_kiocb *req)
2053 __must_hold(&req->ctx->uring_lock)
2054 {
2055 if (unlikely(req->flags & REQ_F_FAIL)) {
2056 /*
2057 * We don't submit, fail them all, for that replace hardlinks
2058 * with normal links. Extra REQ_F_LINK is tolerated.
2059 */
2060 req->flags &= ~REQ_F_HARDLINK;
2061 req->flags |= REQ_F_LINK;
2062 io_req_defer_failed(req, req->cqe.res);
2063 } else {
2064 /* can't fail with IO_URING_F_INLINE */
2065 io_req_sqe_copy(req, IO_URING_F_INLINE);
2066 if (unlikely(req->ctx->drain_active))
2067 io_drain_req(req);
2068 else
2069 io_queue_iowq(req);
2070 }
2071 }
2072
2073 /*
2074 * Check SQE restrictions (opcode and flags).
2075 *
2076 * Returns 'true' if SQE is allowed, 'false' otherwise.
2077 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2078 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2079 struct io_kiocb *req,
2080 unsigned int sqe_flags)
2081 {
2082 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2083 return false;
2084
2085 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2086 ctx->restrictions.sqe_flags_required)
2087 return false;
2088
2089 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2090 ctx->restrictions.sqe_flags_required))
2091 return false;
2092
2093 return true;
2094 }
2095
io_init_drain(struct io_ring_ctx * ctx)2096 static void io_init_drain(struct io_ring_ctx *ctx)
2097 {
2098 struct io_kiocb *head = ctx->submit_state.link.head;
2099
2100 ctx->drain_active = true;
2101 if (head) {
2102 /*
2103 * If we need to drain a request in the middle of a link, drain
2104 * the head request and the next request/link after the current
2105 * link. Considering sequential execution of links,
2106 * REQ_F_IO_DRAIN will be maintained for every request of our
2107 * link.
2108 */
2109 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2110 ctx->drain_next = true;
2111 }
2112 }
2113
io_init_fail_req(struct io_kiocb * req,int err)2114 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2115 {
2116 /* ensure per-opcode data is cleared if we fail before prep */
2117 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2118 return err;
2119 }
2120
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe,unsigned int * left)2121 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2122 const struct io_uring_sqe *sqe, unsigned int *left)
2123 __must_hold(&ctx->uring_lock)
2124 {
2125 const struct io_issue_def *def;
2126 unsigned int sqe_flags;
2127 int personality;
2128 u8 opcode;
2129
2130 req->ctx = ctx;
2131 req->opcode = opcode = READ_ONCE(sqe->opcode);
2132 /* same numerical values with corresponding REQ_F_*, safe to copy */
2133 sqe_flags = READ_ONCE(sqe->flags);
2134 req->flags = (__force io_req_flags_t) sqe_flags;
2135 req->cqe.user_data = READ_ONCE(sqe->user_data);
2136 req->file = NULL;
2137 req->tctx = current->io_uring;
2138 req->cancel_seq_set = false;
2139 req->async_data = NULL;
2140
2141 if (unlikely(opcode >= IORING_OP_LAST)) {
2142 req->opcode = 0;
2143 return io_init_fail_req(req, -EINVAL);
2144 }
2145 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2146
2147 def = &io_issue_defs[opcode];
2148 if (def->is_128 && !(ctx->flags & IORING_SETUP_SQE128)) {
2149 /*
2150 * A 128b op on a non-128b SQ requires mixed SQE support as
2151 * well as 2 contiguous entries.
2152 */
2153 if (!(ctx->flags & IORING_SETUP_SQE_MIXED) || *left < 2 ||
2154 !(ctx->cached_sq_head & (ctx->sq_entries - 1)))
2155 return io_init_fail_req(req, -EINVAL);
2156 /*
2157 * A 128b operation on a mixed SQ uses two entries, so we have
2158 * to increment the head and cached refs, and decrement what's
2159 * left.
2160 */
2161 current->io_uring->cached_refs++;
2162 ctx->cached_sq_head++;
2163 (*left)--;
2164 }
2165
2166 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2167 /* enforce forwards compatibility on users */
2168 if (sqe_flags & ~SQE_VALID_FLAGS)
2169 return io_init_fail_req(req, -EINVAL);
2170 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2171 if (!def->buffer_select)
2172 return io_init_fail_req(req, -EOPNOTSUPP);
2173 req->buf_index = READ_ONCE(sqe->buf_group);
2174 }
2175 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2176 ctx->drain_disabled = true;
2177 if (sqe_flags & IOSQE_IO_DRAIN) {
2178 if (ctx->drain_disabled)
2179 return io_init_fail_req(req, -EOPNOTSUPP);
2180 io_init_drain(ctx);
2181 }
2182 }
2183 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2184 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2185 return io_init_fail_req(req, -EACCES);
2186 /* knock it to the slow queue path, will be drained there */
2187 if (ctx->drain_active)
2188 req->flags |= REQ_F_FORCE_ASYNC;
2189 /* if there is no link, we're at "next" request and need to drain */
2190 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2191 ctx->drain_next = false;
2192 ctx->drain_active = true;
2193 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2194 }
2195 }
2196
2197 if (!def->ioprio && sqe->ioprio)
2198 return io_init_fail_req(req, -EINVAL);
2199 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2200 return io_init_fail_req(req, -EINVAL);
2201
2202 if (def->needs_file) {
2203 struct io_submit_state *state = &ctx->submit_state;
2204
2205 req->cqe.fd = READ_ONCE(sqe->fd);
2206
2207 /*
2208 * Plug now if we have more than 2 IO left after this, and the
2209 * target is potentially a read/write to block based storage.
2210 */
2211 if (state->need_plug && def->plug) {
2212 state->plug_started = true;
2213 state->need_plug = false;
2214 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2215 }
2216 }
2217
2218 personality = READ_ONCE(sqe->personality);
2219 if (personality) {
2220 int ret;
2221
2222 req->creds = xa_load(&ctx->personalities, personality);
2223 if (!req->creds)
2224 return io_init_fail_req(req, -EINVAL);
2225 get_cred(req->creds);
2226 ret = security_uring_override_creds(req->creds);
2227 if (ret) {
2228 put_cred(req->creds);
2229 return io_init_fail_req(req, ret);
2230 }
2231 req->flags |= REQ_F_CREDS;
2232 }
2233
2234 return def->prep(req, sqe);
2235 }
2236
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2237 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2238 struct io_kiocb *req, int ret)
2239 {
2240 struct io_ring_ctx *ctx = req->ctx;
2241 struct io_submit_link *link = &ctx->submit_state.link;
2242 struct io_kiocb *head = link->head;
2243
2244 trace_io_uring_req_failed(sqe, req, ret);
2245
2246 /*
2247 * Avoid breaking links in the middle as it renders links with SQPOLL
2248 * unusable. Instead of failing eagerly, continue assembling the link if
2249 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2250 * should find the flag and handle the rest.
2251 */
2252 req_fail_link_node(req, ret);
2253 if (head && !(head->flags & REQ_F_FAIL))
2254 req_fail_link_node(head, -ECANCELED);
2255
2256 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2257 if (head) {
2258 link->last->link = req;
2259 link->head = NULL;
2260 req = head;
2261 }
2262 io_queue_sqe_fallback(req);
2263 return ret;
2264 }
2265
2266 if (head)
2267 link->last->link = req;
2268 else
2269 link->head = req;
2270 link->last = req;
2271 return 0;
2272 }
2273
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe,unsigned int * left)2274 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2275 const struct io_uring_sqe *sqe, unsigned int *left)
2276 __must_hold(&ctx->uring_lock)
2277 {
2278 struct io_submit_link *link = &ctx->submit_state.link;
2279 int ret;
2280
2281 ret = io_init_req(ctx, req, sqe, left);
2282 if (unlikely(ret))
2283 return io_submit_fail_init(sqe, req, ret);
2284
2285 trace_io_uring_submit_req(req);
2286
2287 /*
2288 * If we already have a head request, queue this one for async
2289 * submittal once the head completes. If we don't have a head but
2290 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2291 * submitted sync once the chain is complete. If none of those
2292 * conditions are true (normal request), then just queue it.
2293 */
2294 if (unlikely(link->head)) {
2295 trace_io_uring_link(req, link->last);
2296 io_req_sqe_copy(req, IO_URING_F_INLINE);
2297 link->last->link = req;
2298 link->last = req;
2299
2300 if (req->flags & IO_REQ_LINK_FLAGS)
2301 return 0;
2302 /* last request of the link, flush it */
2303 req = link->head;
2304 link->head = NULL;
2305 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2306 goto fallback;
2307
2308 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2309 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2310 if (req->flags & IO_REQ_LINK_FLAGS) {
2311 link->head = req;
2312 link->last = req;
2313 } else {
2314 fallback:
2315 io_queue_sqe_fallback(req);
2316 }
2317 return 0;
2318 }
2319
2320 io_queue_sqe(req, IO_URING_F_INLINE);
2321 return 0;
2322 }
2323
2324 /*
2325 * Batched submission is done, ensure local IO is flushed out.
2326 */
io_submit_state_end(struct io_ring_ctx * ctx)2327 static void io_submit_state_end(struct io_ring_ctx *ctx)
2328 {
2329 struct io_submit_state *state = &ctx->submit_state;
2330
2331 if (unlikely(state->link.head))
2332 io_queue_sqe_fallback(state->link.head);
2333 /* flush only after queuing links as they can generate completions */
2334 io_submit_flush_completions(ctx);
2335 if (state->plug_started)
2336 blk_finish_plug(&state->plug);
2337 }
2338
2339 /*
2340 * Start submission side cache.
2341 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2342 static void io_submit_state_start(struct io_submit_state *state,
2343 unsigned int max_ios)
2344 {
2345 state->plug_started = false;
2346 state->need_plug = max_ios > 2;
2347 state->submit_nr = max_ios;
2348 /* set only head, no need to init link_last in advance */
2349 state->link.head = NULL;
2350 }
2351
io_commit_sqring(struct io_ring_ctx * ctx)2352 static void io_commit_sqring(struct io_ring_ctx *ctx)
2353 {
2354 struct io_rings *rings = ctx->rings;
2355
2356 /*
2357 * Ensure any loads from the SQEs are done at this point,
2358 * since once we write the new head, the application could
2359 * write new data to them.
2360 */
2361 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2362 }
2363
2364 /*
2365 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2366 * that is mapped by userspace. This means that care needs to be taken to
2367 * ensure that reads are stable, as we cannot rely on userspace always
2368 * being a good citizen. If members of the sqe are validated and then later
2369 * used, it's important that those reads are done through READ_ONCE() to
2370 * prevent a re-load down the line.
2371 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2372 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2373 {
2374 unsigned mask = ctx->sq_entries - 1;
2375 unsigned head = ctx->cached_sq_head++ & mask;
2376
2377 if (static_branch_unlikely(&io_key_has_sqarray) &&
2378 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2379 head = READ_ONCE(ctx->sq_array[head]);
2380 if (unlikely(head >= ctx->sq_entries)) {
2381 WRITE_ONCE(ctx->rings->sq_dropped,
2382 READ_ONCE(ctx->rings->sq_dropped) + 1);
2383 return false;
2384 }
2385 head = array_index_nospec(head, ctx->sq_entries);
2386 }
2387
2388 /*
2389 * The cached sq head (or cq tail) serves two purposes:
2390 *
2391 * 1) allows us to batch the cost of updating the user visible
2392 * head updates.
2393 * 2) allows the kernel side to track the head on its own, even
2394 * though the application is the one updating it.
2395 */
2396
2397 /* double index for 128-byte SQEs, twice as long */
2398 if (ctx->flags & IORING_SETUP_SQE128)
2399 head <<= 1;
2400 *sqe = &ctx->sq_sqes[head];
2401 return true;
2402 }
2403
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2404 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2405 __must_hold(&ctx->uring_lock)
2406 {
2407 unsigned int entries = io_sqring_entries(ctx);
2408 unsigned int left;
2409 int ret;
2410
2411 entries = min(nr, entries);
2412 if (unlikely(!entries))
2413 return 0;
2414
2415 ret = left = entries;
2416 io_get_task_refs(left);
2417 io_submit_state_start(&ctx->submit_state, left);
2418
2419 do {
2420 const struct io_uring_sqe *sqe;
2421 struct io_kiocb *req;
2422
2423 if (unlikely(!io_alloc_req(ctx, &req)))
2424 break;
2425 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2426 io_req_add_to_cache(req, ctx);
2427 break;
2428 }
2429
2430 /*
2431 * Continue submitting even for sqe failure if the
2432 * ring was setup with IORING_SETUP_SUBMIT_ALL
2433 */
2434 if (unlikely(io_submit_sqe(ctx, req, sqe, &left)) &&
2435 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2436 left--;
2437 break;
2438 }
2439 } while (--left);
2440
2441 if (unlikely(left)) {
2442 ret -= left;
2443 /* try again if it submitted nothing and can't allocate a req */
2444 if (!ret && io_req_cache_empty(ctx))
2445 ret = -EAGAIN;
2446 current->io_uring->cached_refs += left;
2447 }
2448
2449 io_submit_state_end(ctx);
2450 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2451 io_commit_sqring(ctx);
2452 return ret;
2453 }
2454
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2455 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2456 int wake_flags, void *key)
2457 {
2458 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2459
2460 /*
2461 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2462 * the task, and the next invocation will do it.
2463 */
2464 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2465 return autoremove_wake_function(curr, mode, wake_flags, key);
2466 return -1;
2467 }
2468
io_run_task_work_sig(struct io_ring_ctx * ctx)2469 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2470 {
2471 if (io_local_work_pending(ctx)) {
2472 __set_current_state(TASK_RUNNING);
2473 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2474 return 0;
2475 }
2476 if (io_run_task_work() > 0)
2477 return 0;
2478 if (task_sigpending(current))
2479 return -EINTR;
2480 return 0;
2481 }
2482
current_pending_io(void)2483 static bool current_pending_io(void)
2484 {
2485 struct io_uring_task *tctx = current->io_uring;
2486
2487 if (!tctx)
2488 return false;
2489 return percpu_counter_read_positive(&tctx->inflight);
2490 }
2491
io_cqring_timer_wakeup(struct hrtimer * timer)2492 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2493 {
2494 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2495
2496 WRITE_ONCE(iowq->hit_timeout, 1);
2497 iowq->min_timeout = 0;
2498 wake_up_process(iowq->wq.private);
2499 return HRTIMER_NORESTART;
2500 }
2501
2502 /*
2503 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2504 * wake up. If not, and we have a normal timeout, switch to that and keep
2505 * sleeping.
2506 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2507 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2508 {
2509 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2510 struct io_ring_ctx *ctx = iowq->ctx;
2511
2512 /* no general timeout, or shorter (or equal), we are done */
2513 if (iowq->timeout == KTIME_MAX ||
2514 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2515 goto out_wake;
2516 /* work we may need to run, wake function will see if we need to wake */
2517 if (io_has_work(ctx))
2518 goto out_wake;
2519 /* got events since we started waiting, min timeout is done */
2520 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2521 goto out_wake;
2522 /* if we have any events and min timeout expired, we're done */
2523 if (io_cqring_events(ctx))
2524 goto out_wake;
2525
2526 /*
2527 * If using deferred task_work running and application is waiting on
2528 * more than one request, ensure we reset it now where we are switching
2529 * to normal sleeps. Any request completion post min_wait should wake
2530 * the task and return.
2531 */
2532 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2533 atomic_set(&ctx->cq_wait_nr, 1);
2534 smp_mb();
2535 if (!llist_empty(&ctx->work_llist))
2536 goto out_wake;
2537 }
2538
2539 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2540 hrtimer_set_expires(timer, iowq->timeout);
2541 return HRTIMER_RESTART;
2542 out_wake:
2543 return io_cqring_timer_wakeup(timer);
2544 }
2545
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2546 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2547 clockid_t clock_id, ktime_t start_time)
2548 {
2549 ktime_t timeout;
2550
2551 if (iowq->min_timeout) {
2552 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2553 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2554 HRTIMER_MODE_ABS);
2555 } else {
2556 timeout = iowq->timeout;
2557 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2558 HRTIMER_MODE_ABS);
2559 }
2560
2561 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2562 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2563
2564 if (!READ_ONCE(iowq->hit_timeout))
2565 schedule();
2566
2567 hrtimer_cancel(&iowq->t);
2568 destroy_hrtimer_on_stack(&iowq->t);
2569 __set_current_state(TASK_RUNNING);
2570
2571 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2572 }
2573
2574 struct ext_arg {
2575 size_t argsz;
2576 struct timespec64 ts;
2577 const sigset_t __user *sig;
2578 ktime_t min_time;
2579 bool ts_set;
2580 bool iowait;
2581 };
2582
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2583 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2584 struct io_wait_queue *iowq,
2585 struct ext_arg *ext_arg,
2586 ktime_t start_time)
2587 {
2588 int ret = 0;
2589
2590 /*
2591 * Mark us as being in io_wait if we have pending requests, so cpufreq
2592 * can take into account that the task is waiting for IO - turns out
2593 * to be important for low QD IO.
2594 */
2595 if (ext_arg->iowait && current_pending_io())
2596 current->in_iowait = 1;
2597 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2598 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2599 else
2600 schedule();
2601 current->in_iowait = 0;
2602 return ret;
2603 }
2604
2605 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2606 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2607 struct io_wait_queue *iowq,
2608 struct ext_arg *ext_arg,
2609 ktime_t start_time)
2610 {
2611 if (unlikely(READ_ONCE(ctx->check_cq)))
2612 return 1;
2613 if (unlikely(io_local_work_pending(ctx)))
2614 return 1;
2615 if (unlikely(task_work_pending(current)))
2616 return 1;
2617 if (unlikely(task_sigpending(current)))
2618 return -EINTR;
2619 if (unlikely(io_should_wake(iowq)))
2620 return 0;
2621
2622 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2623 }
2624
2625 /*
2626 * Wait until events become available, if we don't already have some. The
2627 * application must reap them itself, as they reside on the shared cq ring.
2628 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2629 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2630 struct ext_arg *ext_arg)
2631 {
2632 struct io_wait_queue iowq;
2633 struct io_rings *rings = ctx->rings;
2634 ktime_t start_time;
2635 int ret;
2636
2637 min_events = min_t(int, min_events, ctx->cq_entries);
2638
2639 if (!io_allowed_run_tw(ctx))
2640 return -EEXIST;
2641 if (io_local_work_pending(ctx))
2642 io_run_local_work(ctx, min_events,
2643 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2644 io_run_task_work();
2645
2646 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2647 io_cqring_do_overflow_flush(ctx);
2648 if (__io_cqring_events_user(ctx) >= min_events)
2649 return 0;
2650
2651 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2652 iowq.wq.private = current;
2653 INIT_LIST_HEAD(&iowq.wq.entry);
2654 iowq.ctx = ctx;
2655 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2656 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2657 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2658 iowq.hit_timeout = 0;
2659 iowq.min_timeout = ext_arg->min_time;
2660 iowq.timeout = KTIME_MAX;
2661 start_time = io_get_time(ctx);
2662
2663 if (ext_arg->ts_set) {
2664 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2665 if (!(flags & IORING_ENTER_ABS_TIMER))
2666 iowq.timeout = ktime_add(iowq.timeout, start_time);
2667 }
2668
2669 if (ext_arg->sig) {
2670 #ifdef CONFIG_COMPAT
2671 if (in_compat_syscall())
2672 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2673 ext_arg->argsz);
2674 else
2675 #endif
2676 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2677
2678 if (ret)
2679 return ret;
2680 }
2681
2682 io_napi_busy_loop(ctx, &iowq);
2683
2684 trace_io_uring_cqring_wait(ctx, min_events);
2685 do {
2686 unsigned long check_cq;
2687 int nr_wait;
2688
2689 /* if min timeout has been hit, don't reset wait count */
2690 if (!iowq.hit_timeout)
2691 nr_wait = (int) iowq.cq_tail -
2692 READ_ONCE(ctx->rings->cq.tail);
2693 else
2694 nr_wait = 1;
2695
2696 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2697 atomic_set(&ctx->cq_wait_nr, nr_wait);
2698 set_current_state(TASK_INTERRUPTIBLE);
2699 } else {
2700 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2701 TASK_INTERRUPTIBLE);
2702 }
2703
2704 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2705 __set_current_state(TASK_RUNNING);
2706 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2707
2708 /*
2709 * Run task_work after scheduling and before io_should_wake().
2710 * If we got woken because of task_work being processed, run it
2711 * now rather than let the caller do another wait loop.
2712 */
2713 if (io_local_work_pending(ctx))
2714 io_run_local_work(ctx, nr_wait, nr_wait);
2715 io_run_task_work();
2716
2717 /*
2718 * Non-local task_work will be run on exit to userspace, but
2719 * if we're using DEFER_TASKRUN, then we could have waited
2720 * with a timeout for a number of requests. If the timeout
2721 * hits, we could have some requests ready to process. Ensure
2722 * this break is _after_ we have run task_work, to avoid
2723 * deferring running potentially pending requests until the
2724 * next time we wait for events.
2725 */
2726 if (ret < 0)
2727 break;
2728
2729 check_cq = READ_ONCE(ctx->check_cq);
2730 if (unlikely(check_cq)) {
2731 /* let the caller flush overflows, retry */
2732 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2733 io_cqring_do_overflow_flush(ctx);
2734 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2735 ret = -EBADR;
2736 break;
2737 }
2738 }
2739
2740 if (io_should_wake(&iowq)) {
2741 ret = 0;
2742 break;
2743 }
2744 cond_resched();
2745 } while (1);
2746
2747 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2748 finish_wait(&ctx->cq_wait, &iowq.wq);
2749 restore_saved_sigmask_unless(ret == -EINTR);
2750
2751 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2752 }
2753
io_rings_free(struct io_ring_ctx * ctx)2754 static void io_rings_free(struct io_ring_ctx *ctx)
2755 {
2756 io_free_region(ctx->user, &ctx->sq_region);
2757 io_free_region(ctx->user, &ctx->ring_region);
2758 ctx->rings = NULL;
2759 ctx->sq_sqes = NULL;
2760 }
2761
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,struct io_rings_layout * rl)2762 static int rings_size(unsigned int flags, unsigned int sq_entries,
2763 unsigned int cq_entries, struct io_rings_layout *rl)
2764 {
2765 struct io_rings *rings;
2766 size_t sqe_size;
2767 size_t off;
2768
2769 if (flags & IORING_SETUP_CQE_MIXED) {
2770 if (cq_entries < 2)
2771 return -EOVERFLOW;
2772 }
2773 if (flags & IORING_SETUP_SQE_MIXED) {
2774 if (sq_entries < 2)
2775 return -EOVERFLOW;
2776 }
2777
2778 rl->sq_array_offset = SIZE_MAX;
2779
2780 sqe_size = sizeof(struct io_uring_sqe);
2781 if (flags & IORING_SETUP_SQE128)
2782 sqe_size *= 2;
2783
2784 rl->sq_size = array_size(sqe_size, sq_entries);
2785 if (rl->sq_size == SIZE_MAX)
2786 return -EOVERFLOW;
2787
2788 off = struct_size(rings, cqes, cq_entries);
2789 if (flags & IORING_SETUP_CQE32)
2790 off = size_mul(off, 2);
2791 if (off == SIZE_MAX)
2792 return -EOVERFLOW;
2793
2794 #ifdef CONFIG_SMP
2795 off = ALIGN(off, SMP_CACHE_BYTES);
2796 if (off == 0)
2797 return -EOVERFLOW;
2798 #endif
2799
2800 if (!(flags & IORING_SETUP_NO_SQARRAY)) {
2801 size_t sq_array_size;
2802
2803 rl->sq_array_offset = off;
2804
2805 sq_array_size = array_size(sizeof(u32), sq_entries);
2806 off = size_add(off, sq_array_size);
2807 if (off == SIZE_MAX)
2808 return -EOVERFLOW;
2809 }
2810
2811 rl->rings_size = off;
2812 return 0;
2813 }
2814
__io_req_caches_free(struct io_ring_ctx * ctx)2815 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2816 {
2817 struct io_kiocb *req;
2818 int nr = 0;
2819
2820 while (!io_req_cache_empty(ctx)) {
2821 req = io_extract_req(ctx);
2822 io_poison_req(req);
2823 kmem_cache_free(req_cachep, req);
2824 nr++;
2825 }
2826 if (nr) {
2827 ctx->nr_req_allocated -= nr;
2828 percpu_ref_put_many(&ctx->refs, nr);
2829 }
2830 }
2831
io_req_caches_free(struct io_ring_ctx * ctx)2832 static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2833 {
2834 guard(mutex)(&ctx->uring_lock);
2835 __io_req_caches_free(ctx);
2836 }
2837
io_ring_ctx_free(struct io_ring_ctx * ctx)2838 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2839 {
2840 io_sq_thread_finish(ctx);
2841
2842 mutex_lock(&ctx->uring_lock);
2843 io_sqe_buffers_unregister(ctx);
2844 io_sqe_files_unregister(ctx);
2845 io_unregister_zcrx_ifqs(ctx);
2846 io_cqring_overflow_kill(ctx);
2847 io_eventfd_unregister(ctx);
2848 io_free_alloc_caches(ctx);
2849 io_destroy_buffers(ctx);
2850 io_free_region(ctx->user, &ctx->param_region);
2851 mutex_unlock(&ctx->uring_lock);
2852 if (ctx->sq_creds)
2853 put_cred(ctx->sq_creds);
2854 if (ctx->submitter_task)
2855 put_task_struct(ctx->submitter_task);
2856
2857 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2858
2859 if (ctx->mm_account) {
2860 mmdrop(ctx->mm_account);
2861 ctx->mm_account = NULL;
2862 }
2863 io_rings_free(ctx);
2864
2865 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2866 static_branch_dec(&io_key_has_sqarray);
2867
2868 percpu_ref_exit(&ctx->refs);
2869 free_uid(ctx->user);
2870 io_req_caches_free(ctx);
2871
2872 WARN_ON_ONCE(ctx->nr_req_allocated);
2873
2874 if (ctx->hash_map)
2875 io_wq_put_hash(ctx->hash_map);
2876 io_napi_free(ctx);
2877 kvfree(ctx->cancel_table.hbs);
2878 xa_destroy(&ctx->io_bl_xa);
2879 kfree(ctx);
2880 }
2881
io_activate_pollwq_cb(struct callback_head * cb)2882 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2883 {
2884 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2885 poll_wq_task_work);
2886
2887 mutex_lock(&ctx->uring_lock);
2888 ctx->poll_activated = true;
2889 mutex_unlock(&ctx->uring_lock);
2890
2891 /*
2892 * Wake ups for some events between start of polling and activation
2893 * might've been lost due to loose synchronisation.
2894 */
2895 wake_up_all(&ctx->poll_wq);
2896 percpu_ref_put(&ctx->refs);
2897 }
2898
io_activate_pollwq(struct io_ring_ctx * ctx)2899 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2900 {
2901 spin_lock(&ctx->completion_lock);
2902 /* already activated or in progress */
2903 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2904 goto out;
2905 if (WARN_ON_ONCE(!ctx->task_complete))
2906 goto out;
2907 if (!ctx->submitter_task)
2908 goto out;
2909 /*
2910 * with ->submitter_task only the submitter task completes requests, we
2911 * only need to sync with it, which is done by injecting a tw
2912 */
2913 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2914 percpu_ref_get(&ctx->refs);
2915 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2916 percpu_ref_put(&ctx->refs);
2917 out:
2918 spin_unlock(&ctx->completion_lock);
2919 }
2920
io_uring_poll(struct file * file,poll_table * wait)2921 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2922 {
2923 struct io_ring_ctx *ctx = file->private_data;
2924 __poll_t mask = 0;
2925
2926 if (unlikely(!ctx->poll_activated))
2927 io_activate_pollwq(ctx);
2928 /*
2929 * provides mb() which pairs with barrier from wq_has_sleeper
2930 * call in io_commit_cqring
2931 */
2932 poll_wait(file, &ctx->poll_wq, wait);
2933
2934 if (!io_sqring_full(ctx))
2935 mask |= EPOLLOUT | EPOLLWRNORM;
2936
2937 /*
2938 * Don't flush cqring overflow list here, just do a simple check.
2939 * Otherwise there could possible be ABBA deadlock:
2940 * CPU0 CPU1
2941 * ---- ----
2942 * lock(&ctx->uring_lock);
2943 * lock(&ep->mtx);
2944 * lock(&ctx->uring_lock);
2945 * lock(&ep->mtx);
2946 *
2947 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2948 * pushes them to do the flush.
2949 */
2950
2951 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2952 mask |= EPOLLIN | EPOLLRDNORM;
2953
2954 return mask;
2955 }
2956
2957 struct io_tctx_exit {
2958 struct callback_head task_work;
2959 struct completion completion;
2960 struct io_ring_ctx *ctx;
2961 };
2962
io_tctx_exit_cb(struct callback_head * cb)2963 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2964 {
2965 struct io_uring_task *tctx = current->io_uring;
2966 struct io_tctx_exit *work;
2967
2968 work = container_of(cb, struct io_tctx_exit, task_work);
2969 /*
2970 * When @in_cancel, we're in cancellation and it's racy to remove the
2971 * node. It'll be removed by the end of cancellation, just ignore it.
2972 * tctx can be NULL if the queueing of this task_work raced with
2973 * work cancelation off the exec path.
2974 */
2975 if (tctx && !atomic_read(&tctx->in_cancel))
2976 io_uring_del_tctx_node((unsigned long)work->ctx);
2977 complete(&work->completion);
2978 }
2979
io_ring_exit_work(struct work_struct * work)2980 static __cold void io_ring_exit_work(struct work_struct *work)
2981 {
2982 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2983 unsigned long timeout = jiffies + HZ * 60 * 5;
2984 unsigned long interval = HZ / 20;
2985 struct io_tctx_exit exit;
2986 struct io_tctx_node *node;
2987 int ret;
2988
2989 /*
2990 * If we're doing polled IO and end up having requests being
2991 * submitted async (out-of-line), then completions can come in while
2992 * we're waiting for refs to drop. We need to reap these manually,
2993 * as nobody else will be looking for them.
2994 */
2995 do {
2996 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2997 mutex_lock(&ctx->uring_lock);
2998 io_cqring_overflow_kill(ctx);
2999 mutex_unlock(&ctx->uring_lock);
3000 }
3001
3002 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3003 io_move_task_work_from_local(ctx);
3004
3005 /* The SQPOLL thread never reaches this path */
3006 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
3007 cond_resched();
3008
3009 if (ctx->sq_data) {
3010 struct io_sq_data *sqd = ctx->sq_data;
3011 struct task_struct *tsk;
3012
3013 io_sq_thread_park(sqd);
3014 tsk = sqpoll_task_locked(sqd);
3015 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3016 io_wq_cancel_cb(tsk->io_uring->io_wq,
3017 io_cancel_ctx_cb, ctx, true);
3018 io_sq_thread_unpark(sqd);
3019 }
3020
3021 io_req_caches_free(ctx);
3022
3023 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3024 /* there is little hope left, don't run it too often */
3025 interval = HZ * 60;
3026 }
3027 /*
3028 * This is really an uninterruptible wait, as it has to be
3029 * complete. But it's also run from a kworker, which doesn't
3030 * take signals, so it's fine to make it interruptible. This
3031 * avoids scenarios where we knowingly can wait much longer
3032 * on completions, for example if someone does a SIGSTOP on
3033 * a task that needs to finish task_work to make this loop
3034 * complete. That's a synthetic situation that should not
3035 * cause a stuck task backtrace, and hence a potential panic
3036 * on stuck tasks if that is enabled.
3037 */
3038 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3039
3040 init_completion(&exit.completion);
3041 init_task_work(&exit.task_work, io_tctx_exit_cb);
3042 exit.ctx = ctx;
3043
3044 mutex_lock(&ctx->uring_lock);
3045 while (!list_empty(&ctx->tctx_list)) {
3046 WARN_ON_ONCE(time_after(jiffies, timeout));
3047
3048 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3049 ctx_node);
3050 /* don't spin on a single task if cancellation failed */
3051 list_rotate_left(&ctx->tctx_list);
3052 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3053 if (WARN_ON_ONCE(ret))
3054 continue;
3055
3056 mutex_unlock(&ctx->uring_lock);
3057 /*
3058 * See comment above for
3059 * wait_for_completion_interruptible_timeout() on why this
3060 * wait is marked as interruptible.
3061 */
3062 wait_for_completion_interruptible(&exit.completion);
3063 mutex_lock(&ctx->uring_lock);
3064 }
3065 mutex_unlock(&ctx->uring_lock);
3066 spin_lock(&ctx->completion_lock);
3067 spin_unlock(&ctx->completion_lock);
3068
3069 /* pairs with RCU read section in io_req_local_work_add() */
3070 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3071 synchronize_rcu();
3072
3073 io_ring_ctx_free(ctx);
3074 }
3075
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3076 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3077 {
3078 unsigned long index;
3079 struct creds *creds;
3080
3081 mutex_lock(&ctx->uring_lock);
3082 percpu_ref_kill(&ctx->refs);
3083 xa_for_each(&ctx->personalities, index, creds)
3084 io_unregister_personality(ctx, index);
3085 mutex_unlock(&ctx->uring_lock);
3086
3087 flush_delayed_work(&ctx->fallback_work);
3088
3089 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3090 /*
3091 * Use system_dfl_wq to avoid spawning tons of event kworkers
3092 * if we're exiting a ton of rings at the same time. It just adds
3093 * noise and overhead, there's no discernable change in runtime
3094 * over using system_percpu_wq.
3095 */
3096 queue_work(iou_wq, &ctx->exit_work);
3097 }
3098
io_uring_release(struct inode * inode,struct file * file)3099 static int io_uring_release(struct inode *inode, struct file *file)
3100 {
3101 struct io_ring_ctx *ctx = file->private_data;
3102
3103 file->private_data = NULL;
3104 io_ring_ctx_wait_and_kill(ctx);
3105 return 0;
3106 }
3107
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3108 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3109 const struct io_uring_getevents_arg __user *uarg)
3110 {
3111 unsigned long size = sizeof(struct io_uring_reg_wait);
3112 unsigned long offset = (uintptr_t)uarg;
3113 unsigned long end;
3114
3115 if (unlikely(offset % sizeof(long)))
3116 return ERR_PTR(-EFAULT);
3117
3118 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3119 if (unlikely(check_add_overflow(offset, size, &end) ||
3120 end > ctx->cq_wait_size))
3121 return ERR_PTR(-EFAULT);
3122
3123 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3124 return ctx->cq_wait_arg + offset;
3125 }
3126
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3127 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3128 const void __user *argp, size_t argsz)
3129 {
3130 struct io_uring_getevents_arg arg;
3131
3132 if (!(flags & IORING_ENTER_EXT_ARG))
3133 return 0;
3134 if (flags & IORING_ENTER_EXT_ARG_REG)
3135 return -EINVAL;
3136 if (argsz != sizeof(arg))
3137 return -EINVAL;
3138 if (copy_from_user(&arg, argp, sizeof(arg)))
3139 return -EFAULT;
3140 return 0;
3141 }
3142
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3143 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3144 const void __user *argp, struct ext_arg *ext_arg)
3145 {
3146 const struct io_uring_getevents_arg __user *uarg = argp;
3147 struct io_uring_getevents_arg arg;
3148
3149 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3150
3151 /*
3152 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3153 * is just a pointer to the sigset_t.
3154 */
3155 if (!(flags & IORING_ENTER_EXT_ARG)) {
3156 ext_arg->sig = (const sigset_t __user *) argp;
3157 return 0;
3158 }
3159
3160 if (flags & IORING_ENTER_EXT_ARG_REG) {
3161 struct io_uring_reg_wait *w;
3162
3163 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3164 return -EINVAL;
3165 w = io_get_ext_arg_reg(ctx, argp);
3166 if (IS_ERR(w))
3167 return PTR_ERR(w);
3168
3169 if (w->flags & ~IORING_REG_WAIT_TS)
3170 return -EINVAL;
3171 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3172 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3173 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3174 if (w->flags & IORING_REG_WAIT_TS) {
3175 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3176 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3177 ext_arg->ts_set = true;
3178 }
3179 return 0;
3180 }
3181
3182 /*
3183 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3184 * timespec and sigset_t pointers if good.
3185 */
3186 if (ext_arg->argsz != sizeof(arg))
3187 return -EINVAL;
3188 #ifdef CONFIG_64BIT
3189 if (!user_access_begin(uarg, sizeof(*uarg)))
3190 return -EFAULT;
3191 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3192 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3193 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3194 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3195 user_access_end();
3196 #else
3197 if (copy_from_user(&arg, uarg, sizeof(arg)))
3198 return -EFAULT;
3199 #endif
3200 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3201 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3202 ext_arg->argsz = arg.sigmask_sz;
3203 if (arg.ts) {
3204 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3205 return -EFAULT;
3206 ext_arg->ts_set = true;
3207 }
3208 return 0;
3209 #ifdef CONFIG_64BIT
3210 uaccess_end:
3211 user_access_end();
3212 return -EFAULT;
3213 #endif
3214 }
3215
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3216 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3217 u32, min_complete, u32, flags, const void __user *, argp,
3218 size_t, argsz)
3219 {
3220 struct io_ring_ctx *ctx;
3221 struct file *file;
3222 long ret;
3223
3224 if (unlikely(flags & ~IORING_ENTER_FLAGS))
3225 return -EINVAL;
3226
3227 /*
3228 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3229 * need only dereference our task private array to find it.
3230 */
3231 if (flags & IORING_ENTER_REGISTERED_RING) {
3232 struct io_uring_task *tctx = current->io_uring;
3233
3234 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3235 return -EINVAL;
3236 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3237 file = tctx->registered_rings[fd];
3238 if (unlikely(!file))
3239 return -EBADF;
3240 } else {
3241 file = fget(fd);
3242 if (unlikely(!file))
3243 return -EBADF;
3244 ret = -EOPNOTSUPP;
3245 if (unlikely(!io_is_uring_fops(file)))
3246 goto out;
3247 }
3248
3249 ctx = file->private_data;
3250 ret = -EBADFD;
3251 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3252 goto out;
3253
3254 /*
3255 * For SQ polling, the thread will do all submissions and completions.
3256 * Just return the requested submit count, and wake the thread if
3257 * we were asked to.
3258 */
3259 ret = 0;
3260 if (ctx->flags & IORING_SETUP_SQPOLL) {
3261 if (unlikely(ctx->sq_data->thread == NULL)) {
3262 ret = -EOWNERDEAD;
3263 goto out;
3264 }
3265 if (flags & IORING_ENTER_SQ_WAKEUP)
3266 wake_up(&ctx->sq_data->wait);
3267 if (flags & IORING_ENTER_SQ_WAIT)
3268 io_sqpoll_wait_sq(ctx);
3269
3270 ret = to_submit;
3271 } else if (to_submit) {
3272 ret = io_uring_add_tctx_node(ctx);
3273 if (unlikely(ret))
3274 goto out;
3275
3276 mutex_lock(&ctx->uring_lock);
3277 ret = io_submit_sqes(ctx, to_submit);
3278 if (ret != to_submit) {
3279 mutex_unlock(&ctx->uring_lock);
3280 goto out;
3281 }
3282 if (flags & IORING_ENTER_GETEVENTS) {
3283 if (ctx->syscall_iopoll)
3284 goto iopoll_locked;
3285 /*
3286 * Ignore errors, we'll soon call io_cqring_wait() and
3287 * it should handle ownership problems if any.
3288 */
3289 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3290 (void)io_run_local_work_locked(ctx, min_complete);
3291 }
3292 mutex_unlock(&ctx->uring_lock);
3293 }
3294
3295 if (flags & IORING_ENTER_GETEVENTS) {
3296 int ret2;
3297
3298 if (ctx->syscall_iopoll) {
3299 /*
3300 * We disallow the app entering submit/complete with
3301 * polling, but we still need to lock the ring to
3302 * prevent racing with polled issue that got punted to
3303 * a workqueue.
3304 */
3305 mutex_lock(&ctx->uring_lock);
3306 iopoll_locked:
3307 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3308 if (likely(!ret2))
3309 ret2 = io_iopoll_check(ctx, min_complete);
3310 mutex_unlock(&ctx->uring_lock);
3311 } else {
3312 struct ext_arg ext_arg = { .argsz = argsz };
3313
3314 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3315 if (likely(!ret2))
3316 ret2 = io_cqring_wait(ctx, min_complete, flags,
3317 &ext_arg);
3318 }
3319
3320 if (!ret) {
3321 ret = ret2;
3322
3323 /*
3324 * EBADR indicates that one or more CQE were dropped.
3325 * Once the user has been informed we can clear the bit
3326 * as they are obviously ok with those drops.
3327 */
3328 if (unlikely(ret2 == -EBADR))
3329 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3330 &ctx->check_cq);
3331 }
3332 }
3333 out:
3334 if (!(flags & IORING_ENTER_REGISTERED_RING))
3335 fput(file);
3336 return ret;
3337 }
3338
3339 static const struct file_operations io_uring_fops = {
3340 .release = io_uring_release,
3341 .mmap = io_uring_mmap,
3342 .get_unmapped_area = io_uring_get_unmapped_area,
3343 #ifndef CONFIG_MMU
3344 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3345 #endif
3346 .poll = io_uring_poll,
3347 #ifdef CONFIG_PROC_FS
3348 .show_fdinfo = io_uring_show_fdinfo,
3349 #endif
3350 };
3351
io_is_uring_fops(struct file * file)3352 bool io_is_uring_fops(struct file *file)
3353 {
3354 return file->f_op == &io_uring_fops;
3355 }
3356
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_ctx_config * config)3357 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3358 struct io_ctx_config *config)
3359 {
3360 struct io_uring_params *p = &config->p;
3361 struct io_rings_layout *rl = &config->layout;
3362 struct io_uring_region_desc rd;
3363 struct io_rings *rings;
3364 int ret;
3365
3366 /* make sure these are sane, as we already accounted them */
3367 ctx->sq_entries = p->sq_entries;
3368 ctx->cq_entries = p->cq_entries;
3369
3370 memset(&rd, 0, sizeof(rd));
3371 rd.size = PAGE_ALIGN(rl->rings_size);
3372 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3373 rd.user_addr = p->cq_off.user_addr;
3374 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3375 }
3376 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3377 if (ret)
3378 return ret;
3379 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3380 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3381 ctx->sq_array = (u32 *)((char *)rings + rl->sq_array_offset);
3382
3383 memset(&rd, 0, sizeof(rd));
3384 rd.size = PAGE_ALIGN(rl->sq_size);
3385 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3386 rd.user_addr = p->sq_off.user_addr;
3387 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3388 }
3389 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3390 if (ret) {
3391 io_rings_free(ctx);
3392 return ret;
3393 }
3394 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3395
3396 memset(rings, 0, sizeof(*rings));
3397 WRITE_ONCE(rings->sq_ring_mask, ctx->sq_entries - 1);
3398 WRITE_ONCE(rings->cq_ring_mask, ctx->cq_entries - 1);
3399 WRITE_ONCE(rings->sq_ring_entries, ctx->sq_entries);
3400 WRITE_ONCE(rings->cq_ring_entries, ctx->cq_entries);
3401 return 0;
3402 }
3403
io_uring_install_fd(struct file * file)3404 static int io_uring_install_fd(struct file *file)
3405 {
3406 int fd;
3407
3408 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3409 if (fd < 0)
3410 return fd;
3411 fd_install(fd, file);
3412 return fd;
3413 }
3414
3415 /*
3416 * Allocate an anonymous fd, this is what constitutes the application
3417 * visible backing of an io_uring instance. The application mmaps this
3418 * fd to gain access to the SQ/CQ ring details.
3419 */
io_uring_get_file(struct io_ring_ctx * ctx)3420 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3421 {
3422 /* Create a new inode so that the LSM can block the creation. */
3423 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3424 O_RDWR | O_CLOEXEC, NULL);
3425 }
3426
io_uring_sanitise_params(struct io_uring_params * p)3427 static int io_uring_sanitise_params(struct io_uring_params *p)
3428 {
3429 unsigned flags = p->flags;
3430
3431 if (flags & ~IORING_SETUP_FLAGS)
3432 return -EINVAL;
3433
3434 /* There is no way to mmap rings without a real fd */
3435 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3436 !(flags & IORING_SETUP_NO_MMAP))
3437 return -EINVAL;
3438
3439 if (flags & IORING_SETUP_SQPOLL) {
3440 /* IPI related flags don't make sense with SQPOLL */
3441 if (flags & (IORING_SETUP_COOP_TASKRUN |
3442 IORING_SETUP_TASKRUN_FLAG |
3443 IORING_SETUP_DEFER_TASKRUN))
3444 return -EINVAL;
3445 }
3446
3447 if (flags & IORING_SETUP_TASKRUN_FLAG) {
3448 if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3449 IORING_SETUP_DEFER_TASKRUN)))
3450 return -EINVAL;
3451 }
3452
3453 /* HYBRID_IOPOLL only valid with IOPOLL */
3454 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3455 return -EINVAL;
3456
3457 /*
3458 * For DEFER_TASKRUN we require the completion task to be the same as
3459 * the submission task. This implies that there is only one submitter.
3460 */
3461 if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3462 !(flags & IORING_SETUP_SINGLE_ISSUER))
3463 return -EINVAL;
3464
3465 /*
3466 * Nonsensical to ask for CQE32 and mixed CQE support, it's not
3467 * supported to post 16b CQEs on a ring setup with CQE32.
3468 */
3469 if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
3470 (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
3471 return -EINVAL;
3472 /*
3473 * Nonsensical to ask for SQE128 and mixed SQE support, it's not
3474 * supported to post 64b SQEs on a ring setup with SQE128.
3475 */
3476 if ((flags & (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED)) ==
3477 (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED))
3478 return -EINVAL;
3479
3480 return 0;
3481 }
3482
io_uring_fill_params(struct io_uring_params * p)3483 static int io_uring_fill_params(struct io_uring_params *p)
3484 {
3485 unsigned entries = p->sq_entries;
3486
3487 if (!entries)
3488 return -EINVAL;
3489 if (entries > IORING_MAX_ENTRIES) {
3490 if (!(p->flags & IORING_SETUP_CLAMP))
3491 return -EINVAL;
3492 entries = IORING_MAX_ENTRIES;
3493 }
3494
3495 /*
3496 * Use twice as many entries for the CQ ring. It's possible for the
3497 * application to drive a higher depth than the size of the SQ ring,
3498 * since the sqes are only used at submission time. This allows for
3499 * some flexibility in overcommitting a bit. If the application has
3500 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3501 * of CQ ring entries manually.
3502 */
3503 p->sq_entries = roundup_pow_of_two(entries);
3504 if (p->flags & IORING_SETUP_CQSIZE) {
3505 /*
3506 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3507 * to a power-of-two, if it isn't already. We do NOT impose
3508 * any cq vs sq ring sizing.
3509 */
3510 if (!p->cq_entries)
3511 return -EINVAL;
3512 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3513 if (!(p->flags & IORING_SETUP_CLAMP))
3514 return -EINVAL;
3515 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3516 }
3517 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3518 if (p->cq_entries < p->sq_entries)
3519 return -EINVAL;
3520 } else {
3521 p->cq_entries = 2 * p->sq_entries;
3522 }
3523
3524 return 0;
3525 }
3526
io_prepare_config(struct io_ctx_config * config)3527 int io_prepare_config(struct io_ctx_config *config)
3528 {
3529 struct io_uring_params *p = &config->p;
3530 int ret;
3531
3532 ret = io_uring_sanitise_params(p);
3533 if (ret)
3534 return ret;
3535
3536 ret = io_uring_fill_params(p);
3537 if (ret)
3538 return ret;
3539
3540 ret = rings_size(p->flags, p->sq_entries, p->cq_entries,
3541 &config->layout);
3542 if (ret)
3543 return ret;
3544
3545 p->sq_off.head = offsetof(struct io_rings, sq.head);
3546 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3547 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3548 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3549 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3550 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3551 p->sq_off.resv1 = 0;
3552 if (!(p->flags & IORING_SETUP_NO_MMAP))
3553 p->sq_off.user_addr = 0;
3554
3555 p->cq_off.head = offsetof(struct io_rings, cq.head);
3556 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3557 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3558 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3559 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3560 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3561 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3562 p->cq_off.resv1 = 0;
3563 if (!(p->flags & IORING_SETUP_NO_MMAP))
3564 p->cq_off.user_addr = 0;
3565 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3566 p->sq_off.array = config->layout.sq_array_offset;
3567
3568 return 0;
3569 }
3570
io_uring_create(struct io_ctx_config * config)3571 static __cold int io_uring_create(struct io_ctx_config *config)
3572 {
3573 struct io_uring_params *p = &config->p;
3574 struct io_ring_ctx *ctx;
3575 struct io_uring_task *tctx;
3576 struct file *file;
3577 int ret;
3578
3579 ret = io_prepare_config(config);
3580 if (ret)
3581 return ret;
3582
3583 ctx = io_ring_ctx_alloc(p);
3584 if (!ctx)
3585 return -ENOMEM;
3586
3587 ctx->clockid = CLOCK_MONOTONIC;
3588 ctx->clock_offset = 0;
3589
3590 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3591 static_branch_inc(&io_key_has_sqarray);
3592
3593 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3594 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3595 !(ctx->flags & IORING_SETUP_SQPOLL))
3596 ctx->task_complete = true;
3597
3598 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3599 ctx->lockless_cq = true;
3600
3601 /*
3602 * lazy poll_wq activation relies on ->task_complete for synchronisation
3603 * purposes, see io_activate_pollwq()
3604 */
3605 if (!ctx->task_complete)
3606 ctx->poll_activated = true;
3607
3608 /*
3609 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3610 * space applications don't need to do io completion events
3611 * polling again, they can rely on io_sq_thread to do polling
3612 * work, which can reduce cpu usage and uring_lock contention.
3613 */
3614 if (ctx->flags & IORING_SETUP_IOPOLL &&
3615 !(ctx->flags & IORING_SETUP_SQPOLL))
3616 ctx->syscall_iopoll = 1;
3617
3618 ctx->compat = in_compat_syscall();
3619 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3620 ctx->user = get_uid(current_user());
3621
3622 /*
3623 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3624 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3625 */
3626 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3627 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3628 else
3629 ctx->notify_method = TWA_SIGNAL;
3630
3631 /*
3632 * This is just grabbed for accounting purposes. When a process exits,
3633 * the mm is exited and dropped before the files, hence we need to hang
3634 * on to this mm purely for the purposes of being able to unaccount
3635 * memory (locked/pinned vm). It's not used for anything else.
3636 */
3637 mmgrab(current->mm);
3638 ctx->mm_account = current->mm;
3639
3640 ret = io_allocate_scq_urings(ctx, config);
3641 if (ret)
3642 goto err;
3643
3644 ret = io_sq_offload_create(ctx, p);
3645 if (ret)
3646 goto err;
3647
3648 p->features = IORING_FEAT_FLAGS;
3649
3650 if (copy_to_user(config->uptr, p, sizeof(*p))) {
3651 ret = -EFAULT;
3652 goto err;
3653 }
3654
3655 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3656 && !(ctx->flags & IORING_SETUP_R_DISABLED)) {
3657 /*
3658 * Unlike io_register_enable_rings(), don't need WRITE_ONCE()
3659 * since ctx isn't yet accessible from other tasks
3660 */
3661 ctx->submitter_task = get_task_struct(current);
3662 }
3663
3664 file = io_uring_get_file(ctx);
3665 if (IS_ERR(file)) {
3666 ret = PTR_ERR(file);
3667 goto err;
3668 }
3669
3670 ret = __io_uring_add_tctx_node(ctx);
3671 if (ret)
3672 goto err_fput;
3673 tctx = current->io_uring;
3674
3675 /*
3676 * Install ring fd as the very last thing, so we don't risk someone
3677 * having closed it before we finish setup
3678 */
3679 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3680 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3681 else
3682 ret = io_uring_install_fd(file);
3683 if (ret < 0)
3684 goto err_fput;
3685
3686 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3687 return ret;
3688 err:
3689 io_ring_ctx_wait_and_kill(ctx);
3690 return ret;
3691 err_fput:
3692 fput(file);
3693 return ret;
3694 }
3695
3696 /*
3697 * Sets up an aio uring context, and returns the fd. Applications asks for a
3698 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3699 * params structure passed in.
3700 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3701 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3702 {
3703 struct io_ctx_config config;
3704
3705 memset(&config, 0, sizeof(config));
3706
3707 if (copy_from_user(&config.p, params, sizeof(config.p)))
3708 return -EFAULT;
3709
3710 if (!mem_is_zero(&config.p.resv, sizeof(config.p.resv)))
3711 return -EINVAL;
3712
3713 config.p.sq_entries = entries;
3714 config.uptr = params;
3715 return io_uring_create(&config);
3716 }
3717
io_uring_allowed(void)3718 static inline int io_uring_allowed(void)
3719 {
3720 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3721 kgid_t io_uring_group;
3722
3723 if (disabled == 2)
3724 return -EPERM;
3725
3726 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3727 goto allowed_lsm;
3728
3729 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3730 if (!gid_valid(io_uring_group))
3731 return -EPERM;
3732
3733 if (!in_group_p(io_uring_group))
3734 return -EPERM;
3735
3736 allowed_lsm:
3737 return security_uring_allowed();
3738 }
3739
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3740 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3741 struct io_uring_params __user *, params)
3742 {
3743 int ret;
3744
3745 ret = io_uring_allowed();
3746 if (ret)
3747 return ret;
3748
3749 return io_uring_setup(entries, params);
3750 }
3751
io_uring_init(void)3752 static int __init io_uring_init(void)
3753 {
3754 struct kmem_cache_args kmem_args = {
3755 .useroffset = offsetof(struct io_kiocb, cmd.data),
3756 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3757 .freeptr_offset = offsetof(struct io_kiocb, work),
3758 .use_freeptr_offset = true,
3759 };
3760
3761 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3762 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3763 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3764 } while (0)
3765
3766 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3767 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3768 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3769 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3770 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3771 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3772 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3773 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3774 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3775 BUILD_BUG_SQE_ELEM(8, __u64, off);
3776 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3777 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3778 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3779 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3780 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3781 BUILD_BUG_SQE_ELEM(24, __u32, len);
3782 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3783 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3784 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3785 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3786 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3787 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3788 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3789 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3790 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3791 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3792 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3793 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3794 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3795 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3796 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3797 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3798 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3799 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3800 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3801 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3802 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3803 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3804 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3805 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3806 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3807 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3808 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3809 BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
3810 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
3811 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3812 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3813 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3814 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3815 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3816 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3817
3818 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3819 sizeof(struct io_uring_rsrc_update));
3820 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3821 sizeof(struct io_uring_rsrc_update2));
3822
3823 /* ->buf_index is u16 */
3824 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3825 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3826 offsetof(struct io_uring_buf_ring, tail));
3827
3828 /* should fit into one byte */
3829 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3830 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3831 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3832
3833 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3834
3835 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3836
3837 /* top 8bits are for internal use */
3838 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3839
3840 io_uring_optable_init();
3841
3842 /* imu->dir is u8 */
3843 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3844
3845 /*
3846 * Allow user copy in the per-command field, which starts after the
3847 * file in io_kiocb and until the opcode field. The openat2 handling
3848 * requires copying in user memory into the io_kiocb object in that
3849 * range, and HARDENED_USERCOPY will complain if we haven't
3850 * correctly annotated this range.
3851 */
3852 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3853 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3854 SLAB_TYPESAFE_BY_RCU);
3855
3856 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3857 BUG_ON(!iou_wq);
3858
3859 #ifdef CONFIG_SYSCTL
3860 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3861 #endif
3862
3863 return 0;
3864 };
3865 __initcall(io_uring_init);
3866