1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15
16 #include <uapi/linux/io_uring.h>
17
18 #include "filetable.h"
19 #include "io_uring.h"
20 #include "opdef.h"
21 #include "kbuf.h"
22 #include "alloc_cache.h"
23 #include "rsrc.h"
24 #include "poll.h"
25 #include "rw.h"
26
27 static void io_complete_rw(struct kiocb *kiocb, long res);
28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
29
30 struct io_rw {
31 /* NOTE: kiocb has the file as the first member, so don't do it here */
32 struct kiocb kiocb;
33 u64 addr;
34 u32 len;
35 rwf_t flags;
36 };
37
io_file_supports_nowait(struct io_kiocb * req,__poll_t mask)38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
39 {
40 /* If FMODE_NOWAIT is set for a file, we're golden */
41 if (req->flags & REQ_F_SUPPORT_NOWAIT)
42 return true;
43 /* No FMODE_NOWAIT, if we can poll, check the status */
44 if (io_file_can_poll(req)) {
45 struct poll_table_struct pt = { ._key = mask };
46
47 return vfs_poll(req->file, &pt) & mask;
48 }
49 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
50 return false;
51 }
52
io_iov_compat_buffer_select_prep(struct io_rw * rw)53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
56 struct compat_iovec iov;
57
58 if (copy_from_user(&iov, uiov, sizeof(iov)))
59 return -EFAULT;
60 rw->len = iov.iov_len;
61 return 0;
62 }
63
io_iov_buffer_select_prep(struct io_kiocb * req)64 static int io_iov_buffer_select_prep(struct io_kiocb *req)
65 {
66 struct iovec __user *uiov;
67 struct iovec iov;
68 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
69
70 if (rw->len != 1)
71 return -EINVAL;
72
73 if (io_is_compat(req->ctx))
74 return io_iov_compat_buffer_select_prep(rw);
75
76 uiov = u64_to_user_ptr(rw->addr);
77 if (copy_from_user(&iov, uiov, sizeof(*uiov)))
78 return -EFAULT;
79 rw->len = iov.iov_len;
80 return 0;
81 }
82
io_import_vec(int ddir,struct io_kiocb * req,struct io_async_rw * io,const struct iovec __user * uvec,size_t uvec_segs)83 static int io_import_vec(int ddir, struct io_kiocb *req,
84 struct io_async_rw *io,
85 const struct iovec __user *uvec,
86 size_t uvec_segs)
87 {
88 int ret, nr_segs;
89 struct iovec *iov;
90
91 if (io->vec.iovec) {
92 nr_segs = io->vec.nr;
93 iov = io->vec.iovec;
94 } else {
95 nr_segs = 1;
96 iov = &io->fast_iov;
97 }
98
99 ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
100 io_is_compat(req->ctx));
101 if (unlikely(ret < 0))
102 return ret;
103 if (iov) {
104 req->flags |= REQ_F_NEED_CLEANUP;
105 io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
106 }
107 return 0;
108 }
109
__io_import_rw_buffer(int ddir,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
111 struct io_async_rw *io, struct io_br_sel *sel,
112 unsigned int issue_flags)
113 {
114 const struct io_issue_def *def = &io_issue_defs[req->opcode];
115 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
116 size_t sqe_len = rw->len;
117
118 sel->addr = u64_to_user_ptr(rw->addr);
119 if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
120 return io_import_vec(ddir, req, io, sel->addr, sqe_len);
121
122 if (io_do_buffer_select(req)) {
123 *sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
124 if (!sel->addr)
125 return -ENOBUFS;
126 rw->addr = (unsigned long) sel->addr;
127 rw->len = sqe_len;
128 }
129 return import_ubuf(ddir, sel->addr, sqe_len, &io->iter);
130 }
131
io_import_rw_buffer(int rw,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
133 struct io_async_rw *io,
134 struct io_br_sel *sel,
135 unsigned int issue_flags)
136 {
137 int ret;
138
139 ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags);
140 if (unlikely(ret < 0))
141 return ret;
142
143 iov_iter_save_state(&io->iter, &io->iter_state);
144 return 0;
145 }
146
io_rw_recycle(struct io_kiocb * req,unsigned int issue_flags)147 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
148 {
149 struct io_async_rw *rw = req->async_data;
150
151 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
152 return;
153
154 io_alloc_cache_vec_kasan(&rw->vec);
155 if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
156 io_vec_free(&rw->vec);
157
158 if (io_alloc_cache_put(&req->ctx->rw_cache, rw))
159 io_req_async_data_clear(req, 0);
160 }
161
io_req_rw_cleanup(struct io_kiocb * req,unsigned int issue_flags)162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
163 {
164 /*
165 * Disable quick recycling for anything that's gone through io-wq.
166 * In theory, this should be fine to cleanup. However, some read or
167 * write iter handling touches the iovec AFTER having called into the
168 * handler, eg to reexpand or revert. This means we can have:
169 *
170 * task io-wq
171 * issue
172 * punt to io-wq
173 * issue
174 * blkdev_write_iter()
175 * ->ki_complete()
176 * io_complete_rw()
177 * queue tw complete
178 * run tw
179 * req_rw_cleanup
180 * iov_iter_count() <- look at iov_iter again
181 *
182 * which can lead to a UAF. This is only possible for io-wq offload
183 * as the cleanup can run in parallel. As io-wq is not the fast path,
184 * just leave cleanup to the end.
185 *
186 * This is really a bug in the core code that does this, any issue
187 * path should assume that a successful (or -EIOCBQUEUED) return can
188 * mean that the underlying data can be gone at any time. But that
189 * should be fixed seperately, and then this check could be killed.
190 */
191 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
192 req->flags &= ~REQ_F_NEED_CLEANUP;
193 io_rw_recycle(req, issue_flags);
194 }
195 }
196
io_rw_alloc_async(struct io_kiocb * req)197 static int io_rw_alloc_async(struct io_kiocb *req)
198 {
199 struct io_ring_ctx *ctx = req->ctx;
200 struct io_async_rw *rw;
201
202 rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
203 if (!rw)
204 return -ENOMEM;
205 if (rw->vec.iovec)
206 req->flags |= REQ_F_NEED_CLEANUP;
207 rw->bytes_done = 0;
208 return 0;
209 }
210
io_meta_save_state(struct io_async_rw * io)211 static inline void io_meta_save_state(struct io_async_rw *io)
212 {
213 io->meta_state.seed = io->meta.seed;
214 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
215 }
216
io_meta_restore(struct io_async_rw * io,struct kiocb * kiocb)217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
218 {
219 if (kiocb->ki_flags & IOCB_HAS_METADATA) {
220 io->meta.seed = io->meta_state.seed;
221 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
222 }
223 }
224
io_prep_rw_pi(struct io_kiocb * req,struct io_rw * rw,int ddir,u64 attr_ptr,u64 attr_type_mask)225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
226 u64 attr_ptr, u64 attr_type_mask)
227 {
228 struct io_uring_attr_pi pi_attr;
229 struct io_async_rw *io;
230 int ret;
231
232 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
233 sizeof(pi_attr)))
234 return -EFAULT;
235
236 if (pi_attr.rsvd)
237 return -EINVAL;
238
239 io = req->async_data;
240 io->meta.flags = pi_attr.flags;
241 io->meta.app_tag = pi_attr.app_tag;
242 io->meta.seed = pi_attr.seed;
243 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
244 pi_attr.len, &io->meta.iter);
245 if (unlikely(ret < 0))
246 return ret;
247 req->flags |= REQ_F_HAS_METADATA;
248 io_meta_save_state(io);
249 return ret;
250 }
251
__io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
253 int ddir)
254 {
255 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
256 struct io_async_rw *io;
257 unsigned ioprio;
258 u64 attr_type_mask;
259 int ret;
260
261 if (io_rw_alloc_async(req))
262 return -ENOMEM;
263 io = req->async_data;
264
265 rw->kiocb.ki_pos = READ_ONCE(sqe->off);
266 /* used for fixed read/write too - just read unconditionally */
267 req->buf_index = READ_ONCE(sqe->buf_index);
268 io->buf_group = req->buf_index;
269
270 ioprio = READ_ONCE(sqe->ioprio);
271 if (ioprio) {
272 ret = ioprio_check_cap(ioprio);
273 if (ret)
274 return ret;
275
276 rw->kiocb.ki_ioprio = ioprio;
277 } else {
278 rw->kiocb.ki_ioprio = get_current_ioprio();
279 }
280 rw->kiocb.dio_complete = NULL;
281 rw->kiocb.ki_flags = 0;
282 rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
283
284 if (req->ctx->flags & IORING_SETUP_IOPOLL)
285 rw->kiocb.ki_complete = io_complete_rw_iopoll;
286 else
287 rw->kiocb.ki_complete = io_complete_rw;
288
289 rw->addr = READ_ONCE(sqe->addr);
290 rw->len = READ_ONCE(sqe->len);
291 rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags);
292
293 attr_type_mask = READ_ONCE(sqe->attr_type_mask);
294 if (attr_type_mask) {
295 u64 attr_ptr;
296
297 /* only PI attribute is supported currently */
298 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
299 return -EINVAL;
300
301 attr_ptr = READ_ONCE(sqe->attr_ptr);
302 return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
303 }
304 return 0;
305 }
306
io_rw_do_import(struct io_kiocb * req,int ddir)307 static int io_rw_do_import(struct io_kiocb *req, int ddir)
308 {
309 struct io_br_sel sel = { };
310
311 if (io_do_buffer_select(req))
312 return 0;
313
314 return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0);
315 }
316
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)317 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
318 int ddir)
319 {
320 int ret;
321
322 ret = __io_prep_rw(req, sqe, ddir);
323 if (unlikely(ret))
324 return ret;
325
326 return io_rw_do_import(req, ddir);
327 }
328
io_prep_read(struct io_kiocb * req,const struct io_uring_sqe * sqe)329 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
330 {
331 return io_prep_rw(req, sqe, ITER_DEST);
332 }
333
io_prep_write(struct io_kiocb * req,const struct io_uring_sqe * sqe)334 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
335 {
336 return io_prep_rw(req, sqe, ITER_SOURCE);
337 }
338
io_prep_rwv(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)339 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
340 int ddir)
341 {
342 int ret;
343
344 ret = io_prep_rw(req, sqe, ddir);
345 if (unlikely(ret))
346 return ret;
347 if (!(req->flags & REQ_F_BUFFER_SELECT))
348 return 0;
349
350 /*
351 * Have to do this validation here, as this is in io_read() rw->len
352 * might have chanaged due to buffer selection
353 */
354 return io_iov_buffer_select_prep(req);
355 }
356
io_prep_readv(struct io_kiocb * req,const struct io_uring_sqe * sqe)357 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
358 {
359 return io_prep_rwv(req, sqe, ITER_DEST);
360 }
361
io_prep_writev(struct io_kiocb * req,const struct io_uring_sqe * sqe)362 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
363 {
364 return io_prep_rwv(req, sqe, ITER_SOURCE);
365 }
366
io_init_rw_fixed(struct io_kiocb * req,unsigned int issue_flags,int ddir)367 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
368 int ddir)
369 {
370 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
371 struct io_async_rw *io = req->async_data;
372 int ret;
373
374 if (io->bytes_done)
375 return 0;
376
377 ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
378 issue_flags);
379 iov_iter_save_state(&io->iter, &io->iter_state);
380 return ret;
381 }
382
io_prep_read_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)383 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
384 {
385 return __io_prep_rw(req, sqe, ITER_DEST);
386 }
387
io_prep_write_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)388 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
389 {
390 return __io_prep_rw(req, sqe, ITER_SOURCE);
391 }
392
io_rw_import_reg_vec(struct io_kiocb * req,struct io_async_rw * io,int ddir,unsigned int issue_flags)393 static int io_rw_import_reg_vec(struct io_kiocb *req,
394 struct io_async_rw *io,
395 int ddir, unsigned int issue_flags)
396 {
397 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
398 unsigned uvec_segs = rw->len;
399 int ret;
400
401 ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
402 uvec_segs, issue_flags);
403 if (unlikely(ret))
404 return ret;
405 iov_iter_save_state(&io->iter, &io->iter_state);
406 req->flags &= ~REQ_F_IMPORT_BUFFER;
407 return 0;
408 }
409
io_rw_prep_reg_vec(struct io_kiocb * req)410 static int io_rw_prep_reg_vec(struct io_kiocb *req)
411 {
412 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
413 struct io_async_rw *io = req->async_data;
414 const struct iovec __user *uvec;
415
416 uvec = u64_to_user_ptr(rw->addr);
417 return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
418 }
419
io_prep_readv_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)420 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
421 {
422 int ret;
423
424 ret = __io_prep_rw(req, sqe, ITER_DEST);
425 if (unlikely(ret))
426 return ret;
427 return io_rw_prep_reg_vec(req);
428 }
429
io_prep_writev_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)430 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
431 {
432 int ret;
433
434 ret = __io_prep_rw(req, sqe, ITER_SOURCE);
435 if (unlikely(ret))
436 return ret;
437 return io_rw_prep_reg_vec(req);
438 }
439
440 /*
441 * Multishot read is prepared just like a normal read/write request, only
442 * difference is that we set the MULTISHOT flag.
443 */
io_read_mshot_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)444 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
445 {
446 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
447 int ret;
448
449 /* must be used with provided buffers */
450 if (!(req->flags & REQ_F_BUFFER_SELECT))
451 return -EINVAL;
452
453 ret = __io_prep_rw(req, sqe, ITER_DEST);
454 if (unlikely(ret))
455 return ret;
456
457 if (rw->addr || rw->len)
458 return -EINVAL;
459
460 req->flags |= REQ_F_APOLL_MULTISHOT;
461 return 0;
462 }
463
io_readv_writev_cleanup(struct io_kiocb * req)464 void io_readv_writev_cleanup(struct io_kiocb *req)
465 {
466 lockdep_assert_held(&req->ctx->uring_lock);
467 io_rw_recycle(req, 0);
468 }
469
io_kiocb_update_pos(struct io_kiocb * req)470 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
471 {
472 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
473
474 if (rw->kiocb.ki_pos != -1)
475 return &rw->kiocb.ki_pos;
476
477 if (!(req->file->f_mode & FMODE_STREAM)) {
478 req->flags |= REQ_F_CUR_POS;
479 rw->kiocb.ki_pos = req->file->f_pos;
480 return &rw->kiocb.ki_pos;
481 }
482
483 rw->kiocb.ki_pos = 0;
484 return NULL;
485 }
486
io_rw_should_reissue(struct io_kiocb * req)487 static bool io_rw_should_reissue(struct io_kiocb *req)
488 {
489 #ifdef CONFIG_BLOCK
490 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
491 umode_t mode = file_inode(req->file)->i_mode;
492 struct io_async_rw *io = req->async_data;
493 struct io_ring_ctx *ctx = req->ctx;
494
495 if (!S_ISBLK(mode) && !S_ISREG(mode))
496 return false;
497 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
498 !(ctx->flags & IORING_SETUP_IOPOLL)))
499 return false;
500 /*
501 * If ref is dying, we might be running poll reap from the exit work.
502 * Don't attempt to reissue from that path, just let it fail with
503 * -EAGAIN.
504 */
505 if (percpu_ref_is_dying(&ctx->refs))
506 return false;
507
508 io_meta_restore(io, &rw->kiocb);
509 iov_iter_restore(&io->iter, &io->iter_state);
510 return true;
511 #else
512 return false;
513 #endif
514 }
515
io_req_end_write(struct io_kiocb * req)516 static void io_req_end_write(struct io_kiocb *req)
517 {
518 if (req->flags & REQ_F_ISREG) {
519 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
520
521 kiocb_end_write(&rw->kiocb);
522 }
523 }
524
525 /*
526 * Trigger the notifications after having done some IO, and finish the write
527 * accounting, if any.
528 */
io_req_io_end(struct io_kiocb * req)529 static void io_req_io_end(struct io_kiocb *req)
530 {
531 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
532
533 if (rw->kiocb.ki_flags & IOCB_WRITE) {
534 io_req_end_write(req);
535 fsnotify_modify(req->file);
536 } else {
537 fsnotify_access(req->file);
538 }
539 }
540
__io_complete_rw_common(struct io_kiocb * req,long res)541 static void __io_complete_rw_common(struct io_kiocb *req, long res)
542 {
543 if (res == req->cqe.res)
544 return;
545 if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) {
546 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
547 } else {
548 req_set_fail(req);
549 req->cqe.res = res;
550 }
551 }
552
io_fixup_rw_res(struct io_kiocb * req,long res)553 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
554 {
555 struct io_async_rw *io = req->async_data;
556
557 /* add previously done IO, if any */
558 if (req_has_async_data(req) && io->bytes_done > 0) {
559 if (res < 0)
560 res = io->bytes_done;
561 else
562 res += io->bytes_done;
563 }
564 return res;
565 }
566
io_req_rw_complete(struct io_kiocb * req,io_tw_token_t tw)567 void io_req_rw_complete(struct io_kiocb *req, io_tw_token_t tw)
568 {
569 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
570 struct kiocb *kiocb = &rw->kiocb;
571
572 if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
573 long res = kiocb->dio_complete(rw->kiocb.private);
574
575 io_req_set_res(req, io_fixup_rw_res(req, res), 0);
576 }
577
578 io_req_io_end(req);
579
580 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
581 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL);
582
583 io_req_rw_cleanup(req, 0);
584 io_req_task_complete(req, tw);
585 }
586
io_complete_rw(struct kiocb * kiocb,long res)587 static void io_complete_rw(struct kiocb *kiocb, long res)
588 {
589 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
590 struct io_kiocb *req = cmd_to_io_kiocb(rw);
591
592 if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
593 __io_complete_rw_common(req, res);
594 io_req_set_res(req, io_fixup_rw_res(req, res), 0);
595 }
596 req->io_task_work.func = io_req_rw_complete;
597 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
598 }
599
io_complete_rw_iopoll(struct kiocb * kiocb,long res)600 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
601 {
602 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
603 struct io_kiocb *req = cmd_to_io_kiocb(rw);
604
605 if (kiocb->ki_flags & IOCB_WRITE)
606 io_req_end_write(req);
607 if (unlikely(res != req->cqe.res)) {
608 if (res == -EAGAIN && io_rw_should_reissue(req))
609 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
610 else
611 req->cqe.res = res;
612 }
613
614 /* order with io_iopoll_complete() checking ->iopoll_completed */
615 smp_store_release(&req->iopoll_completed, 1);
616 }
617
io_rw_done(struct io_kiocb * req,ssize_t ret)618 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
619 {
620 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
621
622 /* IO was queued async, completion will happen later */
623 if (ret == -EIOCBQUEUED)
624 return;
625
626 /* transform internal restart error codes */
627 if (unlikely(ret < 0)) {
628 switch (ret) {
629 case -ERESTARTSYS:
630 case -ERESTARTNOINTR:
631 case -ERESTARTNOHAND:
632 case -ERESTART_RESTARTBLOCK:
633 /*
634 * We can't just restart the syscall, since previously
635 * submitted sqes may already be in progress. Just fail
636 * this IO with EINTR.
637 */
638 ret = -EINTR;
639 break;
640 }
641 }
642
643 if (req->ctx->flags & IORING_SETUP_IOPOLL)
644 io_complete_rw_iopoll(&rw->kiocb, ret);
645 else
646 io_complete_rw(&rw->kiocb, ret);
647 }
648
kiocb_done(struct io_kiocb * req,ssize_t ret,struct io_br_sel * sel,unsigned int issue_flags)649 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
650 struct io_br_sel *sel, unsigned int issue_flags)
651 {
652 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
653 unsigned final_ret = io_fixup_rw_res(req, ret);
654
655 if (ret >= 0 && req->flags & REQ_F_CUR_POS)
656 req->file->f_pos = rw->kiocb.ki_pos;
657 if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
658 u32 cflags = 0;
659
660 __io_complete_rw_common(req, ret);
661 /*
662 * Safe to call io_end from here as we're inline
663 * from the submission path.
664 */
665 io_req_io_end(req);
666 if (sel)
667 cflags = io_put_kbuf(req, ret, sel->buf_list);
668 io_req_set_res(req, final_ret, cflags);
669 io_req_rw_cleanup(req, issue_flags);
670 return IOU_COMPLETE;
671 } else {
672 io_rw_done(req, ret);
673 }
674
675 return IOU_ISSUE_SKIP_COMPLETE;
676 }
677
io_kiocb_ppos(struct kiocb * kiocb)678 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
679 {
680 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
681 }
682
683 /*
684 * For files that don't have ->read_iter() and ->write_iter(), handle them
685 * by looping over ->read() or ->write() manually.
686 */
loop_rw_iter(int ddir,struct io_rw * rw,struct iov_iter * iter)687 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
688 {
689 struct io_kiocb *req = cmd_to_io_kiocb(rw);
690 struct kiocb *kiocb = &rw->kiocb;
691 struct file *file = kiocb->ki_filp;
692 ssize_t ret = 0;
693 loff_t *ppos;
694
695 /*
696 * Don't support polled IO through this interface, and we can't
697 * support non-blocking either. For the latter, this just causes
698 * the kiocb to be handled from an async context.
699 */
700 if (kiocb->ki_flags & IOCB_HIPRI)
701 return -EOPNOTSUPP;
702 if ((kiocb->ki_flags & IOCB_NOWAIT) &&
703 !(kiocb->ki_filp->f_flags & O_NONBLOCK))
704 return -EAGAIN;
705 if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
706 return -EFAULT;
707
708 ppos = io_kiocb_ppos(kiocb);
709
710 while (iov_iter_count(iter)) {
711 void __user *addr;
712 size_t len;
713 ssize_t nr;
714
715 if (iter_is_ubuf(iter)) {
716 addr = iter->ubuf + iter->iov_offset;
717 len = iov_iter_count(iter);
718 } else if (!iov_iter_is_bvec(iter)) {
719 addr = iter_iov_addr(iter);
720 len = iter_iov_len(iter);
721 } else {
722 addr = u64_to_user_ptr(rw->addr);
723 len = rw->len;
724 }
725
726 if (ddir == READ)
727 nr = file->f_op->read(file, addr, len, ppos);
728 else
729 nr = file->f_op->write(file, addr, len, ppos);
730
731 if (nr < 0) {
732 if (!ret)
733 ret = nr;
734 break;
735 }
736 ret += nr;
737 if (!iov_iter_is_bvec(iter)) {
738 iov_iter_advance(iter, nr);
739 } else {
740 rw->addr += nr;
741 rw->len -= nr;
742 if (!rw->len)
743 break;
744 }
745 if (nr != len)
746 break;
747 }
748
749 return ret;
750 }
751
752 /*
753 * This is our waitqueue callback handler, registered through __folio_lock_async()
754 * when we initially tried to do the IO with the iocb armed our waitqueue.
755 * This gets called when the page is unlocked, and we generally expect that to
756 * happen when the page IO is completed and the page is now uptodate. This will
757 * queue a task_work based retry of the operation, attempting to copy the data
758 * again. If the latter fails because the page was NOT uptodate, then we will
759 * do a thread based blocking retry of the operation. That's the unexpected
760 * slow path.
761 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)762 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
763 int sync, void *arg)
764 {
765 struct wait_page_queue *wpq;
766 struct io_kiocb *req = wait->private;
767 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
768 struct wait_page_key *key = arg;
769
770 wpq = container_of(wait, struct wait_page_queue, wait);
771
772 if (!wake_page_match(wpq, key))
773 return 0;
774
775 rw->kiocb.ki_flags &= ~IOCB_WAITQ;
776 list_del_init(&wait->entry);
777 io_req_task_queue(req);
778 return 1;
779 }
780
781 /*
782 * This controls whether a given IO request should be armed for async page
783 * based retry. If we return false here, the request is handed to the async
784 * worker threads for retry. If we're doing buffered reads on a regular file,
785 * we prepare a private wait_page_queue entry and retry the operation. This
786 * will either succeed because the page is now uptodate and unlocked, or it
787 * will register a callback when the page is unlocked at IO completion. Through
788 * that callback, io_uring uses task_work to setup a retry of the operation.
789 * That retry will attempt the buffered read again. The retry will generally
790 * succeed, or in rare cases where it fails, we then fall back to using the
791 * async worker threads for a blocking retry.
792 */
io_rw_should_retry(struct io_kiocb * req)793 static bool io_rw_should_retry(struct io_kiocb *req)
794 {
795 struct io_async_rw *io = req->async_data;
796 struct wait_page_queue *wait = &io->wpq;
797 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
798 struct kiocb *kiocb = &rw->kiocb;
799
800 /*
801 * Never retry for NOWAIT or a request with metadata, we just complete
802 * with -EAGAIN.
803 */
804 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
805 return false;
806
807 /* Only for buffered IO */
808 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
809 return false;
810
811 /*
812 * just use poll if we can, and don't attempt if the fs doesn't
813 * support callback based unlocks
814 */
815 if (io_file_can_poll(req) ||
816 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
817 return false;
818
819 wait->wait.func = io_async_buf_func;
820 wait->wait.private = req;
821 wait->wait.flags = 0;
822 INIT_LIST_HEAD(&wait->wait.entry);
823 kiocb->ki_flags |= IOCB_WAITQ;
824 kiocb->ki_flags &= ~IOCB_NOWAIT;
825 kiocb->ki_waitq = wait;
826 return true;
827 }
828
io_iter_do_read(struct io_rw * rw,struct iov_iter * iter)829 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
830 {
831 struct file *file = rw->kiocb.ki_filp;
832
833 if (likely(file->f_op->read_iter))
834 return file->f_op->read_iter(&rw->kiocb, iter);
835 else if (file->f_op->read)
836 return loop_rw_iter(READ, rw, iter);
837 else
838 return -EINVAL;
839 }
840
need_complete_io(struct io_kiocb * req)841 static bool need_complete_io(struct io_kiocb *req)
842 {
843 return req->flags & REQ_F_ISREG ||
844 S_ISBLK(file_inode(req->file)->i_mode);
845 }
846
io_rw_init_file(struct io_kiocb * req,fmode_t mode,int rw_type)847 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
848 {
849 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
850 struct kiocb *kiocb = &rw->kiocb;
851 struct io_ring_ctx *ctx = req->ctx;
852 struct file *file = req->file;
853 int ret;
854
855 if (unlikely(!(file->f_mode & mode)))
856 return -EBADF;
857
858 if (!(req->flags & REQ_F_FIXED_FILE))
859 req->flags |= io_file_get_flags(file);
860
861 kiocb->ki_flags = file->f_iocb_flags;
862 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
863 if (unlikely(ret))
864 return ret;
865 kiocb->ki_flags |= IOCB_ALLOC_CACHE;
866
867 /*
868 * If the file is marked O_NONBLOCK, still allow retry for it if it
869 * supports async. Otherwise it's impossible to use O_NONBLOCK files
870 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
871 */
872 if (kiocb->ki_flags & IOCB_NOWAIT ||
873 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
874 req->flags |= REQ_F_NOWAIT;
875
876 if (ctx->flags & IORING_SETUP_IOPOLL) {
877 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
878 return -EOPNOTSUPP;
879 kiocb->private = NULL;
880 kiocb->ki_flags |= IOCB_HIPRI;
881 req->iopoll_completed = 0;
882 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
883 /* make sure every req only blocks once*/
884 req->flags &= ~REQ_F_IOPOLL_STATE;
885 req->iopoll_start = ktime_get_ns();
886 }
887 } else {
888 if (kiocb->ki_flags & IOCB_HIPRI)
889 return -EINVAL;
890 }
891
892 if (req->flags & REQ_F_HAS_METADATA) {
893 struct io_async_rw *io = req->async_data;
894
895 if (!(file->f_mode & FMODE_HAS_METADATA))
896 return -EINVAL;
897
898 /*
899 * We have a union of meta fields with wpq used for buffered-io
900 * in io_async_rw, so fail it here.
901 */
902 if (!(req->file->f_flags & O_DIRECT))
903 return -EOPNOTSUPP;
904 kiocb->ki_flags |= IOCB_HAS_METADATA;
905 kiocb->private = &io->meta;
906 }
907
908 return 0;
909 }
910
__io_read(struct io_kiocb * req,struct io_br_sel * sel,unsigned int issue_flags)911 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel,
912 unsigned int issue_flags)
913 {
914 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
915 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
916 struct io_async_rw *io = req->async_data;
917 struct kiocb *kiocb = &rw->kiocb;
918 ssize_t ret;
919 loff_t *ppos;
920
921 if (req->flags & REQ_F_IMPORT_BUFFER) {
922 ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
923 if (unlikely(ret))
924 return ret;
925 } else if (io_do_buffer_select(req)) {
926 ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags);
927 if (unlikely(ret < 0))
928 return ret;
929 }
930 ret = io_rw_init_file(req, FMODE_READ, READ);
931 if (unlikely(ret))
932 return ret;
933 req->cqe.res = iov_iter_count(&io->iter);
934
935 if (force_nonblock) {
936 /* If the file doesn't support async, just async punt */
937 if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
938 return -EAGAIN;
939 kiocb->ki_flags |= IOCB_NOWAIT;
940 } else {
941 /* Ensure we clear previously set non-block flag */
942 kiocb->ki_flags &= ~IOCB_NOWAIT;
943 }
944
945 ppos = io_kiocb_update_pos(req);
946
947 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
948 if (unlikely(ret))
949 return ret;
950
951 ret = io_iter_do_read(rw, &io->iter);
952
953 /*
954 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
955 * issue, even though they should be returning -EAGAIN. To be safe,
956 * retry from blocking context for either.
957 */
958 if (ret == -EOPNOTSUPP && force_nonblock)
959 ret = -EAGAIN;
960
961 if (ret == -EAGAIN) {
962 /* If we can poll, just do that. */
963 if (io_file_can_poll(req))
964 return -EAGAIN;
965 /* IOPOLL retry should happen for io-wq threads */
966 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
967 goto done;
968 /* no retry on NONBLOCK nor RWF_NOWAIT */
969 if (req->flags & REQ_F_NOWAIT)
970 goto done;
971 ret = 0;
972 } else if (ret == -EIOCBQUEUED) {
973 return IOU_ISSUE_SKIP_COMPLETE;
974 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
975 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
976 (issue_flags & IO_URING_F_MULTISHOT)) {
977 /* read all, failed, already did sync or don't want to retry */
978 goto done;
979 }
980
981 /*
982 * Don't depend on the iter state matching what was consumed, or being
983 * untouched in case of error. Restore it and we'll advance it
984 * manually if we need to.
985 */
986 iov_iter_restore(&io->iter, &io->iter_state);
987 io_meta_restore(io, kiocb);
988
989 do {
990 /*
991 * We end up here because of a partial read, either from
992 * above or inside this loop. Advance the iter by the bytes
993 * that were consumed.
994 */
995 iov_iter_advance(&io->iter, ret);
996 if (!iov_iter_count(&io->iter))
997 break;
998 io->bytes_done += ret;
999 iov_iter_save_state(&io->iter, &io->iter_state);
1000
1001 /* if we can retry, do so with the callbacks armed */
1002 if (!io_rw_should_retry(req)) {
1003 kiocb->ki_flags &= ~IOCB_WAITQ;
1004 return -EAGAIN;
1005 }
1006
1007 req->cqe.res = iov_iter_count(&io->iter);
1008 /*
1009 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1010 * we get -EIOCBQUEUED, then we'll get a notification when the
1011 * desired page gets unlocked. We can also get a partial read
1012 * here, and if we do, then just retry at the new offset.
1013 */
1014 ret = io_iter_do_read(rw, &io->iter);
1015 if (ret == -EIOCBQUEUED)
1016 return IOU_ISSUE_SKIP_COMPLETE;
1017 /* we got some bytes, but not all. retry. */
1018 kiocb->ki_flags &= ~IOCB_WAITQ;
1019 iov_iter_restore(&io->iter, &io->iter_state);
1020 } while (ret > 0);
1021 done:
1022 /* it's faster to check here then delegate to kfree */
1023 return ret;
1024 }
1025
io_read(struct io_kiocb * req,unsigned int issue_flags)1026 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1027 {
1028 struct io_br_sel sel = { };
1029 int ret;
1030
1031 ret = __io_read(req, &sel, issue_flags);
1032 if (ret >= 0)
1033 return kiocb_done(req, ret, &sel, issue_flags);
1034
1035 if (req->flags & REQ_F_BUFFERS_COMMIT)
1036 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1037 return ret;
1038 }
1039
io_read_mshot(struct io_kiocb * req,unsigned int issue_flags)1040 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1041 {
1042 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1043 struct io_br_sel sel = { };
1044 unsigned int cflags = 0;
1045 int ret;
1046
1047 /*
1048 * Multishot MUST be used on a pollable file
1049 */
1050 if (!io_file_can_poll(req))
1051 return -EBADFD;
1052
1053 /* make it sync, multishot doesn't support async execution */
1054 rw->kiocb.ki_complete = NULL;
1055 ret = __io_read(req, &sel, issue_flags);
1056
1057 /*
1058 * If we get -EAGAIN, recycle our buffer and just let normal poll
1059 * handling arm it.
1060 */
1061 if (ret == -EAGAIN) {
1062 /*
1063 * Reset rw->len to 0 again to avoid clamping future mshot
1064 * reads, in case the buffer size varies.
1065 */
1066 if (io_kbuf_recycle(req, sel.buf_list, issue_flags))
1067 rw->len = 0;
1068 return IOU_RETRY;
1069 } else if (ret <= 0) {
1070 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1071 if (ret < 0)
1072 req_set_fail(req);
1073 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1074 cflags = io_put_kbuf(req, ret, sel.buf_list);
1075 } else {
1076 /*
1077 * Any successful return value will keep the multishot read
1078 * armed, if it's still set. Put our buffer and post a CQE. If
1079 * we fail to post a CQE, or multishot is no longer set, then
1080 * jump to the termination path. This request is then done.
1081 */
1082 cflags = io_put_kbuf(req, ret, sel.buf_list);
1083 rw->len = 0; /* similarly to above, reset len to 0 */
1084
1085 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1086 if (issue_flags & IO_URING_F_MULTISHOT)
1087 /*
1088 * Force retry, as we might have more data to
1089 * be read and otherwise it won't get retried
1090 * until (if ever) another poll is triggered.
1091 */
1092 io_poll_multishot_retry(req);
1093
1094 return IOU_RETRY;
1095 }
1096 }
1097
1098 /*
1099 * Either an error, or we've hit overflow posting the CQE. For any
1100 * multishot request, hitting overflow will terminate it.
1101 */
1102 io_req_set_res(req, ret, cflags);
1103 io_req_rw_cleanup(req, issue_flags);
1104 return IOU_COMPLETE;
1105 }
1106
io_kiocb_start_write(struct io_kiocb * req,struct kiocb * kiocb)1107 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1108 {
1109 struct inode *inode;
1110 bool ret;
1111
1112 if (!(req->flags & REQ_F_ISREG))
1113 return true;
1114 if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1115 kiocb_start_write(kiocb);
1116 return true;
1117 }
1118
1119 inode = file_inode(kiocb->ki_filp);
1120 ret = sb_start_write_trylock(inode->i_sb);
1121 if (ret)
1122 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1123 return ret;
1124 }
1125
io_write(struct io_kiocb * req,unsigned int issue_flags)1126 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1127 {
1128 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1129 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1130 struct io_async_rw *io = req->async_data;
1131 struct kiocb *kiocb = &rw->kiocb;
1132 ssize_t ret, ret2;
1133 loff_t *ppos;
1134
1135 if (req->flags & REQ_F_IMPORT_BUFFER) {
1136 ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1137 if (unlikely(ret))
1138 return ret;
1139 }
1140
1141 ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1142 if (unlikely(ret))
1143 return ret;
1144 req->cqe.res = iov_iter_count(&io->iter);
1145
1146 if (force_nonblock) {
1147 /* If the file doesn't support async, just async punt */
1148 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1149 goto ret_eagain;
1150
1151 /* Check if we can support NOWAIT. */
1152 if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1153 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1154 (req->flags & REQ_F_ISREG))
1155 goto ret_eagain;
1156
1157 kiocb->ki_flags |= IOCB_NOWAIT;
1158 } else {
1159 /* Ensure we clear previously set non-block flag */
1160 kiocb->ki_flags &= ~IOCB_NOWAIT;
1161 }
1162
1163 ppos = io_kiocb_update_pos(req);
1164
1165 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1166 if (unlikely(ret))
1167 return ret;
1168
1169 if (unlikely(!io_kiocb_start_write(req, kiocb)))
1170 return -EAGAIN;
1171 kiocb->ki_flags |= IOCB_WRITE;
1172
1173 if (likely(req->file->f_op->write_iter))
1174 ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1175 else if (req->file->f_op->write)
1176 ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1177 else
1178 ret2 = -EINVAL;
1179
1180 /*
1181 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1182 * retry them without IOCB_NOWAIT.
1183 */
1184 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1185 ret2 = -EAGAIN;
1186 /* no retry on NONBLOCK nor RWF_NOWAIT */
1187 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1188 goto done;
1189 if (!force_nonblock || ret2 != -EAGAIN) {
1190 /* IOPOLL retry should happen for io-wq threads */
1191 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1192 goto ret_eagain;
1193
1194 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1195 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1196 req->cqe.res, ret2);
1197
1198 /* This is a partial write. The file pos has already been
1199 * updated, setup the async struct to complete the request
1200 * in the worker. Also update bytes_done to account for
1201 * the bytes already written.
1202 */
1203 iov_iter_save_state(&io->iter, &io->iter_state);
1204 io->bytes_done += ret2;
1205
1206 if (kiocb->ki_flags & IOCB_WRITE)
1207 io_req_end_write(req);
1208 return -EAGAIN;
1209 }
1210 done:
1211 return kiocb_done(req, ret2, NULL, issue_flags);
1212 } else {
1213 ret_eagain:
1214 iov_iter_restore(&io->iter, &io->iter_state);
1215 io_meta_restore(io, kiocb);
1216 if (kiocb->ki_flags & IOCB_WRITE)
1217 io_req_end_write(req);
1218 return -EAGAIN;
1219 }
1220 }
1221
io_read_fixed(struct io_kiocb * req,unsigned int issue_flags)1222 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1223 {
1224 int ret;
1225
1226 ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1227 if (unlikely(ret))
1228 return ret;
1229
1230 return io_read(req, issue_flags);
1231 }
1232
io_write_fixed(struct io_kiocb * req,unsigned int issue_flags)1233 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1234 {
1235 int ret;
1236
1237 ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1238 if (unlikely(ret))
1239 return ret;
1240
1241 return io_write(req, issue_flags);
1242 }
1243
io_rw_fail(struct io_kiocb * req)1244 void io_rw_fail(struct io_kiocb *req)
1245 {
1246 int res;
1247
1248 res = io_fixup_rw_res(req, req->cqe.res);
1249 io_req_set_res(req, res, req->cqe.flags);
1250 }
1251
io_uring_classic_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1252 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1253 unsigned int poll_flags)
1254 {
1255 struct file *file = req->file;
1256
1257 if (req->opcode == IORING_OP_URING_CMD) {
1258 struct io_uring_cmd *ioucmd;
1259
1260 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1261 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1262 } else {
1263 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1264
1265 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1266 }
1267 }
1268
io_hybrid_iopoll_delay(struct io_ring_ctx * ctx,struct io_kiocb * req)1269 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1270 {
1271 struct hrtimer_sleeper timer;
1272 enum hrtimer_mode mode;
1273 ktime_t kt;
1274 u64 sleep_time;
1275
1276 if (req->flags & REQ_F_IOPOLL_STATE)
1277 return 0;
1278
1279 if (ctx->hybrid_poll_time == LLONG_MAX)
1280 return 0;
1281
1282 /* Using half the running time to do schedule */
1283 sleep_time = ctx->hybrid_poll_time / 2;
1284
1285 kt = ktime_set(0, sleep_time);
1286 req->flags |= REQ_F_IOPOLL_STATE;
1287
1288 mode = HRTIMER_MODE_REL;
1289 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1290 hrtimer_set_expires(&timer.timer, kt);
1291 set_current_state(TASK_INTERRUPTIBLE);
1292 hrtimer_sleeper_start_expires(&timer, mode);
1293
1294 if (timer.task)
1295 io_schedule();
1296
1297 hrtimer_cancel(&timer.timer);
1298 __set_current_state(TASK_RUNNING);
1299 destroy_hrtimer_on_stack(&timer.timer);
1300 return sleep_time;
1301 }
1302
io_uring_hybrid_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1303 static int io_uring_hybrid_poll(struct io_kiocb *req,
1304 struct io_comp_batch *iob, unsigned int poll_flags)
1305 {
1306 struct io_ring_ctx *ctx = req->ctx;
1307 u64 runtime, sleep_time;
1308 int ret;
1309
1310 sleep_time = io_hybrid_iopoll_delay(ctx, req);
1311 ret = io_uring_classic_poll(req, iob, poll_flags);
1312 runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1313
1314 /*
1315 * Use minimum sleep time if we're polling devices with different
1316 * latencies. We could get more completions from the faster ones.
1317 */
1318 if (ctx->hybrid_poll_time > runtime)
1319 ctx->hybrid_poll_time = runtime;
1320
1321 return ret;
1322 }
1323
io_do_iopoll(struct io_ring_ctx * ctx,bool force_nonspin)1324 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1325 {
1326 struct io_wq_work_node *pos, *start, *prev;
1327 unsigned int poll_flags = 0;
1328 DEFINE_IO_COMP_BATCH(iob);
1329 int nr_events = 0;
1330
1331 /*
1332 * Only spin for completions if we don't have multiple devices hanging
1333 * off our complete list.
1334 */
1335 if (ctx->poll_multi_queue || force_nonspin)
1336 poll_flags |= BLK_POLL_ONESHOT;
1337
1338 wq_list_for_each(pos, start, &ctx->iopoll_list) {
1339 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1340 int ret;
1341
1342 /*
1343 * Move completed and retryable entries to our local lists.
1344 * If we find a request that requires polling, break out
1345 * and complete those lists first, if we have entries there.
1346 */
1347 if (READ_ONCE(req->iopoll_completed))
1348 break;
1349
1350 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1351 ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1352 else
1353 ret = io_uring_classic_poll(req, &iob, poll_flags);
1354
1355 if (unlikely(ret < 0))
1356 return ret;
1357 else if (ret)
1358 poll_flags |= BLK_POLL_ONESHOT;
1359
1360 /* iopoll may have completed current req */
1361 if (!rq_list_empty(&iob.req_list) ||
1362 READ_ONCE(req->iopoll_completed))
1363 break;
1364 }
1365
1366 if (!rq_list_empty(&iob.req_list))
1367 iob.complete(&iob);
1368 else if (!pos)
1369 return 0;
1370
1371 prev = start;
1372 wq_list_for_each_resume(pos, prev) {
1373 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1374
1375 /* order with io_complete_rw_iopoll(), e.g. ->result updates */
1376 if (!smp_load_acquire(&req->iopoll_completed))
1377 break;
1378 nr_events++;
1379 req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL);
1380 if (req->opcode != IORING_OP_URING_CMD)
1381 io_req_rw_cleanup(req, 0);
1382 }
1383 if (unlikely(!nr_events))
1384 return 0;
1385
1386 pos = start ? start->next : ctx->iopoll_list.first;
1387 wq_list_cut(&ctx->iopoll_list, prev, start);
1388
1389 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1390 return 0;
1391 ctx->submit_state.compl_reqs.first = pos;
1392 __io_submit_flush_completions(ctx);
1393 return nr_events;
1394 }
1395
io_rw_cache_free(const void * entry)1396 void io_rw_cache_free(const void *entry)
1397 {
1398 struct io_async_rw *rw = (struct io_async_rw *) entry;
1399
1400 io_vec_free(&rw->vec);
1401 kfree(rw);
1402 }
1403