1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 #include "zcrx.h"
101
102 #include "timeout.h"
103 #include "poll.h"
104 #include "rw.h"
105 #include "alloc_cache.h"
106 #include "eventfd.h"
107
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110
111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113
114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 REQ_F_ASYNC_DATA)
119
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
122
123 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125 #define IO_COMPL_BATCH 32
126 #define IO_REQ_ALLOC_BATCH 8
127 #define IO_LOCAL_TW_DEFAULT_MAX 20
128
129 struct io_defer_entry {
130 struct list_head list;
131 struct io_kiocb *req;
132 };
133
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136
137 /*
138 * No waiters. It's larger than any valid value of the tw counter
139 * so that tests against ->cq_wait_nr would fail and skip wake_up().
140 */
141 #define IO_CQ_WAKE_INIT (-1U)
142 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
143 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
144
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 struct io_uring_task *tctx,
147 bool cancel_all,
148 bool is_sqpoll_thread);
149
150 static void io_queue_sqe(struct io_kiocb *req);
151 static void __io_req_caches_free(struct io_ring_ctx *ctx);
152
153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154
155 struct kmem_cache *req_cachep;
156 static struct workqueue_struct *iou_wq __ro_after_init;
157
158 static int __read_mostly sysctl_io_uring_disabled;
159 static int __read_mostly sysctl_io_uring_group = -1;
160
161 #ifdef CONFIG_SYSCTL
162 static const struct ctl_table kernel_io_uring_disabled_table[] = {
163 {
164 .procname = "io_uring_disabled",
165 .data = &sysctl_io_uring_disabled,
166 .maxlen = sizeof(sysctl_io_uring_disabled),
167 .mode = 0644,
168 .proc_handler = proc_dointvec_minmax,
169 .extra1 = SYSCTL_ZERO,
170 .extra2 = SYSCTL_TWO,
171 },
172 {
173 .procname = "io_uring_group",
174 .data = &sysctl_io_uring_group,
175 .maxlen = sizeof(gid_t),
176 .mode = 0644,
177 .proc_handler = proc_dointvec,
178 },
179 };
180 #endif
181
__io_cqring_events(struct io_ring_ctx * ctx)182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183 {
184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185 }
186
__io_cqring_events_user(struct io_ring_ctx * ctx)187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188 {
189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190 }
191
io_match_linked(struct io_kiocb * head)192 static bool io_match_linked(struct io_kiocb *head)
193 {
194 struct io_kiocb *req;
195
196 io_for_each_link(req, head) {
197 if (req->flags & REQ_F_INFLIGHT)
198 return true;
199 }
200 return false;
201 }
202
203 /*
204 * As io_match_task() but protected against racing with linked timeouts.
205 * User must not hold timeout_lock.
206 */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208 bool cancel_all)
209 {
210 bool matched;
211
212 if (tctx && head->tctx != tctx)
213 return false;
214 if (cancel_all)
215 return true;
216
217 if (head->flags & REQ_F_LINK_TIMEOUT) {
218 struct io_ring_ctx *ctx = head->ctx;
219
220 /* protect against races with linked timeouts */
221 raw_spin_lock_irq(&ctx->timeout_lock);
222 matched = io_match_linked(head);
223 raw_spin_unlock_irq(&ctx->timeout_lock);
224 } else {
225 matched = io_match_linked(head);
226 }
227 return matched;
228 }
229
req_fail_link_node(struct io_kiocb * req,int res)230 static inline void req_fail_link_node(struct io_kiocb *req, int res)
231 {
232 req_set_fail(req);
233 io_req_set_res(req, res, 0);
234 }
235
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237 {
238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239 }
240
io_ring_ctx_ref_free(struct percpu_ref * ref)241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242 {
243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244
245 complete(&ctx->ref_comp);
246 }
247
io_fallback_req_func(struct work_struct * work)248 static __cold void io_fallback_req_func(struct work_struct *work)
249 {
250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251 fallback_work.work);
252 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253 struct io_kiocb *req, *tmp;
254 struct io_tw_state ts = {};
255
256 percpu_ref_get(&ctx->refs);
257 mutex_lock(&ctx->uring_lock);
258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259 req->io_task_work.func(req, ts);
260 io_submit_flush_completions(ctx);
261 mutex_unlock(&ctx->uring_lock);
262 percpu_ref_put(&ctx->refs);
263 }
264
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266 {
267 unsigned int hash_buckets;
268 int i;
269
270 do {
271 hash_buckets = 1U << bits;
272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273 GFP_KERNEL_ACCOUNT);
274 if (table->hbs)
275 break;
276 if (bits == 1)
277 return -ENOMEM;
278 bits--;
279 } while (1);
280
281 table->hash_bits = bits;
282 for (i = 0; i < hash_buckets; i++)
283 INIT_HLIST_HEAD(&table->hbs[i].list);
284 return 0;
285 }
286
io_free_alloc_caches(struct io_ring_ctx * ctx)287 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288 {
289 io_alloc_cache_free(&ctx->apoll_cache, kfree);
290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293 io_alloc_cache_free(&ctx->msg_cache, kfree);
294 io_futex_cache_free(ctx);
295 io_rsrc_cache_free(ctx);
296 }
297
io_ring_ctx_alloc(struct io_uring_params * p)298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299 {
300 struct io_ring_ctx *ctx;
301 int hash_bits;
302 bool ret;
303
304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 if (!ctx)
306 return NULL;
307
308 xa_init(&ctx->io_bl_xa);
309
310 /*
311 * Use 5 bits less than the max cq entries, that should give us around
312 * 32 entries per hash list if totally full and uniformly spread, but
313 * don't keep too many buckets to not overconsume memory.
314 */
315 hash_bits = ilog2(p->cq_entries) - 5;
316 hash_bits = clamp(hash_bits, 1, 8);
317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 goto err;
319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 0, GFP_KERNEL))
321 goto err;
322
323 ctx->flags = p->flags;
324 ctx->hybrid_poll_time = LLONG_MAX;
325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326 init_waitqueue_head(&ctx->sqo_sq_wait);
327 INIT_LIST_HEAD(&ctx->sqd_list);
328 INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330 sizeof(struct async_poll), 0);
331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 sizeof(struct io_async_msghdr),
333 offsetof(struct io_async_msghdr, clear));
334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335 sizeof(struct io_async_rw),
336 offsetof(struct io_async_rw, clear));
337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338 sizeof(struct io_async_cmd),
339 sizeof(struct io_async_cmd));
340 spin_lock_init(&ctx->msg_lock);
341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342 sizeof(struct io_kiocb), 0);
343 ret |= io_futex_cache_init(ctx);
344 ret |= io_rsrc_cache_init(ctx);
345 if (ret)
346 goto free_ref;
347 init_completion(&ctx->ref_comp);
348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349 mutex_init(&ctx->uring_lock);
350 init_waitqueue_head(&ctx->cq_wait);
351 init_waitqueue_head(&ctx->poll_wq);
352 spin_lock_init(&ctx->completion_lock);
353 raw_spin_lock_init(&ctx->timeout_lock);
354 INIT_WQ_LIST(&ctx->iopoll_list);
355 INIT_LIST_HEAD(&ctx->defer_list);
356 INIT_LIST_HEAD(&ctx->timeout_list);
357 INIT_LIST_HEAD(&ctx->ltimeout_list);
358 init_llist_head(&ctx->work_llist);
359 INIT_LIST_HEAD(&ctx->tctx_list);
360 ctx->submit_state.free_list.next = NULL;
361 INIT_HLIST_HEAD(&ctx->waitid_list);
362 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
363 #ifdef CONFIG_FUTEX
364 INIT_HLIST_HEAD(&ctx->futex_list);
365 #endif
366 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
367 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
368 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
369 io_napi_init(ctx);
370 mutex_init(&ctx->mmap_lock);
371
372 return ctx;
373
374 free_ref:
375 percpu_ref_exit(&ctx->refs);
376 err:
377 io_free_alloc_caches(ctx);
378 kvfree(ctx->cancel_table.hbs);
379 xa_destroy(&ctx->io_bl_xa);
380 kfree(ctx);
381 return NULL;
382 }
383
io_clean_op(struct io_kiocb * req)384 static void io_clean_op(struct io_kiocb *req)
385 {
386 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
387 io_kbuf_drop_legacy(req);
388
389 if (req->flags & REQ_F_NEED_CLEANUP) {
390 const struct io_cold_def *def = &io_cold_defs[req->opcode];
391
392 if (def->cleanup)
393 def->cleanup(req);
394 }
395 if ((req->flags & REQ_F_POLLED) && req->apoll) {
396 kfree(req->apoll->double_poll);
397 kfree(req->apoll);
398 req->apoll = NULL;
399 }
400 if (req->flags & REQ_F_INFLIGHT)
401 atomic_dec(&req->tctx->inflight_tracked);
402 if (req->flags & REQ_F_CREDS)
403 put_cred(req->creds);
404 if (req->flags & REQ_F_ASYNC_DATA) {
405 kfree(req->async_data);
406 req->async_data = NULL;
407 }
408 req->flags &= ~IO_REQ_CLEAN_FLAGS;
409 }
410
411 /*
412 * Mark the request as inflight, so that file cancelation will find it.
413 * Can be used if the file is an io_uring instance, or if the request itself
414 * relies on ->mm being alive for the duration of the request.
415 */
io_req_track_inflight(struct io_kiocb * req)416 inline void io_req_track_inflight(struct io_kiocb *req)
417 {
418 if (!(req->flags & REQ_F_INFLIGHT)) {
419 req->flags |= REQ_F_INFLIGHT;
420 atomic_inc(&req->tctx->inflight_tracked);
421 }
422 }
423
__io_prep_linked_timeout(struct io_kiocb * req)424 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 if (WARN_ON_ONCE(!req->link))
427 return NULL;
428
429 req->flags &= ~REQ_F_ARM_LTIMEOUT;
430 req->flags |= REQ_F_LINK_TIMEOUT;
431
432 /* linked timeouts should have two refs once prep'ed */
433 io_req_set_refcount(req);
434 __io_req_set_refcount(req->link, 2);
435 return req->link;
436 }
437
io_prep_async_work(struct io_kiocb * req)438 static void io_prep_async_work(struct io_kiocb *req)
439 {
440 const struct io_issue_def *def = &io_issue_defs[req->opcode];
441 struct io_ring_ctx *ctx = req->ctx;
442
443 if (!(req->flags & REQ_F_CREDS)) {
444 req->flags |= REQ_F_CREDS;
445 req->creds = get_current_cred();
446 }
447
448 req->work.list.next = NULL;
449 atomic_set(&req->work.flags, 0);
450 if (req->flags & REQ_F_FORCE_ASYNC)
451 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
452
453 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
454 req->flags |= io_file_get_flags(req->file);
455
456 if (req->file && (req->flags & REQ_F_ISREG)) {
457 bool should_hash = def->hash_reg_file;
458
459 /* don't serialize this request if the fs doesn't need it */
460 if (should_hash && (req->file->f_flags & O_DIRECT) &&
461 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
462 should_hash = false;
463 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
464 io_wq_hash_work(&req->work, file_inode(req->file));
465 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
466 if (def->unbound_nonreg_file)
467 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
468 }
469 }
470
io_prep_async_link(struct io_kiocb * req)471 static void io_prep_async_link(struct io_kiocb *req)
472 {
473 struct io_kiocb *cur;
474
475 if (req->flags & REQ_F_LINK_TIMEOUT) {
476 struct io_ring_ctx *ctx = req->ctx;
477
478 raw_spin_lock_irq(&ctx->timeout_lock);
479 io_for_each_link(cur, req)
480 io_prep_async_work(cur);
481 raw_spin_unlock_irq(&ctx->timeout_lock);
482 } else {
483 io_for_each_link(cur, req)
484 io_prep_async_work(cur);
485 }
486 }
487
io_queue_iowq(struct io_kiocb * req)488 static void io_queue_iowq(struct io_kiocb *req)
489 {
490 struct io_uring_task *tctx = req->tctx;
491
492 BUG_ON(!tctx);
493
494 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
495 io_req_task_queue_fail(req, -ECANCELED);
496 return;
497 }
498
499 /* init ->work of the whole link before punting */
500 io_prep_async_link(req);
501
502 /*
503 * Not expected to happen, but if we do have a bug where this _can_
504 * happen, catch it here and ensure the request is marked as
505 * canceled. That will make io-wq go through the usual work cancel
506 * procedure rather than attempt to run this request (or create a new
507 * worker for it).
508 */
509 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
510 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
511
512 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
513 io_wq_enqueue(tctx->io_wq, &req->work);
514 }
515
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)516 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
517 {
518 io_queue_iowq(req);
519 }
520
io_req_queue_iowq(struct io_kiocb * req)521 void io_req_queue_iowq(struct io_kiocb *req)
522 {
523 req->io_task_work.func = io_req_queue_iowq_tw;
524 io_req_task_work_add(req);
525 }
526
io_linked_nr(struct io_kiocb * req)527 static unsigned io_linked_nr(struct io_kiocb *req)
528 {
529 struct io_kiocb *tmp;
530 unsigned nr = 0;
531
532 io_for_each_link(tmp, req)
533 nr++;
534 return nr;
535 }
536
io_queue_deferred(struct io_ring_ctx * ctx)537 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
538 {
539 bool drain_seen = false, first = true;
540
541 lockdep_assert_held(&ctx->uring_lock);
542 __io_req_caches_free(ctx);
543
544 while (!list_empty(&ctx->defer_list)) {
545 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
546 struct io_defer_entry, list);
547
548 drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
549 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
550 return;
551
552 list_del_init(&de->list);
553 ctx->nr_drained -= io_linked_nr(de->req);
554 io_req_task_queue(de->req);
555 kfree(de);
556 first = false;
557 }
558 }
559
__io_commit_cqring_flush(struct io_ring_ctx * ctx)560 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
561 {
562 if (ctx->poll_activated)
563 io_poll_wq_wake(ctx);
564 if (ctx->off_timeout_used)
565 io_flush_timeouts(ctx);
566 if (ctx->has_evfd)
567 io_eventfd_signal(ctx, true);
568 }
569
__io_cq_lock(struct io_ring_ctx * ctx)570 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
571 {
572 if (!ctx->lockless_cq)
573 spin_lock(&ctx->completion_lock);
574 }
575
io_cq_lock(struct io_ring_ctx * ctx)576 static inline void io_cq_lock(struct io_ring_ctx *ctx)
577 __acquires(ctx->completion_lock)
578 {
579 spin_lock(&ctx->completion_lock);
580 }
581
__io_cq_unlock_post(struct io_ring_ctx * ctx)582 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
583 {
584 io_commit_cqring(ctx);
585 if (!ctx->task_complete) {
586 if (!ctx->lockless_cq)
587 spin_unlock(&ctx->completion_lock);
588 /* IOPOLL rings only need to wake up if it's also SQPOLL */
589 if (!ctx->syscall_iopoll)
590 io_cqring_wake(ctx);
591 }
592 io_commit_cqring_flush(ctx);
593 }
594
io_cq_unlock_post(struct io_ring_ctx * ctx)595 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
596 __releases(ctx->completion_lock)
597 {
598 io_commit_cqring(ctx);
599 spin_unlock(&ctx->completion_lock);
600 io_cqring_wake(ctx);
601 io_commit_cqring_flush(ctx);
602 }
603
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)604 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
605 {
606 size_t cqe_size = sizeof(struct io_uring_cqe);
607
608 lockdep_assert_held(&ctx->uring_lock);
609
610 /* don't abort if we're dying, entries must get freed */
611 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
612 return;
613
614 if (ctx->flags & IORING_SETUP_CQE32)
615 cqe_size <<= 1;
616
617 io_cq_lock(ctx);
618 while (!list_empty(&ctx->cq_overflow_list)) {
619 struct io_uring_cqe *cqe;
620 struct io_overflow_cqe *ocqe;
621
622 ocqe = list_first_entry(&ctx->cq_overflow_list,
623 struct io_overflow_cqe, list);
624
625 if (!dying) {
626 if (!io_get_cqe_overflow(ctx, &cqe, true))
627 break;
628 memcpy(cqe, &ocqe->cqe, cqe_size);
629 }
630 list_del(&ocqe->list);
631 kfree(ocqe);
632
633 /*
634 * For silly syzbot cases that deliberately overflow by huge
635 * amounts, check if we need to resched and drop and
636 * reacquire the locks if so. Nothing real would ever hit this.
637 * Ideally we'd have a non-posting unlock for this, but hard
638 * to care for a non-real case.
639 */
640 if (need_resched()) {
641 ctx->cqe_sentinel = ctx->cqe_cached;
642 io_cq_unlock_post(ctx);
643 mutex_unlock(&ctx->uring_lock);
644 cond_resched();
645 mutex_lock(&ctx->uring_lock);
646 io_cq_lock(ctx);
647 }
648 }
649
650 if (list_empty(&ctx->cq_overflow_list)) {
651 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
652 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
653 }
654 io_cq_unlock_post(ctx);
655 }
656
io_cqring_overflow_kill(struct io_ring_ctx * ctx)657 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
658 {
659 if (ctx->rings)
660 __io_cqring_overflow_flush(ctx, true);
661 }
662
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)663 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
664 {
665 mutex_lock(&ctx->uring_lock);
666 __io_cqring_overflow_flush(ctx, false);
667 mutex_unlock(&ctx->uring_lock);
668 }
669
670 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)671 static inline void io_put_task(struct io_kiocb *req)
672 {
673 struct io_uring_task *tctx = req->tctx;
674
675 if (likely(tctx->task == current)) {
676 tctx->cached_refs++;
677 } else {
678 percpu_counter_sub(&tctx->inflight, 1);
679 if (unlikely(atomic_read(&tctx->in_cancel)))
680 wake_up(&tctx->wait);
681 put_task_struct(tctx->task);
682 }
683 }
684
io_task_refs_refill(struct io_uring_task * tctx)685 void io_task_refs_refill(struct io_uring_task *tctx)
686 {
687 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
688
689 percpu_counter_add(&tctx->inflight, refill);
690 refcount_add(refill, ¤t->usage);
691 tctx->cached_refs += refill;
692 }
693
io_uring_drop_tctx_refs(struct task_struct * task)694 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
695 {
696 struct io_uring_task *tctx = task->io_uring;
697 unsigned int refs = tctx->cached_refs;
698
699 if (refs) {
700 tctx->cached_refs = 0;
701 percpu_counter_sub(&tctx->inflight, refs);
702 put_task_struct_many(task, refs);
703 }
704 }
705
io_cqring_add_overflow(struct io_ring_ctx * ctx,struct io_overflow_cqe * ocqe)706 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
707 struct io_overflow_cqe *ocqe)
708 {
709 lockdep_assert_held(&ctx->completion_lock);
710
711 if (!ocqe) {
712 struct io_rings *r = ctx->rings;
713
714 /*
715 * If we're in ring overflow flush mode, or in task cancel mode,
716 * or cannot allocate an overflow entry, then we need to drop it
717 * on the floor.
718 */
719 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
720 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
721 return false;
722 }
723 if (list_empty(&ctx->cq_overflow_list)) {
724 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
725 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
726
727 }
728 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
729 return true;
730 }
731
io_alloc_ocqe(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe,gfp_t gfp)732 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
733 struct io_cqe *cqe,
734 struct io_big_cqe *big_cqe, gfp_t gfp)
735 {
736 struct io_overflow_cqe *ocqe;
737 size_t ocq_size = sizeof(struct io_overflow_cqe);
738 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
739
740 if (is_cqe32)
741 ocq_size += sizeof(struct io_uring_cqe);
742
743 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
744 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
745 if (ocqe) {
746 ocqe->cqe.user_data = cqe->user_data;
747 ocqe->cqe.res = cqe->res;
748 ocqe->cqe.flags = cqe->flags;
749 if (is_cqe32 && big_cqe) {
750 ocqe->cqe.big_cqe[0] = big_cqe->extra1;
751 ocqe->cqe.big_cqe[1] = big_cqe->extra2;
752 }
753 }
754 if (big_cqe)
755 big_cqe->extra1 = big_cqe->extra2 = 0;
756 return ocqe;
757 }
758
759 /*
760 * writes to the cq entry need to come after reading head; the
761 * control dependency is enough as we're using WRITE_ONCE to
762 * fill the cq entry
763 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)764 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
765 {
766 struct io_rings *rings = ctx->rings;
767 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
768 unsigned int free, queued, len;
769
770 /*
771 * Posting into the CQ when there are pending overflowed CQEs may break
772 * ordering guarantees, which will affect links, F_MORE users and more.
773 * Force overflow the completion.
774 */
775 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
776 return false;
777
778 /* userspace may cheat modifying the tail, be safe and do min */
779 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
780 free = ctx->cq_entries - queued;
781 /* we need a contiguous range, limit based on the current array offset */
782 len = min(free, ctx->cq_entries - off);
783 if (!len)
784 return false;
785
786 if (ctx->flags & IORING_SETUP_CQE32) {
787 off <<= 1;
788 len <<= 1;
789 }
790
791 ctx->cqe_cached = &rings->cqes[off];
792 ctx->cqe_sentinel = ctx->cqe_cached + len;
793 return true;
794 }
795
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)796 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
797 u32 cflags)
798 {
799 struct io_uring_cqe *cqe;
800
801 if (likely(io_get_cqe(ctx, &cqe))) {
802 WRITE_ONCE(cqe->user_data, user_data);
803 WRITE_ONCE(cqe->res, res);
804 WRITE_ONCE(cqe->flags, cflags);
805
806 if (ctx->flags & IORING_SETUP_CQE32) {
807 WRITE_ONCE(cqe->big_cqe[0], 0);
808 WRITE_ONCE(cqe->big_cqe[1], 0);
809 }
810
811 trace_io_uring_complete(ctx, NULL, cqe);
812 return true;
813 }
814 return false;
815 }
816
io_init_cqe(u64 user_data,s32 res,u32 cflags)817 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
818 {
819 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
820 }
821
io_cqe_overflow(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)822 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
823 struct io_big_cqe *big_cqe)
824 {
825 struct io_overflow_cqe *ocqe;
826
827 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
828 spin_lock(&ctx->completion_lock);
829 io_cqring_add_overflow(ctx, ocqe);
830 spin_unlock(&ctx->completion_lock);
831 }
832
io_cqe_overflow_locked(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)833 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
834 struct io_cqe *cqe,
835 struct io_big_cqe *big_cqe)
836 {
837 struct io_overflow_cqe *ocqe;
838
839 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
840 return io_cqring_add_overflow(ctx, ocqe);
841 }
842
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)843 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
844 {
845 bool filled;
846
847 io_cq_lock(ctx);
848 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
849 if (unlikely(!filled)) {
850 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
851
852 filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
853 }
854 io_cq_unlock_post(ctx);
855 return filled;
856 }
857
858 /*
859 * Must be called from inline task_work so we now a flush will happen later,
860 * and obviously with ctx->uring_lock held (tw always has that).
861 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)862 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
863 {
864 lockdep_assert_held(&ctx->uring_lock);
865 lockdep_assert(ctx->lockless_cq);
866
867 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
868 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
869
870 io_cqe_overflow(ctx, &cqe, NULL);
871 }
872 ctx->submit_state.cq_flush = true;
873 }
874
875 /*
876 * A helper for multishot requests posting additional CQEs.
877 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
878 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)879 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
880 {
881 struct io_ring_ctx *ctx = req->ctx;
882 bool posted;
883
884 /*
885 * If multishot has already posted deferred completions, ensure that
886 * those are flushed first before posting this one. If not, CQEs
887 * could get reordered.
888 */
889 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
890 __io_submit_flush_completions(ctx);
891
892 lockdep_assert(!io_wq_current_is_worker());
893 lockdep_assert_held(&ctx->uring_lock);
894
895 if (!ctx->lockless_cq) {
896 spin_lock(&ctx->completion_lock);
897 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
898 spin_unlock(&ctx->completion_lock);
899 } else {
900 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
901 }
902
903 ctx->submit_state.cq_flush = true;
904 return posted;
905 }
906
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)907 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
908 {
909 struct io_ring_ctx *ctx = req->ctx;
910 bool completed = true;
911
912 /*
913 * All execution paths but io-wq use the deferred completions by
914 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
915 */
916 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
917 return;
918
919 /*
920 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
921 * the submitter task context, IOPOLL protects with uring_lock.
922 */
923 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
924 defer_complete:
925 req->io_task_work.func = io_req_task_complete;
926 io_req_task_work_add(req);
927 return;
928 }
929
930 io_cq_lock(ctx);
931 if (!(req->flags & REQ_F_CQE_SKIP))
932 completed = io_fill_cqe_req(ctx, req);
933 io_cq_unlock_post(ctx);
934
935 if (!completed)
936 goto defer_complete;
937
938 /*
939 * We don't free the request here because we know it's called from
940 * io-wq only, which holds a reference, so it cannot be the last put.
941 */
942 req_ref_put(req);
943 }
944
io_req_defer_failed(struct io_kiocb * req,s32 res)945 void io_req_defer_failed(struct io_kiocb *req, s32 res)
946 __must_hold(&ctx->uring_lock)
947 {
948 const struct io_cold_def *def = &io_cold_defs[req->opcode];
949
950 lockdep_assert_held(&req->ctx->uring_lock);
951
952 req_set_fail(req);
953 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
954 if (def->fail)
955 def->fail(req);
956 io_req_complete_defer(req);
957 }
958
959 /*
960 * A request might get retired back into the request caches even before opcode
961 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
962 * Because of that, io_alloc_req() should be called only under ->uring_lock
963 * and with extra caution to not get a request that is still worked on.
964 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)965 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
966 __must_hold(&ctx->uring_lock)
967 {
968 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
969 void *reqs[IO_REQ_ALLOC_BATCH];
970 int ret;
971
972 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
973
974 /*
975 * Bulk alloc is all-or-nothing. If we fail to get a batch,
976 * retry single alloc to be on the safe side.
977 */
978 if (unlikely(ret <= 0)) {
979 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
980 if (!reqs[0])
981 return false;
982 ret = 1;
983 }
984
985 percpu_ref_get_many(&ctx->refs, ret);
986 ctx->nr_req_allocated += ret;
987
988 while (ret--) {
989 struct io_kiocb *req = reqs[ret];
990
991 io_req_add_to_cache(req, ctx);
992 }
993 return true;
994 }
995
io_free_req(struct io_kiocb * req)996 __cold void io_free_req(struct io_kiocb *req)
997 {
998 /* refs were already put, restore them for io_req_task_complete() */
999 req->flags &= ~REQ_F_REFCOUNT;
1000 /* we only want to free it, don't post CQEs */
1001 req->flags |= REQ_F_CQE_SKIP;
1002 req->io_task_work.func = io_req_task_complete;
1003 io_req_task_work_add(req);
1004 }
1005
__io_req_find_next_prep(struct io_kiocb * req)1006 static void __io_req_find_next_prep(struct io_kiocb *req)
1007 {
1008 struct io_ring_ctx *ctx = req->ctx;
1009
1010 spin_lock(&ctx->completion_lock);
1011 io_disarm_next(req);
1012 spin_unlock(&ctx->completion_lock);
1013 }
1014
io_req_find_next(struct io_kiocb * req)1015 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1016 {
1017 struct io_kiocb *nxt;
1018
1019 /*
1020 * If LINK is set, we have dependent requests in this chain. If we
1021 * didn't fail this request, queue the first one up, moving any other
1022 * dependencies to the next request. In case of failure, fail the rest
1023 * of the chain.
1024 */
1025 if (unlikely(req->flags & IO_DISARM_MASK))
1026 __io_req_find_next_prep(req);
1027 nxt = req->link;
1028 req->link = NULL;
1029 return nxt;
1030 }
1031
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1032 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1033 {
1034 if (!ctx)
1035 return;
1036 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1037 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1038
1039 io_submit_flush_completions(ctx);
1040 mutex_unlock(&ctx->uring_lock);
1041 percpu_ref_put(&ctx->refs);
1042 }
1043
1044 /*
1045 * Run queued task_work, returning the number of entries processed in *count.
1046 * If more entries than max_entries are available, stop processing once this
1047 * is reached and return the rest of the list.
1048 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1049 struct llist_node *io_handle_tw_list(struct llist_node *node,
1050 unsigned int *count,
1051 unsigned int max_entries)
1052 {
1053 struct io_ring_ctx *ctx = NULL;
1054 struct io_tw_state ts = { };
1055
1056 do {
1057 struct llist_node *next = node->next;
1058 struct io_kiocb *req = container_of(node, struct io_kiocb,
1059 io_task_work.node);
1060
1061 if (req->ctx != ctx) {
1062 ctx_flush_and_put(ctx, ts);
1063 ctx = req->ctx;
1064 mutex_lock(&ctx->uring_lock);
1065 percpu_ref_get(&ctx->refs);
1066 }
1067 INDIRECT_CALL_2(req->io_task_work.func,
1068 io_poll_task_func, io_req_rw_complete,
1069 req, ts);
1070 node = next;
1071 (*count)++;
1072 if (unlikely(need_resched())) {
1073 ctx_flush_and_put(ctx, ts);
1074 ctx = NULL;
1075 cond_resched();
1076 }
1077 } while (node && *count < max_entries);
1078
1079 ctx_flush_and_put(ctx, ts);
1080 return node;
1081 }
1082
__io_fallback_tw(struct llist_node * node,bool sync)1083 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1084 {
1085 struct io_ring_ctx *last_ctx = NULL;
1086 struct io_kiocb *req;
1087
1088 while (node) {
1089 req = container_of(node, struct io_kiocb, io_task_work.node);
1090 node = node->next;
1091 if (last_ctx != req->ctx) {
1092 if (last_ctx) {
1093 if (sync)
1094 flush_delayed_work(&last_ctx->fallback_work);
1095 percpu_ref_put(&last_ctx->refs);
1096 }
1097 last_ctx = req->ctx;
1098 percpu_ref_get(&last_ctx->refs);
1099 }
1100 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1101 schedule_delayed_work(&last_ctx->fallback_work, 1);
1102 }
1103
1104 if (last_ctx) {
1105 if (sync)
1106 flush_delayed_work(&last_ctx->fallback_work);
1107 percpu_ref_put(&last_ctx->refs);
1108 }
1109 }
1110
io_fallback_tw(struct io_uring_task * tctx,bool sync)1111 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1112 {
1113 struct llist_node *node = llist_del_all(&tctx->task_list);
1114
1115 __io_fallback_tw(node, sync);
1116 }
1117
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1118 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1119 unsigned int max_entries,
1120 unsigned int *count)
1121 {
1122 struct llist_node *node;
1123
1124 if (unlikely(current->flags & PF_EXITING)) {
1125 io_fallback_tw(tctx, true);
1126 return NULL;
1127 }
1128
1129 node = llist_del_all(&tctx->task_list);
1130 if (node) {
1131 node = llist_reverse_order(node);
1132 node = io_handle_tw_list(node, count, max_entries);
1133 }
1134
1135 /* relaxed read is enough as only the task itself sets ->in_cancel */
1136 if (unlikely(atomic_read(&tctx->in_cancel)))
1137 io_uring_drop_tctx_refs(current);
1138
1139 trace_io_uring_task_work_run(tctx, *count);
1140 return node;
1141 }
1142
tctx_task_work(struct callback_head * cb)1143 void tctx_task_work(struct callback_head *cb)
1144 {
1145 struct io_uring_task *tctx;
1146 struct llist_node *ret;
1147 unsigned int count = 0;
1148
1149 tctx = container_of(cb, struct io_uring_task, task_work);
1150 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1151 /* can't happen */
1152 WARN_ON_ONCE(ret);
1153 }
1154
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1155 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1156 {
1157 struct io_ring_ctx *ctx = req->ctx;
1158 unsigned nr_wait, nr_tw, nr_tw_prev;
1159 struct llist_node *head;
1160
1161 /* See comment above IO_CQ_WAKE_INIT */
1162 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1163
1164 /*
1165 * We don't know how many reuqests is there in the link and whether
1166 * they can even be queued lazily, fall back to non-lazy.
1167 */
1168 if (req->flags & IO_REQ_LINK_FLAGS)
1169 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1170
1171 guard(rcu)();
1172
1173 head = READ_ONCE(ctx->work_llist.first);
1174 do {
1175 nr_tw_prev = 0;
1176 if (head) {
1177 struct io_kiocb *first_req = container_of(head,
1178 struct io_kiocb,
1179 io_task_work.node);
1180 /*
1181 * Might be executed at any moment, rely on
1182 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1183 */
1184 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1185 }
1186
1187 /*
1188 * Theoretically, it can overflow, but that's fine as one of
1189 * previous adds should've tried to wake the task.
1190 */
1191 nr_tw = nr_tw_prev + 1;
1192 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1193 nr_tw = IO_CQ_WAKE_FORCE;
1194
1195 req->nr_tw = nr_tw;
1196 req->io_task_work.node.next = head;
1197 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1198 &req->io_task_work.node));
1199
1200 /*
1201 * cmpxchg implies a full barrier, which pairs with the barrier
1202 * in set_current_state() on the io_cqring_wait() side. It's used
1203 * to ensure that either we see updated ->cq_wait_nr, or waiters
1204 * going to sleep will observe the work added to the list, which
1205 * is similar to the wait/wawke task state sync.
1206 */
1207
1208 if (!head) {
1209 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1210 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1211 if (ctx->has_evfd)
1212 io_eventfd_signal(ctx, false);
1213 }
1214
1215 nr_wait = atomic_read(&ctx->cq_wait_nr);
1216 /* not enough or no one is waiting */
1217 if (nr_tw < nr_wait)
1218 return;
1219 /* the previous add has already woken it up */
1220 if (nr_tw_prev >= nr_wait)
1221 return;
1222 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1223 }
1224
io_req_normal_work_add(struct io_kiocb * req)1225 static void io_req_normal_work_add(struct io_kiocb *req)
1226 {
1227 struct io_uring_task *tctx = req->tctx;
1228 struct io_ring_ctx *ctx = req->ctx;
1229
1230 /* task_work already pending, we're done */
1231 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1232 return;
1233
1234 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1235 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1236
1237 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1238 if (ctx->flags & IORING_SETUP_SQPOLL) {
1239 __set_notify_signal(tctx->task);
1240 return;
1241 }
1242
1243 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1244 return;
1245
1246 io_fallback_tw(tctx, false);
1247 }
1248
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1249 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1250 {
1251 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1252 io_req_local_work_add(req, flags);
1253 else
1254 io_req_normal_work_add(req);
1255 }
1256
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1257 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1258 {
1259 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1260 return;
1261 __io_req_task_work_add(req, flags);
1262 }
1263
io_move_task_work_from_local(struct io_ring_ctx * ctx)1264 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1265 {
1266 struct llist_node *node = llist_del_all(&ctx->work_llist);
1267
1268 __io_fallback_tw(node, false);
1269 node = llist_del_all(&ctx->retry_llist);
1270 __io_fallback_tw(node, false);
1271 }
1272
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1273 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1274 int min_events)
1275 {
1276 if (!io_local_work_pending(ctx))
1277 return false;
1278 if (events < min_events)
1279 return true;
1280 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1281 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1282 return false;
1283 }
1284
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1285 static int __io_run_local_work_loop(struct llist_node **node,
1286 io_tw_token_t tw,
1287 int events)
1288 {
1289 int ret = 0;
1290
1291 while (*node) {
1292 struct llist_node *next = (*node)->next;
1293 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1294 io_task_work.node);
1295 INDIRECT_CALL_2(req->io_task_work.func,
1296 io_poll_task_func, io_req_rw_complete,
1297 req, tw);
1298 *node = next;
1299 if (++ret >= events)
1300 break;
1301 }
1302
1303 return ret;
1304 }
1305
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1306 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1307 int min_events, int max_events)
1308 {
1309 struct llist_node *node;
1310 unsigned int loops = 0;
1311 int ret = 0;
1312
1313 if (WARN_ON_ONCE(ctx->submitter_task != current))
1314 return -EEXIST;
1315 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1316 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1317 again:
1318 min_events -= ret;
1319 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1320 if (ctx->retry_llist.first)
1321 goto retry_done;
1322
1323 /*
1324 * llists are in reverse order, flip it back the right way before
1325 * running the pending items.
1326 */
1327 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1328 ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1329 ctx->retry_llist.first = node;
1330 loops++;
1331
1332 if (io_run_local_work_continue(ctx, ret, min_events))
1333 goto again;
1334 retry_done:
1335 io_submit_flush_completions(ctx);
1336 if (io_run_local_work_continue(ctx, ret, min_events))
1337 goto again;
1338
1339 trace_io_uring_local_work_run(ctx, ret, loops);
1340 return ret;
1341 }
1342
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1343 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1344 int min_events)
1345 {
1346 struct io_tw_state ts = {};
1347
1348 if (!io_local_work_pending(ctx))
1349 return 0;
1350 return __io_run_local_work(ctx, ts, min_events,
1351 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1352 }
1353
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1354 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1355 int max_events)
1356 {
1357 struct io_tw_state ts = {};
1358 int ret;
1359
1360 mutex_lock(&ctx->uring_lock);
1361 ret = __io_run_local_work(ctx, ts, min_events, max_events);
1362 mutex_unlock(&ctx->uring_lock);
1363 return ret;
1364 }
1365
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1366 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1367 {
1368 io_tw_lock(req->ctx, tw);
1369 io_req_defer_failed(req, req->cqe.res);
1370 }
1371
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1372 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1373 {
1374 io_tw_lock(req->ctx, tw);
1375 if (unlikely(io_should_terminate_tw()))
1376 io_req_defer_failed(req, -EFAULT);
1377 else if (req->flags & REQ_F_FORCE_ASYNC)
1378 io_queue_iowq(req);
1379 else
1380 io_queue_sqe(req);
1381 }
1382
io_req_task_queue_fail(struct io_kiocb * req,int ret)1383 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1384 {
1385 io_req_set_res(req, ret, 0);
1386 req->io_task_work.func = io_req_task_cancel;
1387 io_req_task_work_add(req);
1388 }
1389
io_req_task_queue(struct io_kiocb * req)1390 void io_req_task_queue(struct io_kiocb *req)
1391 {
1392 req->io_task_work.func = io_req_task_submit;
1393 io_req_task_work_add(req);
1394 }
1395
io_queue_next(struct io_kiocb * req)1396 void io_queue_next(struct io_kiocb *req)
1397 {
1398 struct io_kiocb *nxt = io_req_find_next(req);
1399
1400 if (nxt)
1401 io_req_task_queue(nxt);
1402 }
1403
io_req_put_rsrc_nodes(struct io_kiocb * req)1404 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1405 {
1406 if (req->file_node) {
1407 io_put_rsrc_node(req->ctx, req->file_node);
1408 req->file_node = NULL;
1409 }
1410 if (req->flags & REQ_F_BUF_NODE)
1411 io_put_rsrc_node(req->ctx, req->buf_node);
1412 }
1413
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1414 static void io_free_batch_list(struct io_ring_ctx *ctx,
1415 struct io_wq_work_node *node)
1416 __must_hold(&ctx->uring_lock)
1417 {
1418 do {
1419 struct io_kiocb *req = container_of(node, struct io_kiocb,
1420 comp_list);
1421
1422 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1423 if (req->flags & REQ_F_REISSUE) {
1424 node = req->comp_list.next;
1425 req->flags &= ~REQ_F_REISSUE;
1426 io_queue_iowq(req);
1427 continue;
1428 }
1429 if (req->flags & REQ_F_REFCOUNT) {
1430 node = req->comp_list.next;
1431 if (!req_ref_put_and_test(req))
1432 continue;
1433 }
1434 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1435 struct async_poll *apoll = req->apoll;
1436
1437 if (apoll->double_poll)
1438 kfree(apoll->double_poll);
1439 io_cache_free(&ctx->apoll_cache, apoll);
1440 req->flags &= ~REQ_F_POLLED;
1441 }
1442 if (req->flags & IO_REQ_LINK_FLAGS)
1443 io_queue_next(req);
1444 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1445 io_clean_op(req);
1446 }
1447 io_put_file(req);
1448 io_req_put_rsrc_nodes(req);
1449 io_put_task(req);
1450
1451 node = req->comp_list.next;
1452 io_req_add_to_cache(req, ctx);
1453 } while (node);
1454 }
1455
__io_submit_flush_completions(struct io_ring_ctx * ctx)1456 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1457 __must_hold(&ctx->uring_lock)
1458 {
1459 struct io_submit_state *state = &ctx->submit_state;
1460 struct io_wq_work_node *node;
1461
1462 __io_cq_lock(ctx);
1463 __wq_list_for_each(node, &state->compl_reqs) {
1464 struct io_kiocb *req = container_of(node, struct io_kiocb,
1465 comp_list);
1466
1467 /*
1468 * Requests marked with REQUEUE should not post a CQE, they
1469 * will go through the io-wq retry machinery and post one
1470 * later.
1471 */
1472 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1473 unlikely(!io_fill_cqe_req(ctx, req))) {
1474 if (ctx->lockless_cq)
1475 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1476 else
1477 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1478 }
1479 }
1480 __io_cq_unlock_post(ctx);
1481
1482 if (!wq_list_empty(&state->compl_reqs)) {
1483 io_free_batch_list(ctx, state->compl_reqs.first);
1484 INIT_WQ_LIST(&state->compl_reqs);
1485 }
1486
1487 if (unlikely(ctx->drain_active))
1488 io_queue_deferred(ctx);
1489
1490 ctx->submit_state.cq_flush = false;
1491 }
1492
io_cqring_events(struct io_ring_ctx * ctx)1493 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1494 {
1495 /* See comment at the top of this file */
1496 smp_rmb();
1497 return __io_cqring_events(ctx);
1498 }
1499
1500 /*
1501 * We can't just wait for polled events to come to us, we have to actively
1502 * find and complete them.
1503 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1504 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1505 {
1506 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1507 return;
1508
1509 mutex_lock(&ctx->uring_lock);
1510 while (!wq_list_empty(&ctx->iopoll_list)) {
1511 /* let it sleep and repeat later if can't complete a request */
1512 if (io_do_iopoll(ctx, true) == 0)
1513 break;
1514 /*
1515 * Ensure we allow local-to-the-cpu processing to take place,
1516 * in this case we need to ensure that we reap all events.
1517 * Also let task_work, etc. to progress by releasing the mutex
1518 */
1519 if (need_resched()) {
1520 mutex_unlock(&ctx->uring_lock);
1521 cond_resched();
1522 mutex_lock(&ctx->uring_lock);
1523 }
1524 }
1525 mutex_unlock(&ctx->uring_lock);
1526
1527 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1528 io_move_task_work_from_local(ctx);
1529 }
1530
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1531 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1532 {
1533 unsigned int nr_events = 0;
1534 unsigned long check_cq;
1535
1536 min_events = min(min_events, ctx->cq_entries);
1537
1538 lockdep_assert_held(&ctx->uring_lock);
1539
1540 if (!io_allowed_run_tw(ctx))
1541 return -EEXIST;
1542
1543 check_cq = READ_ONCE(ctx->check_cq);
1544 if (unlikely(check_cq)) {
1545 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1546 __io_cqring_overflow_flush(ctx, false);
1547 /*
1548 * Similarly do not spin if we have not informed the user of any
1549 * dropped CQE.
1550 */
1551 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1552 return -EBADR;
1553 }
1554 /*
1555 * Don't enter poll loop if we already have events pending.
1556 * If we do, we can potentially be spinning for commands that
1557 * already triggered a CQE (eg in error).
1558 */
1559 if (io_cqring_events(ctx))
1560 return 0;
1561
1562 do {
1563 int ret = 0;
1564
1565 /*
1566 * If a submit got punted to a workqueue, we can have the
1567 * application entering polling for a command before it gets
1568 * issued. That app will hold the uring_lock for the duration
1569 * of the poll right here, so we need to take a breather every
1570 * now and then to ensure that the issue has a chance to add
1571 * the poll to the issued list. Otherwise we can spin here
1572 * forever, while the workqueue is stuck trying to acquire the
1573 * very same mutex.
1574 */
1575 if (wq_list_empty(&ctx->iopoll_list) ||
1576 io_task_work_pending(ctx)) {
1577 u32 tail = ctx->cached_cq_tail;
1578
1579 (void) io_run_local_work_locked(ctx, min_events);
1580
1581 if (task_work_pending(current) ||
1582 wq_list_empty(&ctx->iopoll_list)) {
1583 mutex_unlock(&ctx->uring_lock);
1584 io_run_task_work();
1585 mutex_lock(&ctx->uring_lock);
1586 }
1587 /* some requests don't go through iopoll_list */
1588 if (tail != ctx->cached_cq_tail ||
1589 wq_list_empty(&ctx->iopoll_list))
1590 break;
1591 }
1592 ret = io_do_iopoll(ctx, !min_events);
1593 if (unlikely(ret < 0))
1594 return ret;
1595
1596 if (task_sigpending(current))
1597 return -EINTR;
1598 if (need_resched())
1599 break;
1600
1601 nr_events += ret;
1602 } while (nr_events < min_events);
1603
1604 return 0;
1605 }
1606
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1607 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1608 {
1609 io_req_complete_defer(req);
1610 }
1611
1612 /*
1613 * After the iocb has been issued, it's safe to be found on the poll list.
1614 * Adding the kiocb to the list AFTER submission ensures that we don't
1615 * find it from a io_do_iopoll() thread before the issuer is done
1616 * accessing the kiocb cookie.
1617 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1618 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1619 {
1620 struct io_ring_ctx *ctx = req->ctx;
1621 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1622
1623 /* workqueue context doesn't hold uring_lock, grab it now */
1624 if (unlikely(needs_lock))
1625 mutex_lock(&ctx->uring_lock);
1626
1627 /*
1628 * Track whether we have multiple files in our lists. This will impact
1629 * how we do polling eventually, not spinning if we're on potentially
1630 * different devices.
1631 */
1632 if (wq_list_empty(&ctx->iopoll_list)) {
1633 ctx->poll_multi_queue = false;
1634 } else if (!ctx->poll_multi_queue) {
1635 struct io_kiocb *list_req;
1636
1637 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1638 comp_list);
1639 if (list_req->file != req->file)
1640 ctx->poll_multi_queue = true;
1641 }
1642
1643 /*
1644 * For fast devices, IO may have already completed. If it has, add
1645 * it to the front so we find it first.
1646 */
1647 if (READ_ONCE(req->iopoll_completed))
1648 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1649 else
1650 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1651
1652 if (unlikely(needs_lock)) {
1653 /*
1654 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1655 * in sq thread task context or in io worker task context. If
1656 * current task context is sq thread, we don't need to check
1657 * whether should wake up sq thread.
1658 */
1659 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1660 wq_has_sleeper(&ctx->sq_data->wait))
1661 wake_up(&ctx->sq_data->wait);
1662
1663 mutex_unlock(&ctx->uring_lock);
1664 }
1665 }
1666
io_file_get_flags(struct file * file)1667 io_req_flags_t io_file_get_flags(struct file *file)
1668 {
1669 struct inode *inode = file_inode(file);
1670 io_req_flags_t res = 0;
1671
1672 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1673
1674 if (S_ISREG(inode->i_mode) && !(inode->i_flags & S_ANON_INODE))
1675 res |= REQ_F_ISREG;
1676 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1677 res |= REQ_F_SUPPORT_NOWAIT;
1678 return res;
1679 }
1680
io_drain_req(struct io_kiocb * req)1681 static __cold void io_drain_req(struct io_kiocb *req)
1682 __must_hold(&ctx->uring_lock)
1683 {
1684 struct io_ring_ctx *ctx = req->ctx;
1685 bool drain = req->flags & IOSQE_IO_DRAIN;
1686 struct io_defer_entry *de;
1687
1688 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1689 if (!de) {
1690 io_req_defer_failed(req, -ENOMEM);
1691 return;
1692 }
1693
1694 io_prep_async_link(req);
1695 trace_io_uring_defer(req);
1696 de->req = req;
1697
1698 ctx->nr_drained += io_linked_nr(req);
1699 list_add_tail(&de->list, &ctx->defer_list);
1700 io_queue_deferred(ctx);
1701 if (!drain && list_empty(&ctx->defer_list))
1702 ctx->drain_active = false;
1703 }
1704
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1705 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1706 unsigned int issue_flags)
1707 {
1708 if (req->file || !def->needs_file)
1709 return true;
1710
1711 if (req->flags & REQ_F_FIXED_FILE)
1712 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1713 else
1714 req->file = io_file_get_normal(req, req->cqe.fd);
1715
1716 return !!req->file;
1717 }
1718
1719 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1720
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1721 static inline int __io_issue_sqe(struct io_kiocb *req,
1722 unsigned int issue_flags,
1723 const struct io_issue_def *def)
1724 {
1725 const struct cred *creds = NULL;
1726 struct io_kiocb *link = NULL;
1727 int ret;
1728
1729 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1730 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1731 creds = override_creds(req->creds);
1732 if (req->flags & REQ_F_ARM_LTIMEOUT)
1733 link = __io_prep_linked_timeout(req);
1734 }
1735
1736 if (!def->audit_skip)
1737 audit_uring_entry(req->opcode);
1738
1739 ret = def->issue(req, issue_flags);
1740
1741 if (!def->audit_skip)
1742 audit_uring_exit(!ret, ret);
1743
1744 if (unlikely(creds || link)) {
1745 if (creds)
1746 revert_creds(creds);
1747 if (link)
1748 io_queue_linked_timeout(link);
1749 }
1750
1751 return ret;
1752 }
1753
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1754 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1755 {
1756 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1757 int ret;
1758
1759 if (unlikely(!io_assign_file(req, def, issue_flags)))
1760 return -EBADF;
1761
1762 ret = __io_issue_sqe(req, issue_flags, def);
1763
1764 if (ret == IOU_COMPLETE) {
1765 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1766 io_req_complete_defer(req);
1767 else
1768 io_req_complete_post(req, issue_flags);
1769
1770 return 0;
1771 }
1772
1773 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1774 ret = 0;
1775
1776 /* If the op doesn't have a file, we're not polling for it */
1777 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1778 io_iopoll_req_issued(req, issue_flags);
1779 }
1780 return ret;
1781 }
1782
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1783 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1784 {
1785 const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1786 IO_URING_F_MULTISHOT |
1787 IO_URING_F_COMPLETE_DEFER;
1788 int ret;
1789
1790 io_tw_lock(req->ctx, tw);
1791
1792 WARN_ON_ONCE(!req->file);
1793 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1794 return -EFAULT;
1795
1796 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1797
1798 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1799 return ret;
1800 }
1801
io_wq_free_work(struct io_wq_work * work)1802 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1803 {
1804 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1805 struct io_kiocb *nxt = NULL;
1806
1807 if (req_ref_put_and_test_atomic(req)) {
1808 if (req->flags & IO_REQ_LINK_FLAGS)
1809 nxt = io_req_find_next(req);
1810 io_free_req(req);
1811 }
1812 return nxt ? &nxt->work : NULL;
1813 }
1814
io_wq_submit_work(struct io_wq_work * work)1815 void io_wq_submit_work(struct io_wq_work *work)
1816 {
1817 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1818 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1819 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1820 bool needs_poll = false;
1821 int ret = 0, err = -ECANCELED;
1822
1823 /* one will be dropped by io_wq_free_work() after returning to io-wq */
1824 if (!(req->flags & REQ_F_REFCOUNT))
1825 __io_req_set_refcount(req, 2);
1826 else
1827 req_ref_get(req);
1828
1829 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1830 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1831 fail:
1832 io_req_task_queue_fail(req, err);
1833 return;
1834 }
1835 if (!io_assign_file(req, def, issue_flags)) {
1836 err = -EBADF;
1837 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1838 goto fail;
1839 }
1840
1841 /*
1842 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1843 * submitter task context. Final request completions are handed to the
1844 * right context, however this is not the case of auxiliary CQEs,
1845 * which is the main mean of operation for multishot requests.
1846 * Don't allow any multishot execution from io-wq. It's more restrictive
1847 * than necessary and also cleaner.
1848 */
1849 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1850 err = -EBADFD;
1851 if (!io_file_can_poll(req))
1852 goto fail;
1853 if (req->file->f_flags & O_NONBLOCK ||
1854 req->file->f_mode & FMODE_NOWAIT) {
1855 err = -ECANCELED;
1856 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1857 goto fail;
1858 return;
1859 } else {
1860 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1861 }
1862 }
1863
1864 if (req->flags & REQ_F_FORCE_ASYNC) {
1865 bool opcode_poll = def->pollin || def->pollout;
1866
1867 if (opcode_poll && io_file_can_poll(req)) {
1868 needs_poll = true;
1869 issue_flags |= IO_URING_F_NONBLOCK;
1870 }
1871 }
1872
1873 do {
1874 ret = io_issue_sqe(req, issue_flags);
1875 if (ret != -EAGAIN)
1876 break;
1877
1878 /*
1879 * If REQ_F_NOWAIT is set, then don't wait or retry with
1880 * poll. -EAGAIN is final for that case.
1881 */
1882 if (req->flags & REQ_F_NOWAIT)
1883 break;
1884
1885 /*
1886 * We can get EAGAIN for iopolled IO even though we're
1887 * forcing a sync submission from here, since we can't
1888 * wait for request slots on the block side.
1889 */
1890 if (!needs_poll) {
1891 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1892 break;
1893 if (io_wq_worker_stopped())
1894 break;
1895 cond_resched();
1896 continue;
1897 }
1898
1899 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1900 return;
1901 /* aborted or ready, in either case retry blocking */
1902 needs_poll = false;
1903 issue_flags &= ~IO_URING_F_NONBLOCK;
1904 } while (1);
1905
1906 /* avoid locking problems by failing it from a clean context */
1907 if (ret)
1908 io_req_task_queue_fail(req, ret);
1909 }
1910
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1911 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1912 unsigned int issue_flags)
1913 {
1914 struct io_ring_ctx *ctx = req->ctx;
1915 struct io_rsrc_node *node;
1916 struct file *file = NULL;
1917
1918 io_ring_submit_lock(ctx, issue_flags);
1919 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1920 if (node) {
1921 node->refs++;
1922 req->file_node = node;
1923 req->flags |= io_slot_flags(node);
1924 file = io_slot_file(node);
1925 }
1926 io_ring_submit_unlock(ctx, issue_flags);
1927 return file;
1928 }
1929
io_file_get_normal(struct io_kiocb * req,int fd)1930 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1931 {
1932 struct file *file = fget(fd);
1933
1934 trace_io_uring_file_get(req, fd);
1935
1936 /* we don't allow fixed io_uring files */
1937 if (file && io_is_uring_fops(file))
1938 io_req_track_inflight(req);
1939 return file;
1940 }
1941
io_queue_async(struct io_kiocb * req,int ret)1942 static void io_queue_async(struct io_kiocb *req, int ret)
1943 __must_hold(&req->ctx->uring_lock)
1944 {
1945 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1946 io_req_defer_failed(req, ret);
1947 return;
1948 }
1949
1950 switch (io_arm_poll_handler(req, 0)) {
1951 case IO_APOLL_READY:
1952 io_kbuf_recycle(req, 0);
1953 io_req_task_queue(req);
1954 break;
1955 case IO_APOLL_ABORTED:
1956 io_kbuf_recycle(req, 0);
1957 io_queue_iowq(req);
1958 break;
1959 case IO_APOLL_OK:
1960 break;
1961 }
1962 }
1963
io_queue_sqe(struct io_kiocb * req)1964 static inline void io_queue_sqe(struct io_kiocb *req)
1965 __must_hold(&req->ctx->uring_lock)
1966 {
1967 int ret;
1968
1969 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1970
1971 /*
1972 * We async punt it if the file wasn't marked NOWAIT, or if the file
1973 * doesn't support non-blocking read/write attempts
1974 */
1975 if (unlikely(ret))
1976 io_queue_async(req, ret);
1977 }
1978
io_queue_sqe_fallback(struct io_kiocb * req)1979 static void io_queue_sqe_fallback(struct io_kiocb *req)
1980 __must_hold(&req->ctx->uring_lock)
1981 {
1982 if (unlikely(req->flags & REQ_F_FAIL)) {
1983 /*
1984 * We don't submit, fail them all, for that replace hardlinks
1985 * with normal links. Extra REQ_F_LINK is tolerated.
1986 */
1987 req->flags &= ~REQ_F_HARDLINK;
1988 req->flags |= REQ_F_LINK;
1989 io_req_defer_failed(req, req->cqe.res);
1990 } else {
1991 if (unlikely(req->ctx->drain_active))
1992 io_drain_req(req);
1993 else
1994 io_queue_iowq(req);
1995 }
1996 }
1997
1998 /*
1999 * Check SQE restrictions (opcode and flags).
2000 *
2001 * Returns 'true' if SQE is allowed, 'false' otherwise.
2002 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2003 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2004 struct io_kiocb *req,
2005 unsigned int sqe_flags)
2006 {
2007 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2008 return false;
2009
2010 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2011 ctx->restrictions.sqe_flags_required)
2012 return false;
2013
2014 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2015 ctx->restrictions.sqe_flags_required))
2016 return false;
2017
2018 return true;
2019 }
2020
io_init_drain(struct io_ring_ctx * ctx)2021 static void io_init_drain(struct io_ring_ctx *ctx)
2022 {
2023 struct io_kiocb *head = ctx->submit_state.link.head;
2024
2025 ctx->drain_active = true;
2026 if (head) {
2027 /*
2028 * If we need to drain a request in the middle of a link, drain
2029 * the head request and the next request/link after the current
2030 * link. Considering sequential execution of links,
2031 * REQ_F_IO_DRAIN will be maintained for every request of our
2032 * link.
2033 */
2034 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2035 ctx->drain_next = true;
2036 }
2037 }
2038
io_init_fail_req(struct io_kiocb * req,int err)2039 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2040 {
2041 /* ensure per-opcode data is cleared if we fail before prep */
2042 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2043 return err;
2044 }
2045
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2046 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2047 const struct io_uring_sqe *sqe)
2048 __must_hold(&ctx->uring_lock)
2049 {
2050 const struct io_issue_def *def;
2051 unsigned int sqe_flags;
2052 int personality;
2053 u8 opcode;
2054
2055 req->ctx = ctx;
2056 req->opcode = opcode = READ_ONCE(sqe->opcode);
2057 /* same numerical values with corresponding REQ_F_*, safe to copy */
2058 sqe_flags = READ_ONCE(sqe->flags);
2059 req->flags = (__force io_req_flags_t) sqe_flags;
2060 req->cqe.user_data = READ_ONCE(sqe->user_data);
2061 req->file = NULL;
2062 req->tctx = current->io_uring;
2063 req->cancel_seq_set = false;
2064
2065 if (unlikely(opcode >= IORING_OP_LAST)) {
2066 req->opcode = 0;
2067 return io_init_fail_req(req, -EINVAL);
2068 }
2069 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2070
2071 def = &io_issue_defs[opcode];
2072 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2073 /* enforce forwards compatibility on users */
2074 if (sqe_flags & ~SQE_VALID_FLAGS)
2075 return io_init_fail_req(req, -EINVAL);
2076 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2077 if (!def->buffer_select)
2078 return io_init_fail_req(req, -EOPNOTSUPP);
2079 req->buf_index = READ_ONCE(sqe->buf_group);
2080 }
2081 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2082 ctx->drain_disabled = true;
2083 if (sqe_flags & IOSQE_IO_DRAIN) {
2084 if (ctx->drain_disabled)
2085 return io_init_fail_req(req, -EOPNOTSUPP);
2086 io_init_drain(ctx);
2087 }
2088 }
2089 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2090 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2091 return io_init_fail_req(req, -EACCES);
2092 /* knock it to the slow queue path, will be drained there */
2093 if (ctx->drain_active)
2094 req->flags |= REQ_F_FORCE_ASYNC;
2095 /* if there is no link, we're at "next" request and need to drain */
2096 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2097 ctx->drain_next = false;
2098 ctx->drain_active = true;
2099 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2100 }
2101 }
2102
2103 if (!def->ioprio && sqe->ioprio)
2104 return io_init_fail_req(req, -EINVAL);
2105 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2106 return io_init_fail_req(req, -EINVAL);
2107
2108 if (def->needs_file) {
2109 struct io_submit_state *state = &ctx->submit_state;
2110
2111 req->cqe.fd = READ_ONCE(sqe->fd);
2112
2113 /*
2114 * Plug now if we have more than 2 IO left after this, and the
2115 * target is potentially a read/write to block based storage.
2116 */
2117 if (state->need_plug && def->plug) {
2118 state->plug_started = true;
2119 state->need_plug = false;
2120 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2121 }
2122 }
2123
2124 personality = READ_ONCE(sqe->personality);
2125 if (personality) {
2126 int ret;
2127
2128 req->creds = xa_load(&ctx->personalities, personality);
2129 if (!req->creds)
2130 return io_init_fail_req(req, -EINVAL);
2131 get_cred(req->creds);
2132 ret = security_uring_override_creds(req->creds);
2133 if (ret) {
2134 put_cred(req->creds);
2135 return io_init_fail_req(req, ret);
2136 }
2137 req->flags |= REQ_F_CREDS;
2138 }
2139
2140 return def->prep(req, sqe);
2141 }
2142
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2143 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2144 struct io_kiocb *req, int ret)
2145 {
2146 struct io_ring_ctx *ctx = req->ctx;
2147 struct io_submit_link *link = &ctx->submit_state.link;
2148 struct io_kiocb *head = link->head;
2149
2150 trace_io_uring_req_failed(sqe, req, ret);
2151
2152 /*
2153 * Avoid breaking links in the middle as it renders links with SQPOLL
2154 * unusable. Instead of failing eagerly, continue assembling the link if
2155 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2156 * should find the flag and handle the rest.
2157 */
2158 req_fail_link_node(req, ret);
2159 if (head && !(head->flags & REQ_F_FAIL))
2160 req_fail_link_node(head, -ECANCELED);
2161
2162 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2163 if (head) {
2164 link->last->link = req;
2165 link->head = NULL;
2166 req = head;
2167 }
2168 io_queue_sqe_fallback(req);
2169 return ret;
2170 }
2171
2172 if (head)
2173 link->last->link = req;
2174 else
2175 link->head = req;
2176 link->last = req;
2177 return 0;
2178 }
2179
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2180 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2181 const struct io_uring_sqe *sqe)
2182 __must_hold(&ctx->uring_lock)
2183 {
2184 struct io_submit_link *link = &ctx->submit_state.link;
2185 int ret;
2186
2187 ret = io_init_req(ctx, req, sqe);
2188 if (unlikely(ret))
2189 return io_submit_fail_init(sqe, req, ret);
2190
2191 trace_io_uring_submit_req(req);
2192
2193 /*
2194 * If we already have a head request, queue this one for async
2195 * submittal once the head completes. If we don't have a head but
2196 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2197 * submitted sync once the chain is complete. If none of those
2198 * conditions are true (normal request), then just queue it.
2199 */
2200 if (unlikely(link->head)) {
2201 trace_io_uring_link(req, link->last);
2202 link->last->link = req;
2203 link->last = req;
2204
2205 if (req->flags & IO_REQ_LINK_FLAGS)
2206 return 0;
2207 /* last request of the link, flush it */
2208 req = link->head;
2209 link->head = NULL;
2210 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2211 goto fallback;
2212
2213 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2214 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2215 if (req->flags & IO_REQ_LINK_FLAGS) {
2216 link->head = req;
2217 link->last = req;
2218 } else {
2219 fallback:
2220 io_queue_sqe_fallback(req);
2221 }
2222 return 0;
2223 }
2224
2225 io_queue_sqe(req);
2226 return 0;
2227 }
2228
2229 /*
2230 * Batched submission is done, ensure local IO is flushed out.
2231 */
io_submit_state_end(struct io_ring_ctx * ctx)2232 static void io_submit_state_end(struct io_ring_ctx *ctx)
2233 {
2234 struct io_submit_state *state = &ctx->submit_state;
2235
2236 if (unlikely(state->link.head))
2237 io_queue_sqe_fallback(state->link.head);
2238 /* flush only after queuing links as they can generate completions */
2239 io_submit_flush_completions(ctx);
2240 if (state->plug_started)
2241 blk_finish_plug(&state->plug);
2242 }
2243
2244 /*
2245 * Start submission side cache.
2246 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2247 static void io_submit_state_start(struct io_submit_state *state,
2248 unsigned int max_ios)
2249 {
2250 state->plug_started = false;
2251 state->need_plug = max_ios > 2;
2252 state->submit_nr = max_ios;
2253 /* set only head, no need to init link_last in advance */
2254 state->link.head = NULL;
2255 }
2256
io_commit_sqring(struct io_ring_ctx * ctx)2257 static void io_commit_sqring(struct io_ring_ctx *ctx)
2258 {
2259 struct io_rings *rings = ctx->rings;
2260
2261 /*
2262 * Ensure any loads from the SQEs are done at this point,
2263 * since once we write the new head, the application could
2264 * write new data to them.
2265 */
2266 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2267 }
2268
2269 /*
2270 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2271 * that is mapped by userspace. This means that care needs to be taken to
2272 * ensure that reads are stable, as we cannot rely on userspace always
2273 * being a good citizen. If members of the sqe are validated and then later
2274 * used, it's important that those reads are done through READ_ONCE() to
2275 * prevent a re-load down the line.
2276 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2277 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2278 {
2279 unsigned mask = ctx->sq_entries - 1;
2280 unsigned head = ctx->cached_sq_head++ & mask;
2281
2282 if (static_branch_unlikely(&io_key_has_sqarray) &&
2283 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2284 head = READ_ONCE(ctx->sq_array[head]);
2285 if (unlikely(head >= ctx->sq_entries)) {
2286 WRITE_ONCE(ctx->rings->sq_dropped,
2287 READ_ONCE(ctx->rings->sq_dropped) + 1);
2288 return false;
2289 }
2290 head = array_index_nospec(head, ctx->sq_entries);
2291 }
2292
2293 /*
2294 * The cached sq head (or cq tail) serves two purposes:
2295 *
2296 * 1) allows us to batch the cost of updating the user visible
2297 * head updates.
2298 * 2) allows the kernel side to track the head on its own, even
2299 * though the application is the one updating it.
2300 */
2301
2302 /* double index for 128-byte SQEs, twice as long */
2303 if (ctx->flags & IORING_SETUP_SQE128)
2304 head <<= 1;
2305 *sqe = &ctx->sq_sqes[head];
2306 return true;
2307 }
2308
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2309 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2310 __must_hold(&ctx->uring_lock)
2311 {
2312 unsigned int entries = io_sqring_entries(ctx);
2313 unsigned int left;
2314 int ret;
2315
2316 if (unlikely(!entries))
2317 return 0;
2318 /* make sure SQ entry isn't read before tail */
2319 ret = left = min(nr, entries);
2320 io_get_task_refs(left);
2321 io_submit_state_start(&ctx->submit_state, left);
2322
2323 do {
2324 const struct io_uring_sqe *sqe;
2325 struct io_kiocb *req;
2326
2327 if (unlikely(!io_alloc_req(ctx, &req)))
2328 break;
2329 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2330 io_req_add_to_cache(req, ctx);
2331 break;
2332 }
2333
2334 /*
2335 * Continue submitting even for sqe failure if the
2336 * ring was setup with IORING_SETUP_SUBMIT_ALL
2337 */
2338 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2339 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2340 left--;
2341 break;
2342 }
2343 } while (--left);
2344
2345 if (unlikely(left)) {
2346 ret -= left;
2347 /* try again if it submitted nothing and can't allocate a req */
2348 if (!ret && io_req_cache_empty(ctx))
2349 ret = -EAGAIN;
2350 current->io_uring->cached_refs += left;
2351 }
2352
2353 io_submit_state_end(ctx);
2354 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2355 io_commit_sqring(ctx);
2356 return ret;
2357 }
2358
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2359 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2360 int wake_flags, void *key)
2361 {
2362 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2363
2364 /*
2365 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2366 * the task, and the next invocation will do it.
2367 */
2368 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2369 return autoremove_wake_function(curr, mode, wake_flags, key);
2370 return -1;
2371 }
2372
io_run_task_work_sig(struct io_ring_ctx * ctx)2373 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2374 {
2375 if (io_local_work_pending(ctx)) {
2376 __set_current_state(TASK_RUNNING);
2377 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2378 return 0;
2379 }
2380 if (io_run_task_work() > 0)
2381 return 0;
2382 if (task_sigpending(current))
2383 return -EINTR;
2384 return 0;
2385 }
2386
current_pending_io(void)2387 static bool current_pending_io(void)
2388 {
2389 struct io_uring_task *tctx = current->io_uring;
2390
2391 if (!tctx)
2392 return false;
2393 return percpu_counter_read_positive(&tctx->inflight);
2394 }
2395
io_cqring_timer_wakeup(struct hrtimer * timer)2396 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2397 {
2398 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2399
2400 WRITE_ONCE(iowq->hit_timeout, 1);
2401 iowq->min_timeout = 0;
2402 wake_up_process(iowq->wq.private);
2403 return HRTIMER_NORESTART;
2404 }
2405
2406 /*
2407 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2408 * wake up. If not, and we have a normal timeout, switch to that and keep
2409 * sleeping.
2410 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2411 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2412 {
2413 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2414 struct io_ring_ctx *ctx = iowq->ctx;
2415
2416 /* no general timeout, or shorter (or equal), we are done */
2417 if (iowq->timeout == KTIME_MAX ||
2418 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2419 goto out_wake;
2420 /* work we may need to run, wake function will see if we need to wake */
2421 if (io_has_work(ctx))
2422 goto out_wake;
2423 /* got events since we started waiting, min timeout is done */
2424 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2425 goto out_wake;
2426 /* if we have any events and min timeout expired, we're done */
2427 if (io_cqring_events(ctx))
2428 goto out_wake;
2429
2430 /*
2431 * If using deferred task_work running and application is waiting on
2432 * more than one request, ensure we reset it now where we are switching
2433 * to normal sleeps. Any request completion post min_wait should wake
2434 * the task and return.
2435 */
2436 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2437 atomic_set(&ctx->cq_wait_nr, 1);
2438 smp_mb();
2439 if (!llist_empty(&ctx->work_llist))
2440 goto out_wake;
2441 }
2442
2443 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2444 hrtimer_set_expires(timer, iowq->timeout);
2445 return HRTIMER_RESTART;
2446 out_wake:
2447 return io_cqring_timer_wakeup(timer);
2448 }
2449
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2450 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2451 clockid_t clock_id, ktime_t start_time)
2452 {
2453 ktime_t timeout;
2454
2455 if (iowq->min_timeout) {
2456 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2457 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2458 HRTIMER_MODE_ABS);
2459 } else {
2460 timeout = iowq->timeout;
2461 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2462 HRTIMER_MODE_ABS);
2463 }
2464
2465 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2466 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2467
2468 if (!READ_ONCE(iowq->hit_timeout))
2469 schedule();
2470
2471 hrtimer_cancel(&iowq->t);
2472 destroy_hrtimer_on_stack(&iowq->t);
2473 __set_current_state(TASK_RUNNING);
2474
2475 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2476 }
2477
2478 struct ext_arg {
2479 size_t argsz;
2480 struct timespec64 ts;
2481 const sigset_t __user *sig;
2482 ktime_t min_time;
2483 bool ts_set;
2484 bool iowait;
2485 };
2486
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2487 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2488 struct io_wait_queue *iowq,
2489 struct ext_arg *ext_arg,
2490 ktime_t start_time)
2491 {
2492 int ret = 0;
2493
2494 /*
2495 * Mark us as being in io_wait if we have pending requests, so cpufreq
2496 * can take into account that the task is waiting for IO - turns out
2497 * to be important for low QD IO.
2498 */
2499 if (ext_arg->iowait && current_pending_io())
2500 current->in_iowait = 1;
2501 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2502 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2503 else
2504 schedule();
2505 current->in_iowait = 0;
2506 return ret;
2507 }
2508
2509 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2510 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2511 struct io_wait_queue *iowq,
2512 struct ext_arg *ext_arg,
2513 ktime_t start_time)
2514 {
2515 if (unlikely(READ_ONCE(ctx->check_cq)))
2516 return 1;
2517 if (unlikely(io_local_work_pending(ctx)))
2518 return 1;
2519 if (unlikely(task_work_pending(current)))
2520 return 1;
2521 if (unlikely(task_sigpending(current)))
2522 return -EINTR;
2523 if (unlikely(io_should_wake(iowq)))
2524 return 0;
2525
2526 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2527 }
2528
2529 /*
2530 * Wait until events become available, if we don't already have some. The
2531 * application must reap them itself, as they reside on the shared cq ring.
2532 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2533 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2534 struct ext_arg *ext_arg)
2535 {
2536 struct io_wait_queue iowq;
2537 struct io_rings *rings = ctx->rings;
2538 ktime_t start_time;
2539 int ret;
2540
2541 min_events = min_t(int, min_events, ctx->cq_entries);
2542
2543 if (!io_allowed_run_tw(ctx))
2544 return -EEXIST;
2545 if (io_local_work_pending(ctx))
2546 io_run_local_work(ctx, min_events,
2547 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2548 io_run_task_work();
2549
2550 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2551 io_cqring_do_overflow_flush(ctx);
2552 if (__io_cqring_events_user(ctx) >= min_events)
2553 return 0;
2554
2555 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2556 iowq.wq.private = current;
2557 INIT_LIST_HEAD(&iowq.wq.entry);
2558 iowq.ctx = ctx;
2559 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2560 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2561 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2562 iowq.hit_timeout = 0;
2563 iowq.min_timeout = ext_arg->min_time;
2564 iowq.timeout = KTIME_MAX;
2565 start_time = io_get_time(ctx);
2566
2567 if (ext_arg->ts_set) {
2568 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2569 if (!(flags & IORING_ENTER_ABS_TIMER))
2570 iowq.timeout = ktime_add(iowq.timeout, start_time);
2571 }
2572
2573 if (ext_arg->sig) {
2574 #ifdef CONFIG_COMPAT
2575 if (in_compat_syscall())
2576 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2577 ext_arg->argsz);
2578 else
2579 #endif
2580 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2581
2582 if (ret)
2583 return ret;
2584 }
2585
2586 io_napi_busy_loop(ctx, &iowq);
2587
2588 trace_io_uring_cqring_wait(ctx, min_events);
2589 do {
2590 unsigned long check_cq;
2591 int nr_wait;
2592
2593 /* if min timeout has been hit, don't reset wait count */
2594 if (!iowq.hit_timeout)
2595 nr_wait = (int) iowq.cq_tail -
2596 READ_ONCE(ctx->rings->cq.tail);
2597 else
2598 nr_wait = 1;
2599
2600 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2601 atomic_set(&ctx->cq_wait_nr, nr_wait);
2602 set_current_state(TASK_INTERRUPTIBLE);
2603 } else {
2604 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2605 TASK_INTERRUPTIBLE);
2606 }
2607
2608 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2609 __set_current_state(TASK_RUNNING);
2610 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2611
2612 /*
2613 * Run task_work after scheduling and before io_should_wake().
2614 * If we got woken because of task_work being processed, run it
2615 * now rather than let the caller do another wait loop.
2616 */
2617 if (io_local_work_pending(ctx))
2618 io_run_local_work(ctx, nr_wait, nr_wait);
2619 io_run_task_work();
2620
2621 /*
2622 * Non-local task_work will be run on exit to userspace, but
2623 * if we're using DEFER_TASKRUN, then we could have waited
2624 * with a timeout for a number of requests. If the timeout
2625 * hits, we could have some requests ready to process. Ensure
2626 * this break is _after_ we have run task_work, to avoid
2627 * deferring running potentially pending requests until the
2628 * next time we wait for events.
2629 */
2630 if (ret < 0)
2631 break;
2632
2633 check_cq = READ_ONCE(ctx->check_cq);
2634 if (unlikely(check_cq)) {
2635 /* let the caller flush overflows, retry */
2636 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2637 io_cqring_do_overflow_flush(ctx);
2638 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2639 ret = -EBADR;
2640 break;
2641 }
2642 }
2643
2644 if (io_should_wake(&iowq)) {
2645 ret = 0;
2646 break;
2647 }
2648 cond_resched();
2649 } while (1);
2650
2651 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2652 finish_wait(&ctx->cq_wait, &iowq.wq);
2653 restore_saved_sigmask_unless(ret == -EINTR);
2654
2655 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2656 }
2657
io_rings_free(struct io_ring_ctx * ctx)2658 static void io_rings_free(struct io_ring_ctx *ctx)
2659 {
2660 io_free_region(ctx, &ctx->sq_region);
2661 io_free_region(ctx, &ctx->ring_region);
2662 ctx->rings = NULL;
2663 ctx->sq_sqes = NULL;
2664 }
2665
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2666 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2667 unsigned int cq_entries, size_t *sq_offset)
2668 {
2669 struct io_rings *rings;
2670 size_t off, sq_array_size;
2671
2672 off = struct_size(rings, cqes, cq_entries);
2673 if (off == SIZE_MAX)
2674 return SIZE_MAX;
2675 if (flags & IORING_SETUP_CQE32) {
2676 if (check_shl_overflow(off, 1, &off))
2677 return SIZE_MAX;
2678 }
2679
2680 #ifdef CONFIG_SMP
2681 off = ALIGN(off, SMP_CACHE_BYTES);
2682 if (off == 0)
2683 return SIZE_MAX;
2684 #endif
2685
2686 if (flags & IORING_SETUP_NO_SQARRAY) {
2687 *sq_offset = SIZE_MAX;
2688 return off;
2689 }
2690
2691 *sq_offset = off;
2692
2693 sq_array_size = array_size(sizeof(u32), sq_entries);
2694 if (sq_array_size == SIZE_MAX)
2695 return SIZE_MAX;
2696
2697 if (check_add_overflow(off, sq_array_size, &off))
2698 return SIZE_MAX;
2699
2700 return off;
2701 }
2702
__io_req_caches_free(struct io_ring_ctx * ctx)2703 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2704 {
2705 struct io_kiocb *req;
2706 int nr = 0;
2707
2708 while (!io_req_cache_empty(ctx)) {
2709 req = io_extract_req(ctx);
2710 kmem_cache_free(req_cachep, req);
2711 nr++;
2712 }
2713 if (nr) {
2714 ctx->nr_req_allocated -= nr;
2715 percpu_ref_put_many(&ctx->refs, nr);
2716 }
2717 }
2718
io_req_caches_free(struct io_ring_ctx * ctx)2719 static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2720 {
2721 guard(mutex)(&ctx->uring_lock);
2722 __io_req_caches_free(ctx);
2723 }
2724
io_ring_ctx_free(struct io_ring_ctx * ctx)2725 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2726 {
2727 io_sq_thread_finish(ctx);
2728
2729 mutex_lock(&ctx->uring_lock);
2730 io_sqe_buffers_unregister(ctx);
2731 io_sqe_files_unregister(ctx);
2732 io_unregister_zcrx_ifqs(ctx);
2733 io_cqring_overflow_kill(ctx);
2734 io_eventfd_unregister(ctx);
2735 io_free_alloc_caches(ctx);
2736 io_destroy_buffers(ctx);
2737 io_free_region(ctx, &ctx->param_region);
2738 mutex_unlock(&ctx->uring_lock);
2739 if (ctx->sq_creds)
2740 put_cred(ctx->sq_creds);
2741 if (ctx->submitter_task)
2742 put_task_struct(ctx->submitter_task);
2743
2744 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2745
2746 if (ctx->mm_account) {
2747 mmdrop(ctx->mm_account);
2748 ctx->mm_account = NULL;
2749 }
2750 io_rings_free(ctx);
2751
2752 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2753 static_branch_dec(&io_key_has_sqarray);
2754
2755 percpu_ref_exit(&ctx->refs);
2756 free_uid(ctx->user);
2757 io_req_caches_free(ctx);
2758
2759 WARN_ON_ONCE(ctx->nr_req_allocated);
2760
2761 if (ctx->hash_map)
2762 io_wq_put_hash(ctx->hash_map);
2763 io_napi_free(ctx);
2764 kvfree(ctx->cancel_table.hbs);
2765 xa_destroy(&ctx->io_bl_xa);
2766 kfree(ctx);
2767 }
2768
io_activate_pollwq_cb(struct callback_head * cb)2769 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2770 {
2771 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2772 poll_wq_task_work);
2773
2774 mutex_lock(&ctx->uring_lock);
2775 ctx->poll_activated = true;
2776 mutex_unlock(&ctx->uring_lock);
2777
2778 /*
2779 * Wake ups for some events between start of polling and activation
2780 * might've been lost due to loose synchronisation.
2781 */
2782 wake_up_all(&ctx->poll_wq);
2783 percpu_ref_put(&ctx->refs);
2784 }
2785
io_activate_pollwq(struct io_ring_ctx * ctx)2786 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2787 {
2788 spin_lock(&ctx->completion_lock);
2789 /* already activated or in progress */
2790 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2791 goto out;
2792 if (WARN_ON_ONCE(!ctx->task_complete))
2793 goto out;
2794 if (!ctx->submitter_task)
2795 goto out;
2796 /*
2797 * with ->submitter_task only the submitter task completes requests, we
2798 * only need to sync with it, which is done by injecting a tw
2799 */
2800 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2801 percpu_ref_get(&ctx->refs);
2802 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2803 percpu_ref_put(&ctx->refs);
2804 out:
2805 spin_unlock(&ctx->completion_lock);
2806 }
2807
io_uring_poll(struct file * file,poll_table * wait)2808 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2809 {
2810 struct io_ring_ctx *ctx = file->private_data;
2811 __poll_t mask = 0;
2812
2813 if (unlikely(!ctx->poll_activated))
2814 io_activate_pollwq(ctx);
2815 /*
2816 * provides mb() which pairs with barrier from wq_has_sleeper
2817 * call in io_commit_cqring
2818 */
2819 poll_wait(file, &ctx->poll_wq, wait);
2820
2821 if (!io_sqring_full(ctx))
2822 mask |= EPOLLOUT | EPOLLWRNORM;
2823
2824 /*
2825 * Don't flush cqring overflow list here, just do a simple check.
2826 * Otherwise there could possible be ABBA deadlock:
2827 * CPU0 CPU1
2828 * ---- ----
2829 * lock(&ctx->uring_lock);
2830 * lock(&ep->mtx);
2831 * lock(&ctx->uring_lock);
2832 * lock(&ep->mtx);
2833 *
2834 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2835 * pushes them to do the flush.
2836 */
2837
2838 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2839 mask |= EPOLLIN | EPOLLRDNORM;
2840
2841 return mask;
2842 }
2843
2844 struct io_tctx_exit {
2845 struct callback_head task_work;
2846 struct completion completion;
2847 struct io_ring_ctx *ctx;
2848 };
2849
io_tctx_exit_cb(struct callback_head * cb)2850 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2851 {
2852 struct io_uring_task *tctx = current->io_uring;
2853 struct io_tctx_exit *work;
2854
2855 work = container_of(cb, struct io_tctx_exit, task_work);
2856 /*
2857 * When @in_cancel, we're in cancellation and it's racy to remove the
2858 * node. It'll be removed by the end of cancellation, just ignore it.
2859 * tctx can be NULL if the queueing of this task_work raced with
2860 * work cancelation off the exec path.
2861 */
2862 if (tctx && !atomic_read(&tctx->in_cancel))
2863 io_uring_del_tctx_node((unsigned long)work->ctx);
2864 complete(&work->completion);
2865 }
2866
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2867 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2868 {
2869 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2870
2871 return req->ctx == data;
2872 }
2873
io_ring_exit_work(struct work_struct * work)2874 static __cold void io_ring_exit_work(struct work_struct *work)
2875 {
2876 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2877 unsigned long timeout = jiffies + HZ * 60 * 5;
2878 unsigned long interval = HZ / 20;
2879 struct io_tctx_exit exit;
2880 struct io_tctx_node *node;
2881 int ret;
2882
2883 /*
2884 * If we're doing polled IO and end up having requests being
2885 * submitted async (out-of-line), then completions can come in while
2886 * we're waiting for refs to drop. We need to reap these manually,
2887 * as nobody else will be looking for them.
2888 */
2889 do {
2890 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2891 mutex_lock(&ctx->uring_lock);
2892 io_cqring_overflow_kill(ctx);
2893 mutex_unlock(&ctx->uring_lock);
2894 }
2895 if (!xa_empty(&ctx->zcrx_ctxs)) {
2896 mutex_lock(&ctx->uring_lock);
2897 io_shutdown_zcrx_ifqs(ctx);
2898 mutex_unlock(&ctx->uring_lock);
2899 }
2900
2901 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2902 io_move_task_work_from_local(ctx);
2903
2904 /* The SQPOLL thread never reaches this path */
2905 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2906 cond_resched();
2907
2908 if (ctx->sq_data) {
2909 struct io_sq_data *sqd = ctx->sq_data;
2910 struct task_struct *tsk;
2911
2912 io_sq_thread_park(sqd);
2913 tsk = sqpoll_task_locked(sqd);
2914 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2915 io_wq_cancel_cb(tsk->io_uring->io_wq,
2916 io_cancel_ctx_cb, ctx, true);
2917 io_sq_thread_unpark(sqd);
2918 }
2919
2920 io_req_caches_free(ctx);
2921
2922 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2923 /* there is little hope left, don't run it too often */
2924 interval = HZ * 60;
2925 }
2926 /*
2927 * This is really an uninterruptible wait, as it has to be
2928 * complete. But it's also run from a kworker, which doesn't
2929 * take signals, so it's fine to make it interruptible. This
2930 * avoids scenarios where we knowingly can wait much longer
2931 * on completions, for example if someone does a SIGSTOP on
2932 * a task that needs to finish task_work to make this loop
2933 * complete. That's a synthetic situation that should not
2934 * cause a stuck task backtrace, and hence a potential panic
2935 * on stuck tasks if that is enabled.
2936 */
2937 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2938
2939 init_completion(&exit.completion);
2940 init_task_work(&exit.task_work, io_tctx_exit_cb);
2941 exit.ctx = ctx;
2942
2943 mutex_lock(&ctx->uring_lock);
2944 while (!list_empty(&ctx->tctx_list)) {
2945 WARN_ON_ONCE(time_after(jiffies, timeout));
2946
2947 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2948 ctx_node);
2949 /* don't spin on a single task if cancellation failed */
2950 list_rotate_left(&ctx->tctx_list);
2951 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2952 if (WARN_ON_ONCE(ret))
2953 continue;
2954
2955 mutex_unlock(&ctx->uring_lock);
2956 /*
2957 * See comment above for
2958 * wait_for_completion_interruptible_timeout() on why this
2959 * wait is marked as interruptible.
2960 */
2961 wait_for_completion_interruptible(&exit.completion);
2962 mutex_lock(&ctx->uring_lock);
2963 }
2964 mutex_unlock(&ctx->uring_lock);
2965 spin_lock(&ctx->completion_lock);
2966 spin_unlock(&ctx->completion_lock);
2967
2968 /* pairs with RCU read section in io_req_local_work_add() */
2969 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2970 synchronize_rcu();
2971
2972 io_ring_ctx_free(ctx);
2973 }
2974
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2975 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2976 {
2977 unsigned long index;
2978 struct creds *creds;
2979
2980 mutex_lock(&ctx->uring_lock);
2981 percpu_ref_kill(&ctx->refs);
2982 xa_for_each(&ctx->personalities, index, creds)
2983 io_unregister_personality(ctx, index);
2984 mutex_unlock(&ctx->uring_lock);
2985
2986 flush_delayed_work(&ctx->fallback_work);
2987
2988 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2989 /*
2990 * Use system_unbound_wq to avoid spawning tons of event kworkers
2991 * if we're exiting a ton of rings at the same time. It just adds
2992 * noise and overhead, there's no discernable change in runtime
2993 * over using system_wq.
2994 */
2995 queue_work(iou_wq, &ctx->exit_work);
2996 }
2997
io_uring_release(struct inode * inode,struct file * file)2998 static int io_uring_release(struct inode *inode, struct file *file)
2999 {
3000 struct io_ring_ctx *ctx = file->private_data;
3001
3002 file->private_data = NULL;
3003 io_ring_ctx_wait_and_kill(ctx);
3004 return 0;
3005 }
3006
3007 struct io_task_cancel {
3008 struct io_uring_task *tctx;
3009 bool all;
3010 };
3011
io_cancel_task_cb(struct io_wq_work * work,void * data)3012 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3013 {
3014 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3015 struct io_task_cancel *cancel = data;
3016
3017 return io_match_task_safe(req, cancel->tctx, cancel->all);
3018 }
3019
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3020 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3021 struct io_uring_task *tctx,
3022 bool cancel_all)
3023 {
3024 struct io_defer_entry *de;
3025 LIST_HEAD(list);
3026
3027 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3028 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3029 list_cut_position(&list, &ctx->defer_list, &de->list);
3030 break;
3031 }
3032 }
3033 if (list_empty(&list))
3034 return false;
3035
3036 while (!list_empty(&list)) {
3037 de = list_first_entry(&list, struct io_defer_entry, list);
3038 list_del_init(&de->list);
3039 ctx->nr_drained -= io_linked_nr(de->req);
3040 io_req_task_queue_fail(de->req, -ECANCELED);
3041 kfree(de);
3042 }
3043 return true;
3044 }
3045
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3046 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3047 {
3048 struct io_tctx_node *node;
3049 enum io_wq_cancel cret;
3050 bool ret = false;
3051
3052 mutex_lock(&ctx->uring_lock);
3053 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3054 struct io_uring_task *tctx = node->task->io_uring;
3055
3056 /*
3057 * io_wq will stay alive while we hold uring_lock, because it's
3058 * killed after ctx nodes, which requires to take the lock.
3059 */
3060 if (!tctx || !tctx->io_wq)
3061 continue;
3062 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3063 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3064 }
3065 mutex_unlock(&ctx->uring_lock);
3066
3067 return ret;
3068 }
3069
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3070 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3071 struct io_uring_task *tctx,
3072 bool cancel_all,
3073 bool is_sqpoll_thread)
3074 {
3075 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3076 enum io_wq_cancel cret;
3077 bool ret = false;
3078
3079 /* set it so io_req_local_work_add() would wake us up */
3080 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3081 atomic_set(&ctx->cq_wait_nr, 1);
3082 smp_mb();
3083 }
3084
3085 /* failed during ring init, it couldn't have issued any requests */
3086 if (!ctx->rings)
3087 return false;
3088
3089 if (!tctx) {
3090 ret |= io_uring_try_cancel_iowq(ctx);
3091 } else if (tctx->io_wq) {
3092 /*
3093 * Cancels requests of all rings, not only @ctx, but
3094 * it's fine as the task is in exit/exec.
3095 */
3096 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3097 &cancel, true);
3098 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3099 }
3100
3101 /* SQPOLL thread does its own polling */
3102 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3103 is_sqpoll_thread) {
3104 while (!wq_list_empty(&ctx->iopoll_list)) {
3105 io_iopoll_try_reap_events(ctx);
3106 ret = true;
3107 cond_resched();
3108 }
3109 }
3110
3111 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3112 io_allowed_defer_tw_run(ctx))
3113 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3114 mutex_lock(&ctx->uring_lock);
3115 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3116 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3117 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3118 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3119 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3120 mutex_unlock(&ctx->uring_lock);
3121 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3122 if (tctx)
3123 ret |= io_run_task_work() > 0;
3124 else
3125 ret |= flush_delayed_work(&ctx->fallback_work);
3126 return ret;
3127 }
3128
tctx_inflight(struct io_uring_task * tctx,bool tracked)3129 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3130 {
3131 if (tracked)
3132 return atomic_read(&tctx->inflight_tracked);
3133 return percpu_counter_sum(&tctx->inflight);
3134 }
3135
3136 /*
3137 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3138 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3139 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3140 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3141 {
3142 struct io_uring_task *tctx = current->io_uring;
3143 struct io_ring_ctx *ctx;
3144 struct io_tctx_node *node;
3145 unsigned long index;
3146 s64 inflight;
3147 DEFINE_WAIT(wait);
3148
3149 WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
3150
3151 if (!current->io_uring)
3152 return;
3153 if (tctx->io_wq)
3154 io_wq_exit_start(tctx->io_wq);
3155
3156 atomic_inc(&tctx->in_cancel);
3157 do {
3158 bool loop = false;
3159
3160 io_uring_drop_tctx_refs(current);
3161 if (!tctx_inflight(tctx, !cancel_all))
3162 break;
3163
3164 /* read completions before cancelations */
3165 inflight = tctx_inflight(tctx, false);
3166 if (!inflight)
3167 break;
3168
3169 if (!sqd) {
3170 xa_for_each(&tctx->xa, index, node) {
3171 /* sqpoll task will cancel all its requests */
3172 if (node->ctx->sq_data)
3173 continue;
3174 loop |= io_uring_try_cancel_requests(node->ctx,
3175 current->io_uring,
3176 cancel_all,
3177 false);
3178 }
3179 } else {
3180 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3181 loop |= io_uring_try_cancel_requests(ctx,
3182 current->io_uring,
3183 cancel_all,
3184 true);
3185 }
3186
3187 if (loop) {
3188 cond_resched();
3189 continue;
3190 }
3191
3192 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3193 io_run_task_work();
3194 io_uring_drop_tctx_refs(current);
3195 xa_for_each(&tctx->xa, index, node) {
3196 if (io_local_work_pending(node->ctx)) {
3197 WARN_ON_ONCE(node->ctx->submitter_task &&
3198 node->ctx->submitter_task != current);
3199 goto end_wait;
3200 }
3201 }
3202 /*
3203 * If we've seen completions, retry without waiting. This
3204 * avoids a race where a completion comes in before we did
3205 * prepare_to_wait().
3206 */
3207 if (inflight == tctx_inflight(tctx, !cancel_all))
3208 schedule();
3209 end_wait:
3210 finish_wait(&tctx->wait, &wait);
3211 } while (1);
3212
3213 io_uring_clean_tctx(tctx);
3214 if (cancel_all) {
3215 /*
3216 * We shouldn't run task_works after cancel, so just leave
3217 * ->in_cancel set for normal exit.
3218 */
3219 atomic_dec(&tctx->in_cancel);
3220 /* for exec all current's requests should be gone, kill tctx */
3221 __io_uring_free(current);
3222 }
3223 }
3224
__io_uring_cancel(bool cancel_all)3225 void __io_uring_cancel(bool cancel_all)
3226 {
3227 io_uring_unreg_ringfd();
3228 io_uring_cancel_generic(cancel_all, NULL);
3229 }
3230
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3231 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3232 const struct io_uring_getevents_arg __user *uarg)
3233 {
3234 unsigned long size = sizeof(struct io_uring_reg_wait);
3235 unsigned long offset = (uintptr_t)uarg;
3236 unsigned long end;
3237
3238 if (unlikely(offset % sizeof(long)))
3239 return ERR_PTR(-EFAULT);
3240
3241 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3242 if (unlikely(check_add_overflow(offset, size, &end) ||
3243 end > ctx->cq_wait_size))
3244 return ERR_PTR(-EFAULT);
3245
3246 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3247 return ctx->cq_wait_arg + offset;
3248 }
3249
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3250 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3251 const void __user *argp, size_t argsz)
3252 {
3253 struct io_uring_getevents_arg arg;
3254
3255 if (!(flags & IORING_ENTER_EXT_ARG))
3256 return 0;
3257 if (flags & IORING_ENTER_EXT_ARG_REG)
3258 return -EINVAL;
3259 if (argsz != sizeof(arg))
3260 return -EINVAL;
3261 if (copy_from_user(&arg, argp, sizeof(arg)))
3262 return -EFAULT;
3263 return 0;
3264 }
3265
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3266 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3267 const void __user *argp, struct ext_arg *ext_arg)
3268 {
3269 const struct io_uring_getevents_arg __user *uarg = argp;
3270 struct io_uring_getevents_arg arg;
3271
3272 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3273
3274 /*
3275 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3276 * is just a pointer to the sigset_t.
3277 */
3278 if (!(flags & IORING_ENTER_EXT_ARG)) {
3279 ext_arg->sig = (const sigset_t __user *) argp;
3280 return 0;
3281 }
3282
3283 if (flags & IORING_ENTER_EXT_ARG_REG) {
3284 struct io_uring_reg_wait *w;
3285
3286 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3287 return -EINVAL;
3288 w = io_get_ext_arg_reg(ctx, argp);
3289 if (IS_ERR(w))
3290 return PTR_ERR(w);
3291
3292 if (w->flags & ~IORING_REG_WAIT_TS)
3293 return -EINVAL;
3294 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3295 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3296 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3297 if (w->flags & IORING_REG_WAIT_TS) {
3298 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3299 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3300 ext_arg->ts_set = true;
3301 }
3302 return 0;
3303 }
3304
3305 /*
3306 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3307 * timespec and sigset_t pointers if good.
3308 */
3309 if (ext_arg->argsz != sizeof(arg))
3310 return -EINVAL;
3311 #ifdef CONFIG_64BIT
3312 if (!user_access_begin(uarg, sizeof(*uarg)))
3313 return -EFAULT;
3314 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3315 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3316 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3317 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3318 user_access_end();
3319 #else
3320 if (copy_from_user(&arg, uarg, sizeof(arg)))
3321 return -EFAULT;
3322 #endif
3323 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3324 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3325 ext_arg->argsz = arg.sigmask_sz;
3326 if (arg.ts) {
3327 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3328 return -EFAULT;
3329 ext_arg->ts_set = true;
3330 }
3331 return 0;
3332 #ifdef CONFIG_64BIT
3333 uaccess_end:
3334 user_access_end();
3335 return -EFAULT;
3336 #endif
3337 }
3338
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3339 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3340 u32, min_complete, u32, flags, const void __user *, argp,
3341 size_t, argsz)
3342 {
3343 struct io_ring_ctx *ctx;
3344 struct file *file;
3345 long ret;
3346
3347 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3348 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3349 IORING_ENTER_REGISTERED_RING |
3350 IORING_ENTER_ABS_TIMER |
3351 IORING_ENTER_EXT_ARG_REG |
3352 IORING_ENTER_NO_IOWAIT)))
3353 return -EINVAL;
3354
3355 /*
3356 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3357 * need only dereference our task private array to find it.
3358 */
3359 if (flags & IORING_ENTER_REGISTERED_RING) {
3360 struct io_uring_task *tctx = current->io_uring;
3361
3362 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3363 return -EINVAL;
3364 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3365 file = tctx->registered_rings[fd];
3366 if (unlikely(!file))
3367 return -EBADF;
3368 } else {
3369 file = fget(fd);
3370 if (unlikely(!file))
3371 return -EBADF;
3372 ret = -EOPNOTSUPP;
3373 if (unlikely(!io_is_uring_fops(file)))
3374 goto out;
3375 }
3376
3377 ctx = file->private_data;
3378 ret = -EBADFD;
3379 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3380 goto out;
3381
3382 /*
3383 * For SQ polling, the thread will do all submissions and completions.
3384 * Just return the requested submit count, and wake the thread if
3385 * we were asked to.
3386 */
3387 ret = 0;
3388 if (ctx->flags & IORING_SETUP_SQPOLL) {
3389 if (unlikely(ctx->sq_data->thread == NULL)) {
3390 ret = -EOWNERDEAD;
3391 goto out;
3392 }
3393 if (flags & IORING_ENTER_SQ_WAKEUP)
3394 wake_up(&ctx->sq_data->wait);
3395 if (flags & IORING_ENTER_SQ_WAIT)
3396 io_sqpoll_wait_sq(ctx);
3397
3398 ret = to_submit;
3399 } else if (to_submit) {
3400 ret = io_uring_add_tctx_node(ctx);
3401 if (unlikely(ret))
3402 goto out;
3403
3404 mutex_lock(&ctx->uring_lock);
3405 ret = io_submit_sqes(ctx, to_submit);
3406 if (ret != to_submit) {
3407 mutex_unlock(&ctx->uring_lock);
3408 goto out;
3409 }
3410 if (flags & IORING_ENTER_GETEVENTS) {
3411 if (ctx->syscall_iopoll)
3412 goto iopoll_locked;
3413 /*
3414 * Ignore errors, we'll soon call io_cqring_wait() and
3415 * it should handle ownership problems if any.
3416 */
3417 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3418 (void)io_run_local_work_locked(ctx, min_complete);
3419 }
3420 mutex_unlock(&ctx->uring_lock);
3421 }
3422
3423 if (flags & IORING_ENTER_GETEVENTS) {
3424 int ret2;
3425
3426 if (ctx->syscall_iopoll) {
3427 /*
3428 * We disallow the app entering submit/complete with
3429 * polling, but we still need to lock the ring to
3430 * prevent racing with polled issue that got punted to
3431 * a workqueue.
3432 */
3433 mutex_lock(&ctx->uring_lock);
3434 iopoll_locked:
3435 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3436 if (likely(!ret2))
3437 ret2 = io_iopoll_check(ctx, min_complete);
3438 mutex_unlock(&ctx->uring_lock);
3439 } else {
3440 struct ext_arg ext_arg = { .argsz = argsz };
3441
3442 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3443 if (likely(!ret2))
3444 ret2 = io_cqring_wait(ctx, min_complete, flags,
3445 &ext_arg);
3446 }
3447
3448 if (!ret) {
3449 ret = ret2;
3450
3451 /*
3452 * EBADR indicates that one or more CQE were dropped.
3453 * Once the user has been informed we can clear the bit
3454 * as they are obviously ok with those drops.
3455 */
3456 if (unlikely(ret2 == -EBADR))
3457 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3458 &ctx->check_cq);
3459 }
3460 }
3461 out:
3462 if (!(flags & IORING_ENTER_REGISTERED_RING))
3463 fput(file);
3464 return ret;
3465 }
3466
3467 static const struct file_operations io_uring_fops = {
3468 .release = io_uring_release,
3469 .mmap = io_uring_mmap,
3470 .get_unmapped_area = io_uring_get_unmapped_area,
3471 #ifndef CONFIG_MMU
3472 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3473 #endif
3474 .poll = io_uring_poll,
3475 #ifdef CONFIG_PROC_FS
3476 .show_fdinfo = io_uring_show_fdinfo,
3477 #endif
3478 };
3479
io_is_uring_fops(struct file * file)3480 bool io_is_uring_fops(struct file *file)
3481 {
3482 return file->f_op == &io_uring_fops;
3483 }
3484
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3485 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3486 struct io_uring_params *p)
3487 {
3488 struct io_uring_region_desc rd;
3489 struct io_rings *rings;
3490 size_t size, sq_array_offset;
3491 int ret;
3492
3493 /* make sure these are sane, as we already accounted them */
3494 ctx->sq_entries = p->sq_entries;
3495 ctx->cq_entries = p->cq_entries;
3496
3497 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3498 &sq_array_offset);
3499 if (size == SIZE_MAX)
3500 return -EOVERFLOW;
3501
3502 memset(&rd, 0, sizeof(rd));
3503 rd.size = PAGE_ALIGN(size);
3504 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3505 rd.user_addr = p->cq_off.user_addr;
3506 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3507 }
3508 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3509 if (ret)
3510 return ret;
3511 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3512
3513 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3514 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3515 rings->sq_ring_mask = p->sq_entries - 1;
3516 rings->cq_ring_mask = p->cq_entries - 1;
3517 rings->sq_ring_entries = p->sq_entries;
3518 rings->cq_ring_entries = p->cq_entries;
3519
3520 if (p->flags & IORING_SETUP_SQE128)
3521 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3522 else
3523 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3524 if (size == SIZE_MAX) {
3525 io_rings_free(ctx);
3526 return -EOVERFLOW;
3527 }
3528
3529 memset(&rd, 0, sizeof(rd));
3530 rd.size = PAGE_ALIGN(size);
3531 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3532 rd.user_addr = p->sq_off.user_addr;
3533 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3534 }
3535 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3536 if (ret) {
3537 io_rings_free(ctx);
3538 return ret;
3539 }
3540 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3541 return 0;
3542 }
3543
io_uring_install_fd(struct file * file)3544 static int io_uring_install_fd(struct file *file)
3545 {
3546 int fd;
3547
3548 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3549 if (fd < 0)
3550 return fd;
3551 fd_install(fd, file);
3552 return fd;
3553 }
3554
3555 /*
3556 * Allocate an anonymous fd, this is what constitutes the application
3557 * visible backing of an io_uring instance. The application mmaps this
3558 * fd to gain access to the SQ/CQ ring details.
3559 */
io_uring_get_file(struct io_ring_ctx * ctx)3560 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3561 {
3562 /* Create a new inode so that the LSM can block the creation. */
3563 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3564 O_RDWR | O_CLOEXEC, NULL);
3565 }
3566
io_uring_sanitise_params(struct io_uring_params * p)3567 static int io_uring_sanitise_params(struct io_uring_params *p)
3568 {
3569 unsigned flags = p->flags;
3570
3571 /* There is no way to mmap rings without a real fd */
3572 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3573 !(flags & IORING_SETUP_NO_MMAP))
3574 return -EINVAL;
3575
3576 if (flags & IORING_SETUP_SQPOLL) {
3577 /* IPI related flags don't make sense with SQPOLL */
3578 if (flags & (IORING_SETUP_COOP_TASKRUN |
3579 IORING_SETUP_TASKRUN_FLAG |
3580 IORING_SETUP_DEFER_TASKRUN))
3581 return -EINVAL;
3582 }
3583
3584 if (flags & IORING_SETUP_TASKRUN_FLAG) {
3585 if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3586 IORING_SETUP_DEFER_TASKRUN)))
3587 return -EINVAL;
3588 }
3589
3590 /* HYBRID_IOPOLL only valid with IOPOLL */
3591 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3592 return -EINVAL;
3593
3594 /*
3595 * For DEFER_TASKRUN we require the completion task to be the same as
3596 * the submission task. This implies that there is only one submitter.
3597 */
3598 if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3599 !(flags & IORING_SETUP_SINGLE_ISSUER))
3600 return -EINVAL;
3601
3602 return 0;
3603 }
3604
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3605 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3606 {
3607 if (!entries)
3608 return -EINVAL;
3609 if (entries > IORING_MAX_ENTRIES) {
3610 if (!(p->flags & IORING_SETUP_CLAMP))
3611 return -EINVAL;
3612 entries = IORING_MAX_ENTRIES;
3613 }
3614
3615 /*
3616 * Use twice as many entries for the CQ ring. It's possible for the
3617 * application to drive a higher depth than the size of the SQ ring,
3618 * since the sqes are only used at submission time. This allows for
3619 * some flexibility in overcommitting a bit. If the application has
3620 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3621 * of CQ ring entries manually.
3622 */
3623 p->sq_entries = roundup_pow_of_two(entries);
3624 if (p->flags & IORING_SETUP_CQSIZE) {
3625 /*
3626 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3627 * to a power-of-two, if it isn't already. We do NOT impose
3628 * any cq vs sq ring sizing.
3629 */
3630 if (!p->cq_entries)
3631 return -EINVAL;
3632 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3633 if (!(p->flags & IORING_SETUP_CLAMP))
3634 return -EINVAL;
3635 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3636 }
3637 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3638 if (p->cq_entries < p->sq_entries)
3639 return -EINVAL;
3640 } else {
3641 p->cq_entries = 2 * p->sq_entries;
3642 }
3643
3644 p->sq_off.head = offsetof(struct io_rings, sq.head);
3645 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3646 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3647 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3648 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3649 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3650 p->sq_off.resv1 = 0;
3651 if (!(p->flags & IORING_SETUP_NO_MMAP))
3652 p->sq_off.user_addr = 0;
3653
3654 p->cq_off.head = offsetof(struct io_rings, cq.head);
3655 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3656 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3657 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3658 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3659 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3660 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3661 p->cq_off.resv1 = 0;
3662 if (!(p->flags & IORING_SETUP_NO_MMAP))
3663 p->cq_off.user_addr = 0;
3664
3665 return 0;
3666 }
3667
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3668 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3669 struct io_uring_params __user *params)
3670 {
3671 struct io_ring_ctx *ctx;
3672 struct io_uring_task *tctx;
3673 struct file *file;
3674 int ret;
3675
3676 ret = io_uring_sanitise_params(p);
3677 if (ret)
3678 return ret;
3679
3680 ret = io_uring_fill_params(entries, p);
3681 if (unlikely(ret))
3682 return ret;
3683
3684 ctx = io_ring_ctx_alloc(p);
3685 if (!ctx)
3686 return -ENOMEM;
3687
3688 ctx->clockid = CLOCK_MONOTONIC;
3689 ctx->clock_offset = 0;
3690
3691 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3692 static_branch_inc(&io_key_has_sqarray);
3693
3694 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3695 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3696 !(ctx->flags & IORING_SETUP_SQPOLL))
3697 ctx->task_complete = true;
3698
3699 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3700 ctx->lockless_cq = true;
3701
3702 /*
3703 * lazy poll_wq activation relies on ->task_complete for synchronisation
3704 * purposes, see io_activate_pollwq()
3705 */
3706 if (!ctx->task_complete)
3707 ctx->poll_activated = true;
3708
3709 /*
3710 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3711 * space applications don't need to do io completion events
3712 * polling again, they can rely on io_sq_thread to do polling
3713 * work, which can reduce cpu usage and uring_lock contention.
3714 */
3715 if (ctx->flags & IORING_SETUP_IOPOLL &&
3716 !(ctx->flags & IORING_SETUP_SQPOLL))
3717 ctx->syscall_iopoll = 1;
3718
3719 ctx->compat = in_compat_syscall();
3720 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3721 ctx->user = get_uid(current_user());
3722
3723 /*
3724 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3725 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3726 */
3727 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3728 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3729 else
3730 ctx->notify_method = TWA_SIGNAL;
3731
3732 /*
3733 * This is just grabbed for accounting purposes. When a process exits,
3734 * the mm is exited and dropped before the files, hence we need to hang
3735 * on to this mm purely for the purposes of being able to unaccount
3736 * memory (locked/pinned vm). It's not used for anything else.
3737 */
3738 mmgrab(current->mm);
3739 ctx->mm_account = current->mm;
3740
3741 ret = io_allocate_scq_urings(ctx, p);
3742 if (ret)
3743 goto err;
3744
3745 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3746 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3747
3748 ret = io_sq_offload_create(ctx, p);
3749 if (ret)
3750 goto err;
3751
3752 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3753 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3754 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3755 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3756 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3757 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3758 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3759 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3760 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3761
3762 if (copy_to_user(params, p, sizeof(*p))) {
3763 ret = -EFAULT;
3764 goto err;
3765 }
3766
3767 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3768 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3769 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3770
3771 file = io_uring_get_file(ctx);
3772 if (IS_ERR(file)) {
3773 ret = PTR_ERR(file);
3774 goto err;
3775 }
3776
3777 ret = __io_uring_add_tctx_node(ctx);
3778 if (ret)
3779 goto err_fput;
3780 tctx = current->io_uring;
3781
3782 /*
3783 * Install ring fd as the very last thing, so we don't risk someone
3784 * having closed it before we finish setup
3785 */
3786 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3787 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3788 else
3789 ret = io_uring_install_fd(file);
3790 if (ret < 0)
3791 goto err_fput;
3792
3793 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3794 return ret;
3795 err:
3796 io_ring_ctx_wait_and_kill(ctx);
3797 return ret;
3798 err_fput:
3799 fput(file);
3800 return ret;
3801 }
3802
3803 /*
3804 * Sets up an aio uring context, and returns the fd. Applications asks for a
3805 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3806 * params structure passed in.
3807 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3808 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3809 {
3810 struct io_uring_params p;
3811 int i;
3812
3813 if (copy_from_user(&p, params, sizeof(p)))
3814 return -EFAULT;
3815 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3816 if (p.resv[i])
3817 return -EINVAL;
3818 }
3819
3820 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3821 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3822 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3823 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3824 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3825 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3826 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3827 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3828 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3829 return -EINVAL;
3830
3831 return io_uring_create(entries, &p, params);
3832 }
3833
io_uring_allowed(void)3834 static inline int io_uring_allowed(void)
3835 {
3836 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3837 kgid_t io_uring_group;
3838
3839 if (disabled == 2)
3840 return -EPERM;
3841
3842 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3843 goto allowed_lsm;
3844
3845 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3846 if (!gid_valid(io_uring_group))
3847 return -EPERM;
3848
3849 if (!in_group_p(io_uring_group))
3850 return -EPERM;
3851
3852 allowed_lsm:
3853 return security_uring_allowed();
3854 }
3855
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3856 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3857 struct io_uring_params __user *, params)
3858 {
3859 int ret;
3860
3861 ret = io_uring_allowed();
3862 if (ret)
3863 return ret;
3864
3865 return io_uring_setup(entries, params);
3866 }
3867
io_uring_init(void)3868 static int __init io_uring_init(void)
3869 {
3870 struct kmem_cache_args kmem_args = {
3871 .useroffset = offsetof(struct io_kiocb, cmd.data),
3872 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3873 .freeptr_offset = offsetof(struct io_kiocb, work),
3874 .use_freeptr_offset = true,
3875 };
3876
3877 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3878 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3879 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3880 } while (0)
3881
3882 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3883 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3884 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3885 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3886 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3887 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3888 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3889 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3890 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3891 BUILD_BUG_SQE_ELEM(8, __u64, off);
3892 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3893 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3894 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3895 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3896 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3897 BUILD_BUG_SQE_ELEM(24, __u32, len);
3898 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3899 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3900 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3901 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3902 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3903 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3904 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3905 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3906 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3907 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3908 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3909 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3910 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3911 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3912 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3913 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3914 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3915 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3916 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3917 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3918 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3919 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3920 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3921 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3922 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3923 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3924 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3925 BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
3926 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
3927 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3928 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3929 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3930 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3931 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3932 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3933
3934 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3935 sizeof(struct io_uring_rsrc_update));
3936 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3937 sizeof(struct io_uring_rsrc_update2));
3938
3939 /* ->buf_index is u16 */
3940 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3941 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3942 offsetof(struct io_uring_buf_ring, tail));
3943
3944 /* should fit into one byte */
3945 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3946 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3947 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3948
3949 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3950
3951 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3952
3953 /* top 8bits are for internal use */
3954 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3955
3956 io_uring_optable_init();
3957
3958 /* imu->dir is u8 */
3959 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3960
3961 /*
3962 * Allow user copy in the per-command field, which starts after the
3963 * file in io_kiocb and until the opcode field. The openat2 handling
3964 * requires copying in user memory into the io_kiocb object in that
3965 * range, and HARDENED_USERCOPY will complain if we haven't
3966 * correctly annotated this range.
3967 */
3968 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3969 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3970 SLAB_TYPESAFE_BY_RCU);
3971
3972 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3973 BUG_ON(!iou_wq);
3974
3975 #ifdef CONFIG_SYSCTL
3976 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3977 #endif
3978
3979 return 0;
3980 };
3981 __initcall(io_uring_init);
3982