1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA) 118 119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 120 REQ_F_REISSUE | REQ_F_POLLED | \ 121 IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 137 /* 138 * No waiters. It's larger than any valid value of the tw counter 139 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 140 */ 141 #define IO_CQ_WAKE_INIT (-1U) 142 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 143 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct io_uring_task *tctx, 147 bool cancel_all, 148 bool is_sqpoll_thread); 149 150 static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags); 151 static void __io_req_caches_free(struct io_ring_ctx *ctx); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC); 363 #ifdef CONFIG_FUTEX 364 INIT_HLIST_HEAD(&ctx->futex_list); 365 #endif 366 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 367 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 368 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 369 io_napi_init(ctx); 370 mutex_init(&ctx->mmap_lock); 371 372 return ctx; 373 374 free_ref: 375 percpu_ref_exit(&ctx->refs); 376 err: 377 io_free_alloc_caches(ctx); 378 kvfree(ctx->cancel_table.hbs); 379 xa_destroy(&ctx->io_bl_xa); 380 kfree(ctx); 381 return NULL; 382 } 383 384 static void io_clean_op(struct io_kiocb *req) 385 { 386 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 387 io_kbuf_drop_legacy(req); 388 389 if (req->flags & REQ_F_NEED_CLEANUP) { 390 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 391 392 if (def->cleanup) 393 def->cleanup(req); 394 } 395 if (req->flags & REQ_F_INFLIGHT) 396 atomic_dec(&req->tctx->inflight_tracked); 397 if (req->flags & REQ_F_CREDS) 398 put_cred(req->creds); 399 if (req->flags & REQ_F_ASYNC_DATA) { 400 kfree(req->async_data); 401 req->async_data = NULL; 402 } 403 req->flags &= ~IO_REQ_CLEAN_FLAGS; 404 } 405 406 /* 407 * Mark the request as inflight, so that file cancelation will find it. 408 * Can be used if the file is an io_uring instance, or if the request itself 409 * relies on ->mm being alive for the duration of the request. 410 */ 411 inline void io_req_track_inflight(struct io_kiocb *req) 412 { 413 if (!(req->flags & REQ_F_INFLIGHT)) { 414 req->flags |= REQ_F_INFLIGHT; 415 atomic_inc(&req->tctx->inflight_tracked); 416 } 417 } 418 419 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 420 { 421 if (WARN_ON_ONCE(!req->link)) 422 return NULL; 423 424 req->flags &= ~REQ_F_ARM_LTIMEOUT; 425 req->flags |= REQ_F_LINK_TIMEOUT; 426 427 /* linked timeouts should have two refs once prep'ed */ 428 io_req_set_refcount(req); 429 __io_req_set_refcount(req->link, 2); 430 return req->link; 431 } 432 433 static void io_prep_async_work(struct io_kiocb *req) 434 { 435 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 436 struct io_ring_ctx *ctx = req->ctx; 437 438 if (!(req->flags & REQ_F_CREDS)) { 439 req->flags |= REQ_F_CREDS; 440 req->creds = get_current_cred(); 441 } 442 443 req->work.list.next = NULL; 444 atomic_set(&req->work.flags, 0); 445 if (req->flags & REQ_F_FORCE_ASYNC) 446 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 447 448 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 449 req->flags |= io_file_get_flags(req->file); 450 451 if (req->file && (req->flags & REQ_F_ISREG)) { 452 bool should_hash = def->hash_reg_file; 453 454 /* don't serialize this request if the fs doesn't need it */ 455 if (should_hash && (req->file->f_flags & O_DIRECT) && 456 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 457 should_hash = false; 458 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 459 io_wq_hash_work(&req->work, file_inode(req->file)); 460 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 461 if (def->unbound_nonreg_file) 462 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 463 } 464 } 465 466 static void io_prep_async_link(struct io_kiocb *req) 467 { 468 struct io_kiocb *cur; 469 470 if (req->flags & REQ_F_LINK_TIMEOUT) { 471 struct io_ring_ctx *ctx = req->ctx; 472 473 raw_spin_lock_irq(&ctx->timeout_lock); 474 io_for_each_link(cur, req) 475 io_prep_async_work(cur); 476 raw_spin_unlock_irq(&ctx->timeout_lock); 477 } else { 478 io_for_each_link(cur, req) 479 io_prep_async_work(cur); 480 } 481 } 482 483 static void io_queue_iowq(struct io_kiocb *req) 484 { 485 struct io_uring_task *tctx = req->tctx; 486 487 BUG_ON(!tctx); 488 489 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 490 io_req_task_queue_fail(req, -ECANCELED); 491 return; 492 } 493 494 /* init ->work of the whole link before punting */ 495 io_prep_async_link(req); 496 497 /* 498 * Not expected to happen, but if we do have a bug where this _can_ 499 * happen, catch it here and ensure the request is marked as 500 * canceled. That will make io-wq go through the usual work cancel 501 * procedure rather than attempt to run this request (or create a new 502 * worker for it). 503 */ 504 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 505 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 506 507 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 508 io_wq_enqueue(tctx->io_wq, &req->work); 509 } 510 511 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 512 { 513 io_queue_iowq(req); 514 } 515 516 void io_req_queue_iowq(struct io_kiocb *req) 517 { 518 req->io_task_work.func = io_req_queue_iowq_tw; 519 io_req_task_work_add(req); 520 } 521 522 static unsigned io_linked_nr(struct io_kiocb *req) 523 { 524 struct io_kiocb *tmp; 525 unsigned nr = 0; 526 527 io_for_each_link(tmp, req) 528 nr++; 529 return nr; 530 } 531 532 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 533 { 534 bool drain_seen = false, first = true; 535 536 lockdep_assert_held(&ctx->uring_lock); 537 __io_req_caches_free(ctx); 538 539 while (!list_empty(&ctx->defer_list)) { 540 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 541 struct io_defer_entry, list); 542 543 drain_seen |= de->req->flags & REQ_F_IO_DRAIN; 544 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained) 545 return; 546 547 list_del_init(&de->list); 548 ctx->nr_drained -= io_linked_nr(de->req); 549 io_req_task_queue(de->req); 550 kfree(de); 551 first = false; 552 } 553 } 554 555 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 556 { 557 if (ctx->poll_activated) 558 io_poll_wq_wake(ctx); 559 if (ctx->off_timeout_used) 560 io_flush_timeouts(ctx); 561 if (ctx->has_evfd) 562 io_eventfd_signal(ctx, true); 563 } 564 565 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 566 { 567 if (!ctx->lockless_cq) 568 spin_lock(&ctx->completion_lock); 569 } 570 571 static inline void io_cq_lock(struct io_ring_ctx *ctx) 572 __acquires(ctx->completion_lock) 573 { 574 spin_lock(&ctx->completion_lock); 575 } 576 577 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 578 { 579 io_commit_cqring(ctx); 580 if (!ctx->task_complete) { 581 if (!ctx->lockless_cq) 582 spin_unlock(&ctx->completion_lock); 583 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 584 if (!ctx->syscall_iopoll) 585 io_cqring_wake(ctx); 586 } 587 io_commit_cqring_flush(ctx); 588 } 589 590 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 591 __releases(ctx->completion_lock) 592 { 593 io_commit_cqring(ctx); 594 spin_unlock(&ctx->completion_lock); 595 io_cqring_wake(ctx); 596 io_commit_cqring_flush(ctx); 597 } 598 599 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 600 { 601 size_t cqe_size = sizeof(struct io_uring_cqe); 602 603 lockdep_assert_held(&ctx->uring_lock); 604 605 /* don't abort if we're dying, entries must get freed */ 606 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 607 return; 608 609 if (ctx->flags & IORING_SETUP_CQE32) 610 cqe_size <<= 1; 611 612 io_cq_lock(ctx); 613 while (!list_empty(&ctx->cq_overflow_list)) { 614 struct io_uring_cqe *cqe; 615 struct io_overflow_cqe *ocqe; 616 617 ocqe = list_first_entry(&ctx->cq_overflow_list, 618 struct io_overflow_cqe, list); 619 620 if (!dying) { 621 if (!io_get_cqe_overflow(ctx, &cqe, true)) 622 break; 623 memcpy(cqe, &ocqe->cqe, cqe_size); 624 } 625 list_del(&ocqe->list); 626 kfree(ocqe); 627 628 /* 629 * For silly syzbot cases that deliberately overflow by huge 630 * amounts, check if we need to resched and drop and 631 * reacquire the locks if so. Nothing real would ever hit this. 632 * Ideally we'd have a non-posting unlock for this, but hard 633 * to care for a non-real case. 634 */ 635 if (need_resched()) { 636 ctx->cqe_sentinel = ctx->cqe_cached; 637 io_cq_unlock_post(ctx); 638 mutex_unlock(&ctx->uring_lock); 639 cond_resched(); 640 mutex_lock(&ctx->uring_lock); 641 io_cq_lock(ctx); 642 } 643 } 644 645 if (list_empty(&ctx->cq_overflow_list)) { 646 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 647 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 648 } 649 io_cq_unlock_post(ctx); 650 } 651 652 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 653 { 654 if (ctx->rings) 655 __io_cqring_overflow_flush(ctx, true); 656 } 657 658 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 659 { 660 mutex_lock(&ctx->uring_lock); 661 __io_cqring_overflow_flush(ctx, false); 662 mutex_unlock(&ctx->uring_lock); 663 } 664 665 /* must to be called somewhat shortly after putting a request */ 666 static inline void io_put_task(struct io_kiocb *req) 667 { 668 struct io_uring_task *tctx = req->tctx; 669 670 if (likely(tctx->task == current)) { 671 tctx->cached_refs++; 672 } else { 673 percpu_counter_sub(&tctx->inflight, 1); 674 if (unlikely(atomic_read(&tctx->in_cancel))) 675 wake_up(&tctx->wait); 676 put_task_struct(tctx->task); 677 } 678 } 679 680 void io_task_refs_refill(struct io_uring_task *tctx) 681 { 682 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 683 684 percpu_counter_add(&tctx->inflight, refill); 685 refcount_add(refill, ¤t->usage); 686 tctx->cached_refs += refill; 687 } 688 689 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 690 { 691 struct io_uring_task *tctx = task->io_uring; 692 unsigned int refs = tctx->cached_refs; 693 694 if (refs) { 695 tctx->cached_refs = 0; 696 percpu_counter_sub(&tctx->inflight, refs); 697 put_task_struct_many(task, refs); 698 } 699 } 700 701 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx, 702 struct io_overflow_cqe *ocqe) 703 { 704 lockdep_assert_held(&ctx->completion_lock); 705 706 if (!ocqe) { 707 struct io_rings *r = ctx->rings; 708 709 /* 710 * If we're in ring overflow flush mode, or in task cancel mode, 711 * or cannot allocate an overflow entry, then we need to drop it 712 * on the floor. 713 */ 714 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 715 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 716 return false; 717 } 718 if (list_empty(&ctx->cq_overflow_list)) { 719 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 720 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 721 722 } 723 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 724 return true; 725 } 726 727 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx, 728 struct io_cqe *cqe, 729 struct io_big_cqe *big_cqe, gfp_t gfp) 730 { 731 struct io_overflow_cqe *ocqe; 732 size_t ocq_size = sizeof(struct io_overflow_cqe); 733 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 734 735 if (is_cqe32) 736 ocq_size += sizeof(struct io_uring_cqe); 737 738 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT); 739 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe); 740 if (ocqe) { 741 ocqe->cqe.user_data = cqe->user_data; 742 ocqe->cqe.res = cqe->res; 743 ocqe->cqe.flags = cqe->flags; 744 if (is_cqe32 && big_cqe) { 745 ocqe->cqe.big_cqe[0] = big_cqe->extra1; 746 ocqe->cqe.big_cqe[1] = big_cqe->extra2; 747 } 748 } 749 if (big_cqe) 750 big_cqe->extra1 = big_cqe->extra2 = 0; 751 return ocqe; 752 } 753 754 /* 755 * writes to the cq entry need to come after reading head; the 756 * control dependency is enough as we're using WRITE_ONCE to 757 * fill the cq entry 758 */ 759 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 760 { 761 struct io_rings *rings = ctx->rings; 762 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 763 unsigned int free, queued, len; 764 765 /* 766 * Posting into the CQ when there are pending overflowed CQEs may break 767 * ordering guarantees, which will affect links, F_MORE users and more. 768 * Force overflow the completion. 769 */ 770 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 771 return false; 772 773 /* userspace may cheat modifying the tail, be safe and do min */ 774 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 775 free = ctx->cq_entries - queued; 776 /* we need a contiguous range, limit based on the current array offset */ 777 len = min(free, ctx->cq_entries - off); 778 if (!len) 779 return false; 780 781 if (ctx->flags & IORING_SETUP_CQE32) { 782 off <<= 1; 783 len <<= 1; 784 } 785 786 ctx->cqe_cached = &rings->cqes[off]; 787 ctx->cqe_sentinel = ctx->cqe_cached + len; 788 return true; 789 } 790 791 static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx, 792 struct io_uring_cqe src_cqe[2]) 793 { 794 struct io_uring_cqe *cqe; 795 796 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_CQE32))) 797 return false; 798 if (unlikely(!io_get_cqe(ctx, &cqe))) 799 return false; 800 801 memcpy(cqe, src_cqe, 2 * sizeof(*cqe)); 802 trace_io_uring_complete(ctx, NULL, cqe); 803 return true; 804 } 805 806 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 807 u32 cflags) 808 { 809 struct io_uring_cqe *cqe; 810 811 if (likely(io_get_cqe(ctx, &cqe))) { 812 WRITE_ONCE(cqe->user_data, user_data); 813 WRITE_ONCE(cqe->res, res); 814 WRITE_ONCE(cqe->flags, cflags); 815 816 if (ctx->flags & IORING_SETUP_CQE32) { 817 WRITE_ONCE(cqe->big_cqe[0], 0); 818 WRITE_ONCE(cqe->big_cqe[1], 0); 819 } 820 821 trace_io_uring_complete(ctx, NULL, cqe); 822 return true; 823 } 824 return false; 825 } 826 827 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags) 828 { 829 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags }; 830 } 831 832 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe, 833 struct io_big_cqe *big_cqe) 834 { 835 struct io_overflow_cqe *ocqe; 836 837 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL); 838 spin_lock(&ctx->completion_lock); 839 io_cqring_add_overflow(ctx, ocqe); 840 spin_unlock(&ctx->completion_lock); 841 } 842 843 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx, 844 struct io_cqe *cqe, 845 struct io_big_cqe *big_cqe) 846 { 847 struct io_overflow_cqe *ocqe; 848 849 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC); 850 return io_cqring_add_overflow(ctx, ocqe); 851 } 852 853 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 854 { 855 bool filled; 856 857 io_cq_lock(ctx); 858 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 859 if (unlikely(!filled)) { 860 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 861 862 filled = io_cqe_overflow_locked(ctx, &cqe, NULL); 863 } 864 io_cq_unlock_post(ctx); 865 return filled; 866 } 867 868 /* 869 * Must be called from inline task_work so we now a flush will happen later, 870 * and obviously with ctx->uring_lock held (tw always has that). 871 */ 872 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 873 { 874 lockdep_assert_held(&ctx->uring_lock); 875 lockdep_assert(ctx->lockless_cq); 876 877 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 878 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 879 880 io_cqe_overflow(ctx, &cqe, NULL); 881 } 882 ctx->submit_state.cq_flush = true; 883 } 884 885 /* 886 * A helper for multishot requests posting additional CQEs. 887 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 888 */ 889 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 890 { 891 struct io_ring_ctx *ctx = req->ctx; 892 bool posted; 893 894 /* 895 * If multishot has already posted deferred completions, ensure that 896 * those are flushed first before posting this one. If not, CQEs 897 * could get reordered. 898 */ 899 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 900 __io_submit_flush_completions(ctx); 901 902 lockdep_assert(!io_wq_current_is_worker()); 903 lockdep_assert_held(&ctx->uring_lock); 904 905 if (!ctx->lockless_cq) { 906 spin_lock(&ctx->completion_lock); 907 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 908 spin_unlock(&ctx->completion_lock); 909 } else { 910 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 911 } 912 913 ctx->submit_state.cq_flush = true; 914 return posted; 915 } 916 917 /* 918 * A helper for multishot requests posting additional CQEs. 919 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 920 */ 921 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2]) 922 { 923 struct io_ring_ctx *ctx = req->ctx; 924 bool posted; 925 926 lockdep_assert(!io_wq_current_is_worker()); 927 lockdep_assert_held(&ctx->uring_lock); 928 929 cqe[0].user_data = req->cqe.user_data; 930 if (!ctx->lockless_cq) { 931 spin_lock(&ctx->completion_lock); 932 posted = io_fill_cqe_aux32(ctx, cqe); 933 spin_unlock(&ctx->completion_lock); 934 } else { 935 posted = io_fill_cqe_aux32(ctx, cqe); 936 } 937 938 ctx->submit_state.cq_flush = true; 939 return posted; 940 } 941 942 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 943 { 944 struct io_ring_ctx *ctx = req->ctx; 945 bool completed = true; 946 947 /* 948 * All execution paths but io-wq use the deferred completions by 949 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 950 */ 951 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 952 return; 953 954 /* 955 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 956 * the submitter task context, IOPOLL protects with uring_lock. 957 */ 958 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 959 defer_complete: 960 req->io_task_work.func = io_req_task_complete; 961 io_req_task_work_add(req); 962 return; 963 } 964 965 io_cq_lock(ctx); 966 if (!(req->flags & REQ_F_CQE_SKIP)) 967 completed = io_fill_cqe_req(ctx, req); 968 io_cq_unlock_post(ctx); 969 970 if (!completed) 971 goto defer_complete; 972 973 /* 974 * We don't free the request here because we know it's called from 975 * io-wq only, which holds a reference, so it cannot be the last put. 976 */ 977 req_ref_put(req); 978 } 979 980 void io_req_defer_failed(struct io_kiocb *req, s32 res) 981 __must_hold(&ctx->uring_lock) 982 { 983 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 984 985 lockdep_assert_held(&req->ctx->uring_lock); 986 987 req_set_fail(req); 988 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 989 if (def->fail) 990 def->fail(req); 991 io_req_complete_defer(req); 992 } 993 994 /* 995 * A request might get retired back into the request caches even before opcode 996 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 997 * Because of that, io_alloc_req() should be called only under ->uring_lock 998 * and with extra caution to not get a request that is still worked on. 999 */ 1000 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1001 __must_hold(&ctx->uring_lock) 1002 { 1003 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO; 1004 void *reqs[IO_REQ_ALLOC_BATCH]; 1005 int ret; 1006 1007 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1008 1009 /* 1010 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1011 * retry single alloc to be on the safe side. 1012 */ 1013 if (unlikely(ret <= 0)) { 1014 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1015 if (!reqs[0]) 1016 return false; 1017 ret = 1; 1018 } 1019 1020 percpu_ref_get_many(&ctx->refs, ret); 1021 ctx->nr_req_allocated += ret; 1022 1023 while (ret--) { 1024 struct io_kiocb *req = reqs[ret]; 1025 1026 io_req_add_to_cache(req, ctx); 1027 } 1028 return true; 1029 } 1030 1031 __cold void io_free_req(struct io_kiocb *req) 1032 { 1033 /* refs were already put, restore them for io_req_task_complete() */ 1034 req->flags &= ~REQ_F_REFCOUNT; 1035 /* we only want to free it, don't post CQEs */ 1036 req->flags |= REQ_F_CQE_SKIP; 1037 req->io_task_work.func = io_req_task_complete; 1038 io_req_task_work_add(req); 1039 } 1040 1041 static void __io_req_find_next_prep(struct io_kiocb *req) 1042 { 1043 struct io_ring_ctx *ctx = req->ctx; 1044 1045 spin_lock(&ctx->completion_lock); 1046 io_disarm_next(req); 1047 spin_unlock(&ctx->completion_lock); 1048 } 1049 1050 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1051 { 1052 struct io_kiocb *nxt; 1053 1054 /* 1055 * If LINK is set, we have dependent requests in this chain. If we 1056 * didn't fail this request, queue the first one up, moving any other 1057 * dependencies to the next request. In case of failure, fail the rest 1058 * of the chain. 1059 */ 1060 if (unlikely(req->flags & IO_DISARM_MASK)) 1061 __io_req_find_next_prep(req); 1062 nxt = req->link; 1063 req->link = NULL; 1064 return nxt; 1065 } 1066 1067 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1068 { 1069 if (!ctx) 1070 return; 1071 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1072 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1073 1074 io_submit_flush_completions(ctx); 1075 mutex_unlock(&ctx->uring_lock); 1076 percpu_ref_put(&ctx->refs); 1077 } 1078 1079 /* 1080 * Run queued task_work, returning the number of entries processed in *count. 1081 * If more entries than max_entries are available, stop processing once this 1082 * is reached and return the rest of the list. 1083 */ 1084 struct llist_node *io_handle_tw_list(struct llist_node *node, 1085 unsigned int *count, 1086 unsigned int max_entries) 1087 { 1088 struct io_ring_ctx *ctx = NULL; 1089 struct io_tw_state ts = { }; 1090 1091 do { 1092 struct llist_node *next = node->next; 1093 struct io_kiocb *req = container_of(node, struct io_kiocb, 1094 io_task_work.node); 1095 1096 if (req->ctx != ctx) { 1097 ctx_flush_and_put(ctx, ts); 1098 ctx = req->ctx; 1099 mutex_lock(&ctx->uring_lock); 1100 percpu_ref_get(&ctx->refs); 1101 } 1102 INDIRECT_CALL_2(req->io_task_work.func, 1103 io_poll_task_func, io_req_rw_complete, 1104 req, ts); 1105 node = next; 1106 (*count)++; 1107 if (unlikely(need_resched())) { 1108 ctx_flush_and_put(ctx, ts); 1109 ctx = NULL; 1110 cond_resched(); 1111 } 1112 } while (node && *count < max_entries); 1113 1114 ctx_flush_and_put(ctx, ts); 1115 return node; 1116 } 1117 1118 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1119 { 1120 struct io_ring_ctx *last_ctx = NULL; 1121 struct io_kiocb *req; 1122 1123 while (node) { 1124 req = container_of(node, struct io_kiocb, io_task_work.node); 1125 node = node->next; 1126 if (last_ctx != req->ctx) { 1127 if (last_ctx) { 1128 if (sync) 1129 flush_delayed_work(&last_ctx->fallback_work); 1130 percpu_ref_put(&last_ctx->refs); 1131 } 1132 last_ctx = req->ctx; 1133 percpu_ref_get(&last_ctx->refs); 1134 } 1135 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1136 schedule_delayed_work(&last_ctx->fallback_work, 1); 1137 } 1138 1139 if (last_ctx) { 1140 if (sync) 1141 flush_delayed_work(&last_ctx->fallback_work); 1142 percpu_ref_put(&last_ctx->refs); 1143 } 1144 } 1145 1146 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1147 { 1148 struct llist_node *node = llist_del_all(&tctx->task_list); 1149 1150 __io_fallback_tw(node, sync); 1151 } 1152 1153 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1154 unsigned int max_entries, 1155 unsigned int *count) 1156 { 1157 struct llist_node *node; 1158 1159 if (unlikely(current->flags & PF_EXITING)) { 1160 io_fallback_tw(tctx, true); 1161 return NULL; 1162 } 1163 1164 node = llist_del_all(&tctx->task_list); 1165 if (node) { 1166 node = llist_reverse_order(node); 1167 node = io_handle_tw_list(node, count, max_entries); 1168 } 1169 1170 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1171 if (unlikely(atomic_read(&tctx->in_cancel))) 1172 io_uring_drop_tctx_refs(current); 1173 1174 trace_io_uring_task_work_run(tctx, *count); 1175 return node; 1176 } 1177 1178 void tctx_task_work(struct callback_head *cb) 1179 { 1180 struct io_uring_task *tctx; 1181 struct llist_node *ret; 1182 unsigned int count = 0; 1183 1184 tctx = container_of(cb, struct io_uring_task, task_work); 1185 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1186 /* can't happen */ 1187 WARN_ON_ONCE(ret); 1188 } 1189 1190 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1191 { 1192 struct io_ring_ctx *ctx = req->ctx; 1193 unsigned nr_wait, nr_tw, nr_tw_prev; 1194 struct llist_node *head; 1195 1196 /* See comment above IO_CQ_WAKE_INIT */ 1197 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1198 1199 /* 1200 * We don't know how many reuqests is there in the link and whether 1201 * they can even be queued lazily, fall back to non-lazy. 1202 */ 1203 if (req->flags & IO_REQ_LINK_FLAGS) 1204 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1205 1206 guard(rcu)(); 1207 1208 head = READ_ONCE(ctx->work_llist.first); 1209 do { 1210 nr_tw_prev = 0; 1211 if (head) { 1212 struct io_kiocb *first_req = container_of(head, 1213 struct io_kiocb, 1214 io_task_work.node); 1215 /* 1216 * Might be executed at any moment, rely on 1217 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1218 */ 1219 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1220 } 1221 1222 /* 1223 * Theoretically, it can overflow, but that's fine as one of 1224 * previous adds should've tried to wake the task. 1225 */ 1226 nr_tw = nr_tw_prev + 1; 1227 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1228 nr_tw = IO_CQ_WAKE_FORCE; 1229 1230 req->nr_tw = nr_tw; 1231 req->io_task_work.node.next = head; 1232 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1233 &req->io_task_work.node)); 1234 1235 /* 1236 * cmpxchg implies a full barrier, which pairs with the barrier 1237 * in set_current_state() on the io_cqring_wait() side. It's used 1238 * to ensure that either we see updated ->cq_wait_nr, or waiters 1239 * going to sleep will observe the work added to the list, which 1240 * is similar to the wait/wawke task state sync. 1241 */ 1242 1243 if (!head) { 1244 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1245 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1246 if (ctx->has_evfd) 1247 io_eventfd_signal(ctx, false); 1248 } 1249 1250 nr_wait = atomic_read(&ctx->cq_wait_nr); 1251 /* not enough or no one is waiting */ 1252 if (nr_tw < nr_wait) 1253 return; 1254 /* the previous add has already woken it up */ 1255 if (nr_tw_prev >= nr_wait) 1256 return; 1257 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1258 } 1259 1260 static void io_req_normal_work_add(struct io_kiocb *req) 1261 { 1262 struct io_uring_task *tctx = req->tctx; 1263 struct io_ring_ctx *ctx = req->ctx; 1264 1265 /* task_work already pending, we're done */ 1266 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1267 return; 1268 1269 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1270 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1271 1272 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1273 if (ctx->flags & IORING_SETUP_SQPOLL) { 1274 __set_notify_signal(tctx->task); 1275 return; 1276 } 1277 1278 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1279 return; 1280 1281 io_fallback_tw(tctx, false); 1282 } 1283 1284 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1285 { 1286 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1287 io_req_local_work_add(req, flags); 1288 else 1289 io_req_normal_work_add(req); 1290 } 1291 1292 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1293 { 1294 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1295 return; 1296 __io_req_task_work_add(req, flags); 1297 } 1298 1299 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1300 { 1301 struct llist_node *node = llist_del_all(&ctx->work_llist); 1302 1303 __io_fallback_tw(node, false); 1304 node = llist_del_all(&ctx->retry_llist); 1305 __io_fallback_tw(node, false); 1306 } 1307 1308 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1309 int min_events) 1310 { 1311 if (!io_local_work_pending(ctx)) 1312 return false; 1313 if (events < min_events) 1314 return true; 1315 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1316 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1317 return false; 1318 } 1319 1320 static int __io_run_local_work_loop(struct llist_node **node, 1321 io_tw_token_t tw, 1322 int events) 1323 { 1324 int ret = 0; 1325 1326 while (*node) { 1327 struct llist_node *next = (*node)->next; 1328 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1329 io_task_work.node); 1330 INDIRECT_CALL_2(req->io_task_work.func, 1331 io_poll_task_func, io_req_rw_complete, 1332 req, tw); 1333 *node = next; 1334 if (++ret >= events) 1335 break; 1336 } 1337 1338 return ret; 1339 } 1340 1341 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1342 int min_events, int max_events) 1343 { 1344 struct llist_node *node; 1345 unsigned int loops = 0; 1346 int ret = 0; 1347 1348 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1349 return -EEXIST; 1350 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1351 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1352 again: 1353 min_events -= ret; 1354 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1355 if (ctx->retry_llist.first) 1356 goto retry_done; 1357 1358 /* 1359 * llists are in reverse order, flip it back the right way before 1360 * running the pending items. 1361 */ 1362 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1363 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1364 ctx->retry_llist.first = node; 1365 loops++; 1366 1367 if (io_run_local_work_continue(ctx, ret, min_events)) 1368 goto again; 1369 retry_done: 1370 io_submit_flush_completions(ctx); 1371 if (io_run_local_work_continue(ctx, ret, min_events)) 1372 goto again; 1373 1374 trace_io_uring_local_work_run(ctx, ret, loops); 1375 return ret; 1376 } 1377 1378 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1379 int min_events) 1380 { 1381 struct io_tw_state ts = {}; 1382 1383 if (!io_local_work_pending(ctx)) 1384 return 0; 1385 return __io_run_local_work(ctx, ts, min_events, 1386 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1387 } 1388 1389 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1390 int max_events) 1391 { 1392 struct io_tw_state ts = {}; 1393 int ret; 1394 1395 mutex_lock(&ctx->uring_lock); 1396 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1397 mutex_unlock(&ctx->uring_lock); 1398 return ret; 1399 } 1400 1401 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1402 { 1403 io_tw_lock(req->ctx, tw); 1404 io_req_defer_failed(req, req->cqe.res); 1405 } 1406 1407 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1408 { 1409 io_tw_lock(req->ctx, tw); 1410 if (unlikely(io_should_terminate_tw())) 1411 io_req_defer_failed(req, -EFAULT); 1412 else if (req->flags & REQ_F_FORCE_ASYNC) 1413 io_queue_iowq(req); 1414 else 1415 io_queue_sqe(req, 0); 1416 } 1417 1418 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1419 { 1420 io_req_set_res(req, ret, 0); 1421 req->io_task_work.func = io_req_task_cancel; 1422 io_req_task_work_add(req); 1423 } 1424 1425 void io_req_task_queue(struct io_kiocb *req) 1426 { 1427 req->io_task_work.func = io_req_task_submit; 1428 io_req_task_work_add(req); 1429 } 1430 1431 void io_queue_next(struct io_kiocb *req) 1432 { 1433 struct io_kiocb *nxt = io_req_find_next(req); 1434 1435 if (nxt) 1436 io_req_task_queue(nxt); 1437 } 1438 1439 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req) 1440 { 1441 if (req->file_node) { 1442 io_put_rsrc_node(req->ctx, req->file_node); 1443 req->file_node = NULL; 1444 } 1445 if (req->flags & REQ_F_BUF_NODE) 1446 io_put_rsrc_node(req->ctx, req->buf_node); 1447 } 1448 1449 static void io_free_batch_list(struct io_ring_ctx *ctx, 1450 struct io_wq_work_node *node) 1451 __must_hold(&ctx->uring_lock) 1452 { 1453 do { 1454 struct io_kiocb *req = container_of(node, struct io_kiocb, 1455 comp_list); 1456 1457 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1458 if (req->flags & REQ_F_REISSUE) { 1459 node = req->comp_list.next; 1460 req->flags &= ~REQ_F_REISSUE; 1461 io_queue_iowq(req); 1462 continue; 1463 } 1464 if (req->flags & REQ_F_REFCOUNT) { 1465 node = req->comp_list.next; 1466 if (!req_ref_put_and_test(req)) 1467 continue; 1468 } 1469 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1470 struct async_poll *apoll = req->apoll; 1471 1472 if (apoll->double_poll) 1473 kfree(apoll->double_poll); 1474 io_cache_free(&ctx->apoll_cache, apoll); 1475 req->flags &= ~REQ_F_POLLED; 1476 } 1477 if (req->flags & IO_REQ_LINK_FLAGS) 1478 io_queue_next(req); 1479 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1480 io_clean_op(req); 1481 } 1482 io_put_file(req); 1483 io_req_put_rsrc_nodes(req); 1484 io_put_task(req); 1485 1486 node = req->comp_list.next; 1487 io_req_add_to_cache(req, ctx); 1488 } while (node); 1489 } 1490 1491 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1492 __must_hold(&ctx->uring_lock) 1493 { 1494 struct io_submit_state *state = &ctx->submit_state; 1495 struct io_wq_work_node *node; 1496 1497 __io_cq_lock(ctx); 1498 __wq_list_for_each(node, &state->compl_reqs) { 1499 struct io_kiocb *req = container_of(node, struct io_kiocb, 1500 comp_list); 1501 1502 /* 1503 * Requests marked with REQUEUE should not post a CQE, they 1504 * will go through the io-wq retry machinery and post one 1505 * later. 1506 */ 1507 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1508 unlikely(!io_fill_cqe_req(ctx, req))) { 1509 if (ctx->lockless_cq) 1510 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe); 1511 else 1512 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe); 1513 } 1514 } 1515 __io_cq_unlock_post(ctx); 1516 1517 if (!wq_list_empty(&state->compl_reqs)) { 1518 io_free_batch_list(ctx, state->compl_reqs.first); 1519 INIT_WQ_LIST(&state->compl_reqs); 1520 } 1521 1522 if (unlikely(ctx->drain_active)) 1523 io_queue_deferred(ctx); 1524 1525 ctx->submit_state.cq_flush = false; 1526 } 1527 1528 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1529 { 1530 /* See comment at the top of this file */ 1531 smp_rmb(); 1532 return __io_cqring_events(ctx); 1533 } 1534 1535 /* 1536 * We can't just wait for polled events to come to us, we have to actively 1537 * find and complete them. 1538 */ 1539 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1540 { 1541 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1542 return; 1543 1544 mutex_lock(&ctx->uring_lock); 1545 while (!wq_list_empty(&ctx->iopoll_list)) { 1546 /* let it sleep and repeat later if can't complete a request */ 1547 if (io_do_iopoll(ctx, true) == 0) 1548 break; 1549 /* 1550 * Ensure we allow local-to-the-cpu processing to take place, 1551 * in this case we need to ensure that we reap all events. 1552 * Also let task_work, etc. to progress by releasing the mutex 1553 */ 1554 if (need_resched()) { 1555 mutex_unlock(&ctx->uring_lock); 1556 cond_resched(); 1557 mutex_lock(&ctx->uring_lock); 1558 } 1559 } 1560 mutex_unlock(&ctx->uring_lock); 1561 1562 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1563 io_move_task_work_from_local(ctx); 1564 } 1565 1566 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1567 { 1568 unsigned int nr_events = 0; 1569 unsigned long check_cq; 1570 1571 min_events = min(min_events, ctx->cq_entries); 1572 1573 lockdep_assert_held(&ctx->uring_lock); 1574 1575 if (!io_allowed_run_tw(ctx)) 1576 return -EEXIST; 1577 1578 check_cq = READ_ONCE(ctx->check_cq); 1579 if (unlikely(check_cq)) { 1580 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1581 __io_cqring_overflow_flush(ctx, false); 1582 /* 1583 * Similarly do not spin if we have not informed the user of any 1584 * dropped CQE. 1585 */ 1586 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1587 return -EBADR; 1588 } 1589 /* 1590 * Don't enter poll loop if we already have events pending. 1591 * If we do, we can potentially be spinning for commands that 1592 * already triggered a CQE (eg in error). 1593 */ 1594 if (io_cqring_events(ctx)) 1595 return 0; 1596 1597 do { 1598 int ret = 0; 1599 1600 /* 1601 * If a submit got punted to a workqueue, we can have the 1602 * application entering polling for a command before it gets 1603 * issued. That app will hold the uring_lock for the duration 1604 * of the poll right here, so we need to take a breather every 1605 * now and then to ensure that the issue has a chance to add 1606 * the poll to the issued list. Otherwise we can spin here 1607 * forever, while the workqueue is stuck trying to acquire the 1608 * very same mutex. 1609 */ 1610 if (wq_list_empty(&ctx->iopoll_list) || 1611 io_task_work_pending(ctx)) { 1612 u32 tail = ctx->cached_cq_tail; 1613 1614 (void) io_run_local_work_locked(ctx, min_events); 1615 1616 if (task_work_pending(current) || 1617 wq_list_empty(&ctx->iopoll_list)) { 1618 mutex_unlock(&ctx->uring_lock); 1619 io_run_task_work(); 1620 mutex_lock(&ctx->uring_lock); 1621 } 1622 /* some requests don't go through iopoll_list */ 1623 if (tail != ctx->cached_cq_tail || 1624 wq_list_empty(&ctx->iopoll_list)) 1625 break; 1626 } 1627 ret = io_do_iopoll(ctx, !min_events); 1628 if (unlikely(ret < 0)) 1629 return ret; 1630 1631 if (task_sigpending(current)) 1632 return -EINTR; 1633 if (need_resched()) 1634 break; 1635 1636 nr_events += ret; 1637 } while (nr_events < min_events); 1638 1639 return 0; 1640 } 1641 1642 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1643 { 1644 io_req_complete_defer(req); 1645 } 1646 1647 /* 1648 * After the iocb has been issued, it's safe to be found on the poll list. 1649 * Adding the kiocb to the list AFTER submission ensures that we don't 1650 * find it from a io_do_iopoll() thread before the issuer is done 1651 * accessing the kiocb cookie. 1652 */ 1653 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1654 { 1655 struct io_ring_ctx *ctx = req->ctx; 1656 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1657 1658 /* workqueue context doesn't hold uring_lock, grab it now */ 1659 if (unlikely(needs_lock)) 1660 mutex_lock(&ctx->uring_lock); 1661 1662 /* 1663 * Track whether we have multiple files in our lists. This will impact 1664 * how we do polling eventually, not spinning if we're on potentially 1665 * different devices. 1666 */ 1667 if (wq_list_empty(&ctx->iopoll_list)) { 1668 ctx->poll_multi_queue = false; 1669 } else if (!ctx->poll_multi_queue) { 1670 struct io_kiocb *list_req; 1671 1672 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1673 comp_list); 1674 if (list_req->file != req->file) 1675 ctx->poll_multi_queue = true; 1676 } 1677 1678 /* 1679 * For fast devices, IO may have already completed. If it has, add 1680 * it to the front so we find it first. 1681 */ 1682 if (READ_ONCE(req->iopoll_completed)) 1683 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1684 else 1685 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1686 1687 if (unlikely(needs_lock)) { 1688 /* 1689 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1690 * in sq thread task context or in io worker task context. If 1691 * current task context is sq thread, we don't need to check 1692 * whether should wake up sq thread. 1693 */ 1694 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1695 wq_has_sleeper(&ctx->sq_data->wait)) 1696 wake_up(&ctx->sq_data->wait); 1697 1698 mutex_unlock(&ctx->uring_lock); 1699 } 1700 } 1701 1702 io_req_flags_t io_file_get_flags(struct file *file) 1703 { 1704 io_req_flags_t res = 0; 1705 1706 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1707 1708 if (S_ISREG(file_inode(file)->i_mode)) 1709 res |= REQ_F_ISREG; 1710 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1711 res |= REQ_F_SUPPORT_NOWAIT; 1712 return res; 1713 } 1714 1715 static __cold void io_drain_req(struct io_kiocb *req) 1716 __must_hold(&ctx->uring_lock) 1717 { 1718 struct io_ring_ctx *ctx = req->ctx; 1719 bool drain = req->flags & IOSQE_IO_DRAIN; 1720 struct io_defer_entry *de; 1721 1722 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT); 1723 if (!de) { 1724 io_req_defer_failed(req, -ENOMEM); 1725 return; 1726 } 1727 1728 io_prep_async_link(req); 1729 trace_io_uring_defer(req); 1730 de->req = req; 1731 1732 ctx->nr_drained += io_linked_nr(req); 1733 list_add_tail(&de->list, &ctx->defer_list); 1734 io_queue_deferred(ctx); 1735 if (!drain && list_empty(&ctx->defer_list)) 1736 ctx->drain_active = false; 1737 } 1738 1739 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1740 unsigned int issue_flags) 1741 { 1742 if (req->file || !def->needs_file) 1743 return true; 1744 1745 if (req->flags & REQ_F_FIXED_FILE) 1746 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1747 else 1748 req->file = io_file_get_normal(req, req->cqe.fd); 1749 1750 return !!req->file; 1751 } 1752 1753 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) 1754 1755 static inline int __io_issue_sqe(struct io_kiocb *req, 1756 unsigned int issue_flags, 1757 const struct io_issue_def *def) 1758 { 1759 const struct cred *creds = NULL; 1760 struct io_kiocb *link = NULL; 1761 int ret; 1762 1763 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { 1764 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) 1765 creds = override_creds(req->creds); 1766 if (req->flags & REQ_F_ARM_LTIMEOUT) 1767 link = __io_prep_linked_timeout(req); 1768 } 1769 1770 if (!def->audit_skip) 1771 audit_uring_entry(req->opcode); 1772 1773 ret = def->issue(req, issue_flags); 1774 1775 if (!def->audit_skip) 1776 audit_uring_exit(!ret, ret); 1777 1778 if (unlikely(creds || link)) { 1779 if (creds) 1780 revert_creds(creds); 1781 if (link) 1782 io_queue_linked_timeout(link); 1783 } 1784 1785 return ret; 1786 } 1787 1788 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1789 { 1790 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1791 int ret; 1792 1793 if (unlikely(!io_assign_file(req, def, issue_flags))) 1794 return -EBADF; 1795 1796 ret = __io_issue_sqe(req, issue_flags, def); 1797 1798 if (ret == IOU_COMPLETE) { 1799 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1800 io_req_complete_defer(req); 1801 else 1802 io_req_complete_post(req, issue_flags); 1803 1804 return 0; 1805 } 1806 1807 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1808 ret = 0; 1809 1810 /* If the op doesn't have a file, we're not polling for it */ 1811 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1812 io_iopoll_req_issued(req, issue_flags); 1813 } 1814 return ret; 1815 } 1816 1817 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1818 { 1819 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1820 IO_URING_F_MULTISHOT | 1821 IO_URING_F_COMPLETE_DEFER; 1822 int ret; 1823 1824 io_tw_lock(req->ctx, tw); 1825 1826 WARN_ON_ONCE(!req->file); 1827 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1828 return -EFAULT; 1829 1830 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1831 1832 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1833 return ret; 1834 } 1835 1836 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1837 { 1838 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1839 struct io_kiocb *nxt = NULL; 1840 1841 if (req_ref_put_and_test_atomic(req)) { 1842 if (req->flags & IO_REQ_LINK_FLAGS) 1843 nxt = io_req_find_next(req); 1844 io_free_req(req); 1845 } 1846 return nxt ? &nxt->work : NULL; 1847 } 1848 1849 void io_wq_submit_work(struct io_wq_work *work) 1850 { 1851 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1852 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1853 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1854 bool needs_poll = false; 1855 int ret = 0, err = -ECANCELED; 1856 1857 /* one will be dropped by io_wq_free_work() after returning to io-wq */ 1858 if (!(req->flags & REQ_F_REFCOUNT)) 1859 __io_req_set_refcount(req, 2); 1860 else 1861 req_ref_get(req); 1862 1863 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1864 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1865 fail: 1866 io_req_task_queue_fail(req, err); 1867 return; 1868 } 1869 if (!io_assign_file(req, def, issue_flags)) { 1870 err = -EBADF; 1871 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1872 goto fail; 1873 } 1874 1875 /* 1876 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1877 * submitter task context. Final request completions are handed to the 1878 * right context, however this is not the case of auxiliary CQEs, 1879 * which is the main mean of operation for multishot requests. 1880 * Don't allow any multishot execution from io-wq. It's more restrictive 1881 * than necessary and also cleaner. 1882 */ 1883 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1884 err = -EBADFD; 1885 if (!io_file_can_poll(req)) 1886 goto fail; 1887 if (req->file->f_flags & O_NONBLOCK || 1888 req->file->f_mode & FMODE_NOWAIT) { 1889 err = -ECANCELED; 1890 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1891 goto fail; 1892 return; 1893 } else { 1894 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1895 } 1896 } 1897 1898 if (req->flags & REQ_F_FORCE_ASYNC) { 1899 bool opcode_poll = def->pollin || def->pollout; 1900 1901 if (opcode_poll && io_file_can_poll(req)) { 1902 needs_poll = true; 1903 issue_flags |= IO_URING_F_NONBLOCK; 1904 } 1905 } 1906 1907 do { 1908 ret = io_issue_sqe(req, issue_flags); 1909 if (ret != -EAGAIN) 1910 break; 1911 1912 /* 1913 * If REQ_F_NOWAIT is set, then don't wait or retry with 1914 * poll. -EAGAIN is final for that case. 1915 */ 1916 if (req->flags & REQ_F_NOWAIT) 1917 break; 1918 1919 /* 1920 * We can get EAGAIN for iopolled IO even though we're 1921 * forcing a sync submission from here, since we can't 1922 * wait for request slots on the block side. 1923 */ 1924 if (!needs_poll) { 1925 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1926 break; 1927 if (io_wq_worker_stopped()) 1928 break; 1929 cond_resched(); 1930 continue; 1931 } 1932 1933 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1934 return; 1935 /* aborted or ready, in either case retry blocking */ 1936 needs_poll = false; 1937 issue_flags &= ~IO_URING_F_NONBLOCK; 1938 } while (1); 1939 1940 /* avoid locking problems by failing it from a clean context */ 1941 if (ret) 1942 io_req_task_queue_fail(req, ret); 1943 } 1944 1945 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1946 unsigned int issue_flags) 1947 { 1948 struct io_ring_ctx *ctx = req->ctx; 1949 struct io_rsrc_node *node; 1950 struct file *file = NULL; 1951 1952 io_ring_submit_lock(ctx, issue_flags); 1953 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1954 if (node) { 1955 node->refs++; 1956 req->file_node = node; 1957 req->flags |= io_slot_flags(node); 1958 file = io_slot_file(node); 1959 } 1960 io_ring_submit_unlock(ctx, issue_flags); 1961 return file; 1962 } 1963 1964 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1965 { 1966 struct file *file = fget(fd); 1967 1968 trace_io_uring_file_get(req, fd); 1969 1970 /* we don't allow fixed io_uring files */ 1971 if (file && io_is_uring_fops(file)) 1972 io_req_track_inflight(req); 1973 return file; 1974 } 1975 1976 static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags) 1977 { 1978 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1979 1980 if (req->flags & REQ_F_SQE_COPIED) 1981 return 0; 1982 req->flags |= REQ_F_SQE_COPIED; 1983 if (!def->sqe_copy) 1984 return 0; 1985 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE))) 1986 return -EFAULT; 1987 def->sqe_copy(req); 1988 return 0; 1989 } 1990 1991 static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret) 1992 __must_hold(&req->ctx->uring_lock) 1993 { 1994 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1995 fail: 1996 io_req_defer_failed(req, ret); 1997 return; 1998 } 1999 2000 ret = io_req_sqe_copy(req, issue_flags); 2001 if (unlikely(ret)) 2002 goto fail; 2003 2004 switch (io_arm_poll_handler(req, 0)) { 2005 case IO_APOLL_READY: 2006 io_kbuf_recycle(req, 0); 2007 io_req_task_queue(req); 2008 break; 2009 case IO_APOLL_ABORTED: 2010 io_kbuf_recycle(req, 0); 2011 io_queue_iowq(req); 2012 break; 2013 case IO_APOLL_OK: 2014 break; 2015 } 2016 } 2017 2018 static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags) 2019 __must_hold(&req->ctx->uring_lock) 2020 { 2021 unsigned int issue_flags = IO_URING_F_NONBLOCK | 2022 IO_URING_F_COMPLETE_DEFER | extra_flags; 2023 int ret; 2024 2025 ret = io_issue_sqe(req, issue_flags); 2026 2027 /* 2028 * We async punt it if the file wasn't marked NOWAIT, or if the file 2029 * doesn't support non-blocking read/write attempts 2030 */ 2031 if (unlikely(ret)) 2032 io_queue_async(req, issue_flags, ret); 2033 } 2034 2035 static void io_queue_sqe_fallback(struct io_kiocb *req) 2036 __must_hold(&req->ctx->uring_lock) 2037 { 2038 if (unlikely(req->flags & REQ_F_FAIL)) { 2039 /* 2040 * We don't submit, fail them all, for that replace hardlinks 2041 * with normal links. Extra REQ_F_LINK is tolerated. 2042 */ 2043 req->flags &= ~REQ_F_HARDLINK; 2044 req->flags |= REQ_F_LINK; 2045 io_req_defer_failed(req, req->cqe.res); 2046 } else { 2047 /* can't fail with IO_URING_F_INLINE */ 2048 io_req_sqe_copy(req, IO_URING_F_INLINE); 2049 if (unlikely(req->ctx->drain_active)) 2050 io_drain_req(req); 2051 else 2052 io_queue_iowq(req); 2053 } 2054 } 2055 2056 /* 2057 * Check SQE restrictions (opcode and flags). 2058 * 2059 * Returns 'true' if SQE is allowed, 'false' otherwise. 2060 */ 2061 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2062 struct io_kiocb *req, 2063 unsigned int sqe_flags) 2064 { 2065 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2066 return false; 2067 2068 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2069 ctx->restrictions.sqe_flags_required) 2070 return false; 2071 2072 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2073 ctx->restrictions.sqe_flags_required)) 2074 return false; 2075 2076 return true; 2077 } 2078 2079 static void io_init_drain(struct io_ring_ctx *ctx) 2080 { 2081 struct io_kiocb *head = ctx->submit_state.link.head; 2082 2083 ctx->drain_active = true; 2084 if (head) { 2085 /* 2086 * If we need to drain a request in the middle of a link, drain 2087 * the head request and the next request/link after the current 2088 * link. Considering sequential execution of links, 2089 * REQ_F_IO_DRAIN will be maintained for every request of our 2090 * link. 2091 */ 2092 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2093 ctx->drain_next = true; 2094 } 2095 } 2096 2097 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2098 { 2099 /* ensure per-opcode data is cleared if we fail before prep */ 2100 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2101 return err; 2102 } 2103 2104 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2105 const struct io_uring_sqe *sqe) 2106 __must_hold(&ctx->uring_lock) 2107 { 2108 const struct io_issue_def *def; 2109 unsigned int sqe_flags; 2110 int personality; 2111 u8 opcode; 2112 2113 req->ctx = ctx; 2114 req->opcode = opcode = READ_ONCE(sqe->opcode); 2115 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2116 sqe_flags = READ_ONCE(sqe->flags); 2117 req->flags = (__force io_req_flags_t) sqe_flags; 2118 req->cqe.user_data = READ_ONCE(sqe->user_data); 2119 req->file = NULL; 2120 req->tctx = current->io_uring; 2121 req->cancel_seq_set = false; 2122 req->async_data = NULL; 2123 2124 if (unlikely(opcode >= IORING_OP_LAST)) { 2125 req->opcode = 0; 2126 return io_init_fail_req(req, -EINVAL); 2127 } 2128 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2129 2130 def = &io_issue_defs[opcode]; 2131 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2132 /* enforce forwards compatibility on users */ 2133 if (sqe_flags & ~SQE_VALID_FLAGS) 2134 return io_init_fail_req(req, -EINVAL); 2135 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2136 if (!def->buffer_select) 2137 return io_init_fail_req(req, -EOPNOTSUPP); 2138 req->buf_index = READ_ONCE(sqe->buf_group); 2139 } 2140 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2141 ctx->drain_disabled = true; 2142 if (sqe_flags & IOSQE_IO_DRAIN) { 2143 if (ctx->drain_disabled) 2144 return io_init_fail_req(req, -EOPNOTSUPP); 2145 io_init_drain(ctx); 2146 } 2147 } 2148 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2149 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2150 return io_init_fail_req(req, -EACCES); 2151 /* knock it to the slow queue path, will be drained there */ 2152 if (ctx->drain_active) 2153 req->flags |= REQ_F_FORCE_ASYNC; 2154 /* if there is no link, we're at "next" request and need to drain */ 2155 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2156 ctx->drain_next = false; 2157 ctx->drain_active = true; 2158 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2159 } 2160 } 2161 2162 if (!def->ioprio && sqe->ioprio) 2163 return io_init_fail_req(req, -EINVAL); 2164 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2165 return io_init_fail_req(req, -EINVAL); 2166 2167 if (def->needs_file) { 2168 struct io_submit_state *state = &ctx->submit_state; 2169 2170 req->cqe.fd = READ_ONCE(sqe->fd); 2171 2172 /* 2173 * Plug now if we have more than 2 IO left after this, and the 2174 * target is potentially a read/write to block based storage. 2175 */ 2176 if (state->need_plug && def->plug) { 2177 state->plug_started = true; 2178 state->need_plug = false; 2179 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2180 } 2181 } 2182 2183 personality = READ_ONCE(sqe->personality); 2184 if (personality) { 2185 int ret; 2186 2187 req->creds = xa_load(&ctx->personalities, personality); 2188 if (!req->creds) 2189 return io_init_fail_req(req, -EINVAL); 2190 get_cred(req->creds); 2191 ret = security_uring_override_creds(req->creds); 2192 if (ret) { 2193 put_cred(req->creds); 2194 return io_init_fail_req(req, ret); 2195 } 2196 req->flags |= REQ_F_CREDS; 2197 } 2198 2199 return def->prep(req, sqe); 2200 } 2201 2202 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2203 struct io_kiocb *req, int ret) 2204 { 2205 struct io_ring_ctx *ctx = req->ctx; 2206 struct io_submit_link *link = &ctx->submit_state.link; 2207 struct io_kiocb *head = link->head; 2208 2209 trace_io_uring_req_failed(sqe, req, ret); 2210 2211 /* 2212 * Avoid breaking links in the middle as it renders links with SQPOLL 2213 * unusable. Instead of failing eagerly, continue assembling the link if 2214 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2215 * should find the flag and handle the rest. 2216 */ 2217 req_fail_link_node(req, ret); 2218 if (head && !(head->flags & REQ_F_FAIL)) 2219 req_fail_link_node(head, -ECANCELED); 2220 2221 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2222 if (head) { 2223 link->last->link = req; 2224 link->head = NULL; 2225 req = head; 2226 } 2227 io_queue_sqe_fallback(req); 2228 return ret; 2229 } 2230 2231 if (head) 2232 link->last->link = req; 2233 else 2234 link->head = req; 2235 link->last = req; 2236 return 0; 2237 } 2238 2239 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2240 const struct io_uring_sqe *sqe) 2241 __must_hold(&ctx->uring_lock) 2242 { 2243 struct io_submit_link *link = &ctx->submit_state.link; 2244 int ret; 2245 2246 ret = io_init_req(ctx, req, sqe); 2247 if (unlikely(ret)) 2248 return io_submit_fail_init(sqe, req, ret); 2249 2250 trace_io_uring_submit_req(req); 2251 2252 /* 2253 * If we already have a head request, queue this one for async 2254 * submittal once the head completes. If we don't have a head but 2255 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2256 * submitted sync once the chain is complete. If none of those 2257 * conditions are true (normal request), then just queue it. 2258 */ 2259 if (unlikely(link->head)) { 2260 trace_io_uring_link(req, link->last); 2261 io_req_sqe_copy(req, IO_URING_F_INLINE); 2262 link->last->link = req; 2263 link->last = req; 2264 2265 if (req->flags & IO_REQ_LINK_FLAGS) 2266 return 0; 2267 /* last request of the link, flush it */ 2268 req = link->head; 2269 link->head = NULL; 2270 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2271 goto fallback; 2272 2273 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2274 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2275 if (req->flags & IO_REQ_LINK_FLAGS) { 2276 link->head = req; 2277 link->last = req; 2278 } else { 2279 fallback: 2280 io_queue_sqe_fallback(req); 2281 } 2282 return 0; 2283 } 2284 2285 io_queue_sqe(req, IO_URING_F_INLINE); 2286 return 0; 2287 } 2288 2289 /* 2290 * Batched submission is done, ensure local IO is flushed out. 2291 */ 2292 static void io_submit_state_end(struct io_ring_ctx *ctx) 2293 { 2294 struct io_submit_state *state = &ctx->submit_state; 2295 2296 if (unlikely(state->link.head)) 2297 io_queue_sqe_fallback(state->link.head); 2298 /* flush only after queuing links as they can generate completions */ 2299 io_submit_flush_completions(ctx); 2300 if (state->plug_started) 2301 blk_finish_plug(&state->plug); 2302 } 2303 2304 /* 2305 * Start submission side cache. 2306 */ 2307 static void io_submit_state_start(struct io_submit_state *state, 2308 unsigned int max_ios) 2309 { 2310 state->plug_started = false; 2311 state->need_plug = max_ios > 2; 2312 state->submit_nr = max_ios; 2313 /* set only head, no need to init link_last in advance */ 2314 state->link.head = NULL; 2315 } 2316 2317 static void io_commit_sqring(struct io_ring_ctx *ctx) 2318 { 2319 struct io_rings *rings = ctx->rings; 2320 2321 /* 2322 * Ensure any loads from the SQEs are done at this point, 2323 * since once we write the new head, the application could 2324 * write new data to them. 2325 */ 2326 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2327 } 2328 2329 /* 2330 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2331 * that is mapped by userspace. This means that care needs to be taken to 2332 * ensure that reads are stable, as we cannot rely on userspace always 2333 * being a good citizen. If members of the sqe are validated and then later 2334 * used, it's important that those reads are done through READ_ONCE() to 2335 * prevent a re-load down the line. 2336 */ 2337 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2338 { 2339 unsigned mask = ctx->sq_entries - 1; 2340 unsigned head = ctx->cached_sq_head++ & mask; 2341 2342 if (static_branch_unlikely(&io_key_has_sqarray) && 2343 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2344 head = READ_ONCE(ctx->sq_array[head]); 2345 if (unlikely(head >= ctx->sq_entries)) { 2346 WRITE_ONCE(ctx->rings->sq_dropped, 2347 READ_ONCE(ctx->rings->sq_dropped) + 1); 2348 return false; 2349 } 2350 head = array_index_nospec(head, ctx->sq_entries); 2351 } 2352 2353 /* 2354 * The cached sq head (or cq tail) serves two purposes: 2355 * 2356 * 1) allows us to batch the cost of updating the user visible 2357 * head updates. 2358 * 2) allows the kernel side to track the head on its own, even 2359 * though the application is the one updating it. 2360 */ 2361 2362 /* double index for 128-byte SQEs, twice as long */ 2363 if (ctx->flags & IORING_SETUP_SQE128) 2364 head <<= 1; 2365 *sqe = &ctx->sq_sqes[head]; 2366 return true; 2367 } 2368 2369 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2370 __must_hold(&ctx->uring_lock) 2371 { 2372 unsigned int entries = io_sqring_entries(ctx); 2373 unsigned int left; 2374 int ret; 2375 2376 if (unlikely(!entries)) 2377 return 0; 2378 /* make sure SQ entry isn't read before tail */ 2379 ret = left = min(nr, entries); 2380 io_get_task_refs(left); 2381 io_submit_state_start(&ctx->submit_state, left); 2382 2383 do { 2384 const struct io_uring_sqe *sqe; 2385 struct io_kiocb *req; 2386 2387 if (unlikely(!io_alloc_req(ctx, &req))) 2388 break; 2389 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2390 io_req_add_to_cache(req, ctx); 2391 break; 2392 } 2393 2394 /* 2395 * Continue submitting even for sqe failure if the 2396 * ring was setup with IORING_SETUP_SUBMIT_ALL 2397 */ 2398 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2399 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2400 left--; 2401 break; 2402 } 2403 } while (--left); 2404 2405 if (unlikely(left)) { 2406 ret -= left; 2407 /* try again if it submitted nothing and can't allocate a req */ 2408 if (!ret && io_req_cache_empty(ctx)) 2409 ret = -EAGAIN; 2410 current->io_uring->cached_refs += left; 2411 } 2412 2413 io_submit_state_end(ctx); 2414 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2415 io_commit_sqring(ctx); 2416 return ret; 2417 } 2418 2419 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2420 int wake_flags, void *key) 2421 { 2422 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2423 2424 /* 2425 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2426 * the task, and the next invocation will do it. 2427 */ 2428 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2429 return autoremove_wake_function(curr, mode, wake_flags, key); 2430 return -1; 2431 } 2432 2433 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2434 { 2435 if (io_local_work_pending(ctx)) { 2436 __set_current_state(TASK_RUNNING); 2437 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2438 return 0; 2439 } 2440 if (io_run_task_work() > 0) 2441 return 0; 2442 if (task_sigpending(current)) 2443 return -EINTR; 2444 return 0; 2445 } 2446 2447 static bool current_pending_io(void) 2448 { 2449 struct io_uring_task *tctx = current->io_uring; 2450 2451 if (!tctx) 2452 return false; 2453 return percpu_counter_read_positive(&tctx->inflight); 2454 } 2455 2456 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2457 { 2458 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2459 2460 WRITE_ONCE(iowq->hit_timeout, 1); 2461 iowq->min_timeout = 0; 2462 wake_up_process(iowq->wq.private); 2463 return HRTIMER_NORESTART; 2464 } 2465 2466 /* 2467 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2468 * wake up. If not, and we have a normal timeout, switch to that and keep 2469 * sleeping. 2470 */ 2471 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2472 { 2473 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2474 struct io_ring_ctx *ctx = iowq->ctx; 2475 2476 /* no general timeout, or shorter (or equal), we are done */ 2477 if (iowq->timeout == KTIME_MAX || 2478 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2479 goto out_wake; 2480 /* work we may need to run, wake function will see if we need to wake */ 2481 if (io_has_work(ctx)) 2482 goto out_wake; 2483 /* got events since we started waiting, min timeout is done */ 2484 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2485 goto out_wake; 2486 /* if we have any events and min timeout expired, we're done */ 2487 if (io_cqring_events(ctx)) 2488 goto out_wake; 2489 2490 /* 2491 * If using deferred task_work running and application is waiting on 2492 * more than one request, ensure we reset it now where we are switching 2493 * to normal sleeps. Any request completion post min_wait should wake 2494 * the task and return. 2495 */ 2496 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2497 atomic_set(&ctx->cq_wait_nr, 1); 2498 smp_mb(); 2499 if (!llist_empty(&ctx->work_llist)) 2500 goto out_wake; 2501 } 2502 2503 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2504 hrtimer_set_expires(timer, iowq->timeout); 2505 return HRTIMER_RESTART; 2506 out_wake: 2507 return io_cqring_timer_wakeup(timer); 2508 } 2509 2510 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2511 clockid_t clock_id, ktime_t start_time) 2512 { 2513 ktime_t timeout; 2514 2515 if (iowq->min_timeout) { 2516 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2517 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2518 HRTIMER_MODE_ABS); 2519 } else { 2520 timeout = iowq->timeout; 2521 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2522 HRTIMER_MODE_ABS); 2523 } 2524 2525 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2526 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2527 2528 if (!READ_ONCE(iowq->hit_timeout)) 2529 schedule(); 2530 2531 hrtimer_cancel(&iowq->t); 2532 destroy_hrtimer_on_stack(&iowq->t); 2533 __set_current_state(TASK_RUNNING); 2534 2535 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2536 } 2537 2538 struct ext_arg { 2539 size_t argsz; 2540 struct timespec64 ts; 2541 const sigset_t __user *sig; 2542 ktime_t min_time; 2543 bool ts_set; 2544 bool iowait; 2545 }; 2546 2547 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2548 struct io_wait_queue *iowq, 2549 struct ext_arg *ext_arg, 2550 ktime_t start_time) 2551 { 2552 int ret = 0; 2553 2554 /* 2555 * Mark us as being in io_wait if we have pending requests, so cpufreq 2556 * can take into account that the task is waiting for IO - turns out 2557 * to be important for low QD IO. 2558 */ 2559 if (ext_arg->iowait && current_pending_io()) 2560 current->in_iowait = 1; 2561 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2562 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2563 else 2564 schedule(); 2565 current->in_iowait = 0; 2566 return ret; 2567 } 2568 2569 /* If this returns > 0, the caller should retry */ 2570 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2571 struct io_wait_queue *iowq, 2572 struct ext_arg *ext_arg, 2573 ktime_t start_time) 2574 { 2575 if (unlikely(READ_ONCE(ctx->check_cq))) 2576 return 1; 2577 if (unlikely(io_local_work_pending(ctx))) 2578 return 1; 2579 if (unlikely(task_work_pending(current))) 2580 return 1; 2581 if (unlikely(task_sigpending(current))) 2582 return -EINTR; 2583 if (unlikely(io_should_wake(iowq))) 2584 return 0; 2585 2586 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2587 } 2588 2589 /* 2590 * Wait until events become available, if we don't already have some. The 2591 * application must reap them itself, as they reside on the shared cq ring. 2592 */ 2593 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2594 struct ext_arg *ext_arg) 2595 { 2596 struct io_wait_queue iowq; 2597 struct io_rings *rings = ctx->rings; 2598 ktime_t start_time; 2599 int ret; 2600 2601 min_events = min_t(int, min_events, ctx->cq_entries); 2602 2603 if (!io_allowed_run_tw(ctx)) 2604 return -EEXIST; 2605 if (io_local_work_pending(ctx)) 2606 io_run_local_work(ctx, min_events, 2607 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2608 io_run_task_work(); 2609 2610 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2611 io_cqring_do_overflow_flush(ctx); 2612 if (__io_cqring_events_user(ctx) >= min_events) 2613 return 0; 2614 2615 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2616 iowq.wq.private = current; 2617 INIT_LIST_HEAD(&iowq.wq.entry); 2618 iowq.ctx = ctx; 2619 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2620 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2621 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2622 iowq.hit_timeout = 0; 2623 iowq.min_timeout = ext_arg->min_time; 2624 iowq.timeout = KTIME_MAX; 2625 start_time = io_get_time(ctx); 2626 2627 if (ext_arg->ts_set) { 2628 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2629 if (!(flags & IORING_ENTER_ABS_TIMER)) 2630 iowq.timeout = ktime_add(iowq.timeout, start_time); 2631 } 2632 2633 if (ext_arg->sig) { 2634 #ifdef CONFIG_COMPAT 2635 if (in_compat_syscall()) 2636 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2637 ext_arg->argsz); 2638 else 2639 #endif 2640 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2641 2642 if (ret) 2643 return ret; 2644 } 2645 2646 io_napi_busy_loop(ctx, &iowq); 2647 2648 trace_io_uring_cqring_wait(ctx, min_events); 2649 do { 2650 unsigned long check_cq; 2651 int nr_wait; 2652 2653 /* if min timeout has been hit, don't reset wait count */ 2654 if (!iowq.hit_timeout) 2655 nr_wait = (int) iowq.cq_tail - 2656 READ_ONCE(ctx->rings->cq.tail); 2657 else 2658 nr_wait = 1; 2659 2660 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2661 atomic_set(&ctx->cq_wait_nr, nr_wait); 2662 set_current_state(TASK_INTERRUPTIBLE); 2663 } else { 2664 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2665 TASK_INTERRUPTIBLE); 2666 } 2667 2668 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2669 __set_current_state(TASK_RUNNING); 2670 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2671 2672 /* 2673 * Run task_work after scheduling and before io_should_wake(). 2674 * If we got woken because of task_work being processed, run it 2675 * now rather than let the caller do another wait loop. 2676 */ 2677 if (io_local_work_pending(ctx)) 2678 io_run_local_work(ctx, nr_wait, nr_wait); 2679 io_run_task_work(); 2680 2681 /* 2682 * Non-local task_work will be run on exit to userspace, but 2683 * if we're using DEFER_TASKRUN, then we could have waited 2684 * with a timeout for a number of requests. If the timeout 2685 * hits, we could have some requests ready to process. Ensure 2686 * this break is _after_ we have run task_work, to avoid 2687 * deferring running potentially pending requests until the 2688 * next time we wait for events. 2689 */ 2690 if (ret < 0) 2691 break; 2692 2693 check_cq = READ_ONCE(ctx->check_cq); 2694 if (unlikely(check_cq)) { 2695 /* let the caller flush overflows, retry */ 2696 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2697 io_cqring_do_overflow_flush(ctx); 2698 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2699 ret = -EBADR; 2700 break; 2701 } 2702 } 2703 2704 if (io_should_wake(&iowq)) { 2705 ret = 0; 2706 break; 2707 } 2708 cond_resched(); 2709 } while (1); 2710 2711 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2712 finish_wait(&ctx->cq_wait, &iowq.wq); 2713 restore_saved_sigmask_unless(ret == -EINTR); 2714 2715 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2716 } 2717 2718 static void io_rings_free(struct io_ring_ctx *ctx) 2719 { 2720 io_free_region(ctx, &ctx->sq_region); 2721 io_free_region(ctx, &ctx->ring_region); 2722 ctx->rings = NULL; 2723 ctx->sq_sqes = NULL; 2724 } 2725 2726 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2727 unsigned int cq_entries, size_t *sq_offset) 2728 { 2729 struct io_rings *rings; 2730 size_t off, sq_array_size; 2731 2732 off = struct_size(rings, cqes, cq_entries); 2733 if (off == SIZE_MAX) 2734 return SIZE_MAX; 2735 if (flags & IORING_SETUP_CQE32) { 2736 if (check_shl_overflow(off, 1, &off)) 2737 return SIZE_MAX; 2738 } 2739 2740 #ifdef CONFIG_SMP 2741 off = ALIGN(off, SMP_CACHE_BYTES); 2742 if (off == 0) 2743 return SIZE_MAX; 2744 #endif 2745 2746 if (flags & IORING_SETUP_NO_SQARRAY) { 2747 *sq_offset = SIZE_MAX; 2748 return off; 2749 } 2750 2751 *sq_offset = off; 2752 2753 sq_array_size = array_size(sizeof(u32), sq_entries); 2754 if (sq_array_size == SIZE_MAX) 2755 return SIZE_MAX; 2756 2757 if (check_add_overflow(off, sq_array_size, &off)) 2758 return SIZE_MAX; 2759 2760 return off; 2761 } 2762 2763 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx) 2764 { 2765 struct io_kiocb *req; 2766 int nr = 0; 2767 2768 while (!io_req_cache_empty(ctx)) { 2769 req = io_extract_req(ctx); 2770 kmem_cache_free(req_cachep, req); 2771 nr++; 2772 } 2773 if (nr) { 2774 ctx->nr_req_allocated -= nr; 2775 percpu_ref_put_many(&ctx->refs, nr); 2776 } 2777 } 2778 2779 static __cold void io_req_caches_free(struct io_ring_ctx *ctx) 2780 { 2781 guard(mutex)(&ctx->uring_lock); 2782 __io_req_caches_free(ctx); 2783 } 2784 2785 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2786 { 2787 io_sq_thread_finish(ctx); 2788 2789 mutex_lock(&ctx->uring_lock); 2790 io_sqe_buffers_unregister(ctx); 2791 io_sqe_files_unregister(ctx); 2792 io_unregister_zcrx_ifqs(ctx); 2793 io_cqring_overflow_kill(ctx); 2794 io_eventfd_unregister(ctx); 2795 io_free_alloc_caches(ctx); 2796 io_destroy_buffers(ctx); 2797 io_free_region(ctx, &ctx->param_region); 2798 mutex_unlock(&ctx->uring_lock); 2799 if (ctx->sq_creds) 2800 put_cred(ctx->sq_creds); 2801 if (ctx->submitter_task) 2802 put_task_struct(ctx->submitter_task); 2803 2804 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2805 2806 if (ctx->mm_account) { 2807 mmdrop(ctx->mm_account); 2808 ctx->mm_account = NULL; 2809 } 2810 io_rings_free(ctx); 2811 2812 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2813 static_branch_dec(&io_key_has_sqarray); 2814 2815 percpu_ref_exit(&ctx->refs); 2816 free_uid(ctx->user); 2817 io_req_caches_free(ctx); 2818 2819 WARN_ON_ONCE(ctx->nr_req_allocated); 2820 2821 if (ctx->hash_map) 2822 io_wq_put_hash(ctx->hash_map); 2823 io_napi_free(ctx); 2824 kvfree(ctx->cancel_table.hbs); 2825 xa_destroy(&ctx->io_bl_xa); 2826 kfree(ctx); 2827 } 2828 2829 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2830 { 2831 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2832 poll_wq_task_work); 2833 2834 mutex_lock(&ctx->uring_lock); 2835 ctx->poll_activated = true; 2836 mutex_unlock(&ctx->uring_lock); 2837 2838 /* 2839 * Wake ups for some events between start of polling and activation 2840 * might've been lost due to loose synchronisation. 2841 */ 2842 wake_up_all(&ctx->poll_wq); 2843 percpu_ref_put(&ctx->refs); 2844 } 2845 2846 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2847 { 2848 spin_lock(&ctx->completion_lock); 2849 /* already activated or in progress */ 2850 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2851 goto out; 2852 if (WARN_ON_ONCE(!ctx->task_complete)) 2853 goto out; 2854 if (!ctx->submitter_task) 2855 goto out; 2856 /* 2857 * with ->submitter_task only the submitter task completes requests, we 2858 * only need to sync with it, which is done by injecting a tw 2859 */ 2860 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2861 percpu_ref_get(&ctx->refs); 2862 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2863 percpu_ref_put(&ctx->refs); 2864 out: 2865 spin_unlock(&ctx->completion_lock); 2866 } 2867 2868 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2869 { 2870 struct io_ring_ctx *ctx = file->private_data; 2871 __poll_t mask = 0; 2872 2873 if (unlikely(!ctx->poll_activated)) 2874 io_activate_pollwq(ctx); 2875 /* 2876 * provides mb() which pairs with barrier from wq_has_sleeper 2877 * call in io_commit_cqring 2878 */ 2879 poll_wait(file, &ctx->poll_wq, wait); 2880 2881 if (!io_sqring_full(ctx)) 2882 mask |= EPOLLOUT | EPOLLWRNORM; 2883 2884 /* 2885 * Don't flush cqring overflow list here, just do a simple check. 2886 * Otherwise there could possible be ABBA deadlock: 2887 * CPU0 CPU1 2888 * ---- ---- 2889 * lock(&ctx->uring_lock); 2890 * lock(&ep->mtx); 2891 * lock(&ctx->uring_lock); 2892 * lock(&ep->mtx); 2893 * 2894 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2895 * pushes them to do the flush. 2896 */ 2897 2898 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2899 mask |= EPOLLIN | EPOLLRDNORM; 2900 2901 return mask; 2902 } 2903 2904 struct io_tctx_exit { 2905 struct callback_head task_work; 2906 struct completion completion; 2907 struct io_ring_ctx *ctx; 2908 }; 2909 2910 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2911 { 2912 struct io_uring_task *tctx = current->io_uring; 2913 struct io_tctx_exit *work; 2914 2915 work = container_of(cb, struct io_tctx_exit, task_work); 2916 /* 2917 * When @in_cancel, we're in cancellation and it's racy to remove the 2918 * node. It'll be removed by the end of cancellation, just ignore it. 2919 * tctx can be NULL if the queueing of this task_work raced with 2920 * work cancelation off the exec path. 2921 */ 2922 if (tctx && !atomic_read(&tctx->in_cancel)) 2923 io_uring_del_tctx_node((unsigned long)work->ctx); 2924 complete(&work->completion); 2925 } 2926 2927 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2928 { 2929 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2930 2931 return req->ctx == data; 2932 } 2933 2934 static __cold void io_ring_exit_work(struct work_struct *work) 2935 { 2936 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2937 unsigned long timeout = jiffies + HZ * 60 * 5; 2938 unsigned long interval = HZ / 20; 2939 struct io_tctx_exit exit; 2940 struct io_tctx_node *node; 2941 int ret; 2942 2943 /* 2944 * If we're doing polled IO and end up having requests being 2945 * submitted async (out-of-line), then completions can come in while 2946 * we're waiting for refs to drop. We need to reap these manually, 2947 * as nobody else will be looking for them. 2948 */ 2949 do { 2950 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2951 mutex_lock(&ctx->uring_lock); 2952 io_cqring_overflow_kill(ctx); 2953 mutex_unlock(&ctx->uring_lock); 2954 } 2955 if (!xa_empty(&ctx->zcrx_ctxs)) { 2956 mutex_lock(&ctx->uring_lock); 2957 io_shutdown_zcrx_ifqs(ctx); 2958 mutex_unlock(&ctx->uring_lock); 2959 } 2960 2961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2962 io_move_task_work_from_local(ctx); 2963 2964 /* The SQPOLL thread never reaches this path */ 2965 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2966 cond_resched(); 2967 2968 if (ctx->sq_data) { 2969 struct io_sq_data *sqd = ctx->sq_data; 2970 struct task_struct *tsk; 2971 2972 io_sq_thread_park(sqd); 2973 tsk = sqpoll_task_locked(sqd); 2974 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2975 io_wq_cancel_cb(tsk->io_uring->io_wq, 2976 io_cancel_ctx_cb, ctx, true); 2977 io_sq_thread_unpark(sqd); 2978 } 2979 2980 io_req_caches_free(ctx); 2981 2982 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2983 /* there is little hope left, don't run it too often */ 2984 interval = HZ * 60; 2985 } 2986 /* 2987 * This is really an uninterruptible wait, as it has to be 2988 * complete. But it's also run from a kworker, which doesn't 2989 * take signals, so it's fine to make it interruptible. This 2990 * avoids scenarios where we knowingly can wait much longer 2991 * on completions, for example if someone does a SIGSTOP on 2992 * a task that needs to finish task_work to make this loop 2993 * complete. That's a synthetic situation that should not 2994 * cause a stuck task backtrace, and hence a potential panic 2995 * on stuck tasks if that is enabled. 2996 */ 2997 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2998 2999 init_completion(&exit.completion); 3000 init_task_work(&exit.task_work, io_tctx_exit_cb); 3001 exit.ctx = ctx; 3002 3003 mutex_lock(&ctx->uring_lock); 3004 while (!list_empty(&ctx->tctx_list)) { 3005 WARN_ON_ONCE(time_after(jiffies, timeout)); 3006 3007 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3008 ctx_node); 3009 /* don't spin on a single task if cancellation failed */ 3010 list_rotate_left(&ctx->tctx_list); 3011 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3012 if (WARN_ON_ONCE(ret)) 3013 continue; 3014 3015 mutex_unlock(&ctx->uring_lock); 3016 /* 3017 * See comment above for 3018 * wait_for_completion_interruptible_timeout() on why this 3019 * wait is marked as interruptible. 3020 */ 3021 wait_for_completion_interruptible(&exit.completion); 3022 mutex_lock(&ctx->uring_lock); 3023 } 3024 mutex_unlock(&ctx->uring_lock); 3025 spin_lock(&ctx->completion_lock); 3026 spin_unlock(&ctx->completion_lock); 3027 3028 /* pairs with RCU read section in io_req_local_work_add() */ 3029 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3030 synchronize_rcu(); 3031 3032 io_ring_ctx_free(ctx); 3033 } 3034 3035 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3036 { 3037 unsigned long index; 3038 struct creds *creds; 3039 3040 mutex_lock(&ctx->uring_lock); 3041 percpu_ref_kill(&ctx->refs); 3042 xa_for_each(&ctx->personalities, index, creds) 3043 io_unregister_personality(ctx, index); 3044 mutex_unlock(&ctx->uring_lock); 3045 3046 flush_delayed_work(&ctx->fallback_work); 3047 3048 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3049 /* 3050 * Use system_unbound_wq to avoid spawning tons of event kworkers 3051 * if we're exiting a ton of rings at the same time. It just adds 3052 * noise and overhead, there's no discernable change in runtime 3053 * over using system_wq. 3054 */ 3055 queue_work(iou_wq, &ctx->exit_work); 3056 } 3057 3058 static int io_uring_release(struct inode *inode, struct file *file) 3059 { 3060 struct io_ring_ctx *ctx = file->private_data; 3061 3062 file->private_data = NULL; 3063 io_ring_ctx_wait_and_kill(ctx); 3064 return 0; 3065 } 3066 3067 struct io_task_cancel { 3068 struct io_uring_task *tctx; 3069 bool all; 3070 }; 3071 3072 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3073 { 3074 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3075 struct io_task_cancel *cancel = data; 3076 3077 return io_match_task_safe(req, cancel->tctx, cancel->all); 3078 } 3079 3080 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3081 struct io_uring_task *tctx, 3082 bool cancel_all) 3083 { 3084 struct io_defer_entry *de; 3085 LIST_HEAD(list); 3086 3087 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3088 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3089 list_cut_position(&list, &ctx->defer_list, &de->list); 3090 break; 3091 } 3092 } 3093 if (list_empty(&list)) 3094 return false; 3095 3096 while (!list_empty(&list)) { 3097 de = list_first_entry(&list, struct io_defer_entry, list); 3098 list_del_init(&de->list); 3099 ctx->nr_drained -= io_linked_nr(de->req); 3100 io_req_task_queue_fail(de->req, -ECANCELED); 3101 kfree(de); 3102 } 3103 return true; 3104 } 3105 3106 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3107 { 3108 struct io_tctx_node *node; 3109 enum io_wq_cancel cret; 3110 bool ret = false; 3111 3112 mutex_lock(&ctx->uring_lock); 3113 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3114 struct io_uring_task *tctx = node->task->io_uring; 3115 3116 /* 3117 * io_wq will stay alive while we hold uring_lock, because it's 3118 * killed after ctx nodes, which requires to take the lock. 3119 */ 3120 if (!tctx || !tctx->io_wq) 3121 continue; 3122 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3123 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3124 } 3125 mutex_unlock(&ctx->uring_lock); 3126 3127 return ret; 3128 } 3129 3130 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3131 struct io_uring_task *tctx, 3132 bool cancel_all, 3133 bool is_sqpoll_thread) 3134 { 3135 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3136 enum io_wq_cancel cret; 3137 bool ret = false; 3138 3139 /* set it so io_req_local_work_add() would wake us up */ 3140 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3141 atomic_set(&ctx->cq_wait_nr, 1); 3142 smp_mb(); 3143 } 3144 3145 /* failed during ring init, it couldn't have issued any requests */ 3146 if (!ctx->rings) 3147 return false; 3148 3149 if (!tctx) { 3150 ret |= io_uring_try_cancel_iowq(ctx); 3151 } else if (tctx->io_wq) { 3152 /* 3153 * Cancels requests of all rings, not only @ctx, but 3154 * it's fine as the task is in exit/exec. 3155 */ 3156 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3157 &cancel, true); 3158 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3159 } 3160 3161 /* SQPOLL thread does its own polling */ 3162 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3163 is_sqpoll_thread) { 3164 while (!wq_list_empty(&ctx->iopoll_list)) { 3165 io_iopoll_try_reap_events(ctx); 3166 ret = true; 3167 cond_resched(); 3168 } 3169 } 3170 3171 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3172 io_allowed_defer_tw_run(ctx)) 3173 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3174 mutex_lock(&ctx->uring_lock); 3175 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3176 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3177 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3178 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3179 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3180 mutex_unlock(&ctx->uring_lock); 3181 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3182 if (tctx) 3183 ret |= io_run_task_work() > 0; 3184 else 3185 ret |= flush_delayed_work(&ctx->fallback_work); 3186 return ret; 3187 } 3188 3189 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3190 { 3191 if (tracked) 3192 return atomic_read(&tctx->inflight_tracked); 3193 return percpu_counter_sum(&tctx->inflight); 3194 } 3195 3196 /* 3197 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3198 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3199 */ 3200 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3201 { 3202 struct io_uring_task *tctx = current->io_uring; 3203 struct io_ring_ctx *ctx; 3204 struct io_tctx_node *node; 3205 unsigned long index; 3206 s64 inflight; 3207 DEFINE_WAIT(wait); 3208 3209 WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current); 3210 3211 if (!current->io_uring) 3212 return; 3213 if (tctx->io_wq) 3214 io_wq_exit_start(tctx->io_wq); 3215 3216 atomic_inc(&tctx->in_cancel); 3217 do { 3218 bool loop = false; 3219 3220 io_uring_drop_tctx_refs(current); 3221 if (!tctx_inflight(tctx, !cancel_all)) 3222 break; 3223 3224 /* read completions before cancelations */ 3225 inflight = tctx_inflight(tctx, false); 3226 if (!inflight) 3227 break; 3228 3229 if (!sqd) { 3230 xa_for_each(&tctx->xa, index, node) { 3231 /* sqpoll task will cancel all its requests */ 3232 if (node->ctx->sq_data) 3233 continue; 3234 loop |= io_uring_try_cancel_requests(node->ctx, 3235 current->io_uring, 3236 cancel_all, 3237 false); 3238 } 3239 } else { 3240 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3241 loop |= io_uring_try_cancel_requests(ctx, 3242 current->io_uring, 3243 cancel_all, 3244 true); 3245 } 3246 3247 if (loop) { 3248 cond_resched(); 3249 continue; 3250 } 3251 3252 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3253 io_run_task_work(); 3254 io_uring_drop_tctx_refs(current); 3255 xa_for_each(&tctx->xa, index, node) { 3256 if (io_local_work_pending(node->ctx)) { 3257 WARN_ON_ONCE(node->ctx->submitter_task && 3258 node->ctx->submitter_task != current); 3259 goto end_wait; 3260 } 3261 } 3262 /* 3263 * If we've seen completions, retry without waiting. This 3264 * avoids a race where a completion comes in before we did 3265 * prepare_to_wait(). 3266 */ 3267 if (inflight == tctx_inflight(tctx, !cancel_all)) 3268 schedule(); 3269 end_wait: 3270 finish_wait(&tctx->wait, &wait); 3271 } while (1); 3272 3273 io_uring_clean_tctx(tctx); 3274 if (cancel_all) { 3275 /* 3276 * We shouldn't run task_works after cancel, so just leave 3277 * ->in_cancel set for normal exit. 3278 */ 3279 atomic_dec(&tctx->in_cancel); 3280 /* for exec all current's requests should be gone, kill tctx */ 3281 __io_uring_free(current); 3282 } 3283 } 3284 3285 void __io_uring_cancel(bool cancel_all) 3286 { 3287 io_uring_unreg_ringfd(); 3288 io_uring_cancel_generic(cancel_all, NULL); 3289 } 3290 3291 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3292 const struct io_uring_getevents_arg __user *uarg) 3293 { 3294 unsigned long size = sizeof(struct io_uring_reg_wait); 3295 unsigned long offset = (uintptr_t)uarg; 3296 unsigned long end; 3297 3298 if (unlikely(offset % sizeof(long))) 3299 return ERR_PTR(-EFAULT); 3300 3301 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3302 if (unlikely(check_add_overflow(offset, size, &end) || 3303 end > ctx->cq_wait_size)) 3304 return ERR_PTR(-EFAULT); 3305 3306 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3307 return ctx->cq_wait_arg + offset; 3308 } 3309 3310 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3311 const void __user *argp, size_t argsz) 3312 { 3313 struct io_uring_getevents_arg arg; 3314 3315 if (!(flags & IORING_ENTER_EXT_ARG)) 3316 return 0; 3317 if (flags & IORING_ENTER_EXT_ARG_REG) 3318 return -EINVAL; 3319 if (argsz != sizeof(arg)) 3320 return -EINVAL; 3321 if (copy_from_user(&arg, argp, sizeof(arg))) 3322 return -EFAULT; 3323 return 0; 3324 } 3325 3326 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3327 const void __user *argp, struct ext_arg *ext_arg) 3328 { 3329 const struct io_uring_getevents_arg __user *uarg = argp; 3330 struct io_uring_getevents_arg arg; 3331 3332 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3333 3334 /* 3335 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3336 * is just a pointer to the sigset_t. 3337 */ 3338 if (!(flags & IORING_ENTER_EXT_ARG)) { 3339 ext_arg->sig = (const sigset_t __user *) argp; 3340 return 0; 3341 } 3342 3343 if (flags & IORING_ENTER_EXT_ARG_REG) { 3344 struct io_uring_reg_wait *w; 3345 3346 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3347 return -EINVAL; 3348 w = io_get_ext_arg_reg(ctx, argp); 3349 if (IS_ERR(w)) 3350 return PTR_ERR(w); 3351 3352 if (w->flags & ~IORING_REG_WAIT_TS) 3353 return -EINVAL; 3354 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3355 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3356 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3357 if (w->flags & IORING_REG_WAIT_TS) { 3358 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3359 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3360 ext_arg->ts_set = true; 3361 } 3362 return 0; 3363 } 3364 3365 /* 3366 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3367 * timespec and sigset_t pointers if good. 3368 */ 3369 if (ext_arg->argsz != sizeof(arg)) 3370 return -EINVAL; 3371 #ifdef CONFIG_64BIT 3372 if (!user_access_begin(uarg, sizeof(*uarg))) 3373 return -EFAULT; 3374 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3375 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3376 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3377 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3378 user_access_end(); 3379 #else 3380 if (copy_from_user(&arg, uarg, sizeof(arg))) 3381 return -EFAULT; 3382 #endif 3383 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3384 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3385 ext_arg->argsz = arg.sigmask_sz; 3386 if (arg.ts) { 3387 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3388 return -EFAULT; 3389 ext_arg->ts_set = true; 3390 } 3391 return 0; 3392 #ifdef CONFIG_64BIT 3393 uaccess_end: 3394 user_access_end(); 3395 return -EFAULT; 3396 #endif 3397 } 3398 3399 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3400 u32, min_complete, u32, flags, const void __user *, argp, 3401 size_t, argsz) 3402 { 3403 struct io_ring_ctx *ctx; 3404 struct file *file; 3405 long ret; 3406 3407 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3408 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3409 IORING_ENTER_REGISTERED_RING | 3410 IORING_ENTER_ABS_TIMER | 3411 IORING_ENTER_EXT_ARG_REG | 3412 IORING_ENTER_NO_IOWAIT))) 3413 return -EINVAL; 3414 3415 /* 3416 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3417 * need only dereference our task private array to find it. 3418 */ 3419 if (flags & IORING_ENTER_REGISTERED_RING) { 3420 struct io_uring_task *tctx = current->io_uring; 3421 3422 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3423 return -EINVAL; 3424 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3425 file = tctx->registered_rings[fd]; 3426 if (unlikely(!file)) 3427 return -EBADF; 3428 } else { 3429 file = fget(fd); 3430 if (unlikely(!file)) 3431 return -EBADF; 3432 ret = -EOPNOTSUPP; 3433 if (unlikely(!io_is_uring_fops(file))) 3434 goto out; 3435 } 3436 3437 ctx = file->private_data; 3438 ret = -EBADFD; 3439 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3440 goto out; 3441 3442 /* 3443 * For SQ polling, the thread will do all submissions and completions. 3444 * Just return the requested submit count, and wake the thread if 3445 * we were asked to. 3446 */ 3447 ret = 0; 3448 if (ctx->flags & IORING_SETUP_SQPOLL) { 3449 if (unlikely(ctx->sq_data->thread == NULL)) { 3450 ret = -EOWNERDEAD; 3451 goto out; 3452 } 3453 if (flags & IORING_ENTER_SQ_WAKEUP) 3454 wake_up(&ctx->sq_data->wait); 3455 if (flags & IORING_ENTER_SQ_WAIT) 3456 io_sqpoll_wait_sq(ctx); 3457 3458 ret = to_submit; 3459 } else if (to_submit) { 3460 ret = io_uring_add_tctx_node(ctx); 3461 if (unlikely(ret)) 3462 goto out; 3463 3464 mutex_lock(&ctx->uring_lock); 3465 ret = io_submit_sqes(ctx, to_submit); 3466 if (ret != to_submit) { 3467 mutex_unlock(&ctx->uring_lock); 3468 goto out; 3469 } 3470 if (flags & IORING_ENTER_GETEVENTS) { 3471 if (ctx->syscall_iopoll) 3472 goto iopoll_locked; 3473 /* 3474 * Ignore errors, we'll soon call io_cqring_wait() and 3475 * it should handle ownership problems if any. 3476 */ 3477 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3478 (void)io_run_local_work_locked(ctx, min_complete); 3479 } 3480 mutex_unlock(&ctx->uring_lock); 3481 } 3482 3483 if (flags & IORING_ENTER_GETEVENTS) { 3484 int ret2; 3485 3486 if (ctx->syscall_iopoll) { 3487 /* 3488 * We disallow the app entering submit/complete with 3489 * polling, but we still need to lock the ring to 3490 * prevent racing with polled issue that got punted to 3491 * a workqueue. 3492 */ 3493 mutex_lock(&ctx->uring_lock); 3494 iopoll_locked: 3495 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3496 if (likely(!ret2)) 3497 ret2 = io_iopoll_check(ctx, min_complete); 3498 mutex_unlock(&ctx->uring_lock); 3499 } else { 3500 struct ext_arg ext_arg = { .argsz = argsz }; 3501 3502 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3503 if (likely(!ret2)) 3504 ret2 = io_cqring_wait(ctx, min_complete, flags, 3505 &ext_arg); 3506 } 3507 3508 if (!ret) { 3509 ret = ret2; 3510 3511 /* 3512 * EBADR indicates that one or more CQE were dropped. 3513 * Once the user has been informed we can clear the bit 3514 * as they are obviously ok with those drops. 3515 */ 3516 if (unlikely(ret2 == -EBADR)) 3517 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3518 &ctx->check_cq); 3519 } 3520 } 3521 out: 3522 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3523 fput(file); 3524 return ret; 3525 } 3526 3527 static const struct file_operations io_uring_fops = { 3528 .release = io_uring_release, 3529 .mmap = io_uring_mmap, 3530 .get_unmapped_area = io_uring_get_unmapped_area, 3531 #ifndef CONFIG_MMU 3532 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3533 #endif 3534 .poll = io_uring_poll, 3535 #ifdef CONFIG_PROC_FS 3536 .show_fdinfo = io_uring_show_fdinfo, 3537 #endif 3538 }; 3539 3540 bool io_is_uring_fops(struct file *file) 3541 { 3542 return file->f_op == &io_uring_fops; 3543 } 3544 3545 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3546 struct io_uring_params *p) 3547 { 3548 struct io_uring_region_desc rd; 3549 struct io_rings *rings; 3550 size_t size, sq_array_offset; 3551 int ret; 3552 3553 /* make sure these are sane, as we already accounted them */ 3554 ctx->sq_entries = p->sq_entries; 3555 ctx->cq_entries = p->cq_entries; 3556 3557 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3558 &sq_array_offset); 3559 if (size == SIZE_MAX) 3560 return -EOVERFLOW; 3561 3562 memset(&rd, 0, sizeof(rd)); 3563 rd.size = PAGE_ALIGN(size); 3564 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3565 rd.user_addr = p->cq_off.user_addr; 3566 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3567 } 3568 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3569 if (ret) 3570 return ret; 3571 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3572 3573 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3574 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3575 rings->sq_ring_mask = p->sq_entries - 1; 3576 rings->cq_ring_mask = p->cq_entries - 1; 3577 rings->sq_ring_entries = p->sq_entries; 3578 rings->cq_ring_entries = p->cq_entries; 3579 3580 if (p->flags & IORING_SETUP_SQE128) 3581 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3582 else 3583 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3584 if (size == SIZE_MAX) { 3585 io_rings_free(ctx); 3586 return -EOVERFLOW; 3587 } 3588 3589 memset(&rd, 0, sizeof(rd)); 3590 rd.size = PAGE_ALIGN(size); 3591 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3592 rd.user_addr = p->sq_off.user_addr; 3593 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3594 } 3595 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3596 if (ret) { 3597 io_rings_free(ctx); 3598 return ret; 3599 } 3600 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3601 return 0; 3602 } 3603 3604 static int io_uring_install_fd(struct file *file) 3605 { 3606 int fd; 3607 3608 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3609 if (fd < 0) 3610 return fd; 3611 fd_install(fd, file); 3612 return fd; 3613 } 3614 3615 /* 3616 * Allocate an anonymous fd, this is what constitutes the application 3617 * visible backing of an io_uring instance. The application mmaps this 3618 * fd to gain access to the SQ/CQ ring details. 3619 */ 3620 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3621 { 3622 /* Create a new inode so that the LSM can block the creation. */ 3623 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3624 O_RDWR | O_CLOEXEC, NULL); 3625 } 3626 3627 static int io_uring_sanitise_params(struct io_uring_params *p) 3628 { 3629 unsigned flags = p->flags; 3630 3631 /* There is no way to mmap rings without a real fd */ 3632 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3633 !(flags & IORING_SETUP_NO_MMAP)) 3634 return -EINVAL; 3635 3636 if (flags & IORING_SETUP_SQPOLL) { 3637 /* IPI related flags don't make sense with SQPOLL */ 3638 if (flags & (IORING_SETUP_COOP_TASKRUN | 3639 IORING_SETUP_TASKRUN_FLAG | 3640 IORING_SETUP_DEFER_TASKRUN)) 3641 return -EINVAL; 3642 } 3643 3644 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3645 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3646 IORING_SETUP_DEFER_TASKRUN))) 3647 return -EINVAL; 3648 } 3649 3650 /* HYBRID_IOPOLL only valid with IOPOLL */ 3651 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3652 return -EINVAL; 3653 3654 /* 3655 * For DEFER_TASKRUN we require the completion task to be the same as 3656 * the submission task. This implies that there is only one submitter. 3657 */ 3658 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3659 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3660 return -EINVAL; 3661 3662 return 0; 3663 } 3664 3665 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3666 { 3667 if (!entries) 3668 return -EINVAL; 3669 if (entries > IORING_MAX_ENTRIES) { 3670 if (!(p->flags & IORING_SETUP_CLAMP)) 3671 return -EINVAL; 3672 entries = IORING_MAX_ENTRIES; 3673 } 3674 3675 /* 3676 * Use twice as many entries for the CQ ring. It's possible for the 3677 * application to drive a higher depth than the size of the SQ ring, 3678 * since the sqes are only used at submission time. This allows for 3679 * some flexibility in overcommitting a bit. If the application has 3680 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3681 * of CQ ring entries manually. 3682 */ 3683 p->sq_entries = roundup_pow_of_two(entries); 3684 if (p->flags & IORING_SETUP_CQSIZE) { 3685 /* 3686 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3687 * to a power-of-two, if it isn't already. We do NOT impose 3688 * any cq vs sq ring sizing. 3689 */ 3690 if (!p->cq_entries) 3691 return -EINVAL; 3692 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3693 if (!(p->flags & IORING_SETUP_CLAMP)) 3694 return -EINVAL; 3695 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3696 } 3697 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3698 if (p->cq_entries < p->sq_entries) 3699 return -EINVAL; 3700 } else { 3701 p->cq_entries = 2 * p->sq_entries; 3702 } 3703 3704 p->sq_off.head = offsetof(struct io_rings, sq.head); 3705 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3706 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3707 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3708 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3709 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3710 p->sq_off.resv1 = 0; 3711 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3712 p->sq_off.user_addr = 0; 3713 3714 p->cq_off.head = offsetof(struct io_rings, cq.head); 3715 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3716 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3717 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3718 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3719 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3720 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3721 p->cq_off.resv1 = 0; 3722 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3723 p->cq_off.user_addr = 0; 3724 3725 return 0; 3726 } 3727 3728 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3729 struct io_uring_params __user *params) 3730 { 3731 struct io_ring_ctx *ctx; 3732 struct io_uring_task *tctx; 3733 struct file *file; 3734 int ret; 3735 3736 ret = io_uring_sanitise_params(p); 3737 if (ret) 3738 return ret; 3739 3740 ret = io_uring_fill_params(entries, p); 3741 if (unlikely(ret)) 3742 return ret; 3743 3744 ctx = io_ring_ctx_alloc(p); 3745 if (!ctx) 3746 return -ENOMEM; 3747 3748 ctx->clockid = CLOCK_MONOTONIC; 3749 ctx->clock_offset = 0; 3750 3751 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3752 static_branch_inc(&io_key_has_sqarray); 3753 3754 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3755 !(ctx->flags & IORING_SETUP_IOPOLL) && 3756 !(ctx->flags & IORING_SETUP_SQPOLL)) 3757 ctx->task_complete = true; 3758 3759 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3760 ctx->lockless_cq = true; 3761 3762 /* 3763 * lazy poll_wq activation relies on ->task_complete for synchronisation 3764 * purposes, see io_activate_pollwq() 3765 */ 3766 if (!ctx->task_complete) 3767 ctx->poll_activated = true; 3768 3769 /* 3770 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3771 * space applications don't need to do io completion events 3772 * polling again, they can rely on io_sq_thread to do polling 3773 * work, which can reduce cpu usage and uring_lock contention. 3774 */ 3775 if (ctx->flags & IORING_SETUP_IOPOLL && 3776 !(ctx->flags & IORING_SETUP_SQPOLL)) 3777 ctx->syscall_iopoll = 1; 3778 3779 ctx->compat = in_compat_syscall(); 3780 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3781 ctx->user = get_uid(current_user()); 3782 3783 /* 3784 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3785 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3786 */ 3787 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3788 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3789 else 3790 ctx->notify_method = TWA_SIGNAL; 3791 3792 /* 3793 * This is just grabbed for accounting purposes. When a process exits, 3794 * the mm is exited and dropped before the files, hence we need to hang 3795 * on to this mm purely for the purposes of being able to unaccount 3796 * memory (locked/pinned vm). It's not used for anything else. 3797 */ 3798 mmgrab(current->mm); 3799 ctx->mm_account = current->mm; 3800 3801 ret = io_allocate_scq_urings(ctx, p); 3802 if (ret) 3803 goto err; 3804 3805 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3806 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3807 3808 ret = io_sq_offload_create(ctx, p); 3809 if (ret) 3810 goto err; 3811 3812 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3813 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3814 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3815 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3816 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3817 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3818 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3819 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3820 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3821 3822 if (copy_to_user(params, p, sizeof(*p))) { 3823 ret = -EFAULT; 3824 goto err; 3825 } 3826 3827 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3828 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3829 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3830 3831 file = io_uring_get_file(ctx); 3832 if (IS_ERR(file)) { 3833 ret = PTR_ERR(file); 3834 goto err; 3835 } 3836 3837 ret = __io_uring_add_tctx_node(ctx); 3838 if (ret) 3839 goto err_fput; 3840 tctx = current->io_uring; 3841 3842 /* 3843 * Install ring fd as the very last thing, so we don't risk someone 3844 * having closed it before we finish setup 3845 */ 3846 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3847 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3848 else 3849 ret = io_uring_install_fd(file); 3850 if (ret < 0) 3851 goto err_fput; 3852 3853 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3854 return ret; 3855 err: 3856 io_ring_ctx_wait_and_kill(ctx); 3857 return ret; 3858 err_fput: 3859 fput(file); 3860 return ret; 3861 } 3862 3863 /* 3864 * Sets up an aio uring context, and returns the fd. Applications asks for a 3865 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3866 * params structure passed in. 3867 */ 3868 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3869 { 3870 struct io_uring_params p; 3871 int i; 3872 3873 if (copy_from_user(&p, params, sizeof(p))) 3874 return -EFAULT; 3875 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3876 if (p.resv[i]) 3877 return -EINVAL; 3878 } 3879 3880 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3881 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3882 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3883 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3884 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3885 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3886 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3887 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3888 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3889 return -EINVAL; 3890 3891 return io_uring_create(entries, &p, params); 3892 } 3893 3894 static inline int io_uring_allowed(void) 3895 { 3896 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3897 kgid_t io_uring_group; 3898 3899 if (disabled == 2) 3900 return -EPERM; 3901 3902 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3903 goto allowed_lsm; 3904 3905 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3906 if (!gid_valid(io_uring_group)) 3907 return -EPERM; 3908 3909 if (!in_group_p(io_uring_group)) 3910 return -EPERM; 3911 3912 allowed_lsm: 3913 return security_uring_allowed(); 3914 } 3915 3916 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3917 struct io_uring_params __user *, params) 3918 { 3919 int ret; 3920 3921 ret = io_uring_allowed(); 3922 if (ret) 3923 return ret; 3924 3925 return io_uring_setup(entries, params); 3926 } 3927 3928 static int __init io_uring_init(void) 3929 { 3930 struct kmem_cache_args kmem_args = { 3931 .useroffset = offsetof(struct io_kiocb, cmd.data), 3932 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3933 .freeptr_offset = offsetof(struct io_kiocb, work), 3934 .use_freeptr_offset = true, 3935 }; 3936 3937 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3938 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3939 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3940 } while (0) 3941 3942 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3943 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3944 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3945 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3946 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3947 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3948 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3949 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3950 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3951 BUILD_BUG_SQE_ELEM(8, __u64, off); 3952 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3953 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3954 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3955 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3956 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3957 BUILD_BUG_SQE_ELEM(24, __u32, len); 3958 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3959 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3960 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3961 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3962 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3963 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3964 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3965 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3966 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3967 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3968 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3969 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3970 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3971 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3972 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3973 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3974 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3975 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3976 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3977 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3978 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3979 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3980 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3981 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3982 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3983 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3984 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3985 BUILD_BUG_SQE_ELEM(44, __u8, write_stream); 3986 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]); 3987 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3988 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3989 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3990 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3991 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3992 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3993 3994 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3995 sizeof(struct io_uring_rsrc_update)); 3996 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3997 sizeof(struct io_uring_rsrc_update2)); 3998 3999 /* ->buf_index is u16 */ 4000 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4001 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4002 offsetof(struct io_uring_buf_ring, tail)); 4003 4004 /* should fit into one byte */ 4005 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4006 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4007 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4008 4009 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 4010 4011 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4012 4013 /* top 8bits are for internal use */ 4014 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4015 4016 io_uring_optable_init(); 4017 4018 /* imu->dir is u8 */ 4019 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 4020 4021 /* 4022 * Allow user copy in the per-command field, which starts after the 4023 * file in io_kiocb and until the opcode field. The openat2 handling 4024 * requires copying in user memory into the io_kiocb object in that 4025 * range, and HARDENED_USERCOPY will complain if we haven't 4026 * correctly annotated this range. 4027 */ 4028 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 4029 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 4030 SLAB_TYPESAFE_BY_RCU); 4031 4032 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 4033 BUG_ON(!iou_wq); 4034 4035 #ifdef CONFIG_SYSCTL 4036 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4037 #endif 4038 4039 return 0; 4040 }; 4041 __initcall(io_uring_init); 4042