1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15
16 #include <uapi/linux/io_uring.h>
17
18 #include "filetable.h"
19 #include "io_uring.h"
20 #include "opdef.h"
21 #include "kbuf.h"
22 #include "alloc_cache.h"
23 #include "rsrc.h"
24 #include "poll.h"
25 #include "rw.h"
26
27 static void io_complete_rw(struct kiocb *kiocb, long res);
28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
29
30 struct io_rw {
31 /* NOTE: kiocb has the file as the first member, so don't do it here */
32 struct kiocb kiocb;
33 u64 addr;
34 u32 len;
35 rwf_t flags;
36 };
37
io_file_supports_nowait(struct io_kiocb * req,__poll_t mask)38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
39 {
40 /* If FMODE_NOWAIT is set for a file, we're golden */
41 if (req->flags & REQ_F_SUPPORT_NOWAIT)
42 return true;
43 /* No FMODE_NOWAIT, if we can poll, check the status */
44 if (io_file_can_poll(req)) {
45 struct poll_table_struct pt = { ._key = mask };
46
47 return vfs_poll(req->file, &pt) & mask;
48 }
49 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
50 return false;
51 }
52
io_iov_compat_buffer_select_prep(struct io_rw * rw)53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
56 struct compat_iovec iov;
57
58 if (copy_from_user(&iov, uiov, sizeof(iov)))
59 return -EFAULT;
60 rw->len = iov.iov_len;
61 return 0;
62 }
63
io_iov_buffer_select_prep(struct io_kiocb * req)64 static int io_iov_buffer_select_prep(struct io_kiocb *req)
65 {
66 struct iovec __user *uiov;
67 struct iovec iov;
68 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
69
70 if (rw->len != 1)
71 return -EINVAL;
72
73 if (io_is_compat(req->ctx))
74 return io_iov_compat_buffer_select_prep(rw);
75
76 uiov = u64_to_user_ptr(rw->addr);
77 if (copy_from_user(&iov, uiov, sizeof(*uiov)))
78 return -EFAULT;
79 rw->len = iov.iov_len;
80 return 0;
81 }
82
io_import_vec(int ddir,struct io_kiocb * req,struct io_async_rw * io,const struct iovec __user * uvec,size_t uvec_segs)83 static int io_import_vec(int ddir, struct io_kiocb *req,
84 struct io_async_rw *io,
85 const struct iovec __user *uvec,
86 size_t uvec_segs)
87 {
88 int ret, nr_segs;
89 struct iovec *iov;
90
91 if (io->vec.iovec) {
92 nr_segs = io->vec.nr;
93 iov = io->vec.iovec;
94 } else {
95 nr_segs = 1;
96 iov = &io->fast_iov;
97 }
98
99 ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
100 io_is_compat(req->ctx));
101 if (unlikely(ret < 0))
102 return ret;
103 if (iov) {
104 req->flags |= REQ_F_NEED_CLEANUP;
105 io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
106 }
107 return 0;
108 }
109
__io_import_rw_buffer(int ddir,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
111 struct io_async_rw *io, struct io_br_sel *sel,
112 unsigned int issue_flags)
113 {
114 const struct io_issue_def *def = &io_issue_defs[req->opcode];
115 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
116 size_t sqe_len = rw->len;
117
118 sel->addr = u64_to_user_ptr(rw->addr);
119 if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
120 return io_import_vec(ddir, req, io, sel->addr, sqe_len);
121
122 if (io_do_buffer_select(req)) {
123 *sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
124 if (!sel->addr)
125 return -ENOBUFS;
126 rw->addr = (unsigned long) sel->addr;
127 rw->len = sqe_len;
128 }
129 return import_ubuf(ddir, sel->addr, sqe_len, &io->iter);
130 }
131
io_import_rw_buffer(int rw,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
133 struct io_async_rw *io,
134 struct io_br_sel *sel,
135 unsigned int issue_flags)
136 {
137 int ret;
138
139 ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags);
140 if (unlikely(ret < 0))
141 return ret;
142
143 iov_iter_save_state(&io->iter, &io->iter_state);
144 return 0;
145 }
146
io_rw_recycle(struct io_kiocb * req,unsigned int issue_flags)147 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
148 {
149 struct io_async_rw *rw = req->async_data;
150
151 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
152 return;
153
154 io_alloc_cache_vec_kasan(&rw->vec);
155 if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
156 io_vec_free(&rw->vec);
157
158 if (io_alloc_cache_put(&req->ctx->rw_cache, rw))
159 io_req_async_data_clear(req, 0);
160 }
161
io_req_rw_cleanup(struct io_kiocb * req,unsigned int issue_flags)162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
163 {
164 /*
165 * Disable quick recycling for anything that's gone through io-wq.
166 * In theory, this should be fine to cleanup. However, some read or
167 * write iter handling touches the iovec AFTER having called into the
168 * handler, eg to reexpand or revert. This means we can have:
169 *
170 * task io-wq
171 * issue
172 * punt to io-wq
173 * issue
174 * blkdev_write_iter()
175 * ->ki_complete()
176 * io_complete_rw()
177 * queue tw complete
178 * run tw
179 * req_rw_cleanup
180 * iov_iter_count() <- look at iov_iter again
181 *
182 * which can lead to a UAF. This is only possible for io-wq offload
183 * as the cleanup can run in parallel. As io-wq is not the fast path,
184 * just leave cleanup to the end.
185 *
186 * This is really a bug in the core code that does this, any issue
187 * path should assume that a successful (or -EIOCBQUEUED) return can
188 * mean that the underlying data can be gone at any time. But that
189 * should be fixed separately, and then this check could be killed.
190 */
191 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
192 req->flags &= ~REQ_F_NEED_CLEANUP;
193 io_rw_recycle(req, issue_flags);
194 }
195 }
196
io_rw_alloc_async(struct io_kiocb * req)197 static int io_rw_alloc_async(struct io_kiocb *req)
198 {
199 struct io_ring_ctx *ctx = req->ctx;
200 struct io_async_rw *rw;
201
202 rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
203 if (!rw)
204 return -ENOMEM;
205 if (rw->vec.iovec)
206 req->flags |= REQ_F_NEED_CLEANUP;
207 rw->bytes_done = 0;
208 return 0;
209 }
210
io_meta_save_state(struct io_async_rw * io)211 static inline void io_meta_save_state(struct io_async_rw *io)
212 {
213 io->meta_state.seed = io->meta.seed;
214 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
215 }
216
io_meta_restore(struct io_async_rw * io,struct kiocb * kiocb)217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
218 {
219 if (kiocb->ki_flags & IOCB_HAS_METADATA) {
220 io->meta.seed = io->meta_state.seed;
221 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
222 }
223 }
224
io_prep_rw_pi(struct io_kiocb * req,struct io_rw * rw,int ddir,u64 attr_ptr,u64 attr_type_mask)225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
226 u64 attr_ptr, u64 attr_type_mask)
227 {
228 struct io_uring_attr_pi pi_attr;
229 struct io_async_rw *io;
230 int ret;
231
232 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
233 sizeof(pi_attr)))
234 return -EFAULT;
235
236 if (pi_attr.rsvd)
237 return -EINVAL;
238
239 io = req->async_data;
240 io->meta.flags = pi_attr.flags;
241 io->meta.app_tag = pi_attr.app_tag;
242 io->meta.seed = pi_attr.seed;
243 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
244 pi_attr.len, &io->meta.iter);
245 if (unlikely(ret < 0))
246 return ret;
247 req->flags |= REQ_F_HAS_METADATA;
248 io_meta_save_state(io);
249 return ret;
250 }
251
__io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
253 int ddir)
254 {
255 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
256 struct io_async_rw *io;
257 unsigned ioprio;
258 u64 attr_type_mask;
259 int ret;
260
261 if (io_rw_alloc_async(req))
262 return -ENOMEM;
263 io = req->async_data;
264
265 rw->kiocb.ki_pos = READ_ONCE(sqe->off);
266 /* used for fixed read/write too - just read unconditionally */
267 req->buf_index = READ_ONCE(sqe->buf_index);
268 io->buf_group = req->buf_index;
269
270 ioprio = READ_ONCE(sqe->ioprio);
271 if (ioprio) {
272 ret = ioprio_check_cap(ioprio);
273 if (ret)
274 return ret;
275
276 rw->kiocb.ki_ioprio = ioprio;
277 } else {
278 rw->kiocb.ki_ioprio = get_current_ioprio();
279 }
280 rw->kiocb.ki_flags = 0;
281 rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
282
283 if (req->ctx->flags & IORING_SETUP_IOPOLL)
284 rw->kiocb.ki_complete = io_complete_rw_iopoll;
285 else
286 rw->kiocb.ki_complete = io_complete_rw;
287
288 rw->addr = READ_ONCE(sqe->addr);
289 rw->len = READ_ONCE(sqe->len);
290 rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags);
291
292 attr_type_mask = READ_ONCE(sqe->attr_type_mask);
293 if (attr_type_mask) {
294 u64 attr_ptr;
295
296 /* only PI attribute is supported currently */
297 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
298 return -EINVAL;
299
300 attr_ptr = READ_ONCE(sqe->attr_ptr);
301 return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
302 }
303 return 0;
304 }
305
io_rw_do_import(struct io_kiocb * req,int ddir)306 static int io_rw_do_import(struct io_kiocb *req, int ddir)
307 {
308 struct io_br_sel sel = { };
309
310 if (io_do_buffer_select(req))
311 return 0;
312
313 return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0);
314 }
315
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)316 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
317 int ddir)
318 {
319 int ret;
320
321 ret = __io_prep_rw(req, sqe, ddir);
322 if (unlikely(ret))
323 return ret;
324
325 return io_rw_do_import(req, ddir);
326 }
327
io_prep_read(struct io_kiocb * req,const struct io_uring_sqe * sqe)328 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
329 {
330 return io_prep_rw(req, sqe, ITER_DEST);
331 }
332
io_prep_write(struct io_kiocb * req,const struct io_uring_sqe * sqe)333 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
334 {
335 return io_prep_rw(req, sqe, ITER_SOURCE);
336 }
337
io_prep_rwv(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)338 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
339 int ddir)
340 {
341 int ret;
342
343 ret = io_prep_rw(req, sqe, ddir);
344 if (unlikely(ret))
345 return ret;
346 if (!(req->flags & REQ_F_BUFFER_SELECT))
347 return 0;
348
349 /*
350 * Have to do this validation here, as this is in io_read() rw->len
351 * might have changed due to buffer selection
352 */
353 return io_iov_buffer_select_prep(req);
354 }
355
io_prep_readv(struct io_kiocb * req,const struct io_uring_sqe * sqe)356 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
357 {
358 return io_prep_rwv(req, sqe, ITER_DEST);
359 }
360
io_prep_writev(struct io_kiocb * req,const struct io_uring_sqe * sqe)361 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
362 {
363 return io_prep_rwv(req, sqe, ITER_SOURCE);
364 }
365
io_init_rw_fixed(struct io_kiocb * req,unsigned int issue_flags,int ddir)366 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
367 int ddir)
368 {
369 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
370 struct io_async_rw *io = req->async_data;
371 int ret;
372
373 if (io->bytes_done)
374 return 0;
375
376 ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
377 issue_flags);
378 iov_iter_save_state(&io->iter, &io->iter_state);
379 return ret;
380 }
381
io_prep_read_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)382 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
383 {
384 return __io_prep_rw(req, sqe, ITER_DEST);
385 }
386
io_prep_write_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)387 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
388 {
389 return __io_prep_rw(req, sqe, ITER_SOURCE);
390 }
391
io_rw_import_reg_vec(struct io_kiocb * req,struct io_async_rw * io,int ddir,unsigned int issue_flags)392 static int io_rw_import_reg_vec(struct io_kiocb *req,
393 struct io_async_rw *io,
394 int ddir, unsigned int issue_flags)
395 {
396 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
397 unsigned uvec_segs = rw->len;
398 int ret;
399
400 ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
401 uvec_segs, issue_flags);
402 if (unlikely(ret))
403 return ret;
404 iov_iter_save_state(&io->iter, &io->iter_state);
405 req->flags &= ~REQ_F_IMPORT_BUFFER;
406 return 0;
407 }
408
io_rw_prep_reg_vec(struct io_kiocb * req)409 static int io_rw_prep_reg_vec(struct io_kiocb *req)
410 {
411 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
412 struct io_async_rw *io = req->async_data;
413 const struct iovec __user *uvec;
414
415 uvec = u64_to_user_ptr(rw->addr);
416 return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
417 }
418
io_prep_readv_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)419 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
420 {
421 int ret;
422
423 ret = __io_prep_rw(req, sqe, ITER_DEST);
424 if (unlikely(ret))
425 return ret;
426 return io_rw_prep_reg_vec(req);
427 }
428
io_prep_writev_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)429 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
430 {
431 int ret;
432
433 ret = __io_prep_rw(req, sqe, ITER_SOURCE);
434 if (unlikely(ret))
435 return ret;
436 return io_rw_prep_reg_vec(req);
437 }
438
439 /*
440 * Multishot read is prepared just like a normal read/write request, only
441 * difference is that we set the MULTISHOT flag.
442 */
io_read_mshot_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)443 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
444 {
445 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
446 int ret;
447
448 /* must be used with provided buffers */
449 if (!(req->flags & REQ_F_BUFFER_SELECT))
450 return -EINVAL;
451
452 ret = __io_prep_rw(req, sqe, ITER_DEST);
453 if (unlikely(ret))
454 return ret;
455
456 if (rw->addr || rw->len)
457 return -EINVAL;
458
459 req->flags |= REQ_F_APOLL_MULTISHOT;
460 return 0;
461 }
462
io_readv_writev_cleanup(struct io_kiocb * req)463 void io_readv_writev_cleanup(struct io_kiocb *req)
464 {
465 struct io_async_rw *rw = req->async_data;
466
467 lockdep_assert_held(&req->ctx->uring_lock);
468 io_vec_free(&rw->vec);
469 io_rw_recycle(req, 0);
470 }
471
io_kiocb_update_pos(struct io_kiocb * req)472 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
473 {
474 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
475
476 if (rw->kiocb.ki_pos != -1)
477 return &rw->kiocb.ki_pos;
478
479 if (!(req->file->f_mode & FMODE_STREAM)) {
480 req->flags |= REQ_F_CUR_POS;
481 rw->kiocb.ki_pos = req->file->f_pos;
482 return &rw->kiocb.ki_pos;
483 }
484
485 rw->kiocb.ki_pos = 0;
486 return NULL;
487 }
488
io_rw_should_reissue(struct io_kiocb * req)489 static bool io_rw_should_reissue(struct io_kiocb *req)
490 {
491 #ifdef CONFIG_BLOCK
492 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
493 umode_t mode = file_inode(req->file)->i_mode;
494 struct io_async_rw *io = req->async_data;
495 struct io_ring_ctx *ctx = req->ctx;
496
497 if (!S_ISBLK(mode) && !S_ISREG(mode))
498 return false;
499 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
500 !(ctx->flags & IORING_SETUP_IOPOLL)))
501 return false;
502 /*
503 * If ref is dying, we might be running poll reap from the exit work.
504 * Don't attempt to reissue from that path, just let it fail with
505 * -EAGAIN.
506 */
507 if (percpu_ref_is_dying(&ctx->refs))
508 return false;
509
510 io_meta_restore(io, &rw->kiocb);
511 iov_iter_restore(&io->iter, &io->iter_state);
512 return true;
513 #else
514 return false;
515 #endif
516 }
517
io_req_end_write(struct io_kiocb * req)518 static void io_req_end_write(struct io_kiocb *req)
519 {
520 if (req->flags & REQ_F_ISREG) {
521 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
522
523 kiocb_end_write(&rw->kiocb);
524 }
525 }
526
527 /*
528 * Trigger the notifications after having done some IO, and finish the write
529 * accounting, if any.
530 */
io_req_io_end(struct io_kiocb * req)531 static void io_req_io_end(struct io_kiocb *req)
532 {
533 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
534
535 if (rw->kiocb.ki_flags & IOCB_WRITE) {
536 io_req_end_write(req);
537 fsnotify_modify(req->file);
538 } else {
539 fsnotify_access(req->file);
540 }
541 }
542
__io_complete_rw_common(struct io_kiocb * req,long res)543 static void __io_complete_rw_common(struct io_kiocb *req, long res)
544 {
545 if (res == req->cqe.res)
546 return;
547 if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) {
548 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
549 } else {
550 req_set_fail(req);
551 req->cqe.res = res;
552 }
553 }
554
io_fixup_rw_res(struct io_kiocb * req,long res)555 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
556 {
557 struct io_async_rw *io = req->async_data;
558
559 /* add previously done IO, if any */
560 if (req_has_async_data(req) && io->bytes_done > 0) {
561 if (res < 0)
562 res = io->bytes_done;
563 else
564 res += io->bytes_done;
565 }
566 return res;
567 }
568
io_req_rw_complete(struct io_tw_req tw_req,io_tw_token_t tw)569 void io_req_rw_complete(struct io_tw_req tw_req, io_tw_token_t tw)
570 {
571 struct io_kiocb *req = tw_req.req;
572
573 io_req_io_end(req);
574
575 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
576 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL);
577
578 io_req_rw_cleanup(req, 0);
579 io_req_task_complete(tw_req, tw);
580 }
581
io_complete_rw(struct kiocb * kiocb,long res)582 static void io_complete_rw(struct kiocb *kiocb, long res)
583 {
584 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
585 struct io_kiocb *req = cmd_to_io_kiocb(rw);
586
587 __io_complete_rw_common(req, res);
588 io_req_set_res(req, io_fixup_rw_res(req, res), 0);
589 req->io_task_work.func = io_req_rw_complete;
590 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
591 }
592
io_complete_rw_iopoll(struct kiocb * kiocb,long res)593 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
594 {
595 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
596 struct io_kiocb *req = cmd_to_io_kiocb(rw);
597
598 if (kiocb->ki_flags & IOCB_WRITE)
599 io_req_end_write(req);
600 if (unlikely(res != req->cqe.res)) {
601 if (res == -EAGAIN && io_rw_should_reissue(req))
602 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
603 else
604 req->cqe.res = res;
605 }
606
607 /* order with io_iopoll_complete() checking ->iopoll_completed */
608 smp_store_release(&req->iopoll_completed, 1);
609 }
610
io_rw_done(struct io_kiocb * req,ssize_t ret)611 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
612 {
613 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
614
615 /* IO was queued async, completion will happen later */
616 if (ret == -EIOCBQUEUED)
617 return;
618
619 /* transform internal restart error codes */
620 if (unlikely(ret < 0)) {
621 switch (ret) {
622 case -ERESTARTSYS:
623 case -ERESTARTNOINTR:
624 case -ERESTARTNOHAND:
625 case -ERESTART_RESTARTBLOCK:
626 /*
627 * We can't just restart the syscall, since previously
628 * submitted sqes may already be in progress. Just fail
629 * this IO with EINTR.
630 */
631 ret = -EINTR;
632 break;
633 }
634 }
635
636 if (req->ctx->flags & IORING_SETUP_IOPOLL)
637 io_complete_rw_iopoll(&rw->kiocb, ret);
638 else
639 io_complete_rw(&rw->kiocb, ret);
640 }
641
kiocb_done(struct io_kiocb * req,ssize_t ret,struct io_br_sel * sel,unsigned int issue_flags)642 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
643 struct io_br_sel *sel, unsigned int issue_flags)
644 {
645 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
646 unsigned final_ret = io_fixup_rw_res(req, ret);
647
648 if (ret >= 0 && req->flags & REQ_F_CUR_POS)
649 req->file->f_pos = rw->kiocb.ki_pos;
650 if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
651 u32 cflags = 0;
652
653 __io_complete_rw_common(req, ret);
654 /*
655 * Safe to call io_end from here as we're inline
656 * from the submission path.
657 */
658 io_req_io_end(req);
659 if (sel)
660 cflags = io_put_kbuf(req, ret, sel->buf_list);
661 io_req_set_res(req, final_ret, cflags);
662 io_req_rw_cleanup(req, issue_flags);
663 return IOU_COMPLETE;
664 } else {
665 io_rw_done(req, ret);
666 }
667
668 return IOU_ISSUE_SKIP_COMPLETE;
669 }
670
io_kiocb_ppos(struct kiocb * kiocb)671 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
672 {
673 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
674 }
675
676 /*
677 * For files that don't have ->read_iter() and ->write_iter(), handle them
678 * by looping over ->read() or ->write() manually.
679 */
loop_rw_iter(int ddir,struct io_rw * rw,struct iov_iter * iter)680 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
681 {
682 struct io_kiocb *req = cmd_to_io_kiocb(rw);
683 struct kiocb *kiocb = &rw->kiocb;
684 struct file *file = kiocb->ki_filp;
685 ssize_t ret = 0;
686 loff_t *ppos;
687
688 /*
689 * Don't support polled IO through this interface, and we can't
690 * support non-blocking either. For the latter, this just causes
691 * the kiocb to be handled from an async context.
692 */
693 if (kiocb->ki_flags & IOCB_HIPRI)
694 return -EOPNOTSUPP;
695 if ((kiocb->ki_flags & IOCB_NOWAIT) &&
696 !(kiocb->ki_filp->f_flags & O_NONBLOCK))
697 return -EAGAIN;
698 if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
699 return -EFAULT;
700
701 ppos = io_kiocb_ppos(kiocb);
702
703 while (iov_iter_count(iter)) {
704 void __user *addr;
705 size_t len;
706 ssize_t nr;
707
708 if (iter_is_ubuf(iter)) {
709 addr = iter->ubuf + iter->iov_offset;
710 len = iov_iter_count(iter);
711 } else if (!iov_iter_is_bvec(iter)) {
712 addr = iter_iov_addr(iter);
713 len = iter_iov_len(iter);
714 } else {
715 addr = u64_to_user_ptr(rw->addr);
716 len = rw->len;
717 }
718
719 if (ddir == READ)
720 nr = file->f_op->read(file, addr, len, ppos);
721 else
722 nr = file->f_op->write(file, addr, len, ppos);
723
724 if (nr < 0) {
725 if (!ret)
726 ret = nr;
727 break;
728 }
729 ret += nr;
730 if (!iov_iter_is_bvec(iter)) {
731 iov_iter_advance(iter, nr);
732 } else {
733 rw->addr += nr;
734 rw->len -= nr;
735 if (!rw->len)
736 break;
737 }
738 if (nr != len)
739 break;
740 }
741
742 return ret;
743 }
744
745 /*
746 * This is our waitqueue callback handler, registered through __folio_lock_async()
747 * when we initially tried to do the IO with the iocb armed our waitqueue.
748 * This gets called when the page is unlocked, and we generally expect that to
749 * happen when the page IO is completed and the page is now uptodate. This will
750 * queue a task_work based retry of the operation, attempting to copy the data
751 * again. If the latter fails because the page was NOT uptodate, then we will
752 * do a thread based blocking retry of the operation. That's the unexpected
753 * slow path.
754 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)755 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
756 int sync, void *arg)
757 {
758 struct wait_page_queue *wpq;
759 struct io_kiocb *req = wait->private;
760 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
761 struct wait_page_key *key = arg;
762
763 wpq = container_of(wait, struct wait_page_queue, wait);
764
765 if (!wake_page_match(wpq, key))
766 return 0;
767
768 rw->kiocb.ki_flags &= ~IOCB_WAITQ;
769 list_del_init(&wait->entry);
770 io_req_task_queue(req);
771 return 1;
772 }
773
774 /*
775 * This controls whether a given IO request should be armed for async page
776 * based retry. If we return false here, the request is handed to the async
777 * worker threads for retry. If we're doing buffered reads on a regular file,
778 * we prepare a private wait_page_queue entry and retry the operation. This
779 * will either succeed because the page is now uptodate and unlocked, or it
780 * will register a callback when the page is unlocked at IO completion. Through
781 * that callback, io_uring uses task_work to setup a retry of the operation.
782 * That retry will attempt the buffered read again. The retry will generally
783 * succeed, or in rare cases where it fails, we then fall back to using the
784 * async worker threads for a blocking retry.
785 */
io_rw_should_retry(struct io_kiocb * req)786 static bool io_rw_should_retry(struct io_kiocb *req)
787 {
788 struct io_async_rw *io = req->async_data;
789 struct wait_page_queue *wait = &io->wpq;
790 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
791 struct kiocb *kiocb = &rw->kiocb;
792
793 /*
794 * Never retry for NOWAIT or a request with metadata, we just complete
795 * with -EAGAIN.
796 */
797 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
798 return false;
799
800 /* Only for buffered IO */
801 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
802 return false;
803
804 /*
805 * just use poll if we can, and don't attempt if the fs doesn't
806 * support callback based unlocks
807 */
808 if (io_file_can_poll(req) ||
809 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
810 return false;
811
812 wait->wait.func = io_async_buf_func;
813 wait->wait.private = req;
814 wait->wait.flags = 0;
815 INIT_LIST_HEAD(&wait->wait.entry);
816 kiocb->ki_flags |= IOCB_WAITQ;
817 kiocb->ki_flags &= ~IOCB_NOWAIT;
818 kiocb->ki_waitq = wait;
819 return true;
820 }
821
io_iter_do_read(struct io_rw * rw,struct iov_iter * iter)822 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
823 {
824 struct file *file = rw->kiocb.ki_filp;
825
826 if (likely(file->f_op->read_iter))
827 return file->f_op->read_iter(&rw->kiocb, iter);
828 else if (file->f_op->read)
829 return loop_rw_iter(READ, rw, iter);
830 else
831 return -EINVAL;
832 }
833
need_complete_io(struct io_kiocb * req)834 static bool need_complete_io(struct io_kiocb *req)
835 {
836 return req->flags & REQ_F_ISREG ||
837 S_ISBLK(file_inode(req->file)->i_mode);
838 }
839
io_rw_init_file(struct io_kiocb * req,fmode_t mode,int rw_type)840 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
841 {
842 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
843 struct kiocb *kiocb = &rw->kiocb;
844 struct io_ring_ctx *ctx = req->ctx;
845 struct file *file = req->file;
846 int ret;
847
848 if (unlikely(!(file->f_mode & mode)))
849 return -EBADF;
850
851 if (!(req->flags & REQ_F_FIXED_FILE))
852 req->flags |= io_file_get_flags(file);
853
854 kiocb->ki_flags = file->f_iocb_flags;
855 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
856 if (unlikely(ret))
857 return ret;
858
859 /*
860 * If the file is marked O_NONBLOCK, still allow retry for it if it
861 * supports async. Otherwise it's impossible to use O_NONBLOCK files
862 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
863 */
864 if (kiocb->ki_flags & IOCB_NOWAIT ||
865 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
866 req->flags |= REQ_F_NOWAIT;
867
868 if (ctx->flags & IORING_SETUP_IOPOLL) {
869 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
870 return -EOPNOTSUPP;
871 kiocb->private = NULL;
872 kiocb->ki_flags |= IOCB_HIPRI;
873 req->iopoll_completed = 0;
874 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
875 /* make sure every req only blocks once*/
876 req->flags &= ~REQ_F_IOPOLL_STATE;
877 req->iopoll_start = ktime_get_ns();
878 }
879 } else {
880 if (kiocb->ki_flags & IOCB_HIPRI)
881 return -EINVAL;
882 }
883
884 if (req->flags & REQ_F_HAS_METADATA) {
885 struct io_async_rw *io = req->async_data;
886
887 if (!(file->f_mode & FMODE_HAS_METADATA))
888 return -EINVAL;
889
890 /*
891 * We have a union of meta fields with wpq used for buffered-io
892 * in io_async_rw, so fail it here.
893 */
894 if (!(req->file->f_flags & O_DIRECT))
895 return -EOPNOTSUPP;
896 kiocb->ki_flags |= IOCB_HAS_METADATA;
897 kiocb->private = &io->meta;
898 }
899
900 return 0;
901 }
902
__io_read(struct io_kiocb * req,struct io_br_sel * sel,unsigned int issue_flags)903 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel,
904 unsigned int issue_flags)
905 {
906 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
907 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
908 struct io_async_rw *io = req->async_data;
909 struct kiocb *kiocb = &rw->kiocb;
910 ssize_t ret;
911 loff_t *ppos;
912
913 if (req->flags & REQ_F_IMPORT_BUFFER) {
914 ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
915 if (unlikely(ret))
916 return ret;
917 } else if (io_do_buffer_select(req)) {
918 ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags);
919 if (unlikely(ret < 0))
920 return ret;
921 }
922 ret = io_rw_init_file(req, FMODE_READ, READ);
923 if (unlikely(ret))
924 return ret;
925 req->cqe.res = iov_iter_count(&io->iter);
926
927 if (force_nonblock) {
928 /* If the file doesn't support async, just async punt */
929 if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
930 return -EAGAIN;
931 kiocb->ki_flags |= IOCB_NOWAIT;
932 } else {
933 /* Ensure we clear previously set non-block flag */
934 kiocb->ki_flags &= ~IOCB_NOWAIT;
935 }
936
937 ppos = io_kiocb_update_pos(req);
938
939 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
940 if (unlikely(ret))
941 return ret;
942
943 ret = io_iter_do_read(rw, &io->iter);
944
945 /*
946 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
947 * issue, even though they should be returning -EAGAIN. To be safe,
948 * retry from blocking context for either.
949 */
950 if (ret == -EOPNOTSUPP && force_nonblock)
951 ret = -EAGAIN;
952
953 if (ret == -EAGAIN) {
954 /* If we can poll, just do that. */
955 if (io_file_can_poll(req))
956 return -EAGAIN;
957 /* IOPOLL retry should happen for io-wq threads */
958 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
959 goto done;
960 /* no retry on NONBLOCK nor RWF_NOWAIT */
961 if (req->flags & REQ_F_NOWAIT)
962 goto done;
963 ret = 0;
964 } else if (ret == -EIOCBQUEUED) {
965 return IOU_ISSUE_SKIP_COMPLETE;
966 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
967 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
968 (issue_flags & IO_URING_F_MULTISHOT)) {
969 /* read all, failed, already did sync or don't want to retry */
970 goto done;
971 }
972
973 /*
974 * Don't depend on the iter state matching what was consumed, or being
975 * untouched in case of error. Restore it and we'll advance it
976 * manually if we need to.
977 */
978 iov_iter_restore(&io->iter, &io->iter_state);
979 io_meta_restore(io, kiocb);
980
981 do {
982 /*
983 * We end up here because of a partial read, either from
984 * above or inside this loop. Advance the iter by the bytes
985 * that were consumed.
986 */
987 iov_iter_advance(&io->iter, ret);
988 if (!iov_iter_count(&io->iter))
989 break;
990 io->bytes_done += ret;
991 iov_iter_save_state(&io->iter, &io->iter_state);
992
993 /* if we can retry, do so with the callbacks armed */
994 if (!io_rw_should_retry(req)) {
995 kiocb->ki_flags &= ~IOCB_WAITQ;
996 return -EAGAIN;
997 }
998
999 req->cqe.res = iov_iter_count(&io->iter);
1000 /*
1001 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1002 * we get -EIOCBQUEUED, then we'll get a notification when the
1003 * desired page gets unlocked. We can also get a partial read
1004 * here, and if we do, then just retry at the new offset.
1005 */
1006 ret = io_iter_do_read(rw, &io->iter);
1007 if (ret == -EIOCBQUEUED)
1008 return IOU_ISSUE_SKIP_COMPLETE;
1009 /* we got some bytes, but not all. retry. */
1010 kiocb->ki_flags &= ~IOCB_WAITQ;
1011 iov_iter_restore(&io->iter, &io->iter_state);
1012 } while (ret > 0);
1013 done:
1014 /* it's faster to check here than delegate to kfree */
1015 return ret;
1016 }
1017
io_read(struct io_kiocb * req,unsigned int issue_flags)1018 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1019 {
1020 struct io_br_sel sel = { };
1021 int ret;
1022
1023 ret = __io_read(req, &sel, issue_flags);
1024 if (ret >= 0)
1025 return kiocb_done(req, ret, &sel, issue_flags);
1026
1027 if (req->flags & REQ_F_BUFFERS_COMMIT)
1028 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1029 return ret;
1030 }
1031
io_read_mshot(struct io_kiocb * req,unsigned int issue_flags)1032 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1033 {
1034 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1035 struct io_br_sel sel = { };
1036 unsigned int cflags = 0;
1037 int ret;
1038
1039 /*
1040 * Multishot MUST be used on a pollable file
1041 */
1042 if (!io_file_can_poll(req))
1043 return -EBADFD;
1044
1045 /* make it sync, multishot doesn't support async execution */
1046 rw->kiocb.ki_complete = NULL;
1047 ret = __io_read(req, &sel, issue_flags);
1048
1049 /*
1050 * If we get -EAGAIN, recycle our buffer and just let normal poll
1051 * handling arm it.
1052 */
1053 if (ret == -EAGAIN) {
1054 /*
1055 * Reset rw->len to 0 again to avoid clamping future mshot
1056 * reads, in case the buffer size varies.
1057 */
1058 if (io_kbuf_recycle(req, sel.buf_list, issue_flags))
1059 rw->len = 0;
1060 return IOU_RETRY;
1061 } else if (ret <= 0) {
1062 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1063 if (ret < 0)
1064 req_set_fail(req);
1065 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1066 cflags = io_put_kbuf(req, ret, sel.buf_list);
1067 } else {
1068 /*
1069 * Any successful return value will keep the multishot read
1070 * armed, if it's still set. Put our buffer and post a CQE. If
1071 * we fail to post a CQE, or multishot is no longer set, then
1072 * jump to the termination path. This request is then done.
1073 */
1074 cflags = io_put_kbuf(req, ret, sel.buf_list);
1075 rw->len = 0; /* similarly to above, reset len to 0 */
1076
1077 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1078 if (issue_flags & IO_URING_F_MULTISHOT)
1079 /*
1080 * Force retry, as we might have more data to
1081 * be read and otherwise it won't get retried
1082 * until (if ever) another poll is triggered.
1083 */
1084 io_poll_multishot_retry(req);
1085
1086 return IOU_RETRY;
1087 }
1088 }
1089
1090 /*
1091 * Either an error, or we've hit overflow posting the CQE. For any
1092 * multishot request, hitting overflow will terminate it.
1093 */
1094 io_req_set_res(req, ret, cflags);
1095 io_req_rw_cleanup(req, issue_flags);
1096 return IOU_COMPLETE;
1097 }
1098
io_kiocb_start_write(struct io_kiocb * req,struct kiocb * kiocb)1099 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1100 {
1101 struct inode *inode;
1102 bool ret;
1103
1104 if (!(req->flags & REQ_F_ISREG))
1105 return true;
1106 if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1107 kiocb_start_write(kiocb);
1108 return true;
1109 }
1110
1111 inode = file_inode(kiocb->ki_filp);
1112 ret = sb_start_write_trylock(inode->i_sb);
1113 if (ret)
1114 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1115 return ret;
1116 }
1117
io_write(struct io_kiocb * req,unsigned int issue_flags)1118 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1119 {
1120 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1121 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1122 struct io_async_rw *io = req->async_data;
1123 struct kiocb *kiocb = &rw->kiocb;
1124 ssize_t ret, ret2;
1125 loff_t *ppos;
1126
1127 if (req->flags & REQ_F_IMPORT_BUFFER) {
1128 ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1129 if (unlikely(ret))
1130 return ret;
1131 }
1132
1133 ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1134 if (unlikely(ret))
1135 return ret;
1136 req->cqe.res = iov_iter_count(&io->iter);
1137
1138 if (force_nonblock) {
1139 /* If the file doesn't support async, just async punt */
1140 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1141 goto ret_eagain;
1142
1143 /* Check if we can support NOWAIT. */
1144 if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1145 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1146 (req->flags & REQ_F_ISREG))
1147 goto ret_eagain;
1148
1149 kiocb->ki_flags |= IOCB_NOWAIT;
1150 } else {
1151 /* Ensure we clear previously set non-block flag */
1152 kiocb->ki_flags &= ~IOCB_NOWAIT;
1153 }
1154
1155 ppos = io_kiocb_update_pos(req);
1156
1157 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1158 if (unlikely(ret))
1159 return ret;
1160
1161 if (unlikely(!io_kiocb_start_write(req, kiocb)))
1162 return -EAGAIN;
1163 kiocb->ki_flags |= IOCB_WRITE;
1164
1165 if (likely(req->file->f_op->write_iter))
1166 ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1167 else if (req->file->f_op->write)
1168 ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1169 else
1170 ret2 = -EINVAL;
1171
1172 /*
1173 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1174 * retry them without IOCB_NOWAIT.
1175 */
1176 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1177 ret2 = -EAGAIN;
1178 /* no retry on NONBLOCK nor RWF_NOWAIT */
1179 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1180 goto done;
1181 if (!force_nonblock || ret2 != -EAGAIN) {
1182 /* IOPOLL retry should happen for io-wq threads */
1183 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1184 goto ret_eagain;
1185
1186 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1187 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1188 req->cqe.res, ret2);
1189
1190 /* This is a partial write. The file pos has already been
1191 * updated, setup the async struct to complete the request
1192 * in the worker. Also update bytes_done to account for
1193 * the bytes already written.
1194 */
1195 iov_iter_save_state(&io->iter, &io->iter_state);
1196 io->bytes_done += ret2;
1197
1198 if (kiocb->ki_flags & IOCB_WRITE)
1199 io_req_end_write(req);
1200 return -EAGAIN;
1201 }
1202 done:
1203 return kiocb_done(req, ret2, NULL, issue_flags);
1204 } else {
1205 ret_eagain:
1206 iov_iter_restore(&io->iter, &io->iter_state);
1207 io_meta_restore(io, kiocb);
1208 if (kiocb->ki_flags & IOCB_WRITE)
1209 io_req_end_write(req);
1210 return -EAGAIN;
1211 }
1212 }
1213
io_read_fixed(struct io_kiocb * req,unsigned int issue_flags)1214 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1215 {
1216 int ret;
1217
1218 ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1219 if (unlikely(ret))
1220 return ret;
1221
1222 return io_read(req, issue_flags);
1223 }
1224
io_write_fixed(struct io_kiocb * req,unsigned int issue_flags)1225 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1226 {
1227 int ret;
1228
1229 ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1230 if (unlikely(ret))
1231 return ret;
1232
1233 return io_write(req, issue_flags);
1234 }
1235
io_rw_fail(struct io_kiocb * req)1236 void io_rw_fail(struct io_kiocb *req)
1237 {
1238 int res;
1239
1240 res = io_fixup_rw_res(req, req->cqe.res);
1241 io_req_set_res(req, res, req->cqe.flags);
1242 }
1243
io_uring_classic_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1244 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1245 unsigned int poll_flags)
1246 {
1247 struct file *file = req->file;
1248
1249 if (req->opcode == IORING_OP_URING_CMD) {
1250 struct io_uring_cmd *ioucmd;
1251
1252 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1253 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1254 } else {
1255 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1256
1257 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1258 }
1259 }
1260
io_hybrid_iopoll_delay(struct io_ring_ctx * ctx,struct io_kiocb * req)1261 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1262 {
1263 struct hrtimer_sleeper timer;
1264 enum hrtimer_mode mode;
1265 ktime_t kt;
1266 u64 sleep_time;
1267
1268 if (req->flags & REQ_F_IOPOLL_STATE)
1269 return 0;
1270
1271 if (ctx->hybrid_poll_time == LLONG_MAX)
1272 return 0;
1273
1274 /* Using half the running time to do schedule */
1275 sleep_time = ctx->hybrid_poll_time / 2;
1276
1277 kt = ktime_set(0, sleep_time);
1278 req->flags |= REQ_F_IOPOLL_STATE;
1279
1280 mode = HRTIMER_MODE_REL;
1281 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1282 hrtimer_set_expires(&timer.timer, kt);
1283 set_current_state(TASK_INTERRUPTIBLE);
1284 hrtimer_sleeper_start_expires(&timer, mode);
1285
1286 if (timer.task)
1287 io_schedule();
1288
1289 hrtimer_cancel(&timer.timer);
1290 __set_current_state(TASK_RUNNING);
1291 destroy_hrtimer_on_stack(&timer.timer);
1292 return sleep_time;
1293 }
1294
io_uring_hybrid_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1295 static int io_uring_hybrid_poll(struct io_kiocb *req,
1296 struct io_comp_batch *iob, unsigned int poll_flags)
1297 {
1298 struct io_ring_ctx *ctx = req->ctx;
1299 u64 runtime, sleep_time;
1300 int ret;
1301
1302 sleep_time = io_hybrid_iopoll_delay(ctx, req);
1303 ret = io_uring_classic_poll(req, iob, poll_flags);
1304 runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1305
1306 /*
1307 * Use minimum sleep time if we're polling devices with different
1308 * latencies. We could get more completions from the faster ones.
1309 */
1310 if (ctx->hybrid_poll_time > runtime)
1311 ctx->hybrid_poll_time = runtime;
1312
1313 return ret;
1314 }
1315
io_do_iopoll(struct io_ring_ctx * ctx,bool force_nonspin)1316 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1317 {
1318 struct io_wq_work_node *pos, *start, *prev;
1319 unsigned int poll_flags = 0;
1320 DEFINE_IO_COMP_BATCH(iob);
1321 int nr_events = 0;
1322
1323 /*
1324 * Only spin for completions if we don't have multiple devices hanging
1325 * off our complete list.
1326 */
1327 if (ctx->poll_multi_queue || force_nonspin)
1328 poll_flags |= BLK_POLL_ONESHOT;
1329
1330 wq_list_for_each(pos, start, &ctx->iopoll_list) {
1331 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1332 int ret;
1333
1334 /*
1335 * Move completed and retryable entries to our local lists.
1336 * If we find a request that requires polling, break out
1337 * and complete those lists first, if we have entries there.
1338 */
1339 if (READ_ONCE(req->iopoll_completed))
1340 break;
1341
1342 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1343 ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1344 else
1345 ret = io_uring_classic_poll(req, &iob, poll_flags);
1346
1347 if (unlikely(ret < 0))
1348 return ret;
1349 else if (ret)
1350 poll_flags |= BLK_POLL_ONESHOT;
1351
1352 /* iopoll may have completed current req */
1353 if (!rq_list_empty(&iob.req_list) ||
1354 READ_ONCE(req->iopoll_completed))
1355 break;
1356 }
1357
1358 if (!rq_list_empty(&iob.req_list))
1359 iob.complete(&iob);
1360 else if (!pos)
1361 return 0;
1362
1363 prev = start;
1364 wq_list_for_each_resume(pos, prev) {
1365 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1366
1367 /* order with io_complete_rw_iopoll(), e.g. ->result updates */
1368 if (!smp_load_acquire(&req->iopoll_completed))
1369 break;
1370 nr_events++;
1371 req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL);
1372 if (req->opcode != IORING_OP_URING_CMD)
1373 io_req_rw_cleanup(req, 0);
1374 }
1375 if (unlikely(!nr_events))
1376 return 0;
1377
1378 pos = start ? start->next : ctx->iopoll_list.first;
1379 wq_list_cut(&ctx->iopoll_list, prev, start);
1380
1381 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1382 return 0;
1383 ctx->submit_state.compl_reqs.first = pos;
1384 __io_submit_flush_completions(ctx);
1385 return nr_events;
1386 }
1387
io_rw_cache_free(const void * entry)1388 void io_rw_cache_free(const void *entry)
1389 {
1390 struct io_async_rw *rw = (struct io_async_rw *) entry;
1391
1392 io_vec_free(&rw->vec);
1393 kfree(rw);
1394 }
1395