xref: /linux/io_uring/rw.c (revision f0d3699aef2b6f864c78ccfa8e2a7327f65b8841)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "io_uring.h"
19 #include "opdef.h"
20 #include "kbuf.h"
21 #include "alloc_cache.h"
22 #include "rsrc.h"
23 #include "poll.h"
24 #include "rw.h"
25 
26 struct io_rw {
27 	/* NOTE: kiocb has the file as the first member, so don't do it here */
28 	struct kiocb			kiocb;
29 	u64				addr;
30 	u32				len;
31 	rwf_t				flags;
32 };
33 
io_file_supports_nowait(struct io_kiocb * req,__poll_t mask)34 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
35 {
36 	/* If FMODE_NOWAIT is set for a file, we're golden */
37 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
38 		return true;
39 	/* No FMODE_NOWAIT, if we can poll, check the status */
40 	if (io_file_can_poll(req)) {
41 		struct poll_table_struct pt = { ._key = mask };
42 
43 		return vfs_poll(req->file, &pt) & mask;
44 	}
45 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
46 	return false;
47 }
48 
49 #ifdef CONFIG_COMPAT
io_iov_compat_buffer_select_prep(struct io_rw * rw)50 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
51 {
52 	struct compat_iovec __user *uiov;
53 	compat_ssize_t clen;
54 
55 	uiov = u64_to_user_ptr(rw->addr);
56 	if (!access_ok(uiov, sizeof(*uiov)))
57 		return -EFAULT;
58 	if (__get_user(clen, &uiov->iov_len))
59 		return -EFAULT;
60 	if (clen < 0)
61 		return -EINVAL;
62 
63 	rw->len = clen;
64 	return 0;
65 }
66 #endif
67 
io_iov_buffer_select_prep(struct io_kiocb * req)68 static int io_iov_buffer_select_prep(struct io_kiocb *req)
69 {
70 	struct iovec __user *uiov;
71 	struct iovec iov;
72 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
73 
74 	if (rw->len != 1)
75 		return -EINVAL;
76 
77 #ifdef CONFIG_COMPAT
78 	if (req->ctx->compat)
79 		return io_iov_compat_buffer_select_prep(rw);
80 #endif
81 
82 	uiov = u64_to_user_ptr(rw->addr);
83 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
84 		return -EFAULT;
85 	rw->len = iov.iov_len;
86 	return 0;
87 }
88 
__io_import_iovec(int ddir,struct io_kiocb * req,struct io_async_rw * io,unsigned int issue_flags)89 static int __io_import_iovec(int ddir, struct io_kiocb *req,
90 			     struct io_async_rw *io,
91 			     unsigned int issue_flags)
92 {
93 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
94 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
95 	struct iovec *iov;
96 	void __user *buf;
97 	int nr_segs, ret;
98 	size_t sqe_len;
99 
100 	buf = u64_to_user_ptr(rw->addr);
101 	sqe_len = rw->len;
102 
103 	if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) {
104 		if (io_do_buffer_select(req)) {
105 			buf = io_buffer_select(req, &sqe_len, issue_flags);
106 			if (!buf)
107 				return -ENOBUFS;
108 			rw->addr = (unsigned long) buf;
109 			rw->len = sqe_len;
110 		}
111 
112 		return import_ubuf(ddir, buf, sqe_len, &io->iter);
113 	}
114 
115 	if (io->free_iovec) {
116 		nr_segs = io->free_iov_nr;
117 		iov = io->free_iovec;
118 	} else {
119 		iov = &io->fast_iov;
120 		nr_segs = 1;
121 	}
122 	ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter,
123 				req->ctx->compat);
124 	if (unlikely(ret < 0))
125 		return ret;
126 	if (iov) {
127 		req->flags |= REQ_F_NEED_CLEANUP;
128 		io->free_iov_nr = io->iter.nr_segs;
129 		kfree(io->free_iovec);
130 		io->free_iovec = iov;
131 	}
132 	return 0;
133 }
134 
io_import_iovec(int rw,struct io_kiocb * req,struct io_async_rw * io,unsigned int issue_flags)135 static inline int io_import_iovec(int rw, struct io_kiocb *req,
136 				  struct io_async_rw *io,
137 				  unsigned int issue_flags)
138 {
139 	int ret;
140 
141 	ret = __io_import_iovec(rw, req, io, issue_flags);
142 	if (unlikely(ret < 0))
143 		return ret;
144 
145 	iov_iter_save_state(&io->iter, &io->iter_state);
146 	return 0;
147 }
148 
io_rw_iovec_free(struct io_async_rw * rw)149 static void io_rw_iovec_free(struct io_async_rw *rw)
150 {
151 	if (rw->free_iovec) {
152 		kfree(rw->free_iovec);
153 		rw->free_iov_nr = 0;
154 		rw->free_iovec = NULL;
155 	}
156 }
157 
io_rw_recycle(struct io_kiocb * req,unsigned int issue_flags)158 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
159 {
160 	struct io_async_rw *rw = req->async_data;
161 	struct iovec *iov;
162 
163 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) {
164 		io_rw_iovec_free(rw);
165 		return;
166 	}
167 	iov = rw->free_iovec;
168 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
169 		if (iov)
170 			kasan_mempool_poison_object(iov);
171 		req->async_data = NULL;
172 		req->flags &= ~REQ_F_ASYNC_DATA;
173 	}
174 }
175 
io_req_rw_cleanup(struct io_kiocb * req,unsigned int issue_flags)176 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
177 {
178 	/*
179 	 * Disable quick recycling for anything that's gone through io-wq.
180 	 * In theory, this should be fine to cleanup. However, some read or
181 	 * write iter handling touches the iovec AFTER having called into the
182 	 * handler, eg to reexpand or revert. This means we can have:
183 	 *
184 	 * task			io-wq
185 	 *   issue
186 	 *     punt to io-wq
187 	 *			issue
188 	 *			  blkdev_write_iter()
189 	 *			    ->ki_complete()
190 	 *			      io_complete_rw()
191 	 *			        queue tw complete
192 	 *  run tw
193 	 *    req_rw_cleanup
194 	 *			iov_iter_count() <- look at iov_iter again
195 	 *
196 	 * which can lead to a UAF. This is only possible for io-wq offload
197 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
198 	 * just leave cleanup to the end.
199 	 *
200 	 * This is really a bug in the core code that does this, any issue
201 	 * path should assume that a successful (or -EIOCBQUEUED) return can
202 	 * mean that the underlying data can be gone at any time. But that
203 	 * should be fixed seperately, and then this check could be killed.
204 	 */
205 	if (!(req->flags & REQ_F_REFCOUNT)) {
206 		req->flags &= ~REQ_F_NEED_CLEANUP;
207 		io_rw_recycle(req, issue_flags);
208 	}
209 }
210 
io_rw_alloc_async(struct io_kiocb * req)211 static int io_rw_alloc_async(struct io_kiocb *req)
212 {
213 	struct io_ring_ctx *ctx = req->ctx;
214 	struct io_async_rw *rw;
215 
216 	rw = io_alloc_cache_get(&ctx->rw_cache);
217 	if (rw) {
218 		if (rw->free_iovec) {
219 			kasan_mempool_unpoison_object(rw->free_iovec,
220 				rw->free_iov_nr * sizeof(struct iovec));
221 			req->flags |= REQ_F_NEED_CLEANUP;
222 		}
223 		req->flags |= REQ_F_ASYNC_DATA;
224 		req->async_data = rw;
225 		goto done;
226 	}
227 
228 	if (!io_alloc_async_data(req)) {
229 		rw = req->async_data;
230 		rw->free_iovec = NULL;
231 		rw->free_iov_nr = 0;
232 done:
233 		rw->bytes_done = 0;
234 		return 0;
235 	}
236 
237 	return -ENOMEM;
238 }
239 
io_prep_rw_setup(struct io_kiocb * req,int ddir,bool do_import)240 static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import)
241 {
242 	struct io_async_rw *rw;
243 	int ret;
244 
245 	if (io_rw_alloc_async(req))
246 		return -ENOMEM;
247 
248 	if (!do_import || io_do_buffer_select(req))
249 		return 0;
250 
251 	rw = req->async_data;
252 	ret = io_import_iovec(ddir, req, rw, 0);
253 	if (unlikely(ret < 0))
254 		return ret;
255 
256 	iov_iter_save_state(&rw->iter, &rw->iter_state);
257 	return 0;
258 }
259 
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir,bool do_import)260 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
261 		      int ddir, bool do_import)
262 {
263 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
264 	unsigned ioprio;
265 	int ret;
266 
267 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
268 	/* used for fixed read/write too - just read unconditionally */
269 	req->buf_index = READ_ONCE(sqe->buf_index);
270 
271 	ioprio = READ_ONCE(sqe->ioprio);
272 	if (ioprio) {
273 		ret = ioprio_check_cap(ioprio);
274 		if (ret)
275 			return ret;
276 
277 		rw->kiocb.ki_ioprio = ioprio;
278 	} else {
279 		rw->kiocb.ki_ioprio = get_current_ioprio();
280 	}
281 	rw->kiocb.dio_complete = NULL;
282 
283 	rw->addr = READ_ONCE(sqe->addr);
284 	rw->len = READ_ONCE(sqe->len);
285 	rw->flags = READ_ONCE(sqe->rw_flags);
286 	return io_prep_rw_setup(req, ddir, do_import);
287 }
288 
io_prep_read(struct io_kiocb * req,const struct io_uring_sqe * sqe)289 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
290 {
291 	return io_prep_rw(req, sqe, ITER_DEST, true);
292 }
293 
io_prep_write(struct io_kiocb * req,const struct io_uring_sqe * sqe)294 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
295 {
296 	return io_prep_rw(req, sqe, ITER_SOURCE, true);
297 }
298 
io_prep_rwv(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)299 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
300 		       int ddir)
301 {
302 	const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT);
303 	int ret;
304 
305 	ret = io_prep_rw(req, sqe, ddir, do_import);
306 	if (unlikely(ret))
307 		return ret;
308 	if (do_import)
309 		return 0;
310 
311 	/*
312 	 * Have to do this validation here, as this is in io_read() rw->len
313 	 * might have chanaged due to buffer selection
314 	 */
315 	return io_iov_buffer_select_prep(req);
316 }
317 
io_prep_readv(struct io_kiocb * req,const struct io_uring_sqe * sqe)318 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
319 {
320 	return io_prep_rwv(req, sqe, ITER_DEST);
321 }
322 
io_prep_writev(struct io_kiocb * req,const struct io_uring_sqe * sqe)323 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
324 {
325 	return io_prep_rwv(req, sqe, ITER_SOURCE);
326 }
327 
io_prep_rw_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)328 static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe,
329 			    int ddir)
330 {
331 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
332 	struct io_ring_ctx *ctx = req->ctx;
333 	struct io_async_rw *io;
334 	u16 index;
335 	int ret;
336 
337 	ret = io_prep_rw(req, sqe, ddir, false);
338 	if (unlikely(ret))
339 		return ret;
340 
341 	if (unlikely(req->buf_index >= ctx->nr_user_bufs))
342 		return -EFAULT;
343 	index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
344 	req->imu = ctx->user_bufs[index];
345 	io_req_set_rsrc_node(req, ctx, 0);
346 
347 	io = req->async_data;
348 	ret = io_import_fixed(ddir, &io->iter, req->imu, rw->addr, rw->len);
349 	iov_iter_save_state(&io->iter, &io->iter_state);
350 	return ret;
351 }
352 
io_prep_read_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)353 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
354 {
355 	return io_prep_rw_fixed(req, sqe, ITER_DEST);
356 }
357 
io_prep_write_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)358 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
359 {
360 	return io_prep_rw_fixed(req, sqe, ITER_SOURCE);
361 }
362 
363 /*
364  * Multishot read is prepared just like a normal read/write request, only
365  * difference is that we set the MULTISHOT flag.
366  */
io_read_mshot_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)367 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
368 {
369 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
370 	int ret;
371 
372 	/* must be used with provided buffers */
373 	if (!(req->flags & REQ_F_BUFFER_SELECT))
374 		return -EINVAL;
375 
376 	ret = io_prep_rw(req, sqe, ITER_DEST, false);
377 	if (unlikely(ret))
378 		return ret;
379 
380 	if (rw->addr || rw->len)
381 		return -EINVAL;
382 
383 	req->flags |= REQ_F_APOLL_MULTISHOT;
384 	return 0;
385 }
386 
io_readv_writev_cleanup(struct io_kiocb * req)387 void io_readv_writev_cleanup(struct io_kiocb *req)
388 {
389 	io_rw_iovec_free(req->async_data);
390 }
391 
io_kiocb_update_pos(struct io_kiocb * req)392 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
393 {
394 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
395 
396 	if (rw->kiocb.ki_pos != -1)
397 		return &rw->kiocb.ki_pos;
398 
399 	if (!(req->file->f_mode & FMODE_STREAM)) {
400 		req->flags |= REQ_F_CUR_POS;
401 		rw->kiocb.ki_pos = req->file->f_pos;
402 		return &rw->kiocb.ki_pos;
403 	}
404 
405 	rw->kiocb.ki_pos = 0;
406 	return NULL;
407 }
408 
409 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)410 static void io_resubmit_prep(struct io_kiocb *req)
411 {
412 	struct io_async_rw *io = req->async_data;
413 
414 	iov_iter_restore(&io->iter, &io->iter_state);
415 }
416 
io_rw_should_reissue(struct io_kiocb * req)417 static bool io_rw_should_reissue(struct io_kiocb *req)
418 {
419 	umode_t mode = file_inode(req->file)->i_mode;
420 	struct io_ring_ctx *ctx = req->ctx;
421 
422 	if (!S_ISBLK(mode) && !S_ISREG(mode))
423 		return false;
424 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
425 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
426 		return false;
427 	/*
428 	 * If ref is dying, we might be running poll reap from the exit work.
429 	 * Don't attempt to reissue from that path, just let it fail with
430 	 * -EAGAIN.
431 	 */
432 	if (percpu_ref_is_dying(&ctx->refs))
433 		return false;
434 	/*
435 	 * Play it safe and assume not safe to re-import and reissue if we're
436 	 * not in the original thread group (or in task context).
437 	 */
438 	if (!same_thread_group(req->task, current) || !in_task())
439 		return false;
440 	return true;
441 }
442 #else
io_resubmit_prep(struct io_kiocb * req)443 static void io_resubmit_prep(struct io_kiocb *req)
444 {
445 }
io_rw_should_reissue(struct io_kiocb * req)446 static bool io_rw_should_reissue(struct io_kiocb *req)
447 {
448 	return false;
449 }
450 #endif
451 
io_req_end_write(struct io_kiocb * req)452 static void io_req_end_write(struct io_kiocb *req)
453 {
454 	if (req->flags & REQ_F_ISREG) {
455 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
456 
457 		kiocb_end_write(&rw->kiocb);
458 	}
459 }
460 
461 /*
462  * Trigger the notifications after having done some IO, and finish the write
463  * accounting, if any.
464  */
io_req_io_end(struct io_kiocb * req)465 static void io_req_io_end(struct io_kiocb *req)
466 {
467 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
468 
469 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
470 		io_req_end_write(req);
471 		fsnotify_modify(req->file);
472 	} else {
473 		fsnotify_access(req->file);
474 	}
475 }
476 
__io_complete_rw_common(struct io_kiocb * req,long res)477 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
478 {
479 	if (unlikely(res != req->cqe.res)) {
480 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
481 			/*
482 			 * Reissue will start accounting again, finish the
483 			 * current cycle.
484 			 */
485 			io_req_io_end(req);
486 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
487 			return true;
488 		}
489 		req_set_fail(req);
490 		req->cqe.res = res;
491 	}
492 	return false;
493 }
494 
io_fixup_rw_res(struct io_kiocb * req,long res)495 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
496 {
497 	struct io_async_rw *io = req->async_data;
498 
499 	/* add previously done IO, if any */
500 	if (req_has_async_data(req) && io->bytes_done > 0) {
501 		if (res < 0)
502 			res = io->bytes_done;
503 		else
504 			res += io->bytes_done;
505 	}
506 	return res;
507 }
508 
io_req_rw_complete(struct io_kiocb * req,struct io_tw_state * ts)509 void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts)
510 {
511 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
512 	struct kiocb *kiocb = &rw->kiocb;
513 
514 	if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
515 		long res = kiocb->dio_complete(rw->kiocb.private);
516 
517 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
518 	}
519 
520 	io_req_io_end(req);
521 
522 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
523 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0);
524 
525 	io_req_rw_cleanup(req, 0);
526 	io_req_task_complete(req, ts);
527 }
528 
io_complete_rw(struct kiocb * kiocb,long res)529 static void io_complete_rw(struct kiocb *kiocb, long res)
530 {
531 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
532 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
533 
534 	if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
535 		if (__io_complete_rw_common(req, res))
536 			return;
537 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
538 	}
539 	req->io_task_work.func = io_req_rw_complete;
540 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
541 }
542 
io_complete_rw_iopoll(struct kiocb * kiocb,long res)543 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
544 {
545 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
546 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
547 
548 	if (kiocb->ki_flags & IOCB_WRITE)
549 		io_req_end_write(req);
550 	if (unlikely(res != req->cqe.res)) {
551 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
552 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
553 			return;
554 		}
555 		req->cqe.res = res;
556 	}
557 
558 	/* order with io_iopoll_complete() checking ->iopoll_completed */
559 	smp_store_release(&req->iopoll_completed, 1);
560 }
561 
io_rw_done(struct kiocb * kiocb,ssize_t ret)562 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
563 {
564 	/* IO was queued async, completion will happen later */
565 	if (ret == -EIOCBQUEUED)
566 		return;
567 
568 	/* transform internal restart error codes */
569 	if (unlikely(ret < 0)) {
570 		switch (ret) {
571 		case -ERESTARTSYS:
572 		case -ERESTARTNOINTR:
573 		case -ERESTARTNOHAND:
574 		case -ERESTART_RESTARTBLOCK:
575 			/*
576 			 * We can't just restart the syscall, since previously
577 			 * submitted sqes may already be in progress. Just fail
578 			 * this IO with EINTR.
579 			 */
580 			ret = -EINTR;
581 			break;
582 		}
583 	}
584 
585 	INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll,
586 			io_complete_rw, kiocb, ret);
587 }
588 
kiocb_done(struct io_kiocb * req,ssize_t ret,unsigned int issue_flags)589 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
590 		       unsigned int issue_flags)
591 {
592 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
593 	unsigned final_ret = io_fixup_rw_res(req, ret);
594 
595 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
596 		req->file->f_pos = rw->kiocb.ki_pos;
597 	if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) {
598 		if (!__io_complete_rw_common(req, ret)) {
599 			/*
600 			 * Safe to call io_end from here as we're inline
601 			 * from the submission path.
602 			 */
603 			io_req_io_end(req);
604 			io_req_set_res(req, final_ret,
605 				       io_put_kbuf(req, ret, issue_flags));
606 			io_req_rw_cleanup(req, issue_flags);
607 			return IOU_OK;
608 		}
609 	} else {
610 		io_rw_done(&rw->kiocb, ret);
611 	}
612 
613 	if (req->flags & REQ_F_REISSUE) {
614 		req->flags &= ~REQ_F_REISSUE;
615 		io_resubmit_prep(req);
616 		return -EAGAIN;
617 	}
618 	return IOU_ISSUE_SKIP_COMPLETE;
619 }
620 
io_kiocb_ppos(struct kiocb * kiocb)621 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
622 {
623 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
624 }
625 
626 /*
627  * For files that don't have ->read_iter() and ->write_iter(), handle them
628  * by looping over ->read() or ->write() manually.
629  */
loop_rw_iter(int ddir,struct io_rw * rw,struct iov_iter * iter)630 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
631 {
632 	struct kiocb *kiocb = &rw->kiocb;
633 	struct file *file = kiocb->ki_filp;
634 	ssize_t ret = 0;
635 	loff_t *ppos;
636 
637 	/*
638 	 * Don't support polled IO through this interface, and we can't
639 	 * support non-blocking either. For the latter, this just causes
640 	 * the kiocb to be handled from an async context.
641 	 */
642 	if (kiocb->ki_flags & IOCB_HIPRI)
643 		return -EOPNOTSUPP;
644 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
645 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
646 		return -EAGAIN;
647 
648 	ppos = io_kiocb_ppos(kiocb);
649 
650 	while (iov_iter_count(iter)) {
651 		void __user *addr;
652 		size_t len;
653 		ssize_t nr;
654 
655 		if (iter_is_ubuf(iter)) {
656 			addr = iter->ubuf + iter->iov_offset;
657 			len = iov_iter_count(iter);
658 		} else if (!iov_iter_is_bvec(iter)) {
659 			addr = iter_iov_addr(iter);
660 			len = iter_iov_len(iter);
661 		} else {
662 			addr = u64_to_user_ptr(rw->addr);
663 			len = rw->len;
664 		}
665 
666 		if (ddir == READ)
667 			nr = file->f_op->read(file, addr, len, ppos);
668 		else
669 			nr = file->f_op->write(file, addr, len, ppos);
670 
671 		if (nr < 0) {
672 			if (!ret)
673 				ret = nr;
674 			break;
675 		}
676 		ret += nr;
677 		if (!iov_iter_is_bvec(iter)) {
678 			iov_iter_advance(iter, nr);
679 		} else {
680 			rw->addr += nr;
681 			rw->len -= nr;
682 			if (!rw->len)
683 				break;
684 		}
685 		if (nr != len)
686 			break;
687 	}
688 
689 	return ret;
690 }
691 
692 /*
693  * This is our waitqueue callback handler, registered through __folio_lock_async()
694  * when we initially tried to do the IO with the iocb armed our waitqueue.
695  * This gets called when the page is unlocked, and we generally expect that to
696  * happen when the page IO is completed and the page is now uptodate. This will
697  * queue a task_work based retry of the operation, attempting to copy the data
698  * again. If the latter fails because the page was NOT uptodate, then we will
699  * do a thread based blocking retry of the operation. That's the unexpected
700  * slow path.
701  */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)702 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
703 			     int sync, void *arg)
704 {
705 	struct wait_page_queue *wpq;
706 	struct io_kiocb *req = wait->private;
707 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
708 	struct wait_page_key *key = arg;
709 
710 	wpq = container_of(wait, struct wait_page_queue, wait);
711 
712 	if (!wake_page_match(wpq, key))
713 		return 0;
714 
715 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
716 	list_del_init(&wait->entry);
717 	io_req_task_queue(req);
718 	return 1;
719 }
720 
721 /*
722  * This controls whether a given IO request should be armed for async page
723  * based retry. If we return false here, the request is handed to the async
724  * worker threads for retry. If we're doing buffered reads on a regular file,
725  * we prepare a private wait_page_queue entry and retry the operation. This
726  * will either succeed because the page is now uptodate and unlocked, or it
727  * will register a callback when the page is unlocked at IO completion. Through
728  * that callback, io_uring uses task_work to setup a retry of the operation.
729  * That retry will attempt the buffered read again. The retry will generally
730  * succeed, or in rare cases where it fails, we then fall back to using the
731  * async worker threads for a blocking retry.
732  */
io_rw_should_retry(struct io_kiocb * req)733 static bool io_rw_should_retry(struct io_kiocb *req)
734 {
735 	struct io_async_rw *io = req->async_data;
736 	struct wait_page_queue *wait = &io->wpq;
737 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
738 	struct kiocb *kiocb = &rw->kiocb;
739 
740 	/* never retry for NOWAIT, we just complete with -EAGAIN */
741 	if (req->flags & REQ_F_NOWAIT)
742 		return false;
743 
744 	/* Only for buffered IO */
745 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
746 		return false;
747 
748 	/*
749 	 * just use poll if we can, and don't attempt if the fs doesn't
750 	 * support callback based unlocks
751 	 */
752 	if (io_file_can_poll(req) ||
753 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
754 		return false;
755 
756 	wait->wait.func = io_async_buf_func;
757 	wait->wait.private = req;
758 	wait->wait.flags = 0;
759 	INIT_LIST_HEAD(&wait->wait.entry);
760 	kiocb->ki_flags |= IOCB_WAITQ;
761 	kiocb->ki_flags &= ~IOCB_NOWAIT;
762 	kiocb->ki_waitq = wait;
763 	return true;
764 }
765 
io_iter_do_read(struct io_rw * rw,struct iov_iter * iter)766 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
767 {
768 	struct file *file = rw->kiocb.ki_filp;
769 
770 	if (likely(file->f_op->read_iter))
771 		return file->f_op->read_iter(&rw->kiocb, iter);
772 	else if (file->f_op->read)
773 		return loop_rw_iter(READ, rw, iter);
774 	else
775 		return -EINVAL;
776 }
777 
need_complete_io(struct io_kiocb * req)778 static bool need_complete_io(struct io_kiocb *req)
779 {
780 	return req->flags & REQ_F_ISREG ||
781 		S_ISBLK(file_inode(req->file)->i_mode);
782 }
783 
io_rw_init_file(struct io_kiocb * req,fmode_t mode,int rw_type)784 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
785 {
786 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
787 	struct kiocb *kiocb = &rw->kiocb;
788 	struct io_ring_ctx *ctx = req->ctx;
789 	struct file *file = req->file;
790 	int ret;
791 
792 	if (unlikely(!(file->f_mode & mode)))
793 		return -EBADF;
794 
795 	if (!(req->flags & REQ_F_FIXED_FILE))
796 		req->flags |= io_file_get_flags(file);
797 
798 	kiocb->ki_flags = file->f_iocb_flags;
799 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
800 	if (unlikely(ret))
801 		return ret;
802 	kiocb->ki_flags |= IOCB_ALLOC_CACHE;
803 
804 	/*
805 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
806 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
807 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
808 	 */
809 	if (kiocb->ki_flags & IOCB_NOWAIT ||
810 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
811 		req->flags |= REQ_F_NOWAIT;
812 
813 	if (ctx->flags & IORING_SETUP_IOPOLL) {
814 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
815 			return -EOPNOTSUPP;
816 
817 		kiocb->private = NULL;
818 		kiocb->ki_flags |= IOCB_HIPRI;
819 		kiocb->ki_complete = io_complete_rw_iopoll;
820 		req->iopoll_completed = 0;
821 	} else {
822 		if (kiocb->ki_flags & IOCB_HIPRI)
823 			return -EINVAL;
824 		kiocb->ki_complete = io_complete_rw;
825 	}
826 
827 	return 0;
828 }
829 
__io_read(struct io_kiocb * req,unsigned int issue_flags)830 static int __io_read(struct io_kiocb *req, unsigned int issue_flags)
831 {
832 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
833 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
834 	struct io_async_rw *io = req->async_data;
835 	struct kiocb *kiocb = &rw->kiocb;
836 	ssize_t ret;
837 	loff_t *ppos;
838 
839 	if (io_do_buffer_select(req)) {
840 		ret = io_import_iovec(ITER_DEST, req, io, issue_flags);
841 		if (unlikely(ret < 0))
842 			return ret;
843 	}
844 	ret = io_rw_init_file(req, FMODE_READ, READ);
845 	if (unlikely(ret))
846 		return ret;
847 	req->cqe.res = iov_iter_count(&io->iter);
848 
849 	if (force_nonblock) {
850 		/* If the file doesn't support async, just async punt */
851 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
852 			return -EAGAIN;
853 		kiocb->ki_flags |= IOCB_NOWAIT;
854 	} else {
855 		/* Ensure we clear previously set non-block flag */
856 		kiocb->ki_flags &= ~IOCB_NOWAIT;
857 	}
858 
859 	ppos = io_kiocb_update_pos(req);
860 
861 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
862 	if (unlikely(ret))
863 		return ret;
864 
865 	ret = io_iter_do_read(rw, &io->iter);
866 
867 	/*
868 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
869 	 * issue, even though they should be returning -EAGAIN. To be safe,
870 	 * retry from blocking context for either.
871 	 */
872 	if (ret == -EOPNOTSUPP && force_nonblock)
873 		ret = -EAGAIN;
874 
875 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
876 		req->flags &= ~REQ_F_REISSUE;
877 		/* If we can poll, just do that. */
878 		if (io_file_can_poll(req))
879 			return -EAGAIN;
880 		/* IOPOLL retry should happen for io-wq threads */
881 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
882 			goto done;
883 		/* no retry on NONBLOCK nor RWF_NOWAIT */
884 		if (req->flags & REQ_F_NOWAIT)
885 			goto done;
886 		ret = 0;
887 	} else if (ret == -EIOCBQUEUED) {
888 		return IOU_ISSUE_SKIP_COMPLETE;
889 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
890 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) {
891 		/* read all, failed, already did sync or don't want to retry */
892 		goto done;
893 	}
894 
895 	/*
896 	 * Don't depend on the iter state matching what was consumed, or being
897 	 * untouched in case of error. Restore it and we'll advance it
898 	 * manually if we need to.
899 	 */
900 	iov_iter_restore(&io->iter, &io->iter_state);
901 
902 	do {
903 		/*
904 		 * We end up here because of a partial read, either from
905 		 * above or inside this loop. Advance the iter by the bytes
906 		 * that were consumed.
907 		 */
908 		iov_iter_advance(&io->iter, ret);
909 		if (!iov_iter_count(&io->iter))
910 			break;
911 		io->bytes_done += ret;
912 		iov_iter_save_state(&io->iter, &io->iter_state);
913 
914 		/* if we can retry, do so with the callbacks armed */
915 		if (!io_rw_should_retry(req)) {
916 			kiocb->ki_flags &= ~IOCB_WAITQ;
917 			return -EAGAIN;
918 		}
919 
920 		req->cqe.res = iov_iter_count(&io->iter);
921 		/*
922 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
923 		 * we get -EIOCBQUEUED, then we'll get a notification when the
924 		 * desired page gets unlocked. We can also get a partial read
925 		 * here, and if we do, then just retry at the new offset.
926 		 */
927 		ret = io_iter_do_read(rw, &io->iter);
928 		if (ret == -EIOCBQUEUED)
929 			return IOU_ISSUE_SKIP_COMPLETE;
930 		/* we got some bytes, but not all. retry. */
931 		kiocb->ki_flags &= ~IOCB_WAITQ;
932 		iov_iter_restore(&io->iter, &io->iter_state);
933 	} while (ret > 0);
934 done:
935 	/* it's faster to check here then delegate to kfree */
936 	return ret;
937 }
938 
io_read(struct io_kiocb * req,unsigned int issue_flags)939 int io_read(struct io_kiocb *req, unsigned int issue_flags)
940 {
941 	int ret;
942 
943 	ret = __io_read(req, issue_flags);
944 	if (ret >= 0)
945 		return kiocb_done(req, ret, issue_flags);
946 
947 	return ret;
948 }
949 
io_read_mshot(struct io_kiocb * req,unsigned int issue_flags)950 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
951 {
952 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
953 	unsigned int cflags = 0;
954 	int ret;
955 
956 	/*
957 	 * Multishot MUST be used on a pollable file
958 	 */
959 	if (!io_file_can_poll(req))
960 		return -EBADFD;
961 
962 	ret = __io_read(req, issue_flags);
963 
964 	/*
965 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
966 	 * handling arm it.
967 	 */
968 	if (ret == -EAGAIN) {
969 		/*
970 		 * Reset rw->len to 0 again to avoid clamping future mshot
971 		 * reads, in case the buffer size varies.
972 		 */
973 		if (io_kbuf_recycle(req, issue_flags))
974 			rw->len = 0;
975 		if (issue_flags & IO_URING_F_MULTISHOT)
976 			return IOU_ISSUE_SKIP_COMPLETE;
977 		return -EAGAIN;
978 	} else if (ret <= 0) {
979 		io_kbuf_recycle(req, issue_flags);
980 		if (ret < 0)
981 			req_set_fail(req);
982 	} else {
983 		/*
984 		 * Any successful return value will keep the multishot read
985 		 * armed, if it's still set. Put our buffer and post a CQE. If
986 		 * we fail to post a CQE, or multishot is no longer set, then
987 		 * jump to the termination path. This request is then done.
988 		 */
989 		cflags = io_put_kbuf(req, ret, issue_flags);
990 		rw->len = 0; /* similarly to above, reset len to 0 */
991 
992 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
993 			if (issue_flags & IO_URING_F_MULTISHOT) {
994 				/*
995 				 * Force retry, as we might have more data to
996 				 * be read and otherwise it won't get retried
997 				 * until (if ever) another poll is triggered.
998 				 */
999 				io_poll_multishot_retry(req);
1000 				return IOU_ISSUE_SKIP_COMPLETE;
1001 			}
1002 			return -EAGAIN;
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Either an error, or we've hit overflow posting the CQE. For any
1008 	 * multishot request, hitting overflow will terminate it.
1009 	 */
1010 	io_req_set_res(req, ret, cflags);
1011 	io_req_rw_cleanup(req, issue_flags);
1012 	if (issue_flags & IO_URING_F_MULTISHOT)
1013 		return IOU_STOP_MULTISHOT;
1014 	return IOU_OK;
1015 }
1016 
io_kiocb_start_write(struct io_kiocb * req,struct kiocb * kiocb)1017 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1018 {
1019 	struct inode *inode;
1020 	bool ret;
1021 
1022 	if (!(req->flags & REQ_F_ISREG))
1023 		return true;
1024 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1025 		kiocb_start_write(kiocb);
1026 		return true;
1027 	}
1028 
1029 	inode = file_inode(kiocb->ki_filp);
1030 	ret = sb_start_write_trylock(inode->i_sb);
1031 	if (ret)
1032 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1033 	return ret;
1034 }
1035 
io_write(struct io_kiocb * req,unsigned int issue_flags)1036 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1037 {
1038 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1039 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1040 	struct io_async_rw *io = req->async_data;
1041 	struct kiocb *kiocb = &rw->kiocb;
1042 	ssize_t ret, ret2;
1043 	loff_t *ppos;
1044 
1045 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1046 	if (unlikely(ret))
1047 		return ret;
1048 	req->cqe.res = iov_iter_count(&io->iter);
1049 
1050 	if (force_nonblock) {
1051 		/* If the file doesn't support async, just async punt */
1052 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1053 			goto ret_eagain;
1054 
1055 		/* Check if we can support NOWAIT. */
1056 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1057 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1058 		    (req->flags & REQ_F_ISREG))
1059 			goto ret_eagain;
1060 
1061 		kiocb->ki_flags |= IOCB_NOWAIT;
1062 	} else {
1063 		/* Ensure we clear previously set non-block flag */
1064 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1065 	}
1066 
1067 	ppos = io_kiocb_update_pos(req);
1068 
1069 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1070 	if (unlikely(ret))
1071 		return ret;
1072 
1073 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1074 		return -EAGAIN;
1075 	kiocb->ki_flags |= IOCB_WRITE;
1076 
1077 	if (likely(req->file->f_op->write_iter))
1078 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1079 	else if (req->file->f_op->write)
1080 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1081 	else
1082 		ret2 = -EINVAL;
1083 
1084 	if (req->flags & REQ_F_REISSUE) {
1085 		req->flags &= ~REQ_F_REISSUE;
1086 		ret2 = -EAGAIN;
1087 	}
1088 
1089 	/*
1090 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1091 	 * retry them without IOCB_NOWAIT.
1092 	 */
1093 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1094 		ret2 = -EAGAIN;
1095 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1096 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1097 		goto done;
1098 	if (!force_nonblock || ret2 != -EAGAIN) {
1099 		/* IOPOLL retry should happen for io-wq threads */
1100 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1101 			goto ret_eagain;
1102 
1103 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1104 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1105 						req->cqe.res, ret2);
1106 
1107 			/* This is a partial write. The file pos has already been
1108 			 * updated, setup the async struct to complete the request
1109 			 * in the worker. Also update bytes_done to account for
1110 			 * the bytes already written.
1111 			 */
1112 			iov_iter_save_state(&io->iter, &io->iter_state);
1113 			io->bytes_done += ret2;
1114 
1115 			if (kiocb->ki_flags & IOCB_WRITE)
1116 				io_req_end_write(req);
1117 			return -EAGAIN;
1118 		}
1119 done:
1120 		return kiocb_done(req, ret2, issue_flags);
1121 	} else {
1122 ret_eagain:
1123 		iov_iter_restore(&io->iter, &io->iter_state);
1124 		if (kiocb->ki_flags & IOCB_WRITE)
1125 			io_req_end_write(req);
1126 		return -EAGAIN;
1127 	}
1128 }
1129 
io_rw_fail(struct io_kiocb * req)1130 void io_rw_fail(struct io_kiocb *req)
1131 {
1132 	int res;
1133 
1134 	res = io_fixup_rw_res(req, req->cqe.res);
1135 	io_req_set_res(req, res, req->cqe.flags);
1136 }
1137 
io_do_iopoll(struct io_ring_ctx * ctx,bool force_nonspin)1138 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1139 {
1140 	struct io_wq_work_node *pos, *start, *prev;
1141 	unsigned int poll_flags = 0;
1142 	DEFINE_IO_COMP_BATCH(iob);
1143 	int nr_events = 0;
1144 
1145 	/*
1146 	 * Only spin for completions if we don't have multiple devices hanging
1147 	 * off our complete list.
1148 	 */
1149 	if (ctx->poll_multi_queue || force_nonspin)
1150 		poll_flags |= BLK_POLL_ONESHOT;
1151 
1152 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
1153 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1154 		struct file *file = req->file;
1155 		int ret;
1156 
1157 		/*
1158 		 * Move completed and retryable entries to our local lists.
1159 		 * If we find a request that requires polling, break out
1160 		 * and complete those lists first, if we have entries there.
1161 		 */
1162 		if (READ_ONCE(req->iopoll_completed))
1163 			break;
1164 
1165 		if (req->opcode == IORING_OP_URING_CMD) {
1166 			struct io_uring_cmd *ioucmd;
1167 
1168 			ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1169 			ret = file->f_op->uring_cmd_iopoll(ioucmd, &iob,
1170 								poll_flags);
1171 		} else {
1172 			struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1173 
1174 			ret = file->f_op->iopoll(&rw->kiocb, &iob, poll_flags);
1175 		}
1176 		if (unlikely(ret < 0))
1177 			return ret;
1178 		else if (ret)
1179 			poll_flags |= BLK_POLL_ONESHOT;
1180 
1181 		/* iopoll may have completed current req */
1182 		if (!rq_list_empty(iob.req_list) ||
1183 		    READ_ONCE(req->iopoll_completed))
1184 			break;
1185 	}
1186 
1187 	if (!rq_list_empty(iob.req_list))
1188 		iob.complete(&iob);
1189 	else if (!pos)
1190 		return 0;
1191 
1192 	prev = start;
1193 	wq_list_for_each_resume(pos, prev) {
1194 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1195 
1196 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1197 		if (!smp_load_acquire(&req->iopoll_completed))
1198 			break;
1199 		nr_events++;
1200 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0);
1201 		if (req->opcode != IORING_OP_URING_CMD)
1202 			io_req_rw_cleanup(req, 0);
1203 	}
1204 	if (unlikely(!nr_events))
1205 		return 0;
1206 
1207 	pos = start ? start->next : ctx->iopoll_list.first;
1208 	wq_list_cut(&ctx->iopoll_list, prev, start);
1209 
1210 	if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1211 		return 0;
1212 	ctx->submit_state.compl_reqs.first = pos;
1213 	__io_submit_flush_completions(ctx);
1214 	return nr_events;
1215 }
1216 
io_rw_cache_free(const void * entry)1217 void io_rw_cache_free(const void *entry)
1218 {
1219 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1220 
1221 	if (rw->free_iovec) {
1222 		kasan_mempool_unpoison_object(rw->free_iovec,
1223 				rw->free_iov_nr * sizeof(struct iovec));
1224 		io_rw_iovec_free(rw);
1225 	}
1226 	kfree(rw);
1227 }
1228