1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38
39 /*
40 * These can be higher, but we need to ensure that any command doesn't
41 * require an sg allocation that needs more than a page of data.
42 */
43 #define NVME_MAX_KB_SZ 8192
44 #define NVME_MAX_SEGS 128
45 #define NVME_MAX_META_SEGS 15
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144 struct sg_table *hmb_sgt;
145
146 mempool_t *iod_mempool;
147 mempool_t *iod_meta_mempool;
148
149 /* shadow doorbell buffer support: */
150 __le32 *dbbuf_dbs;
151 dma_addr_t dbbuf_dbs_dma_addr;
152 __le32 *dbbuf_eis;
153 dma_addr_t dbbuf_eis_dma_addr;
154
155 /* host memory buffer support: */
156 u64 host_mem_size;
157 u32 nr_host_mem_descs;
158 u32 host_mem_descs_size;
159 dma_addr_t host_mem_descs_dma;
160 struct nvme_host_mem_buf_desc *host_mem_descs;
161 void **host_mem_desc_bufs;
162 unsigned int nr_allocated_queues;
163 unsigned int nr_write_queues;
164 unsigned int nr_poll_queues;
165 };
166
io_queue_depth_set(const char * val,const struct kernel_param * kp)167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
168 {
169 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
170 NVME_PCI_MAX_QUEUE_SIZE);
171 }
172
sq_idx(unsigned int qid,u32 stride)173 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
174 {
175 return qid * 2 * stride;
176 }
177
cq_idx(unsigned int qid,u32 stride)178 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
179 {
180 return (qid * 2 + 1) * stride;
181 }
182
to_nvme_dev(struct nvme_ctrl * ctrl)183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
184 {
185 return container_of(ctrl, struct nvme_dev, ctrl);
186 }
187
188 /*
189 * An NVM Express queue. Each device has at least two (one for admin
190 * commands and one for I/O commands).
191 */
192 struct nvme_queue {
193 struct nvme_dev *dev;
194 spinlock_t sq_lock;
195 void *sq_cmds;
196 /* only used for poll queues: */
197 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
198 struct nvme_completion *cqes;
199 dma_addr_t sq_dma_addr;
200 dma_addr_t cq_dma_addr;
201 u32 __iomem *q_db;
202 u32 q_depth;
203 u16 cq_vector;
204 u16 sq_tail;
205 u16 last_sq_tail;
206 u16 cq_head;
207 u16 qid;
208 u8 cq_phase;
209 u8 sqes;
210 unsigned long flags;
211 #define NVMEQ_ENABLED 0
212 #define NVMEQ_SQ_CMB 1
213 #define NVMEQ_DELETE_ERROR 2
214 #define NVMEQ_POLLED 3
215 __le32 *dbbuf_sq_db;
216 __le32 *dbbuf_cq_db;
217 __le32 *dbbuf_sq_ei;
218 __le32 *dbbuf_cq_ei;
219 struct completion delete_done;
220 };
221
222 union nvme_descriptor {
223 struct nvme_sgl_desc *sg_list;
224 __le64 *prp_list;
225 };
226
227 /*
228 * The nvme_iod describes the data in an I/O.
229 *
230 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
231 * to the actual struct scatterlist.
232 */
233 struct nvme_iod {
234 struct nvme_request req;
235 struct nvme_command cmd;
236 bool aborted;
237 s8 nr_allocations; /* PRP list pool allocations. 0 means small
238 pool in use */
239 unsigned int dma_len; /* length of single DMA segment mapping */
240 dma_addr_t first_dma;
241 dma_addr_t meta_dma;
242 struct sg_table sgt;
243 struct sg_table meta_sgt;
244 union nvme_descriptor meta_list;
245 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
246 };
247
nvme_dbbuf_size(struct nvme_dev * dev)248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
249 {
250 return dev->nr_allocated_queues * 8 * dev->db_stride;
251 }
252
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
254 {
255 unsigned int mem_size = nvme_dbbuf_size(dev);
256
257 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
258 return;
259
260 if (dev->dbbuf_dbs) {
261 /*
262 * Clear the dbbuf memory so the driver doesn't observe stale
263 * values from the previous instantiation.
264 */
265 memset(dev->dbbuf_dbs, 0, mem_size);
266 memset(dev->dbbuf_eis, 0, mem_size);
267 return;
268 }
269
270 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
271 &dev->dbbuf_dbs_dma_addr,
272 GFP_KERNEL);
273 if (!dev->dbbuf_dbs)
274 goto fail;
275 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
276 &dev->dbbuf_eis_dma_addr,
277 GFP_KERNEL);
278 if (!dev->dbbuf_eis)
279 goto fail_free_dbbuf_dbs;
280 return;
281
282 fail_free_dbbuf_dbs:
283 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
284 dev->dbbuf_dbs_dma_addr);
285 dev->dbbuf_dbs = NULL;
286 fail:
287 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
288 }
289
nvme_dbbuf_dma_free(struct nvme_dev * dev)290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 unsigned int mem_size = nvme_dbbuf_size(dev);
293
294 if (dev->dbbuf_dbs) {
295 dma_free_coherent(dev->dev, mem_size,
296 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 dev->dbbuf_dbs = NULL;
298 }
299 if (dev->dbbuf_eis) {
300 dma_free_coherent(dev->dev, mem_size,
301 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 dev->dbbuf_eis = NULL;
303 }
304 }
305
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 struct nvme_queue *nvmeq, int qid)
308 {
309 if (!dev->dbbuf_dbs || !qid)
310 return;
311
312 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317
nvme_dbbuf_free(struct nvme_queue * nvmeq)318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
319 {
320 if (!nvmeq->qid)
321 return;
322
323 nvmeq->dbbuf_sq_db = NULL;
324 nvmeq->dbbuf_cq_db = NULL;
325 nvmeq->dbbuf_sq_ei = NULL;
326 nvmeq->dbbuf_cq_ei = NULL;
327 }
328
nvme_dbbuf_set(struct nvme_dev * dev)329 static void nvme_dbbuf_set(struct nvme_dev *dev)
330 {
331 struct nvme_command c = { };
332 unsigned int i;
333
334 if (!dev->dbbuf_dbs)
335 return;
336
337 c.dbbuf.opcode = nvme_admin_dbbuf;
338 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
339 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
340
341 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
342 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
343 /* Free memory and continue on */
344 nvme_dbbuf_dma_free(dev);
345
346 for (i = 1; i <= dev->online_queues; i++)
347 nvme_dbbuf_free(&dev->queues[i]);
348 }
349 }
350
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
352 {
353 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
354 }
355
356 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
358 volatile __le32 *dbbuf_ei)
359 {
360 if (dbbuf_db) {
361 u16 old_value, event_idx;
362
363 /*
364 * Ensure that the queue is written before updating
365 * the doorbell in memory
366 */
367 wmb();
368
369 old_value = le32_to_cpu(*dbbuf_db);
370 *dbbuf_db = cpu_to_le32(value);
371
372 /*
373 * Ensure that the doorbell is updated before reading the event
374 * index from memory. The controller needs to provide similar
375 * ordering to ensure the event index is updated before reading
376 * the doorbell.
377 */
378 mb();
379
380 event_idx = le32_to_cpu(*dbbuf_ei);
381 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
382 return false;
383 }
384
385 return true;
386 }
387
388 /*
389 * Will slightly overestimate the number of pages needed. This is OK
390 * as it only leads to a small amount of wasted memory for the lifetime of
391 * the I/O.
392 */
nvme_pci_npages_prp(void)393 static int nvme_pci_npages_prp(void)
394 {
395 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
396 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
397 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
398 }
399
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 unsigned int hctx_idx)
402 {
403 struct nvme_dev *dev = to_nvme_dev(data);
404 struct nvme_queue *nvmeq = &dev->queues[0];
405
406 WARN_ON(hctx_idx != 0);
407 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408
409 hctx->driver_data = nvmeq;
410 return 0;
411 }
412
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 unsigned int hctx_idx)
415 {
416 struct nvme_dev *dev = to_nvme_dev(data);
417 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418
419 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 hctx->driver_data = nvmeq;
421 return 0;
422 }
423
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 struct request *req, unsigned int hctx_idx,
426 unsigned int numa_node)
427 {
428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429
430 nvme_req(req)->ctrl = set->driver_data;
431 nvme_req(req)->cmd = &iod->cmd;
432 return 0;
433 }
434
queue_irq_offset(struct nvme_dev * dev)435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 /* if we have more than 1 vec, admin queue offsets us by 1 */
438 if (dev->num_vecs > 1)
439 return 1;
440
441 return 0;
442 }
443
nvme_pci_map_queues(struct blk_mq_tag_set * set)444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 int i, qoff, offset;
448
449 offset = queue_irq_offset(dev);
450 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 struct blk_mq_queue_map *map = &set->map[i];
452
453 map->nr_queues = dev->io_queues[i];
454 if (!map->nr_queues) {
455 BUG_ON(i == HCTX_TYPE_DEFAULT);
456 continue;
457 }
458
459 /*
460 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 * affinity), so use the regular blk-mq cpu mapping
462 */
463 map->queue_offset = qoff;
464 if (i != HCTX_TYPE_POLL && offset)
465 blk_mq_map_hw_queues(map, dev->dev, offset);
466 else
467 blk_mq_map_queues(map);
468 qoff += map->nr_queues;
469 offset += map->nr_queues;
470 }
471 }
472
473 /*
474 * Write sq tail if we are asked to, or if the next command would wrap.
475 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 if (!write_sq) {
479 u16 next_tail = nvmeq->sq_tail + 1;
480
481 if (next_tail == nvmeq->q_depth)
482 next_tail = 0;
483 if (next_tail != nvmeq->last_sq_tail)
484 return;
485 }
486
487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 writel(nvmeq->sq_tail, nvmeq->q_db);
490 nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 struct nvme_command *cmd)
495 {
496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 absolute_pointer(cmd), sizeof(*cmd));
498 if (++nvmeq->sq_tail == nvmeq->q_depth)
499 nvmeq->sq_tail = 0;
500 }
501
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 struct nvme_queue *nvmeq = hctx->driver_data;
505
506 spin_lock(&nvmeq->sq_lock);
507 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 nvme_write_sq_db(nvmeq, true);
509 spin_unlock(&nvmeq->sq_lock);
510 }
511
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
513 struct request *req)
514 {
515 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
516 return false;
517 return req->nr_integrity_segments > 1 ||
518 nvme_req(req)->flags & NVME_REQ_USERCMD;
519 }
520
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
522 int nseg)
523 {
524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 unsigned int avg_seg_size;
526
527 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
528
529 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
530 return false;
531 if (!nvmeq->qid)
532 return false;
533 if (nvme_pci_metadata_use_sgls(dev, req))
534 return true;
535 if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 return nvme_req(req)->flags & NVME_REQ_USERCMD;
537 return true;
538 }
539
nvme_free_prps(struct nvme_dev * dev,struct request * req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 dma_addr_t dma_addr = iod->first_dma;
545 int i;
546
547 for (i = 0; i < iod->nr_allocations; i++) {
548 __le64 *prp_list = iod->list[i].prp_list;
549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550
551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 dma_addr = next_dma_addr;
553 }
554 }
555
nvme_unmap_data(struct nvme_dev * dev,struct request * req)556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
557 {
558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559
560 if (iod->dma_len) {
561 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
562 rq_dma_dir(req));
563 return;
564 }
565
566 WARN_ON_ONCE(!iod->sgt.nents);
567
568 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
569
570 if (iod->nr_allocations == 0)
571 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
572 iod->first_dma);
573 else if (iod->nr_allocations == 1)
574 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
575 iod->first_dma);
576 else
577 nvme_free_prps(dev, req);
578 mempool_free(iod->sgt.sgl, dev->iod_mempool);
579 }
580
nvme_print_sgl(struct scatterlist * sgl,int nents)581 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
582 {
583 int i;
584 struct scatterlist *sg;
585
586 for_each_sg(sgl, sg, nents, i) {
587 dma_addr_t phys = sg_phys(sg);
588 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
589 "dma_address:%pad dma_length:%d\n",
590 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
591 sg_dma_len(sg));
592 }
593 }
594
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
596 struct request *req, struct nvme_rw_command *cmnd)
597 {
598 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
599 struct dma_pool *pool;
600 int length = blk_rq_payload_bytes(req);
601 struct scatterlist *sg = iod->sgt.sgl;
602 int dma_len = sg_dma_len(sg);
603 u64 dma_addr = sg_dma_address(sg);
604 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
605 __le64 *prp_list;
606 dma_addr_t prp_dma;
607 int nprps, i;
608
609 length -= (NVME_CTRL_PAGE_SIZE - offset);
610 if (length <= 0) {
611 iod->first_dma = 0;
612 goto done;
613 }
614
615 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
616 if (dma_len) {
617 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
618 } else {
619 sg = sg_next(sg);
620 dma_addr = sg_dma_address(sg);
621 dma_len = sg_dma_len(sg);
622 }
623
624 if (length <= NVME_CTRL_PAGE_SIZE) {
625 iod->first_dma = dma_addr;
626 goto done;
627 }
628
629 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
630 if (nprps <= (256 / 8)) {
631 pool = dev->prp_small_pool;
632 iod->nr_allocations = 0;
633 } else {
634 pool = dev->prp_page_pool;
635 iod->nr_allocations = 1;
636 }
637
638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 if (!prp_list) {
640 iod->nr_allocations = -1;
641 return BLK_STS_RESOURCE;
642 }
643 iod->list[0].prp_list = prp_list;
644 iod->first_dma = prp_dma;
645 i = 0;
646 for (;;) {
647 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
648 __le64 *old_prp_list = prp_list;
649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 if (!prp_list)
651 goto free_prps;
652 iod->list[iod->nr_allocations++].prp_list = prp_list;
653 prp_list[0] = old_prp_list[i - 1];
654 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
655 i = 1;
656 }
657 prp_list[i++] = cpu_to_le64(dma_addr);
658 dma_len -= NVME_CTRL_PAGE_SIZE;
659 dma_addr += NVME_CTRL_PAGE_SIZE;
660 length -= NVME_CTRL_PAGE_SIZE;
661 if (length <= 0)
662 break;
663 if (dma_len > 0)
664 continue;
665 if (unlikely(dma_len < 0))
666 goto bad_sgl;
667 sg = sg_next(sg);
668 dma_addr = sg_dma_address(sg);
669 dma_len = sg_dma_len(sg);
670 }
671 done:
672 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
673 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
674 return BLK_STS_OK;
675 free_prps:
676 nvme_free_prps(dev, req);
677 return BLK_STS_RESOURCE;
678 bad_sgl:
679 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
680 "Invalid SGL for payload:%d nents:%d\n",
681 blk_rq_payload_bytes(req), iod->sgt.nents);
682 return BLK_STS_IOERR;
683 }
684
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
686 struct scatterlist *sg)
687 {
688 sge->addr = cpu_to_le64(sg_dma_address(sg));
689 sge->length = cpu_to_le32(sg_dma_len(sg));
690 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
691 }
692
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
694 dma_addr_t dma_addr, int entries)
695 {
696 sge->addr = cpu_to_le64(dma_addr);
697 sge->length = cpu_to_le32(entries * sizeof(*sge));
698 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
699 }
700
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
702 struct request *req, struct nvme_rw_command *cmd)
703 {
704 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
705 struct dma_pool *pool;
706 struct nvme_sgl_desc *sg_list;
707 struct scatterlist *sg = iod->sgt.sgl;
708 unsigned int entries = iod->sgt.nents;
709 dma_addr_t sgl_dma;
710 int i = 0;
711
712 /* setting the transfer type as SGL */
713 cmd->flags = NVME_CMD_SGL_METABUF;
714
715 if (entries == 1) {
716 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
717 return BLK_STS_OK;
718 }
719
720 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
721 pool = dev->prp_small_pool;
722 iod->nr_allocations = 0;
723 } else {
724 pool = dev->prp_page_pool;
725 iod->nr_allocations = 1;
726 }
727
728 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
729 if (!sg_list) {
730 iod->nr_allocations = -1;
731 return BLK_STS_RESOURCE;
732 }
733
734 iod->list[0].sg_list = sg_list;
735 iod->first_dma = sgl_dma;
736
737 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
738 do {
739 nvme_pci_sgl_set_data(&sg_list[i++], sg);
740 sg = sg_next(sg);
741 } while (--entries > 0);
742
743 return BLK_STS_OK;
744 }
745
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
747 struct request *req, struct nvme_rw_command *cmnd,
748 struct bio_vec *bv)
749 {
750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
752 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
753
754 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
755 if (dma_mapping_error(dev->dev, iod->first_dma))
756 return BLK_STS_RESOURCE;
757 iod->dma_len = bv->bv_len;
758
759 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
760 if (bv->bv_len > first_prp_len)
761 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
762 else
763 cmnd->dptr.prp2 = 0;
764 return BLK_STS_OK;
765 }
766
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
768 struct request *req, struct nvme_rw_command *cmnd,
769 struct bio_vec *bv)
770 {
771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772
773 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
774 if (dma_mapping_error(dev->dev, iod->first_dma))
775 return BLK_STS_RESOURCE;
776 iod->dma_len = bv->bv_len;
777
778 cmnd->flags = NVME_CMD_SGL_METABUF;
779 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
780 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
781 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
782 return BLK_STS_OK;
783 }
784
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
786 struct nvme_command *cmnd)
787 {
788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 blk_status_t ret = BLK_STS_RESOURCE;
790 int rc;
791
792 if (blk_rq_nr_phys_segments(req) == 1) {
793 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
794 struct bio_vec bv = req_bvec(req);
795
796 if (!is_pci_p2pdma_page(bv.bv_page)) {
797 if (!nvme_pci_metadata_use_sgls(dev, req) &&
798 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
799 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
800 return nvme_setup_prp_simple(dev, req,
801 &cmnd->rw, &bv);
802
803 if (nvmeq->qid && sgl_threshold &&
804 nvme_ctrl_sgl_supported(&dev->ctrl))
805 return nvme_setup_sgl_simple(dev, req,
806 &cmnd->rw, &bv);
807 }
808 }
809
810 iod->dma_len = 0;
811 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
812 if (!iod->sgt.sgl)
813 return BLK_STS_RESOURCE;
814 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
815 iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl);
816 if (!iod->sgt.orig_nents)
817 goto out_free_sg;
818
819 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
820 DMA_ATTR_NO_WARN);
821 if (rc) {
822 if (rc == -EREMOTEIO)
823 ret = BLK_STS_TARGET;
824 goto out_free_sg;
825 }
826
827 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
829 else
830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 if (ret != BLK_STS_OK)
832 goto out_unmap_sg;
833 return BLK_STS_OK;
834
835 out_unmap_sg:
836 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
837 out_free_sg:
838 mempool_free(iod->sgt.sgl, dev->iod_mempool);
839 return ret;
840 }
841
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
843 struct request *req)
844 {
845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 struct nvme_rw_command *cmnd = &iod->cmd.rw;
847 struct nvme_sgl_desc *sg_list;
848 struct scatterlist *sgl, *sg;
849 unsigned int entries;
850 dma_addr_t sgl_dma;
851 int rc, i;
852
853 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
854 if (!iod->meta_sgt.sgl)
855 return BLK_STS_RESOURCE;
856
857 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
858 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
859 iod->meta_sgt.sgl);
860 if (!iod->meta_sgt.orig_nents)
861 goto out_free_sg;
862
863 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
864 DMA_ATTR_NO_WARN);
865 if (rc)
866 goto out_free_sg;
867
868 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
869 if (!sg_list)
870 goto out_unmap_sg;
871
872 entries = iod->meta_sgt.nents;
873 iod->meta_list.sg_list = sg_list;
874 iod->meta_dma = sgl_dma;
875
876 cmnd->flags = NVME_CMD_SGL_METASEG;
877 cmnd->metadata = cpu_to_le64(sgl_dma);
878
879 sgl = iod->meta_sgt.sgl;
880 if (entries == 1) {
881 nvme_pci_sgl_set_data(sg_list, sgl);
882 return BLK_STS_OK;
883 }
884
885 sgl_dma += sizeof(*sg_list);
886 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
887 for_each_sg(sgl, sg, entries, i)
888 nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
889
890 return BLK_STS_OK;
891
892 out_unmap_sg:
893 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
894 out_free_sg:
895 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
896 return BLK_STS_RESOURCE;
897 }
898
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
900 struct request *req)
901 {
902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 struct bio_vec bv = rq_integrity_vec(req);
904 struct nvme_command *cmnd = &iod->cmd;
905
906 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
907 if (dma_mapping_error(dev->dev, iod->meta_dma))
908 return BLK_STS_IOERR;
909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 return BLK_STS_OK;
911 }
912
nvme_map_metadata(struct nvme_dev * dev,struct request * req)913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
914 {
915 if (nvme_pci_metadata_use_sgls(dev, req))
916 return nvme_pci_setup_meta_sgls(dev, req);
917 return nvme_pci_setup_meta_mptr(dev, req);
918 }
919
nvme_prep_rq(struct nvme_dev * dev,struct request * req)920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
921 {
922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 blk_status_t ret;
924
925 iod->aborted = false;
926 iod->nr_allocations = -1;
927 iod->sgt.nents = 0;
928 iod->meta_sgt.nents = 0;
929
930 ret = nvme_setup_cmd(req->q->queuedata, req);
931 if (ret)
932 return ret;
933
934 if (blk_rq_nr_phys_segments(req)) {
935 ret = nvme_map_data(dev, req, &iod->cmd);
936 if (ret)
937 goto out_free_cmd;
938 }
939
940 if (blk_integrity_rq(req)) {
941 ret = nvme_map_metadata(dev, req);
942 if (ret)
943 goto out_unmap_data;
944 }
945
946 nvme_start_request(req);
947 return BLK_STS_OK;
948 out_unmap_data:
949 if (blk_rq_nr_phys_segments(req))
950 nvme_unmap_data(dev, req);
951 out_free_cmd:
952 nvme_cleanup_cmd(req);
953 return ret;
954 }
955
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)956 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
957 const struct blk_mq_queue_data *bd)
958 {
959 struct nvme_queue *nvmeq = hctx->driver_data;
960 struct nvme_dev *dev = nvmeq->dev;
961 struct request *req = bd->rq;
962 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963 blk_status_t ret;
964
965 /*
966 * We should not need to do this, but we're still using this to
967 * ensure we can drain requests on a dying queue.
968 */
969 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
970 return BLK_STS_IOERR;
971
972 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
973 return nvme_fail_nonready_command(&dev->ctrl, req);
974
975 ret = nvme_prep_rq(dev, req);
976 if (unlikely(ret))
977 return ret;
978 spin_lock(&nvmeq->sq_lock);
979 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
980 nvme_write_sq_db(nvmeq, bd->last);
981 spin_unlock(&nvmeq->sq_lock);
982 return BLK_STS_OK;
983 }
984
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)985 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
986 {
987 struct request *req;
988
989 spin_lock(&nvmeq->sq_lock);
990 while ((req = rq_list_pop(rqlist))) {
991 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992
993 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
994 }
995 nvme_write_sq_db(nvmeq, true);
996 spin_unlock(&nvmeq->sq_lock);
997 }
998
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)999 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1000 {
1001 /*
1002 * We should not need to do this, but we're still using this to
1003 * ensure we can drain requests on a dying queue.
1004 */
1005 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1006 return false;
1007 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1008 return false;
1009
1010 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1011 }
1012
nvme_queue_rqs(struct rq_list * rqlist)1013 static void nvme_queue_rqs(struct rq_list *rqlist)
1014 {
1015 struct rq_list submit_list = { };
1016 struct rq_list requeue_list = { };
1017 struct nvme_queue *nvmeq = NULL;
1018 struct request *req;
1019
1020 while ((req = rq_list_pop(rqlist))) {
1021 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1022 nvme_submit_cmds(nvmeq, &submit_list);
1023 nvmeq = req->mq_hctx->driver_data;
1024
1025 if (nvme_prep_rq_batch(nvmeq, req))
1026 rq_list_add_tail(&submit_list, req);
1027 else
1028 rq_list_add_tail(&requeue_list, req);
1029 }
1030
1031 if (nvmeq)
1032 nvme_submit_cmds(nvmeq, &submit_list);
1033 *rqlist = requeue_list;
1034 }
1035
nvme_unmap_metadata(struct nvme_dev * dev,struct request * req)1036 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1037 struct request *req)
1038 {
1039 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1040
1041 if (!iod->meta_sgt.nents) {
1042 dma_unmap_page(dev->dev, iod->meta_dma,
1043 rq_integrity_vec(req).bv_len,
1044 rq_dma_dir(req));
1045 return;
1046 }
1047
1048 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1049 iod->meta_dma);
1050 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1051 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1052 }
1053
nvme_pci_unmap_rq(struct request * req)1054 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1055 {
1056 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1057 struct nvme_dev *dev = nvmeq->dev;
1058
1059 if (blk_integrity_rq(req))
1060 nvme_unmap_metadata(dev, req);
1061
1062 if (blk_rq_nr_phys_segments(req))
1063 nvme_unmap_data(dev, req);
1064 }
1065
nvme_pci_complete_rq(struct request * req)1066 static void nvme_pci_complete_rq(struct request *req)
1067 {
1068 nvme_pci_unmap_rq(req);
1069 nvme_complete_rq(req);
1070 }
1071
nvme_pci_complete_batch(struct io_comp_batch * iob)1072 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1073 {
1074 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1075 }
1076
1077 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1078 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1079 {
1080 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1081
1082 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1083 }
1084
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1085 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1086 {
1087 u16 head = nvmeq->cq_head;
1088
1089 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1090 nvmeq->dbbuf_cq_ei))
1091 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1092 }
1093
nvme_queue_tagset(struct nvme_queue * nvmeq)1094 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1095 {
1096 if (!nvmeq->qid)
1097 return nvmeq->dev->admin_tagset.tags[0];
1098 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1099 }
1100
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1101 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1102 struct io_comp_batch *iob, u16 idx)
1103 {
1104 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1105 __u16 command_id = READ_ONCE(cqe->command_id);
1106 struct request *req;
1107
1108 /*
1109 * AEN requests are special as they don't time out and can
1110 * survive any kind of queue freeze and often don't respond to
1111 * aborts. We don't even bother to allocate a struct request
1112 * for them but rather special case them here.
1113 */
1114 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1115 nvme_complete_async_event(&nvmeq->dev->ctrl,
1116 cqe->status, &cqe->result);
1117 return;
1118 }
1119
1120 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1121 if (unlikely(!req)) {
1122 dev_warn(nvmeq->dev->ctrl.device,
1123 "invalid id %d completed on queue %d\n",
1124 command_id, le16_to_cpu(cqe->sq_id));
1125 return;
1126 }
1127
1128 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1129 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1130 !blk_mq_add_to_batch(req, iob,
1131 nvme_req(req)->status != NVME_SC_SUCCESS,
1132 nvme_pci_complete_batch))
1133 nvme_pci_complete_rq(req);
1134 }
1135
nvme_update_cq_head(struct nvme_queue * nvmeq)1136 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1137 {
1138 u32 tmp = nvmeq->cq_head + 1;
1139
1140 if (tmp == nvmeq->q_depth) {
1141 nvmeq->cq_head = 0;
1142 nvmeq->cq_phase ^= 1;
1143 } else {
1144 nvmeq->cq_head = tmp;
1145 }
1146 }
1147
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1148 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1149 struct io_comp_batch *iob)
1150 {
1151 bool found = false;
1152
1153 while (nvme_cqe_pending(nvmeq)) {
1154 found = true;
1155 /*
1156 * load-load control dependency between phase and the rest of
1157 * the cqe requires a full read memory barrier
1158 */
1159 dma_rmb();
1160 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1161 nvme_update_cq_head(nvmeq);
1162 }
1163
1164 if (found)
1165 nvme_ring_cq_doorbell(nvmeq);
1166 return found;
1167 }
1168
nvme_irq(int irq,void * data)1169 static irqreturn_t nvme_irq(int irq, void *data)
1170 {
1171 struct nvme_queue *nvmeq = data;
1172 DEFINE_IO_COMP_BATCH(iob);
1173
1174 if (nvme_poll_cq(nvmeq, &iob)) {
1175 if (!rq_list_empty(&iob.req_list))
1176 nvme_pci_complete_batch(&iob);
1177 return IRQ_HANDLED;
1178 }
1179 return IRQ_NONE;
1180 }
1181
nvme_irq_check(int irq,void * data)1182 static irqreturn_t nvme_irq_check(int irq, void *data)
1183 {
1184 struct nvme_queue *nvmeq = data;
1185
1186 if (nvme_cqe_pending(nvmeq))
1187 return IRQ_WAKE_THREAD;
1188 return IRQ_NONE;
1189 }
1190
1191 /*
1192 * Poll for completions for any interrupt driven queue
1193 * Can be called from any context.
1194 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1195 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1196 {
1197 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1198
1199 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1200
1201 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1202 nvme_poll_cq(nvmeq, NULL);
1203 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1204 }
1205
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1206 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1207 {
1208 struct nvme_queue *nvmeq = hctx->driver_data;
1209 bool found;
1210
1211 if (!nvme_cqe_pending(nvmeq))
1212 return 0;
1213
1214 spin_lock(&nvmeq->cq_poll_lock);
1215 found = nvme_poll_cq(nvmeq, iob);
1216 spin_unlock(&nvmeq->cq_poll_lock);
1217
1218 return found;
1219 }
1220
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1221 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1222 {
1223 struct nvme_dev *dev = to_nvme_dev(ctrl);
1224 struct nvme_queue *nvmeq = &dev->queues[0];
1225 struct nvme_command c = { };
1226
1227 c.common.opcode = nvme_admin_async_event;
1228 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1229
1230 spin_lock(&nvmeq->sq_lock);
1231 nvme_sq_copy_cmd(nvmeq, &c);
1232 nvme_write_sq_db(nvmeq, true);
1233 spin_unlock(&nvmeq->sq_lock);
1234 }
1235
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1236 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1237 {
1238 struct nvme_dev *dev = to_nvme_dev(ctrl);
1239 int ret = 0;
1240
1241 /*
1242 * Taking the shutdown_lock ensures the BAR mapping is not being
1243 * altered by reset_work. Holding this lock before the RESETTING state
1244 * change, if successful, also ensures nvme_remove won't be able to
1245 * proceed to iounmap until we're done.
1246 */
1247 mutex_lock(&dev->shutdown_lock);
1248 if (!dev->bar_mapped_size) {
1249 ret = -ENODEV;
1250 goto unlock;
1251 }
1252
1253 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1254 ret = -EBUSY;
1255 goto unlock;
1256 }
1257
1258 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1259 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1260
1261 /*
1262 * Read controller status to flush the previous write and trigger a
1263 * pcie read error.
1264 */
1265 readl(dev->bar + NVME_REG_CSTS);
1266 unlock:
1267 mutex_unlock(&dev->shutdown_lock);
1268 return ret;
1269 }
1270
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1271 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1272 {
1273 struct nvme_command c = { };
1274
1275 c.delete_queue.opcode = opcode;
1276 c.delete_queue.qid = cpu_to_le16(id);
1277
1278 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1279 }
1280
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1281 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1282 struct nvme_queue *nvmeq, s16 vector)
1283 {
1284 struct nvme_command c = { };
1285 int flags = NVME_QUEUE_PHYS_CONTIG;
1286
1287 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1288 flags |= NVME_CQ_IRQ_ENABLED;
1289
1290 /*
1291 * Note: we (ab)use the fact that the prp fields survive if no data
1292 * is attached to the request.
1293 */
1294 c.create_cq.opcode = nvme_admin_create_cq;
1295 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1296 c.create_cq.cqid = cpu_to_le16(qid);
1297 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1298 c.create_cq.cq_flags = cpu_to_le16(flags);
1299 c.create_cq.irq_vector = cpu_to_le16(vector);
1300
1301 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1302 }
1303
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1304 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1305 struct nvme_queue *nvmeq)
1306 {
1307 struct nvme_ctrl *ctrl = &dev->ctrl;
1308 struct nvme_command c = { };
1309 int flags = NVME_QUEUE_PHYS_CONTIG;
1310
1311 /*
1312 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1313 * set. Since URGENT priority is zeroes, it makes all queues
1314 * URGENT.
1315 */
1316 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1317 flags |= NVME_SQ_PRIO_MEDIUM;
1318
1319 /*
1320 * Note: we (ab)use the fact that the prp fields survive if no data
1321 * is attached to the request.
1322 */
1323 c.create_sq.opcode = nvme_admin_create_sq;
1324 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1325 c.create_sq.sqid = cpu_to_le16(qid);
1326 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1327 c.create_sq.sq_flags = cpu_to_le16(flags);
1328 c.create_sq.cqid = cpu_to_le16(qid);
1329
1330 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1331 }
1332
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1333 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1334 {
1335 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1336 }
1337
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1338 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1339 {
1340 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1341 }
1342
abort_endio(struct request * req,blk_status_t error)1343 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1344 {
1345 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1346
1347 dev_warn(nvmeq->dev->ctrl.device,
1348 "Abort status: 0x%x", nvme_req(req)->status);
1349 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1350 blk_mq_free_request(req);
1351 return RQ_END_IO_NONE;
1352 }
1353
nvme_should_reset(struct nvme_dev * dev,u32 csts)1354 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1355 {
1356 /* If true, indicates loss of adapter communication, possibly by a
1357 * NVMe Subsystem reset.
1358 */
1359 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1360
1361 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1362 switch (nvme_ctrl_state(&dev->ctrl)) {
1363 case NVME_CTRL_RESETTING:
1364 case NVME_CTRL_CONNECTING:
1365 return false;
1366 default:
1367 break;
1368 }
1369
1370 /* We shouldn't reset unless the controller is on fatal error state
1371 * _or_ if we lost the communication with it.
1372 */
1373 if (!(csts & NVME_CSTS_CFS) && !nssro)
1374 return false;
1375
1376 return true;
1377 }
1378
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1379 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1380 {
1381 /* Read a config register to help see what died. */
1382 u16 pci_status;
1383 int result;
1384
1385 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1386 &pci_status);
1387 if (result == PCIBIOS_SUCCESSFUL)
1388 dev_warn(dev->ctrl.device,
1389 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1390 csts, pci_status);
1391 else
1392 dev_warn(dev->ctrl.device,
1393 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1394 csts, result);
1395
1396 if (csts != ~0)
1397 return;
1398
1399 dev_warn(dev->ctrl.device,
1400 "Does your device have a faulty power saving mode enabled?\n");
1401 dev_warn(dev->ctrl.device,
1402 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1403 }
1404
nvme_timeout(struct request * req)1405 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1406 {
1407 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1408 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1409 struct nvme_dev *dev = nvmeq->dev;
1410 struct request *abort_req;
1411 struct nvme_command cmd = { };
1412 struct pci_dev *pdev = to_pci_dev(dev->dev);
1413 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1414 u8 opcode;
1415
1416 /*
1417 * Shutdown the device immediately if we see it is disconnected. This
1418 * unblocks PCIe error handling if the nvme driver is waiting in
1419 * error_resume for a device that has been removed. We can't unbind the
1420 * driver while the driver's error callback is waiting to complete, so
1421 * we're relying on a timeout to break that deadlock if a removal
1422 * occurs while reset work is running.
1423 */
1424 if (pci_dev_is_disconnected(pdev))
1425 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1426 if (nvme_state_terminal(&dev->ctrl))
1427 goto disable;
1428
1429 /* If PCI error recovery process is happening, we cannot reset or
1430 * the recovery mechanism will surely fail.
1431 */
1432 mb();
1433 if (pci_channel_offline(pdev))
1434 return BLK_EH_RESET_TIMER;
1435
1436 /*
1437 * Reset immediately if the controller is failed
1438 */
1439 if (nvme_should_reset(dev, csts)) {
1440 nvme_warn_reset(dev, csts);
1441 goto disable;
1442 }
1443
1444 /*
1445 * Did we miss an interrupt?
1446 */
1447 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1448 nvme_poll(req->mq_hctx, NULL);
1449 else
1450 nvme_poll_irqdisable(nvmeq);
1451
1452 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1453 dev_warn(dev->ctrl.device,
1454 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1455 req->tag, nvme_cid(req), nvmeq->qid);
1456 return BLK_EH_DONE;
1457 }
1458
1459 /*
1460 * Shutdown immediately if controller times out while starting. The
1461 * reset work will see the pci device disabled when it gets the forced
1462 * cancellation error. All outstanding requests are completed on
1463 * shutdown, so we return BLK_EH_DONE.
1464 */
1465 switch (nvme_ctrl_state(&dev->ctrl)) {
1466 case NVME_CTRL_CONNECTING:
1467 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1468 fallthrough;
1469 case NVME_CTRL_DELETING:
1470 dev_warn_ratelimited(dev->ctrl.device,
1471 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1472 req->tag, nvme_cid(req), nvmeq->qid);
1473 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1474 nvme_dev_disable(dev, true);
1475 return BLK_EH_DONE;
1476 case NVME_CTRL_RESETTING:
1477 return BLK_EH_RESET_TIMER;
1478 default:
1479 break;
1480 }
1481
1482 /*
1483 * Shutdown the controller immediately and schedule a reset if the
1484 * command was already aborted once before and still hasn't been
1485 * returned to the driver, or if this is the admin queue.
1486 */
1487 opcode = nvme_req(req)->cmd->common.opcode;
1488 if (!nvmeq->qid || iod->aborted) {
1489 dev_warn(dev->ctrl.device,
1490 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1491 req->tag, nvme_cid(req), opcode,
1492 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1493 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1494 goto disable;
1495 }
1496
1497 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1498 atomic_inc(&dev->ctrl.abort_limit);
1499 return BLK_EH_RESET_TIMER;
1500 }
1501 iod->aborted = true;
1502
1503 cmd.abort.opcode = nvme_admin_abort_cmd;
1504 cmd.abort.cid = nvme_cid(req);
1505 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1506
1507 dev_warn(nvmeq->dev->ctrl.device,
1508 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1509 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1510 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1511 blk_rq_bytes(req));
1512
1513 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1514 BLK_MQ_REQ_NOWAIT);
1515 if (IS_ERR(abort_req)) {
1516 atomic_inc(&dev->ctrl.abort_limit);
1517 return BLK_EH_RESET_TIMER;
1518 }
1519 nvme_init_request(abort_req, &cmd);
1520
1521 abort_req->end_io = abort_endio;
1522 abort_req->end_io_data = NULL;
1523 blk_execute_rq_nowait(abort_req, false);
1524
1525 /*
1526 * The aborted req will be completed on receiving the abort req.
1527 * We enable the timer again. If hit twice, it'll cause a device reset,
1528 * as the device then is in a faulty state.
1529 */
1530 return BLK_EH_RESET_TIMER;
1531
1532 disable:
1533 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1534 if (nvme_state_terminal(&dev->ctrl))
1535 nvme_dev_disable(dev, true);
1536 return BLK_EH_DONE;
1537 }
1538
1539 nvme_dev_disable(dev, false);
1540 if (nvme_try_sched_reset(&dev->ctrl))
1541 nvme_unquiesce_io_queues(&dev->ctrl);
1542 return BLK_EH_DONE;
1543 }
1544
nvme_free_queue(struct nvme_queue * nvmeq)1545 static void nvme_free_queue(struct nvme_queue *nvmeq)
1546 {
1547 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1548 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1549 if (!nvmeq->sq_cmds)
1550 return;
1551
1552 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1553 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1554 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1555 } else {
1556 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1557 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1558 }
1559 }
1560
nvme_free_queues(struct nvme_dev * dev,int lowest)1561 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1562 {
1563 int i;
1564
1565 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1566 dev->ctrl.queue_count--;
1567 nvme_free_queue(&dev->queues[i]);
1568 }
1569 }
1570
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1571 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1572 {
1573 struct nvme_queue *nvmeq = &dev->queues[qid];
1574
1575 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1576 return;
1577
1578 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1579 mb();
1580
1581 nvmeq->dev->online_queues--;
1582 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1583 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1584 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1585 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1586 }
1587
nvme_suspend_io_queues(struct nvme_dev * dev)1588 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1589 {
1590 int i;
1591
1592 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1593 nvme_suspend_queue(dev, i);
1594 }
1595
1596 /*
1597 * Called only on a device that has been disabled and after all other threads
1598 * that can check this device's completion queues have synced, except
1599 * nvme_poll(). This is the last chance for the driver to see a natural
1600 * completion before nvme_cancel_request() terminates all incomplete requests.
1601 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1602 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1603 {
1604 int i;
1605
1606 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1607 spin_lock(&dev->queues[i].cq_poll_lock);
1608 nvme_poll_cq(&dev->queues[i], NULL);
1609 spin_unlock(&dev->queues[i].cq_poll_lock);
1610 }
1611 }
1612
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1613 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1614 int entry_size)
1615 {
1616 int q_depth = dev->q_depth;
1617 unsigned q_size_aligned = roundup(q_depth * entry_size,
1618 NVME_CTRL_PAGE_SIZE);
1619
1620 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1621 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1622
1623 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1624 q_depth = div_u64(mem_per_q, entry_size);
1625
1626 /*
1627 * Ensure the reduced q_depth is above some threshold where it
1628 * would be better to map queues in system memory with the
1629 * original depth
1630 */
1631 if (q_depth < 64)
1632 return -ENOMEM;
1633 }
1634
1635 return q_depth;
1636 }
1637
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1638 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1639 int qid)
1640 {
1641 struct pci_dev *pdev = to_pci_dev(dev->dev);
1642
1643 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1644 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1645 if (nvmeq->sq_cmds) {
1646 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1647 nvmeq->sq_cmds);
1648 if (nvmeq->sq_dma_addr) {
1649 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1650 return 0;
1651 }
1652
1653 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1654 }
1655 }
1656
1657 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1658 &nvmeq->sq_dma_addr, GFP_KERNEL);
1659 if (!nvmeq->sq_cmds)
1660 return -ENOMEM;
1661 return 0;
1662 }
1663
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1664 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1665 {
1666 struct nvme_queue *nvmeq = &dev->queues[qid];
1667
1668 if (dev->ctrl.queue_count > qid)
1669 return 0;
1670
1671 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1672 nvmeq->q_depth = depth;
1673 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1674 &nvmeq->cq_dma_addr, GFP_KERNEL);
1675 if (!nvmeq->cqes)
1676 goto free_nvmeq;
1677
1678 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1679 goto free_cqdma;
1680
1681 nvmeq->dev = dev;
1682 spin_lock_init(&nvmeq->sq_lock);
1683 spin_lock_init(&nvmeq->cq_poll_lock);
1684 nvmeq->cq_head = 0;
1685 nvmeq->cq_phase = 1;
1686 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1687 nvmeq->qid = qid;
1688 dev->ctrl.queue_count++;
1689
1690 return 0;
1691
1692 free_cqdma:
1693 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1694 nvmeq->cq_dma_addr);
1695 free_nvmeq:
1696 return -ENOMEM;
1697 }
1698
queue_request_irq(struct nvme_queue * nvmeq)1699 static int queue_request_irq(struct nvme_queue *nvmeq)
1700 {
1701 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1702 int nr = nvmeq->dev->ctrl.instance;
1703
1704 if (use_threaded_interrupts) {
1705 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1706 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1707 } else {
1708 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1709 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1710 }
1711 }
1712
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1713 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1714 {
1715 struct nvme_dev *dev = nvmeq->dev;
1716
1717 nvmeq->sq_tail = 0;
1718 nvmeq->last_sq_tail = 0;
1719 nvmeq->cq_head = 0;
1720 nvmeq->cq_phase = 1;
1721 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1722 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1723 nvme_dbbuf_init(dev, nvmeq, qid);
1724 dev->online_queues++;
1725 wmb(); /* ensure the first interrupt sees the initialization */
1726 }
1727
1728 /*
1729 * Try getting shutdown_lock while setting up IO queues.
1730 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1731 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1732 {
1733 /*
1734 * Give up if the lock is being held by nvme_dev_disable.
1735 */
1736 if (!mutex_trylock(&dev->shutdown_lock))
1737 return -ENODEV;
1738
1739 /*
1740 * Controller is in wrong state, fail early.
1741 */
1742 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1743 mutex_unlock(&dev->shutdown_lock);
1744 return -ENODEV;
1745 }
1746
1747 return 0;
1748 }
1749
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1750 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1751 {
1752 struct nvme_dev *dev = nvmeq->dev;
1753 int result;
1754 u16 vector = 0;
1755
1756 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1757
1758 /*
1759 * A queue's vector matches the queue identifier unless the controller
1760 * has only one vector available.
1761 */
1762 if (!polled)
1763 vector = dev->num_vecs == 1 ? 0 : qid;
1764 else
1765 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1766
1767 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1768 if (result)
1769 return result;
1770
1771 result = adapter_alloc_sq(dev, qid, nvmeq);
1772 if (result < 0)
1773 return result;
1774 if (result)
1775 goto release_cq;
1776
1777 nvmeq->cq_vector = vector;
1778
1779 result = nvme_setup_io_queues_trylock(dev);
1780 if (result)
1781 return result;
1782 nvme_init_queue(nvmeq, qid);
1783 if (!polled) {
1784 result = queue_request_irq(nvmeq);
1785 if (result < 0)
1786 goto release_sq;
1787 }
1788
1789 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1790 mutex_unlock(&dev->shutdown_lock);
1791 return result;
1792
1793 release_sq:
1794 dev->online_queues--;
1795 mutex_unlock(&dev->shutdown_lock);
1796 adapter_delete_sq(dev, qid);
1797 release_cq:
1798 adapter_delete_cq(dev, qid);
1799 return result;
1800 }
1801
1802 static const struct blk_mq_ops nvme_mq_admin_ops = {
1803 .queue_rq = nvme_queue_rq,
1804 .complete = nvme_pci_complete_rq,
1805 .init_hctx = nvme_admin_init_hctx,
1806 .init_request = nvme_pci_init_request,
1807 .timeout = nvme_timeout,
1808 };
1809
1810 static const struct blk_mq_ops nvme_mq_ops = {
1811 .queue_rq = nvme_queue_rq,
1812 .queue_rqs = nvme_queue_rqs,
1813 .complete = nvme_pci_complete_rq,
1814 .commit_rqs = nvme_commit_rqs,
1815 .init_hctx = nvme_init_hctx,
1816 .init_request = nvme_pci_init_request,
1817 .map_queues = nvme_pci_map_queues,
1818 .timeout = nvme_timeout,
1819 .poll = nvme_poll,
1820 };
1821
nvme_dev_remove_admin(struct nvme_dev * dev)1822 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1823 {
1824 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1825 /*
1826 * If the controller was reset during removal, it's possible
1827 * user requests may be waiting on a stopped queue. Start the
1828 * queue to flush these to completion.
1829 */
1830 nvme_unquiesce_admin_queue(&dev->ctrl);
1831 nvme_remove_admin_tag_set(&dev->ctrl);
1832 }
1833 }
1834
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1835 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1836 {
1837 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1838 }
1839
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1840 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1841 {
1842 struct pci_dev *pdev = to_pci_dev(dev->dev);
1843
1844 if (size <= dev->bar_mapped_size)
1845 return 0;
1846 if (size > pci_resource_len(pdev, 0))
1847 return -ENOMEM;
1848 if (dev->bar)
1849 iounmap(dev->bar);
1850 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1851 if (!dev->bar) {
1852 dev->bar_mapped_size = 0;
1853 return -ENOMEM;
1854 }
1855 dev->bar_mapped_size = size;
1856 dev->dbs = dev->bar + NVME_REG_DBS;
1857
1858 return 0;
1859 }
1860
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1861 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1862 {
1863 int result;
1864 u32 aqa;
1865 struct nvme_queue *nvmeq;
1866
1867 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1868 if (result < 0)
1869 return result;
1870
1871 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1872 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1873
1874 if (dev->subsystem &&
1875 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1876 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1877
1878 /*
1879 * If the device has been passed off to us in an enabled state, just
1880 * clear the enabled bit. The spec says we should set the 'shutdown
1881 * notification bits', but doing so may cause the device to complete
1882 * commands to the admin queue ... and we don't know what memory that
1883 * might be pointing at!
1884 */
1885 result = nvme_disable_ctrl(&dev->ctrl, false);
1886 if (result < 0)
1887 return result;
1888
1889 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1890 if (result)
1891 return result;
1892
1893 dev->ctrl.numa_node = dev_to_node(dev->dev);
1894
1895 nvmeq = &dev->queues[0];
1896 aqa = nvmeq->q_depth - 1;
1897 aqa |= aqa << 16;
1898
1899 writel(aqa, dev->bar + NVME_REG_AQA);
1900 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1901 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1902
1903 result = nvme_enable_ctrl(&dev->ctrl);
1904 if (result)
1905 return result;
1906
1907 nvmeq->cq_vector = 0;
1908 nvme_init_queue(nvmeq, 0);
1909 result = queue_request_irq(nvmeq);
1910 if (result) {
1911 dev->online_queues--;
1912 return result;
1913 }
1914
1915 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1916 return result;
1917 }
1918
nvme_create_io_queues(struct nvme_dev * dev)1919 static int nvme_create_io_queues(struct nvme_dev *dev)
1920 {
1921 unsigned i, max, rw_queues;
1922 int ret = 0;
1923
1924 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1925 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1926 ret = -ENOMEM;
1927 break;
1928 }
1929 }
1930
1931 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1932 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1933 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1934 dev->io_queues[HCTX_TYPE_READ];
1935 } else {
1936 rw_queues = max;
1937 }
1938
1939 for (i = dev->online_queues; i <= max; i++) {
1940 bool polled = i > rw_queues;
1941
1942 ret = nvme_create_queue(&dev->queues[i], i, polled);
1943 if (ret)
1944 break;
1945 }
1946
1947 /*
1948 * Ignore failing Create SQ/CQ commands, we can continue with less
1949 * than the desired amount of queues, and even a controller without
1950 * I/O queues can still be used to issue admin commands. This might
1951 * be useful to upgrade a buggy firmware for example.
1952 */
1953 return ret >= 0 ? 0 : ret;
1954 }
1955
nvme_cmb_size_unit(struct nvme_dev * dev)1956 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1957 {
1958 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1959
1960 return 1ULL << (12 + 4 * szu);
1961 }
1962
nvme_cmb_size(struct nvme_dev * dev)1963 static u32 nvme_cmb_size(struct nvme_dev *dev)
1964 {
1965 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1966 }
1967
nvme_map_cmb(struct nvme_dev * dev)1968 static void nvme_map_cmb(struct nvme_dev *dev)
1969 {
1970 u64 size, offset;
1971 resource_size_t bar_size;
1972 struct pci_dev *pdev = to_pci_dev(dev->dev);
1973 int bar;
1974
1975 if (dev->cmb_size)
1976 return;
1977
1978 if (NVME_CAP_CMBS(dev->ctrl.cap))
1979 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1980
1981 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1982 if (!dev->cmbsz)
1983 return;
1984 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1985
1986 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1987 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1988 bar = NVME_CMB_BIR(dev->cmbloc);
1989 bar_size = pci_resource_len(pdev, bar);
1990
1991 if (offset > bar_size)
1992 return;
1993
1994 /*
1995 * Controllers may support a CMB size larger than their BAR, for
1996 * example, due to being behind a bridge. Reduce the CMB to the
1997 * reported size of the BAR
1998 */
1999 size = min(size, bar_size - offset);
2000
2001 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2002 !IS_ALIGNED(pci_resource_start(pdev, bar),
2003 memremap_compat_align()))
2004 return;
2005
2006 /*
2007 * Tell the controller about the host side address mapping the CMB,
2008 * and enable CMB decoding for the NVMe 1.4+ scheme:
2009 */
2010 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2011 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2012 (pci_bus_address(pdev, bar) + offset),
2013 dev->bar + NVME_REG_CMBMSC);
2014 }
2015
2016 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2017 dev_warn(dev->ctrl.device,
2018 "failed to register the CMB\n");
2019 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2020 return;
2021 }
2022
2023 dev->cmb_size = size;
2024 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2025
2026 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2027 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2028 pci_p2pmem_publish(pdev, true);
2029
2030 nvme_update_attrs(dev);
2031 }
2032
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2033 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2034 {
2035 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2036 u64 dma_addr = dev->host_mem_descs_dma;
2037 struct nvme_command c = { };
2038 int ret;
2039
2040 c.features.opcode = nvme_admin_set_features;
2041 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2042 c.features.dword11 = cpu_to_le32(bits);
2043 c.features.dword12 = cpu_to_le32(host_mem_size);
2044 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2045 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2046 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2047
2048 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2049 if (ret) {
2050 dev_warn(dev->ctrl.device,
2051 "failed to set host mem (err %d, flags %#x).\n",
2052 ret, bits);
2053 } else
2054 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2055
2056 return ret;
2057 }
2058
nvme_free_host_mem_multi(struct nvme_dev * dev)2059 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2060 {
2061 int i;
2062
2063 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2064 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2065 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2066
2067 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2068 le64_to_cpu(desc->addr),
2069 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2070 }
2071
2072 kfree(dev->host_mem_desc_bufs);
2073 dev->host_mem_desc_bufs = NULL;
2074 }
2075
nvme_free_host_mem(struct nvme_dev * dev)2076 static void nvme_free_host_mem(struct nvme_dev *dev)
2077 {
2078 if (dev->hmb_sgt)
2079 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2080 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2081 else
2082 nvme_free_host_mem_multi(dev);
2083
2084 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2085 dev->host_mem_descs, dev->host_mem_descs_dma);
2086 dev->host_mem_descs = NULL;
2087 dev->host_mem_descs_size = 0;
2088 dev->nr_host_mem_descs = 0;
2089 }
2090
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2091 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2092 {
2093 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2094 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2095 if (!dev->hmb_sgt)
2096 return -ENOMEM;
2097
2098 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2099 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2100 GFP_KERNEL);
2101 if (!dev->host_mem_descs) {
2102 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2103 DMA_BIDIRECTIONAL);
2104 dev->hmb_sgt = NULL;
2105 return -ENOMEM;
2106 }
2107 dev->host_mem_size = size;
2108 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2109 dev->nr_host_mem_descs = 1;
2110
2111 dev->host_mem_descs[0].addr =
2112 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2113 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2114 return 0;
2115 }
2116
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2117 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2118 u32 chunk_size)
2119 {
2120 struct nvme_host_mem_buf_desc *descs;
2121 u32 max_entries, len, descs_size;
2122 dma_addr_t descs_dma;
2123 int i = 0;
2124 void **bufs;
2125 u64 size, tmp;
2126
2127 tmp = (preferred + chunk_size - 1);
2128 do_div(tmp, chunk_size);
2129 max_entries = tmp;
2130
2131 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2132 max_entries = dev->ctrl.hmmaxd;
2133
2134 descs_size = max_entries * sizeof(*descs);
2135 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2136 GFP_KERNEL);
2137 if (!descs)
2138 goto out;
2139
2140 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2141 if (!bufs)
2142 goto out_free_descs;
2143
2144 for (size = 0; size < preferred && i < max_entries; size += len) {
2145 dma_addr_t dma_addr;
2146
2147 len = min_t(u64, chunk_size, preferred - size);
2148 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2149 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2150 if (!bufs[i])
2151 break;
2152
2153 descs[i].addr = cpu_to_le64(dma_addr);
2154 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2155 i++;
2156 }
2157
2158 if (!size)
2159 goto out_free_bufs;
2160
2161 dev->nr_host_mem_descs = i;
2162 dev->host_mem_size = size;
2163 dev->host_mem_descs = descs;
2164 dev->host_mem_descs_dma = descs_dma;
2165 dev->host_mem_descs_size = descs_size;
2166 dev->host_mem_desc_bufs = bufs;
2167 return 0;
2168
2169 out_free_bufs:
2170 kfree(bufs);
2171 out_free_descs:
2172 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2173 out:
2174 dev->host_mem_descs = NULL;
2175 return -ENOMEM;
2176 }
2177
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2178 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2179 {
2180 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2181 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2182 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2183 u64 chunk_size;
2184
2185 /*
2186 * If there is an IOMMU that can merge pages, try a virtually
2187 * non-contiguous allocation for a single segment first.
2188 */
2189 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2190 if (!nvme_alloc_host_mem_single(dev, preferred))
2191 return 0;
2192 }
2193
2194 /* start big and work our way down */
2195 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2196 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2197 if (!min || dev->host_mem_size >= min)
2198 return 0;
2199 nvme_free_host_mem(dev);
2200 }
2201 }
2202
2203 return -ENOMEM;
2204 }
2205
nvme_setup_host_mem(struct nvme_dev * dev)2206 static int nvme_setup_host_mem(struct nvme_dev *dev)
2207 {
2208 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2209 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2210 u64 min = (u64)dev->ctrl.hmmin * 4096;
2211 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2212 int ret;
2213
2214 if (!dev->ctrl.hmpre)
2215 return 0;
2216
2217 preferred = min(preferred, max);
2218 if (min > max) {
2219 dev_warn(dev->ctrl.device,
2220 "min host memory (%lld MiB) above limit (%d MiB).\n",
2221 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2222 nvme_free_host_mem(dev);
2223 return 0;
2224 }
2225
2226 /*
2227 * If we already have a buffer allocated check if we can reuse it.
2228 */
2229 if (dev->host_mem_descs) {
2230 if (dev->host_mem_size >= min)
2231 enable_bits |= NVME_HOST_MEM_RETURN;
2232 else
2233 nvme_free_host_mem(dev);
2234 }
2235
2236 if (!dev->host_mem_descs) {
2237 if (nvme_alloc_host_mem(dev, min, preferred)) {
2238 dev_warn(dev->ctrl.device,
2239 "failed to allocate host memory buffer.\n");
2240 return 0; /* controller must work without HMB */
2241 }
2242
2243 dev_info(dev->ctrl.device,
2244 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2245 dev->host_mem_size >> ilog2(SZ_1M),
2246 dev->nr_host_mem_descs,
2247 str_plural(dev->nr_host_mem_descs));
2248 }
2249
2250 ret = nvme_set_host_mem(dev, enable_bits);
2251 if (ret)
2252 nvme_free_host_mem(dev);
2253 return ret;
2254 }
2255
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2256 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2257 char *buf)
2258 {
2259 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2260
2261 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2262 ndev->cmbloc, ndev->cmbsz);
2263 }
2264 static DEVICE_ATTR_RO(cmb);
2265
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2266 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2267 char *buf)
2268 {
2269 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2270
2271 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2272 }
2273 static DEVICE_ATTR_RO(cmbloc);
2274
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2275 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2276 char *buf)
2277 {
2278 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2279
2280 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2281 }
2282 static DEVICE_ATTR_RO(cmbsz);
2283
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2284 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2285 char *buf)
2286 {
2287 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2288
2289 return sysfs_emit(buf, "%d\n", ndev->hmb);
2290 }
2291
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2292 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2293 const char *buf, size_t count)
2294 {
2295 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2296 bool new;
2297 int ret;
2298
2299 if (kstrtobool(buf, &new) < 0)
2300 return -EINVAL;
2301
2302 if (new == ndev->hmb)
2303 return count;
2304
2305 if (new) {
2306 ret = nvme_setup_host_mem(ndev);
2307 } else {
2308 ret = nvme_set_host_mem(ndev, 0);
2309 if (!ret)
2310 nvme_free_host_mem(ndev);
2311 }
2312
2313 if (ret < 0)
2314 return ret;
2315
2316 return count;
2317 }
2318 static DEVICE_ATTR_RW(hmb);
2319
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2320 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2321 struct attribute *a, int n)
2322 {
2323 struct nvme_ctrl *ctrl =
2324 dev_get_drvdata(container_of(kobj, struct device, kobj));
2325 struct nvme_dev *dev = to_nvme_dev(ctrl);
2326
2327 if (a == &dev_attr_cmb.attr ||
2328 a == &dev_attr_cmbloc.attr ||
2329 a == &dev_attr_cmbsz.attr) {
2330 if (!dev->cmbsz)
2331 return 0;
2332 }
2333 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2334 return 0;
2335
2336 return a->mode;
2337 }
2338
2339 static struct attribute *nvme_pci_attrs[] = {
2340 &dev_attr_cmb.attr,
2341 &dev_attr_cmbloc.attr,
2342 &dev_attr_cmbsz.attr,
2343 &dev_attr_hmb.attr,
2344 NULL,
2345 };
2346
2347 static const struct attribute_group nvme_pci_dev_attrs_group = {
2348 .attrs = nvme_pci_attrs,
2349 .is_visible = nvme_pci_attrs_are_visible,
2350 };
2351
2352 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2353 &nvme_dev_attrs_group,
2354 &nvme_pci_dev_attrs_group,
2355 NULL,
2356 };
2357
nvme_update_attrs(struct nvme_dev * dev)2358 static void nvme_update_attrs(struct nvme_dev *dev)
2359 {
2360 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2361 }
2362
2363 /*
2364 * nirqs is the number of interrupts available for write and read
2365 * queues. The core already reserved an interrupt for the admin queue.
2366 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2367 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2368 {
2369 struct nvme_dev *dev = affd->priv;
2370 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2371
2372 /*
2373 * If there is no interrupt available for queues, ensure that
2374 * the default queue is set to 1. The affinity set size is
2375 * also set to one, but the irq core ignores it for this case.
2376 *
2377 * If only one interrupt is available or 'write_queue' == 0, combine
2378 * write and read queues.
2379 *
2380 * If 'write_queues' > 0, ensure it leaves room for at least one read
2381 * queue.
2382 */
2383 if (!nrirqs) {
2384 nrirqs = 1;
2385 nr_read_queues = 0;
2386 } else if (nrirqs == 1 || !nr_write_queues) {
2387 nr_read_queues = 0;
2388 } else if (nr_write_queues >= nrirqs) {
2389 nr_read_queues = 1;
2390 } else {
2391 nr_read_queues = nrirqs - nr_write_queues;
2392 }
2393
2394 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2395 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2396 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2397 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2398 affd->nr_sets = nr_read_queues ? 2 : 1;
2399 }
2400
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2401 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2402 {
2403 struct pci_dev *pdev = to_pci_dev(dev->dev);
2404 struct irq_affinity affd = {
2405 .pre_vectors = 1,
2406 .calc_sets = nvme_calc_irq_sets,
2407 .priv = dev,
2408 };
2409 unsigned int irq_queues, poll_queues;
2410 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2411
2412 /*
2413 * Poll queues don't need interrupts, but we need at least one I/O queue
2414 * left over for non-polled I/O.
2415 */
2416 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2417 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2418
2419 /*
2420 * Initialize for the single interrupt case, will be updated in
2421 * nvme_calc_irq_sets().
2422 */
2423 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2424 dev->io_queues[HCTX_TYPE_READ] = 0;
2425
2426 /*
2427 * We need interrupts for the admin queue and each non-polled I/O queue,
2428 * but some Apple controllers require all queues to use the first
2429 * vector.
2430 */
2431 irq_queues = 1;
2432 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2433 irq_queues += (nr_io_queues - poll_queues);
2434 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2435 flags &= ~PCI_IRQ_MSI;
2436 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2437 &affd);
2438 }
2439
nvme_max_io_queues(struct nvme_dev * dev)2440 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2441 {
2442 /*
2443 * If tags are shared with admin queue (Apple bug), then
2444 * make sure we only use one IO queue.
2445 */
2446 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2447 return 1;
2448 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2449 }
2450
nvme_setup_io_queues(struct nvme_dev * dev)2451 static int nvme_setup_io_queues(struct nvme_dev *dev)
2452 {
2453 struct nvme_queue *adminq = &dev->queues[0];
2454 struct pci_dev *pdev = to_pci_dev(dev->dev);
2455 unsigned int nr_io_queues;
2456 unsigned long size;
2457 int result;
2458
2459 /*
2460 * Sample the module parameters once at reset time so that we have
2461 * stable values to work with.
2462 */
2463 dev->nr_write_queues = write_queues;
2464 dev->nr_poll_queues = poll_queues;
2465
2466 nr_io_queues = dev->nr_allocated_queues - 1;
2467 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2468 if (result < 0)
2469 return result;
2470
2471 if (nr_io_queues == 0)
2472 return 0;
2473
2474 /*
2475 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2476 * from set to unset. If there is a window to it is truely freed,
2477 * pci_free_irq_vectors() jumping into this window will crash.
2478 * And take lock to avoid racing with pci_free_irq_vectors() in
2479 * nvme_dev_disable() path.
2480 */
2481 result = nvme_setup_io_queues_trylock(dev);
2482 if (result)
2483 return result;
2484 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2485 pci_free_irq(pdev, 0, adminq);
2486
2487 if (dev->cmb_use_sqes) {
2488 result = nvme_cmb_qdepth(dev, nr_io_queues,
2489 sizeof(struct nvme_command));
2490 if (result > 0) {
2491 dev->q_depth = result;
2492 dev->ctrl.sqsize = result - 1;
2493 } else {
2494 dev->cmb_use_sqes = false;
2495 }
2496 }
2497
2498 do {
2499 size = db_bar_size(dev, nr_io_queues);
2500 result = nvme_remap_bar(dev, size);
2501 if (!result)
2502 break;
2503 if (!--nr_io_queues) {
2504 result = -ENOMEM;
2505 goto out_unlock;
2506 }
2507 } while (1);
2508 adminq->q_db = dev->dbs;
2509
2510 retry:
2511 /* Deregister the admin queue's interrupt */
2512 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2513 pci_free_irq(pdev, 0, adminq);
2514
2515 /*
2516 * If we enable msix early due to not intx, disable it again before
2517 * setting up the full range we need.
2518 */
2519 pci_free_irq_vectors(pdev);
2520
2521 result = nvme_setup_irqs(dev, nr_io_queues);
2522 if (result <= 0) {
2523 result = -EIO;
2524 goto out_unlock;
2525 }
2526
2527 dev->num_vecs = result;
2528 result = max(result - 1, 1);
2529 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2530
2531 /*
2532 * Should investigate if there's a performance win from allocating
2533 * more queues than interrupt vectors; it might allow the submission
2534 * path to scale better, even if the receive path is limited by the
2535 * number of interrupts.
2536 */
2537 result = queue_request_irq(adminq);
2538 if (result)
2539 goto out_unlock;
2540 set_bit(NVMEQ_ENABLED, &adminq->flags);
2541 mutex_unlock(&dev->shutdown_lock);
2542
2543 result = nvme_create_io_queues(dev);
2544 if (result || dev->online_queues < 2)
2545 return result;
2546
2547 if (dev->online_queues - 1 < dev->max_qid) {
2548 nr_io_queues = dev->online_queues - 1;
2549 nvme_delete_io_queues(dev);
2550 result = nvme_setup_io_queues_trylock(dev);
2551 if (result)
2552 return result;
2553 nvme_suspend_io_queues(dev);
2554 goto retry;
2555 }
2556 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2557 dev->io_queues[HCTX_TYPE_DEFAULT],
2558 dev->io_queues[HCTX_TYPE_READ],
2559 dev->io_queues[HCTX_TYPE_POLL]);
2560 return 0;
2561 out_unlock:
2562 mutex_unlock(&dev->shutdown_lock);
2563 return result;
2564 }
2565
nvme_del_queue_end(struct request * req,blk_status_t error)2566 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2567 blk_status_t error)
2568 {
2569 struct nvme_queue *nvmeq = req->end_io_data;
2570
2571 blk_mq_free_request(req);
2572 complete(&nvmeq->delete_done);
2573 return RQ_END_IO_NONE;
2574 }
2575
nvme_del_cq_end(struct request * req,blk_status_t error)2576 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2577 blk_status_t error)
2578 {
2579 struct nvme_queue *nvmeq = req->end_io_data;
2580
2581 if (error)
2582 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2583
2584 return nvme_del_queue_end(req, error);
2585 }
2586
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2587 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2588 {
2589 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2590 struct request *req;
2591 struct nvme_command cmd = { };
2592
2593 cmd.delete_queue.opcode = opcode;
2594 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2595
2596 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2597 if (IS_ERR(req))
2598 return PTR_ERR(req);
2599 nvme_init_request(req, &cmd);
2600
2601 if (opcode == nvme_admin_delete_cq)
2602 req->end_io = nvme_del_cq_end;
2603 else
2604 req->end_io = nvme_del_queue_end;
2605 req->end_io_data = nvmeq;
2606
2607 init_completion(&nvmeq->delete_done);
2608 blk_execute_rq_nowait(req, false);
2609 return 0;
2610 }
2611
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2612 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2613 {
2614 int nr_queues = dev->online_queues - 1, sent = 0;
2615 unsigned long timeout;
2616
2617 retry:
2618 timeout = NVME_ADMIN_TIMEOUT;
2619 while (nr_queues > 0) {
2620 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2621 break;
2622 nr_queues--;
2623 sent++;
2624 }
2625 while (sent) {
2626 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2627
2628 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2629 timeout);
2630 if (timeout == 0)
2631 return false;
2632
2633 sent--;
2634 if (nr_queues)
2635 goto retry;
2636 }
2637 return true;
2638 }
2639
nvme_delete_io_queues(struct nvme_dev * dev)2640 static void nvme_delete_io_queues(struct nvme_dev *dev)
2641 {
2642 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2643 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2644 }
2645
nvme_pci_nr_maps(struct nvme_dev * dev)2646 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2647 {
2648 if (dev->io_queues[HCTX_TYPE_POLL])
2649 return 3;
2650 if (dev->io_queues[HCTX_TYPE_READ])
2651 return 2;
2652 return 1;
2653 }
2654
nvme_pci_update_nr_queues(struct nvme_dev * dev)2655 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2656 {
2657 if (!dev->ctrl.tagset) {
2658 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2659 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2660 return true;
2661 }
2662
2663 /* Give up if we are racing with nvme_dev_disable() */
2664 if (!mutex_trylock(&dev->shutdown_lock))
2665 return false;
2666
2667 /* Check if nvme_dev_disable() has been executed already */
2668 if (!dev->online_queues) {
2669 mutex_unlock(&dev->shutdown_lock);
2670 return false;
2671 }
2672
2673 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2674 /* free previously allocated queues that are no longer usable */
2675 nvme_free_queues(dev, dev->online_queues);
2676 mutex_unlock(&dev->shutdown_lock);
2677 return true;
2678 }
2679
nvme_pci_enable(struct nvme_dev * dev)2680 static int nvme_pci_enable(struct nvme_dev *dev)
2681 {
2682 int result = -ENOMEM;
2683 struct pci_dev *pdev = to_pci_dev(dev->dev);
2684 unsigned int flags = PCI_IRQ_ALL_TYPES;
2685
2686 if (pci_enable_device_mem(pdev))
2687 return result;
2688
2689 pci_set_master(pdev);
2690
2691 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2692 result = -ENODEV;
2693 goto disable;
2694 }
2695
2696 /*
2697 * Some devices and/or platforms don't advertise or work with INTx
2698 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2699 * adjust this later.
2700 */
2701 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2702 flags &= ~PCI_IRQ_MSI;
2703 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2704 if (result < 0)
2705 goto disable;
2706
2707 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2708
2709 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2710 io_queue_depth);
2711 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2712 dev->dbs = dev->bar + 4096;
2713
2714 /*
2715 * Some Apple controllers require a non-standard SQE size.
2716 * Interestingly they also seem to ignore the CC:IOSQES register
2717 * so we don't bother updating it here.
2718 */
2719 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2720 dev->io_sqes = 7;
2721 else
2722 dev->io_sqes = NVME_NVM_IOSQES;
2723
2724 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2725 dev->q_depth = 2;
2726 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2727 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2728 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2729 dev->q_depth = 64;
2730 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2731 "set queue depth=%u\n", dev->q_depth);
2732 }
2733
2734 /*
2735 * Controllers with the shared tags quirk need the IO queue to be
2736 * big enough so that we get 32 tags for the admin queue
2737 */
2738 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2739 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2740 dev->q_depth = NVME_AQ_DEPTH + 2;
2741 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2742 dev->q_depth);
2743 }
2744 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2745
2746 nvme_map_cmb(dev);
2747
2748 pci_save_state(pdev);
2749
2750 result = nvme_pci_configure_admin_queue(dev);
2751 if (result)
2752 goto free_irq;
2753 return result;
2754
2755 free_irq:
2756 pci_free_irq_vectors(pdev);
2757 disable:
2758 pci_disable_device(pdev);
2759 return result;
2760 }
2761
nvme_dev_unmap(struct nvme_dev * dev)2762 static void nvme_dev_unmap(struct nvme_dev *dev)
2763 {
2764 if (dev->bar)
2765 iounmap(dev->bar);
2766 pci_release_mem_regions(to_pci_dev(dev->dev));
2767 }
2768
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2769 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2770 {
2771 struct pci_dev *pdev = to_pci_dev(dev->dev);
2772 u32 csts;
2773
2774 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2775 return true;
2776 if (pdev->error_state != pci_channel_io_normal)
2777 return true;
2778
2779 csts = readl(dev->bar + NVME_REG_CSTS);
2780 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2781 }
2782
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2783 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2784 {
2785 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2786 struct pci_dev *pdev = to_pci_dev(dev->dev);
2787 bool dead;
2788
2789 mutex_lock(&dev->shutdown_lock);
2790 dead = nvme_pci_ctrl_is_dead(dev);
2791 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2792 if (pci_is_enabled(pdev))
2793 nvme_start_freeze(&dev->ctrl);
2794 /*
2795 * Give the controller a chance to complete all entered requests
2796 * if doing a safe shutdown.
2797 */
2798 if (!dead && shutdown)
2799 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2800 }
2801
2802 nvme_quiesce_io_queues(&dev->ctrl);
2803
2804 if (!dead && dev->ctrl.queue_count > 0) {
2805 nvme_delete_io_queues(dev);
2806 nvme_disable_ctrl(&dev->ctrl, shutdown);
2807 nvme_poll_irqdisable(&dev->queues[0]);
2808 }
2809 nvme_suspend_io_queues(dev);
2810 nvme_suspend_queue(dev, 0);
2811 pci_free_irq_vectors(pdev);
2812 if (pci_is_enabled(pdev))
2813 pci_disable_device(pdev);
2814 nvme_reap_pending_cqes(dev);
2815
2816 nvme_cancel_tagset(&dev->ctrl);
2817 nvme_cancel_admin_tagset(&dev->ctrl);
2818
2819 /*
2820 * The driver will not be starting up queues again if shutting down so
2821 * must flush all entered requests to their failed completion to avoid
2822 * deadlocking blk-mq hot-cpu notifier.
2823 */
2824 if (shutdown) {
2825 nvme_unquiesce_io_queues(&dev->ctrl);
2826 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2827 nvme_unquiesce_admin_queue(&dev->ctrl);
2828 }
2829 mutex_unlock(&dev->shutdown_lock);
2830 }
2831
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2832 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2833 {
2834 if (!nvme_wait_reset(&dev->ctrl))
2835 return -EBUSY;
2836 nvme_dev_disable(dev, shutdown);
2837 return 0;
2838 }
2839
nvme_setup_prp_pools(struct nvme_dev * dev)2840 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2841 {
2842 size_t small_align = 256;
2843
2844 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2845 NVME_CTRL_PAGE_SIZE,
2846 NVME_CTRL_PAGE_SIZE, 0);
2847 if (!dev->prp_page_pool)
2848 return -ENOMEM;
2849
2850 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2851 small_align = 512;
2852
2853 /* Optimisation for I/Os between 4k and 128k */
2854 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2855 256, small_align, 0);
2856 if (!dev->prp_small_pool) {
2857 dma_pool_destroy(dev->prp_page_pool);
2858 return -ENOMEM;
2859 }
2860 return 0;
2861 }
2862
nvme_release_prp_pools(struct nvme_dev * dev)2863 static void nvme_release_prp_pools(struct nvme_dev *dev)
2864 {
2865 dma_pool_destroy(dev->prp_page_pool);
2866 dma_pool_destroy(dev->prp_small_pool);
2867 }
2868
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2869 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2870 {
2871 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2872 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2873
2874 dev->iod_mempool = mempool_create_node(1,
2875 mempool_kmalloc, mempool_kfree,
2876 (void *)alloc_size, GFP_KERNEL,
2877 dev_to_node(dev->dev));
2878 if (!dev->iod_mempool)
2879 return -ENOMEM;
2880
2881 dev->iod_meta_mempool = mempool_create_node(1,
2882 mempool_kmalloc, mempool_kfree,
2883 (void *)meta_size, GFP_KERNEL,
2884 dev_to_node(dev->dev));
2885 if (!dev->iod_meta_mempool)
2886 goto free;
2887
2888 return 0;
2889 free:
2890 mempool_destroy(dev->iod_mempool);
2891 return -ENOMEM;
2892 }
2893
nvme_free_tagset(struct nvme_dev * dev)2894 static void nvme_free_tagset(struct nvme_dev *dev)
2895 {
2896 if (dev->tagset.tags)
2897 nvme_remove_io_tag_set(&dev->ctrl);
2898 dev->ctrl.tagset = NULL;
2899 }
2900
2901 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2902 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2903 {
2904 struct nvme_dev *dev = to_nvme_dev(ctrl);
2905
2906 nvme_free_tagset(dev);
2907 put_device(dev->dev);
2908 kfree(dev->queues);
2909 kfree(dev);
2910 }
2911
nvme_reset_work(struct work_struct * work)2912 static void nvme_reset_work(struct work_struct *work)
2913 {
2914 struct nvme_dev *dev =
2915 container_of(work, struct nvme_dev, ctrl.reset_work);
2916 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2917 int result;
2918
2919 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2920 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2921 dev->ctrl.state);
2922 result = -ENODEV;
2923 goto out;
2924 }
2925
2926 /*
2927 * If we're called to reset a live controller first shut it down before
2928 * moving on.
2929 */
2930 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2931 nvme_dev_disable(dev, false);
2932 nvme_sync_queues(&dev->ctrl);
2933
2934 mutex_lock(&dev->shutdown_lock);
2935 result = nvme_pci_enable(dev);
2936 if (result)
2937 goto out_unlock;
2938 nvme_unquiesce_admin_queue(&dev->ctrl);
2939 mutex_unlock(&dev->shutdown_lock);
2940
2941 /*
2942 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2943 * initializing procedure here.
2944 */
2945 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2946 dev_warn(dev->ctrl.device,
2947 "failed to mark controller CONNECTING\n");
2948 result = -EBUSY;
2949 goto out;
2950 }
2951
2952 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2953 if (result)
2954 goto out;
2955
2956 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2957 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2958 else
2959 dev->ctrl.max_integrity_segments = 1;
2960
2961 nvme_dbbuf_dma_alloc(dev);
2962
2963 result = nvme_setup_host_mem(dev);
2964 if (result < 0)
2965 goto out;
2966
2967 result = nvme_setup_io_queues(dev);
2968 if (result)
2969 goto out;
2970
2971 /*
2972 * Freeze and update the number of I/O queues as thos might have
2973 * changed. If there are no I/O queues left after this reset, keep the
2974 * controller around but remove all namespaces.
2975 */
2976 if (dev->online_queues > 1) {
2977 nvme_dbbuf_set(dev);
2978 nvme_unquiesce_io_queues(&dev->ctrl);
2979 nvme_wait_freeze(&dev->ctrl);
2980 if (!nvme_pci_update_nr_queues(dev))
2981 goto out;
2982 nvme_unfreeze(&dev->ctrl);
2983 } else {
2984 dev_warn(dev->ctrl.device, "IO queues lost\n");
2985 nvme_mark_namespaces_dead(&dev->ctrl);
2986 nvme_unquiesce_io_queues(&dev->ctrl);
2987 nvme_remove_namespaces(&dev->ctrl);
2988 nvme_free_tagset(dev);
2989 }
2990
2991 /*
2992 * If only admin queue live, keep it to do further investigation or
2993 * recovery.
2994 */
2995 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2996 dev_warn(dev->ctrl.device,
2997 "failed to mark controller live state\n");
2998 result = -ENODEV;
2999 goto out;
3000 }
3001
3002 nvme_start_ctrl(&dev->ctrl);
3003 return;
3004
3005 out_unlock:
3006 mutex_unlock(&dev->shutdown_lock);
3007 out:
3008 /*
3009 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3010 * may be holding this pci_dev's device lock.
3011 */
3012 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3013 result);
3014 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3015 nvme_dev_disable(dev, true);
3016 nvme_sync_queues(&dev->ctrl);
3017 nvme_mark_namespaces_dead(&dev->ctrl);
3018 nvme_unquiesce_io_queues(&dev->ctrl);
3019 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3020 }
3021
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3022 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3023 {
3024 *val = readl(to_nvme_dev(ctrl)->bar + off);
3025 return 0;
3026 }
3027
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3028 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3029 {
3030 writel(val, to_nvme_dev(ctrl)->bar + off);
3031 return 0;
3032 }
3033
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3034 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3035 {
3036 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3037 return 0;
3038 }
3039
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3040 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3041 {
3042 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3043
3044 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3045 }
3046
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3047 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3048 {
3049 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3050 struct nvme_subsystem *subsys = ctrl->subsys;
3051
3052 dev_err(ctrl->device,
3053 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3054 pdev->vendor, pdev->device,
3055 nvme_strlen(subsys->model, sizeof(subsys->model)),
3056 subsys->model, nvme_strlen(subsys->firmware_rev,
3057 sizeof(subsys->firmware_rev)),
3058 subsys->firmware_rev);
3059 }
3060
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3061 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3062 {
3063 struct nvme_dev *dev = to_nvme_dev(ctrl);
3064
3065 return dma_pci_p2pdma_supported(dev->dev);
3066 }
3067
3068 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3069 .name = "pcie",
3070 .module = THIS_MODULE,
3071 .flags = NVME_F_METADATA_SUPPORTED,
3072 .dev_attr_groups = nvme_pci_dev_attr_groups,
3073 .reg_read32 = nvme_pci_reg_read32,
3074 .reg_write32 = nvme_pci_reg_write32,
3075 .reg_read64 = nvme_pci_reg_read64,
3076 .free_ctrl = nvme_pci_free_ctrl,
3077 .submit_async_event = nvme_pci_submit_async_event,
3078 .subsystem_reset = nvme_pci_subsystem_reset,
3079 .get_address = nvme_pci_get_address,
3080 .print_device_info = nvme_pci_print_device_info,
3081 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3082 };
3083
nvme_dev_map(struct nvme_dev * dev)3084 static int nvme_dev_map(struct nvme_dev *dev)
3085 {
3086 struct pci_dev *pdev = to_pci_dev(dev->dev);
3087
3088 if (pci_request_mem_regions(pdev, "nvme"))
3089 return -ENODEV;
3090
3091 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3092 goto release;
3093
3094 return 0;
3095 release:
3096 pci_release_mem_regions(pdev);
3097 return -ENODEV;
3098 }
3099
check_vendor_combination_bug(struct pci_dev * pdev)3100 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3101 {
3102 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3103 /*
3104 * Several Samsung devices seem to drop off the PCIe bus
3105 * randomly when APST is on and uses the deepest sleep state.
3106 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3107 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3108 * 950 PRO 256GB", but it seems to be restricted to two Dell
3109 * laptops.
3110 */
3111 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3112 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3113 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3114 return NVME_QUIRK_NO_DEEPEST_PS;
3115 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3116 /*
3117 * Samsung SSD 960 EVO drops off the PCIe bus after system
3118 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3119 * within few minutes after bootup on a Coffee Lake board -
3120 * ASUS PRIME Z370-A
3121 */
3122 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3123 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3124 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3125 return NVME_QUIRK_NO_APST;
3126 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3127 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3128 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3129 /*
3130 * Forcing to use host managed nvme power settings for
3131 * lowest idle power with quick resume latency on
3132 * Samsung and Toshiba SSDs based on suspend behavior
3133 * on Coffee Lake board for LENOVO C640
3134 */
3135 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3136 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3137 return NVME_QUIRK_SIMPLE_SUSPEND;
3138 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3139 pdev->device == 0x500f)) {
3140 /*
3141 * Exclude some Kingston NV1 and A2000 devices from
3142 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3143 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3144 */
3145 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3146 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3147 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3148 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3149 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3150 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3151 /*
3152 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3153 * because of high power consumption (> 2 Watt) in s2idle
3154 * sleep. Only some boards with Intel CPU are affected.
3155 */
3156 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3157 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3158 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3159 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3160 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3161 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3162 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3163 }
3164
3165 /*
3166 * NVMe SSD drops off the PCIe bus after system idle
3167 * for 10 hours on a Lenovo N60z board.
3168 */
3169 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3170 return NVME_QUIRK_NO_APST;
3171
3172 return 0;
3173 }
3174
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3175 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3176 const struct pci_device_id *id)
3177 {
3178 unsigned long quirks = id->driver_data;
3179 int node = dev_to_node(&pdev->dev);
3180 struct nvme_dev *dev;
3181 int ret = -ENOMEM;
3182
3183 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3184 if (!dev)
3185 return ERR_PTR(-ENOMEM);
3186 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3187 mutex_init(&dev->shutdown_lock);
3188
3189 dev->nr_write_queues = write_queues;
3190 dev->nr_poll_queues = poll_queues;
3191 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3192 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3193 sizeof(struct nvme_queue), GFP_KERNEL, node);
3194 if (!dev->queues)
3195 goto out_free_dev;
3196
3197 dev->dev = get_device(&pdev->dev);
3198
3199 quirks |= check_vendor_combination_bug(pdev);
3200 if (!noacpi &&
3201 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3202 acpi_storage_d3(&pdev->dev)) {
3203 /*
3204 * Some systems use a bios work around to ask for D3 on
3205 * platforms that support kernel managed suspend.
3206 */
3207 dev_info(&pdev->dev,
3208 "platform quirk: setting simple suspend\n");
3209 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3210 }
3211 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3212 quirks);
3213 if (ret)
3214 goto out_put_device;
3215
3216 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3217 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3218 else
3219 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3220 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3221 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3222
3223 /*
3224 * Limit the max command size to prevent iod->sg allocations going
3225 * over a single page.
3226 */
3227 dev->ctrl.max_hw_sectors = min_t(u32,
3228 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3229 dev->ctrl.max_segments = NVME_MAX_SEGS;
3230 dev->ctrl.max_integrity_segments = 1;
3231 return dev;
3232
3233 out_put_device:
3234 put_device(dev->dev);
3235 kfree(dev->queues);
3236 out_free_dev:
3237 kfree(dev);
3238 return ERR_PTR(ret);
3239 }
3240
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3241 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3242 {
3243 struct nvme_dev *dev;
3244 int result = -ENOMEM;
3245
3246 dev = nvme_pci_alloc_dev(pdev, id);
3247 if (IS_ERR(dev))
3248 return PTR_ERR(dev);
3249
3250 result = nvme_add_ctrl(&dev->ctrl);
3251 if (result)
3252 goto out_put_ctrl;
3253
3254 result = nvme_dev_map(dev);
3255 if (result)
3256 goto out_uninit_ctrl;
3257
3258 result = nvme_setup_prp_pools(dev);
3259 if (result)
3260 goto out_dev_unmap;
3261
3262 result = nvme_pci_alloc_iod_mempool(dev);
3263 if (result)
3264 goto out_release_prp_pools;
3265
3266 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3267
3268 result = nvme_pci_enable(dev);
3269 if (result)
3270 goto out_release_iod_mempool;
3271
3272 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3273 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3274 if (result)
3275 goto out_disable;
3276
3277 /*
3278 * Mark the controller as connecting before sending admin commands to
3279 * allow the timeout handler to do the right thing.
3280 */
3281 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3282 dev_warn(dev->ctrl.device,
3283 "failed to mark controller CONNECTING\n");
3284 result = -EBUSY;
3285 goto out_disable;
3286 }
3287
3288 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3289 if (result)
3290 goto out_disable;
3291
3292 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3293 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3294 else
3295 dev->ctrl.max_integrity_segments = 1;
3296
3297 nvme_dbbuf_dma_alloc(dev);
3298
3299 result = nvme_setup_host_mem(dev);
3300 if (result < 0)
3301 goto out_disable;
3302
3303 result = nvme_setup_io_queues(dev);
3304 if (result)
3305 goto out_disable;
3306
3307 if (dev->online_queues > 1) {
3308 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3309 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3310 nvme_dbbuf_set(dev);
3311 }
3312
3313 if (!dev->ctrl.tagset)
3314 dev_warn(dev->ctrl.device, "IO queues not created\n");
3315
3316 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3317 dev_warn(dev->ctrl.device,
3318 "failed to mark controller live state\n");
3319 result = -ENODEV;
3320 goto out_disable;
3321 }
3322
3323 pci_set_drvdata(pdev, dev);
3324
3325 nvme_start_ctrl(&dev->ctrl);
3326 nvme_put_ctrl(&dev->ctrl);
3327 flush_work(&dev->ctrl.scan_work);
3328 return 0;
3329
3330 out_disable:
3331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3332 nvme_dev_disable(dev, true);
3333 nvme_free_host_mem(dev);
3334 nvme_dev_remove_admin(dev);
3335 nvme_dbbuf_dma_free(dev);
3336 nvme_free_queues(dev, 0);
3337 out_release_iod_mempool:
3338 mempool_destroy(dev->iod_mempool);
3339 mempool_destroy(dev->iod_meta_mempool);
3340 out_release_prp_pools:
3341 nvme_release_prp_pools(dev);
3342 out_dev_unmap:
3343 nvme_dev_unmap(dev);
3344 out_uninit_ctrl:
3345 nvme_uninit_ctrl(&dev->ctrl);
3346 out_put_ctrl:
3347 nvme_put_ctrl(&dev->ctrl);
3348 return result;
3349 }
3350
nvme_reset_prepare(struct pci_dev * pdev)3351 static void nvme_reset_prepare(struct pci_dev *pdev)
3352 {
3353 struct nvme_dev *dev = pci_get_drvdata(pdev);
3354
3355 /*
3356 * We don't need to check the return value from waiting for the reset
3357 * state as pci_dev device lock is held, making it impossible to race
3358 * with ->remove().
3359 */
3360 nvme_disable_prepare_reset(dev, false);
3361 nvme_sync_queues(&dev->ctrl);
3362 }
3363
nvme_reset_done(struct pci_dev * pdev)3364 static void nvme_reset_done(struct pci_dev *pdev)
3365 {
3366 struct nvme_dev *dev = pci_get_drvdata(pdev);
3367
3368 if (!nvme_try_sched_reset(&dev->ctrl))
3369 flush_work(&dev->ctrl.reset_work);
3370 }
3371
nvme_shutdown(struct pci_dev * pdev)3372 static void nvme_shutdown(struct pci_dev *pdev)
3373 {
3374 struct nvme_dev *dev = pci_get_drvdata(pdev);
3375
3376 nvme_disable_prepare_reset(dev, true);
3377 }
3378
3379 /*
3380 * The driver's remove may be called on a device in a partially initialized
3381 * state. This function must not have any dependencies on the device state in
3382 * order to proceed.
3383 */
nvme_remove(struct pci_dev * pdev)3384 static void nvme_remove(struct pci_dev *pdev)
3385 {
3386 struct nvme_dev *dev = pci_get_drvdata(pdev);
3387
3388 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3389 pci_set_drvdata(pdev, NULL);
3390
3391 if (!pci_device_is_present(pdev)) {
3392 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3393 nvme_dev_disable(dev, true);
3394 }
3395
3396 flush_work(&dev->ctrl.reset_work);
3397 nvme_stop_ctrl(&dev->ctrl);
3398 nvme_remove_namespaces(&dev->ctrl);
3399 nvme_dev_disable(dev, true);
3400 nvme_free_host_mem(dev);
3401 nvme_dev_remove_admin(dev);
3402 nvme_dbbuf_dma_free(dev);
3403 nvme_free_queues(dev, 0);
3404 mempool_destroy(dev->iod_mempool);
3405 mempool_destroy(dev->iod_meta_mempool);
3406 nvme_release_prp_pools(dev);
3407 nvme_dev_unmap(dev);
3408 nvme_uninit_ctrl(&dev->ctrl);
3409 }
3410
3411 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3412 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3413 {
3414 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3415 }
3416
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3417 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3418 {
3419 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3420 }
3421
nvme_resume(struct device * dev)3422 static int nvme_resume(struct device *dev)
3423 {
3424 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3425 struct nvme_ctrl *ctrl = &ndev->ctrl;
3426
3427 if (ndev->last_ps == U32_MAX ||
3428 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3429 goto reset;
3430 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3431 goto reset;
3432
3433 return 0;
3434 reset:
3435 return nvme_try_sched_reset(ctrl);
3436 }
3437
nvme_suspend(struct device * dev)3438 static int nvme_suspend(struct device *dev)
3439 {
3440 struct pci_dev *pdev = to_pci_dev(dev);
3441 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3442 struct nvme_ctrl *ctrl = &ndev->ctrl;
3443 int ret = -EBUSY;
3444
3445 ndev->last_ps = U32_MAX;
3446
3447 /*
3448 * The platform does not remove power for a kernel managed suspend so
3449 * use host managed nvme power settings for lowest idle power if
3450 * possible. This should have quicker resume latency than a full device
3451 * shutdown. But if the firmware is involved after the suspend or the
3452 * device does not support any non-default power states, shut down the
3453 * device fully.
3454 *
3455 * If ASPM is not enabled for the device, shut down the device and allow
3456 * the PCI bus layer to put it into D3 in order to take the PCIe link
3457 * down, so as to allow the platform to achieve its minimum low-power
3458 * state (which may not be possible if the link is up).
3459 */
3460 if (pm_suspend_via_firmware() || !ctrl->npss ||
3461 !pcie_aspm_enabled(pdev) ||
3462 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3463 return nvme_disable_prepare_reset(ndev, true);
3464
3465 nvme_start_freeze(ctrl);
3466 nvme_wait_freeze(ctrl);
3467 nvme_sync_queues(ctrl);
3468
3469 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3470 goto unfreeze;
3471
3472 /*
3473 * Host memory access may not be successful in a system suspend state,
3474 * but the specification allows the controller to access memory in a
3475 * non-operational power state.
3476 */
3477 if (ndev->hmb) {
3478 ret = nvme_set_host_mem(ndev, 0);
3479 if (ret < 0)
3480 goto unfreeze;
3481 }
3482
3483 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3484 if (ret < 0)
3485 goto unfreeze;
3486
3487 /*
3488 * A saved state prevents pci pm from generically controlling the
3489 * device's power. If we're using protocol specific settings, we don't
3490 * want pci interfering.
3491 */
3492 pci_save_state(pdev);
3493
3494 ret = nvme_set_power_state(ctrl, ctrl->npss);
3495 if (ret < 0)
3496 goto unfreeze;
3497
3498 if (ret) {
3499 /* discard the saved state */
3500 pci_load_saved_state(pdev, NULL);
3501
3502 /*
3503 * Clearing npss forces a controller reset on resume. The
3504 * correct value will be rediscovered then.
3505 */
3506 ret = nvme_disable_prepare_reset(ndev, true);
3507 ctrl->npss = 0;
3508 }
3509 unfreeze:
3510 nvme_unfreeze(ctrl);
3511 return ret;
3512 }
3513
nvme_simple_suspend(struct device * dev)3514 static int nvme_simple_suspend(struct device *dev)
3515 {
3516 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3517
3518 return nvme_disable_prepare_reset(ndev, true);
3519 }
3520
nvme_simple_resume(struct device * dev)3521 static int nvme_simple_resume(struct device *dev)
3522 {
3523 struct pci_dev *pdev = to_pci_dev(dev);
3524 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3525
3526 return nvme_try_sched_reset(&ndev->ctrl);
3527 }
3528
3529 static const struct dev_pm_ops nvme_dev_pm_ops = {
3530 .suspend = nvme_suspend,
3531 .resume = nvme_resume,
3532 .freeze = nvme_simple_suspend,
3533 .thaw = nvme_simple_resume,
3534 .poweroff = nvme_simple_suspend,
3535 .restore = nvme_simple_resume,
3536 };
3537 #endif /* CONFIG_PM_SLEEP */
3538
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3539 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3540 pci_channel_state_t state)
3541 {
3542 struct nvme_dev *dev = pci_get_drvdata(pdev);
3543
3544 /*
3545 * A frozen channel requires a reset. When detected, this method will
3546 * shutdown the controller to quiesce. The controller will be restarted
3547 * after the slot reset through driver's slot_reset callback.
3548 */
3549 switch (state) {
3550 case pci_channel_io_normal:
3551 return PCI_ERS_RESULT_CAN_RECOVER;
3552 case pci_channel_io_frozen:
3553 dev_warn(dev->ctrl.device,
3554 "frozen state error detected, reset controller\n");
3555 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3556 nvme_dev_disable(dev, true);
3557 return PCI_ERS_RESULT_DISCONNECT;
3558 }
3559 nvme_dev_disable(dev, false);
3560 return PCI_ERS_RESULT_NEED_RESET;
3561 case pci_channel_io_perm_failure:
3562 dev_warn(dev->ctrl.device,
3563 "failure state error detected, request disconnect\n");
3564 return PCI_ERS_RESULT_DISCONNECT;
3565 }
3566 return PCI_ERS_RESULT_NEED_RESET;
3567 }
3568
nvme_slot_reset(struct pci_dev * pdev)3569 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3570 {
3571 struct nvme_dev *dev = pci_get_drvdata(pdev);
3572
3573 dev_info(dev->ctrl.device, "restart after slot reset\n");
3574 pci_restore_state(pdev);
3575 if (!nvme_try_sched_reset(&dev->ctrl))
3576 nvme_unquiesce_io_queues(&dev->ctrl);
3577 return PCI_ERS_RESULT_RECOVERED;
3578 }
3579
nvme_error_resume(struct pci_dev * pdev)3580 static void nvme_error_resume(struct pci_dev *pdev)
3581 {
3582 struct nvme_dev *dev = pci_get_drvdata(pdev);
3583
3584 flush_work(&dev->ctrl.reset_work);
3585 }
3586
3587 static const struct pci_error_handlers nvme_err_handler = {
3588 .error_detected = nvme_error_detected,
3589 .slot_reset = nvme_slot_reset,
3590 .resume = nvme_error_resume,
3591 .reset_prepare = nvme_reset_prepare,
3592 .reset_done = nvme_reset_done,
3593 };
3594
3595 static const struct pci_device_id nvme_id_table[] = {
3596 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3597 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3598 NVME_QUIRK_DEALLOCATE_ZEROES, },
3599 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3600 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3601 NVME_QUIRK_DEALLOCATE_ZEROES, },
3602 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3603 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3604 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3605 NVME_QUIRK_BOGUS_NID, },
3606 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3607 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3608 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3609 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3610 NVME_QUIRK_MEDIUM_PRIO_SQ |
3611 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3612 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3613 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3614 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3615 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3616 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3617 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3618 NVME_QUIRK_BOGUS_NID, },
3619 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3620 .driver_data = NVME_QUIRK_BOGUS_NID, },
3621 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3622 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3623 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3624 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3625 NVME_QUIRK_BOGUS_NID, },
3626 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3627 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3628 NVME_QUIRK_BOGUS_NID, },
3629 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3630 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3631 NVME_QUIRK_NO_NS_DESC_LIST, },
3632 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3633 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3634 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3635 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3636 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3637 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3638 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3639 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3640 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3641 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3642 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3643 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3644 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3645 .driver_data = NVME_QUIRK_BROKEN_MSI },
3646 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3647 .driver_data = NVME_QUIRK_BOGUS_NID, },
3648 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3649 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3650 NVME_QUIRK_BOGUS_NID, },
3651 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3652 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3653 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3654 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3655 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3656 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3657 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3658 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3659 .driver_data = NVME_QUIRK_BOGUS_NID, },
3660 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3661 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3662 NVME_QUIRK_BOGUS_NID, },
3663 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3664 .driver_data = NVME_QUIRK_BOGUS_NID, },
3665 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3666 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3667 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3668 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3669 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3670 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3671 .driver_data = NVME_QUIRK_BOGUS_NID, },
3672 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3673 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3674 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3675 .driver_data = NVME_QUIRK_BOGUS_NID, },
3676 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3677 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3678 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3679 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3680 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3681 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3682 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3683 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3684 NVME_QUIRK_BOGUS_NID, },
3685 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3686 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3687 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3688 .driver_data = NVME_QUIRK_BOGUS_NID, },
3689 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3690 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3691 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3692 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3693 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3694 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3695 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3696 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3697 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3698 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3699 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3700 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3701 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3702 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3703 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3704 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3705 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3706 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3707 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3708 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3709 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3710 .driver_data = NVME_QUIRK_BOGUS_NID, },
3711 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3712 .driver_data = NVME_QUIRK_BOGUS_NID, },
3713 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3714 .driver_data = NVME_QUIRK_BOGUS_NID, },
3715 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3716 .driver_data = NVME_QUIRK_BOGUS_NID, },
3717 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3718 .driver_data = NVME_QUIRK_BOGUS_NID, },
3719 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3720 .driver_data = NVME_QUIRK_BOGUS_NID, },
3721 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3722 .driver_data = NVME_QUIRK_BOGUS_NID, },
3723 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3724 .driver_data = NVME_QUIRK_BOGUS_NID, },
3725 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3726 .driver_data = NVME_QUIRK_BOGUS_NID, },
3727 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3728 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3729 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3730 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3731 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3732 .driver_data = NVME_QUIRK_BOGUS_NID, },
3733 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3734 .driver_data = NVME_QUIRK_BOGUS_NID, },
3735 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3736 .driver_data = NVME_QUIRK_BOGUS_NID, },
3737 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3738 .driver_data = NVME_QUIRK_BOGUS_NID |
3739 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3740 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3741 .driver_data = NVME_QUIRK_BOGUS_NID, },
3742 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3743 .driver_data = NVME_QUIRK_BOGUS_NID, },
3744 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3745 .driver_data = NVME_QUIRK_BOGUS_NID, },
3746 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3747 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3748 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3749 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3750 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3751 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3752 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3753 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3754 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3755 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3756 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3757 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3758 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3759 /*
3760 * Fix for the Apple controller found in the MacBook8,1 and
3761 * some MacBook7,1 to avoid controller resets and data loss.
3762 */
3763 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3764 NVME_QUIRK_QDEPTH_ONE },
3765 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3766 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3767 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3768 NVME_QUIRK_128_BYTES_SQES |
3769 NVME_QUIRK_SHARED_TAGS |
3770 NVME_QUIRK_SKIP_CID_GEN |
3771 NVME_QUIRK_IDENTIFY_CNS },
3772 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3773 { 0, }
3774 };
3775 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3776
3777 static struct pci_driver nvme_driver = {
3778 .name = "nvme",
3779 .id_table = nvme_id_table,
3780 .probe = nvme_probe,
3781 .remove = nvme_remove,
3782 .shutdown = nvme_shutdown,
3783 .driver = {
3784 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3785 #ifdef CONFIG_PM_SLEEP
3786 .pm = &nvme_dev_pm_ops,
3787 #endif
3788 },
3789 .sriov_configure = pci_sriov_configure_simple,
3790 .err_handler = &nvme_err_handler,
3791 };
3792
nvme_init(void)3793 static int __init nvme_init(void)
3794 {
3795 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3796 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3797 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3798 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3799 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3800 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3801 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3802
3803 return pci_register_driver(&nvme_driver);
3804 }
3805
nvme_exit(void)3806 static void __exit nvme_exit(void)
3807 {
3808 pci_unregister_driver(&nvme_driver);
3809 flush_workqueue(nvme_wq);
3810 }
3811
3812 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3813 MODULE_LICENSE("GPL");
3814 MODULE_VERSION("1.0");
3815 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3816 module_init(nvme_init);
3817 module_exit(nvme_exit);
3818