xref: /linux/drivers/nvme/host/pci.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38 
39 /*
40  * These can be higher, but we need to ensure that any command doesn't
41  * require an sg allocation that needs more than a page of data.
42  */
43 #define NVME_MAX_KB_SZ	8192
44 #define NVME_MAX_SEGS	128
45 #define NVME_MAX_META_SEGS 15
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 	struct sg_table *hmb_sgt;
145 
146 	mempool_t *iod_mempool;
147 	mempool_t *iod_meta_mempool;
148 
149 	/* shadow doorbell buffer support: */
150 	__le32 *dbbuf_dbs;
151 	dma_addr_t dbbuf_dbs_dma_addr;
152 	__le32 *dbbuf_eis;
153 	dma_addr_t dbbuf_eis_dma_addr;
154 
155 	/* host memory buffer support: */
156 	u64 host_mem_size;
157 	u32 nr_host_mem_descs;
158 	u32 host_mem_descs_size;
159 	dma_addr_t host_mem_descs_dma;
160 	struct nvme_host_mem_buf_desc *host_mem_descs;
161 	void **host_mem_desc_bufs;
162 	unsigned int nr_allocated_queues;
163 	unsigned int nr_write_queues;
164 	unsigned int nr_poll_queues;
165 };
166 
io_queue_depth_set(const char * val,const struct kernel_param * kp)167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
168 {
169 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
170 			NVME_PCI_MAX_QUEUE_SIZE);
171 }
172 
sq_idx(unsigned int qid,u32 stride)173 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
174 {
175 	return qid * 2 * stride;
176 }
177 
cq_idx(unsigned int qid,u32 stride)178 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
179 {
180 	return (qid * 2 + 1) * stride;
181 }
182 
to_nvme_dev(struct nvme_ctrl * ctrl)183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_dev, ctrl);
186 }
187 
188 /*
189  * An NVM Express queue.  Each device has at least two (one for admin
190  * commands and one for I/O commands).
191  */
192 struct nvme_queue {
193 	struct nvme_dev *dev;
194 	spinlock_t sq_lock;
195 	void *sq_cmds;
196 	 /* only used for poll queues: */
197 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
198 	struct nvme_completion *cqes;
199 	dma_addr_t sq_dma_addr;
200 	dma_addr_t cq_dma_addr;
201 	u32 __iomem *q_db;
202 	u32 q_depth;
203 	u16 cq_vector;
204 	u16 sq_tail;
205 	u16 last_sq_tail;
206 	u16 cq_head;
207 	u16 qid;
208 	u8 cq_phase;
209 	u8 sqes;
210 	unsigned long flags;
211 #define NVMEQ_ENABLED		0
212 #define NVMEQ_SQ_CMB		1
213 #define NVMEQ_DELETE_ERROR	2
214 #define NVMEQ_POLLED		3
215 	__le32 *dbbuf_sq_db;
216 	__le32 *dbbuf_cq_db;
217 	__le32 *dbbuf_sq_ei;
218 	__le32 *dbbuf_cq_ei;
219 	struct completion delete_done;
220 };
221 
222 union nvme_descriptor {
223 	struct nvme_sgl_desc	*sg_list;
224 	__le64			*prp_list;
225 };
226 
227 /*
228  * The nvme_iod describes the data in an I/O.
229  *
230  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
231  * to the actual struct scatterlist.
232  */
233 struct nvme_iod {
234 	struct nvme_request req;
235 	struct nvme_command cmd;
236 	bool aborted;
237 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
238 				   pool in use */
239 	unsigned int dma_len;	/* length of single DMA segment mapping */
240 	dma_addr_t first_dma;
241 	dma_addr_t meta_dma;
242 	struct sg_table sgt;
243 	struct sg_table meta_sgt;
244 	union nvme_descriptor meta_list;
245 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
246 };
247 
nvme_dbbuf_size(struct nvme_dev * dev)248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
249 {
250 	return dev->nr_allocated_queues * 8 * dev->db_stride;
251 }
252 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
254 {
255 	unsigned int mem_size = nvme_dbbuf_size(dev);
256 
257 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
258 		return;
259 
260 	if (dev->dbbuf_dbs) {
261 		/*
262 		 * Clear the dbbuf memory so the driver doesn't observe stale
263 		 * values from the previous instantiation.
264 		 */
265 		memset(dev->dbbuf_dbs, 0, mem_size);
266 		memset(dev->dbbuf_eis, 0, mem_size);
267 		return;
268 	}
269 
270 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_dbs_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_dbs)
274 		goto fail;
275 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
276 					    &dev->dbbuf_eis_dma_addr,
277 					    GFP_KERNEL);
278 	if (!dev->dbbuf_eis)
279 		goto fail_free_dbbuf_dbs;
280 	return;
281 
282 fail_free_dbbuf_dbs:
283 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
284 			  dev->dbbuf_dbs_dma_addr);
285 	dev->dbbuf_dbs = NULL;
286 fail:
287 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
288 }
289 
nvme_dbbuf_dma_free(struct nvme_dev * dev)290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 	unsigned int mem_size = nvme_dbbuf_size(dev);
293 
294 	if (dev->dbbuf_dbs) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 		dev->dbbuf_dbs = NULL;
298 	}
299 	if (dev->dbbuf_eis) {
300 		dma_free_coherent(dev->dev, mem_size,
301 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 		dev->dbbuf_eis = NULL;
303 	}
304 }
305 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 			    struct nvme_queue *nvmeq, int qid)
308 {
309 	if (!dev->dbbuf_dbs || !qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317 
nvme_dbbuf_free(struct nvme_queue * nvmeq)318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
319 {
320 	if (!nvmeq->qid)
321 		return;
322 
323 	nvmeq->dbbuf_sq_db = NULL;
324 	nvmeq->dbbuf_cq_db = NULL;
325 	nvmeq->dbbuf_sq_ei = NULL;
326 	nvmeq->dbbuf_cq_ei = NULL;
327 }
328 
nvme_dbbuf_set(struct nvme_dev * dev)329 static void nvme_dbbuf_set(struct nvme_dev *dev)
330 {
331 	struct nvme_command c = { };
332 	unsigned int i;
333 
334 	if (!dev->dbbuf_dbs)
335 		return;
336 
337 	c.dbbuf.opcode = nvme_admin_dbbuf;
338 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
339 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
340 
341 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
342 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
343 		/* Free memory and continue on */
344 		nvme_dbbuf_dma_free(dev);
345 
346 		for (i = 1; i <= dev->online_queues; i++)
347 			nvme_dbbuf_free(&dev->queues[i]);
348 	}
349 }
350 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
352 {
353 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
354 }
355 
356 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
358 					      volatile __le32 *dbbuf_ei)
359 {
360 	if (dbbuf_db) {
361 		u16 old_value, event_idx;
362 
363 		/*
364 		 * Ensure that the queue is written before updating
365 		 * the doorbell in memory
366 		 */
367 		wmb();
368 
369 		old_value = le32_to_cpu(*dbbuf_db);
370 		*dbbuf_db = cpu_to_le32(value);
371 
372 		/*
373 		 * Ensure that the doorbell is updated before reading the event
374 		 * index from memory.  The controller needs to provide similar
375 		 * ordering to ensure the event index is updated before reading
376 		 * the doorbell.
377 		 */
378 		mb();
379 
380 		event_idx = le32_to_cpu(*dbbuf_ei);
381 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
382 			return false;
383 	}
384 
385 	return true;
386 }
387 
388 /*
389  * Will slightly overestimate the number of pages needed.  This is OK
390  * as it only leads to a small amount of wasted memory for the lifetime of
391  * the I/O.
392  */
nvme_pci_npages_prp(void)393 static int nvme_pci_npages_prp(void)
394 {
395 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
396 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
397 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
398 }
399 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 				unsigned int hctx_idx)
402 {
403 	struct nvme_dev *dev = to_nvme_dev(data);
404 	struct nvme_queue *nvmeq = &dev->queues[0];
405 
406 	WARN_ON(hctx_idx != 0);
407 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408 
409 	hctx->driver_data = nvmeq;
410 	return 0;
411 }
412 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 			  unsigned int hctx_idx)
415 {
416 	struct nvme_dev *dev = to_nvme_dev(data);
417 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418 
419 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 	hctx->driver_data = nvmeq;
421 	return 0;
422 }
423 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 		struct request *req, unsigned int hctx_idx,
426 		unsigned int numa_node)
427 {
428 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429 
430 	nvme_req(req)->ctrl = set->driver_data;
431 	nvme_req(req)->cmd = &iod->cmd;
432 	return 0;
433 }
434 
queue_irq_offset(struct nvme_dev * dev)435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 	/* if we have more than 1 vec, admin queue offsets us by 1 */
438 	if (dev->num_vecs > 1)
439 		return 1;
440 
441 	return 0;
442 }
443 
nvme_pci_map_queues(struct blk_mq_tag_set * set)444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 	int i, qoff, offset;
448 
449 	offset = queue_irq_offset(dev);
450 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 		struct blk_mq_queue_map *map = &set->map[i];
452 
453 		map->nr_queues = dev->io_queues[i];
454 		if (!map->nr_queues) {
455 			BUG_ON(i == HCTX_TYPE_DEFAULT);
456 			continue;
457 		}
458 
459 		/*
460 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 		 * affinity), so use the regular blk-mq cpu mapping
462 		 */
463 		map->queue_offset = qoff;
464 		if (i != HCTX_TYPE_POLL && offset)
465 			blk_mq_map_hw_queues(map, dev->dev, offset);
466 		else
467 			blk_mq_map_queues(map);
468 		qoff += map->nr_queues;
469 		offset += map->nr_queues;
470 	}
471 }
472 
473 /*
474  * Write sq tail if we are asked to, or if the next command would wrap.
475  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 	if (!write_sq) {
479 		u16 next_tail = nvmeq->sq_tail + 1;
480 
481 		if (next_tail == nvmeq->q_depth)
482 			next_tail = 0;
483 		if (next_tail != nvmeq->last_sq_tail)
484 			return;
485 	}
486 
487 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 		writel(nvmeq->sq_tail, nvmeq->q_db);
490 	nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 				    struct nvme_command *cmd)
495 {
496 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 		absolute_pointer(cmd), sizeof(*cmd));
498 	if (++nvmeq->sq_tail == nvmeq->q_depth)
499 		nvmeq->sq_tail = 0;
500 }
501 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 	struct nvme_queue *nvmeq = hctx->driver_data;
505 
506 	spin_lock(&nvmeq->sq_lock);
507 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 		nvme_write_sq_db(nvmeq, true);
509 	spin_unlock(&nvmeq->sq_lock);
510 }
511 
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
513 					      struct request *req)
514 {
515 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
516 		return false;
517 	return req->nr_integrity_segments > 1 ||
518 		nvme_req(req)->flags & NVME_REQ_USERCMD;
519 }
520 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
522 				     int nseg)
523 {
524 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 	unsigned int avg_seg_size;
526 
527 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
528 
529 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
530 		return false;
531 	if (!nvmeq->qid)
532 		return false;
533 	if (nvme_pci_metadata_use_sgls(dev, req))
534 		return true;
535 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 		return nvme_req(req)->flags & NVME_REQ_USERCMD;
537 	return true;
538 }
539 
nvme_free_prps(struct nvme_dev * dev,struct request * req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 	dma_addr_t dma_addr = iod->first_dma;
545 	int i;
546 
547 	for (i = 0; i < iod->nr_allocations; i++) {
548 		__le64 *prp_list = iod->list[i].prp_list;
549 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550 
551 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 		dma_addr = next_dma_addr;
553 	}
554 }
555 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
557 {
558 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559 
560 	if (iod->dma_len) {
561 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
562 			       rq_dma_dir(req));
563 		return;
564 	}
565 
566 	WARN_ON_ONCE(!iod->sgt.nents);
567 
568 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
569 
570 	if (iod->nr_allocations == 0)
571 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
572 			      iod->first_dma);
573 	else if (iod->nr_allocations == 1)
574 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
575 			      iod->first_dma);
576 	else
577 		nvme_free_prps(dev, req);
578 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
579 }
580 
nvme_print_sgl(struct scatterlist * sgl,int nents)581 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
582 {
583 	int i;
584 	struct scatterlist *sg;
585 
586 	for_each_sg(sgl, sg, nents, i) {
587 		dma_addr_t phys = sg_phys(sg);
588 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
589 			"dma_address:%pad dma_length:%d\n",
590 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
591 			sg_dma_len(sg));
592 	}
593 }
594 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
596 		struct request *req, struct nvme_rw_command *cmnd)
597 {
598 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
599 	struct dma_pool *pool;
600 	int length = blk_rq_payload_bytes(req);
601 	struct scatterlist *sg = iod->sgt.sgl;
602 	int dma_len = sg_dma_len(sg);
603 	u64 dma_addr = sg_dma_address(sg);
604 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
605 	__le64 *prp_list;
606 	dma_addr_t prp_dma;
607 	int nprps, i;
608 
609 	length -= (NVME_CTRL_PAGE_SIZE - offset);
610 	if (length <= 0) {
611 		iod->first_dma = 0;
612 		goto done;
613 	}
614 
615 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
616 	if (dma_len) {
617 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
618 	} else {
619 		sg = sg_next(sg);
620 		dma_addr = sg_dma_address(sg);
621 		dma_len = sg_dma_len(sg);
622 	}
623 
624 	if (length <= NVME_CTRL_PAGE_SIZE) {
625 		iod->first_dma = dma_addr;
626 		goto done;
627 	}
628 
629 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
630 	if (nprps <= (256 / 8)) {
631 		pool = dev->prp_small_pool;
632 		iod->nr_allocations = 0;
633 	} else {
634 		pool = dev->prp_page_pool;
635 		iod->nr_allocations = 1;
636 	}
637 
638 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 	if (!prp_list) {
640 		iod->nr_allocations = -1;
641 		return BLK_STS_RESOURCE;
642 	}
643 	iod->list[0].prp_list = prp_list;
644 	iod->first_dma = prp_dma;
645 	i = 0;
646 	for (;;) {
647 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
648 			__le64 *old_prp_list = prp_list;
649 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 			if (!prp_list)
651 				goto free_prps;
652 			iod->list[iod->nr_allocations++].prp_list = prp_list;
653 			prp_list[0] = old_prp_list[i - 1];
654 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
655 			i = 1;
656 		}
657 		prp_list[i++] = cpu_to_le64(dma_addr);
658 		dma_len -= NVME_CTRL_PAGE_SIZE;
659 		dma_addr += NVME_CTRL_PAGE_SIZE;
660 		length -= NVME_CTRL_PAGE_SIZE;
661 		if (length <= 0)
662 			break;
663 		if (dma_len > 0)
664 			continue;
665 		if (unlikely(dma_len < 0))
666 			goto bad_sgl;
667 		sg = sg_next(sg);
668 		dma_addr = sg_dma_address(sg);
669 		dma_len = sg_dma_len(sg);
670 	}
671 done:
672 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
673 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
674 	return BLK_STS_OK;
675 free_prps:
676 	nvme_free_prps(dev, req);
677 	return BLK_STS_RESOURCE;
678 bad_sgl:
679 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
680 			"Invalid SGL for payload:%d nents:%d\n",
681 			blk_rq_payload_bytes(req), iod->sgt.nents);
682 	return BLK_STS_IOERR;
683 }
684 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
686 		struct scatterlist *sg)
687 {
688 	sge->addr = cpu_to_le64(sg_dma_address(sg));
689 	sge->length = cpu_to_le32(sg_dma_len(sg));
690 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
691 }
692 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
694 		dma_addr_t dma_addr, int entries)
695 {
696 	sge->addr = cpu_to_le64(dma_addr);
697 	sge->length = cpu_to_le32(entries * sizeof(*sge));
698 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
699 }
700 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
702 		struct request *req, struct nvme_rw_command *cmd)
703 {
704 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
705 	struct dma_pool *pool;
706 	struct nvme_sgl_desc *sg_list;
707 	struct scatterlist *sg = iod->sgt.sgl;
708 	unsigned int entries = iod->sgt.nents;
709 	dma_addr_t sgl_dma;
710 	int i = 0;
711 
712 	/* setting the transfer type as SGL */
713 	cmd->flags = NVME_CMD_SGL_METABUF;
714 
715 	if (entries == 1) {
716 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
717 		return BLK_STS_OK;
718 	}
719 
720 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
721 		pool = dev->prp_small_pool;
722 		iod->nr_allocations = 0;
723 	} else {
724 		pool = dev->prp_page_pool;
725 		iod->nr_allocations = 1;
726 	}
727 
728 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
729 	if (!sg_list) {
730 		iod->nr_allocations = -1;
731 		return BLK_STS_RESOURCE;
732 	}
733 
734 	iod->list[0].sg_list = sg_list;
735 	iod->first_dma = sgl_dma;
736 
737 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
738 	do {
739 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
740 		sg = sg_next(sg);
741 	} while (--entries > 0);
742 
743 	return BLK_STS_OK;
744 }
745 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
747 		struct request *req, struct nvme_rw_command *cmnd,
748 		struct bio_vec *bv)
749 {
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
752 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
753 
754 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
755 	if (dma_mapping_error(dev->dev, iod->first_dma))
756 		return BLK_STS_RESOURCE;
757 	iod->dma_len = bv->bv_len;
758 
759 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
760 	if (bv->bv_len > first_prp_len)
761 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
762 	else
763 		cmnd->dptr.prp2 = 0;
764 	return BLK_STS_OK;
765 }
766 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
768 		struct request *req, struct nvme_rw_command *cmnd,
769 		struct bio_vec *bv)
770 {
771 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772 
773 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
774 	if (dma_mapping_error(dev->dev, iod->first_dma))
775 		return BLK_STS_RESOURCE;
776 	iod->dma_len = bv->bv_len;
777 
778 	cmnd->flags = NVME_CMD_SGL_METABUF;
779 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
780 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
781 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
782 	return BLK_STS_OK;
783 }
784 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
786 		struct nvme_command *cmnd)
787 {
788 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 	blk_status_t ret = BLK_STS_RESOURCE;
790 	int rc;
791 
792 	if (blk_rq_nr_phys_segments(req) == 1) {
793 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
794 		struct bio_vec bv = req_bvec(req);
795 
796 		if (!is_pci_p2pdma_page(bv.bv_page)) {
797 			if (!nvme_pci_metadata_use_sgls(dev, req) &&
798 			    (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
799 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
800 				return nvme_setup_prp_simple(dev, req,
801 							     &cmnd->rw, &bv);
802 
803 			if (nvmeq->qid && sgl_threshold &&
804 			    nvme_ctrl_sgl_supported(&dev->ctrl))
805 				return nvme_setup_sgl_simple(dev, req,
806 							     &cmnd->rw, &bv);
807 		}
808 	}
809 
810 	iod->dma_len = 0;
811 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
812 	if (!iod->sgt.sgl)
813 		return BLK_STS_RESOURCE;
814 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
815 	iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl);
816 	if (!iod->sgt.orig_nents)
817 		goto out_free_sg;
818 
819 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
820 			     DMA_ATTR_NO_WARN);
821 	if (rc) {
822 		if (rc == -EREMOTEIO)
823 			ret = BLK_STS_TARGET;
824 		goto out_free_sg;
825 	}
826 
827 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
828 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
829 	else
830 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 	if (ret != BLK_STS_OK)
832 		goto out_unmap_sg;
833 	return BLK_STS_OK;
834 
835 out_unmap_sg:
836 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
837 out_free_sg:
838 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
839 	return ret;
840 }
841 
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
843 					     struct request *req)
844 {
845 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 	struct nvme_rw_command *cmnd = &iod->cmd.rw;
847 	struct nvme_sgl_desc *sg_list;
848 	struct scatterlist *sgl, *sg;
849 	unsigned int entries;
850 	dma_addr_t sgl_dma;
851 	int rc, i;
852 
853 	iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
854 	if (!iod->meta_sgt.sgl)
855 		return BLK_STS_RESOURCE;
856 
857 	sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
858 	iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
859 							   iod->meta_sgt.sgl);
860 	if (!iod->meta_sgt.orig_nents)
861 		goto out_free_sg;
862 
863 	rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
864 			     DMA_ATTR_NO_WARN);
865 	if (rc)
866 		goto out_free_sg;
867 
868 	sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
869 	if (!sg_list)
870 		goto out_unmap_sg;
871 
872 	entries = iod->meta_sgt.nents;
873 	iod->meta_list.sg_list = sg_list;
874 	iod->meta_dma = sgl_dma;
875 
876 	cmnd->flags = NVME_CMD_SGL_METASEG;
877 	cmnd->metadata = cpu_to_le64(sgl_dma);
878 
879 	sgl = iod->meta_sgt.sgl;
880 	if (entries == 1) {
881 		nvme_pci_sgl_set_data(sg_list, sgl);
882 		return BLK_STS_OK;
883 	}
884 
885 	sgl_dma += sizeof(*sg_list);
886 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
887 	for_each_sg(sgl, sg, entries, i)
888 		nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
889 
890 	return BLK_STS_OK;
891 
892 out_unmap_sg:
893 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
894 out_free_sg:
895 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
896 	return BLK_STS_RESOURCE;
897 }
898 
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
900 					     struct request *req)
901 {
902 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 	struct bio_vec bv = rq_integrity_vec(req);
904 	struct nvme_command *cmnd = &iod->cmd;
905 
906 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
907 	if (dma_mapping_error(dev->dev, iod->meta_dma))
908 		return BLK_STS_IOERR;
909 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 	return BLK_STS_OK;
911 }
912 
nvme_map_metadata(struct nvme_dev * dev,struct request * req)913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
914 {
915 	if (nvme_pci_metadata_use_sgls(dev, req))
916 		return nvme_pci_setup_meta_sgls(dev, req);
917 	return nvme_pci_setup_meta_mptr(dev, req);
918 }
919 
nvme_prep_rq(struct nvme_dev * dev,struct request * req)920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
921 {
922 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 	blk_status_t ret;
924 
925 	iod->aborted = false;
926 	iod->nr_allocations = -1;
927 	iod->sgt.nents = 0;
928 	iod->meta_sgt.nents = 0;
929 
930 	ret = nvme_setup_cmd(req->q->queuedata, req);
931 	if (ret)
932 		return ret;
933 
934 	if (blk_rq_nr_phys_segments(req)) {
935 		ret = nvme_map_data(dev, req, &iod->cmd);
936 		if (ret)
937 			goto out_free_cmd;
938 	}
939 
940 	if (blk_integrity_rq(req)) {
941 		ret = nvme_map_metadata(dev, req);
942 		if (ret)
943 			goto out_unmap_data;
944 	}
945 
946 	nvme_start_request(req);
947 	return BLK_STS_OK;
948 out_unmap_data:
949 	if (blk_rq_nr_phys_segments(req))
950 		nvme_unmap_data(dev, req);
951 out_free_cmd:
952 	nvme_cleanup_cmd(req);
953 	return ret;
954 }
955 
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)956 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
957 			 const struct blk_mq_queue_data *bd)
958 {
959 	struct nvme_queue *nvmeq = hctx->driver_data;
960 	struct nvme_dev *dev = nvmeq->dev;
961 	struct request *req = bd->rq;
962 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963 	blk_status_t ret;
964 
965 	/*
966 	 * We should not need to do this, but we're still using this to
967 	 * ensure we can drain requests on a dying queue.
968 	 */
969 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
970 		return BLK_STS_IOERR;
971 
972 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
973 		return nvme_fail_nonready_command(&dev->ctrl, req);
974 
975 	ret = nvme_prep_rq(dev, req);
976 	if (unlikely(ret))
977 		return ret;
978 	spin_lock(&nvmeq->sq_lock);
979 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
980 	nvme_write_sq_db(nvmeq, bd->last);
981 	spin_unlock(&nvmeq->sq_lock);
982 	return BLK_STS_OK;
983 }
984 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)985 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
986 {
987 	struct request *req;
988 
989 	spin_lock(&nvmeq->sq_lock);
990 	while ((req = rq_list_pop(rqlist))) {
991 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992 
993 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
994 	}
995 	nvme_write_sq_db(nvmeq, true);
996 	spin_unlock(&nvmeq->sq_lock);
997 }
998 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)999 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1000 {
1001 	/*
1002 	 * We should not need to do this, but we're still using this to
1003 	 * ensure we can drain requests on a dying queue.
1004 	 */
1005 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1006 		return false;
1007 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1008 		return false;
1009 
1010 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1011 }
1012 
nvme_queue_rqs(struct rq_list * rqlist)1013 static void nvme_queue_rqs(struct rq_list *rqlist)
1014 {
1015 	struct rq_list submit_list = { };
1016 	struct rq_list requeue_list = { };
1017 	struct nvme_queue *nvmeq = NULL;
1018 	struct request *req;
1019 
1020 	while ((req = rq_list_pop(rqlist))) {
1021 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1022 			nvme_submit_cmds(nvmeq, &submit_list);
1023 		nvmeq = req->mq_hctx->driver_data;
1024 
1025 		if (nvme_prep_rq_batch(nvmeq, req))
1026 			rq_list_add_tail(&submit_list, req);
1027 		else
1028 			rq_list_add_tail(&requeue_list, req);
1029 	}
1030 
1031 	if (nvmeq)
1032 		nvme_submit_cmds(nvmeq, &submit_list);
1033 	*rqlist = requeue_list;
1034 }
1035 
nvme_unmap_metadata(struct nvme_dev * dev,struct request * req)1036 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1037 						struct request *req)
1038 {
1039 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1040 
1041 	if (!iod->meta_sgt.nents) {
1042 		dma_unmap_page(dev->dev, iod->meta_dma,
1043 			       rq_integrity_vec(req).bv_len,
1044 			       rq_dma_dir(req));
1045 		return;
1046 	}
1047 
1048 	dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1049 		      iod->meta_dma);
1050 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1051 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1052 }
1053 
nvme_pci_unmap_rq(struct request * req)1054 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1055 {
1056 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1057 	struct nvme_dev *dev = nvmeq->dev;
1058 
1059 	if (blk_integrity_rq(req))
1060 		nvme_unmap_metadata(dev, req);
1061 
1062 	if (blk_rq_nr_phys_segments(req))
1063 		nvme_unmap_data(dev, req);
1064 }
1065 
nvme_pci_complete_rq(struct request * req)1066 static void nvme_pci_complete_rq(struct request *req)
1067 {
1068 	nvme_pci_unmap_rq(req);
1069 	nvme_complete_rq(req);
1070 }
1071 
nvme_pci_complete_batch(struct io_comp_batch * iob)1072 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1073 {
1074 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1075 }
1076 
1077 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1078 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1079 {
1080 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1081 
1082 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1083 }
1084 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1085 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1086 {
1087 	u16 head = nvmeq->cq_head;
1088 
1089 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1090 					      nvmeq->dbbuf_cq_ei))
1091 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1092 }
1093 
nvme_queue_tagset(struct nvme_queue * nvmeq)1094 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1095 {
1096 	if (!nvmeq->qid)
1097 		return nvmeq->dev->admin_tagset.tags[0];
1098 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1099 }
1100 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1101 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1102 				   struct io_comp_batch *iob, u16 idx)
1103 {
1104 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1105 	__u16 command_id = READ_ONCE(cqe->command_id);
1106 	struct request *req;
1107 
1108 	/*
1109 	 * AEN requests are special as they don't time out and can
1110 	 * survive any kind of queue freeze and often don't respond to
1111 	 * aborts.  We don't even bother to allocate a struct request
1112 	 * for them but rather special case them here.
1113 	 */
1114 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1115 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1116 				cqe->status, &cqe->result);
1117 		return;
1118 	}
1119 
1120 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1121 	if (unlikely(!req)) {
1122 		dev_warn(nvmeq->dev->ctrl.device,
1123 			"invalid id %d completed on queue %d\n",
1124 			command_id, le16_to_cpu(cqe->sq_id));
1125 		return;
1126 	}
1127 
1128 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1129 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1130 	    !blk_mq_add_to_batch(req, iob,
1131 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1132 				 nvme_pci_complete_batch))
1133 		nvme_pci_complete_rq(req);
1134 }
1135 
nvme_update_cq_head(struct nvme_queue * nvmeq)1136 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1137 {
1138 	u32 tmp = nvmeq->cq_head + 1;
1139 
1140 	if (tmp == nvmeq->q_depth) {
1141 		nvmeq->cq_head = 0;
1142 		nvmeq->cq_phase ^= 1;
1143 	} else {
1144 		nvmeq->cq_head = tmp;
1145 	}
1146 }
1147 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1148 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1149 			        struct io_comp_batch *iob)
1150 {
1151 	bool found = false;
1152 
1153 	while (nvme_cqe_pending(nvmeq)) {
1154 		found = true;
1155 		/*
1156 		 * load-load control dependency between phase and the rest of
1157 		 * the cqe requires a full read memory barrier
1158 		 */
1159 		dma_rmb();
1160 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1161 		nvme_update_cq_head(nvmeq);
1162 	}
1163 
1164 	if (found)
1165 		nvme_ring_cq_doorbell(nvmeq);
1166 	return found;
1167 }
1168 
nvme_irq(int irq,void * data)1169 static irqreturn_t nvme_irq(int irq, void *data)
1170 {
1171 	struct nvme_queue *nvmeq = data;
1172 	DEFINE_IO_COMP_BATCH(iob);
1173 
1174 	if (nvme_poll_cq(nvmeq, &iob)) {
1175 		if (!rq_list_empty(&iob.req_list))
1176 			nvme_pci_complete_batch(&iob);
1177 		return IRQ_HANDLED;
1178 	}
1179 	return IRQ_NONE;
1180 }
1181 
nvme_irq_check(int irq,void * data)1182 static irqreturn_t nvme_irq_check(int irq, void *data)
1183 {
1184 	struct nvme_queue *nvmeq = data;
1185 
1186 	if (nvme_cqe_pending(nvmeq))
1187 		return IRQ_WAKE_THREAD;
1188 	return IRQ_NONE;
1189 }
1190 
1191 /*
1192  * Poll for completions for any interrupt driven queue
1193  * Can be called from any context.
1194  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1195 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1196 {
1197 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1198 
1199 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1200 
1201 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1202 	nvme_poll_cq(nvmeq, NULL);
1203 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1204 }
1205 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1206 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1207 {
1208 	struct nvme_queue *nvmeq = hctx->driver_data;
1209 	bool found;
1210 
1211 	if (!nvme_cqe_pending(nvmeq))
1212 		return 0;
1213 
1214 	spin_lock(&nvmeq->cq_poll_lock);
1215 	found = nvme_poll_cq(nvmeq, iob);
1216 	spin_unlock(&nvmeq->cq_poll_lock);
1217 
1218 	return found;
1219 }
1220 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1221 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1222 {
1223 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1224 	struct nvme_queue *nvmeq = &dev->queues[0];
1225 	struct nvme_command c = { };
1226 
1227 	c.common.opcode = nvme_admin_async_event;
1228 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1229 
1230 	spin_lock(&nvmeq->sq_lock);
1231 	nvme_sq_copy_cmd(nvmeq, &c);
1232 	nvme_write_sq_db(nvmeq, true);
1233 	spin_unlock(&nvmeq->sq_lock);
1234 }
1235 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1236 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1237 {
1238 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1239 	int ret = 0;
1240 
1241 	/*
1242 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1243 	 * altered by reset_work. Holding this lock before the RESETTING state
1244 	 * change, if successful, also ensures nvme_remove won't be able to
1245 	 * proceed to iounmap until we're done.
1246 	 */
1247 	mutex_lock(&dev->shutdown_lock);
1248 	if (!dev->bar_mapped_size) {
1249 		ret = -ENODEV;
1250 		goto unlock;
1251 	}
1252 
1253 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1254 		ret = -EBUSY;
1255 		goto unlock;
1256 	}
1257 
1258 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1259 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1260 
1261 	/*
1262 	 * Read controller status to flush the previous write and trigger a
1263 	 * pcie read error.
1264 	 */
1265 	readl(dev->bar + NVME_REG_CSTS);
1266 unlock:
1267 	mutex_unlock(&dev->shutdown_lock);
1268 	return ret;
1269 }
1270 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1271 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1272 {
1273 	struct nvme_command c = { };
1274 
1275 	c.delete_queue.opcode = opcode;
1276 	c.delete_queue.qid = cpu_to_le16(id);
1277 
1278 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1279 }
1280 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1281 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1282 		struct nvme_queue *nvmeq, s16 vector)
1283 {
1284 	struct nvme_command c = { };
1285 	int flags = NVME_QUEUE_PHYS_CONTIG;
1286 
1287 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1288 		flags |= NVME_CQ_IRQ_ENABLED;
1289 
1290 	/*
1291 	 * Note: we (ab)use the fact that the prp fields survive if no data
1292 	 * is attached to the request.
1293 	 */
1294 	c.create_cq.opcode = nvme_admin_create_cq;
1295 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1296 	c.create_cq.cqid = cpu_to_le16(qid);
1297 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1298 	c.create_cq.cq_flags = cpu_to_le16(flags);
1299 	c.create_cq.irq_vector = cpu_to_le16(vector);
1300 
1301 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1302 }
1303 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1304 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1305 						struct nvme_queue *nvmeq)
1306 {
1307 	struct nvme_ctrl *ctrl = &dev->ctrl;
1308 	struct nvme_command c = { };
1309 	int flags = NVME_QUEUE_PHYS_CONTIG;
1310 
1311 	/*
1312 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1313 	 * set. Since URGENT priority is zeroes, it makes all queues
1314 	 * URGENT.
1315 	 */
1316 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1317 		flags |= NVME_SQ_PRIO_MEDIUM;
1318 
1319 	/*
1320 	 * Note: we (ab)use the fact that the prp fields survive if no data
1321 	 * is attached to the request.
1322 	 */
1323 	c.create_sq.opcode = nvme_admin_create_sq;
1324 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1325 	c.create_sq.sqid = cpu_to_le16(qid);
1326 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1327 	c.create_sq.sq_flags = cpu_to_le16(flags);
1328 	c.create_sq.cqid = cpu_to_le16(qid);
1329 
1330 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1331 }
1332 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1333 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1334 {
1335 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1336 }
1337 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1338 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1339 {
1340 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1341 }
1342 
abort_endio(struct request * req,blk_status_t error)1343 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1344 {
1345 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1346 
1347 	dev_warn(nvmeq->dev->ctrl.device,
1348 		 "Abort status: 0x%x", nvme_req(req)->status);
1349 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1350 	blk_mq_free_request(req);
1351 	return RQ_END_IO_NONE;
1352 }
1353 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1354 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1355 {
1356 	/* If true, indicates loss of adapter communication, possibly by a
1357 	 * NVMe Subsystem reset.
1358 	 */
1359 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1360 
1361 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1362 	switch (nvme_ctrl_state(&dev->ctrl)) {
1363 	case NVME_CTRL_RESETTING:
1364 	case NVME_CTRL_CONNECTING:
1365 		return false;
1366 	default:
1367 		break;
1368 	}
1369 
1370 	/* We shouldn't reset unless the controller is on fatal error state
1371 	 * _or_ if we lost the communication with it.
1372 	 */
1373 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1374 		return false;
1375 
1376 	return true;
1377 }
1378 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1379 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1380 {
1381 	/* Read a config register to help see what died. */
1382 	u16 pci_status;
1383 	int result;
1384 
1385 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1386 				      &pci_status);
1387 	if (result == PCIBIOS_SUCCESSFUL)
1388 		dev_warn(dev->ctrl.device,
1389 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1390 			 csts, pci_status);
1391 	else
1392 		dev_warn(dev->ctrl.device,
1393 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1394 			 csts, result);
1395 
1396 	if (csts != ~0)
1397 		return;
1398 
1399 	dev_warn(dev->ctrl.device,
1400 		 "Does your device have a faulty power saving mode enabled?\n");
1401 	dev_warn(dev->ctrl.device,
1402 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1403 }
1404 
nvme_timeout(struct request * req)1405 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1406 {
1407 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1408 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1409 	struct nvme_dev *dev = nvmeq->dev;
1410 	struct request *abort_req;
1411 	struct nvme_command cmd = { };
1412 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1413 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1414 	u8 opcode;
1415 
1416 	/*
1417 	 * Shutdown the device immediately if we see it is disconnected. This
1418 	 * unblocks PCIe error handling if the nvme driver is waiting in
1419 	 * error_resume for a device that has been removed. We can't unbind the
1420 	 * driver while the driver's error callback is waiting to complete, so
1421 	 * we're relying on a timeout to break that deadlock if a removal
1422 	 * occurs while reset work is running.
1423 	 */
1424 	if (pci_dev_is_disconnected(pdev))
1425 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1426 	if (nvme_state_terminal(&dev->ctrl))
1427 		goto disable;
1428 
1429 	/* If PCI error recovery process is happening, we cannot reset or
1430 	 * the recovery mechanism will surely fail.
1431 	 */
1432 	mb();
1433 	if (pci_channel_offline(pdev))
1434 		return BLK_EH_RESET_TIMER;
1435 
1436 	/*
1437 	 * Reset immediately if the controller is failed
1438 	 */
1439 	if (nvme_should_reset(dev, csts)) {
1440 		nvme_warn_reset(dev, csts);
1441 		goto disable;
1442 	}
1443 
1444 	/*
1445 	 * Did we miss an interrupt?
1446 	 */
1447 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1448 		nvme_poll(req->mq_hctx, NULL);
1449 	else
1450 		nvme_poll_irqdisable(nvmeq);
1451 
1452 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1453 		dev_warn(dev->ctrl.device,
1454 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1455 			 req->tag, nvme_cid(req), nvmeq->qid);
1456 		return BLK_EH_DONE;
1457 	}
1458 
1459 	/*
1460 	 * Shutdown immediately if controller times out while starting. The
1461 	 * reset work will see the pci device disabled when it gets the forced
1462 	 * cancellation error. All outstanding requests are completed on
1463 	 * shutdown, so we return BLK_EH_DONE.
1464 	 */
1465 	switch (nvme_ctrl_state(&dev->ctrl)) {
1466 	case NVME_CTRL_CONNECTING:
1467 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1468 		fallthrough;
1469 	case NVME_CTRL_DELETING:
1470 		dev_warn_ratelimited(dev->ctrl.device,
1471 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1472 			 req->tag, nvme_cid(req), nvmeq->qid);
1473 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1474 		nvme_dev_disable(dev, true);
1475 		return BLK_EH_DONE;
1476 	case NVME_CTRL_RESETTING:
1477 		return BLK_EH_RESET_TIMER;
1478 	default:
1479 		break;
1480 	}
1481 
1482 	/*
1483 	 * Shutdown the controller immediately and schedule a reset if the
1484 	 * command was already aborted once before and still hasn't been
1485 	 * returned to the driver, or if this is the admin queue.
1486 	 */
1487 	opcode = nvme_req(req)->cmd->common.opcode;
1488 	if (!nvmeq->qid || iod->aborted) {
1489 		dev_warn(dev->ctrl.device,
1490 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1491 			 req->tag, nvme_cid(req), opcode,
1492 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1493 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1494 		goto disable;
1495 	}
1496 
1497 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1498 		atomic_inc(&dev->ctrl.abort_limit);
1499 		return BLK_EH_RESET_TIMER;
1500 	}
1501 	iod->aborted = true;
1502 
1503 	cmd.abort.opcode = nvme_admin_abort_cmd;
1504 	cmd.abort.cid = nvme_cid(req);
1505 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1506 
1507 	dev_warn(nvmeq->dev->ctrl.device,
1508 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1509 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1510 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1511 		 blk_rq_bytes(req));
1512 
1513 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1514 					 BLK_MQ_REQ_NOWAIT);
1515 	if (IS_ERR(abort_req)) {
1516 		atomic_inc(&dev->ctrl.abort_limit);
1517 		return BLK_EH_RESET_TIMER;
1518 	}
1519 	nvme_init_request(abort_req, &cmd);
1520 
1521 	abort_req->end_io = abort_endio;
1522 	abort_req->end_io_data = NULL;
1523 	blk_execute_rq_nowait(abort_req, false);
1524 
1525 	/*
1526 	 * The aborted req will be completed on receiving the abort req.
1527 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1528 	 * as the device then is in a faulty state.
1529 	 */
1530 	return BLK_EH_RESET_TIMER;
1531 
1532 disable:
1533 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1534 		if (nvme_state_terminal(&dev->ctrl))
1535 			nvme_dev_disable(dev, true);
1536 		return BLK_EH_DONE;
1537 	}
1538 
1539 	nvme_dev_disable(dev, false);
1540 	if (nvme_try_sched_reset(&dev->ctrl))
1541 		nvme_unquiesce_io_queues(&dev->ctrl);
1542 	return BLK_EH_DONE;
1543 }
1544 
nvme_free_queue(struct nvme_queue * nvmeq)1545 static void nvme_free_queue(struct nvme_queue *nvmeq)
1546 {
1547 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1548 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1549 	if (!nvmeq->sq_cmds)
1550 		return;
1551 
1552 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1553 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1554 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1555 	} else {
1556 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1557 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1558 	}
1559 }
1560 
nvme_free_queues(struct nvme_dev * dev,int lowest)1561 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1562 {
1563 	int i;
1564 
1565 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1566 		dev->ctrl.queue_count--;
1567 		nvme_free_queue(&dev->queues[i]);
1568 	}
1569 }
1570 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1571 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1572 {
1573 	struct nvme_queue *nvmeq = &dev->queues[qid];
1574 
1575 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1576 		return;
1577 
1578 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1579 	mb();
1580 
1581 	nvmeq->dev->online_queues--;
1582 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1583 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1584 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1585 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1586 }
1587 
nvme_suspend_io_queues(struct nvme_dev * dev)1588 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1589 {
1590 	int i;
1591 
1592 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1593 		nvme_suspend_queue(dev, i);
1594 }
1595 
1596 /*
1597  * Called only on a device that has been disabled and after all other threads
1598  * that can check this device's completion queues have synced, except
1599  * nvme_poll(). This is the last chance for the driver to see a natural
1600  * completion before nvme_cancel_request() terminates all incomplete requests.
1601  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1602 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1603 {
1604 	int i;
1605 
1606 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1607 		spin_lock(&dev->queues[i].cq_poll_lock);
1608 		nvme_poll_cq(&dev->queues[i], NULL);
1609 		spin_unlock(&dev->queues[i].cq_poll_lock);
1610 	}
1611 }
1612 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1613 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1614 				int entry_size)
1615 {
1616 	int q_depth = dev->q_depth;
1617 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1618 					  NVME_CTRL_PAGE_SIZE);
1619 
1620 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1621 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1622 
1623 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1624 		q_depth = div_u64(mem_per_q, entry_size);
1625 
1626 		/*
1627 		 * Ensure the reduced q_depth is above some threshold where it
1628 		 * would be better to map queues in system memory with the
1629 		 * original depth
1630 		 */
1631 		if (q_depth < 64)
1632 			return -ENOMEM;
1633 	}
1634 
1635 	return q_depth;
1636 }
1637 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1638 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1639 				int qid)
1640 {
1641 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1642 
1643 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1644 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1645 		if (nvmeq->sq_cmds) {
1646 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1647 							nvmeq->sq_cmds);
1648 			if (nvmeq->sq_dma_addr) {
1649 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1650 				return 0;
1651 			}
1652 
1653 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1654 		}
1655 	}
1656 
1657 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1658 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1659 	if (!nvmeq->sq_cmds)
1660 		return -ENOMEM;
1661 	return 0;
1662 }
1663 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1664 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1665 {
1666 	struct nvme_queue *nvmeq = &dev->queues[qid];
1667 
1668 	if (dev->ctrl.queue_count > qid)
1669 		return 0;
1670 
1671 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1672 	nvmeq->q_depth = depth;
1673 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1674 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1675 	if (!nvmeq->cqes)
1676 		goto free_nvmeq;
1677 
1678 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1679 		goto free_cqdma;
1680 
1681 	nvmeq->dev = dev;
1682 	spin_lock_init(&nvmeq->sq_lock);
1683 	spin_lock_init(&nvmeq->cq_poll_lock);
1684 	nvmeq->cq_head = 0;
1685 	nvmeq->cq_phase = 1;
1686 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1687 	nvmeq->qid = qid;
1688 	dev->ctrl.queue_count++;
1689 
1690 	return 0;
1691 
1692  free_cqdma:
1693 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1694 			  nvmeq->cq_dma_addr);
1695  free_nvmeq:
1696 	return -ENOMEM;
1697 }
1698 
queue_request_irq(struct nvme_queue * nvmeq)1699 static int queue_request_irq(struct nvme_queue *nvmeq)
1700 {
1701 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1702 	int nr = nvmeq->dev->ctrl.instance;
1703 
1704 	if (use_threaded_interrupts) {
1705 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1706 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1707 	} else {
1708 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1709 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1710 	}
1711 }
1712 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1713 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1714 {
1715 	struct nvme_dev *dev = nvmeq->dev;
1716 
1717 	nvmeq->sq_tail = 0;
1718 	nvmeq->last_sq_tail = 0;
1719 	nvmeq->cq_head = 0;
1720 	nvmeq->cq_phase = 1;
1721 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1722 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1723 	nvme_dbbuf_init(dev, nvmeq, qid);
1724 	dev->online_queues++;
1725 	wmb(); /* ensure the first interrupt sees the initialization */
1726 }
1727 
1728 /*
1729  * Try getting shutdown_lock while setting up IO queues.
1730  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1731 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1732 {
1733 	/*
1734 	 * Give up if the lock is being held by nvme_dev_disable.
1735 	 */
1736 	if (!mutex_trylock(&dev->shutdown_lock))
1737 		return -ENODEV;
1738 
1739 	/*
1740 	 * Controller is in wrong state, fail early.
1741 	 */
1742 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1743 		mutex_unlock(&dev->shutdown_lock);
1744 		return -ENODEV;
1745 	}
1746 
1747 	return 0;
1748 }
1749 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1750 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1751 {
1752 	struct nvme_dev *dev = nvmeq->dev;
1753 	int result;
1754 	u16 vector = 0;
1755 
1756 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1757 
1758 	/*
1759 	 * A queue's vector matches the queue identifier unless the controller
1760 	 * has only one vector available.
1761 	 */
1762 	if (!polled)
1763 		vector = dev->num_vecs == 1 ? 0 : qid;
1764 	else
1765 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1766 
1767 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1768 	if (result)
1769 		return result;
1770 
1771 	result = adapter_alloc_sq(dev, qid, nvmeq);
1772 	if (result < 0)
1773 		return result;
1774 	if (result)
1775 		goto release_cq;
1776 
1777 	nvmeq->cq_vector = vector;
1778 
1779 	result = nvme_setup_io_queues_trylock(dev);
1780 	if (result)
1781 		return result;
1782 	nvme_init_queue(nvmeq, qid);
1783 	if (!polled) {
1784 		result = queue_request_irq(nvmeq);
1785 		if (result < 0)
1786 			goto release_sq;
1787 	}
1788 
1789 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1790 	mutex_unlock(&dev->shutdown_lock);
1791 	return result;
1792 
1793 release_sq:
1794 	dev->online_queues--;
1795 	mutex_unlock(&dev->shutdown_lock);
1796 	adapter_delete_sq(dev, qid);
1797 release_cq:
1798 	adapter_delete_cq(dev, qid);
1799 	return result;
1800 }
1801 
1802 static const struct blk_mq_ops nvme_mq_admin_ops = {
1803 	.queue_rq	= nvme_queue_rq,
1804 	.complete	= nvme_pci_complete_rq,
1805 	.init_hctx	= nvme_admin_init_hctx,
1806 	.init_request	= nvme_pci_init_request,
1807 	.timeout	= nvme_timeout,
1808 };
1809 
1810 static const struct blk_mq_ops nvme_mq_ops = {
1811 	.queue_rq	= nvme_queue_rq,
1812 	.queue_rqs	= nvme_queue_rqs,
1813 	.complete	= nvme_pci_complete_rq,
1814 	.commit_rqs	= nvme_commit_rqs,
1815 	.init_hctx	= nvme_init_hctx,
1816 	.init_request	= nvme_pci_init_request,
1817 	.map_queues	= nvme_pci_map_queues,
1818 	.timeout	= nvme_timeout,
1819 	.poll		= nvme_poll,
1820 };
1821 
nvme_dev_remove_admin(struct nvme_dev * dev)1822 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1823 {
1824 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1825 		/*
1826 		 * If the controller was reset during removal, it's possible
1827 		 * user requests may be waiting on a stopped queue. Start the
1828 		 * queue to flush these to completion.
1829 		 */
1830 		nvme_unquiesce_admin_queue(&dev->ctrl);
1831 		nvme_remove_admin_tag_set(&dev->ctrl);
1832 	}
1833 }
1834 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1835 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1836 {
1837 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1838 }
1839 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1840 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1841 {
1842 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1843 
1844 	if (size <= dev->bar_mapped_size)
1845 		return 0;
1846 	if (size > pci_resource_len(pdev, 0))
1847 		return -ENOMEM;
1848 	if (dev->bar)
1849 		iounmap(dev->bar);
1850 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1851 	if (!dev->bar) {
1852 		dev->bar_mapped_size = 0;
1853 		return -ENOMEM;
1854 	}
1855 	dev->bar_mapped_size = size;
1856 	dev->dbs = dev->bar + NVME_REG_DBS;
1857 
1858 	return 0;
1859 }
1860 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1861 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1862 {
1863 	int result;
1864 	u32 aqa;
1865 	struct nvme_queue *nvmeq;
1866 
1867 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1868 	if (result < 0)
1869 		return result;
1870 
1871 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1872 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1873 
1874 	if (dev->subsystem &&
1875 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1876 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1877 
1878 	/*
1879 	 * If the device has been passed off to us in an enabled state, just
1880 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1881 	 * notification bits', but doing so may cause the device to complete
1882 	 * commands to the admin queue ... and we don't know what memory that
1883 	 * might be pointing at!
1884 	 */
1885 	result = nvme_disable_ctrl(&dev->ctrl, false);
1886 	if (result < 0)
1887 		return result;
1888 
1889 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1890 	if (result)
1891 		return result;
1892 
1893 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1894 
1895 	nvmeq = &dev->queues[0];
1896 	aqa = nvmeq->q_depth - 1;
1897 	aqa |= aqa << 16;
1898 
1899 	writel(aqa, dev->bar + NVME_REG_AQA);
1900 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1901 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1902 
1903 	result = nvme_enable_ctrl(&dev->ctrl);
1904 	if (result)
1905 		return result;
1906 
1907 	nvmeq->cq_vector = 0;
1908 	nvme_init_queue(nvmeq, 0);
1909 	result = queue_request_irq(nvmeq);
1910 	if (result) {
1911 		dev->online_queues--;
1912 		return result;
1913 	}
1914 
1915 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1916 	return result;
1917 }
1918 
nvme_create_io_queues(struct nvme_dev * dev)1919 static int nvme_create_io_queues(struct nvme_dev *dev)
1920 {
1921 	unsigned i, max, rw_queues;
1922 	int ret = 0;
1923 
1924 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1925 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1926 			ret = -ENOMEM;
1927 			break;
1928 		}
1929 	}
1930 
1931 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1932 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1933 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1934 				dev->io_queues[HCTX_TYPE_READ];
1935 	} else {
1936 		rw_queues = max;
1937 	}
1938 
1939 	for (i = dev->online_queues; i <= max; i++) {
1940 		bool polled = i > rw_queues;
1941 
1942 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1943 		if (ret)
1944 			break;
1945 	}
1946 
1947 	/*
1948 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1949 	 * than the desired amount of queues, and even a controller without
1950 	 * I/O queues can still be used to issue admin commands.  This might
1951 	 * be useful to upgrade a buggy firmware for example.
1952 	 */
1953 	return ret >= 0 ? 0 : ret;
1954 }
1955 
nvme_cmb_size_unit(struct nvme_dev * dev)1956 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1957 {
1958 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1959 
1960 	return 1ULL << (12 + 4 * szu);
1961 }
1962 
nvme_cmb_size(struct nvme_dev * dev)1963 static u32 nvme_cmb_size(struct nvme_dev *dev)
1964 {
1965 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1966 }
1967 
nvme_map_cmb(struct nvme_dev * dev)1968 static void nvme_map_cmb(struct nvme_dev *dev)
1969 {
1970 	u64 size, offset;
1971 	resource_size_t bar_size;
1972 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1973 	int bar;
1974 
1975 	if (dev->cmb_size)
1976 		return;
1977 
1978 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1979 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1980 
1981 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1982 	if (!dev->cmbsz)
1983 		return;
1984 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1985 
1986 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1987 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1988 	bar = NVME_CMB_BIR(dev->cmbloc);
1989 	bar_size = pci_resource_len(pdev, bar);
1990 
1991 	if (offset > bar_size)
1992 		return;
1993 
1994 	/*
1995 	 * Controllers may support a CMB size larger than their BAR, for
1996 	 * example, due to being behind a bridge. Reduce the CMB to the
1997 	 * reported size of the BAR
1998 	 */
1999 	size = min(size, bar_size - offset);
2000 
2001 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2002 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2003 			memremap_compat_align()))
2004 		return;
2005 
2006 	/*
2007 	 * Tell the controller about the host side address mapping the CMB,
2008 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2009 	 */
2010 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2011 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2012 			     (pci_bus_address(pdev, bar) + offset),
2013 			     dev->bar + NVME_REG_CMBMSC);
2014 	}
2015 
2016 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2017 		dev_warn(dev->ctrl.device,
2018 			 "failed to register the CMB\n");
2019 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2020 		return;
2021 	}
2022 
2023 	dev->cmb_size = size;
2024 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2025 
2026 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2027 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2028 		pci_p2pmem_publish(pdev, true);
2029 
2030 	nvme_update_attrs(dev);
2031 }
2032 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2033 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2034 {
2035 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2036 	u64 dma_addr = dev->host_mem_descs_dma;
2037 	struct nvme_command c = { };
2038 	int ret;
2039 
2040 	c.features.opcode	= nvme_admin_set_features;
2041 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2042 	c.features.dword11	= cpu_to_le32(bits);
2043 	c.features.dword12	= cpu_to_le32(host_mem_size);
2044 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2045 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2046 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2047 
2048 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2049 	if (ret) {
2050 		dev_warn(dev->ctrl.device,
2051 			 "failed to set host mem (err %d, flags %#x).\n",
2052 			 ret, bits);
2053 	} else
2054 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2055 
2056 	return ret;
2057 }
2058 
nvme_free_host_mem_multi(struct nvme_dev * dev)2059 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2060 {
2061 	int i;
2062 
2063 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2064 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2065 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2066 
2067 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2068 			       le64_to_cpu(desc->addr),
2069 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2070 	}
2071 
2072 	kfree(dev->host_mem_desc_bufs);
2073 	dev->host_mem_desc_bufs = NULL;
2074 }
2075 
nvme_free_host_mem(struct nvme_dev * dev)2076 static void nvme_free_host_mem(struct nvme_dev *dev)
2077 {
2078 	if (dev->hmb_sgt)
2079 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2080 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2081 	else
2082 		nvme_free_host_mem_multi(dev);
2083 
2084 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2085 			dev->host_mem_descs, dev->host_mem_descs_dma);
2086 	dev->host_mem_descs = NULL;
2087 	dev->host_mem_descs_size = 0;
2088 	dev->nr_host_mem_descs = 0;
2089 }
2090 
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2091 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2092 {
2093 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2094 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2095 	if (!dev->hmb_sgt)
2096 		return -ENOMEM;
2097 
2098 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2099 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2100 			GFP_KERNEL);
2101 	if (!dev->host_mem_descs) {
2102 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2103 				DMA_BIDIRECTIONAL);
2104 		dev->hmb_sgt = NULL;
2105 		return -ENOMEM;
2106 	}
2107 	dev->host_mem_size = size;
2108 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2109 	dev->nr_host_mem_descs = 1;
2110 
2111 	dev->host_mem_descs[0].addr =
2112 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2113 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2114 	return 0;
2115 }
2116 
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2117 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2118 		u32 chunk_size)
2119 {
2120 	struct nvme_host_mem_buf_desc *descs;
2121 	u32 max_entries, len, descs_size;
2122 	dma_addr_t descs_dma;
2123 	int i = 0;
2124 	void **bufs;
2125 	u64 size, tmp;
2126 
2127 	tmp = (preferred + chunk_size - 1);
2128 	do_div(tmp, chunk_size);
2129 	max_entries = tmp;
2130 
2131 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2132 		max_entries = dev->ctrl.hmmaxd;
2133 
2134 	descs_size = max_entries * sizeof(*descs);
2135 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2136 			GFP_KERNEL);
2137 	if (!descs)
2138 		goto out;
2139 
2140 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2141 	if (!bufs)
2142 		goto out_free_descs;
2143 
2144 	for (size = 0; size < preferred && i < max_entries; size += len) {
2145 		dma_addr_t dma_addr;
2146 
2147 		len = min_t(u64, chunk_size, preferred - size);
2148 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2149 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2150 		if (!bufs[i])
2151 			break;
2152 
2153 		descs[i].addr = cpu_to_le64(dma_addr);
2154 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2155 		i++;
2156 	}
2157 
2158 	if (!size)
2159 		goto out_free_bufs;
2160 
2161 	dev->nr_host_mem_descs = i;
2162 	dev->host_mem_size = size;
2163 	dev->host_mem_descs = descs;
2164 	dev->host_mem_descs_dma = descs_dma;
2165 	dev->host_mem_descs_size = descs_size;
2166 	dev->host_mem_desc_bufs = bufs;
2167 	return 0;
2168 
2169 out_free_bufs:
2170 	kfree(bufs);
2171 out_free_descs:
2172 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2173 out:
2174 	dev->host_mem_descs = NULL;
2175 	return -ENOMEM;
2176 }
2177 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2178 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2179 {
2180 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2181 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2182 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2183 	u64 chunk_size;
2184 
2185 	/*
2186 	 * If there is an IOMMU that can merge pages, try a virtually
2187 	 * non-contiguous allocation for a single segment first.
2188 	 */
2189 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2190 		if (!nvme_alloc_host_mem_single(dev, preferred))
2191 			return 0;
2192 	}
2193 
2194 	/* start big and work our way down */
2195 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2196 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2197 			if (!min || dev->host_mem_size >= min)
2198 				return 0;
2199 			nvme_free_host_mem(dev);
2200 		}
2201 	}
2202 
2203 	return -ENOMEM;
2204 }
2205 
nvme_setup_host_mem(struct nvme_dev * dev)2206 static int nvme_setup_host_mem(struct nvme_dev *dev)
2207 {
2208 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2209 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2210 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2211 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2212 	int ret;
2213 
2214 	if (!dev->ctrl.hmpre)
2215 		return 0;
2216 
2217 	preferred = min(preferred, max);
2218 	if (min > max) {
2219 		dev_warn(dev->ctrl.device,
2220 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2221 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2222 		nvme_free_host_mem(dev);
2223 		return 0;
2224 	}
2225 
2226 	/*
2227 	 * If we already have a buffer allocated check if we can reuse it.
2228 	 */
2229 	if (dev->host_mem_descs) {
2230 		if (dev->host_mem_size >= min)
2231 			enable_bits |= NVME_HOST_MEM_RETURN;
2232 		else
2233 			nvme_free_host_mem(dev);
2234 	}
2235 
2236 	if (!dev->host_mem_descs) {
2237 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2238 			dev_warn(dev->ctrl.device,
2239 				"failed to allocate host memory buffer.\n");
2240 			return 0; /* controller must work without HMB */
2241 		}
2242 
2243 		dev_info(dev->ctrl.device,
2244 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2245 			dev->host_mem_size >> ilog2(SZ_1M),
2246 			dev->nr_host_mem_descs,
2247 			str_plural(dev->nr_host_mem_descs));
2248 	}
2249 
2250 	ret = nvme_set_host_mem(dev, enable_bits);
2251 	if (ret)
2252 		nvme_free_host_mem(dev);
2253 	return ret;
2254 }
2255 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2256 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2257 		char *buf)
2258 {
2259 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2260 
2261 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2262 		       ndev->cmbloc, ndev->cmbsz);
2263 }
2264 static DEVICE_ATTR_RO(cmb);
2265 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2266 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2267 		char *buf)
2268 {
2269 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2270 
2271 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2272 }
2273 static DEVICE_ATTR_RO(cmbloc);
2274 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2275 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2276 		char *buf)
2277 {
2278 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2279 
2280 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2281 }
2282 static DEVICE_ATTR_RO(cmbsz);
2283 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2284 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2285 			char *buf)
2286 {
2287 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2288 
2289 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2290 }
2291 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2292 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2293 			 const char *buf, size_t count)
2294 {
2295 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2296 	bool new;
2297 	int ret;
2298 
2299 	if (kstrtobool(buf, &new) < 0)
2300 		return -EINVAL;
2301 
2302 	if (new == ndev->hmb)
2303 		return count;
2304 
2305 	if (new) {
2306 		ret = nvme_setup_host_mem(ndev);
2307 	} else {
2308 		ret = nvme_set_host_mem(ndev, 0);
2309 		if (!ret)
2310 			nvme_free_host_mem(ndev);
2311 	}
2312 
2313 	if (ret < 0)
2314 		return ret;
2315 
2316 	return count;
2317 }
2318 static DEVICE_ATTR_RW(hmb);
2319 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2320 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2321 		struct attribute *a, int n)
2322 {
2323 	struct nvme_ctrl *ctrl =
2324 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2325 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2326 
2327 	if (a == &dev_attr_cmb.attr ||
2328 	    a == &dev_attr_cmbloc.attr ||
2329 	    a == &dev_attr_cmbsz.attr) {
2330 	    	if (!dev->cmbsz)
2331 			return 0;
2332 	}
2333 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2334 		return 0;
2335 
2336 	return a->mode;
2337 }
2338 
2339 static struct attribute *nvme_pci_attrs[] = {
2340 	&dev_attr_cmb.attr,
2341 	&dev_attr_cmbloc.attr,
2342 	&dev_attr_cmbsz.attr,
2343 	&dev_attr_hmb.attr,
2344 	NULL,
2345 };
2346 
2347 static const struct attribute_group nvme_pci_dev_attrs_group = {
2348 	.attrs		= nvme_pci_attrs,
2349 	.is_visible	= nvme_pci_attrs_are_visible,
2350 };
2351 
2352 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2353 	&nvme_dev_attrs_group,
2354 	&nvme_pci_dev_attrs_group,
2355 	NULL,
2356 };
2357 
nvme_update_attrs(struct nvme_dev * dev)2358 static void nvme_update_attrs(struct nvme_dev *dev)
2359 {
2360 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2361 }
2362 
2363 /*
2364  * nirqs is the number of interrupts available for write and read
2365  * queues. The core already reserved an interrupt for the admin queue.
2366  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2367 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2368 {
2369 	struct nvme_dev *dev = affd->priv;
2370 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2371 
2372 	/*
2373 	 * If there is no interrupt available for queues, ensure that
2374 	 * the default queue is set to 1. The affinity set size is
2375 	 * also set to one, but the irq core ignores it for this case.
2376 	 *
2377 	 * If only one interrupt is available or 'write_queue' == 0, combine
2378 	 * write and read queues.
2379 	 *
2380 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2381 	 * queue.
2382 	 */
2383 	if (!nrirqs) {
2384 		nrirqs = 1;
2385 		nr_read_queues = 0;
2386 	} else if (nrirqs == 1 || !nr_write_queues) {
2387 		nr_read_queues = 0;
2388 	} else if (nr_write_queues >= nrirqs) {
2389 		nr_read_queues = 1;
2390 	} else {
2391 		nr_read_queues = nrirqs - nr_write_queues;
2392 	}
2393 
2394 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2395 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2396 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2397 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2398 	affd->nr_sets = nr_read_queues ? 2 : 1;
2399 }
2400 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2401 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2402 {
2403 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2404 	struct irq_affinity affd = {
2405 		.pre_vectors	= 1,
2406 		.calc_sets	= nvme_calc_irq_sets,
2407 		.priv		= dev,
2408 	};
2409 	unsigned int irq_queues, poll_queues;
2410 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2411 
2412 	/*
2413 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2414 	 * left over for non-polled I/O.
2415 	 */
2416 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2417 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2418 
2419 	/*
2420 	 * Initialize for the single interrupt case, will be updated in
2421 	 * nvme_calc_irq_sets().
2422 	 */
2423 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2424 	dev->io_queues[HCTX_TYPE_READ] = 0;
2425 
2426 	/*
2427 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2428 	 * but some Apple controllers require all queues to use the first
2429 	 * vector.
2430 	 */
2431 	irq_queues = 1;
2432 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2433 		irq_queues += (nr_io_queues - poll_queues);
2434 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2435 		flags &= ~PCI_IRQ_MSI;
2436 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2437 					      &affd);
2438 }
2439 
nvme_max_io_queues(struct nvme_dev * dev)2440 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2441 {
2442 	/*
2443 	 * If tags are shared with admin queue (Apple bug), then
2444 	 * make sure we only use one IO queue.
2445 	 */
2446 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2447 		return 1;
2448 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2449 }
2450 
nvme_setup_io_queues(struct nvme_dev * dev)2451 static int nvme_setup_io_queues(struct nvme_dev *dev)
2452 {
2453 	struct nvme_queue *adminq = &dev->queues[0];
2454 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2455 	unsigned int nr_io_queues;
2456 	unsigned long size;
2457 	int result;
2458 
2459 	/*
2460 	 * Sample the module parameters once at reset time so that we have
2461 	 * stable values to work with.
2462 	 */
2463 	dev->nr_write_queues = write_queues;
2464 	dev->nr_poll_queues = poll_queues;
2465 
2466 	nr_io_queues = dev->nr_allocated_queues - 1;
2467 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2468 	if (result < 0)
2469 		return result;
2470 
2471 	if (nr_io_queues == 0)
2472 		return 0;
2473 
2474 	/*
2475 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2476 	 * from set to unset. If there is a window to it is truely freed,
2477 	 * pci_free_irq_vectors() jumping into this window will crash.
2478 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2479 	 * nvme_dev_disable() path.
2480 	 */
2481 	result = nvme_setup_io_queues_trylock(dev);
2482 	if (result)
2483 		return result;
2484 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2485 		pci_free_irq(pdev, 0, adminq);
2486 
2487 	if (dev->cmb_use_sqes) {
2488 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2489 				sizeof(struct nvme_command));
2490 		if (result > 0) {
2491 			dev->q_depth = result;
2492 			dev->ctrl.sqsize = result - 1;
2493 		} else {
2494 			dev->cmb_use_sqes = false;
2495 		}
2496 	}
2497 
2498 	do {
2499 		size = db_bar_size(dev, nr_io_queues);
2500 		result = nvme_remap_bar(dev, size);
2501 		if (!result)
2502 			break;
2503 		if (!--nr_io_queues) {
2504 			result = -ENOMEM;
2505 			goto out_unlock;
2506 		}
2507 	} while (1);
2508 	adminq->q_db = dev->dbs;
2509 
2510  retry:
2511 	/* Deregister the admin queue's interrupt */
2512 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2513 		pci_free_irq(pdev, 0, adminq);
2514 
2515 	/*
2516 	 * If we enable msix early due to not intx, disable it again before
2517 	 * setting up the full range we need.
2518 	 */
2519 	pci_free_irq_vectors(pdev);
2520 
2521 	result = nvme_setup_irqs(dev, nr_io_queues);
2522 	if (result <= 0) {
2523 		result = -EIO;
2524 		goto out_unlock;
2525 	}
2526 
2527 	dev->num_vecs = result;
2528 	result = max(result - 1, 1);
2529 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2530 
2531 	/*
2532 	 * Should investigate if there's a performance win from allocating
2533 	 * more queues than interrupt vectors; it might allow the submission
2534 	 * path to scale better, even if the receive path is limited by the
2535 	 * number of interrupts.
2536 	 */
2537 	result = queue_request_irq(adminq);
2538 	if (result)
2539 		goto out_unlock;
2540 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2541 	mutex_unlock(&dev->shutdown_lock);
2542 
2543 	result = nvme_create_io_queues(dev);
2544 	if (result || dev->online_queues < 2)
2545 		return result;
2546 
2547 	if (dev->online_queues - 1 < dev->max_qid) {
2548 		nr_io_queues = dev->online_queues - 1;
2549 		nvme_delete_io_queues(dev);
2550 		result = nvme_setup_io_queues_trylock(dev);
2551 		if (result)
2552 			return result;
2553 		nvme_suspend_io_queues(dev);
2554 		goto retry;
2555 	}
2556 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2557 					dev->io_queues[HCTX_TYPE_DEFAULT],
2558 					dev->io_queues[HCTX_TYPE_READ],
2559 					dev->io_queues[HCTX_TYPE_POLL]);
2560 	return 0;
2561 out_unlock:
2562 	mutex_unlock(&dev->shutdown_lock);
2563 	return result;
2564 }
2565 
nvme_del_queue_end(struct request * req,blk_status_t error)2566 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2567 					     blk_status_t error)
2568 {
2569 	struct nvme_queue *nvmeq = req->end_io_data;
2570 
2571 	blk_mq_free_request(req);
2572 	complete(&nvmeq->delete_done);
2573 	return RQ_END_IO_NONE;
2574 }
2575 
nvme_del_cq_end(struct request * req,blk_status_t error)2576 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2577 					  blk_status_t error)
2578 {
2579 	struct nvme_queue *nvmeq = req->end_io_data;
2580 
2581 	if (error)
2582 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2583 
2584 	return nvme_del_queue_end(req, error);
2585 }
2586 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2587 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2588 {
2589 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2590 	struct request *req;
2591 	struct nvme_command cmd = { };
2592 
2593 	cmd.delete_queue.opcode = opcode;
2594 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2595 
2596 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2597 	if (IS_ERR(req))
2598 		return PTR_ERR(req);
2599 	nvme_init_request(req, &cmd);
2600 
2601 	if (opcode == nvme_admin_delete_cq)
2602 		req->end_io = nvme_del_cq_end;
2603 	else
2604 		req->end_io = nvme_del_queue_end;
2605 	req->end_io_data = nvmeq;
2606 
2607 	init_completion(&nvmeq->delete_done);
2608 	blk_execute_rq_nowait(req, false);
2609 	return 0;
2610 }
2611 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2612 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2613 {
2614 	int nr_queues = dev->online_queues - 1, sent = 0;
2615 	unsigned long timeout;
2616 
2617  retry:
2618 	timeout = NVME_ADMIN_TIMEOUT;
2619 	while (nr_queues > 0) {
2620 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2621 			break;
2622 		nr_queues--;
2623 		sent++;
2624 	}
2625 	while (sent) {
2626 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2627 
2628 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2629 				timeout);
2630 		if (timeout == 0)
2631 			return false;
2632 
2633 		sent--;
2634 		if (nr_queues)
2635 			goto retry;
2636 	}
2637 	return true;
2638 }
2639 
nvme_delete_io_queues(struct nvme_dev * dev)2640 static void nvme_delete_io_queues(struct nvme_dev *dev)
2641 {
2642 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2643 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2644 }
2645 
nvme_pci_nr_maps(struct nvme_dev * dev)2646 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2647 {
2648 	if (dev->io_queues[HCTX_TYPE_POLL])
2649 		return 3;
2650 	if (dev->io_queues[HCTX_TYPE_READ])
2651 		return 2;
2652 	return 1;
2653 }
2654 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2655 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2656 {
2657 	if (!dev->ctrl.tagset) {
2658 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2659 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2660 		return true;
2661 	}
2662 
2663 	/* Give up if we are racing with nvme_dev_disable() */
2664 	if (!mutex_trylock(&dev->shutdown_lock))
2665 		return false;
2666 
2667 	/* Check if nvme_dev_disable() has been executed already */
2668 	if (!dev->online_queues) {
2669 		mutex_unlock(&dev->shutdown_lock);
2670 		return false;
2671 	}
2672 
2673 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2674 	/* free previously allocated queues that are no longer usable */
2675 	nvme_free_queues(dev, dev->online_queues);
2676 	mutex_unlock(&dev->shutdown_lock);
2677 	return true;
2678 }
2679 
nvme_pci_enable(struct nvme_dev * dev)2680 static int nvme_pci_enable(struct nvme_dev *dev)
2681 {
2682 	int result = -ENOMEM;
2683 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2684 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2685 
2686 	if (pci_enable_device_mem(pdev))
2687 		return result;
2688 
2689 	pci_set_master(pdev);
2690 
2691 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2692 		result = -ENODEV;
2693 		goto disable;
2694 	}
2695 
2696 	/*
2697 	 * Some devices and/or platforms don't advertise or work with INTx
2698 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2699 	 * adjust this later.
2700 	 */
2701 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2702 		flags &= ~PCI_IRQ_MSI;
2703 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2704 	if (result < 0)
2705 		goto disable;
2706 
2707 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2708 
2709 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2710 				io_queue_depth);
2711 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2712 	dev->dbs = dev->bar + 4096;
2713 
2714 	/*
2715 	 * Some Apple controllers require a non-standard SQE size.
2716 	 * Interestingly they also seem to ignore the CC:IOSQES register
2717 	 * so we don't bother updating it here.
2718 	 */
2719 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2720 		dev->io_sqes = 7;
2721 	else
2722 		dev->io_sqes = NVME_NVM_IOSQES;
2723 
2724 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2725 		dev->q_depth = 2;
2726 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2727 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2728 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2729 		dev->q_depth = 64;
2730 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2731                         "set queue depth=%u\n", dev->q_depth);
2732 	}
2733 
2734 	/*
2735 	 * Controllers with the shared tags quirk need the IO queue to be
2736 	 * big enough so that we get 32 tags for the admin queue
2737 	 */
2738 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2739 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2740 		dev->q_depth = NVME_AQ_DEPTH + 2;
2741 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2742 			 dev->q_depth);
2743 	}
2744 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2745 
2746 	nvme_map_cmb(dev);
2747 
2748 	pci_save_state(pdev);
2749 
2750 	result = nvme_pci_configure_admin_queue(dev);
2751 	if (result)
2752 		goto free_irq;
2753 	return result;
2754 
2755  free_irq:
2756 	pci_free_irq_vectors(pdev);
2757  disable:
2758 	pci_disable_device(pdev);
2759 	return result;
2760 }
2761 
nvme_dev_unmap(struct nvme_dev * dev)2762 static void nvme_dev_unmap(struct nvme_dev *dev)
2763 {
2764 	if (dev->bar)
2765 		iounmap(dev->bar);
2766 	pci_release_mem_regions(to_pci_dev(dev->dev));
2767 }
2768 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2769 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2770 {
2771 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2772 	u32 csts;
2773 
2774 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2775 		return true;
2776 	if (pdev->error_state != pci_channel_io_normal)
2777 		return true;
2778 
2779 	csts = readl(dev->bar + NVME_REG_CSTS);
2780 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2781 }
2782 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2783 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2784 {
2785 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2786 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2787 	bool dead;
2788 
2789 	mutex_lock(&dev->shutdown_lock);
2790 	dead = nvme_pci_ctrl_is_dead(dev);
2791 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2792 		if (pci_is_enabled(pdev))
2793 			nvme_start_freeze(&dev->ctrl);
2794 		/*
2795 		 * Give the controller a chance to complete all entered requests
2796 		 * if doing a safe shutdown.
2797 		 */
2798 		if (!dead && shutdown)
2799 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2800 	}
2801 
2802 	nvme_quiesce_io_queues(&dev->ctrl);
2803 
2804 	if (!dead && dev->ctrl.queue_count > 0) {
2805 		nvme_delete_io_queues(dev);
2806 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2807 		nvme_poll_irqdisable(&dev->queues[0]);
2808 	}
2809 	nvme_suspend_io_queues(dev);
2810 	nvme_suspend_queue(dev, 0);
2811 	pci_free_irq_vectors(pdev);
2812 	if (pci_is_enabled(pdev))
2813 		pci_disable_device(pdev);
2814 	nvme_reap_pending_cqes(dev);
2815 
2816 	nvme_cancel_tagset(&dev->ctrl);
2817 	nvme_cancel_admin_tagset(&dev->ctrl);
2818 
2819 	/*
2820 	 * The driver will not be starting up queues again if shutting down so
2821 	 * must flush all entered requests to their failed completion to avoid
2822 	 * deadlocking blk-mq hot-cpu notifier.
2823 	 */
2824 	if (shutdown) {
2825 		nvme_unquiesce_io_queues(&dev->ctrl);
2826 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2827 			nvme_unquiesce_admin_queue(&dev->ctrl);
2828 	}
2829 	mutex_unlock(&dev->shutdown_lock);
2830 }
2831 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2832 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2833 {
2834 	if (!nvme_wait_reset(&dev->ctrl))
2835 		return -EBUSY;
2836 	nvme_dev_disable(dev, shutdown);
2837 	return 0;
2838 }
2839 
nvme_setup_prp_pools(struct nvme_dev * dev)2840 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2841 {
2842 	size_t small_align = 256;
2843 
2844 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2845 						NVME_CTRL_PAGE_SIZE,
2846 						NVME_CTRL_PAGE_SIZE, 0);
2847 	if (!dev->prp_page_pool)
2848 		return -ENOMEM;
2849 
2850 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2851 		small_align = 512;
2852 
2853 	/* Optimisation for I/Os between 4k and 128k */
2854 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2855 						256, small_align, 0);
2856 	if (!dev->prp_small_pool) {
2857 		dma_pool_destroy(dev->prp_page_pool);
2858 		return -ENOMEM;
2859 	}
2860 	return 0;
2861 }
2862 
nvme_release_prp_pools(struct nvme_dev * dev)2863 static void nvme_release_prp_pools(struct nvme_dev *dev)
2864 {
2865 	dma_pool_destroy(dev->prp_page_pool);
2866 	dma_pool_destroy(dev->prp_small_pool);
2867 }
2868 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2869 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2870 {
2871 	size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2872 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2873 
2874 	dev->iod_mempool = mempool_create_node(1,
2875 			mempool_kmalloc, mempool_kfree,
2876 			(void *)alloc_size, GFP_KERNEL,
2877 			dev_to_node(dev->dev));
2878 	if (!dev->iod_mempool)
2879 		return -ENOMEM;
2880 
2881 	dev->iod_meta_mempool = mempool_create_node(1,
2882 			mempool_kmalloc, mempool_kfree,
2883 			(void *)meta_size, GFP_KERNEL,
2884 			dev_to_node(dev->dev));
2885 	if (!dev->iod_meta_mempool)
2886 		goto free;
2887 
2888 	return 0;
2889 free:
2890 	mempool_destroy(dev->iod_mempool);
2891 	return -ENOMEM;
2892 }
2893 
nvme_free_tagset(struct nvme_dev * dev)2894 static void nvme_free_tagset(struct nvme_dev *dev)
2895 {
2896 	if (dev->tagset.tags)
2897 		nvme_remove_io_tag_set(&dev->ctrl);
2898 	dev->ctrl.tagset = NULL;
2899 }
2900 
2901 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2902 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2903 {
2904 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2905 
2906 	nvme_free_tagset(dev);
2907 	put_device(dev->dev);
2908 	kfree(dev->queues);
2909 	kfree(dev);
2910 }
2911 
nvme_reset_work(struct work_struct * work)2912 static void nvme_reset_work(struct work_struct *work)
2913 {
2914 	struct nvme_dev *dev =
2915 		container_of(work, struct nvme_dev, ctrl.reset_work);
2916 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2917 	int result;
2918 
2919 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2920 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2921 			 dev->ctrl.state);
2922 		result = -ENODEV;
2923 		goto out;
2924 	}
2925 
2926 	/*
2927 	 * If we're called to reset a live controller first shut it down before
2928 	 * moving on.
2929 	 */
2930 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2931 		nvme_dev_disable(dev, false);
2932 	nvme_sync_queues(&dev->ctrl);
2933 
2934 	mutex_lock(&dev->shutdown_lock);
2935 	result = nvme_pci_enable(dev);
2936 	if (result)
2937 		goto out_unlock;
2938 	nvme_unquiesce_admin_queue(&dev->ctrl);
2939 	mutex_unlock(&dev->shutdown_lock);
2940 
2941 	/*
2942 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2943 	 * initializing procedure here.
2944 	 */
2945 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2946 		dev_warn(dev->ctrl.device,
2947 			"failed to mark controller CONNECTING\n");
2948 		result = -EBUSY;
2949 		goto out;
2950 	}
2951 
2952 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2953 	if (result)
2954 		goto out;
2955 
2956 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2957 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2958 	else
2959 		dev->ctrl.max_integrity_segments = 1;
2960 
2961 	nvme_dbbuf_dma_alloc(dev);
2962 
2963 	result = nvme_setup_host_mem(dev);
2964 	if (result < 0)
2965 		goto out;
2966 
2967 	result = nvme_setup_io_queues(dev);
2968 	if (result)
2969 		goto out;
2970 
2971 	/*
2972 	 * Freeze and update the number of I/O queues as thos might have
2973 	 * changed.  If there are no I/O queues left after this reset, keep the
2974 	 * controller around but remove all namespaces.
2975 	 */
2976 	if (dev->online_queues > 1) {
2977 		nvme_dbbuf_set(dev);
2978 		nvme_unquiesce_io_queues(&dev->ctrl);
2979 		nvme_wait_freeze(&dev->ctrl);
2980 		if (!nvme_pci_update_nr_queues(dev))
2981 			goto out;
2982 		nvme_unfreeze(&dev->ctrl);
2983 	} else {
2984 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2985 		nvme_mark_namespaces_dead(&dev->ctrl);
2986 		nvme_unquiesce_io_queues(&dev->ctrl);
2987 		nvme_remove_namespaces(&dev->ctrl);
2988 		nvme_free_tagset(dev);
2989 	}
2990 
2991 	/*
2992 	 * If only admin queue live, keep it to do further investigation or
2993 	 * recovery.
2994 	 */
2995 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2996 		dev_warn(dev->ctrl.device,
2997 			"failed to mark controller live state\n");
2998 		result = -ENODEV;
2999 		goto out;
3000 	}
3001 
3002 	nvme_start_ctrl(&dev->ctrl);
3003 	return;
3004 
3005  out_unlock:
3006 	mutex_unlock(&dev->shutdown_lock);
3007  out:
3008 	/*
3009 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3010 	 * may be holding this pci_dev's device lock.
3011 	 */
3012 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3013 		 result);
3014 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3015 	nvme_dev_disable(dev, true);
3016 	nvme_sync_queues(&dev->ctrl);
3017 	nvme_mark_namespaces_dead(&dev->ctrl);
3018 	nvme_unquiesce_io_queues(&dev->ctrl);
3019 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3020 }
3021 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3022 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3023 {
3024 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3025 	return 0;
3026 }
3027 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3028 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3029 {
3030 	writel(val, to_nvme_dev(ctrl)->bar + off);
3031 	return 0;
3032 }
3033 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3034 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3035 {
3036 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3037 	return 0;
3038 }
3039 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3040 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3041 {
3042 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3043 
3044 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3045 }
3046 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3047 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3048 {
3049 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3050 	struct nvme_subsystem *subsys = ctrl->subsys;
3051 
3052 	dev_err(ctrl->device,
3053 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3054 		pdev->vendor, pdev->device,
3055 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3056 		subsys->model, nvme_strlen(subsys->firmware_rev,
3057 					   sizeof(subsys->firmware_rev)),
3058 		subsys->firmware_rev);
3059 }
3060 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3061 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3062 {
3063 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3064 
3065 	return dma_pci_p2pdma_supported(dev->dev);
3066 }
3067 
3068 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3069 	.name			= "pcie",
3070 	.module			= THIS_MODULE,
3071 	.flags			= NVME_F_METADATA_SUPPORTED,
3072 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3073 	.reg_read32		= nvme_pci_reg_read32,
3074 	.reg_write32		= nvme_pci_reg_write32,
3075 	.reg_read64		= nvme_pci_reg_read64,
3076 	.free_ctrl		= nvme_pci_free_ctrl,
3077 	.submit_async_event	= nvme_pci_submit_async_event,
3078 	.subsystem_reset	= nvme_pci_subsystem_reset,
3079 	.get_address		= nvme_pci_get_address,
3080 	.print_device_info	= nvme_pci_print_device_info,
3081 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3082 };
3083 
nvme_dev_map(struct nvme_dev * dev)3084 static int nvme_dev_map(struct nvme_dev *dev)
3085 {
3086 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3087 
3088 	if (pci_request_mem_regions(pdev, "nvme"))
3089 		return -ENODEV;
3090 
3091 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3092 		goto release;
3093 
3094 	return 0;
3095   release:
3096 	pci_release_mem_regions(pdev);
3097 	return -ENODEV;
3098 }
3099 
check_vendor_combination_bug(struct pci_dev * pdev)3100 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3101 {
3102 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3103 		/*
3104 		 * Several Samsung devices seem to drop off the PCIe bus
3105 		 * randomly when APST is on and uses the deepest sleep state.
3106 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3107 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3108 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3109 		 * laptops.
3110 		 */
3111 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3112 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3113 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3114 			return NVME_QUIRK_NO_DEEPEST_PS;
3115 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3116 		/*
3117 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3118 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3119 		 * within few minutes after bootup on a Coffee Lake board -
3120 		 * ASUS PRIME Z370-A
3121 		 */
3122 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3123 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3124 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3125 			return NVME_QUIRK_NO_APST;
3126 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3127 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3128 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3129 		/*
3130 		 * Forcing to use host managed nvme power settings for
3131 		 * lowest idle power with quick resume latency on
3132 		 * Samsung and Toshiba SSDs based on suspend behavior
3133 		 * on Coffee Lake board for LENOVO C640
3134 		 */
3135 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3136 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3137 			return NVME_QUIRK_SIMPLE_SUSPEND;
3138 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3139 		   pdev->device == 0x500f)) {
3140 		/*
3141 		 * Exclude some Kingston NV1 and A2000 devices from
3142 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3143 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3144 		 */
3145 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3146 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3147 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3148 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3149 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3150 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3151 		/*
3152 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3153 		 * because of high power consumption (> 2 Watt) in s2idle
3154 		 * sleep. Only some boards with Intel CPU are affected.
3155 		 */
3156 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3157 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3158 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3159 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3160 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3161 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3162 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3163 	}
3164 
3165 	/*
3166 	 * NVMe SSD drops off the PCIe bus after system idle
3167 	 * for 10 hours on a Lenovo N60z board.
3168 	 */
3169 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3170 		return NVME_QUIRK_NO_APST;
3171 
3172 	return 0;
3173 }
3174 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3175 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3176 		const struct pci_device_id *id)
3177 {
3178 	unsigned long quirks = id->driver_data;
3179 	int node = dev_to_node(&pdev->dev);
3180 	struct nvme_dev *dev;
3181 	int ret = -ENOMEM;
3182 
3183 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3184 	if (!dev)
3185 		return ERR_PTR(-ENOMEM);
3186 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3187 	mutex_init(&dev->shutdown_lock);
3188 
3189 	dev->nr_write_queues = write_queues;
3190 	dev->nr_poll_queues = poll_queues;
3191 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3192 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3193 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3194 	if (!dev->queues)
3195 		goto out_free_dev;
3196 
3197 	dev->dev = get_device(&pdev->dev);
3198 
3199 	quirks |= check_vendor_combination_bug(pdev);
3200 	if (!noacpi &&
3201 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3202 	    acpi_storage_d3(&pdev->dev)) {
3203 		/*
3204 		 * Some systems use a bios work around to ask for D3 on
3205 		 * platforms that support kernel managed suspend.
3206 		 */
3207 		dev_info(&pdev->dev,
3208 			 "platform quirk: setting simple suspend\n");
3209 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3210 	}
3211 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3212 			     quirks);
3213 	if (ret)
3214 		goto out_put_device;
3215 
3216 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3217 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3218 	else
3219 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3220 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3221 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3222 
3223 	/*
3224 	 * Limit the max command size to prevent iod->sg allocations going
3225 	 * over a single page.
3226 	 */
3227 	dev->ctrl.max_hw_sectors = min_t(u32,
3228 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3229 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3230 	dev->ctrl.max_integrity_segments = 1;
3231 	return dev;
3232 
3233 out_put_device:
3234 	put_device(dev->dev);
3235 	kfree(dev->queues);
3236 out_free_dev:
3237 	kfree(dev);
3238 	return ERR_PTR(ret);
3239 }
3240 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3241 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3242 {
3243 	struct nvme_dev *dev;
3244 	int result = -ENOMEM;
3245 
3246 	dev = nvme_pci_alloc_dev(pdev, id);
3247 	if (IS_ERR(dev))
3248 		return PTR_ERR(dev);
3249 
3250 	result = nvme_add_ctrl(&dev->ctrl);
3251 	if (result)
3252 		goto out_put_ctrl;
3253 
3254 	result = nvme_dev_map(dev);
3255 	if (result)
3256 		goto out_uninit_ctrl;
3257 
3258 	result = nvme_setup_prp_pools(dev);
3259 	if (result)
3260 		goto out_dev_unmap;
3261 
3262 	result = nvme_pci_alloc_iod_mempool(dev);
3263 	if (result)
3264 		goto out_release_prp_pools;
3265 
3266 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3267 
3268 	result = nvme_pci_enable(dev);
3269 	if (result)
3270 		goto out_release_iod_mempool;
3271 
3272 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3273 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3274 	if (result)
3275 		goto out_disable;
3276 
3277 	/*
3278 	 * Mark the controller as connecting before sending admin commands to
3279 	 * allow the timeout handler to do the right thing.
3280 	 */
3281 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3282 		dev_warn(dev->ctrl.device,
3283 			"failed to mark controller CONNECTING\n");
3284 		result = -EBUSY;
3285 		goto out_disable;
3286 	}
3287 
3288 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3289 	if (result)
3290 		goto out_disable;
3291 
3292 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3293 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3294 	else
3295 		dev->ctrl.max_integrity_segments = 1;
3296 
3297 	nvme_dbbuf_dma_alloc(dev);
3298 
3299 	result = nvme_setup_host_mem(dev);
3300 	if (result < 0)
3301 		goto out_disable;
3302 
3303 	result = nvme_setup_io_queues(dev);
3304 	if (result)
3305 		goto out_disable;
3306 
3307 	if (dev->online_queues > 1) {
3308 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3309 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3310 		nvme_dbbuf_set(dev);
3311 	}
3312 
3313 	if (!dev->ctrl.tagset)
3314 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3315 
3316 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3317 		dev_warn(dev->ctrl.device,
3318 			"failed to mark controller live state\n");
3319 		result = -ENODEV;
3320 		goto out_disable;
3321 	}
3322 
3323 	pci_set_drvdata(pdev, dev);
3324 
3325 	nvme_start_ctrl(&dev->ctrl);
3326 	nvme_put_ctrl(&dev->ctrl);
3327 	flush_work(&dev->ctrl.scan_work);
3328 	return 0;
3329 
3330 out_disable:
3331 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3332 	nvme_dev_disable(dev, true);
3333 	nvme_free_host_mem(dev);
3334 	nvme_dev_remove_admin(dev);
3335 	nvme_dbbuf_dma_free(dev);
3336 	nvme_free_queues(dev, 0);
3337 out_release_iod_mempool:
3338 	mempool_destroy(dev->iod_mempool);
3339 	mempool_destroy(dev->iod_meta_mempool);
3340 out_release_prp_pools:
3341 	nvme_release_prp_pools(dev);
3342 out_dev_unmap:
3343 	nvme_dev_unmap(dev);
3344 out_uninit_ctrl:
3345 	nvme_uninit_ctrl(&dev->ctrl);
3346 out_put_ctrl:
3347 	nvme_put_ctrl(&dev->ctrl);
3348 	return result;
3349 }
3350 
nvme_reset_prepare(struct pci_dev * pdev)3351 static void nvme_reset_prepare(struct pci_dev *pdev)
3352 {
3353 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3354 
3355 	/*
3356 	 * We don't need to check the return value from waiting for the reset
3357 	 * state as pci_dev device lock is held, making it impossible to race
3358 	 * with ->remove().
3359 	 */
3360 	nvme_disable_prepare_reset(dev, false);
3361 	nvme_sync_queues(&dev->ctrl);
3362 }
3363 
nvme_reset_done(struct pci_dev * pdev)3364 static void nvme_reset_done(struct pci_dev *pdev)
3365 {
3366 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3367 
3368 	if (!nvme_try_sched_reset(&dev->ctrl))
3369 		flush_work(&dev->ctrl.reset_work);
3370 }
3371 
nvme_shutdown(struct pci_dev * pdev)3372 static void nvme_shutdown(struct pci_dev *pdev)
3373 {
3374 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3375 
3376 	nvme_disable_prepare_reset(dev, true);
3377 }
3378 
3379 /*
3380  * The driver's remove may be called on a device in a partially initialized
3381  * state. This function must not have any dependencies on the device state in
3382  * order to proceed.
3383  */
nvme_remove(struct pci_dev * pdev)3384 static void nvme_remove(struct pci_dev *pdev)
3385 {
3386 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3387 
3388 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3389 	pci_set_drvdata(pdev, NULL);
3390 
3391 	if (!pci_device_is_present(pdev)) {
3392 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3393 		nvme_dev_disable(dev, true);
3394 	}
3395 
3396 	flush_work(&dev->ctrl.reset_work);
3397 	nvme_stop_ctrl(&dev->ctrl);
3398 	nvme_remove_namespaces(&dev->ctrl);
3399 	nvme_dev_disable(dev, true);
3400 	nvme_free_host_mem(dev);
3401 	nvme_dev_remove_admin(dev);
3402 	nvme_dbbuf_dma_free(dev);
3403 	nvme_free_queues(dev, 0);
3404 	mempool_destroy(dev->iod_mempool);
3405 	mempool_destroy(dev->iod_meta_mempool);
3406 	nvme_release_prp_pools(dev);
3407 	nvme_dev_unmap(dev);
3408 	nvme_uninit_ctrl(&dev->ctrl);
3409 }
3410 
3411 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3412 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3413 {
3414 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3415 }
3416 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3417 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3418 {
3419 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3420 }
3421 
nvme_resume(struct device * dev)3422 static int nvme_resume(struct device *dev)
3423 {
3424 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3425 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3426 
3427 	if (ndev->last_ps == U32_MAX ||
3428 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3429 		goto reset;
3430 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3431 		goto reset;
3432 
3433 	return 0;
3434 reset:
3435 	return nvme_try_sched_reset(ctrl);
3436 }
3437 
nvme_suspend(struct device * dev)3438 static int nvme_suspend(struct device *dev)
3439 {
3440 	struct pci_dev *pdev = to_pci_dev(dev);
3441 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3442 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3443 	int ret = -EBUSY;
3444 
3445 	ndev->last_ps = U32_MAX;
3446 
3447 	/*
3448 	 * The platform does not remove power for a kernel managed suspend so
3449 	 * use host managed nvme power settings for lowest idle power if
3450 	 * possible. This should have quicker resume latency than a full device
3451 	 * shutdown.  But if the firmware is involved after the suspend or the
3452 	 * device does not support any non-default power states, shut down the
3453 	 * device fully.
3454 	 *
3455 	 * If ASPM is not enabled for the device, shut down the device and allow
3456 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3457 	 * down, so as to allow the platform to achieve its minimum low-power
3458 	 * state (which may not be possible if the link is up).
3459 	 */
3460 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3461 	    !pcie_aspm_enabled(pdev) ||
3462 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3463 		return nvme_disable_prepare_reset(ndev, true);
3464 
3465 	nvme_start_freeze(ctrl);
3466 	nvme_wait_freeze(ctrl);
3467 	nvme_sync_queues(ctrl);
3468 
3469 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3470 		goto unfreeze;
3471 
3472 	/*
3473 	 * Host memory access may not be successful in a system suspend state,
3474 	 * but the specification allows the controller to access memory in a
3475 	 * non-operational power state.
3476 	 */
3477 	if (ndev->hmb) {
3478 		ret = nvme_set_host_mem(ndev, 0);
3479 		if (ret < 0)
3480 			goto unfreeze;
3481 	}
3482 
3483 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3484 	if (ret < 0)
3485 		goto unfreeze;
3486 
3487 	/*
3488 	 * A saved state prevents pci pm from generically controlling the
3489 	 * device's power. If we're using protocol specific settings, we don't
3490 	 * want pci interfering.
3491 	 */
3492 	pci_save_state(pdev);
3493 
3494 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3495 	if (ret < 0)
3496 		goto unfreeze;
3497 
3498 	if (ret) {
3499 		/* discard the saved state */
3500 		pci_load_saved_state(pdev, NULL);
3501 
3502 		/*
3503 		 * Clearing npss forces a controller reset on resume. The
3504 		 * correct value will be rediscovered then.
3505 		 */
3506 		ret = nvme_disable_prepare_reset(ndev, true);
3507 		ctrl->npss = 0;
3508 	}
3509 unfreeze:
3510 	nvme_unfreeze(ctrl);
3511 	return ret;
3512 }
3513 
nvme_simple_suspend(struct device * dev)3514 static int nvme_simple_suspend(struct device *dev)
3515 {
3516 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3517 
3518 	return nvme_disable_prepare_reset(ndev, true);
3519 }
3520 
nvme_simple_resume(struct device * dev)3521 static int nvme_simple_resume(struct device *dev)
3522 {
3523 	struct pci_dev *pdev = to_pci_dev(dev);
3524 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3525 
3526 	return nvme_try_sched_reset(&ndev->ctrl);
3527 }
3528 
3529 static const struct dev_pm_ops nvme_dev_pm_ops = {
3530 	.suspend	= nvme_suspend,
3531 	.resume		= nvme_resume,
3532 	.freeze		= nvme_simple_suspend,
3533 	.thaw		= nvme_simple_resume,
3534 	.poweroff	= nvme_simple_suspend,
3535 	.restore	= nvme_simple_resume,
3536 };
3537 #endif /* CONFIG_PM_SLEEP */
3538 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3539 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3540 						pci_channel_state_t state)
3541 {
3542 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3543 
3544 	/*
3545 	 * A frozen channel requires a reset. When detected, this method will
3546 	 * shutdown the controller to quiesce. The controller will be restarted
3547 	 * after the slot reset through driver's slot_reset callback.
3548 	 */
3549 	switch (state) {
3550 	case pci_channel_io_normal:
3551 		return PCI_ERS_RESULT_CAN_RECOVER;
3552 	case pci_channel_io_frozen:
3553 		dev_warn(dev->ctrl.device,
3554 			"frozen state error detected, reset controller\n");
3555 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3556 			nvme_dev_disable(dev, true);
3557 			return PCI_ERS_RESULT_DISCONNECT;
3558 		}
3559 		nvme_dev_disable(dev, false);
3560 		return PCI_ERS_RESULT_NEED_RESET;
3561 	case pci_channel_io_perm_failure:
3562 		dev_warn(dev->ctrl.device,
3563 			"failure state error detected, request disconnect\n");
3564 		return PCI_ERS_RESULT_DISCONNECT;
3565 	}
3566 	return PCI_ERS_RESULT_NEED_RESET;
3567 }
3568 
nvme_slot_reset(struct pci_dev * pdev)3569 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3570 {
3571 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3572 
3573 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3574 	pci_restore_state(pdev);
3575 	if (!nvme_try_sched_reset(&dev->ctrl))
3576 		nvme_unquiesce_io_queues(&dev->ctrl);
3577 	return PCI_ERS_RESULT_RECOVERED;
3578 }
3579 
nvme_error_resume(struct pci_dev * pdev)3580 static void nvme_error_resume(struct pci_dev *pdev)
3581 {
3582 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3583 
3584 	flush_work(&dev->ctrl.reset_work);
3585 }
3586 
3587 static const struct pci_error_handlers nvme_err_handler = {
3588 	.error_detected	= nvme_error_detected,
3589 	.slot_reset	= nvme_slot_reset,
3590 	.resume		= nvme_error_resume,
3591 	.reset_prepare	= nvme_reset_prepare,
3592 	.reset_done	= nvme_reset_done,
3593 };
3594 
3595 static const struct pci_device_id nvme_id_table[] = {
3596 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3597 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3598 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3599 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3600 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3601 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3602 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3603 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3604 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3605 				NVME_QUIRK_BOGUS_NID, },
3606 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3607 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3608 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3609 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3610 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3611 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3612 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3613 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3614 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3615 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3616 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3617 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3618 				NVME_QUIRK_BOGUS_NID, },
3619 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3620 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3621 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3622 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3623 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3624 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3625 				NVME_QUIRK_BOGUS_NID, },
3626 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3627 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3628 				NVME_QUIRK_BOGUS_NID, },
3629 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3630 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3631 				NVME_QUIRK_NO_NS_DESC_LIST, },
3632 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3633 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3634 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3635 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3636 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3637 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3638 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3639 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3640 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3641 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3642 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3643 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3644 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3645 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3646 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3647 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3648 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3649 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3650 				NVME_QUIRK_BOGUS_NID, },
3651 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3652 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3653 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3654 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3655 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3656 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3657 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3658 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3659 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3660 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3661 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3662 				NVME_QUIRK_BOGUS_NID, },
3663 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3664 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3665 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3666 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3667 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3668 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3669 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3670 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3671 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3672 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3673 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3674 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3675 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3676 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3677 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3678 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3679 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3680 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3681 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3682 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3683 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3684 				NVME_QUIRK_BOGUS_NID, },
3685 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3686 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3687 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3688 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3689 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3690 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3691 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3692 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3693 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3694 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3695 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3696 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3697 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3698 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3699 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3700 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3701 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3702 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3703 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3704 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3705 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3706 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3707 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3708 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3709 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3710 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3711 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3712 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3713 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3714 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3715 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3716 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3717 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3718 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3719 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3720 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3721 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3722 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3723 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3724 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3725 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3726 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3727 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3728 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3729 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3730 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3731 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3732 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3733 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3734 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3735 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3736 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3737 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3738 		.driver_data = NVME_QUIRK_BOGUS_NID |
3739 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3740 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3741 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3742 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3743 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3744 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3745 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3746 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3747 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3748 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3749 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3750 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3751 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3752 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3753 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3754 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3755 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3756 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3757 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3758 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3759 		/*
3760 		 * Fix for the Apple controller found in the MacBook8,1 and
3761 		 * some MacBook7,1 to avoid controller resets and data loss.
3762 		 */
3763 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3764 				NVME_QUIRK_QDEPTH_ONE },
3765 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3766 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3767 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3768 				NVME_QUIRK_128_BYTES_SQES |
3769 				NVME_QUIRK_SHARED_TAGS |
3770 				NVME_QUIRK_SKIP_CID_GEN |
3771 				NVME_QUIRK_IDENTIFY_CNS },
3772 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3773 	{ 0, }
3774 };
3775 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3776 
3777 static struct pci_driver nvme_driver = {
3778 	.name		= "nvme",
3779 	.id_table	= nvme_id_table,
3780 	.probe		= nvme_probe,
3781 	.remove		= nvme_remove,
3782 	.shutdown	= nvme_shutdown,
3783 	.driver		= {
3784 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3785 #ifdef CONFIG_PM_SLEEP
3786 		.pm		= &nvme_dev_pm_ops,
3787 #endif
3788 	},
3789 	.sriov_configure = pci_sriov_configure_simple,
3790 	.err_handler	= &nvme_err_handler,
3791 };
3792 
nvme_init(void)3793 static int __init nvme_init(void)
3794 {
3795 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3796 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3797 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3798 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3799 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3800 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3801 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3802 
3803 	return pci_register_driver(&nvme_driver);
3804 }
3805 
nvme_exit(void)3806 static void __exit nvme_exit(void)
3807 {
3808 	pci_unregister_driver(&nvme_driver);
3809 	flush_workqueue(nvme_wq);
3810 }
3811 
3812 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3813 MODULE_LICENSE("GPL");
3814 MODULE_VERSION("1.0");
3815 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3816 module_init(nvme_init);
3817 module_exit(nvme_exit);
3818